
Sun Java™ System

Access Manager 6
Federation Management Guide

2005Q1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-7648

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.
The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l'adresse http://www.sun.com/patents et un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans
les autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit peuvent être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.
L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.
Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

3

Contents

List of Figures . 11

List of Tables . 13

List of Code Examples . 15

Preface . 17

Who Should Use This Guide . 17
Before You Read This Guide . 18
Conventions Used in This Guide . 18

Typographic Conventions . 18
Symbols . 19
Default Paths and File Names . 20
Shell Prompts . 20

Access Manager Documentation Set . 21
Access Manager Core Documentation . 21
Access Manager Policy Agent Documentation . 22

Related JES Product Documentation . 23
Accessing Sun Resources Online . 23
Contacting Sun Technical Support . 24
Related Third-Party Web Site References . 24
Sun Welcomes Your Feedback . 24

Part I Liberty Specifications and Federation Management . 25

Chapter 1 Introduction to the Liberty Alliance Project . 27
Overview . 27

LAP Members . 28
LAP Objectives . 28

4 Access Manager 6 2005Q1 • Federation Management Guide

The Concept of Identity . 29
The Concept of Identity Federation . 30
Liberty Alliance Project Concepts . 30
The Liberty Alliance Project Specifications . 35

Liberty Identity Federation Framework . 35
Single Sign-on and Federation Protocol . 37
Name Registration Protocol . 38
Federation Termination Protocol . 38
Single Log-out Protocol . 39
Name Identifier Mapping Protocol . 39
Additional ID-FF Documents . 39

Liberty Identity Web Services Framework . 40
SOAP Binding Specification . 41
Discovery Service Specification . 41
Security Mechanisms Specification . 41
Data Services Template Specification . 41
Interaction Service Specification . 42
Authentication Service Specification . 42
Client Profiles for Liberty-enabled User Agents or Devices . 42
Additional ID-WSF Documents . 42

Liberty Identity Service Interface Specifications . 43
Personal Profile Service . 43
Employee Profile Service . 43

Supporting Documents . 44
Deploying a Liberty-based System . 44

Size Up Your IT Staff . 44
Clean Your Directory Data . 44
Draft Business Agreements . 44
Liberty-compliant Technology . 45

Chapter 2 Implementation of the Liberty Specifications . 47
Overview . 47

Name Identifier Mapping Protocol . 48
Single Sign-on and Federation Protocol . 48

Dynamic Identity Provider Proxying . 49
Affiliation Federation . 49
One-Time Federation . 49
Name Identifier Encryption Profile . 49

Liberty Metadata Description and Discovery Specification . 50
Liberty Use Cases . 50

Unified Access to Intranet Resources . 50
Integrated Partner Networks . 51
Sample Use Case Process . 51

Contents 5

Access Manager Implementations . 52
Web Services . 52

Authentication Web Service . 53
Discovery Service . 54
Liberty Personal Profile Service . 54
SOAP Binding . 54

Application Programming Interfaces . 55
Federation Management Module . 55

Packages and Global Interfaces . 56
Liberty-based Samples . 57

Chapter 3 Federation Management . 59
Overview . 59
The Federation Management Interface . 60
The Process of Federation . 62

Pre-login Process . 64
Single Sign-on Process . 65

Common Domain Services . 65
Installing the Common Domain Services . 66
Common Domain Service URLs . 66

Federation Management . 67
Authentication Domains . 67
Creating and Maintaining Authentication Domains . 67

To Create An Authentication Domain . 67
To Modify An Authentication Domain . 68
To Delete An Authentication Domain . 68

Entity Descriptors . 69
Provider Entity Descriptor . 69
Affiliate Entity Descriptor . 69

Creating and Maintaining Entity Descriptors . 70
To Create an Entity Descriptor of Either Type . 70
To Configure a Provider Entity Descriptor . 70
To Configure an Affiliate Entity Descriptor . 84
To Delete an Entity Descriptor of Either Type . 87

Federation Management API . 87
Federation Management Samples . 88

Installing Access Manager . 89
Updating and Loading the Metadata . 89
Deploying the Service Provider . 90

To Configure AMClient.properties . 90
To Create a WAR File for SP1 . 91
To Deploy the Service Provider WAR File . 91

Deploying the Identity Provider . 92

6 Access Manager 6 2005Q1 • Federation Management Guide

To Configure AMClient.properties . 93
To Create a WAR File for IDP1 . 93
To Deploy the Identity Provider WAR File . 93

Creating and Managing a Federation . 95
To Federate the Service Provider and Identity Provider Accounts . 95
To Accomplish Single Sign-On . 96
To Perform a Single Logout . 96
To Terminate Account Federation . 96

Part II Liberty-based Web Services . 99

Chapter 4 Authentication Web Service . 101
Overview . 101

XML Service File . 102
Application Programming Interfaces . 102

Authentication Web Service Process . 102
Authentication Web Service Attribute . 103

Mechanism Handler List . 104
key Parameter . 104
class Parameter . 104

Authentication Web Service Interfaces . 104
com.sun.identity.liberty.ws.authnsvc . 104
com.sun.identity.liberty.ws.authnsvc.protocol . 105

Authentication Web Service Sample . 105

Chapter 5 Data Services . 107
Overview . 107

Data Services Template Specifications . 108
Liberty Personal Profile Service . 109

XML Service File . 109
XSD Schema Definition . 109

Liberty Employee Profile Service . 110
XML Service File . 110
XSD Schema Definition . 110

Data Services Template API . 111
Liberty Personal Profile Service . 111

The Liberty Personal Profile Service Process . 111
Liberty Personal Profile Service Attributes . 112

ResourceID Mapper . 113
Authorizer . 113
Attribute Mapper . 114

Contents 7

Provider ID . 114
Name Scheme . 114
Namespace Prefix . 115
Supported Containers . 115
PPLDAP Attribute Map List . 115
Require Query PolicyEval . 116
Require Modify PolicyEval . 116
Extension Container Attributes . 116
Extension Attributes Namespace Prefix . 117
Is ServiceUpdate Enabled . 117
Service Instance Update Class . 117
Alternate Endpoint . 117

Liberty Employee Profile Service . 118
Data Services Template API . 118

com.sun.identity.liberty.ws.dst . 119
com.sun.identity.liberty.ws.dst.service . 119

Developing A New Data Service . 120

Chapter 6 Discovery Service . 121
Overview . 121

Discovery Entries . 122
XML Service Files . 123
Application Programming Interfaces . 123

com.sun.identity.liberty.ws.disco . 123
com.sun.identity.liberty.ws.disco.plugins . 124
com.sun.identity.liberty.ws.interfaces . 124

Discovery Service Architecture . 124
Discovery Service Process . 125
Discovery Service Attributes . 127

Provider ID . 128
Supported Authentication Mechanisms . 128
Supported Directives . 128
Enable Policy Evaluation for DiscoveryLookup . 129
Enable Policy Evaluation for DiscoveryUpdate . 129
Authorizer Plugin Class . 130
Entry Handler Plugin Class . 130
Classes For ResourceIDMapper Plugin . 130
Authenticate Response Message . 130
Generate SessionContextStatement for Bootstrapping . 131
Encrypt NameIdentifier in Session Context for Bootstrapping . 131
Use Implied Resource; don't generate ResourceID for Bootstrapping . 131
Resource Offerings for Bootstrapping Resources . 131

Discovery Entries and Resource Offerings . 132

8 Access Manager 6 2005Q1 • Federation Management Guide

Storing Discovery Entries as User Attributes . 132
Storing Discovery Entries as Dynamic Attributes . 136
Storing Discovery Entries for Bootstrapping . 139

Discovery Service Interfaces . 142
DefaultDiscoAuthorizer Implementation . 142
Default ResourceIDMapper Implementations . 144
DiscoEntryHandler Interface . 144
Client APIs . 145

Discovery Service Sample . 146

Chapter 7 SOAP Binding Service . 147
Overview . 147

XML Service File . 148
Application Programming Interfaces . 148

SOAP Binding Process . 148
SOAP Binding Attributes . 149

Request Handler List . 150
key Parameter . 150
class Parameter . 150

Web Service Authenticator . 151
Supported Authentication Mechanisms . 151

SOAP Binding Interfaces . 152

Chapter 8 Application Programming Interfaces . 153
Overview of Public Interfaces . 153
Common Service Interfaces . 155

com.sun.identity.liberty.ws.common . 155
com.sun.identity.liberty.ws.interfaces . 156

Authorizer . 156
ResourceIDMapper . 157

Common Security API . 157
com.sun.identity.liberty.ws.security . 157
com.sun.identity.liberty.ws.common.wsse . 158

Interaction Service API . 159
Configuring the Interaction Service . 159
Interaction Service API . 161

PAOS Binding . 161
PAOS vs. SOAP . 162
PAOS Binding API . 162
PAOS Binding Sample . 163

Contents 9

Part III Appendices . 167

Appendix A Included Samples . 169
Overview . 169
Federation Framework Samples . 169

sample1 . 170
sample2 . 170
sample3 . 171

Web Services Framework Samples . 171
wsc . 172
sis-ep . 172
paos . 173
authnsvc . 173

Appendix B Service Schema Files . 175
Overview . 175
SOAP Binding Schema . 176
Personal Profile Schema . 178
Employee Profile Schema . 183
Authentication Web Service Schema . 185
PAOS Binding Schema . 189
Metadata Description Schema . 190

Glossary . 197

Index . 199

10 Access Manager 6 2005Q1 • Federation Management Guide

11

List of Figures

Figure 0-1 Concepts of the ID-FF Specifications . 35

Figure 2-1 Process of Federation, Web Services & Service Instances Framework 52

Figure 2-2 Web Services Listed in Access Manager Console . 53

Figure 2-3 Federation Management Module in Access Manager Console 55

Figure 3-1 Liberty-based Access Manager Authentication Process Flow . 63

Figure 5-1 Data Service Template as Building Block for Data Services . 108

Figure 6-1 Discovery Service Architecture . 125

Figure 6-2 Liberty-enabled Discovery Service Process . 126

12 Access Manager 6 2005Q1 • Federation Management Guide

13

List of Tables

Table 0-1 Additional Help with the ID-FF . 39

Table 0-2 Additional Help with the ID-WSF . 43

Table 2-1 Summary of Liberty-based Packages . 56

Table 3-1 Federation Management Module JSP . 60

Table 3-2 Possible Provider Combinations for Provider Entity Descriptor 69

Table 3-3 Federation Management API . 88

Table 3-4 Default Values in sp1metadata.xml for Sample1 . 89

Table 5-1 Data Service Client APIs . 119

Table 6-1 Policy-related Directives . 129

Table 6-2 Discovery Service Client APIs . 145

Table 7-1 SOAP Binding API Classes . 152

Table 8-1 Summary of Liberty-based Packages . 154

Table 8-2 Common Liberty Classes . 155

Table 8-3 Common Liberty Interfaces . 156

Table 8-4 com.sun.identity.liberty.ws.security . 157

Table 8-5 Security APIs . 158

Table 8-6 Interaction Service API . 161

Table 8-7 Summary of PAOS APIs . 162

Table A-1 Relative Information for Sample1 Servers . 170

14 Access Manager 6 2005Q1 • Federation Management Guide

15

List of Code Examples

Code Example 5-1 Authorization Rules . 114

Code Example 5-2 Attribute Mappings as Defined in XML Service File 116

Code Example 5-3 Extension Query for creditcard . 116

Code Example 8-1 PAOS Client Servlet from PAOS Sample . 163

Code Example B-1 SOAP Binding XSD File . 176

Code Example B-2 Personal Profile Service XSD File . 178

Code Example B-3 Employee Profile Service XSD Schema . 183

Code Example B-4 Authentication Web Service XSD File . 185

Code Example B-5 Reverse HTTP Binding for SOAP XSD File . 189

Code Example B-6 Metadata Description and Discovery XSD File . 190

16 Access Manager 6 2005Q1 • Federation Management Guide

17

Preface

The Sun Java™ System Access Manager 6 2005Q1 Federation Management Guide
provides information about the Federated Management module and related Web
services in Sun Java™ System Access Manager 6 2005Q1 (formerly Sun™ ONE
Identity Server). It includes an introduction to the Liberty Alliance Project’s
specifications and Access Manager’s compliance with them. Instructions for
enabling a Liberty-based environment, and summaries of the application
programming interface (API) for extending the framework are also provided. This
preface includes the following sections:

• Who Should Use This Guide

• Before You Read This Guide

• Conventions Used in This Guide

• Access Manager Documentation Set

• Related JES Product Documentation

• Accessing Sun Resources Online

• Contacting Sun Technical Support

• Related Third-Party Web Site References

• Sun Welcomes Your Feedback

Who Should Use This Guide
This Federation Management Guide is intended for use by IT professionals, network
administrators and software developers who implement a Liberty-enabled identity
management and web access platform using Sun Java System servers and software.
It is recommended that administrators understand the following technologies:

Before You Read This Guide

18 Access Manager 6 2005Q1 • Federation Management Guide

• Lightweight Directory Access Protocol (LDAP)

• Java

• JavaServer Pages™ (JSP)

• HyperText Transfer Protocol (HTTP)

• HyperText Markup Language (HTML)

• eXtensible Markup Language (XML)

• Web Services Description Language (WSDL)

• SOAP (SOAP is no longer an acronym for the messaging protocol.)

Before You Read This Guide
Access Manager is a component of the Sun Java Enterprise System, a software
infrastructure that supports enterprise applications distributed across a network or
Internet environment. You should be familiar with the documentation provided
with Sun Java Enterprise System, which you can access online at:

http://docs.sun.com/prod/entsys.05q1

Because Sun Java System Directory Server is used as the data store in an Access
Manager deployment, administrators should also be familiar with the
documentation provided with that product. The latest Directory Server
documentation can be accessed online at
http://docs.sun.com/coll/DirectoryServer_05q1.

Conventions Used in This Guide
In the Access Manager documentation set, certain typographic conventions and
terminology are used. These conventions are described in the following sections.

Typographic Conventions
The following table describes the typographic conventions used in this guide.

Conventions Used in This Guide

Preface 19

Symbols
The following table describes the symbol conventions used in this guide.

Table 1 Typographic Conventions

Typeface Meaning Examples

AaBbCc123
(Monospace)

API and language elements, HTML
tags, web site URLs, command
names, file names, directory path
names, onscreen computer output,
sample code.

Edit your.login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123
(Monospace
bold)

What you type, when contrasted
with onscreen computer output.

% su
Password:

AaBbCc123
(Italic)

Book titles, new terms, words to be
emphasized.

A placeholder in a command or path
name to be replaced with a real
name or value.

Read Chapter 6 in the User’s
Guide.

These are called class options.

Do not save the file.

The file is located in the
install-dir/bin directory.

Table 2 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional command
options.

ls [-l] The -l option is not
required.

{ | } Contains a set of choices for
a required command option.

-d {y|n} The -d option requires that
you use either the y
argument or the n
argument.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while
you press the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key,
release it, and then press
the subsequent keys.

Conventions Used in This Guide

20 Access Manager 6 2005Q1 • Federation Management Guide

Default Paths and File Names
The following table describes the default paths and file names used in this guide:

Shell Prompts
The following table describes the shell prompts used in this guide.

> Indicates menu item
selection in a graphical user
interface.

File > New > Templates From the File menu, choose
New. From the New
submenu, choose
Templates.

Table 3 Default Paths and File Names

Term Description

AccessManager_base Represents the base installation directory for Access Manager. The
Access Manager 2005Q1 default base installation and product
directory depends on your specific platform:

Solaris™ systems: /opt/SUNWam

Linux systems: /opt/sun/identity

DirectoryServer_base Represents the base installation directory for Sun Java System
Directory Server. Refer to the product documentation for the
specific path name.

ApplicationServer_base Represents the base installation directory for Sun Java System
Application Server. Refer to the product documentation for the
specific path name.

WebServer_base Represents the base installation directory for Sun Java System
Web Server. Refer to the product documentation for the specific
path name.

Table 4 Shell Prompts

Shell Prompt

C shell on UNIX or Linux machine-name%

C shell superuser on UNIX or Linux machine-name#

Table 2 Symbol Conventions (Continued)

Symbol Description Example Meaning

Access Manager Documentation Set

Preface 21

Access Manager Documentation Set
The Access Manager documentation consists of two sets:

• Access Manager Core Documentation

• Access Manager Policy Agent Documentation

Access Manager Core Documentation
The Access Manager documentation set contains the following titles:

• The Release Notes (http://docs.sun.com/doc/817-7642) will be available online
after the product is released. They gather an assortment of last-minute
information, including a description of what is new in this current release,
known problems and limitations, installation notes, and how to report issues
with the software or the documentation.

• Technical Overview (http://docs.sun.com/doc/817-7643) provides an overview
of how Access Manager components work together to consolidate identity
management and to protect enterprise assets and web-based applications. It
also explains basic Access Manager concepts and terminology.

• Deployment Planning Guide (http://docs.sun.com/doc/817-7644) provides
information for planning an Access Manager deployment within an existing
information technology infrastructure.

• Migration Guide (http://docs.sun.com/doc/817-7645) provides details on how
to migrate existing data and Sun Java System product deployments to the latest
version of Access Manager.

Bourne shell and Korn shell on UNIX or Linux $

Bourne shell and Korn shell superuser on UNIX or Linux #

Windows command line C:\

NOTE For instructions on installing Access Manager, see the Sun Java
Enterprise System 2005Q1 Installation Guide
(http://docs.sun.com/doc/819-0056)

Table 4 Shell Prompts

Shell Prompt

Access Manager Documentation Set

22 Access Manager 6 2005Q1 • Federation Management Guide

• Performance Tuning Guide (http://docs.sun.com/doc/817-7646) provides
information on how to tune Access Manager and its related components for
optimal performance.

• Administration Guide (http://docs.sun.com/doc/817-7647) describes how to use
the Access Manager console as well as manage user and service data via the
command line interface.

• Federation Management Guide (this guide) provides information about the
Federation Management module and related Web services developed for
Access Manager. These features are based on the Liberty Alliance Project (LAP)
specifications available online at the LAP Web site,
http://www.projectliberty.org/resources/specifications.php#box1.

• Developer’s Guide (http://docs.sun.com/doc/817-7649) offers information on
how to customize Access Manager and integrate its functionality into an
organization’s current technical infrastructure. It also contains details about the
programmatic aspects of the product and its API.

• Developer’s Reference (http://docs.sun.com/doc/817-7650) provides summaries
of data types, structures, and functions that make up the public Access
Manager C APIs.

• Java Specifications (http://docs.sun.com/doc/817-7651) provides information on
the implementation of Java packages in Access Manager.

Updates to the Release Notes and links to modifications of the core documentation
can be found on the Access Manager page at the Sun Java System 2005Q1
documentation web site (http://docs.sun.com/prod/entsys.05q1). Updated
documents will be marked with a revision date.

Access Manager Policy Agent Documentation
Documentation for the Access Manager policy agents is available at
http://docs.sun.com/coll/S1_IdServPolicyAgent_21. Policy agents are developed
on a different schedule than the server product itself. Therefore, the documentation
set for the policy agents is available outside the core set of Access Manager
documentation. The Policy Agent documentation set contains the following titles:

• Web Policy Agents Guide documents how to install and configure an Access
Manager policy agent on various web and proxy servers. It also includes
troubleshooting and information specific to each agent.

Related JES Product Documentation

Preface 23

• J2EE Policy Agents Guide documents how to install and configure an Access
Manager policy agent to protect a variety of hosted J2EE applications. It also
includes troubleshooting and information specific to each agent.

• The Release Notes will be available online after the set of agents is released.
There is generally one Release Notes file for each agent type release. The Release
Notes gather an assortment of last-minute information, including a description
of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the
documentation.

Related JES Product Documentation
Useful information can be found at the following locations:

• Directory Server documentation:
http://docs.sun.com/coll/DirectoryServer_04q2

• Web Server documentation:
http://docs.sun.com/coll/S1_websvr61_en

• Application Server documentation
http://docs.sun.com/coll/s1_asseu3_en

• Web Proxy Server documentation:
http://docs.sun.com/prod/s1.webproxys#hic

Accessing Sun Resources Online
For product downloads, professional services, patches, support, and additional
developer information, go to:

• Download Center:
http://wwws.sun.com/software/download/

• Technical Support:
http://www.sun.com/service/support/software/

• Sun Java Systems Services Suite:
http://www.sun.com/service/sunjavasystem/sjsservicessuite.html

• Sun Enterprise Services, Solaris Patches, and Support:
http://sunsolve.sun.com/

Contacting Sun Technical Support

24 Access Manager 6 2005Q1 • Federation Management Guide

• Developer Information:
http://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the
product documentation, go to:

http://www.sun.com/service/contacting.

Related Third-Party Web Site References
Third-party URLs are referenced in this documentation set and provide additional,
related information. Sun is not responsible for the availability of third-party Web
sites mentioned in this document. Sun does not endorse and is not responsible or
liable for any content, advertising, products, or other materials that are available on
or through such sites or resources. Sun will not be responsible or liable for any
actual or alleged damage or loss caused by or in connection with the use of or
reliance on any such content, goods, or services that are available on or through
such sites or resources.

Sun Welcomes Your Feedback
Sun Microsystems is interested in improving its documentation and welcomes
your comments and suggestions.

To share your comments, go to http://docs.sun.com and click the Send Comments
link at the bottom of the page. In the online form provided, include the document
title and part number. The part number is a seven-digit or nine-digit number that
can be found on the title page of the book or at the top of the document. For
example, the title of this book is Sun Java System Access Manager 6 2005Q1
Federation Management Guide, and the part number is 817-7648.

Part I

Liberty Specifications and Federation
Management

Chapter 1, “Introduction to the Liberty Alliance Project” on
page 27

Chapter 2, “Implementation of the Liberty Specifications” on
page 47

Chapter 3, “Federation Management” on page 59

27

Chapter 1

Introduction to the Liberty Alliance
Project

Sun Java™ System Access Manager implements identity federation and Web
services specifications defined by the Liberty Alliance Project. Before describing
how this is accomplished, this appendix explains the concept of identity, identity
services, the purpose of identity federation, and the role of the Liberty Alliance
Project in creating identity-based solutions. It contains the following sections:

• Overview

• The Concept of Identity

• The Concept of Identity Federation

• Liberty Alliance Project Concepts

• The Liberty Alliance Project Specifications

• Deploying a Liberty-based System

Overview
In 2001 Sun Microsystems joined with other major companies to form the Liberty
Alliance Project (LAP). The goal of the LAP is to define standards for developing
identity-based infrastructures, software, and Web services, and to promote
adoption of these standards. The LAP does not deliver products or services; it
defines frameworks to ensure interoperability between homogeneous products
while respecting the privacy and security of identity data.

Overview

28 Access Manager 6 2005Q1 • Federation Management Guide

LAP Members
The members of the LAP include some of the world’s most recognized brand
names, representing products, services and partnerships across a wide spectrum of
consumer and business service providers. The consortium also includes
government organizations and technology vendors. A complete listing of current
members of the LAP can be found at
http://www.projectliberty.org/membership/current_members.php.

LAP Objectives
The specifications developed by the LAP enable individuals and organizations to
securely conduct network transactions. More specifically, they:

• Serve as open standards for federated identity management and Web services.

• Support and promote permission-based sharing of personal identity attributes.

• Provide a single sign-on standard that includes decentralized authentication
and authorization for multiple providers.

• Create an open network identity infrastructure that supports all current and
emerging user agents (network access devices such as Web browsers, or
wireless browsers).

• Enable consumers to protect their network identity information.

NOTE If you are already familiar with the concepts and protocols developed by the Liberty
Alliance Project, feel free to move on to Chapter 2, “Implementation of the Liberty
Specifications” which begins to describe how these standards are integrated into
the Sun Java System Access Manager product.

NOTE Only members of the Liberty Alliance Project are allowed to provide feedback on
drafts of the specifications although any organization may implement them.

The Concept of Identity

Chapter 1 Introduction to the Liberty Alliance Project 29

The Concept of Identity
Identity can be defined as a set of information by which one person is definitively
distinguished. In the real world, this information starts with a document that
defines your name: a birth certificate. Over time, additional information further
designates aspects of your identity:

• an address

• a telephone number

• one or more diplomas

• a driver’s license

• a passport

• financial institution accounts

• medical records

• insurance statements

• employment records

• magazine subscriptions

• utility bills

Each of these distinct documents represents data that defines your identity
specifically to the enterprise for which it was issued. The composite of this data
constitutes an overall identity with each specific piece detailing a distinguishing
characteristic.

Because the Internet is becoming the primary vehicle for the interactions
represented by this identity-defining information, people are now creating
identities online for the enterprises with which they interact. By defining a user
identifier and password, an email address, your personal preferences (style of
music, access device, opt-in/opt-out marketing decision, email frequency), and
other information more specific to the particular business (social security number,
credit records, bank account number, bill payment information, ship-to address),
users distinguish themselves from others who use the enterprise’s services by
creating this virtual identity. The virtual identity is referred to as a local identity
because it is specific to the service provider for which it has been set. Considering
the number of service providers for which you can define a local identity, it can
make accessing each one time-consuming and frustrating. In addition, although

The Concept of Identity Federation

30 Access Manager 6 2005Q1 • Federation Management Guide

most local identities are configured independently (and fragmented across the
Internet), it might be useful to connect the information; for example, your local
identity with a bank could be securely connected to your local identity with a
retailer. Identity federation is the solution to this issue.

The Concept of Identity Federation
Consider the many times you might access service provider accounts in a single
day; sending and receiving email, logging in to a news portal, checking bank
balances, finalizing travel arrangements, bidding on auction items, accessing utility
accounts, and shopping online are all possible services for which you would define
an identity. Each time you want to access one of these services, you identify
yourself to the provider by logging in. If you use all of these services, you’ve
configured a multitude of separate accounts that you must log in to (and log out of)
for access. This virtual identity phenomenom offers the opportunity to fashion a
system for computer users to link their local identities. Identity federation allows the
user to associate, connect or bind the various local identities they have configured
for multiple service providers. The linked local identities, referred to as a federated
identity, then allow the user to log in to one service provider site and click through
to an affiliated service provider site without having to re-authenticate or
re-establish their identity. This notion of single sign-on is an option to which the
user must agree. The Liberty Alliance Project was implemented to define standards
using open technologies, therefore encouraging an interoperational infrastructure
among service providers, and identity federation among users.

Liberty Alliance Project Concepts
A number of concepts are derived from the LAP specifications (discussed in “The
Liberty Alliance Project Specifications” on page 35). Definitions for them are
provided here.

Account Federation (Identity Federation)
Account federation occurs when a user chooses to unite distinct service provider
accounts with one or more identity provider accounts. Users retain the individual
account information with each provider while, simultaneously, establishing a link
that allows the exchange of authentication information between them.

Liberty Alliance Project Concepts

Chapter 1 Introduction to the Liberty Alliance Project 31

Affiliation
An affiliation is a group of providers formed without regard to their particular
authentication domain. It is formed and maintained by an affiliation owner. An
affiliation document describes a group of providers collectively identified by their
providerID. Members of an affiliation may invoke services either as a member of
the affiliation (by virtue of their Affiliation ID) or individually (by virtue of their
Provider ID).

Attribute Provider
An attribute provider is a web service that hosts attribute data. An example of an
attribute provider would be an instance of the Personal Profile Service defined in
“Liberty Identity Service Interface Specifications” on page 43.

Authentication Domain
A authentication domain is a group of service providers (with at least one identity
provider) who agree to join together to exchange user authentication information
using Liberty-enabled technologies. Once an authentication domain is established,
single sign-on can be enabled amongst all membered providers. An authentication
domain is sometimes referred to as a Circle Of Trust.

Circle Of Trust
See Authentication Domain.

Client
A client is actually the role any system entity assumes when making a request of
another system entity. (In this scenario, the system entity of which the request is
made is termed a Server.)

Common Domain
In an authentication domain having more than one identity provider, service
providers need a way to determine which identity provider a principal uses.
Because this function must work across any number of domain name system
(DNS) domains, the Liberty approach is to create one domain common to all
identity and service providers in the authentication domain. This predetermined
domain is known as the common domain. Within the common domain, when a
principal has been authenticated to a service provider, the identity provider writes

NOTE An authentication domain is not a domain in the domain name system (DNS) sense
of the word.

Liberty Alliance Project Concepts

32 Access Manager 6 2005Q1 • Federation Management Guide

a common domain cookie that stores the principal’s identity provider. Now, when the
principal attempts to access another service provider within the authetnication
domain, the service provider reads the common domain cookie and the request can
be forwarded to the correct identity provider.

Defederation
See Federation Termination.

Federation Cookie
A federation cookie is a cookie implemented by Access Manager with the name
fedCookie. It can have a value of either yes or no based on the principal’s
federation status. The concept was developed for Access Manager, and is not a
defined part of the LAP specifications. Information on how a federation cookie is
used can be found in “The Process of Federation” on page 62 of Chapter 3,
“Federation Management.”

Federated Identity
A federated identity refers to the amalgamation of the account information in all
service providers accessed by one user (personal data, authentication information,
buying habits and history, shopping preferences, etc.). The information is
administered by the user yet, with the user’s consent, privilege to access the
information is securely shared with their providers of choice.

Federation Termination
Users have the ability to terminate their federations. Federation termination (or
defederation) results in the cancellation of affiliations established between the user’s
identity provider and their federated service provider accounts.

Identity Provider
An identity provider is a service provider that specializes in providing
authentication services. As the administrating service for authentication, identity
providers also maintain and manage identity information. Authentication
accomplished by an identity provider is honored by all service providers with
whom it is affiliated. This term is used when defining an entity of this sort enabled
by the ID-FF.

Identity Service
An identity service is a Web service that acts upon a resource to retrieve, update, or
perform some action on data attributes related to a principal (an identity). An
example of an identity service might be a corporate phone book or calendar
service.

Liberty Alliance Project Concepts

Chapter 1 Introduction to the Liberty Alliance Project 33

Liberty-enabled Client
A Liberty-enabled client is a client that has, or knows how to obtain, informatiuon
about the identity provider that a principal will use to authenticate to a service
provider.

Liberty-enabled Proxy
A Liberty-enabled proxy is an HTTP proxy that emulates a Liberty-enabled Client.

Name Identifier
To help preserve anonymity when identity information is exchanged between
identity and service providers, an arbitrary name identifier is used. This pseudonym
allows the providers to identify a principal without knowledge of the user’s actual
identity. The name identifier has meaning only in the context of the relationship
between partners.

Principal
A principal is an entity that can acquire a federated identity, that is capable of
making decisions, and to which authenticated actions are done on its behalf.
Examples of principals include an individual user, a group of individuals, a
corporation, other legal entities, or a component of the Liberty architecture.

Pseudonym
See Name Identifier.

Receiver
A receiver is the role taken by a system entity when it receives a message sent by
another system entity. (In this scenario, the system entity from which the message
is received is termed a Sender.)

Resource Offering
In a discovery service, a resource offering defines associations between a piece of
identity data and the service instance that provides access to it.

Sender
A sender is the role donned by a system entity when it constructs and sends a
message to another system entity. (In this scenario, the system entity from which
the message is received is termed a Receiver.)

Server
A server is actually the role any system entity assumes when providing a service in
response to a request from another system entity. (In this scenario, the system
entity from which the request is received is termed a Client.)

Liberty Alliance Project Concepts

34 Access Manager 6 2005Q1 • Federation Management Guide

Service Provider
A service provider is a commercial or not-for-profit organization that offers
web-based services to a principal. This broad category can include internet portals,
retailers, transportation providers, financial institutions, entertainment companies,
libraries, universities, and governmental agencies. This term is used when defining
an entity of this sort enabled by the ID-FF.

Single Logout
A single logout occurs when a user logs out from an identity provider or a service
provider. By logging out from one provider, they will effectively be logged out
from all service providers or identity providers in that authentication domain.

Single Sign-on
Single sign-on is established when a user with a federated identity authenticates to
an identity provider. Because they have previously opted-in for federation, they
are now able to access affiliated service providers without having to
re-authenticate.

Trusted Provider
A trusted provider is a generic term for one of a group of service and identity
providers in an authentication domain. Users can transact and communicate with
trusted providers in a secure environment.

Web Service Consumer
A Web service consumer invokes the operations a Web service provides by making a
request to a Web service provider. This term is used when defining an entity of this
sort enabled by the ID-WSF.

Web Service Provider
A Web service provider implements a Web service based on a request from a Web
service consumer. It may run on the same Java™ virtual machine as the Web
service consumer using it. This term is used when defining an entity of this sort
enabled by the ID-WSF.

NOTE In order to provide a service to clients, a server will often be both a Sender and a
Receiver.

The Liberty Alliance Project Specifications

Chapter 1 Introduction to the Liberty Alliance Project 35

The Liberty Alliance Project Specifications
The LAP develops and delivers specifications that enable federated network
identity management. Using Web redirection and open-source technologies like
SOAP and XML, the LAP specifications enable distributed, cross-domain
interactions. The LAP specifications are divided into three components:

• Liberty Identity Federation Framework

• Liberty Identity Web Services Framework

• Liberty Identity Service Interface Specifications

Liberty Identity Federation Framework
The Liberty Identity Federation Framework (ID-FF) defines a set of protocols, bindings
and profiles that provides a solution for identity federation, cross-domain
authentication and session management. These definitions can be used to create a
brand new identity management system or develop one in conjunction with legacy
systems. The ID-FF is designed to work with heterogeneous platforms, all types of
networking devices (including personal computers, mobile phones, and PDAs),
and other emerging technologies. A scenario implementing these specifications
includes the subjects illustrated in Figure 0-1 and defined beneath it.

Figure 0-1 Concepts of the ID-FF Specifications

The Liberty Alliance Project Specifications

36 Access Manager 6 2005Q1 • Federation Management Guide

• A principal has a defined local identity with one or more providers, and has the
option to federate these identities. The principal might be an individual user, a
grouping of individuals, a corporation, or a component of the Liberty
architecture.

• A service provider is a commercial or not-for-profit organization that offers a
Web-based service be it a news portal, a financial repository, or retail outlet.
This broad category can also include:

❍ utility companies

❍ financial institutions

❍ medical offices

❍ corporate intranets

❍ universities

❍ government agencies

• An identity provider is a service provider that stores identity profiles and offers
incentives to other service providers for the prerogative to federate their user
identities. (Identity providers might also offer services above and beyond those
related to identity profile storage.)

• In order to support identity federation, both service and identity providers
must join together into an authentication domain (also referred to as a circle of
trust). In an authentication domain, providers representing products, services
and partnerships across a wide spectrum of consumer and business enterprises
agree to join together to exchange authentication information using the LAP
specifications. An authentication domain must contain at least one identity
provider (to maintain and manage identity profiles) as well as at least two
service providers. (One organization may be both an identity provider and a
service provider.)

The set of ID-FF protocols include:

• Single Sign-on and Federation Protocol

• Name Registration Protocol

CAUTION In addition to integrating the LAP standards into their networks, organizations in an
authentication domain must come to operational agreements to define their trust
relationships. Operational agreements are a type of contractual relationship
between organizations that defines how the domain will work. Operational
agreements are out of the scope of the LAP specifications and this guide.

The Liberty Alliance Project Specifications

Chapter 1 Introduction to the Liberty Alliance Project 37

• Federation Termination Protocol

• Single Log-out Protocol

• Name Identifier Mapping Protocol

• Additional ID-FF Documents

Single Sign-on and Federation Protocol
The Single Sign-on and Federation Protocol defines a request/response protocol by
which a principal is able to authenticate to a service provider, and federate (or link)
their identities. A service provider issues a request for authentication to an identity
provider. The identity provider responds with a message containing authentication
information, or an artifact that points to authentication information which can then
be de-referenced into authentication information. Additionally, the identity
provider can federate the principal’s identity (configured at the identity provider
level) with the principal’s identity (configured at the service provider level).

The Single Sign-on and Federation Protocol also defines controls that allow for the
following behaviors:

Account federation. Principals can choose to federate their identity at the
identity provider with their identity at the service provider.

Authentication context. Service providers can choose the type and level of
authentication that should be used when the principal logs in.

Authentication credentials. Principals may be prompted for credentials at the
behest of the service provider.

Account handle. An identity provider can issue an anonymous and temporary
identifier to refer to a particular principal during communication with a service
provider. This identifier is used to obtain information for or about principals (with
their permission) during federation.

NOTE More detailed information on the Liberty Identity Federation Framework can be
found in the Liberty ID-FF Protocols and Schema Specifications
(http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-e
rrata-v1.0.pdf).

NOTE Under certain conditions, an identity provider may issue an authentication
response to a service provider without having received an authentication request.

The Liberty Alliance Project Specifications

38 Access Manager 6 2005Q1 • Federation Management Guide

Dynamic proxying. An identity provider that is asked to authenticate a principal
it believes has already authenticated via another identity provider may make an
authentication request on behalf of the requesting provider to the authenticating
identity provider.

Identity provider introduction. When an authentication domain has more than
one identity provider, a service provider can use this feature to discover which
identity provider a principal is using.

Message exchange profiles. The authentication request defines how messages
are exchanged between identity providers and service providers. The particular
transfer and messaging protocol (HTTP, SOAP, etc.) used in the exchange are
specified in profiles. Two of them are:

• The Liberty Artifact profile relies on SAML (Secure Access Markup Language)
artifacts and assertions to relay authentication information.

• Liberty Browser POST profile relies on an HTML form to communicate
authentication information between providers.

Name Registration Protocol
The Name Registration Protocol is an optional-use protocol used by the service
provider to create its own opaque handle to identify a principal when
communicating with the identity provider.

Federation Termination Protocol
The Federation Termination Protocol defines how one provider (of either type)
notifies another provider (of either type) when a principal has terminated their
identity federation. The notification is in the form of a one-way, asynchronous
message which states that either the service provider will no longer accept
authentication information regarding the particular user, or the identity provider
will no longer provide authentication information regarding the particular user.

CAUTION This account handle is generated by the identity provider during federation unlike
the handle that can be generated by the service provider after federation using the
Name Registration Protocol.

CAUTION This handle is not related to the opaque handle generated by the identity provider
during federation as defined in the Single Sign-on and Federation Protocol. The
Name Registration Protocol can, though, be used by the identity provider to change
the opaque handle they registered with the service provider during initial federation.

The Liberty Alliance Project Specifications

Chapter 1 Introduction to the Liberty Alliance Project 39

Single Log-out Protocol
The Single Log-out Protocol defines how providers will notify each other of logout
events. This message exchange protocol is used to terminate all sessions when a log
out occurs at the service provider or identity provider level. The particular transfer
and messaging protocol (HTTP, SOAP, etc.) used in the exchange are specified in
profiles. Two of them are:

• The SOAP/HTTP-based profile relies on asynchronous SOAP over HTTP
messaging calls between providers.

• The HTTP Redirect-based profile relies on HTTP redirects between providers.

Name Identifier Mapping Protocol
The Name Identifier Mapping Protocol defines how service providers can obtain
name identifiers for a principal that has federated in the name space of a different
service provider. This can be accomplished by querying an identity provider that
has federated the user with both service providers. This allows the requesting
provider to communicate with the other service provider without an identity
federation for the principal between them.

Additional ID-FF Documents
Additional information explaining the ID-FF specifications can be found in the
documents detailed in Table 0-1.

Table 0-1 Additional Help with the ID-FF

Name of Document Overview

Liberty ID-FF 1.2 Architecture Overview

http://www.projectliberty.org/specs/liberty
-idff-arch-overview-v1.2.pdf

The Architecture Overview provides an
architectural description of the ID--FF framework
as well as policy, security and technical notes.

Liberty ID-FF 1.2 Protocols and Schema
Specification

http://www.projectliberty.org/specs/draft-l
iberty-idff-protocols-schema-1.2-errata-v1.
0.pdf

The Protocols and Schema Specification provide
the abstract Liberty protocols for Identity
Federation, Single Sign-on, Name Registration,
Federation Termination, and Single Log-out.

Liberty ID-FF 1.2 Implementation Guidelines

http://www.projectliberty.org/specs/liberty
-idff-guidelines-v1.2.pdf

The Implementation Guidelines provide
guidance and checklists for implementing a
Liberty-enabled environment using the ID-FF
Specifications.

The Liberty Alliance Project Specifications

40 Access Manager 6 2005Q1 • Federation Management Guide

Liberty Identity Web Services Framework
The ID-FF defines how to implement single sign-on and identity federation to solve
problems related to network identity. The Liberty Identity Web Services Framework
(ID-WSF) builds upon this by providing specifications to build Web services that
retrieve, update, or perform an action on, identity data in a federated network
environment. The specifications outline the technical components necessary to
build Web services that interoperate with identity data, such as a calendar service,
a wallet service, or an alert service. A scenario implementing these specifications
includes the subjects defined below.

• A Web service consumer (WSC) invokes the operations a Web service provides
by making a request to a Web service provider.

• A Web service provider (WSP) implements a Web service based on a request
from a Web service consumer.

Web services are the basis of distributed computing across the Internet. A WSC
locates a Web service and invokes the operations it provides. The WSP is the
application implementing a Web service; it can be on the same Java™ virtual
machine as the WSC, or it can be thousands of miles away. When a WSC needs to
retrieve identity attributes from a WSP, it must first contact a discovery service to
locate where the particular attributes are stored. When this information is returned,
the WSC then contacts the WSP (for example, a personal profile service) to retrieve
the necessary attributes.

The defined features of the ID-WSF include:

• SOAP Binding Specification

• Discovery Service Specification

Liberty ID-FF 1.2 Static Conformance
Requirements

http://www.projectliberty.org/specs/liberty
-idff-1.2-scr-v1.0.pdf

The Static Conformance Requirements define
what features are mandatory and optional for
implementations conforming to this version of
the ID-FF Specifications.

NOTE More information on the WSC/WSP process of the Liberty ID-WSF can be found in
“Discovery Service Process” on page 125 of Chapter 6, “Discovery Service.”

Table 0-1 Additional Help with the ID-FF

Name of Document Overview

The Liberty Alliance Project Specifications

Chapter 1 Introduction to the Liberty Alliance Project 41

• Security Mechanisms Specification

• Data Services Template Specification

• Interaction Service Specification

• Authentication Service Specification

• Client Profiles for Liberty-enabled User Agents or Devices

• Additional ID-WSF Documents

SOAP Binding Specification
The SOAP Binding Specification details a transport layer for handling SOAP
messages. Among other features, it defines SOAP header blocks and processing
rules enabling the invocation of identity services via SOAP requests and responses.
It also specifies how to configure messages for optimum message correlation
(assuring the relationship between a SOAP request and its response), consent
claims (permission to perform a certain action), and usage directives (data
handling policies).

Discovery Service Specification
The Discovery Service Specification defines a framework that enables a client to locate
the appropriate Web service for retrieving, updating, or modifying a particular
piece of identity data. Typically, there are one or more services on a network that
allow entities to perform an action on identity data. To keep track of these services
or to know which can be trusted, clients require a discovery service, essentially a
Web service interface for a registry of resource offerings. A resource offering defines
an association between a piece of identity data and the service instance that
provides access to it. A common use case is when a personal profile, or calendar
data are placed within a discovery resource so that the data can be located by other
entities.

Security Mechanisms Specification
The Security Mechanisms Specification describes the requirements for securing
authorization decisions sent for the discovery, and use, of identity services. The
specified mechanisms provide for authentication, signing and encryption
operations to ensure integrity and confidentiality of the messages.

Data Services Template Specification
The Data Services Template Specification defines how to query and modify identity
data attributes stored in a data service (a Web service that holds data). The
specification also provides some common attributes for data services.

The Liberty Alliance Project Specifications

42 Access Manager 6 2005Q1 • Federation Management Guide

Interaction Service Specification
The Interaction Service Specification details communication protocols for identity
services to obtain permission from a principal (or someone who owns a resource
on behalf of that principal) that allows the service to share their identity data with
requesting services.

Authentication Service Specification
The Authentication Service Specification defines how to authenticate parties
communicating via SOAP-based messages. It leverages widely used authentication
services and mechanisms, and facilitates selection of these services and
mechanisms at deployment time. The specification defines:

• An authentication protocol based on the Simple Authentication and Security
Layer (SASL).

• An authentication service that Liberty-enabled clients can use to authenticate
with identity providers.

• A single sign-on service that Liberty-enabled providers can use to interact with
each other.

The specification also defines an identity-based authentication security token
service, complementing the more general security token service defined by the
Discovery Service Specification.

Client Profiles for Liberty-enabled User Agents or Devices
The Client Profiles for Liberty-enabled User Agents or Devices describes the
requirements for Liberty-enabled clients interacting with the SOAP-based
Authentication Service. These profiles can enable browsers to perform an active
role in transactions, in addition to the functions of a standard browser.

Additional ID-WSF Documents
Additional information explaining the ID-WSF specifications can be found in the
documents detailed in Table 0-2 on page 43.

The Liberty Alliance Project Specifications

Chapter 1 Introduction to the Liberty Alliance Project 43

Liberty Identity Service Interface Specifications
The Liberty Identity Service Interface Specifications (ID-SIS) contain the following
specifications for building these identity-based Web services:

• Personal Profile Service

• Employee Profile Service

Personal Profile Service
The Personal Profile Service defines an identity-based Web service that keeps,
updates, and offers identity data regarding a user. The Personal Profile Service is
characterized by the ability to query and update attribute data and incorporates
mechanisms for access control and conveying data validation information and
usage directives from other specifications. A shopping portal that offers
information such the principal’s account number and shopping preferences is an
example of a personal profile service.

Employee Profile Service
The Employee Profile Service defines an identity-based web service which keeps,
updates, and offers profile information regarding a user’s workplace. An online
corporate phone book that provides an employee name, office building location,
and telephone extension number is an example of an employee profile service.

Table 0-2 Additional Help with the ID-WSF

Name of Document Overview

Liberty ID-WSF Web Services Framework
Overview

http://www.projectliberty.org/specs/liberty
-idwsf-overview-v1.0.pdf

The Web Services Framework Overview
provides an architectural description of the
ID-WSF framework including basic usage
scenarios. It also highlights how the ID-WSF
interacts with an identity management
framework (such as the ID-FF).

Liberty ID-WSF Security and Privacy
Overview

http://www.projectliberty.org/specs/liberty
-idwsf-security-privacy-overview-v1.0.pdf

The Security and Privacy Overview provides an
overview of security and privacy issues in
ID-WSF.

Deploying a Liberty-based System

44 Access Manager 6 2005Q1 • Federation Management Guide

Supporting Documents
There are many other support documents in the LAP specifications. They include a
metadata service protocol, reverse HTTP bindings, a glossary, and schema files.
More information can be found at the LAP Web site or, more specifically, at
http://www.projectliberty.org/resources/specifications.php#box4.

Deploying a Liberty-based System
This section details a few things to consider when building a successful
Liberty-based implementation.

Size Up Your IT Staff
Although the LAP specifications are aimed at large organizations, small and
medium-sized companies with a saavy IT staff can also roll out a federated identity
system. The specifications are complicated and cross several domains of expertise
(Web services development, XML, networking, and security).

Clean Your Directory Data
The LAP specifications do not specify where you store identity data; they are more
concerned with it’s accuracy. Purge your data store of old identity profiles,
consolidate multiple (or delete duplicated) identity profiles, and ensure privileges
are assigned correctly.

Draft Business Agreements
The LAP specifications assume pre-existing trust relationships between members
in a Circle of Trust. This trust is defined through business arrangements or
contracts that describe the technical, operational, and legal responsibilities of each
party and the consequences for failing in them. When defined, a Liberty trust

CAUTION Identity Providers should enforce strong passwords. A stolen identity can be
abused across multiple sites in a federated system.

Deploying a Liberty-based System

Chapter 1 Introduction to the Liberty Alliance Project 45

relationship means that one organization trusts another’s user authentication
decisions. That trust among members lets a user log in at one site and access
another site as well: single sign-on (SSO). Ensure that these agreements are in play
before going live with a Liberty-compliant system.

Liberty-compliant Technology
At the minimum, a Liberty-compliant identity server is needed to process
Liberty-based requests and responses. Chapter 2, “Implementation of the Liberty
Specifications” begins our discussion of Sun Microsystems’ implementation of the
LAP specifications, the Sun Java™ System Access Manager.

Deploying a Liberty-based System

46 Access Manager 6 2005Q1 • Federation Management Guide

47

Chapter 2

Implementation of the Liberty
Specifications

Sun Java™ System Access Manager contains Sun Microsystems’ implementation of
the Liberty Alliance Project specifications. This chapter is an overview of how these
specifications have been implemented. It contains the following sections:

• Overview

• Liberty Use Cases

• Access Manager Implementations

• Packages and Global Interfaces

• Liberty-based Samples

Overview
Sun Java System Access Manager is a software product that helps organizations
manage secure access to the resources and Web applications both within the
company and across the Internet. The initial releases of Access Manager (formerly
Sun™ ONE Identity Server) implemented the Liberty Alliance Project (LAP)
Identity Federation Framework (ID-FF) specifications, focusing on account federation,
authentication domains and single sign-on.

NOTE The administration interface for managing the ID-FF implementation can be found
in the Access Manager console by clicking the Federation Management tab in the
Header frame.

Overview

48 Access Manager 6 2005Q1 • Federation Management Guide

Subsequently, Identity Server 2004Q2, added new features defined in version 1.2 of
the ID-FF specifications as well as the version 1.0 specifications of the Liberty
Identity Web Services Framework (ID-WSF). These Web services included a
framework for the retrieval and update of identity data (attributes stored in
identity-based Web services across the Internet), and a client application
programming interface (API) for intracommunication between providers.

This release, Sun Java System Access Manager 2005Q1, continues the
implementation of Liberty-based features. The following sections detail features
added to this latest version of Access Manager 2005Q1.

Name Identifier Mapping Protocol
The new Name Identifier Mapping Protocol, a full protocol in the Liberty ID-FF
Protocols and Schema Specifications
(http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-e
rrata-v1.0.pdf), allows a service provider to obtain a name identifier for a
principal that has federated in the name space of a different service provider.
Implementing this protocol allows the requesting service provider to communicate
with the second service provider without an identity federation having been
enabled. The NameIdentifier Mapping Profile can be found in the Liberty ID-FF
Bindings and Profiles Specification
(http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-
errata-v1.0.pdf).

Single Sign-on and Federation Protocol
The following sections detail changes to the Single Sign-on and Federation
Protocol, part of the Liberty ID-FF Protocols and Schema Specifications
(http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-e
rrata-v1.0.pdf).

NOTE The Web interface for the ID-WSF implementation can be found in the Access
Manager console by clicking the Service Management tab in the Header frame.
Implemented Liberty-based services are listed amongst the other Web services.

NOTE The full scope of Liberty Alliance Project features are discussed in Chapter 1,
“Introduction to the Liberty Alliance Project.”

Overview

Chapter 2 Implementation of the Liberty Specifications 49

Dynamic Identity Provider Proxying
Dynamic Identity Provider Proxying can be enabled in an authentication request.
For example, one identity provider might be asked to authenticate a principal that
has already been authenticated via a second identity provider. In this case, the first
identity provider may request authentication information from the second identity
provider on behalf of the service provider. Proxy behavior can be controlled by
indicating a list of preferred identity providers, and a value that defines the
maximum number of proxy steps that can be taken. Proxy behavior is defined
locally by the proxying identity provider, although a service provider controls
whether or not to proxy.

Affiliation Federation
Federation based on affiliation to a specified group can be enabled in an
authentication request. If enabled, it would indicate that the requester is acting as a
member of the affiliation group identified. Federations are then established and
resolved based on the specified affiliation, and not the requesting provider. The
process allows for a unique identifier that represents the affiliation.

One-Time Federation
The ability to federate for one session only can be enabled in an authentication
request. This is useful for service providers with no user accounts, for principals
who wish to act anonymously, or for dynamically-created user accounts. It allows
for one-time federation, rather than a one-time name identifier for a session.

Name Identifier Encryption Profile
The Name Identifier Encryption profile allows for a principal’s name identifier to
be encrypted so that only the provider possessing the decryption key can realize
the identity. The encrypted identifier is a different value when requested by
different providers or multiple times, reducing the chance for correlation of the
encrypted value across multiple logical transactions. The Name Identifier
Encryption Profile can be found in the Liberty ID-FF Bindings and Profiles
Specification
(http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-
errata-v1.0.pdf).

Liberty Use Cases

50 Access Manager 6 2005Q1 • Federation Management Guide

Liberty Metadata Description and Discovery
Specification
The Liberty Metadata Description and Discovery Specification, one of the Liberty
Alliance Support Documents,
(http://www.projectliberty.org/specs/draft-liberty-metadata-1.0-errata-v1.0.pd
f) has been upgraded to reflect added profiles, to support identity provider and
service provider descriptors in the same metadata XML file, and to query metadata
over the DNS.

Liberty Use Cases
Identity data consists of all the information that companies capture and maintain
about individual customers, corporate partners, and employees. Federating
sources of identity data allows for accessing, transporting, sharing, and managing
the data across and between partnered organizations and applications without
weakening existing security safeguards. Federation management establishes this
unifying network from multiple data stores. There are many ways to use Access
Manager and its Liberty-based implementations to federate sources of identity
data. The following sections detail just a few ways in which the product can be
used.

Unified Access to Intranet Resources
Many corporations provide access to outsourced human resources services, such as
health benefits and 401K plans. The corporate intranet offers central access to these
services, but employees have to log-in and authenticate themselves every time they
access each service. Employees may not want to share the same profile and
password with both their 401K provider and their healthcare provider. Federation
of identity data can also provide seamless integration of Web resources across
multiple security domains within the same enterprise making employee
ease-of-use and control possible.

NOTE Due to changes in the Liberty Metadata specification, the Service Management
(SM) Configuration schema in Identity Server 6.2 is not compatible with that in
Identity Server 6.1. SM versioning will be used to support coexistence of the two
when running against an instance of Sun Java System Directory Server. When
upgrading from Identity Server 6.1 to 6.2, metadata migration is required.

Liberty Use Cases

Chapter 2 Implementation of the Liberty Specifications 51

Integrated Partner Networks
Enterprises can construct a network of partnered services for securely exchanging
customer account information, transaction data, and credentials via a set of
interoperable Web services. Federating among partner networks allows identities
to share key pieces of their respective data without sharing control. For example,
logging onto one Web site that represents an authentication domain consisting of an
airline, a car rental company, and a hotel chain allows an identity to make travel
plans even if one of the sites does not contain an identity data store.

Sample Use Case Process
Figure 2-1 on page 52 illustrates the process of requesting a service and being
authenticated for access. MyRingtones is a service provider in a federation
framework that also acts as a Web service consumer in a Web services framework.
MyWireless is an identity provider in a federation framework that contains access to
the Discovery Service in a Web services framework. MyBank is a Web service
provider in a Web services framework.

The user attempts to access MyRingtones and, after being prompted for credentials
stored in MyBank, receives authorization through MyWireless. Single sign-on is
accomplished in the back-end, and the entire process is based on the
implementations of the ID-FF, ID-WSF, and ID-SIS specifications of the LAP.

NOTE The same Web service can act as a different entity in different frameworks.

Access Manager Implementations

52 Access Manager 6 2005Q1 • Federation Management Guide

Figure 2-1 Process of Federation, Web Services & Service Instances Framework

Access Manager Implementations
Access Manager is installed with a set of default Liberty-based Web services. They,
and the larger Federation Management module, are introduced in the following
sections.

Web Services
Liberty-based Web services (based on the Liberty Identity Web Services
Framework) are accessible from the Access Manager console by clicking the Service
Management tab in the Header frame. Implemented services are listed
alphabetically among other Access Manager Web services. Figure 2-2 is a screen
shot of this.

Access Manager Implementations

Chapter 2 Implementation of the Liberty Specifications 53

Figure 2-2 Web Services Listed in Access Manager Console

Authentication Web Service
The Authentication Web Service provides Web service-based authentication to a
Web service consumer (WSC), allowing the WSC to obtain security tokens for
further interactions with other services at the same provider. These other services
may include a discovery service or single sign-on service. The implementation of
the Access Manager Authentication Web Service is based on the Liberty Alliance
Project (LAP) “Authentication Service Specification.” The Access Manager
Authentication Web Service is for service-to-service (non-user) authentication.
More information can be found in Chapter 4, “Authentication Web Service.”

Access Manager Implementations

54 Access Manager 6 2005Q1 • Federation Management Guide

Discovery Service
The Discovery Service is an identity service that allows a requesting entity, such as
a service provider, to dynamically determine a principal’s registered attribute
provider. Typically, a service provider queries the Discovery Service, which
responds by providing a resource offering describing the requested attribute
provider. (A resource offering defines associations between a piece of identity data
and the service instance that provides access to it.) The implementation of the
Access Manager Discovery Service is based on the LAP “Discovery Service
Specification” and includes Java and Web-based interfaces. More information can
be found in Chapter 6, “Discovery Service.”

Liberty Personal Profile Service
The Liberty Personal Profile Service is an identity service that supports the storage
and modification of identity data attributes regarding principals. Identity data
attributes might include information such as first name, last name, home address,
and emergency contact information. The Liberty Personal Profile Service is queried
or updated by a WSC acting on behalf of the principal. The implementation of the
Access Manager Liberty Personal Profile Service is based on the LAP “Personal
Profile Service.” More information can be found in Chapter 5, “Data Services.”

SOAP Binding
The SOAP Binding is a set of Java APIs used by the developer of a Liberty-enabled
identity service that describes how to send and receive identity-based messages
using SOAP, an XML-based messaging protocol. The implementation of the Access
Manager SOAP Binding Service is based on the LAP “SOAP Binding
Specification.” More information can be found in Chapter 7, “SOAP Binding
Service.”

CAUTION The Liberty-based Authentication Web Service is not to be confused with the
proprietary Access Manager Authentication Service discussed in the Sun Java
System Access Manager Developer’s Guide (http://docs.sun.com/doc/817-5710).

NOTE By definition, a discoverable service is assigned a service type URI (typically done
in the specification defining the service) allowing their registration in Discovery
Service instances.

Access Manager Implementations

Chapter 2 Implementation of the Liberty Specifications 55

Application Programming Interfaces
A number of the Liberty-based Web services specifications have also been
implemented in the back end of the Access Manager product as APIs. They include
the interaction service, and PAOS binding. More information can be found in
Chapter 8, “Application Programming Interfaces.”

Federation Management Module
The Federation Management module (based on the Liberty Identity Federation
Framework) provides an interface for creating, modifying, and deleting
authentication domains and, service and identity providers (both remote and
hosted types) for a federated model. It is accessible through the Federation
Management tab in the Header frame of the Access Manager console. Figure 2-3 on
page 55 is a screen shot of this.

Figure 2-3 Federation Management Module in Access Manager Console

The following steps illustrate the basic procedure for creating a federation model.

1. Create an authentication domain.

2. Create one or more hosted providers that belong to the authentication domain.

3. Create one or more remote providers that belong to the authentication domain.
You must also include the metadata for the remote providers.

Packages and Global Interfaces

56 Access Manager 6 2005Q1 • Federation Management Guide

4. Establish a trusted relationship between the providers. A hosted provider can
choose to trust a subset of providers, either hosted or remote, that belong to the
same authentication domain.

Packages and Global Interfaces
Table 2-1 summarizes the public application programming interface (API) you can
use to deploy Liberty-enabled components or extend the core services. For detailed
API reference that includes classes, methods and their syntax and parameters, see
the Javadocs in /AccessManager_base/SUNWam/docs.

NOTE The Federation Management module is the Web interface for the Access Manager
implementation of the Liberty Identity Federation Framework.

Table 2-1 Summary of Liberty-based Packages

Package Name Description

com.sun.identity.liberty.ws.c
ommon

Defines common classes used by many of the Access
Manager Liberty-based Web service components. See
“Common Service Interfaces” on page 155.

com.sun.identity.liberty.ws.c
ommon.wsse

Provides an interface to parse and create a X.509 Certificate
Token Profile. See “Interaction Service API” on page 159.

com.sun.identity.liberty.ws.d
isco

Provides interfaces to manage the Discovery Service. See
Chapter 6, “Discovery Service” on page 121.

com.sun.identity.liberty.ws.d
isco.plugins

Provides a plugin interface for the Discovery Service. See
Chapter 6, “Discovery Service” on page 121.

com.sun.identity.liberty.ws.d
st

Provides classes to implement an identity service on top of
the Access Manager framework. The Data Services
Template (DST) specification defines how to query and
modify data stored in a data service, and provides some
common attributes for the data services. From the
implementation point of view, all the identity services must
be built on top of the DST which provides the data model
and message interfaces for all identity services. See
“Interaction Service API” on page 159.

com.sun.identity.liberty.ws.i
nteraction

Provides classes to support the Interaction RequestRedirect
Profile. See “Interaction Service API” on page 159.

com.sun.identity.liberty.ws.i
nterfaces

Provides interfaces common to all Access Manager
Liberty-based Web service components. “Common Service
Interfaces” on page 155.

Liberty-based Samples

Chapter 2 Implementation of the Liberty Specifications 57

Liberty-based Samples
Access Manager has included sample code and files that can be used to understand
the implementation of the LAP specifications. Information on the specifics of these
samples can be found in Appendix A, “Included Samples.”

com.sun.identity.liberty.ws.p
aos

Provides classes for Web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 161 of Chapter 8, “Application
Programming Interfaces.”

com.sun.identity.liberty.ws.s
ecurity

Provides interface to manage Liberty-based Web service
security mechanisms. See “Common Security API” on
page 157.

com.sun.liberty Provides interfaces common to the Access Manager
Federation Management module. See “Federation
Management API” on page 87.

Table 2-1 Summary of Liberty-based Packages

Package Name Description

Liberty-based Samples

58 Access Manager 6 2005Q1 • Federation Management Guide

59

Chapter 3

Federation Management

Sun Java™ System Access Manager provides an interface for creating, modifying,
and deleting authentication domains and, service and identity providers (both
remote and hosted types). This chapter is an overview of how to use this module to
create a Liberty-based federation. It contains the following sections:

• Overview

• The Federation Management Interface

• The Process of Federation

• Common Domain Services

• Federation Management

• Federation Management API

• Federation Management Samples

Overview
The Federation Management module is the Access Manager implementation of the
Liberty Alliance Project (LAP) Liberty Identity Federation Framework (ID-FF)
specification. The ID-FF defines a set of protocols, bindings and profiles that
provides a solution for identity profile federation, cross-domain authentication and
session management. The Federation Management module is the Access Manager
Web interface to the ID-FF implementation. It is accessible through the Federation
Management tab in the Header frame of the Access Manager console.

The Federation Management Interface

60 Access Manager 6 2005Q1 • Federation Management Guide

The Federation Management Interface
The Federation Management module uses JavaServer Pages™ (JSP) to define its
look and feel. JSP are HTML files that contain additional code to generate dynamic
content. More specifically, JSP contain HTML code to display static text and
graphics, as well as application code to generate information. When the page is
displayed in a Web browser, it will contain both the static HTML content and, in
the case of the Federation Management module, dynamic content retrieved via
calls to the Federation Management API. An administrator can customize the look
and feel of the interface by changing the HTML tags in the JSP, but the APIs
invoked must not be changed. The JSP are located in
/AccessManager_base/SUNWam/web-src/services/config/federation/default. The
files in this directory provide a default interface to the Federation Management
module. To customize it for a specific organization, this default directory can be
copied and renamed to reflect the name of the organization (or any value). It would
then be placed at the same level as the default directory and the files within this
directory would be modified as needed. Table 3-1 is a list of the JSP with details on
what each page is used for and the invoked APIs that cannot be modified. More
information on modifying these pages to customize the console can be found in the
Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649).

NOTE More detailed information on the Liberty Identity Federation Framework can be
found in the Liberty ID-FF Protocols and Schema Specifications
(http://www.projectliberty.org/specs/draft-liberty-idff-protocols-schema-1.2-e
rrata-v1.0.pdf).

Table 3-1 Federation Management Module JSP

File Name and its Purpose Invoked APIs

CommonLogin.jsp displays the links to the login
pages of the trusted identity providers as well as
the local login page. It is displayed when the user
is not logged in locally or at an identity provider
site. The list of identity providers is obtained by
the getIDPList(hostedProviderID)
method.

• LibertyManager.getLoginURL(request)

• LibertyManager.getInterSiteURL(request)

• LibertyManager.getIDPList(providerID)

• LibertyManager.getNewRequest(request)

• LibertyManager.getSuccintID(idpID)

• LibertyManager.cleanQueryString(request)

Error.jsp displays an error page when an error
has occurred.

No APIs are invoked.

The Federation Management Interface

Chapter 3 Federation Management 61

Federate.jsp is displayed when the user clicks a
Federate link. It displays a drop-down list of all
providers with which the user is not yet
federated. This list is constructed from the
getProvidersToFederate(userName,
providerID) method.

• LibertyManager.isLECPProfile(request)

• LibertyManager.getAuthnRequestEnvelope(
request)

• LibertyManager.getUser(request)

• LibertyManager.getProvidersToFederate(pr
oviderID,userDN)

FederationDone.jsp displays the status of
federation (success or cancelled). It checks this
status using the
isFederationCancelled(request)
method.

• LibertyManager.isFederationCancelled(requ
est)

Footer.jsp displays a branded footer included on
all the pages.

No APIs are invoked.

Header.jsp displays a branded header included
on all the pages.

No APIs are invoked.

ListOfCOTs.jsp displays a list of Circles Of
Trust. When a user is authenticated by an
identity provider and the service provider belongs
to more than one Circle Of Trust, they will be
shown this JSP to select an authentication
domain as their preferred domain. In the case
that the provider belongs to only one domain, this
page will not be displayed. The list is obtained by
using the getListOfCOTs(providerID)
method.

• LibertyManager.getListOfCOTs(providerID)

LogoutDone.jsp displays the status of the local
logout operation.

• LibertyManager.isLogoutSuccess(request)

NameRegistration.jsp is displayed when a
federated user chooses to register a new Name
Identifier from a service provider to an identity
provider. When the Name Registration link is
clicked, this JSP is displayed.

• LibertyManager.getUser(request)

• LibertyManager.getRegisteredProviders(use
rDN)

NameRegistrationDone.jsp displays the status
of NameRegistration.jsp. When finished,
this page is displayed.

• LibertyManager.isNameRegistrationSuccess
(request)

• LibertyManager.isNameRegistrationCancele
d(request

Table 3-1 Federation Management Module JSP (Continued)

File Name and its Purpose Invoked APIs

The Process of Federation

62 Access Manager 6 2005Q1 • Federation Management Guide

The Process of Federation
The process of federation begins with authentication. By default, Access Manager
comes with two options for user authentication. The first is the proprietary
Authentication Service; the second is the Liberty-enabled Federation process. With
the proprietary option, users attempting to access a resource protected by Access
Manager are redirected to the Authentication Service via an Access Manager login
page. After they provide credentials, the Authentication Service allows or denies
access to the resource based on the outcome.

With Liberty-enabled federation, when a principal attempts to access a Web site
belonging to a member provider from an authentication domain, the process
begins with a search for a valid Access Manager session token from the
Authentication Service. If a session token is found, the principal is granted (or
denied) access. Assuming access is granted, the page then displayed would contain
a link that provides the principal an opportunity to federate the authenticated
identity provider identity with the accessed service provider identity. When the
principal clicks this link, the Single Sign-on Process process begins.

If no session token is found, the principal is directed through the Pre-login Process.
Figure 1-1 illustrates these different paths.

Termination.jsp is displayed when the user
clicks the defederate link. It shows a drop-down
menu of all providers to which the user has
federated; from this list, the user can choose to
defederate. The list is constructed using the
getFederatedProviders(userName)
method which returns all active providers to
which the user is already federated.

• LibertyManager.getUser(request)

• LibertyManager.getFederatedProviders(user
DN)

TerminationDone.jsp displays the status of
federation termination (success or cancelled). It
checks status using the
isTerminationCancelled(request)
method.

• LibertyManager.isTerminationSuccess(requ
est)

• LibertyManager.isTerminationCanceled(req
uest)

NOTE For more information on the proprietary Authentication Service, see Chapter 4,
Authentication Service in the Sun Java System Access Manager 6 2005Q1 Developer’s
Guide (http://docs.sun.com/doc/817-7649).

Table 3-1 Federation Management Module JSP (Continued)

File Name and its Purpose Invoked APIs

The Process of Federation

Chapter 3 Federation Management 63

Figure 3-1 Liberty-based Access Manager Authentication Process Flow

The Process of Federation

64 Access Manager 6 2005Q1 • Federation Management Guide

Pre-login Process
The pre-login process establishes a valid session. When a principal attempts to
access a service provider site and no Access Manager session token is found, the
pre-login process then begins with the search for a federation cookie.

The pre-login process can take one of the following paths:

• If a federation cookie is found and its value is no, an Access Manager login
page is displayed and the principal submits credentials to the Authentication
Service. When authenticated by Access Manager, the principal is redirected to
the requested page which might contain a link to allow for identity federation.
If the user clicks this link, the Single Sign-on Process begins.

• If a federation cookie is found and its value is yes, the principal has already
federated an identity but has not been authenticated by an identity provider
within the authentication domain for this session. Authentication to Access
Manager is accomplished on the back-end by sending a request to the
principal’s identity provider. After authentication, the principal is directed
back to the requested page.

• If no federation cookie is found, a passive authentication request is sent to the
principal’s identity provider. (A passive authentication request does not allow
identity provider interaction with the principal.) If an affirmative
authentication is received back from the identity provider, the principal is
redirected to the Access Manager Authentication Service a session token is
granted and the principal is redirected to the requested page. If the response
from the identity provider is negative (for example, if the session has timed
out), the principal is sent to a common login page to complete either a local
login or the Liberty-enabled Single Sign-on Process.

NOTE A federation cookie is a cookie implemented by Access Manager with the name
fedCookie. It can have a value of either yes or no based on the principal’s
federation status. It is NOT detailed in the Liberty Alliance Project specifications.

Common Domain Services

Chapter 3 Federation Management 65

Single Sign-on Process
When a principal logs in for access to a protected resource or service, Access
Manager sends a request to the appropriate identity provider for authentication
confirmation. If the identity provider sends a positive response, the principal gains
access to all provider sites membered within the authentication domain. If the
identity provider sends a negative response, the principal is directed to
authenticate again using the Liberty-enabled single sign-on process.

In Liberty-enabled single sign-on, principals select an identity provider and send
their credentials for authentication. (This is accomplished through the Common
Domain Services.) Once authentication is complete and access is granted, the
principal is automatically issued a session token from the Access Manager
Authentication Service, and redirected to the requested page. As long as the
session token remains valid, the principal can access other service providers in the
authentication domain without having to sign on again.

Common Domain Services
The Common Domain Services allow a service provider to discover the specific
identity provider used by a principal in an authentication domain with multiple
identity providers. The Services rely on a cookie that is written in a domain that is
common to all identity providers and service providers in the authentication
domain. The domain (predetermined by all members of the authentication
domain) is known as the common domain. The Common Domain Services use a
common domain cookie (which contains a list of Base64-encoded identity provider
identifiers) to determine the preferred identity provider.

Let’s assume an authentication domain contains more than one identity provider.
Because of this, a service provider in the authentication domain trusts more than
one identity provider. But, a principal can only issue a federation request to one
identity provider so, the service provider to which the principal is requesting
access must discover the correct one. When the request contains no common

NOTE The Common Domain Services are based on the Identity Provider Introduction
Profiles detailed in the Liberty ID-FF Bindings and Profiles Specifications located at
http://www.projectliberty.org/specs/draft-liberty-idff-bindings-profiles-1.2-
errata-v2.0.pdf.

Common Domain Services

66 Access Manager 6 2005Q1 • Federation Management Guide

domain cookie, the service provider presents a list of trusted identity providers
from which the principal may choose. When the request contains a common
domain cookie, the service provider reads the cookie to discover the correct
identity provider.

Installing the Common Domain Services
The Common Domain Services for Federation Management are installed as one
Web application within the Access Manager product using the Sun Java Enterprise
System installer. However, they can also be installed as one Web application
(separate from the Access Manager product) on a J2EE™ web container using the
same installer.

Common Domain Service URLs
In Access Manager, the Common Domain Services are exposed through two URLs
that point to services developed for writing and reading the common domain
cookie. The URLs are defined as attributes when an authentication domain is
created.

The format for the Writer Service URL is:

protocol://common_domain_hostname:port/deloy_uri/writer

The format for the Reader Service URL is:

protocol://common_domain_hostname:port/deloy_uri/transfer

See “To Create An Authentication Domain” on page 67 for information on
configuring these attributes.

NOTE For more information on installing the service, see the Sun Java Enterprise System
Installation Guide on docs.sun.com. As of this writing, the latest version is available
at http://docs.sun.com/doc/817-5760.

NOTE The Reader and Writer service URLs are Access Manager specific. The concepts
are not defined in the Liberty ID-FF Bindings and Profiles Specifications.

Federation Management

Chapter 3 Federation Management 67

Federation Management
The Federation Management module in the Access Manager console provides an
interface for creating, modifying, and deleting providers, authentication domains,
and affiliations. The subsequent sections define these concepts and detail
procedures for using the Federation Management interface.

Authentication Domains
An authentication domain (also referred to as a circle of trust) is a federation of any
number of service providers and, at least, one identity provider with whom
principals can transact business in a secure and apparently seamless environment.
The members of the domain have established business relationships based on the
LAP architecture and operational agreements.

Creating and Maintaining Authentication
Domains
The following sections describe how to create, modify, and delete authentication
domains using the Access Manager console.

To Create An Authentication Domain
1. Choose Authentication Domain from the View menu in the Navigation pane of

the Federation Management module.

2. Click New in the Navigation pane.

The New Authentication Domain attributes are displayed in the Data pane.

3. Enter a name for the authentication domain.

This is a required field.

NOTE In a federation setup, all service providers and identity providers must share a
synchronized clock. You can implement the synchronization by pointing to an
external clock source or by ensuring that, in case of delays in receiving responses,
the responses are captured without fail through adjustments of the timeouts.

NOTE An authentication domain is not a domain in the domain name system (DNS) sense
of the word.

Federation Management

68 Access Manager 6 2005Q1 • Federation Management Guide

4. Enter a description of the authentication domain in the Description field.

5. Enter a value for the Writer Service URL.

The Writer Service URL specifies the location of the service that writes the
common domain cookie. The URL is in the format:

http://common_domain_host:port/common/writer

6. Enter a value for the Reader Service URL.

The Reader Service URL specifies the location of the service that reads the
common domain cookie. The URL is in the format:

http://common_domain_host:port/common/transfer

7. Select Active or Inactive.

The default status is Active. Selecting Inactive disables communication within
the authentication domain.

8. Click OK.

The new authentication domain is now displayed in the Navigation pane.

To Modify An Authentication Domain
1. Click on the Properties arrow next to the authentication domain you wish to

modify in the Navigation pane of the Federation Management module.

The authentication domain’s properties are displayed in the Data pane.

2. Modify the properties of the authentication domain.

3. Click Save.

To Delete An Authentication Domain
1. Choose Authentication Domains from the View menu in the Navigation pane

of the Federation Management module.

All created Authentication Domains display in the Navigation pane.

2. Check the box next to the name of the Authentication Domain to be deleted.

3. Click Delete.

CAUTION Deleting an authentication domain does not delete the providers that belong to it.

Federation Management

Chapter 3 Federation Management 69

Entity Descriptors
An entity descriptor contains one or more descriptions of individual providers, or
affiliations. In the Access Manager Liberty implementation, there are two types:

• Provider Entity Descriptor

• Affiliate Entity Descriptor

Provider Entity Descriptor
The provider entity descriptor holds information configured for providers (both
service and identity) associated with an authentication domain. Within this
descriptor, the provider combinations detailed in Table 3-2 can be represented.

Affiliate Entity Descriptor
The affiliate entity descriptor holds information configured for a group of
providers, but this group is formed outside of the boundaries of an authentication
domain. This affiliation is formed and maintained by an affiliation owner that
chooses trusted providers without regard to their particular authentication
domain. This descriptor does not contain single or multiple providers unless they
are specifically configured as an affiliation. An affiliation document describes a
group of providers collectively identified by one providerID and maintained by an
affiliation owner (referenced by its affiliationOwnerID). The document lists each
member using their configured providerID.

Table 3-2 Possible Provider Combinations for Provider Entity Descriptor

Entity Description

Single Provider This document defines one service or identity provider entity that can be
referenced using a configured providerID.

Multiple Providers This document combines multiple provider entities by referencing their
configured providerID.

NOTE More information on entity descriptors can be found in the Liberty Metadata
Description and Discovery Specification
(http://www.projectliberty.org/specs/draft-liberty-metadata-1.0-errata-v2.0.pd
f).

Federation Management

70 Access Manager 6 2005Q1 • Federation Management Guide

Creating and Maintaining Entity Descriptors
Creating an entity descriptor using the Access Manager console is a two-step
process. First, you create the entity descriptor itself. Then, you populate the
descriptor with provider information (either service or identity) or an affiliation,
depending on the descriptor created. The following sections describe how to
create, modify, and delete entity descriptors using the Access Manager console.

To Create an Entity Descriptor of Either Type
1. Choose Entity Descriptors from the View menu in the Navigation pane of the

Federation Management module.

2. Click New in the Navigation pane.

The New Entity Descriptor attributes are displayed in the Data pane.

3. Enter a value for the Entity ID.

This required field should specify the URL identifier of the entity. It must be
unique across all entities.

4. Enter a description of the entity descriptor in the Description field.

5. Select Provider or Affiliate to define the Type.

a. If you select Provider, click OK.

b. If you select Affiliate, enter a value for both the Affiliate ID and Affiliate
Owner ID attributes and click OK.

The Affiliate ID should specify the URL identifier of the affiliate. It must be
unique across all entities. The Affiliate Owner ID is the Provider ID of the
owner or parent operator of the affiliation, from which additional
metadata can be received. These fields are required.

The new entity descriptor is now displayed in the Navigation pane.

To Configure a Provider Entity Descriptor
1. Choose Entity Descriptors from the View menu in the Navigation pane of the

Federation Management module.

2. Select the desired provider entity descriptor.

The entity descriptor’s attributes are displayed in the Data pane.

To Configure General Attributes for a Provider Entity Descriptor
After selecting the desired provider entity descriptor from the Navigation pane:

Federation Management

Chapter 3 Federation Management 71

1. Select General from the View menu in the Data pane and provide information
for the following attributes (separated into three groups):

Entity Common Attributes

a. Entity Type. The static value of this attribute is Provider.

b. Description. Enter a description of the provider.

c. Valid Until. Enter the expiration date for the metadata pertaining to the
provider. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ

For example, 2004-12-31T12:30:00.0-0800

d. Cache Duration. Enter the maximum amount of time the entity descriptor
can be cached. The value is defined in the format:

PnYnMnDTnHnMnS, where n is an integer variable.

For example, P1Y2M4DT9H8M20S defines the cache duration as 1 year, 2
months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Entity Contact Person

a. First Name. Enter the first name of the entity’s contact person.

b. Last Name. Enter the last name of the entity’s contact person.

c. Type. Select the type of entity from the drop down menu. The choices are
Billing, Technical, Administrative, and Other.

d. Company. Enter the name of the company to which the contact person is
employed.

e. Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

f. Email. Enter the email address of the contact person.

g. Telephone. Enter the telephone number of the contact person.

Entity Organization

a. Name. Enter the name of the entity’s organization. The value is defined in
the format:

locale|organization_name

For example, en|organization_name.com

Federation Management

72 Access Manager 6 2005Q1 • Federation Management Guide

b. Display Name. Enter the display name of the entity’s organization. The
value is defined in the format:

locale|organization_display_name

For example, en|organization_display_name.com

c. URL. Enter the URL of the organization. The value is defined in the format:

locale|organization_URL

For example, en|http://www.organization_name.com

2. Click Save.

To Configure Identity Provider Attributes for a Provider Entity Descriptor
After selecting the desired provider entity descriptor from the Navigation pane:

1. Select Identity Provider from the View menu in the Data pane to add an
identity provider to the entity descriptor.

2. Click the New Provider button to display the New Provider Wizard.

a. Provide information for the following Common Provider attributes
displayed in Step 1.

I. Provider ID. Enter a unique identifier for the provider.

II. Description. Enter a description of the provider.

III. Provider is Hosted or Remote. Select Local if the provider is hosted on
the same server as Access Manager or Remote, if not. By default,
Remote is selected.

IV. Valid Until. Enter the expiration date for the metadata pertaining to
the provider. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ

For example, 2004-12-31T12:30:00.0-0800

V. Cache Duration. Enter the maximum amount of time an entity
descriptor can be cached. The value is defined in the format:

PnYnMnDTnHnMnS, where n is an integer.

CAUTION Attributes displayed and configured in subsequent steps depend on the type
defined for the Provider is Hosted or Remote attribute.

Federation Management

Chapter 3 Federation Management 73

For example, P1Y2M4DT9H8M20S defines the cache duration as 1
year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

VI. Protocol Support Enumeration. Select the protocol release supported
by this entity.

urn:liberty:iff:2003-08 refers to the Liberty Identity Federation
Framework version 1.2 and urn:liberty:iff:2002-12 refers to the
Liberty Identity Federation Framework version 1.1.

VII. Server Name Identifier Mapping Binding. Enter a URI describing the
SAML authority binding used by the identity provider. Identifier
mapping queries are able to locate and communicate with the SAML
authority using this URI.

VIII. Additional Meta Locations. Enter the location of other relevant
metadata concerning the provider.

Signing Key

I. Key Alias. Enter the signing certificate key alias used to sign requests
and responses for a hosted (local) provider. For a remote provider, this
is a public key that the provider uses to verify the signatures.

Encryption Key

I. Key Alias. Enter the security certificate alias. Certificates are stored in
a JKS keystore file. Each specific certificate is mapped to an alias which
is used to fetch the certificate.

II. Key Size. Enter the length for keys used by the Web service consumer
when interacting with another entity.

III. Encryption Method. Choose the method of encryption. The choices
are None, 3DES, AES, and DES.

b. Click Next to provide information for the following Communications and
Service Provider attributes displayed in Step 2.

Communication URLs

I. SOAP Endpoint URL. Enter a location for the identity provider’s
SOAP messages receiver.

CAUTION Some of the following attribute subsections are displayed based upon whether the
identity provider is defined as Remote or Hosted (Local) in Step III on page 72. This
is called out in parentheses next to the heading.

Federation Management

74 Access Manager 6 2005Q1 • Federation Management Guide

This value communicates the location of the SOAP receiver in
non-browser communications.

II. Single Sign-On Service URL. Enter a location to which service
providers can send single sign-on and federation requests.

III. Single Logout Service URL. Enter a location to which service
providers can send logout requests.

Single logout synchronizes the logout functionality across all sessions
authenticated by the identity provider.

IV. Single Logout Return URL. Enter a location to which the identity
provider will redirect the principal after completing a logout.

V. Federation Termination Service URL. Enter a location to which a
service provider will send federation termination requests.

VI. Federation Termination Return URL. Enter a location to which the
identity provider will redirect the principal after completing
federation termination.

VII. Name Registration Service URL. Enter a location to which a service
provider will send requests to specify the name identifier that will be
used when communicating with the identity provider about a
principal.

Registration can occur only after a federation session is established.

VIII. Name Registration Return URL. Enter a location to which the identity
provider will redirect the principal after HTTP name registration has
been completed.

IX. Authentication Service URL. Enter a location for the identity
provider’s ID-FF-based Authentication Service.

Communication Profiles

I. Federation Termination Profile. Select a profile to notify other
providers of a principal’s federation termination. The choices are
SOAP and HTTP/Redirect.

II. Single Logout Profile. Select a profile to notify other providers of a
principal’s logout. The choices are SOAP and HTTP/Redirect.

III. Name Registration Profile. Select a profile to notify other providers of
a principal’s name registration. The choices are SOAP and
HTTP/Redirect.

Federation Management

Chapter 3 Federation Management 75

IV. Single Sign-on/Federation Profile. Select a profile used by a hosted
provider for sending authentication requests. The choices are:

· LECP (Liberty-enabled Client Proxy)

· Browser Post (specifies a browser-based HTTP POST protocol)

· Browser Artifact (specifies a non-browser SOAP-based protocol)

V. Enable Name Identifier Encryption. Select the check box to enable
encryption of the name identifier.

Proxy Authentication Configuration (only displayed when identity provider is
defined as Remote)

I. Enable Proxy Authentication. If selected, this attribute enables proxy
authentication for a service provider.

II. Proxy Identity Providers List. This attribute displays the list of
identity providers that can be proxied for authentication.

III. Maximum Number Proxies. This attribute specifies the maximum
number of identity provider proxies.

IV. Use Introduction Cookie For Proxying. If enabled, introductions will
be used to find the proxying identity provider.

Access Manager Configuration (only displayed when identity provider is
defined as Hosted (Local))

I. Provider URL. Enter the URL of the local identity provider.

II. Alias. Enter an alias name for the local identity provider.

III. Authentication Type. Select the provider that should be used for
authentication requests from a provider hosted locally. Remote
specifies that the provider hosted locally would contact a remote
identity provider upon receiving an authentication request. Local
specifies that the provider hosted locally should contact a local identity
provider upon receiving an authentication request (essentially, itself).

IV. Default Authentication Context. Select the authentication context to
be used if the identity provider does not receive it as part of a service
provider request. It also specifies the authentication context used by
the service provider when an unknown user tries to access a protected
resource. The choices are Previous-Session, Time-Sync-Token,
Smartcard, MobileUnregistered, Smartcard-PKI, MobileContract,
Password, Password-ProtectedTransport, MobileDigitalID, and
Software-PKI.

Federation Management

76 Access Manager 6 2005Q1 • Federation Management Guide

V. Forced Authentication at Identity Provider. Select the check box to
indicate if the identity provider must reauthenticate (even during a
live session) when an authentication request is received.

VI. Request Identity Provider to be Passive. Select the check box to
specify that the identity provider must not interact with the principal
and must interact with the user

VII. Organization DN. Enter the location of the DN of the organization if
each hosted provider chooses to manage users across different
organizations leading to a hosted model.

VIII. Liberty Version URI. Enter the URI of the version of the Liberty
specification.

IX. Name Identifier Implementation. This field allows the option for a
service provider to participate in name registration. Name registration
is a profile by which service providers specify a principal’s name
identifier that an identity provider will use when communicating to
the service provider.

X. Provider Home Page URL. Enter the URL of the home page of the
identity provider.

XI. Single Sign-on Failure Redirect URL. Enter the URL to which a
principal will be redirected if single sign-on has failed.

SAML Configuration (only displayed when identity provider is defined as
Hosted (Local))

I. Assertion Interval. Enter the interval of time for which an assertion
issued by the identity provider will remain valid. A principal will
remain authenticated until the assertion interval expires.

II. Cleanup Interval. Enter the interval of time before assertions stored in
the identity provider will be cleared.

III. Artifact Timeout. Enter an interval to specify the timeout of a identity
provider for assertion artifacts.

IV. Assertion Limit. Enter a number to define the amount of assertions an
identity provider can issue, or the number of assertions that can be
stored.

c. Click Next to provide information for the following Organization
Attributes and Contact Persons attributes displayed in Step 3.

Organization

Federation Management

Chapter 3 Federation Management 77

I. Name. Enter the name of the entity’s organization. The value is
defined in the format:

locale|organization_name

For example, en|organization_name.com

II. Display Name. Enter the display name of the entity’s organization.
The value is defined in the format:

locale|organization_display_name

For example, en|organization_display_name.com

III. URL. Enter the URL of the organization. The value is defined in the
format:

locale|organization_URL

For example, en|http://www.organization_name.com

d. Click New to access the attributes for Contact Persons.

Contact Persons

I. First Name. Enter the first name of the entity’s contact person.

II. Last Name. Enter the last name of the entity’s contact person.

III. Type. Select the type of entity from the drop down menu. The choices
are Billing, Technical, Administrative, and Other.

IV. Company. Enter the name of the company to which the contact person
is employed.

V. Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

VI. Email. Enter the email address of the contact person.

VII. Telephone. Enter the telephone number of the contact person.

e. Click OK to save the values assigned to the Contact Person attributes.

f. Click Next to configure the Authentication Domains to which the provider
belongs in Step 4.

I. Use the direction arrows to move a Selected authentication domain
into the Available list.

II. Click Save.

Federation Management

78 Access Manager 6 2005Q1 • Federation Management Guide

This will assign the provider to an authentication domain. A provider
can belong to one or more authentication domains, however a
provider without a specified authentication domain can not participate
in Liberty-based communications.

g. Click Finish.

To Configure Service Provider Attributes for a Provider Entity Descriptor
After selecting the desired provider entity descriptor from the Navigation pane:

1. Select Service Provider from the View menu to add a service provider to the
entity descriptor.

2. Click the New Provider button to display the New Provider Wizard.

a. Provide information for the following Common Provider attributes
displayed in Step 1.

I. Provider ID. Enter a unique identifier for the provider.

II. Description. Enter a description of the provider.

III. Provider is Hosted or Remote. Select Local if the provider is hosted on
the same server as Access Manager or Remote, if not. By default,
Remote is selected.

IV. Valid Until. Enter the expiration date for the metadata pertaining to
the provider. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ

For example, 2004-12-31T12:30:00.0-0800

V. Cache Duration. Enter the maximum amount of time an entity
descriptor can be cached. The value is defined in the format:

PnYnMnDTnHnMnS, where n is an integer.

For example, P1Y2M4DT9H8M20S defines the cache duration as 1
year, 2 months, 4 days, 9 hours, 8 minutes, and 20 seconds.

VI. Protocol Support Enumeration. Select the protocol release supported
by this entity.

CAUTION Attributes displayed and configured in subsequent steps depend on the type
defined for the Provider is Hosted or Remote attribute.

Federation Management

Chapter 3 Federation Management 79

urn:liberty:iff:2003-08 refers to the Liberty Identity Federation
Framework version 1.2 and urn:liberty:iff:2002-12 refers to the
Liberty Identity Federation Framework version 1.1.

VII. Server Name Identifier Mapping Binding. Enter a URI describing the
SAML authority binding used by the identity provider. Identifier
mapping queries are able to locate and communicate with the SAML
authority using this URI.

VIII. Additional Meta Locations. Enter the location of other relevant
metadata concerning the provider.

Signing Key

I. Key Alias. Enter the signing certificate key alias used to sign requests
and responses for a hosted (local) provider. For a remote provider, this
is a public key that the provider uses to verify the signatures.

Encryption Key

I. Key Alias. Enter the security certificate alias. Certificates are stored in
a JKS keystore file. Each specific certificate is mapped to an alias which
is used to fetch the certificate.

II. Key Size. Enter the length for keys used by the Web service consumer
when interacting with another entity.

III. Encryption Method. This field defines the encryption method. The
choices are None, 3DES, AES, and DES.

b. Click Next to provide information for the following Communications and
Service Provider attributes in Step 2.

Communication URLs

I. SOAP Endpoint URL. Enter a location for the service provider’s SOAP
messages receiver.

This value communicates the location of the SOAP receiver in
non-browser communications.

II. Single Logout Service URL. Enter a location to which service
providers can send logout requests.

CAUTION Some of the following attribute subsections are displayed based upon whether the
service provider is defined as Remote or Hosted (Local) in Step III on page 78. This
is called out in parentheses next to the heading.

Federation Management

80 Access Manager 6 2005Q1 • Federation Management Guide

Single logout synchronizes the logout functionality across all sessions
authenticated by the identity provider.

III. Single Logout Return URL. Enter a location to which the service
provider will redirect the principal after completing a logout.

IV. Federation Termination Service URL. Enter a location to which a
service provider will send federation termination requests.

V. Federation Termination Return URL. Enter a location to which the
service provider will redirect the principal after completing federation
termination.

VI. Name Registration Service URL. Enter a location to which a service
provider will send requests to specify the name identifier that will be
used when communicating with the identity provider about a
principal.

Registration can occur only after a federation session is established.

VII. Name Registration Return URL. Enter a location to which the identity
provider will redirect the principal after HTTP name registration has
been completed.

VIII. Authentication Service URL. Enter a location for the identity
provider’s ID-FF-based Authentication Service.

Communication Profiles

I. Federation Termination Profile. Select a profile to notify other
providers of a principal’s federation termination. The choices are
SOAP and HTTP/Redirect.

II. Single Logout Profile. Select a profile to notify other providers of a
principal’s logout. The choices are SOAP and HTTP/Redirect.

III. Name Registration Profile. Select a profile to notify other providers of
a principal’s name registration. The choices are SOAP and
HTTP/Redirect.

IV. Single Sign-on/Federation Profile. Select a profile used by a hosted
provider for sending authentication requests. The choices are:

· LECP (Liberty-enabled Client Proxy)

· Browser Post (specifies a browser-based HTTP POST protocol)

· Browser Artifact (specifies a non-browser SOAP-based protocol)

Federation Management

Chapter 3 Federation Management 81

V. Enable Name Identifier Encryption. Select the check box to enable
encryption of the name identifier.

Service Provider

I. Assertion Consumer URL. Enter the SAML endpoint to which a
provider will send SAML assertions.

II. Assertion Consumer Service URL ID. Enter the identifier of the
Assertion Consumer Service URL to be used as a reference in
authentication requests.

This identifier is required if Protocol Support Enum (Step VI on
page 78) is urn:liberty:iff:2002-12.

III. Set Assertion Consumer Service URL as Default. Select this check
box to use the Assertion Consumer URL as the default.

IV. Sign Authentication Request. Select this check box to specify that the
service provider send signed authentication and federation requests.
The identity provider will not process unsigned requests.

V. Name Registration After Federation. Select this check box to allow for
a service provider to participate in name registration after it has been
federated. For more information, see “Name Registration Protocol” on
page 38 of Chapter 1, “Introduction to the Liberty Alliance Project.”

VI. Name ID Policy. Choose an option to determine the name identifier
format generated by the identity provider. The choices are None,
One-time, and Federated. This attribute value is part of the
authentication request. If the Name ID Policy value is federated, the
name identifier format is urn:liberty:iff:2003:federated.

VII. Enable Affiliation Federation. If enabled, federation based on
affiliation IDs is allowed.

Access Manager Configuration (only displayed when service provider is
defined as Hosted (Local))

I. Provider URL. Enter the URL of the local identity provider.

II. Alias. Enter an alias name for the local identity provider.

III. Authentication Type. Select the provider that should be used for
authentication requests from a provider hosted locally. Remote
specifies that the provider hosted locally would contact a remote
identity provider upon receiving an authentication request. Local
specifies that the provider hosted locally should contact a local identity
provider upon receiving an authentication request (essentially, itself).

Federation Management

82 Access Manager 6 2005Q1 • Federation Management Guide

IV. Default Authentication Context. Select the authentication context to
be used if the identity provider does not receive it as part of a service
provider request. It also specifies the authentication context used by
the service provider when an unknown user tries to access a protected
resource. The choices are Previous-Session, Time-Sync-Token,
Smartcard, MobileUnregistered, Smartcard-PKI, MobileContract,
Password, Password-ProtectedTransport, MobileDigitalID, and
Software-PKI.

V. Forced Authentication at Identity Provider. Select the check box to
indicate if the identity provider must reauthenticate (even during a
live session) when an authentication request is received.

VI. Request Identity Provider to be Passive. Select the check box to
specify that the identity provider must not interact with the principal
and must interact with the user

VII. Organization DN. Enter the location of the DN of the organization if
each hosted provider chooses to manage users across different
organizations leading to a hosted model.

VIII. Liberty Version URI. Enter the URI of the version of the Liberty
specification.

IX. Name Identifier Implementation. This field allows the option for a
service provider to participate in name registration. Name registration
is a profile by which service providers specify a principal’s name
identifier that an identity provider will use when communicating to
the service provider.

X. Provider Home Page URL. Enter the URL of the home page of the
identity provider.

XI. Single Sign-on Failure Redirect URL. Enter the URL to which a
principal will be redirected if single sign-on has failed.

SAML Configuration (only displayed when service provider is defined as
Hosted (Local))

I. Assertion Interval. Enter the interval of time for which an assertion
issued by the identity provider will remain valid. A principal will
remain authenticated until the assertion interval expires.

II. Cleanup Interval. Enter the interval of time before assertions stored in
the identity provider will be cleared.

III. Artifact Timeout. Enter an interval to specify the timeout of a identity
provider for assertion artifacts.

Federation Management

Chapter 3 Federation Management 83

IV. Assertion Limit. Enter a number to define the amount of assertions an
identity provider can issue, or the number of assertions that can be
stored.

Proxy Authentication Configuration

I. Enable Proxy Authentication. If selected, this attribute enables proxy
authentication for a service provider.

II. Proxy Identity Providers List. This attribute displays the list of
identity providers that can be proxied for authentication.

III. Maximum Number Proxies. This attribute specifies the maximum
number of identity provider to be proxied.

IV. Use Introduction Cookie For Proxying. If enabled, introductions will
be used to find the proxying identity provider.

c. Click Next to provide information for the following Organization
Attributes and Contact Persons attributes displayed in Step 3.

Organization

I. Name. Enter the name of the entity’s organization. The value is
defined in the format:

locale|organization_name

For example, en|organization_name.com

II. Display Name. Enter the display name of the entity’s organization.
The value is defined in the format:

locale|organization_display_name

For example, en|organization_display_name.com

III. URL. Enter the URL of the organization. The value is defined in the
format:

locale|organization_URL

For example, en|http://www.organization_name.com

d. Click New to access the attributes for Contact Persons detailed below.

Contact Persons

I. First Name. Enter the first name of the entity’s contact person.

II. Last Name. Enter the last name of the entity’s contact person.

Federation Management

84 Access Manager 6 2005Q1 • Federation Management Guide

III. Type. Select the type of entity from the drop down menu. The choices
are Billing, Technical, Administrative, and Other.

IV. Company. Enter the name of the company to which the contact person
is employed.

V. Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

VI. Email. Enter the email address of the contact person.

VII. Telephone. Enter the telephone number of the contact person.

e. Click OK to save the values assigned to the Contact Person attributes.

f. Click Next to configure the Authentication Domains to which the provider
belongs in Step 4.

I. Use the direction arrows to move a Selected authentication domain
into the Available list.

II. Click Save.

This will assign the provider to an authentication domain. A provider
can belong to one or more authentication domains, however a
provider without a specified authentication domain can not participate
in Liberty-based communications.

g. Click Finish.

To Configure an Affiliate Entity Descriptor
1. Choose Entity Descriptors from the View menu in the Navigation pane of the

Federation Management module.

2. Select the desired affiliate entity descriptor.

The entity descriptor’s attributes are displayed in the Data pane.

To Configure General Attributes for an Affiliate Entity Descriptor
After selecting the desired affiliate entity descriptor from the Navigation pane:

1. Select General from the View menu in the Data pane and provide information
for the following attributes (separated into three groups):

Entity Common Attributes

a. Entity Type. The static value of this attribute is Affiliate.

b. Description. Enter a description of the affiliation.

Federation Management

Chapter 3 Federation Management 85

c. Valid Until. Enter the expiration date for the metadata pertaining to the
affiliation. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ

For example, 2004-12-31T12:30:00.0-0800

d. Cache Duration. Enter the maximum amount of time the entity descriptor
can be cached. The value is defined in the format:

PnYnMnDTnHnMnS, where n is an integer variable.

For example, P1Y2M4DT9H8M20S defines the cache duration as 1 year, 2
months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Entity Contact Person

a. First Name. Enter the first name of the entity’s contact person.

b. Last Name. Enter the last name of the entity’s contact person.

c. Type. Select the type of entity from the drop down menu. The choices are
Billing, Technical, Administrative, and Other.

d. Company. Enter the name of the company to which the contact person is
employed.

e. Liberty Principal Identifier. Enter the name identifier that points to an
online instance of the contact person’s personal information profile.

f. Email. Enter the email address of the contact person.

g. Telephone. Enter the telephone number of the contact person.

Entity Organization

a. Name. Enter the name of the entity’s organization. The value is defined in
the format:

locale|organization_name

For example, en|organization_name.com

b. Display Name. Enter the display name of the entity’s organization. The
value is defined in the format:

locale|organization_display_name

For example, en|organization_display_name.com

Federation Management

86 Access Manager 6 2005Q1 • Federation Management Guide

c. URL. Enter the URL of the organization. The value is defined in the format:

locale|organization_URL

For example, en|http://www.organization_name.com

2. Click Save.

To Configure Affiliates Attributes for an Affiliate Entity Descriptor
After selecting the desired affiliate entity descriptor from the Navigation pane:

1. Select Affiliates from the View menu in the Navigation pane.

2. Provide information for the following Affiliate Common attributes (separated
into three groups):

Affiliate Common Attributes

a. Affiliate ID. The value of this attribute should be defined during the
creation of the Affiliate Entity Descriptor. For more information, see “To
Create an Entity Descriptor of Either Type” on page 70.

b. Affiliate Owner ID. The value of this attribute should be defined during
the creation of the Affiliate Entity Descriptor. For more information, see
“To Create an Entity Descriptor of Either Type” on page 70.

c. Valid Until. Enter the expiration date for the metadata pertaining to the
provider. The value is defined in the format:

yyyy-mm-ddThh:mm:ss.SZ

For example, 2004-12-31T12:30:00.0-0800

d. Cache Duration. Enter the maximum amount of time an entity descriptor
can be cached. The value is defined in the format:

PnYnMnDTnHnMnS, where n is an integer.

For example, P1Y2M4DT9H8M20S defines the cache duration as 1 year, 2
months, 4 days, 9 hours, 8 minutes, and 20 seconds.

Signing Key

a. Key Alias. Enter the signing certificate key alias used to sign requests and
responses for a hosted (local) provider. For a remote provider, this is a
public key that the provider uses to verify the signatures.

Encryption Key

Federation Management API

Chapter 3 Federation Management 87

a. Key Alias. Enter the security certificate alias. Certificates are stored in a
JKS keystore file. Each specific certificate is mapped to an alias which is
used to fetch the certificate.

b. Key Size. Enter the length for keys used by the Web service consumer
when interacting with another entity.

c. Encryption Method. Choose the method of encryption. The choices are
None, 3DES, AES, and DES.

Affiliate Members

a. Affiliate Members. Use the direction arrows to move a Selected provider
into the Available list.

This field allows you to define one or more providers as members of the
affiliation. The providers displayed in the Selected list are pre-defined in
existing container entity descriptors.

3. Click Save.

To Delete an Entity Descriptor of Either Type
1. Choose Entity Descriptors from the View menu in the Navigation pane of the

Federation Management module.

2. Check the box next to the entity descriptor you want to delete.

3. Click Delete.

There is no warning message when performing a delete.

Federation Management API
The com.sun.liberty package provides the interface that forms the basis of the
Federation Management API. The LibertyManager class must be instantiated by
web applications that want to access the Federation Management module. It
contains the methods needed by the module JSPs for account federation, session
termination, log in, log out and other actions. Some of these methods are:

NOTE If a remote entity descriptor is to be deleted from the console, it first needs to be
manually removed from the Trusted Providers list (if the provider is hosted) and the
Available Providers list (if part of an affiliation).

Federation Management Samples

88 Access Manager 6 2005Q1 • Federation Management Guide

For more detailed API reference information, see the Javadocs in
/AccessManager_base/SUNWam/docs.

Federation Management Samples
Access Manager provides a collection of sample files, located in the
/AccessManager_base/SUNWam/samples/liberty/Sample1 directory, to configure a
basic environment for creating and managing a federation. The example
demonstrates the basic use of various Liberty-based federation protocols including
account federation, SSO, single logout, and federation termination. The sample
should be completed in the following sequence:

1. Install Access Manager

2. Update and load the metadata

3. Deploy the service provider

Table 3-3 Federation Management API

Method Description

getSPList() Returns a list of all trusted service providers.

getSPList(String
hostedProviderID)

Returns a list of all trusted service providers for the
specified hosted provider.

getIDPList() Returns a list of all trusted identity providers.

getIDPList(String
hostedProviderID)

Returns a list of all trusted identity providers for the
specified hosted provider.

getSPFederationStatus(String
user, String provider)

Retrieves a user’s federation status with a specified
service provider. This method assumes the user is
already federated with the provider.

getIDPFederationStatus(String
user, String provider)

Retrieves a user’s federation status with a specified
identity provider. This method assumes the user is
already federated with the provider.

getFederatedProviders(String
userName)

Returns a specific user’s federated providers.

getProvidersToFederate(String
providerID, String userName)

Returns the list of all trusted identity providers to which
the specified user is not already federated.

ListOfCOTs(String providerID) Returns a list of authentication domains for the given
provider.

Federation Management Samples

Chapter 3 Federation Management 89

4. Deploy the identity provider

5. Create and manage the federation

The following sections include more information on these steps.

Installing Access Manager
The first step in creating a federated environment is installing Access Manager on
two separate machines. One installation will act as a service provider, and one will
act as an identity provider.

The default installation directory for the Solaris™ operating system is
/opt/SUNWam.

Updating and Loading the Metadata
Update and load the sp1Metadata.xml file with values appropriate to your Access
Manager installation. The file is located in
/AccessManager_base/SUNWam/samples/liberty/sample1. Table 3-4 summarizes the
default values which should be modified based on your installation configuration.

NOTE The Readme file located with the sample in
/AM_Install_Dir/SUNWam/samples/liberty/sample1 also contains instructions for
configuring a common domain. For information on common domains, see
“Common Domain” on page 31 of Chapter 1, “Introduction to the Liberty Alliance
Project” and “Common Domain Services” on page 65 of this chapter.

NOTE Instructions on installing Access Manager can be found in the Sun Java Enterprise
System Installation Guide (http://docs.sun.com/coll/entsys_05q1).

Table 3-4 Default Values in sp1metadata.xml for Sample1

Installation Parameter Service Provider Value Identity Provider Value

Provider Name SP1 IDP1

Host Name www.sp1.com www.idp1.com

Port SERVER_PORT_# SERVER_PORT_#

Access Manager
Deployment URI

amserver amserver

Federation Management Samples

90 Access Manager 6 2005Q1 • Federation Management Guide

Load the updated sp1Metadata.xml file using the following command:

/AccessManager_base/SUNWam/bin/amadmin -u amadmin -w password -t
sp1Metadata.xml

Deploying the Service Provider
The following sequence should be followed in order to deploy the service provider:

1. Configure the AMClient.properties file.

2. Create a WAR file.

3. Deploy the WAR file.

To Configure AMClient.properties
Replace the following tags in the AMClient.properties file with values
appropriate to your configuration. AMClient.properties is located in
/AccessManager_base/SUNWam/samples/liberty/sample1/sp1/WEB-INF/classes/.

• SERVER_PROTO: Enter HTTPS or HTTP.

• SERVER_HOST: Enter the fully-qualified host name for your installation. For
example, www.sp1.com.

• SERVER_PORT: Enter the port number on which Access Manager is running.

• SERVICE_DEPLOY_URI: Enter the Access Manager services deployment
URI. The default value is amserver.

• META_ALIAS: Enter the metaAlias for SP1. In sp1Metadata.xml, the default
value is www.sp1.com.

Access Manager root suffix dc=sp1,dc=com
(attribute DN for element
OrganizationRequests)

 dc=idp1,dc=com
(attribute DN for element
OrganizationRequests)

Certificate Alias SP1_SECURITY_KEY IDP1_SECURITY_KEY

metaAlias www.sp1.com www.idp1.com

Table 3-4 Default Values in sp1metadata.xml for Sample1

Installation Parameter Service Provider Value Identity Provider Value

Federation Management Samples

Chapter 3 Federation Management 91

To Create a WAR File for SP1
1. Change to the sp1 directory.

cd /AccessManager_base/SUNWam/samples/liberty/sample1/sp1

2. Run the jar command.

jar -cvf sp1.war

To Deploy the Service Provider WAR File
Choose the option appropriate to your environment.

• If Access Manager is Installed on Sun Java System Web Server

• If Access Manager is Installed on Sun Java System Application Server

If Access Manager is Installed on Sun Java System Web Server

1. Enter the command
wdeploy deploy -u uri_path -i instance -v vs_id [-d directory] war_file

where:

❍ uri_path is the URI prefix for the web application.

❍ instance is the server instance name.

❍ vs_id is the virtual server ID.

❍ directory is the directory to which the application is deployed. If not
specified, the application is deployed to the document root directory.

NOTE Instructions for deploying the WAR file on other application servers can be found in
the Readme file located with the sample in
/AM_Install_Dir/SUNWam/samples/liberty/sample1.

CAUTION Before manually deploying a web application, be sure that the:

• server_root/bin/https/httpsadmin/bin directory is in your path.

• IWS_SERVER_HOME environment variable is set to your server_root directory.

Federation Management Samples

92 Access Manager 6 2005Q1 • Federation Management Guide

❍ war_file is the WAR file name.

An example might be:

wdeploy deploy -u /sp1 -i www.sp1.com -v https-www.sp1.com
-d begin_dir/web-apps/sp1 sp1.war

2. Restart the Web Server.

If Access Manager is Installed on Sun Java System Application Server
1. Use the asadmin deploy command to deploy the WAR module.

The complete syntax is:

asadmin deploy --user admin_user [--password admin_password]
[--passwordfile password_file] --host hostname
--port adminport [--secure | -s] [--virtualservers virtual_servers]
--type application|ejb|web|connector]
[--contextroot contextroot] [--force=true]
[--precompilejsp=false] [--verify=false]
[--name component_name] [--upload=true]
[--retrieve local_dirpath]
[--instance instance_name] path_to_file

For example:

asadmin deploy --user amadmin --password pswd1234
--host www.sp1.com --port 4848 --type web --contextroot SP1
--instance server1 sp1.war

2. Restart the Application Server.

Deploying the Identity Provider
The following sequence should be followed in order to deploy the identity
provider:

1. Configure the AMClient.properties file.

2. Create a WAR file.

3. Deploy the WAR file.

Federation Management Samples

Chapter 3 Federation Management 93

To Configure AMClient.properties
Replace the following tags in the AMClient.properties file with values
appropriate to your configuration. AMClient.properties is located in
/AccessManager_base/SUNWam/samples/liberty/sample1/idp1/WEB-INF/classes/.

• SERVER_PROTO: Enter HTTPS or HTTP.

• SERVER_HOST: Enter the fully-qualified host name for your installation. For
example, www.idp1.com.

• SERVER_PORT: Enter the port number on which Access Manager is running.

• SERVICE_DEPLOY_URI: Enter the Access Manager services deployment
URI. The default value is amserver.

• META_ALIAS: Enter the metaAlias for IDP1. In idp1Metadata.xml, the
default value is www.idp1.com.

To Create a WAR File for IDP1
1. Change to the idp1 directory.

cd /AccessManager_base/SUNWam/samples/liberty/sample1/idp1

2. Run the jar command.

jar -cvf idp1.war

To Deploy the Identity Provider WAR File
Choose the option appropriate to your environment.

• If Access Manager is Installed on Sun Java System Web Server

• If Access Manager is Installed on Sun Java System Application Server

If Access Manager is Installed on Sun Java System Web Server

NOTE Instructions for deploying the WAR file on other application servers can be found in
the Readme file located with the sample in
AM_Install_Dir/SUNWam/samples/liberty/sample1.

CAUTION Before manually deploying a web application, be sure that the:

• server_root/bin/https/httpsadmin/bin directory is in your path.

• IWS_SERVER_HOME environment variable is set to your server_root directory.

Federation Management Samples

94 Access Manager 6 2005Q1 • Federation Management Guide

1. Enter the command
wdeploy deploy -u uri_path -i instance -v vs_id [-d directory] war_file

where:

❍ uri_path is the URI prefix for the web application.

❍ instance is the server instance name.

❍ vs_id is the virtual server ID.

❍ directory is the directory to which the application is deployed. If not
specified, the application is deployed to the document root directory.

❍ war_file is the WAR file name.

An example might be:

wdeploy deploy -u /idp1 -i www.idp1.com -v https-www.idp1.com
-d /AccessManager_base/SUNWam/web-apps/idp1 idp1.war

2. Restart the Web Server.

If Access Manager is Installed on Sun Java System Application Server
1. Use the asadmin deploy command to deploy the WAR module.

The complete syntax is:

asadmin deploy --user admin_user [--password admin_password]
[--passwordfile password_file] --host hostname
--port adminport [--secure | -s] [--virtualservers virtual_servers]
--type application|ejb|web|connector]
[--contextroot contextroot] [--force=true]
[--precompilejsp=false] [--verify=false]
[--name component_name] [--upload=true]
[--retrieve local_dirpath]
[--instance instance_name] path_to_file

For example:

asadmin deploy --user amadmin --password pswd1234
--host www.idp1.com --port 4848 --type web --contextroot IDP1
--instance server1 idp1.war

2. Restart the Application Server.

Federation Management Samples

Chapter 3 Federation Management 95

Creating and Managing a Federation
The following sections provide procedures for creating, managing, and
terminating a federation.

• To Federate the Service Provider and Identity Provider Accounts

• To Accomplish Single Sign-On

• To Perform a Single Logout

• To Terminate Account Federation

To Federate the Service Provider and Identity Provider Accounts
1. Access the following URL in a web browser:

SERVER_PROTO//SERVER_HOST:PORT/sp1/index.jsp

For example, http://www.sp1.com:58080/sp1/index.jsp.

2. Click the Local Login link on the common login page.

You are redirected to the SP1’s login page.

3. Log in to SP1.

After successful authentication at SP1, the index.jsp is displayed. index.jsp
has three links:

❍ The Federate link initiates the federation process.

❍ The Logout link initiates the single logout process.

❍ The Terminate Federation link initiates the federation termination process.

4. Click the Federate link.

The Federate page is displayed.

5. Select the identity provider with which you want to federate.

In Sample1, you would select the deployed IDP1 as your identity provider, and
IDP1’s login page is displayed.

NOTE index.jsp is a protected page that includes _head.jsp. _head.jsp checks the
request for a valid user session. If invalid, it redirects the request to the Pre-Login
service which attempts single sign-on. Since this is a first time access, single
sign-on will fail and the request is then redirected to the common login page.

Federation Management Samples

96 Access Manager 6 2005Q1 • Federation Management Guide

6. Provide authentication credentials for your IDP1 account.

If the authentication is successful, the Federation Done page is displayed
indicating that you have successfully federated these two accounts.

To Accomplish Single Sign-On
After successfully federating the two providers, follow these instructions to
accomplish single sign-on.

1. Start a new browser session and access the SP1 protected page,
SERVER_PROTO//SERVER_HOST:PORT/sp1/index.jsp.

For example, http://www.sp1.com:58080/sp1/index.jsp.

2. You will be redirected to the IDP1 Login page for authentication.

3. Provide authentication credentials for your IDP1 account.

If authentication is successful, the initially accessed SP1 protected page is
displayed without asking for SP1 authentication credentials. If authentication
is not successful, an error message is displayed, and you are directed to start
over.

To Perform a Single Logout
From either the SP1 protected page or the IDP1 protected page, index.jsp, click
the Logout link. You will be logged out from both providers, and the Logout Done
page is displayed.

To Terminate Account Federation
1. From either the SP1 protected page or the IDP1 protected page, click the

Terminate Federation link.

The Federation Termination page is displayed.

NOTE If the account is already federated, you will be redirected to the IDP login page

NOTE Both the service provider and identity provider have different protected index.jsp
pages. The URLs are:

• SERVER_PROTO//SERVER_HOST:PORT/sp1/index.jsp

• SERVER_PROTO//SERVER_HOST:PORT/idp1/index.jsp

Federation Management Samples

Chapter 3 Federation Management 97

2. Select a provider to terminate your account federation.

For Sample1, select IDP1. Upon successful federation termination, the
Termination Done page is displayed.

NOTE Appendix A, “Included Samples” includes information on two more samples that
make use of the Federation Management module.

Federation Management Samples

98 Access Manager 6 2005Q1 • Federation Management Guide

Part II

Liberty-based Web Services

Chapter 4, “Authentication Web Service” on page 101

Chapter 5, “Data Services” on page 107

Chapter 6, “Discovery Service” on page 121

Chapter 7, “SOAP Binding Service” on page 147

Chapter 8, “Application Programming Interfaces” on page 153

101

Chapter 4

Authentication Web Service

The Sun Java™ System Access Manager contains an implementation of the Liberty
ID-WSF Authentication Service Specification of the Liberty Alliance Project. The
Authentication Web Service defines how to perform authentication using SOAP.
This chapter contains the following topics:

• Overview

• Authentication Web Service Process

• Authentication Web Service Attribute

• Authentication Web Service Interfaces

• Authentication Web Service Sample

Overview
The implementation of the Access Manager Authentication Web Service is based
on the Liberty ID-WSF Authentication Service Specification. The specification defines a
protocol that adds authentication functionality to the SOAP binding discussed in
the Liberty ID-WSF SOAP Binding Specification (and Chapter 7, “SOAP Binding
Service.”) The Simple Authentication and Security Layer (SASL) is the method
used to add this authentication support to the SOAP transport layer. The Access
Manager Authentication Web Service is for service-to-service (non-user)
authentication.

NOTE On the Liberty Alliance Project Web site, the Liberty ID-WSF Authentication
Service Specification can be found at
http://www.projectliberty.org/specs/liberty-idwsf-authn-svc-v1.0.pdf.

Authentication Web Service Process

102 Access Manager 6 2005Q1 • Federation Management Guide

XML Service File
The Access Manager Liberty Personal Profile Service is configured using the XML
service file amAuthnSvc.xml. amAuthnSvc.xml defines the attribute for the
Authentication Web Service which can be managed through the Access Manager
console or the XML file itself.

The Liberty ID-WSF Authentication Service Specification also contains an XML schema
that defines the authentication protocol. This XML Schema Defintion (XSD) file can
be found on the LAP Web site. Version 1.0 is also reproduced in Appendix B,
“Service Schema Files.”

Application Programming Interfaces
The Access Manager Authentication Web Service includes two Java programming
packages: com.sun.identity.liberty.ws.authnsvc.protocol and
com.sun.identity.liberty.ws.authnsvc. The former listed package contains
classes that represent the SASL request and response while the latter package is a
client API for external Java applications to send SASL requests and receive SASL
responses. They are used to initiate the authentication process and communicate
authentication credentials to the Authentication Web Service.

Authentication Web Service Process
The exchange of authentication information between a Web service consumer
(WSC) and the Web service provider (WSP) is accomplished using SOAP-bound
messages. The messages are a series of client requests and server responses specific
to the defined SASL mechanism (or mode of authentication).

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649).

NOTE The authentication exchange can involve an arbitrary number of round trips,
dictated by the particular SASL mechanism employed. The WSC may have
knowledge of the supported SASL mechanisms, or it may send the server its own
list and allow the server to choose one from among them. The list of supported
mechanisms can be found at http://www.iana.org/assignments/sasl-mechanisms.

Authentication Web Service Attribute

Chapter 4 Authentication Web Service 103

After receiving a request for authentication (or any response from the WSC), the
WSP may issue additional challenges, or indicate authentication failure or success.
The following steps detail the sequence between the WSC and the Authentication
Web Service (a WSP).

1. The authentication exchange begins with a WSC sending an SASL
authentication request to the Authentication Web Service on behalf of a
principal.

The request message contains an identifier for the principal and indicates one
or more SASL mechanisms from which the service can choose.

2. The Authentication Web Service responds by asserting the method to use and,
if applicable, initiating a challenge.

If the Authentication Web Service does not support any of the cited methods, it
responds by aborting the exchange.

3. The WSC responds with the necessary credentials for the chosen method of
authentication.

4. The Authentication Web Service replies by approving or disproving the
authentication.

If approved, the response includes the credentials the WSC needs to invoke
other Web services (like the Discovery Service).

Authentication Web Service Attribute
The Authentication Web Service attribute is a global attribute. The value of this
attribute is carried across the Sun Java System Access Manager configuration and
inherited by every organization.

CAUTION The Liberty-based Authentication Web Service is not to be confused with the
proprietary Access Manager Authentication Service discussed in the Sun Java
System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649).

NOTE For information on the types of attributes used in Access Manager, see the Service
Management chapter of the Sun Java System Access Manager 6 2005Q1 Developer’s
Guide (http://docs.sun.com/doc/817-7649).

Authentication Web Service Interfaces

104 Access Manager 6 2005Q1 • Federation Management Guide

The attribute for the Authentication Web Service is defined in the amAuthnSvc.xml
service file and is called the Mechanism Handler List.

Mechanism Handler List
The Mechanism Handler List attribute stores information about the SASL
mechanisms supported by the Authentication Web Service. It displays entries that
contain key/value pairs separated by a pipe (“|”) as in:

key=PLAIN|class=com.sun.identity.liberty.ws.authnsvc.mechanism.PlainMec
hanismHandler

key Parameter
The required key parameter defines the SASL mechanism supported by the
Authentication Web Service.

class Parameter
The required class parameter specifies the name of the implementation class for the
SASL mechanism. The Authentication Web Service layer provides a handler
interface that needs to be implemented in order for each SASL mechanism to
process the requested message and return a response.

Authentication Web Service Interfaces
The Authentication Web Service provides programmatic interfaces to allow clients
to interact with the Authentication Web Service. They are:

• com.sun.identity.liberty.ws.authnsvc

• com.sun.identity.liberty.ws.authnsvc.protocol

com.sun.identity.liberty.ws.authnsvc
This package provides Web service clients with a method to request authentication
credentials from the Authentication Web Service and receive responses back from
it using the Simple Authentication and Security Layer (SASL).

Authentication Web Service Sample

Chapter 4 Authentication Web Service 105

com.sun.identity.liberty.ws.authnsvc.protocol
This package provides classes that correspond to the request and response
elements defined in the Liberty XSD schema that accompanies the Liberty ID-WSF
Authentication Service Specification. This schema is reprod

Authentication Web Service Sample
A sample authentication client is included with Access Manager. It is located in the
AccessManager_base/SUNWam/samples/phase2/authnsvc directory. The client uses the
PLAIN SASL authentication mechanism. It first authenticates against the
Authentication Web service, then extracts a resource offering to bootstrap the
Discovery Service. It looks for SAML Bearer token credential, issues a discovery
query request with SAML assertion included, and gets back a response.

NOTE This sample can be used a Liberty User Agent Device WSC.

Authentication Web Service Sample

106 Access Manager 6 2005Q1 • Federation Management Guide

107

Chapter 5

Data Services

The Sun Java™ System Access Manager contains implementations of the Liberty
ID-WSF Data Services Template Specification (ID-WSF-DST) in addition to
instructions on how you can add your own data service to the deployment. This
chapter contains the following topics:

• Overview

• Liberty Personal Profile Service

• Liberty Employee Profile Service

• Data Services Template API

• Developing A New Data Service

Overview
A data service is a Web service that supports the query and modification of identity
data. Identity data includes, but is not limited to, attributes that define first name,
last name, home address, business address, and emergency contact. A data service
allows this data to be queried or modified. A query is when a Web service consumer
(WSC) requests data (in an XML format) from a user’s profile. A modify is when a
WSC sends new data to update a user’s profile. The Liberty Alliance Project (LAP)
has defined the Liberty ID-WSF Data Services Template Specification (ID-WSF-DST) as
the standard protocol used for the query and modification of identity data profiles
comprised of attributes exposed by a data service.

Overview

108 Access Manager 6 2005Q1 • Federation Management Guide

Data Services Template Specifications
The ID-WSF-DST specifies a base layer that can be extended by any instance of a
data service. An example of a data service is an identity service such as an online
corporate directory. When you want to contact a colleague, you conduct a search
based on the individual’s name, and the data service returns information
associated with their identity. The information may include the individual’s office
location and phone number, as well as job title or department name. From the
implementation point of view, all data services must be built on top of the
ID-WSF-DST which provides the data model and message interfaces. Figure 5-1
illustrates how Access Manager uses the ID-WSF-DST as the framework for its data
services.

Figure 5-1 Data Service Template as Building Block for Data Services

The Liberty-defined Web Services Layer uses the ID-WSF-DST (and other Web
services that allow data services to be discovered and invoked) for the
development of data services. Access Manager has developed both the Liberty
Personal Profile Service and the Liberty Employee Profile Service on top of the
Liberty-defined Web Services Layer. Additional data services can also be
developed by the customer. (More information on developing other data services
can be found in “Data Services Template API” on page 118.)

Overview

Chapter 5 Data Services 109

Liberty Personal Profile Service
The Liberty ID-SIS Personal Profile Service Specification (ID-SIS-PP) of the LAP
describes a data service which provides an identity’s basic profile information (full
name, contact details, financials, etc.). It is intended to be the least common
denominator for holding consumer-based information about a principal. Access
Manager has implemented this specification and developed the Liberty Personal
Profile Service.

XML Service File
The Access Manager Liberty Personal Profile Service is configured using the XML
service file amLibertyPersonalProfile.xml. amLibertyPersonalProfile.xml
defines the attributes for the Liberty Personal Profile Service which can be
managed through the Access Manager console or the XML file itself.

XSD Schema Definition
The ID-SIS-PP also defines an XML schema for use in building the service itself.
This XML Schema Defintion (XSD) file can be found on the LAP Web site. Version
1.0 is also reproduced in Appendix B, “Service Schema Files.”

NOTE The Liberty ID-WSF Data Services Template Specification can be found at
http://www.projectliberty.org/specs/draft-liberty-idwsf-dst-1.0-errata-v1.0.p
df.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649).

NOTE The Liberty ID-SIS Personal Profile Service Specification can be found at
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf.

Overview

110 Access Manager 6 2005Q1 • Federation Management Guide

Liberty Employee Profile Service
The Liberty ID-SIS Employee Profile Service Specification (ID-SIS-EP) describes a data
service which provides an identity’s profile information in regards to their
employment. An example of a employee profile service might be a corporate
calendar or phone book. Access Manager has implemented this specification by
developing a sample that includes the files needed to deploy and invoke a Liberty
Employee Profile Service.

XML Service File
Among the files included with the sample is the XML service file
amLibertyEmployeeProfile.xml. amLibertyEmployeeProfile.xml defines the
attributes for the Liberty Employee Profile Service which, once deployed, can be
managed through the Access Manager console or the XML file itself.

XSD Schema Definition
The ID-SIS-EP also defines an XML schema for use in building the service itself.
This XSD file can be found on the LAP Web site. Version 1.0 is also reproduced in
Appendix B, “Service Schema Files.”

TIP The Liberty Employee Profile Service is not available when Access Manager is
installed. It must first be deployed. Information on accessing the sample files and
how to deploy them can be found in “Liberty Employee Profile Service” on
page 118.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649).

NOTE The Liberty ID-SIS Employee Profile Service Specification can be found at
http://www.projectliberty.org/specs/liberty-idsis-ep-v1.0.pdf.

Liberty Personal Profile Service

Chapter 5 Data Services 111

Data Services Template API
Access Manager data services are built using a Java package called
com.sun.identity.liberty.ws.dst. Access Manager provides this package for
developing custom services based on the ID-WSF-DST. Additional information on
these interfaces can be found in “Data Services Template API” on page 118 and in
the Javadocs at /AccessManager_base/SUNWam/docs.

Liberty Personal Profile Service
The Liberty Personal Profile Service is a default Access Manager identity service.
The Service can be queried for identity data or its attributes can be updated. In
order for access to occur, the hosting provider of the Liberty Personal Profile
Service needs to be registered with the Discovery Service on behalf of each identity
principal.

The Liberty Personal Profile Service Process
The invocation of a personal profile begins when a WSC posts a query or a modify
request to the Liberty Personal Profile Service on behalf of the user. The following
steps detail the system process for the Liberty Personal Profile Service.

1. A Web services client uses the Data Services Template API to post a query or a
modify request to the Liberty Personal Profile Service.

All the query or modify requests to any identity service are SOAP Requests.

2. The client’s SOAP request is received by the SOAP receiver provided by the
SOAP Binding Service.

The SOAP receiver invokes either the Discovery Service, the Authentication
Web Service, or the Liberty Personal Profile Service, depending on the service
key transmitted as part of the URL. The SOAP Binding Service might also
authenticate the client identity.

NOTE Registering a service with the Discovery Service is done by updating a resource
offering for that service. For more information, see Chapter 6, “Discovery Service.”

Liberty Personal Profile Service

112 Access Manager 6 2005Q1 • Federation Management Guide

3. The Liberty Personal Profile Service implements the SOAP Request handler to
process the request.

The PersonalProfile RequestHandler processes the request based on the
request type (either query or modify) and the query expression. This might
entail the authorization of a WSC using Access Manager Policy Service. It
might also make use of Interaction Service for interacting with the user before
sending data to the WSC.

4. The Liberty Personal Profile Service builds a service response, adds credentials
(if they are required), and sends it back to the WSC.

a. For a response to a query request, the Liberty Personal Profile Service
builds a personal profile container (as defined by the specification). This is
an XML blob based on the Query Select expression. The Personal Profile
attribute values are extracted from the data store by making use of the
attribute mapper. The attribute mapper is defined by the XML service file,
and these values will be used while building the XML container. The
Personal Profile Service then applies xpath queries on the XML blob and
gives us the resultant XML data node.

b. For a response to a modify request, it parses the Modifiable Select
expression and updates the new data from the new data node in the
request.

Liberty Personal Profile Service Attributes
The Liberty Personal Profile Service attributes are global attributes. The values of
these attributes are carried across the Sun Java System Access Manager
configuration and inherited by every organization.

Attributes for the SOAP Binding service are defined in the
amLibertyPersonalProfile.xml service file. The Liberty Personal Profile Service
attributes are:

• ResourceID Mapper

• Authorizer

• Attribute Mapper

NOTE For information on the types of attributes used in Access Manager, see the Service
Management chapter of the Sun Java System Access Manager 6 2005Q1 Developer’s
Guide (http://docs.sun.com/doc/817-7649).

Liberty Personal Profile Service

Chapter 5 Data Services 113

• Provider ID

• Name Scheme

• Namespace Prefix

• Supported Containers

• PPLDAP Attribute Map List

• Require Query PolicyEval

• Require Modify PolicyEval

• Extension Container Attributes

• Extension Attributes Namespace Prefix

• Is ServiceUpdate Enabled

• Service Instance Update Class

• Alternate Endpoint

ResourceID Mapper
The value of this attribute specifies the implementation of
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper. Although a new
implementation can be developed, Access Manager provides the default
com.sun.identity.liberty.ws.idpp.plugin.IDPPResourceIDMapper which maps
a discovery resource identifier to a user ID.

Authorizer
Before processing a request, the Liberty Personal Profile Service will verify the
authorization of the WSC making the request. There are two levels of authorization
check that can be done:

1. Is the requesting entity authorized to access the requested resource profile
information?

2. Is the requested resource published to the requestor?

Authorization occurs via a plug-in to the Liberty Personal Profile Service: an
implementation of the com.sun.identity.liberty.ws.interfaces.Authorizer
interface. Although a new implementation can be developed, Access Manager
provides the default:
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer. This plug-in
defines four policy action values for the query and modify operations:

Liberty Personal Profile Service

114 Access Manager 6 2005Q1 • Federation Management Guide

• Allow

• Deny

• Interact For Consent

• Interact For Value.

The resource values for the rules are similar to x-path expressions defined by the
Personal Profile service. For example, a rule can be defined as follows:

Authorization can be turned off by deselecting one or both of the following
attributes also defined in the Liberty Personal Profile Service:

• Require Query PolicyEval

• Require Modify PolicyEval

Attribute Mapper
This value of this attribute defines the class for mapping a Liberty Personal Profile
Service attribute to an Access Manager User attribute. By default, the class is
com.sun.identity.liberty.ws.idpp.plugin.IDPPAttributeMapper.

Provider ID
The value of this attribute defines the unique identifier for this instance of the
Liberty Personal Profile Service. The format is:

protocol://hostname:port/deloy_uri/Liberty/idpp

Name Scheme
The value of this attribute defines the naming scheme for the Liberty Personal
Profile Service common name. You can choose from First Last, or First Middle
Last.

Code Example 5-1 Authorization Rules

/PP/CommonName/AnalyzedName/FN Query Interact for consent
/PP/CommonName/* Modify Interact for value
/PP/InformalName Query Deny

Liberty Personal Profile Service

Chapter 5 Data Services 115

Namespace Prefix
The value of this attribute specifies the namespace prefix used for Liberty Personal
Profile Service XML protocol messages. A namespace differentiates elements with
the same name that come from different XML schemas. The Namespace Prefix is
prepended to the element and is useful to distinguish metadata from different
XML schema namespaces.

Supported Containers
The values of this attribute define a list of supported containers in the Liberty
Personal Profile Service. A container, as used in this instance, is an attribute of the
Service.

For example, Emergency Contact and Common Name are two default containers
for the Liberty Personal Profile Service. To add a new container, click Add, enter
values in the provided fields and click OK.

PPLDAP Attribute Map List
Each identity attribute defined by the Liberty Personal Profile Service has a
one-to-one match to an Access Manager User service attribute. The value of this
attribute is a list that specifies those mappings. For example,
JobTitle=sunIdentityServerPPEmploymentIdentityJobTitle maps the Liberty
JobTitle attribute to the Access Manager
sunIdentityServerPPEmploymentIdentityJobTitle attribute. When adding new
attributes to either side of this equation, ensure that any new attribute mappings are
configured in this attribute.

NOTE The term container as described here is not related to the Access Manager
identity-related object also named container.

NOTE Currently, Access Manager has not made piublic this functionality.

NOTE Attribute mappings are defined as global attributes under the name
sunIdentityServerPPDSAttributeMapList in the Liberty Personal Profile Service
XML service file definition. This “PPLDAP Attribute Map List” attribute corresponds
to that sunIdentityServerPPDSAttributeMapList global attribute.

Liberty Personal Profile Service

116 Access Manager 6 2005Q1 • Federation Management Guide

In Code Example 5-2, the Liberty Personal Profile Service informalName attribute
mapping to the User service attribute uid is added to the mappings already present
in the amLibertyPersonalProfile.xml.

Require Query PolicyEval
If selected, this option requires a policy evaluation to be performed for Liberty
Personal Profile Service queries.

Require Modify PolicyEval
If selected, this option requires a policy evaluation to be performed for Liberty
Personal Profile Service modifications.

Extension Container Attributes
The Liberty Personal Profile Service allows you to specify extension attributes that
are not defined in the LAP specification. The values of this attribute specify a list of
extension container attributes. All extensions should be defined as:

 /PP/Extension/PPISExtension [@name='extensionattribute']

Code Example 5-3 illsutrates an extension query expression for creditcard, an
extension attribute.

Code Example 5-2 Attribute Mappings as Defined in XML Service File

<AttributeSchema name="sunIdentityServerPPDSAttributeMapList"
 type="list"
 syntax="string"
 i18nKey="p108">
 <DefaultValues>
 <Value>CN=sunIdentityServerPPCommonNameCN</Value>
 <Value>FN=sunIdentityServerPPCommonNameFN</Value>
 <Value>MN=sunIdentityServerPPCommonNameMN</Value>
 <Value>SN=sunIdentityServerPPCommonNameSN</Value>
 <Value>InformalName=uid</Value>
 </AttributeSchema>

Code Example 5-3 Extension Query for creditcard

 /pp:PP/pp:Extension/ispp:PPISExtension[@name='creditcard']
Note: The prefix for the PPISExtension is different, and the schema for the
PP extension is as follows:
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Liberty Personal Profile Service

Chapter 5 Data Services 117

Extension Attributes Namespace Prefix
The value of this attribute specifies the namespace prefix for the extensions defined
in the “Extension Container Attributes.” This prefix is prepended to the element
and is useful to distinguish metadata from different XML schema namespaces.

Is ServiceUpdate Enabled
The SOAP Binding Service allows a service to indicate that requesters should
contact it on a different endpoint or use a different security mechanism and
credentials to access the requested resource. If selected, this attribute affirms that
there is an update to the service instance.

Service Instance Update Class
The value of this attribute specifies the default implementation class
com.sun.identity.liberty.ws.idpp.plugin.IDPPServiceInstanceUpdate. This
class is used to update the information for the service instance.

Alternate Endpoint
The value of this attribute specifies an alternate SOAP endpoint to which a SOAP
request can be sent.

 xmlns="http://www.sun.com/identity/liberty/pp"
 targetNamespace="http://www.sun.com/identity/liberty/pp">
 <xs:annotation>
 <xs:documentation>
 </xs:documentation>
 </xs:annotation>

 <xs:element name="PPISExtension">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

Code Example 5-3 Extension Query for creditcard (Continued)

Liberty Employee Profile Service

118 Access Manager 6 2005Q1 • Federation Management Guide

Liberty Employee Profile Service
The Liberty Employee Profile Service sample provides a collection of files, located
in the /AccessManager_base/SUNWam/samples/phase2/sis-ep directory, that can be
used to deploy and invoke a corporate-based data service.

The Liberty Employee Profile Service is a deployment of the ID-SIS-EP
specification as discussed in “Liberty Employee Profile Service” on page 110. The
Readme.html in the sample directory provides detailed steps on how to deploy and
configure this sample for use as a data service. More information can be found in
Appendix A, “Included Samples.”

Data Services Template API
The ID-WSF-DST specifies a base layer that can be extended by any instance of a
data service. It defines how to query and modify data stored in a data service, and
provides some common attributes that might be used in a data service. An example
of a data service is an identity service such as an online corporate directory. When
you want to contact a colleague, you conduct a search based on the individual’s
name, and the service returns information associated with their identity. The
information may include the individual’s office location and phone number, as
well as other data such as job title and department name. From the implementation
point of view, all identity services must be built on top of the ID-WSF-DST which
provides the data model and message interfaces.

Access Manager contains two packages based on the ID-WSF-DST. They are:

• com.sun.identity.liberty.ws.dst

NOTE Before implementing this example, you must have two instances of Access
Manager installed, running, and Liberty-enabled. Completing the steps in
“sample1” on page 170 of Appendix A, “Included Samples” will accomplish this.

NOTE Figure 5-1 on page 108 illustrates how Access Manager uses the ID-WSF-DST as
the framework for identity data services. The Liberty Web Services layer is the
framework for creating, discovering and consuming identity data services, including
a SOAP-based transport binding that allows identity services to be discovered and
invoked. Other Liberty Web Services include the Discovery Service, and Interaction
Service.

Data Services Template API

Chapter 5 Data Services 119

• com.sun.identity.liberty.ws.dst.service

com.sun.identity.liberty.ws.dst
Table 5-1 summarizes the Data Services Template client APIs included in the
com.sun.identity.liberty.ws.dst package.

For more detailed API reference information, including methods and their syntax
and parameters, see the Javadocs in /AccessManager_base/SUNWam/docs.

com.sun.identity.liberty.ws.dst.service
The com.sun.identity.liberty.ws.dst.services package provides a handler
class that can be used by any generic identity data service built using the Liberty
Alliance ID-SIS 1.0 Specifications.

Table 5-1 Data Service Client APIs

Class Name Description

DSTClient Provides common functions for the Data Service Templates query and
modify option.

DSTData Provides a wrapper for any data entry.

DSTModification Represents a Data Services Template modification operation.

DSTModify Represents a Data Services Template modify request.

DSTModifyResponse Represents a Data Services Template response for DST modify
request.

DSTQuery Represents a Data Services Template query request.

DSTQueryItem The wrapper for one query item for Data service.

DSTQueryResponse Represents a Data Services Template query response.

DSTUtils Provides utility methods used by the DST layer.

NOTE The Data Services is built using the Liberty ID-SIS Personal Profile Service
Specification, based on the Liberty Alliance ID-SIS 1.0 Specifications.

Developing A New Data Service

120 Access Manager 6 2005Q1 • Federation Management Guide

The DSTRequestHandler is used to process query or modify requests sent to an
identity data service. It is an implementation of the interface
com.sun.identity.liberty.ws.soapbinding.RequestHandler. For more detailed
API reference information, see the Javadocs in /AccessManager_base/SUNWam/docs.

Developing A New Data Service
In addition to deploying an employee profile service, the Liberty Employee Profile
Service sample can be used to deploy other custom data services based on the
ID-WSF-DST. Sections 2 and 3 in the Readme.html provided in the
/AccessManager_base/SUNWam/samples/phase2/sis-ep directory have detailed steps
on how to deploy and configure data services. But, in order to use those
instructions for a new data service, you need to write a new data service schema.
This XSD file (as discussed in Appendix B, “Service Schema Files”) defines the
service’s data and data structure. Once this new XSD file is written, it can be used
in place of the lib-id-sis-ep.xsd in the sample instructions to deploy your new
data service.

NOTE Access Manager provides a sample which makes use of the DSTRequestHandler
interface. The sis-ep sample illustrates how to implement the DSTRequestHandler
and deploy a new identity data service instance. It is located in the
/AccessManager_base/SUNWam/samples/phase2/sis-ep directory. “sis-ep” on page 172
of the Appendix A, “Included Samples” further discusses this sample.

CAUTION Instructions on writing the XSD service file are beyond the scope of this
documentation.

121

Chapter 6

Discovery Service

The Sun Java™ System Access Manager contains an implementation of the
“Discovery Service Specification” from the Liberty Alliance Project. The Discovery
Service instance allows a requesting entity to dynamically determine a principal’s
registered identity service. It might also function as a security token service,
issuing security tokens to the requester that can then be used in the request to the
discovered identity service. This chapter contains the following topics:

• Overview

• Discovery Service Architecture

• Discovery Service Process

• Discovery Service Attributes

• Discovery Entries and Resource Offerings

• Discovery Service Interfaces

• Discovery Service Sample

Overview
The initial step in accessing identity data is to determine where the information is
located. (For example, which identity service holds the principal’s credit card
information, or which server stores the principal’s calendar service.) Typically,
there are one or more services on a network that allow other entities to perform an
action on identity data. Because clients are not expected to keep track of these
services or to know which can be trusted, they require a discovery service. The

Overview

122 Access Manager 6 2005Q1 • Federation Management Guide

Liberty ID-WSF Discovery Service Specification (part of the Liberty Identity Web
Services Framework) defines the framework that enables a client to locate the
appropriate Web service for retrieving, updating, or modifying a specific piece of
identity data.

A discovery service is essentially a Web service interface for discovery resources. A
discovery resource is a registry of resource offerings. A resource offering defines an
association between a piece of identity data and the service instance that provides
access to that data. A resource identifier is a unique resource identifier (URI)
registered with the discovery service that points to a particular discovery resource.

When a client sends a request for some type of data, it includes a resource identifier
that the discovery service uses to locate the Web services provider (WSP) for the
requested attributes. The discovery service returns a resource offering that contains
the information necessary to locate the data.

Discovery Entries
One user account has one discovery resource. This discovery resource though can
include zero or more resource offerings. Storing resource offerings within a user
profile supports both entry lookups and updates. Another option is to store
discovery entries within a service and assign that service to an organization or a
roll. This scenario only supports entry lookups. For more information on discovery
entries, see “Discovery Entries and Resource Offerings” on page 132.

NOTE The Discovery Service Specification can be found on the Liberty Alliance Project
Web site at
http://www.projectliberty.org/specs/liberty-idwsf-disco-svc-v1.1.pdf.

NOTE A discoverable service is assigned a service type URI in the specification that
defines it. This URI points to a Web Services Description Language (WSDL) file
that describes the service’s data, the operations that can be perfomed on it, and a
protocol detailing how to send it. The discoverable service specification itself adds
the available ways the data can be exchanged.

TIP Because a provider hosting the Discovery Service may also be fulfilling other roles
for an identity (such as a Policy Decision Point or an Authentication Authority), a
query response also functions as a security token service, by providing a requester
with the means of obtaining security tokens that can be used to invoke service
instances returned.

Overview

Chapter 6 Discovery Service 123

XML Service Files
The Discovery Service is defined using the XML service file amDisco.xml.
amDisco.xml defines the attributes for the Discovery Service. All of the attributes in
the Discovery Service can be managed through either the Access Manager console
or this file.

A second XML file, amDisco_add.xml (found in
/AccessManager_base/SUNWam/upgrade/services50_sunIdentityServerDiscoverySer
vice/10_20/data), is used for upgrading Identity Server 6.2 to Access Manager 6.3.
It lists the changes to the amDisco.xml file since 6.2.

Application Programming Interfaces
Access Manager contains several Java packages that are used by the Discovery
Service. They include:

• com.sun.identity.liberty.ws.disco

• com.sun.identity.liberty.ws.disco.plugins

• com.sun.identity.liberty.ws.interfaces

Additional information on these interfaces can be found in “Discovery Service
Interfaces” on page 142 and in the Javadocs.

com.sun.identity.liberty.ws.disco
The com.sun.identity.liberty.ws.disco package includes a client application
programming interface (API) that provides interfaces to communicate with the
Discovery Service.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649).

NOTE More information on upgading and migration can be found in the Java Enterprise
System 2005Q1 Upgrade and Migration Guide located at
(http://docs.sun.com/doc/817-7645).

Discovery Service Architecture

124 Access Manager 6 2005Q1 • Federation Management Guide

com.sun.identity.liberty.ws.disco.plugins
The com.sun.identity.liberty.ws.disco.plugins package includes an interface
that can be used to develop plugins.

com.sun.identity.liberty.ws.interfaces
The com.sun.identity.liberty.ws.interfaces package includes interfaces that
can be used to implement functionality common to all Liberty-enabled identity
services in Sun Java System Access Manager. Several implementations of these
interfaces have been developed for the Discovery Service.

Discovery Service Architecture
The Access Manager Discovery Service includes Java and Web services-based
interfaces. Java applications use the client API (discussed in “Client APIs” on
page 145) to form requests sent to the Discovery Service and to parse the responses
received back from it. Requests are received by the Access Manager SOAP receiver
which constructs a SOAP message incorporating the client request.

The SOAP message is then sent on to the Discovery Service which parses a
discovery resource identifier from it. This identifier is used to find the matching
user DN which is then used to process the request. The necessary information is
then culled from the corresponding profile, a response is generated, and the
response is sent back to the SOAP Receiver. The SOAP receiver then sends the
response back to the client. Figure 6-1 on page 125 details this architecture.

NOTE The Access Manager SOAP Binding service defines how to send and receive
messages using SOAP, an XML-based messaging protocol. The SOAP receiver is
a servlet that constructs the message using these definitions. Information on the
SOAP Binding Service can be found in Chapter 7, “SOAP Binding Service.”

Discovery Service Process

Chapter 6 Discovery Service 125

Figure 6-1 Discovery Service Architecture

Discovery Service Process
Figure 6-2 provides a high-level overview of the interaction between parties in a
Liberty-enabled Web services environment using the Discovery Service.

NOTE In Figure 6-2, the identity provider hosts the Discovery Service.

Discovery Service Process

126 Access Manager 6 2005Q1 • Federation Management Guide

Figure 6-2 Liberty-enabled Discovery Service Process

The following steps detail the process illustrated in Figure 6-2.

1. The user logs onto a Liberty-enabled identity provider, is authenticated, and
completes the introduction process, enabling single sign-on with other members
of the authentication domain. More specifically:

a. The user points their browser to a Liberty-enabled service provider.

b. The service provider collects the user’s credentials and redirects the
information to the identity provider for authentication.

c. If the credentials pass muster, the user is authenticated.

d. Assuming the identity provider is the center of an authentication domain,
it will notify authenticated principals that they have the option to federate
any local identities created with member organizations. The principal
would then accept or decline this invitation to federate. By accepting the
invitation, the principal will be introduced to the option of federation
everytime they log on to a member organization’s Web site. If they accept
this federation option, single sign-on is enabled.

Discovery Service Attributes

Chapter 6 Discovery Service 127

2. After authentication, the user now requests access to services hosted by
another service provider in the authentication domain.

Single sign-on authentication in this step requires contacting the user’s
Personal Profile service via information from the Discovery Service.

3. The service provider sends a lookup query to the Discovery Service.

Information used by any client to contact Discovery Service is culled from the
authentication statement returned in Step 1.

4. The Discovery Service returns a discovery lookup response to the service
provider.

The lookup response contains the resource offering (defining an association
between a piece of identity data and the service instance that provides access to
it) for the user’s Personal Profile Service.

5. The service provider then sends a query (using the Data Services Template
Specification) to the Personal Profile Service instance.

The required authentication mechanism specified in the Personal Profile
Service resource offering must be followed.

6. The Personal Profile Service instance returns a Data Services Template
response after collecting all required data.

The Personal Profile Service authenticates and validates authorization or
policy, or both, for the requested user and service provider. If user interaction
is required for some attributes, the Interaction Service will be invoked to query
the user for consents or for attribute values.

7. The service provider processes the Personal Profile Service response, and
renders HTML pages based on the original request and user authorization.

Users’ actual account information is not exchanged during federation. Thus,
the identifier displayed on each provider site will be based on the local identity
profile.

Discovery Service Attributes
The Discovery Service attributes are global attributes whose values are applied
across the Access Manager configuration and inherited by every configured
organization. The Discovery Service attributes are:

• Provider ID

Discovery Service Attributes

128 Access Manager 6 2005Q1 • Federation Management Guide

• Supported Authentication Mechanisms

• Supported Directives

• Enable Policy Evaluation for DiscoveryLookup

• Enable Policy Evaluation for DiscoveryUpdate

• Authorizer Plugin Class

• Entry Handler Plugin Class

• Classes For ResourceIDMapper Plugin

• Authenticate Response Message

• Generate SessionContextStatement for Bootstrapping

• Encrypt NameIdentifier in Session Context for Bootstrapping

• Use Implied Resource; don't generate ResourceID for Bootstrapping

• Resource Offerings for Bootstrapping Resources

Provider ID
This attribute takes as a value a URI that points to the Discovery Service. The value
is written in the format:

http://host:port/amserver/Liberty/disco

Supported Authentication Mechanisms
This attribute specifies the authentication methods supported by the Discovery
Service. By default, all available methods are selected. If an authentication method
is not selected, and a Web services consumer (WSC) sends a request using that
method, the request is rejected.

Supported Directives
This attribute allows you to specify a policy-related directive for a resource. If a
service provider wants to use an unsupported directive, the request will fail.
Table 6-1 details the available options.

Discovery Service Attributes

Chapter 6 Discovery Service 129

Enable Policy Evaluation for DiscoveryLookup
If selected, the service will perform a policy evaluation for the DiscoveryLookup
operation. By default, the option is not selected.

Enable Policy Evaluation for DiscoveryUpdate
If selected, the service will perform a policy evaluation for the DiscoveryUpdate
operation. By default, this option is not selected.

Table 6-1 Policy-related Directives

Directive Purpose

AuthenticateRequester The Discovery Service should include a SAML assertion
(containing an AuthenticationStatement) in its responses to enable
the client to authenticate to the service instance hosting the
resource.

AuthenticateSessionContext The Discovery Service should include a SAML assertion
(containing a SessionContextStatement) in its responses that
indicate the status of the session.

AuthorizeRequestor The Discovery Service should include a SAML assertion
(containing a ResourceAccessStatement) in its responses that
indicate whether the client is allowed to access the resource.

EncryptResourceID The Discovery Service should encrypt the resource identifier in
responses to all clients.

GenerateBearerToken For use with Bearer Token Authentication, the Discovery Service
should generate a token that grants the bearer permission to
access the resource.

CAUTION The AuthorizeRequestor and EncryptResourceID directives can not be used
together.

Discovery Service Attributes

130 Access Manager 6 2005Q1 • Federation Management Guide

Authorizer Plugin Class
The value of this attribute is the name and path to the plugin class that implements
the com.sun.identity.liberty.ws.interfaces.Authorizer interface used for
policy evaluation of a WSC.

Entry Handler Plugin Class
The value of this attribute is the name and path to the plugin class that implements
the DiscoEntryHandler interface used to set or retrieve a principal’s discovery
entries. A default implementation is provided for the Access Manager Discovery
Service. To handle discovery entries differently, implement the
com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler interface and
set the implementing class as the value for this attribute.

Classes For ResourceIDMapper Plugin
The value of this attribute is a list of classes that generate identifiers for a resource
offering configured for an organization or role.
com.sun.identity.liberty.ws.interfaces.ResourceIDMapper is an interface
used to map a user identifier to the resource identifier associated with it. The
Discovery Service provides two implementations for this interface:

• com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper
(format: providerID + "/" + the Base64 encoded userIDs)

• com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper
(format: providerID + "/" + the hex string of userID)

Different implementations may be developed with the implementing class and
added as a value of this attribute by clicking Add and using the following format:

providerid=providerID|class_name_and_path

The value of providerid is a key/value pair separated by a pipe (“|”).

Authenticate Response Message
If selected, the service will authenticate the response message. By default, the
option is not selected.

Discovery Service Attributes

Chapter 6 Discovery Service 131

Generate SessionContextStatement for
Bootstrapping
If selected, the specifies whether to generate a SessionContextStatement for
bootstrapping. SessionConxtext in the SessionContextStatement is needed by the
Discovery Service to support the AuthenicateSessionContext directive. By
default, this option is not selected.

Encrypt NameIdentifier in Session Context for
Bootstrapping
If selected, the service will encrypt the name identifier in a
SessionContextStatement. By default, the option is not selected.

Use Implied Resource; don't generate
ResourceID for Bootstrapping
If selected, the service will not generate a resource identifier for bootstrapping. By
default, the option is not selected.

Resource Offerings for Bootstrapping Resources
This attribute defines a resource offering for bootstrapping a service. After single
sign-on (SSO), this resource offering and its associated credentials will be sent to
the client in the SSO assertion. Only one resource offering is allowed for
bootstrapping; by default, this offering contains information regarding the
Discovery Service. For more information defining on resource offerings, see
“Discovery Entries and Resource Offerings.”

CAUTION The value of the Resource Offerings for Bootstrapping Resources attribute is a
default value configured during installation of Access Manager. If you wish to
define a new resource offering, click New. If you wish to edit an existing resource
offering, click Edit.

Discovery Entries and Resource Offerings

132 Access Manager 6 2005Q1 • Federation Management Guide

Discovery Entries and Resource Offerings
In Access Manager, a discovery entry can be stored as a user attribute or as a
dynamic attribute. When storing a discovery entry as a user attribute, one user
account has one discovery resource which can include zero or more resource
offerings. Storing resource offerings within a user profile supports both entry
lookups and updates. When storing a discovery entry as a dynamic attribute, the
entry can be assigned to an organization or a role. This scenario only supports
entry lookups. More information can be found in:

• Storing Discovery Entries as User Attributes

• Storing Discovery Entries as Dynamic Attributes

• Storing Discovery Entries for Bootstrapping

Storing Discovery Entries as User Attributes
Discovery entries can be stored as a user attribute under a user’s distinguished
name (DN) using the Lightweight Directory Access Protocol (LDAP). Storing
resource offerings within a user profile supports both entry lookups and updates.
The following procedure details how to access and create a user’s resource
offerings.

1. Choose Users from the View menu in the Navigation pane of the Identity
Management module.

2. Click on the Properties arrow next to the user for whom you wish to create (or
modify) a resource offering.

3. Choose Resource Offering from the View menu in the Data pane.

4. Click New to access the resource offering attributes.

5. Enter a value for the Resource ID Attribute.

This field defines an optional identifier for the resource offering.

Discovery Entries and Resource Offerings

Chapter 6 Discovery Service 133

6. Enter the Resource ID Value.

This required field defines the resource identifier. Resource identifiers are URIs
registered with the Discovery Service that point to a particular discovery
resource. The value of this attribute must not be a relative URI and should
contain a domain name that is owned by the provider hosting the resource. If a
discovery resource is exposed in multiple Resource Offerings, the Resource ID
Value for all of those resource offerings would be the same. An example of a
valid Resource ID value is:

http://profile-provider.com/profiles/14m0B82k15csaUxs

7. Enter a description of the resource offering in the Abstract field.

This field is optional.

8. Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this
attribute be the targetNamespace URI defined in the abstract WSDL description
for the service. An example of a valid URI is:

urn:liberty:id-sis-pp:2003-08

9. Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is
useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a
valid URI is:

http://profile-provider.com

10. Click New to define the Service Description.

For each resource offering, at least one service description must be created.

TIP urn:libery:isf:implied-resource can be used as a Resource ID Value in
circumstances where there is only one resource that can be operated upon at the
service instance being contacted; the URI only implicitly identifies the resource in
question. In some circumstances, the use of this resource identifier can eliminate
the need for contacting the discovery service to access the resource.

Discovery Entries and Resource Offerings

134 Access Manager 6 2005Q1 • Federation Management Guide

a. Select the values for the Security Mechanism ID attribute to define how a
Web service client can authenticate to a Web service provider.

This field lists the security mechanisms that the service instance supports.
Select the security mechanisms you wish to add and click the Add button.
To arrange the priority of the list, select the mechanism and use the Move
Up or Move Down buttons.

b. Define a value for the Conrete Service Description attributes by selecting
either the Brief SoapHttp Description radio button or the WSDL Reference
radio button.

To configure Brief SoapHttp Description (selected by default):

I. Select Brief SoapHttp Description to provide the information necessary
to invoke basic SOAP-over-HTTP-based service instances without
using WSDL.

II. Enter a value for the SOAP-over-HTTP end point in the End Point
attribute field.

This field contains the URI of the SOAP-over-HTTP endpoint. The URI
scheme must be HTTP or HTTPS as in:

https://soap.profile-provider.com/soap

III. Enter a value for the SOAP action in the SOAP Action attribute field.

This field contains the equivalent of the wsdlsoap:soapAction
attribute of the wsdlsoap:operation element in the service’s concrete
WSDL-based description.

To configure WSDL Reference:

I. Select WSDL Reference to in order to reference a concrete WSDL
service instance file.

II. Enter a value for the Required Field WSDL URI attribute.

This field contains the URI of the WSDL document.

III. Enter a value for the Required Field Service Namespace attribute.

This field references a wsdl:service element with the WSDL resource,
such that ServiceNameRef is equal to the wsdl:name attribute of the
proper wsdl:service element.

IV. Enter a value for the Service Local Part attribute.

Discovery Entries and Resource Offerings

Chapter 6 Discovery Service 135

This field provides the local portion of the qualified name of the
service namespace URI.

11. Add a URI to specify any options for the resource offering.

This field lists the options available for the resource offering. Options provide
hints to a potential requestor concerning the availability of certain data or
operations to a particular offering. The set of possible URIs are defined by the
service type and not the discovery service. If no option is specified, the service
instance does not advertise any available options.

12. Select a directive for the resource offering.

Directives are special entries defined in SOAP headers that can be used to
enforce policy-related decisions. You can choose from the following:

a. GenerateBearerToken. This directive specifies that a bearer token be
generated.

b. AuthenticateRequester. This directive must be used with any service
description that use SAML for message authentication.

c. EncryptResourceID. This directive specifies that the Discovery Service
encrypt the resource ID.

d. AuthenticateSessionContext. This directive is specified when a Discovery
Service provider includes a SAML assertion containing a
SessionContextStatement in any future QueryResponse messages.

e. AuthorizeRequester. This directive is specified when a Discovery Service
provider wants to include a SAML assertion containing a
ResourceAccessStatement in any future QueryResponse messages.

NOTE WSDL Reference is not currently supported in the client.

NOTE The Liberty ID-SIS Personal Profile Service Specification standardizes a set of
options. This specification can be found at
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf.

NOTE If you wish to associate a directive with one or more service descriptions, select the
checkbox in front of that Description ID. If no service descriptions are selected, the
directive is applied to all description elements in the resource offering.

Discovery Entries and Resource Offerings

136 Access Manager 6 2005Q1 • Federation Management Guide

13. Click Save.

Storing Discovery Entries as Dynamic Attributes
Due to the repetition inherent in storing discovery entries as user attributes, Access
Manager has established the option of storing a discovery entry as a dynamic
attribute within a role or an organization. The role or organization can then be
assigned to an identity-related object making the entry available to all users within
the object. To create a discovery entry as a dynamic attribute, the Discovery Service
must first be added and a template for the service created.

After a service has been added and a template created, the procedure is the same as
that detailed in “Storing Discovery Entries as User Attributes” on page 132 except
for the following:

1. Select the Identity Management module in the Header frame.

2. Choose Roles from the View menu in the Navigation pane.

3. Click on the Properties arrow next to the role to which you want to add the
discovery entry.

4. Choose Services from the View menu in the Data pane.

5. Click Edit next to the Discovery Service under the heading Service
Configuration for this Role.

6. Select a priority level to resolve conflicting resource offerings.

The conflict resolution level sets a priority level for roles that may contain the
same user. For example, if User1 is assigned to both Role1 and Role2, you can
define a higher priority level for Role1 so the resource offering from Role1 will
be dominant.

7. Enter a description of the resource offering in the Abstract field.

This field is optional.

NOTE For more information on adding a service and creating a template, see the Sun Java
System Access Manager Administration Guide (http://docs.sun.com/doc/817-7647).

Discovery Entries and Resource Offerings

Chapter 6 Discovery Service 137

8. Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this
attribute be the targetNamespace URI defined in the abstract WSDL description
for the service. An example of a valid URI is:

urn:liberty:id-sis-pp:2003-08

9. Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is
useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a
valid URI is:

http://profile-provider.com

10. Click New to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a
Web service client can authenticate to a Web service provider.

This field lists the security mechanisms that the service instance supports.
Select the security mechanisms you wish to add and click the Add button.
To arrange the priority of the list, select the mechanism and use the Move
Up or Move Down buttons.

b. Define a value for the Conrete Service Description attributes by selecting
either the Brief SoapHttp Description radio button or the WSDL Reference
radio button.

To configure Brief SoapHttp Description (selected by default):

I. Select Brief SoapHttp Description to provide the information necessary
to invoke basic SOAP-over-HTTP-based service instances without
using WSDL.

II. Enter a value for the SOAP-over-HTTP end point in the End Point
attribute field.

This field contains the URI of the SOAP-over-HTTP endpoint. The URI
scheme must be HTTP or HTTPS as in:

https://soap.profile-provider.com/soap

III. Enter a value for the SOAP action in the SOAP Action attribute field.

Discovery Entries and Resource Offerings

138 Access Manager 6 2005Q1 • Federation Management Guide

This field contains the equivalent of the wsdlsoap:soapAction
attribute of the wsdlsoap:operation element in the service’s concrete
WSDL-based description.

To configure WSDL Reference:

I. Select WSDL Reference to in order to reference a concrete WSDL
service instance file.

II. Enter a value for the Required Field WSDL URI attribute.

This field contains the URI of the WSDL document.

III. Enter a value for the Required Field Service Namespace attribute.

This field references a wsdl:service element with the WSDL resource,
such that ServiceNameRef is equal to the wsdl:name attribute of the
proper wsdl:service element.

IV. Enter a value for the Service Local Part attribute.

This field provides the local portion of the qualified name of the
service namespace URI.

11. Add a URI to specify any options for the resource offering.

This field lists the options available for the resource offering. Options provide
hints to a potential requestor concerning the availability of certain data or
operations to a particular offering. The set of possible URIs are defined by the
service type and not the discovery service. If no option is specified, the service
instance does not advertise any available options.

12. Select a directive for the resource offering.

You can choose from the following:

a. GenerateBearerToken. This directive specifies that a bearer token be
generated.

NOTE WSDL Reference is not currently supported in the client.

NOTE The Liberty ID-SIS Personal Profile Service Specification standardizes a set of
possible option values. This specification can be found at
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf.

Discovery Entries and Resource Offerings

Chapter 6 Discovery Service 139

b. AuthenticateRequester. This directive must be used with any service
description that use SAML for message authentication.

c. EncryptResourceID. This directive specifies that the Discovery Service
encrypt the resource ID.

d. AuthenticateSessionContext. This directive is specified when a Discovery
Service provider includes a SAML assertion containing a
SessionContextStatement in any future QueryResponse messages.

e. AuthorizeRequester. This directive is specified when a Discovery Service
provider wants to include a SAML assertion containing a
ResourceAccessStatement in any future QueryResponse messages.

13. Click Save.

Storing Discovery Entries for Bootstrapping
When a WSC contacts the Discovery Service for a resource offering, the WSC first
needs to find the Discovery Service itself. Thus, an initial resource offering for
locating the Discovery Service is sent back to the WSC in a single sign-on assertion.
The following procedure details how to configure a global attribute for
bootstrapping the Discovery Service itself.

1. Select the Service Management module in the Header frame.

2. Click on the Properties arrow next to the Discovery Service in the Navigation
pane.

3. Choose New under Resource Offerings for Bootstrapping Resources.

By default, the resource offering for bootstrapping the Discovery Service is
already configured. In order to create a new resource offering, you must first
delete the default resource offering.

4. Enter a description of the resource offering in the Abstract field.

This field is optional.

CAUTION Unlike storing a discovery entry as a user attribute, this scenario only supports
entry lookups, not updates.

Discovery Entries and Resource Offerings

140 Access Manager 6 2005Q1 • Federation Management Guide

5. Enter a URI for the value of the Service Type attribute.

This field defines the type of service. It is recommended that the value of this
attribute be the targetNamespace URI defined in the abstract WSDL description
for the service. An example of a valid URI is:

urn:liberty:disco:2003-08

6. Enter a URI for the value of the Provider ID attribute.

This attribute contains the URI of the provider of the service instance. This is
useful for resolving trust metadata needed to invoke the service instance. A
single physical provider may have multiple provider IDs. An example of a
valid URI is:

http://sample_disco.com

7. Click New to define the Service Description.

For each resource offering, at least one service description must be created.

a. Select the values for the Security Mechanism ID attribute to define how a
Web service client can authenticate to a Web service provider.

This field lists the security mechanisms that the service instance supports.
Select the security mechanisms you wish to add and click the Add button.
To arrange the priority of the list, select the mechanism and use the Move
Up or Move Down buttons.

b. Define a value for the Conrete Service Description attributes by selecting
either the Brief SoapHttp Description radio button or the WSDL Reference
radio button.

To configure Brief SoapHttp Description (selected by default):

I. Select Brief SoapHttp Description to provide the information necessary
to invoke basic SOAP-over-HTTP-based service instances without
using WSDL.

II. Enter a value for the SOAP-over-HTTP end point in the End Point
attribute field.

This field contains the URI of the SOAP-over-HTTP endpoint. The URI
scheme must be HTTP or HTTPS as in:

https://soap.profile-provider.com/soap

III. Enter a value for the SOAP action in the SOAP Action attribute field.

Discovery Entries and Resource Offerings

Chapter 6 Discovery Service 141

This field contains the equivalent of the wsdlsoap:soapAction
attribute of the wsdlsoap:operation element in the service’s concrete
WSDL-based description.

To configure WSDL Reference:

I. Select WSDL Reference to in order to reference a concrete WSDL
service instance file.

II. Enter a value for the Required Field WSDL URI attribute.

This field contains the URI of the WSDL document.

III. Enter a value for the Required Field Service Namespace attribute.

This field references a wsdl:service element with the WSDL resource,
such that ServiceNameRef is equal to the wsdl:name attribute of the
proper wsdl:service element.

IV. Enter a value for the Service Local Part attribute.

This field provides the local portion of the qualified name of the
service namespace URI.

8. Add a URI to specify any options for the resource offering.

This field lists the options available for the resource offering. Options provide
hints to a potential requestor concerning the availability of certain data or
operations to a particular offering. The set of possible URIs are defined by the
service type and not the discovery service. If no option is specified, the service
instance does not advertise any available options.

9. Select a directive for the resource offering.

You can choose from the following:

a. GenerateBearerToken. This directive specifies that a bearer token be
generated.

NOTE WSDL Reference is not currently supported in the client.

NOTE The Liberty ID-SIS Personal Profile Service Specification standardizes a set of
possible option values. This specification can be found at
http://www.projectliberty.org/specs/liberty-idsis-pp-v1.0.pdf.

Discovery Service Interfaces

142 Access Manager 6 2005Q1 • Federation Management Guide

b. AuthenticateRequester. This directive must be used with any service
description that use SAML for message authentication.

c. EncryptResourceID. This directive specifies that the Discovery Service
encrypt the resource ID.

d. AuthenticateSessionContext. This directive is specified when a Discovery
Service provider includes a SAML assertion containing a
SessionContextStatement in any future QueryResponse messages.

e. AuthorizeRequester. This directive is specified when a Discovery Service
provider wants to include a SAML assertion containing a
ResourceAccessStatement in any future QueryResponse messages.

10. Click Save.

Discovery Service Interfaces
By default, a discovery service is implemented as one of the identity web services
in Access Manager. The Discovery Service provides the following implementations
and interfaces:

• DefaultDiscoAuthorizer Implementation

• Default ResourceIDMapper Implementations

• DiscoEntryHandler Interface

• Client APIs

DefaultDiscoAuthorizer Implementation
The com.sun.identity.liberty.ws.interfaces.Authorizer is an interface used
to enable an identity service to check the authorization of a WSC. The
DefaultDiscoAuthorizer class is the default implementation of this interface. It
uses the Access Manager Policy Service for creating and applying policy
definitions.

NOTE The Policy Service looks for an SSOToken defined for Authenticated Users or Web
Service Clients. More information on this, and the Policy Service in general, can be
found in the Sun Java System Identity Server 2004Q2 Administration Guide
(http://docs.sun.com/doc/817-7647).

Discovery Service Interfaces

Chapter 6 Discovery Service 143

Policy definitions for the Discovery Service are configured using the Access
Manager console. The procedure is as follows:

1. Choose Services from the View menu in the Navigation pane of the Identity
Management module.

The Discovery Service must be added to the organization for which the
Discovery Service policy is being created. Proceed to Step 5 if this has already
been done.

2. Click Add to add a new service to the organization.

3. Choose Discovery Service from the list of services in the Data Pane.

4. Click OK.

5. Choose Policies from the View menu in the Navigation pane of the Identity
Management module.

6. Click New to create a new policy.

7. Select the type of policy.

8. Enter a name for the policy.

9. Click OK.

10. Choose Rules from the View menu in the Data pane for the created policy.

11. Click New.

12. Select Discovery Service for the rule type and click Next.

13. Enter a name for the rule.

14. Enter a resource on which the rule acts.

The Resource Name field uses the form:

ServiceType + RESOURCE_SEPARATOR + ProviderID

For example:

urn:liberty:id-sis-pp:2003-08;http://example.com

15. Select an action for the rule.

Discovery Service policies can only look up or update data.

16. Click Finish.

Discovery Service Interfaces

144 Access Manager 6 2005Q1 • Federation Management Guide

Default ResourceIDMapper Implementations
The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper is an interface
used to map a user ID to the resource identifier associated with it. Access Manager
provides two implementations of this interface.

• com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper
assumes the ResourceID format to be:

providerID + "/" + the Base64 encoded userIDs

• com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper a
ssumes the ResourceID format to be:

providerID + "/" + the hex string of userID.

A different implementation of the interface may be developed. The
implementation class should be given to the provider that hosts the Discovery
Service. The mapping between the providerID and the implementation class can
be configured through the “Classes For ResourceIDMapper Plugin” attribute.

DiscoEntryHandler Interface
The com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler is an
interface used to get and set discovery entries for a user. A number of default
implementations are provided but, if you want to handle this function differently,
implement this interface and set the implementing class as the value of the “Entry
Handler Plugin Class” attribute in the Discovery Service. The default
implementations of this interface are:

NOTE The com.sun.identity.liberty.ws.interfaces.Authorizer interface can be
implemented by any Web service in Access Manager. More information can be
found in “Common Service Interfaces” on page 155 of Chapter 8, “Application
Programming Interfaces” and in the Access Manager Javadocs (located in
/AccessManager_base/SUNWam/docs.).

NOTE The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper interface is
common to all identity services in Access Manager not only the Discovery Service.
More information can be found in “Common Service Interfaces” on page 155 of
Chapter 8, “Application Programming Interfaces” and in the Access Manager
Javadocs (located in /AccessManager_base/SUNWam/docs.).

Discovery Service Interfaces

Chapter 6 Discovery Service 145

UserDiscoEntryHandler. This implementation gets or modifies discovery entries
stored in the user’s entry as a value of the sunIdentityServerDiscoEntries
attribute. The UserDiscoEntryHandler implementation is used in
business-to-consumer scenarios such as the Personal Profile service.

DynamicDiscoEntryHandler. This implementation gets discovery entries stored
as a value of the sunIdentityServerDynamicDiscoEntries dynamic attribute in the
Discovery Service. Modification of these entries is not supported and always
returns false. The resource offering is saved in an organization or a role. The
DynamicDiscoEntryHandler implementation is used in business-to-business
scenarios such as the Employee Profile service.

UserDynamicDiscoEntryHandler. This implementation gets a union of the
discovery entries stored in the user entry sunIdentityServerDiscoEntries
attribute and discovery entries stored in the Discovery Service
sunIdentityServerDynamicDiscoEntries attribute. It modifies only discovery
entries stored in the user entry. The UserDynamicDiscoEntryHandler
implementation can be used in both business-to-consumer and
business-to-business scenarios.

Client APIs
Table 6-2 summarizes the client APIs in the package
com.sun.identity.liberty.ws.disco. For detailed API reference, including
methods and their syntax and parameters, see the Javadocs in
/AccessManager_base/SUNWam/docs.

Table 6-2 Discovery Service Client APIs

Class Name Description

Description Represents a Description Type of a service instance.

Directive Represents a discovery service DirectiveType element.

DiscoveryClient Provides methods to send Discovery Service query and modify.

EncryptedResourceID Represents an Encryption Resource ID element for the Discovery
Service.

InsertEntry Represents a Insert Entry for Discovery Modify request.

Modify Represents a discovery modify request.

ModifyResponse Represents a discovery response for modify request.

Query Represents a discovery Query object.

QueryResponse Represents a response for a discovery query request.

Discovery Service Sample

146 Access Manager 6 2005Q1 • Federation Management Guide

Discovery Service Sample
A sample outlining the process involved in querying and modifying the Discovery
Service is included with Access Manager. It is located in the
AccessManager_base/SUNWam/samples/phase2/wsc directory. The sample initally
details how to deploy and run a WSC. The final portion queries the Discovery
Service and modifies identity data in the Liberty Personal Profile Service. More
information can be found in Appendix A, “Included Samples.”

RemoveEntry Represents a remove entry element for the discovery modify
request.

RequestedService Enables the requester to specify that all the resource offerings
returned must be offered via a service instance complying with one
of the specified service type.

ResourceID Represents a discovery service resource ID

ResourceOffering Associates a resource with a service instance that provides access
to that resource

ServiceInstance Describes a web service at a distinct protocol endpoint.

Table 6-2 Discovery Service Client APIs (Continued)

Class Name Description

147

Chapter 7

SOAP Binding Service

The Sun Java™ System Access Manager contains an implementation of the Liberty
ID-WSF SOAP Binding Specification from the Liberty Alliance Project. SOAP
Binding is a transport layer for sending and receiving SOAP messages. This
chapter contains the following topics:

• Overview

• SOAP Binding Process

• SOAP Binding Attributes

• SOAP Binding Interfaces

Overview
The Liberty Identity Web Services Framework (ID-WSF) and Liberty Identity Service
Interface Specification (ID-SIS) components of the Liberty Alliance Project (LAP)
specifications use messages to convey identity data between providers. These
identity messages themselves do not address a specific method of transport so
Access Manager has implemented the Liberty ID-WSF SOAP Binding Specification
(ID-WSF-SBS) for this purpose. The specification defines SOAP as the binding to
the HyperText Transport Protocol (HTTP), which is itself layered onto the TCP/IP
stack.

NOTE The Liberty ID-WSF SOAP Binding Specification can be found on the Liberty
Alliance Project Web site at
http://www.projectliberty.org/specs/liberty-idwsf-soap-binding-v1.1.pdf.

SOAP Binding Process

148 Access Manager 6 2005Q1 • Federation Management Guide

XML Service File
The Access Manager SOAP Binding service is defined using the XML service file
amSOAPBinding.xml. amSOAPBinding.xml defines the attributes for the SOAP
Binding service which can be managed through the Access Manager console or the
XML file itself.

The ID-WSF-SBS also defines an XML schema for use in building the SOAP
messages. This XML Schema Defintion (XSD) file can be found on the LAP Web
site. Version 1.0 is also reproduced in Appendix B, “Service Schema Files.”

Application Programming Interfaces
The Access Manager SOAP Binding service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. Additional information on these
interfaces can be found in “SOAP Binding Interfaces” on page 152.

SOAP Binding Process
In the SOAP Binding process, an identity service calls the client side application
programming interface (API) to construct a message and send it to the SOAP
endpoint URL; in effect, a SOAP Receiver servlet.

The SOAP Receiver servlet receives the message, verifies the signature, and
constructs a second message. The SOAP Receiver servlet then invokes the correct
Request Handler to send this second message to the corresponding identity service
for a response.

NOTE More information on XML service files can be found in the section on XML Service
Files in the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649).

NOTE Currently, only the Discovery Service, the Liberty Personal Profile Service and the
Authentication Web Service use the SOAP Binding Service client API. Additionally,
the Liberty Employee Profile sample uses them. They are not yet public.

SOAP Binding Attributes

Chapter 7 SOAP Binding Service 149

The identity service processes the second message, generates a response, and sends
that response back to the SOAP Receiver servlet. The SOAP receiver, in turn, sends
the response back to the identity service for processing.

SOAP Binding Attributes
The SOAP Binding service attributes are global attributes. The values of these
attributes are carried across the Sun Java System Access Manager configuration
and inherited by every organization.

Attributes for the SOAP Binding service are defined in the amSOAPBinding.xml
service file. The SOAP Binding attributes are:

• Request Handler List

• Web Service Authenticator

• Supported Authentication Mechanisms

NOTE The Request Handler is an interface that must be implemented on the server side
by any Liberty-based identity Web service using the SOAP Binding Service. More
information on this interface can be found in the “Request Handler List” on
page 150.

NOTE Before invoking a corresponding service, the SOAP framework might also do the
following:

1. Authenticate sender identity: This is to verify the credentials of a WSC peer,
probably by verifying it's client certificate.

2. Authenticate invoking identity: This verifies the credentials of a WSC on behalf
of a user to verify whether the user has been authenticated. This depends on
the security authentication profile.

3. Granular authorization: This is to authorize the WSC itself before processing a
service request.

NOTE For information on the types of attributes used in Access Manager, see the Service
Management chapter of the Sun Java System Access Manager Developer’s Guide
(http://docs.sun.com/doc/817-7649).

SOAP Binding Attributes

150 Access Manager 6 2005Q1 • Federation Management Guide

Request Handler List
The SOAP Binding Service provides the RequestHandler interface to process the
request message and return a response. This interface must be implemented on the
server side by each Liberty-based identity service that uses the SOAP Binding
Service. The Request Handler List attribute stores information about the
implementation classes of the Web services that implement the Request Handler.

The Request Handler List displays entries that contain key/value pairs separated
by a pipe (“|”) as in:

key=disco|class=com.example.identity.liberty.ws.disco.DiscoveryService

key Parameter
The required key parameter is the last part of the URI path to a SOAP endpoint. The
SOAP endpoint in Access Manager is the SOAP Receiver servlet. The URI to the
SOAP Receiver is:

protocol://hostname:port/deloy_uri/Liberty/key

If you define disco as the key, the URI path to the SOAP endpoint for the
corresponding Discovery Service would be:

protocol://hostname:port/amserver/Liberty/disco

Different service clients use different keys when connecting to the SOAP Receiver.

class Parameter
The required class parameter specifies the name of the Request Handler
implementation class for the particular identity service. For example:

class=com.example.identity.liberty.ws.disco.DiscoveryService

NOTE Currently, only the Discovery Service, the Liberty Personal Profile Service and the
Authentication Web Service use the SOAP Binding Service RequestHandler
interface. Additionally, the Liberty Employee Profile Service sample uses it. The
interface itself is not yet public.

SOAP Binding Attributes

Chapter 7 SOAP Binding Service 151

Web Service Authenticator
This attribute takes as a value the implementation class for the Web Service
Authenicator interface. This class authenticates a request and generates a credential
for a Web service consumer (WSC).

Supported Authentication Mechanisms
This attribute specifies the authentication mechanisms supported by the SOAP
Receiver. Authentication mechanisms offer user authentication, as well as data
integrity and encryption. By default, all available authentication mechanisms are
selected. If one is not selected, and a Web services consumer (WSC) sends a request
using it, the request is rejected. Following is a list of the supported authentication
mechanisms:

• urn:liberty:security:2003-08:null:null

• urn:liberty:security:2003-08:null:X509

• urn:liberty:security:2003-08:null:SAML

• urn:liberty:security:2004-04:null:Bearer

• urn:liberty:security:2003-08:TLS:null

• urn:liberty:security:2003-08:TLS:X509

• urn:liberty:security:2003-08:TLS:SAML

• urn:liberty:security:2004-04:TLS:Bearer

• urn:liberty:security:2003-08:ClientTLS:null

• urn:liberty:security:2003-08:ClientTLS:X509

• urn:liberty:security:2003-08:ClientTLS:SAML

• urn:liberty:security:2004-04:ClientTLS:Bearer

NOTE This interface is not currently public. The value of the attribute is configured during
installation.

SOAP Binding Interfaces

152 Access Manager 6 2005Q1 • Federation Management Guide

SOAP Binding Interfaces
The Access Manager SOAP Binding Service includes a Java package named
com.sun.identity.liberty.ws.soapbinding. It provides classes to construct
SOAP requests and responses and to change the contact point for the SOAP
binding. Table 7-1 details the available classes.

The package also includes a RequestHandler interface. The implementation of this
interface is discussed further in “Interaction Service API” on page 159 of Chapter 8,
“Application Programming Interfaces.” For more detailed API reference
information, see the Javadocs in /AccessManager_base/SUNWam/docs.

NOTE More complete information on authentication mechanisms and their level of
security can be found in the Liberty ID-WSF Security Mechanisms document on the
Liberty Alliance Project Web site at
http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.1.pd
f.

Table 7-1 SOAP Binding API Classes

Class Description

Message Used by both the Web service client and server to construct SOAP
requests and responses.

ServiceInstanceUpdateHe
ader

Allows a service to change the endpoint on which requesters will
contact it.

ServiceInstanceUpdateHe
ader.Credential

Allows a service to use a different security mechanism and
credentials to access the requested resource.

NOTE Be sure to check out Appendix A, “Included Samples” for sample code and files to
help you understand the implementation of the Liberty Alliance Project’s
specifications in Access Manager.

153

Chapter 8

Application Programming Interfaces

Sun ™ Java System Access Manager provides a framework for identity federation
and creating, discovering, and consuming identity Web services. This framework
includes exposed graphical user interfaces for Liberty-based Web services
(discussed in the Web services section of this book) as well as application
programming interfaces (APIs). This chapter details information on the APIs that
do not have a corresponding graphical user interface (GUI) and contains the
following sections:

• Overview of Public Interfaces

• Common Service Interfaces

• Common Security API

• Interaction Service API

• PAOS Binding

Overview of Public Interfaces
Table 8-1 lists all of the public APIs you can use to deploy Liberty-enabled
components or extend the core services. Packages that are part of a Web service
with a GUI are described in the corresponding chapters of this book; links to those
chapters are provided in the Description column. Packages that are used in the
back-end are described in this chapter; links to those sections are also provided in
the Description column. For detailed API reference, including methods and their
syntax and parameters, see the Javadocs in /AccessManager_base/SUNWam/docs.

Overview of Public Interfaces

154 Access Manager 6 2005Q1 • Federation Management Guide

Table 8-1 Summary of Liberty-based Packages

Package Name Description

com.sun.identity.liberty.ws.a
uthnsvc

Provides classes to manage the Authentication Web
Service. See Chapter 4, “Authentication Web Service” on
page 101.

com.sun.identity.liberty.ws.a
uthnsvc.protocol

Provides classes to manage Authentication Web Service
protocol. See Chapter 4, “Authentication Web Service” on
page 101.

com.sun.identity.liberty.ws.c
ommon

Defines common classes used by many of the Access
Manager Liberty-based Web service components. See
“Common Service Interfaces” on page 155 of this chapter.

com.sun.identity.liberty.ws.c
ommon.wsse

Provides an interface to parse and create a X.509 Certificate
Token Profile. See “Interaction Service API” on page 159 of
this chapter.

com.sun.identity.liberty.ws.d
isco

Provides interfaces to manage the Discovery Service. See
Chapter 6, “Discovery Service” on page 121.

com.sun.identity.liberty.ws.d
isco.plugins

Provides a plugin interface for the Discovery Service. See
Chapter 6, “Discovery Service” on page 121.

com.sun.identity.liberty.ws.d
st

Provides classes to implement an identity service on top of
the Access Manager framework. See Chapter 5, “Data
Services” on page 107 for information on a service built
using this API and for more general information.

com.sun.identity.liberty.ws.d
st.service

Provides a handler class that can be used by any generic
identity data service. See Chapter 5, “Data Services” on
page 107 for information on data services and for more
general information.

com.sun.identity.liberty.ws.i
nteraction

Provides classes to support the Interaction RequestRedirect
Profile. See “Interaction Service API” on page 159 of this
chapter.

com.sun.identity.liberty.ws.i
nterfaces

Provides interfaces common to all Access Manager
Liberty-based Web service components.See Chapter 6,
“Discovery Service” on page 121 and Chapter 5, “Data
Services” on page 107 for information on default
implementations. See “Common Service Interfaces” on
page 155 of this chapter for more general information.

com.sun.identity.liberty.ws.p
aos

Provides classes for Web applications to construct and
process PAOS requests and responses. See “PAOS
Binding” on page 161 of this chapter.

com.sun.identity.liberty.ws.s
ecurity

Provides interface to manage Liberty-based Web service
security mechanisms. See “Common Security API” on
page 157 of this chapter.

Common Service Interfaces

Chapter 8 Application Programming Interfaces 155

Common Service Interfaces
This section summarizes classes that can be used by all Liberty-based Access
Manager service components, as well as interfaces common to all Liberty-based
Access Manager services. The packages are:

• com.sun.identity.liberty.ws.common

• com.sun.identity.liberty.ws.interfaces

com.sun.identity.liberty.ws.common
The com.sun.identity.liberty.ws.common package includes classes common to
all Liberty-based Access Manager service components.

For more detailed API reference information, see the Javadocs in
/AccessManager_base/SUNWam/docs.

com.sun.identity.liberty.ws.s
oapbinding

Provides classes to construct SOAP requests and
responses and to change the contact point for the SOAP
binding. See Chapter 7, “SOAP Binding Service” on
page 147.

com.sun.liberty Provides interfaces common to the Access Manager
Federation Management module. See Chapter 3,
“Federation Management” on page 59.

Table 8-2 Common Liberty Classes

Class Description

LogUtil Class that defines methods which are used by the Liberty component
of Access Manager to write logs.

Status Class that represents a common status object.

Table 8-1 Summary of Liberty-based Packages (Continued)

Package Name Description

Common Service Interfaces

156 Access Manager 6 2005Q1 • Federation Management Guide

com.sun.identity.liberty.ws.interfaces
The com.sun.identity.liberty.ws.interfaces package includes interfaces that
can be implemented to add their corresponding functionality to each Liberty-based
Access Manager Web service.

Authorizer
The com.sun.identity.liberty.ws.interfaces.Authorizer is an interface that,
once implemented, can be used by each Liberty-based Web service component for
access control.

The Authorizer interface enables the Web service to check for the authorization of
a Web service consumer (WSC) to access the requested resource. When a WSC
contacts a Web service provider (WSP), the WSC conveys a sender identity and an
invocation identity. (The invocation identity is always the subject of the SAML
assertion.) These conveyances allow the WSP to make an authorization decision
based on one or both identities. The Access Manager Policy Service performs the
authorization based on defined policies.

Table 8-3 Common Liberty Interfaces

Interface Description

Authorizer Interface for identity service to check authorization of a WSC.

ResourceIDMapper Interface used to map between a userID and the ResourceID
associated with it.

NOTE The DefaultDiscoAuthorizer class is the implementation of this interface for the
Discovery Service. For more information, see Chapter 6, “Discovery Service.” The
com.sun.identity.liberty.ws.idpp.plugin.IDPPAuthorizer class is the
implementation for the Liberty Personal Profile Service. For more information, see
Chapter 5, “Data Services.”

NOTE See the Sun Java System Access Manager 6 2005Q1 Developer’s Guide
(http://docs.sun.com/doc/817-7649) for more information on policy management,
single sign-on and sessions. See the Sun Java System Access Manager 6 2005Q1
Administration Guide (http://docs.sun.com/doc/817-7647) for information on
creating policy.

Common Security API

Chapter 8 Application Programming Interfaces 157

ResourceIDMapper
The com.sun.identity.liberty.ws.interfaces.ResourceIDMapper is an interface
used to map a user DN to the resource identifier associated with it. Access
Manager provides two implementations of this interface.

• com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper
assumes the ResourceID format to be:

providerID + "/" + the Base64 encoded userIDs

• com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper a
ssumes the ResourceID format to be:

providerID + "/" + the hex string of userID.

A different implementation of the interface may be developed. The
implementation class should be given to the provider that hosts the Discovery
Service. The mapping between the providerID and the implementation class can
be configured through the “Classes For ResourceIDMapper Plugin” attribute.

Common Security API
The Liberty-based security APIs are included in the
com.sun.identity.liberty.ws.security package and the
com.sun.identity.liberty.ws.common.wsse package.

com.sun.identity.liberty.ws.security
The com.sun.identity.liberty.ws.security package includes an interface and
classes to manage Liberty-based security mechanisms.

Table 8-4 com.sun.identity.liberty.ws.security

Class Name Description

SecurityTokenProvider A provider interface for managing Web Service Security (WSS)
type tokens.

ProxySubject Represents the identity of a proxy, the confirmation key and
confirmation obligation the proxy must possess and demonstrate
for authentication purpose

ResourceAccessStatement Conveys information regarding the accessing entities and the
resource for which access is being attempted

Common Security API

158 Access Manager 6 2005Q1 • Federation Management Guide

For more detailed API reference information, see the Javadocs in
/AccessManager_base/SUNWam/docs.

com.sun.identity.liberty.ws.common.wsse
The com.sun.identity.liberty.ws.common.wsse package includes APIs for
creating security tokens used for authentication and authorization in accordance
with the Liberty ID-WSF Security Mechanisms specification. This document can be
found at the Liberty Alliance Project (LAP) Web site at
http://www.projectliberty.org/specs/liberty-idwsf-security-mechanisms-v1.1.pdf
. Both WSS X509 and SAML tokens are supported.

SecurityAssertion Provides an extension to the Assertion class to support ID-WSF
ResourceAccessStatement and SessionContextStatement

SecurityTokenManager This is the entry class for the security package
com.sun.identity.liberty.ws.security. You can call its
methods to generate X509 and SAML tokens for message
authentication or authorization. It is designed as a provider
model, so different implementations can be plugged in if the
default implementation does not meet your requirements.

SecurityUtils Class that defines methods which are used to get certificates and
sign messages.

SessionContext Represents session status of an entity to another system entity.

SessionContextStatement An element that conveys session status of an entity to another
system entity within the body of an <saml:assertion> element.

SessionSubject Represents a liberty subject with associated session status.

Table 8-5 Security APIs

Class Name Description

BinarySecurityToken The class BinarySecurityToken provides interface to parse and
create X.509 Security Token depicted by Web Service Security:
X.509

WSSEConstants

Table 8-4 com.sun.identity.liberty.ws.security (Continued)

Class Name Description

Interaction Service API

Chapter 8 Application Programming Interfaces 159

For more detailed API reference information, see the Javadocs in
/AccessManager_base/SUNWam/docs.

Interaction Service API
It is often necessary for providers of identity services to interact with the owner of a
reosurce to get the resource owner’s consent to expose data, or to get additional
data from the resource owner. The Liberty Alliance Project (LAP) has defined the
Liberty ID-WSF Interaction Service Specification to specify how these interactions can
be carried out. Of the options for this interaction defined in the specification,
Access Manager has implemented one of them: the RedirectRequest. In this profile,
the Web service provider (WSP) requests the connecting Web service consumer
(WSC) to redirect the user agent (principal) to an interaction resource (URL) at the
WSP. Once the user agent sends an HTTP request to fetch the URL, the WSP has
the opportunity to present one or more pages to the principal with questions for
other information. When the WSP obtains the information it requires to serve the
WSC, it redirects the user agent back to the WSC which can now reissue its original
request to the WSP.

Configuring the Interaction Service
There is no XML service file for the Interaction Service. There are two properties,
though, that are configured upon installation in the AMConfig.properties file
located in /AccessManager_base/SUNWam/lib.

• com.sun.liberty.ws.interaction.wspRedirectHandler —This property
points to the URL at which the WSPRedirectHandler servlet is deployed. The
servlet handles the service provider side of interactions for user redirects.

• com.sun.identity.liberty.interaction.wscSpecifiedInteractionChoice
—This property indicates the level of interaction in which the WSC will
participate if they participate in user redirects. Possible values include
interactIfNeeded, doNotInteract, and doNotInteractForData. The
affirmative interactIfNeeded is the default.

• com.sun.identity.liberty.interaction.wscWillIncludeUserInteractionHea
der —This property indicates whether the WSC will include a SOAP header to
indicate certain preferences for interaction based on the LAP specifications.
The default value is yes.

Interaction Service API

160 Access Manager 6 2005Q1 • Federation Management Guide

• com.sun.identity.liberty.interaction.wscWillRedirect —This property
indicates whether the WSC will participate in user redirections. The default
value is yes.

• com.sun.identity.liberty.interaction.wscSpecifiedMaxInteractionTime
—This property indicates the maximum length of time (in seconds) the WSC is
willing to wait for the WSP to complete their portion of the interaction. The
WSP would not then initiate an interaction if the interaction is likely to take
more than the time specified. For example, if the WSP receives a request where
this property is set to a maximum 30 seconds and their own property
com.sun.identity.liberty.interaction.wspRedirectTime (see below) is set
to 40 seconds, the WSP will return a SOAP fault (timeNotSufficient)
indicating that the time is not sufficient for interaction.

• com.sun.identity.liberty.interaction.wscWillEnforceHttpsCheck—This
property indicates whether the WSC will enforce HTTPS in redirected URLs.
The default value, yes, indicates that the WSC will not redirect the user when
the value of redirectURL (specified by the WSP) is not an HTTPS URL.

• com.sun.identity.liberty.interaction.wspWillRedirect—The WSP can
initiate an interaction to get user consent for something or to collect additional
data. This property indicates whether the WSP will redirect the user for
consent. The default value is yes.

• com.sun.identity.liberty.interaction.wspWillRedirectForData—The
WSP can initiate interaction to get user consent for something or to collect
additional data. This property indicates whether the WSP will redirect the user
to collect additional data. The default value is yes.

• com.sun.identity.liberty.interaction.wspRedirectTime—This property
indicates the length of time (in seconds) the WSP expects to take to complete an
interaction and return control back to the WSC. For example, if the WSP
receives a request indicating that the WSC will wait a maximum 30 seconds
(set in
com.sun.identity.liberty.interaction.wscSpecifiedMaxInteractionTime)
for interaction and wspRedirectTime is set to 40 seconds, the WSP will return a
SOAP fault (timeNotSufficient) indicating that the time is not sufficient for
interaction.

• com.sun.identity.liberty.interaction.wspWillEnforceHttpsCheck—This
property indicates whether the WSP will enforce a HTTPS returnToURL
specified by the WSC. The default value is yes.

PAOS Binding

Chapter 8 Application Programming Interfaces 161

• com.sun.identity.liberty.interaction.wspWillEnforceReturnToHostEquals
RequestHost—This property indicates whether the WSP would enforce the
address values of returnToHost and requestHost if they are the same. Per the
LAP specifications, the value of this property is always yes.

• com.sun.identity.liberty.interaction.htmlStyleSheetLocation—This
property points to the location of the style sheet used to render the interaction
page in HTML.

• com.sun.identity.liberty.interaction.wmlStyleSheetLocation—This
property points to the location of the style sheet used to render the interaction
page in WML.

Interaction Service API
The Access Manager Interaction Service includes a Java package named
com.sun.identity.liberty.ws.interaction. WSCs and WSPs use these classes to
interact with a resource owner. Table 8-6 details the API.

For more detailed API reference information, including methods and their syntax
and parameters, see the Javadocs in /AccessManager_base/SUNWam/docs.

PAOS Binding
Access Manager has implemented the optional Liberty Alliance Project (LAP)
Liberty Reverse HTTP Binding for SOAP Specification. It defines a message exchange
protocol that permits a HTTP client to be a SOAP responder. HTTP clients are no
longer necessarily equipped with HTTP servers. For example, mobile terminals

Table 8-6 Interaction Service API

Class Description

InteractionManager This class provides the interface and implementation for resource
owner interaction.

InteractionUtils This class provides some utility methods related to resoource
owner interaction.

JAXBObjectFactory This object contains factory methods. An ObjectFactory allows you
to programatically construct new instances of the Java
representation for XML content.

PAOS Binding

162 Access Manager 6 2005Q1 • Federation Management Guide

and personal computers contain Web browsers yet they do not operate HTTP
servers. These clients, though, can use their browsers to interact with an identity
service (possibly a personal profile service or a calendar service). These identity
services could also be valuable when the client devices interact with an HTTP
server. The use of PAOS makes it possible to exchange information between user
agent hosted services and remote servers.

PAOS vs. SOAP
In a typical SOAP binding, an HTTP client interacts with an identity service via a
client request and a server response. For example, a cell phone user (client) may
contact his phone service provider (service) in order to retrieve stock quotes and
weather information. The service verifies the user’s identity, and responds with the
requested information.

In a reverse HTTP for SOAP binding, the phone service provider plays the client
role, and the cell phone client plays the server role. The initial SOAP request from
the server is actually bound to a HTTP response. The subsequent response from the
client is bound to a request. This is why the reverse HTTP for SOAP binding is also
known as PAOS; the spelling of SOAP is reversed.

PAOS Binding API
The Access Manager implementation of PAOS binding includes a Java package
named com.sun.identity.liberty.ws.paos. It provides classes to parse a PAOS
header, make a PAOS request, and receive a PAOS response.

Table 8-7 details the available classes in com.sun.identity.liberty.ws.paos. For
more detailed information, including methods and their syntax and parameters,
see the Javadocs in /AccessManager_base/SUNWam/docs.

NOTE These APIs are used by PAOS clients on the HTTP server side. APIs for PAOS
servers on the HTTP client side would be developed by the manufacturers of the
HTTP client side products, for example, cell phone manufacturers.

Table 8-7 Summary of PAOS APIs

Class Name Description

PAOSHeader The PAOSHeader class is used by a web application on the HTTP server side
to parse a PAOS header in an HTTP request from the user agent side.

PAOS Binding

Chapter 8 Application Programming Interfaces 163

Note that PAOSRequest is made available in PAOSResponse to provide correlation if
needed by API users.

PAOS Binding Sample
A sample demonstrating PAOS service interaction between a HTTP client and
server is provided in the /AccessManager_base/SUNWam/samples/phase2/paos
directory. The PAOS client is a servlet, and the PAOS server is a stand-alone Java
program. Instructions on how to run the sample can be found in the Readme.html
or Readme.txt both included in the paos directory. Code Example 8-1 is the PAOS
client servlet also included.

PAOSRequest The PAOSRequest class is used by a web application on the HTTP server
side to construct a PAOS request message and send it via an HTTPresponse
to the user agent side.

PAOSResponse The PAOSResponse class is used by a web application on the HTTP server
side to receive and parse a PAOS response via an HTTP request from the
user agent side.

Code Example 8-1 PAOS Client Servlet from PAOS Sample

import java.util.*;
import java.io.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.sun.identity.liberty.ws.paos.*;

import com.sun.identity.liberty.ws.idpp.jaxb.*;

public class PAOSClientServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 PAOSHeader paosHeader = null;
 try {

paosHeader = new PAOSHeader(req);
 } catch (PAOSException pe1) {

pe1.printStackTrace();

String msg = "No PAOS header\n";

Table 8-7 Summary of PAOS APIs

Class Name Description

PAOS Binding

164 Access Manager 6 2005Q1 • Federation Management Guide

res.setContentType("text/plain");
res.setContentLength(1+msg.length());
PrintWriter out = new PrintWriter(res.getOutputStream());
out.println(msg);
out.close();

throw new ServletException(pe1.getMessage());
 }

 HashMap servicesAndOptions = paosHeader.getServicesAndOptions();

 Set services = servicesAndOptions.keySet();

 String thisURL = req.getRequestURL().toString();
 String[] queryItems = { "/IDPP/Demographics/Birthday" };
 PAOSRequest paosReq = null;
 try {

paosReq = new PAOSRequest(thisURL,
 (String)(services.iterator().next()),
 thisURL,
 queryItems);

 } catch (PAOSException pe2) {
pe2.printStackTrace();
throw new ServletException(pe2.getMessage());

 }
 System.out.println("PAOS request to User Agent side
--------------->");
 System.out.println(paosReq.toString());
 paosReq.send(res, true);
 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 PAOSResponse paosRes = null;
 try {

paosRes = new PAOSResponse(req);
 } catch (PAOSException pe) {

pe.printStackTrace();
throw new ServletException(pe.getMessage());

 }

 System.out.println("PAOS response from User Agent side
-------------->");
 System.out.println(paosRes.toString());

 System.out.println("Data output after parsing -------------->");

 String dataStr = null;
 try {

dataStr = paosRes.getPPResponseStr();
 } catch (PAOSException paose) {

paose.printStackTrace();
throw new ServletException(paose.getMessage());

Code Example 8-1 PAOS Client Servlet from PAOS Sample (Continued)

PAOS Binding

Chapter 8 Application Programming Interfaces 165

 }
 System.out.println(dataStr);

 String msg = "Got the data: \n" + dataStr;

 res.setContentType("text/plain");
 res.setContentLength(1+msg.length());

 PrintWriter out = new PrintWriter(res.getOutputStream());

 out.println(msg);

 out.close();
 }
}

NOTE Be sure to check out Appendix A, “Included Samples” for information on all the
sample code and files included with Access Manager.

Code Example 8-1 PAOS Client Servlet from PAOS Sample (Continued)

PAOS Binding

166 Access Manager 6 2005Q1 • Federation Management Guide

Part III

Appendices

Appendix A, “Included Samples” on page 169

Appendix B, “Service Schema Files” on page 175

169

Appendix A

Included Samples

Sun Java™ System Access Manager has included a number of samples that make
use of the Liberty Alliance Project’s specifications and its own implementations of
said documents. This appendix contains information regarding the Liberty-based
samples. It includes the following sections:

• Overview

• Federation Framework Samples

• Web Services Framework Samples

Overview
The samples are located in /AccessManager_base/SUNWam/samples. This directory
includes samples for the entire Access Manager product as well as two directories
specific to the Liberty-based features: liberty and phase2.

Federation Framework Samples
Access Manager 2005Q1 supports the Liberty Alliance Identity Federation Framework
1.2 Specifications. The Federation Framework samples are located in
/AccessManager_base/SUNWam/samples/liberty. To demonstrate the different
Liberty-based federation protocols featured in Access Manager, three sample
applications are included. They are located in the following sub-directories:

• sample1

• sample2

• sample3

Federation Framework Samples

170 Access Manager 6 2005Q1 • Federation Management Guide

sample1
The sample1 sample provides a collection of files, located in the
/AccessManager_base/SUNWam/samples/liberty/sample1 directory, to configure a
basic environment for creating and managing a federation. The sample
demonstrates the basic use of various Liberty-based federation protocols
(including account federation, SSO, single logout, and federation termination). The
scenario includes a service provider (SP) and an identity provider (IDP). Each
needs to be deployed and configured on different Access Manager installations.
Table A-1 contains relative information for the two required servers.

Table A-1 Relative Information for Sample1 Servers

The Readme.html in the sample directory provides detailed steps on how to deploy
and configure this sample. In addition, the procedures and additional information
are written up in “Federation Management Samples” on page 88 of Chapter 3,
“Federation Management.”

sample2
The sample2 sample provides a collection of files, located in the
/AccessManager_base/SUNWam/samples/liberty/sample2 directory, to configure a
basic environment for creating and managing a federation but, in this case, the
resources of the SP are deployed on a Sun Java System Web Server protected by an
Access Manager Policy Agent. As in sample1, the SP and IDP are deployed and
configured on different Access Manager installations. Apart from highlighting
account federation, SSO, single logout, and federation termination, this sample also

Variable Placeholder Host Name Components Deployed on This Host

machine1 www.sp1.com Service Provider

Web Service Consumer

machine2 www.idp1.com Identity Provider

Discovery Service

Personal Profile Service

NOTE Sample1 also contains instructions for configuring a common domain. For
information on common domains, see “Common Domain” on page 31 of Chapter 1,
“Introduction to the Liberty Alliance Project” and “Common Domain Services” on
page 65 of Chapter 3, “Federation Management.”

Web Services Framework Samples

Appendix A Included Samples 171

demonstrates how different authentication contexts can be configured, by
associating different authentication levels with different protected pages. This
association is made by creating policies for the protected resources. The
Readme.html in the sample directory provides detailed steps on how to deploy and
configure this sample.

sample3
The sample3 sample provides a collection of files, located in the
/AccessManager_base/SUNWam/samples/liberty/sample3 directory, to configure an
environment for creating and managing a federation that includes two SPs and two
IDPs. In this case, though, all hosted providers are deployed on a single installation
of the Access Manager. Because of this, you need to host the same IP address (the
one on which Access Manager is installed) in four different DNS domains. Thus,
four virtual server instances are created on the Web Server, one for each of the
providers.

Since this scenario involves multiple IPs, you will also need to install a Common
Domain Service. This service can be installed on the same machine as the Access
Manager software or on a different machine. The Readme.html in the sample
directory provides detailed steps on how to deploy and configure this sample. In
addition, information on common domains can be found in “Common Domain
Services” on page 65 of Chapter 3, “Federation Management.”

Web Services Framework Samples
Access Manager 6 2005Q1 supports both the Liberty Alliance Identity Web Services
Framework 1.0 Specifications and the Liberty Alliance Identity Services Interface
Specifications 1.0. These Web services samples are located in
/AccessManager_base/SUNWam/samples/phase2. To demonstrate the different
Liberty-based Web services protocols featured in Access Manager, four sample
applications are included. They are located in the following sub-directories:

• wsc

• sis-ep

NOTE Virtual server instances can be simulated by adding entries in the /etc/hosts file
for the fully qualified host names of the virtual servers.

Web Services Framework Samples

172 Access Manager 6 2005Q1 • Federation Management Guide

• paos

• authnsvc

wsc
The wsc sample provides a collection of files, located in the
/AccessManager_base/SUNWam/samples/phase2/wsc directory, to deploy and run a
Web service consumer (WSC).

In addition, this sample illustrates how to use the Discovery Service and Data
Service Template client APIs to allow the WSC to communicate with a Web service
provider (WSP). (The WSP is the Liberty Personal Profile Service installed with
Access Manager.) It details the flow of the Liberty-based Web Service Framework
(ID-WSF), and how the security mechanisms and interaction service come into
play. The Readme.html in the sample directory provides detailed steps on how to
deploy and configure this sample. In addition, information can be found in
Chapter 6, “Discovery Service” and Chapter 5, “Data Services.”

sis-ep
The sis-ep sample provides a collection of files, located in the
/AccessManager_base/SUNWam/samples/phase2/sis-ep directory, to develop, deploy
and invoke a new Liberty-based Web service to Access Manager. The sample
implements a Liberty-based Employee Profile Service.

The Employee Profile Service is a deployment of the Liberty ID-SIS Employee Profile
Service Specification (ID-SIS-EP) which is itself an instance of the Liberty Alliance
ID-SIS 1.0 Specifications. The Readme.html in the sample directory provides
detailed steps on how to deploy and configure this sample. In addition, related
information can be found in Chapter 5, “Data Services.”

NOTE Before implementing this example, you must have two instances of Access
Manager installed, running, and Liberty-enabled. Completing the steps in
“sample1” on page 170 will accomplish this.

NOTE Before implementing this example, you must have two instances of Access
Manager installed, running, and Liberty-enabled. Completing the steps in
“sample1” on page 170 will accomplish this.

Web Services Framework Samples

Appendix A Included Samples 173

paos
The paos sample provides a collection of files, located in the
/AccessManager_base/SUNWam/samples/phase2/paos directory, to demonstrate how to
set up and invoke a PAOS Service interaction between a client and server. (In a
real-world deployment, the server-side code would be developed by a service
provider.) The sample is based on the following scenario: a cell phone user
subscribes to a news service offered by his cell phone’s manufacturer. The news
service automatically pushes stocks and weather information to the user’s cell
phone at regular intervals. In this scenario, the manufacturer is the news service
provider and the individual cell phone user is the consumer. After running the
sample, you will see the output from the PAOSServer program.

The Readme.html in the sample directory provides detailed steps on how to deploy
and configure this sample. In addition, information can be found in “PAOS
Binding Sample” on page 163 of Chapter 8, “Application Programming Interfaces.”

authnsvc
The authnsvc sample provides a collection of files, located in the
/AccessManager_base/SUNWam/samples/phase2/authnsvc directory, to illustrate the
use of the Access Manager Authentication Web Service. This sample program
authenticates against the service, and extracts the resource offering of a discovery
bootstrap. The Readme.html in the sample directory provides detailed steps on how
to deploy and configure this sample. In addition, information can be found in
“Authentication Web Service Sample” on page 105 of Chapter 4, “Authentication
Web Service.”

NOTE You can also see the output from PAOSClientServlet program in the log file of the
Web Server. For example, when using Sun Java System Web Server, look in the
log subdirectory for the errors file.

Web Services Framework Samples

174 Access Manager 6 2005Q1 • Federation Management Guide

175

Appendix B

Service Schema Files

This appendix contains some of the XML Schema Definition (XSD) files discussed
in this document. It includes the following sections:

• Overview

• SOAP Binding Schema

• Personal Profile Schema

• Employee Profile Schema

• Authentication Web Service Schema

• PAOS Binding Schema

• Metadata Description Schema

Overview
The purpose of an eXtensible Markup Language (XML) schema is to describe the
structure of an XML document. The XML schema language is referred to as XML
Schema Definition (XSD).

The XSD files in this appendix specify the information its corresponding service
can host by defining the data and data structure. Typically, this structure is
hierarchical and has one root node. Individual branches of the structure can be
accessed separately and the whole structure can be accessed by pointing to the root
node. The data may be stored in implementation-specific ways, but will be exposed

NOTE XSD is an XML-based alternative to the Document Type Definition (DTD). A DTD
also describes the structure of an XML document, but it is not in the XML format.

SOAP Binding Schema

176 Access Manager 6 2005Q1 • Federation Management Guide

by the service using the XML schema (specified here), and the Web Services
Description Language definition of the service type (not specified in this
documentation set). The XSD files in this appendix are reproduced here for your
convenience. They (and a number of other XSD files) are also available on the
Project Liberty Web site at
http://www.projectliberty.org/resources/specifications.php.

SOAP Binding Schema
Code Example B-1 is a reproduction of liberty-idwsf-soap-binding-v1.1.xsd,
the XSD file that accompanies the Liberty ID-WSF SOAP Binding Specification as
discussed in Chapter 7, “SOAP Binding Service.”

Code Example B-1 SOAP Binding XSD File

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:liberty:sb:2004-04"
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:sb-ext="urn:liberty:sb:2004-04"
 xmlns:lib="urn:liberty:iff:2003-08"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:liberty:sb:2004-04"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- Author: John Kemp -->
 <!-- Last editor: $Author: dgreenspon $ -->
 <!-- $Date: 2004/08/02 19:25:27 $ -->
 <!-- $Revision: 1.1 $ -->

 <xs:import
 namespace="http://schemas.xmlsoap.org/soap/envelope/"
 schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

 <xs:import
 namespace="urn:liberty:iff:2003-08"
 schemaLocation="liberty-idff-protocols-schema-v1.2.xsd"/>

 <xs:include schemaLocation="liberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

 <xs:annotation>
 <xs:documentation>
 Liberty ID-WSF SOAP Binding Specification Extension XSD
 </xs:documentation>
 <xs:documentation>
 The source code in this XSD file was excerpted verbatim from:

 Liberty ID-WSF SOAP Binding Specification
 Version 1.1
 April 2004

SOAP Binding Schema

Appendix B Service Schema Files 177

 Copyright (c) 2004 Liberty Alliance participants, see
 http://www.projectliberty.org/specs/idwsf_copyrights.html
 </xs:documentation>
 </xs:annotation>

 <xs:complexType name="CredentialsContextType">
 <xs:sequence>
 <xs:element ref="lib:RequestAuthnContext" minOccurs="0"/>
 <xs:element name="SecurityMechID" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 <xs:attribute ref="S:mustUnderstand" use="optional"/>
 <xs:attribute ref="S:actor" use="optional"/>
 </xs:complexType>

 <xs:element name="CredentialsContext" type="CredentialsContextType"/>

 <xs:complexType name="ServiceInstanceUpdateType">
 <xs:sequence>
 <xs:element name="SecurityMechID" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="Credential" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any" processContents="lax"/>
 </xs:sequence>
 <xs:attribute name="notOnOrAfter" type="xs:dateTime"
use="optional"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="Endpoint" type="xs:anyURI" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 <xs:attribute ref="S:mustUnderstand" use="optional"/>
 <xs:attribute ref="S:actor" use="optional"/>
 </xs:complexType>

 <xs:element name="ServiceInstanceUpdate"
type="ServiceInstanceUpdateType"/>

 <xs:complexType name="TimeoutType">
 <xs:attribute name="maxProcessingTime" type="xs:integer"
use="required"/>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 <xs:attribute ref="S:mustUnderstand" use="optional"/>
 <xs:attribute ref="S:actor" use="optional"/>
 </xs:complexType>

 <xs:element name="Timeout" type="TimeoutType"/>

Code Example B-1 SOAP Binding XSD File (Continued)

Personal Profile Schema

178 Access Manager 6 2005Q1 • Federation Management Guide

Personal Profile Schema
Code Example B-2 is a reproduction of liberty-idsis-pp-v1.0.xsd, the XSD file
that accompanies the Liberty ID-SIS Personal Profile Service Specification as
discussed in Chapter 5, “Data Services.”

</xs:schema>

Code Example B-2 Personal Profile Service XSD File

<!-- 2003-11-02-->
<xs:schema targetNamespace="urn:liberty:id-sis-pp:2003-08"
xmlns="urn:liberty:id-sis-pp:2003-08"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
elementFormDefault="qualified" version="1.0">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"
schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/
>
 <xs:annotation>
 <xs:documentation>Title: Liberty ID-WSF-SIS Personal Profile Services
Schema</xs:documentation>
 <xs:documentation>The source code in this XSD file was excerpted
verbatim from:

Liberty Liberty ID-SIS Personal Profile Service Specification
Version 1.2
12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://www.projectliberty.org/specs/idwsf_copyrights.html
</xs:documentation>
 </xs:annotation>
 <xs:include schemaLocation="liberty-idwsf-dst-v1.0.xsd"/>
 <xs:include schemaLocation="liberty-idwsf-dst-dt-v1.0.xsd"/>
 <xs:complexType name="KeyInfoType" mixed="true">
 <xs:complexContent mixed="true">
 <xs:extension base="ds:KeyInfoType">
 <xs:attribute ref="modificationTime"/>
 <xs:attribute ref="ACC"/>
 <xs:attribute ref="ACCTime"/>
 <xs:attribute ref="modifier"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Code Example B-1 SOAP Binding XSD File (Continued)

Personal Profile Schema

Appendix B Service Schema Files 179

 <xs:simpleType name="SelectType">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
 <xs:element name="PP" type="PPType"/>
 <xs:complexType name="PPType">
 <xs:sequence>
 <xs:element ref="InformalName" minOccurs="0"/>
 <xs:element ref="LInformalName" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="CommonName" minOccurs="0"/>
 <xs:element ref="LegalIdentity" minOccurs="0"/>
 <xs:element ref="EmploymentIdentity" minOccurs="0"/>
 <xs:element ref="AddressCard" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="MsgContact" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Facade" minOccurs="0"/>
 <xs:element ref="Demographics" minOccurs="0"/>
 <xs:element ref="SignKey" minOccurs="0"/>
 <xs:element ref="EncryptKey" minOccurs="0"/>
 <xs:element ref="EmergencyContact" minOccurs="0"/>
 <xs:element ref="LEmergencyContact" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="InformalName" type="DSTString"/>
 <xs:element name="LInformalName" type="DSTLocalizedString"/>
 <xs:element name="CommonName" type="CommonNameType"/>
 <xs:complexType name="CommonNameType">
 <xs:sequence>
 <xs:element ref="CN" minOccurs="0"/>
 <xs:element ref="LCN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="AltCN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="LAltCN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="AnalyzedName" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="CN" type="DSTString"/>
 <xs:element name="LCN" type="DSTLocalizedString"/>
 <xs:element name="AltCN" type="DSTString"/>
 <xs:element name="LAltCN" type="DSTLocalizedString"/>
 <xs:element name="AnalyzedName" type="AnalyzedNameType"/>
 <xs:complexType name="AnalyzedNameType">
 <xs:sequence>
 <xs:element ref="PersonalTitle" minOccurs="0"/>
 <xs:element ref="LPersonalTitle" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="FN" minOccurs="0"/>
 <xs:element ref="LFN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="SN" minOccurs="0"/>
 <xs:element ref="LSN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="MN" minOccurs="0"/>
 <xs:element ref="LMN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>

Code Example B-2 Personal Profile Service XSD File (Continued)

Personal Profile Schema

180 Access Manager 6 2005Q1 • Federation Management Guide

 <xs:attribute name="nameScheme" type="xs:anyURI" use="optional"/>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="PersonalTitle" type="DSTString"/>
 <xs:element name="LPersonalTitle" type="DSTLocalizedString"/>
 <xs:element name="FN" type="DSTString"/>
 <xs:element name="LFN" type="DSTLocalizedString"/>
 <xs:element name="SN" type="DSTString"/>
 <xs:element name="LSN" type="DSTLocalizedString"/>
 <xs:element name="MN" type="DSTString"/>
 <xs:element name="LMN" type="DSTLocalizedString"/>
 <xs:element name="LegalIdentity" type="LegalIdentityType"/>
 <xs:complexType name="LegalIdentityType">
 <xs:sequence>
 <xs:element ref="LegalName" minOccurs="0"/>
 <xs:element ref="LLegalName" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="AnalyzedName" minOccurs="0"/>
 <xs:element ref="VAT" minOccurs="0"/>
 <xs:element ref="AltID" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="DOB" minOccurs="0"/>
 <xs:element ref="Gender" minOccurs="0"/>
 <xs:element ref="MaritalStatus" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="LegalName" type="DSTString"/>
 <xs:element name="LLegalName" type="DSTLocalizedString"/>
 <xs:element name="VAT" type="VATType"/>
 <xs:complexType name="VATType">
 <xs:sequence>
 <xs:element ref="IDValue"/>
 <xs:element ref="IDType" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="IDValue" type="DSTString"/>
 <xs:element name="IDType" type="DSTURI"/>
 <xs:element name="AltID" type="AltIDType"/>
 <xs:complexType name="AltIDType">
 <xs:sequence>
 <xs:element ref="IDValue"/>
 <xs:element ref="IDType" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="DOB" type="DSTDate"/>
 <xs:element name="Gender" type="DSTURI"/>
 <xs:element name="MaritalStatus" type="DSTURI"/>
 <xs:element name="EmploymentIdentity" type="EmploymentIdentityType"/>
 <xs:complexType name="EmploymentIdentityType">
 <xs:sequence>
 <xs:element ref="JobTitle" minOccurs="0"/>

Code Example B-2 Personal Profile Service XSD File (Continued)

Personal Profile Schema

Appendix B Service Schema Files 181

 <xs:element ref="LJobTitle" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="O" minOccurs="0"/>
 <xs:element ref="LO" minOccurs="0"/>
 <xs:element ref="AltO" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="AltLO" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="JobTitle" type="DSTString"/>
 <xs:element name="LJobTitle" type="DSTLocalizedString"/>
 <xs:element name="O" type="DSTString"/>
 <xs:element name="LO" type="DSTLocalizedString"/>
 <xs:element name="AltO" type="DSTString"/>
 <xs:element name="AltLO" type="DSTLocalizedString"/>
 <xs:element name="AddressCard" type="AddressCardType"/>
 <xs:complexType name="AddressCardType">
 <xs:sequence>
 <xs:element ref="AddrType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Address" minOccurs="0"/>
 <xs:element ref="Nick" minOccurs="0"/>
 <xs:element ref="LNick" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="LComment" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="AddrType" type="DSTURI"/>
 <xs:element name="Address" type="AddressType"/>
 <xs:complexType name="AddressType">
 <xs:sequence>
 <xs:element ref="PostalAddress" minOccurs="0"/>
 <xs:element ref="LPostalAddress" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="PostalCode" minOccurs="0"/>
 <xs:element ref="L" minOccurs="0"/>
 <xs:element ref="LL" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="St" minOccurs="0"/>
 <xs:element ref="LSt" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="C" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="PostalAddress" type="DSTString"/>
 <xs:element name="LPostalAddress" type="DSTLocalizedString"/>
 <xs:element name="PostalCode" type="DSTString"/>
 <xs:element name="L" type="DSTString"/>
 <xs:element name="LL" type="DSTLocalizedString"/>
 <xs:element name="St" type="DSTString"/>
 <xs:element name="LSt" type="DSTLocalizedString"/>
 <xs:element name="C" type="DSTString"/>
 <xs:element name="Nick" type="DSTString"/>
 <xs:element name="LNick" type="DSTLocalizedString"/>
 <xs:element name="LComment" type="DSTString"/>
 <xs:element name="MsgContact" type="MsgContactType"/>

Code Example B-2 Personal Profile Service XSD File (Continued)

Personal Profile Schema

182 Access Manager 6 2005Q1 • Federation Management Guide

 <xs:complexType name="MsgContactType">
 <xs:sequence>
 <xs:element ref="Nick" minOccurs="0"/>
 <xs:element ref="LNick" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="LComment" minOccurs="0"/>
 <xs:element ref="MsgType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="MsgMethod" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="MsgTechnology" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="MsgProvider" minOccurs="0"/>
 <xs:element ref="MsgAccount" minOccurs="0"/>
 <xs:element ref="MsgSubaccount" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="MsgType" type="DSTURI"/>
 <xs:element name="MsgMethod" type="DSTURI"/>
 <xs:element name="MsgTechnology">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="DSTURI">
 <xs:attribute name="msgLimit" type="xs:integer" use="optional"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="MsgProvider" type="DSTString"/>
 <xs:element name="MsgAccount" type="DSTString"/>
 <xs:element name="MsgSubaccount" type="DSTString"/>
 <xs:element name="Facade" type="FacadeType"/>
 <xs:complexType name="FacadeType">
 <xs:sequence>
 <xs:element ref="MugShot" minOccurs="0"/>
 <xs:element ref="WebSite" minOccurs="0"/>
 <xs:element ref="NamePronounced" minOccurs="0"/>
 <xs:element ref="GreetSound" minOccurs="0"/>
 <xs:element ref="GreetMeSound" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="MugShot" type="DSTURI"/>
 <xs:element name="WebSite" type="DSTURI"/>
 <xs:element name="NamePronounced" type="DSTURI"/>
 <xs:element name="GreetSound" type="DSTURI"/>
 <xs:element name="GreetMeSound" type="DSTURI"/>
 <xs:element name="Demographics" type="DemographicsType"/>
 <xs:complexType name="DemographicsType">
 <xs:sequence>
 <xs:element ref="DisplayLanguage" minOccurs="0"/>
 <xs:element ref="Language" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Birthday" minOccurs="0"/>
 <xs:element ref="Age" minOccurs="0"/>
 <xs:element ref="TimeZone" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>

Code Example B-2 Personal Profile Service XSD File (Continued)

Employee Profile Schema

Appendix B Service Schema Files 183

Employee Profile Schema
Code Example B-3 is a reproduction of liberty-idsis-ep-v1.0.xsd, the XSD file
that accompanies the Liberty ID-SIS Employee Profile Service Specification as
discussed in Chapter 5, “Data Services.”

 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="DisplayLanguage" type="DSTString"/>
 <xs:element name="Language" type="DSTString"/>
 <xs:element name="Birthday" type="DSTMonthDay"/>
 <xs:element name="Age" type="DSTInteger"/>
 <xs:element name="TimeZone" type="DSTString"/>
 <xs:element name="SignKey" type="KeyInfoType"/>
 <xs:element name="EncryptKey" type="KeyInfoType"/>
 <xs:element name="EmergencyContact" type="DSTString"/>
 <xs:element name="LEmergencyContact" type="DSTLocalizedString"/>
</xs:schema>

Code Example B-3 Employee Profile Service XSD Schema

<!-- Generated by gen-prof.pl $Id: liberty-idsis-ep-v1.0.xsd,v 1.1
2004/08/02 19:25:27 dgreenspon Exp $
from $Id: liberty-idsis-ep-v1.0.xsd,v 1.1 2004/08/02 19:25:27 dgreenspon Exp
$ -->
<!-- adjust 2003-10-02 TDW: changed copyright -->
<xs:schema targetNamespace="urn:liberty:id-sis-ep:2003-08"
xmlns="urn:liberty:id-sis-ep:2003-08"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
version="1.0">
 <xs:annotation>
 <xs:documentation>Title: Liberty ID-SIS Employee Profile Services
Schema</xs:documentation>
 <xs:documentation>The source code in this XSD file was excerpted
verbatim from:

Liberty Liberty ID-SIS Employee Profile Service Specification
Version 1.2
12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://www.projectliberty.org/specs/idwsf_copyrights.html

</xs:documentation>
 </xs:annotation>

Code Example B-2 Personal Profile Service XSD File (Continued)

Employee Profile Schema

184 Access Manager 6 2005Q1 • Federation Management Guide

 <xs:include schemaLocation="liberty-idwsf-dst-v1.0.xsd"/>
 <xs:include schemaLocation="liberty-idwsf-dst-dt-v1.0.xsd"/>
 <xs:element name="EP" type="EPType"/>
 <xs:complexType name="EPType">
 <xs:sequence>
 <xs:element ref="EmployeeID" minOccurs="0"/>
 <xs:element ref="AltEmployeeID" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="DateOfHire" minOccurs="0"/>
 <xs:element ref="JobStartDate" minOccurs="0"/>
 <xs:element ref="EmployeeStatus" minOccurs="0"/>
 <xs:element ref="EmployeeType" minOccurs="0"/>
 <xs:element ref="InternalJobTitle" minOccurs="0"/>
 <xs:element ref="LInternalJobTitle" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="OU" minOccurs="0"/>
 <xs:element ref="LOU" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="CorpCommonName" minOccurs="0"/>
 <xs:element ref="CorpLegalIdentity" minOccurs="0"/>
 <xs:element ref="ManagerEmployeeID" minOccurs="0"/>
 <xs:element ref="SubalternateEmployeeID" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="EmployeeID" type="DSTString"/>
 <xs:element name="AltEmployeeID" type="DSTString"/>
 <xs:element name="DateOfHire" type="DSTDate"/>
 <xs:element name="JobStartDate" type="DSTDate"/>
 <xs:element name="EmployeeStatus" type="DSTURI"/>
 <xs:element name="EmployeeType" type="DSTURI"/>
 <xs:element name="InternalJobTitle" type="DSTString"/>
 <xs:element name="LInternalJobTitle" type="DSTLocalizedString"/>
 <xs:element name="OU" type="DSTString"/>
 <xs:element name="LOU" type="DSTLocalizedString"/>
 <xs:element name="CorpCommonName" type="CorpCommonNameType"/>
 <xs:complexType name="CorpCommonNameType">
 <xs:sequence>
 <xs:element ref="CN" minOccurs="0"/>
 <xs:element ref="LCN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="AltCN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="LAltCN" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="CN" type="DSTString"/>
 <xs:element name="LCN" type="DSTLocalizedString"/>
 <xs:element name="AltCN" type="DSTString"/>
 <xs:element name="LAltCN" type="DSTLocalizedString"/>
 <xs:element name="CorpLegalIdentity" type="CorpLegalIdentityType"/>
 <xs:complexType name="CorpLegalIdentityType">
 <xs:sequence>
 <xs:element ref="LegalName" minOccurs="0"/>

Code Example B-3 Employee Profile Service XSD Schema (Continued)

Authentication Web Service Schema

Appendix B Service Schema Files 185

Authentication Web Service Schema
Code Example B-4 is a reproduction of the liberty-idwsf-authn-svc-v1.0.xsd,
the XSD file that accompanies Liberty ID-WSF Authentication Service Specification
as discussed in Chapter 4, “Authentication Web Service.”

 <xs:element ref="LLegalName" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="VAT" minOccurs="0"/>
 <xs:element ref="AltID" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="LegalName" type="DSTString"/>
 <xs:element name="LLegalName" type="DSTLocalizedString"/>
 <xs:element name="VAT" type="VATType"/>
 <xs:complexType name="VATType">
 <xs:sequence>
 <xs:element ref="IDValue"/>
 <xs:element ref="IDType" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="IDValue" type="DSTString"/>
 <xs:element name="IDType" type="DSTURI"/>
 <xs:element name="AltID" type="AltIDType"/>
 <xs:complexType name="AltIDType">
 <xs:sequence>
 <xs:element ref="IDValue"/>
 <xs:element ref="IDType" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attributeGroup ref="commonAttributes"/>
 </xs:complexType>
 <xs:element name="ManagerEmployeeID" type="DSTString"/>
 <xs:element name="SubalternateEmployeeID" type="DSTString"/>
 <xs:simpleType name="SelectType">
 <xs:restriction base="xs:string"/>
 </xs:simpleType>
</xs:schema>

Code Example B-4 Authentication Web Service XSD File

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
targetNamespace="urn:liberty:sa:2004-04"

Code Example B-3 Employee Profile Service XSD Schema (Continued)

Authentication Web Service Schema

186 Access Manager 6 2005Q1 • Federation Management Guide

xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sa="urn:liberty:sa:2004-04"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:lib="urn:liberty:iff:2003-08"
xmlns:disco="urn:liberty:disco:2003-08"
xmlns="urn:liberty:sa:2004-04"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="06">

<!-- Filename: lib-arch-authn-svc.xsd -->
<!-- $Id: liberty-idwsf-authn-svc-v1.0.xsd,v 1.1 2004/08/02 19:25:27
dgreenspon Exp $ -->
<!-- Author: Jeff Hodges -->
<!-- Last editor: $Author: dgreenspon $ -->
<!-- $Date: 2004/08/02 19:25:27 $ -->
<!-- $Revision: 1.1 $ -->

 <xs:import
 namespace="urn:liberty:iff:2003-08"
 schemaLocation="liberty-idff-protocols-schema-v1.2.xsd"/>

 <xs:import
 namespace="urn:liberty:disco:2003-08"
 schemaLocation="liberty-idwsf-disco-svc-1.0-errata-v1.0.xsd"/>

 <xs:include schemaLocation="liberty-idwsf-utility-1.0-errata-v1.0.xsd"/>

 <xs:annotation>
 <xs:documentation>
 Liberty ID-WSF Authentication Service XSD
 </xs:documentation>
 <xs:documentation>
 The source code in this XSD file was excerpted verbatim from:
 Liberty ID-WSF Authentication Service Specification
 Version 1.0
 16 Feb 2004
 Copyright (c) 2003, 2004 Liberty Alliance participants,
 see http://www.projectliberty.org/specs/idwsf_copyrights.html
 </xs:documentation>
 </xs:annotation>

 <!-- SASLRequest and SASLResponse ID-* messages -->

 <xs:element name="SASLRequest">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="Data" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

Code Example B-4 Authentication Web Service XSD File (Continued)

Authentication Web Service Schema

Appendix B Service Schema Files 187

 <xs:element ref="lib:RequestAuthnContext"
 minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="mechanism"
 type="xs:string"
 use="required"/>

 <xs:attribute name="authzID"
 type="xs:string"
 use="optional"/>

 <xs:attribute name="advisoryAuthnID"
 type="xs:string"
 use="optional"/>

 <xs:attribute name="id"
 type="xs:ID"
 use="optional"/>

 </xs:complexType>
 </xs:element>

 <xs:element name="SASLResponse">
 <xs:complexType>
 <xs:sequence>

 <xs:element ref="Status"/>

 <xs:element ref="PasswordTransforms" minOccurs="0"/>

 <xs:element name="Data" minOccurs="0">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary"/>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 <xs:element ref="disco:ResourceOffering"
 minOccurs="0"
 maxOccurs="unbounded"/>

 <xs:element name="Credentials" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:any namespace="##any"
 processContents="lax"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Code Example B-4 Authentication Web Service XSD File (Continued)

Authentication Web Service Schema

188 Access Manager 6 2005Q1 • Federation Management Guide

 </xs:element>

 </xs:sequence>

 <xs:attribute name="serverMechanism"
 type="xs:string"
 use="optional"/>

 <xs:attribute name="id"
 type="xs:ID"
 use="optional"/>

 </xs:complexType>
 </xs:element>

 <!-- Password Transformations -->

 <xs:element name="PasswordTransforms">

 <xs:annotation>
 <xs:documentation>
 Contains ordered list of sequential password transformations
 </xs:documentation>
 </xs:annotation>

 <xs:complexType>
 <xs:sequence>

 <xs:element name="Transform" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>

 <xs:element name="Parameter"
 minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name"
 type="xs:string"
 use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>

 </xs:sequence>

 <xs:attribute name="name"
 type="xs:anyURI"
 use="required"/>

 <xs:attribute name="id"
 type="xs:ID"
 use="optional"/>

Code Example B-4 Authentication Web Service XSD File (Continued)

PAOS Binding Schema

Appendix B Service Schema Files 189

PAOS Binding Schema
Code Example B-5 is a reproduction of liberty-paos-1.0-errata-v1.0.xsd, the
XSD file that accompanies the Liberty Reverse HTTP Binding for SOAP
Specification. This XSD file describes structure of PAOS requests and responses.
PAOS Binding is discussed in Chapter 8, “Application Programming Interfaces.”

 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

</xs:schema>

Code Example B-5 Reverse HTTP Binding for SOAP XSD File

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:liberty:paos:2003-08"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="urn:liberty:paos:2003-08" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:annotation>
 <xs:documentation>The source code in this XSD file was excerpted
verbatim from:

Liberty Reverse HTTP Binding
Version 1.0
12th November 2003

Copyright (c) 2003 Liberty Alliance participants, see
https://www.projectliberty.org/specs/idwsf_copyrights.html

 </xs:documentation>
 </xs:annotation>
 <xs:import namespace="http://schemas.xmlsoap.org/soap/envelope/"
schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>
 <xs:include schemaLocation="liberty-utility-v1.0.xsd"/>
 <xs:element name="Request" type="RequestType"/>
 <xs:complexType name="RequestType">
 <xs:attribute name="responseConsumerURL" type="xs:anyURI"
use="required"/>
 <xs:attribute name="service" type="xs:anyURI" use="required"/>
 <xs:attribute name="messageID" type="IDType" use="optional"/>

Code Example B-4 Authentication Web Service XSD File (Continued)

Metadata Description Schema

190 Access Manager 6 2005Q1 • Federation Management Guide

Metadata Description Schema
Code Example B-6 is a reproduction of liberty-metadata-1.0-errata-v2.0.xsd,
the XSD file that accompanies the Liberty Metadata Description and Discovery
Specification. This XSD file describes metadata, protocols for obtaining metadata,
and resolution methods for discovering the location of metadata.

 <xs:attribute ref="S:mustUnderstand" use="required"/>
 <xs:attribute ref="S:actor" use="required"/>
 </xs:complexType>
 <xs:element name="Response" type="ResponseType"/>
 <xs:complexType name="ResponseType">
 <xs:attribute name="refToMessageID" type="IDType" use="optional"/>
 <xs:attribute ref="S:mustUnderstand" use="required"/>
 <xs:attribute ref="S:actor" use="required"/>
 </xs:complexType>
</xs:schema>

Code Example B-6 Metadata Description and Discovery XSD File

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:liberty:metadata:2003-08"
 xmlns="urn:liberty:metadata:2003-08"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" version="1.0">
 <xs:import namespace="http://www.w3.org/2000/09/xmldsig#"

schemaLocation="http://www.w3.org/TR/xmldsig-core/xmldsig-core-schema.xsd"/
>
 <xs:import namespace="urn:oasis:names:tc:SAML:1.0:assertion"
 schemaLocation="oasis-sstc-saml-schema-assertion-1.1.xsd"/>
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"
 schemaLocation="http://www.w3.org/2001/xml.xsd"/>
 <xs:include schemaLocation="liberty-utility-v1.0.xsd"/>
 <xs:annotation>
 <xs:documentation>
 XML Schema fom Metadata description and discovery protocols
 </xs:documentation>
 <xs:documentation>

The source code in this XSD file was excerpted verbatim from:

Liberty Metadata Description and Discovery Specification
Version 1.0-errata-v2.0

Code Example B-5 Reverse HTTP Binding for SOAP XSD File (Continued)

Metadata Description Schema

Appendix B Service Schema Files 191

4 June 2004

Copyright (c) 2004 Liberty Alliance participants, see
https://www.projectliberty.org/specs/idff_copyrights.html

</xs:documentation>
 </xs:annotation>
 <xs:simpleType name="entityIDType">
 <xs:restriction base="xs:anyURI">
 <xs:maxLength value="1024" id="maxlengthid"/>
 </xs:restriction>
 </xs:simpleType>
 <!--
 <xs:attribute name="libertyPrincipalIdentifier" type="entityIDType"/>
 <xs:attribute name="providerID" type="entityIDType"/>
 <xs:attribute name="validUntil" type="xs:dateTime"/>
 <xs:attribute name="cacheDuration" type="xs:duration"/>
 -->
 <xs:complexType name="additionalMetadataLocationType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="namespace" type="xs:anyURI"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="organizationType">
 <xs:sequence>
 <xs:element name="OrganizationName" type="organizationNameType"
maxOccurs="unbounded"/>
 <xs:element name="OrganizationDisplayName"
type="organizationDisplayNameType" maxOccurs="unbounded"/>
 <xs:element name="OrganizationURL" type="localizedURIType"
maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="organizationNameType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="organizationDisplayNameType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="localizedURIType">
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute ref="xml:lang" use="required"/>

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

Metadata Description Schema

192 Access Manager 6 2005Q1 • Federation Management Guide

 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="contactType">
 <xs:sequence>
 <xs:element name="Company" type="xs:string" minOccurs="0"/>
 <xs:element name="GivenName" type="xs:string" minOccurs="0"/>
 <xs:element name="SurName" type="xs:string" minOccurs="0"/>
 <xs:element name="EmailAddress" type="xs:anyURI" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element name="TelephoneNumber" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="libertyPrincipalIdentifier" type="entityIDType"
use="optional"/>
 <xs:attribute name="contactType" type="attr.contactType"
use="required"/>
 </xs:complexType>
 <xs:simpleType name="attr.contactType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="technical"/>
 <xs:enumeration value="administrative"/>
 <xs:enumeration value="billing"/>
 <xs:enumeration value="other"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="keyTypes">
 <xs:restriction base="xs:string">
 <xs:enumeration value="encryption"/>
 <xs:enumeration value="signing"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="providerDescriptorType">
 <xs:sequence>
 <xs:element name="KeyDescriptor" type="keyDescriptorType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="SoapEndpoint" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="SingleLogoutServiceURL" type="xs:anyURI"
minOccurs="0"/>
 <xs:element name="SingleLogoutServiceReturnURL"
 type="xs:anyURI" minOccurs="0"/>
 <xs:element name="FederationTerminationServiceURL"
 type="xs:anyURI" minOccurs="0"/>
 <xs:element name="FederationTerminationServiceReturnURL"
 type="xs:anyURI" minOccurs="0"/>
 <xs:element name="FederationTerminationNotificationProtocolProfile"
 type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="SingleLogoutProtocolProfile"
 type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="RegisterNameIdentifierProtocolProfile"
 type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="RegisterNameIdentifierServiceURL"
 type="xs:anyURI" minOccurs="0"/>

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

Metadata Description Schema

Appendix B Service Schema Files 193

 <xs:element name="RegisterNameIdentifierServiceReturnURL"
 type="xs:anyURI" minOccurs="0"/>
 <xs:element name="NameIdentifierMappingProtocolProfile"
 type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="NameIdentifierMappingEncryptionProfile"
 type="xs:anyURI" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="Organization" type="organizationType"
minOccurs="0"/>
 <xs:element name="ContactPerson" type="contactType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="AdditionalMetaLocation"
 type="additionalMetadataLocationType" minOccurs="0"
maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>
 <xs:element ref="ds:Signature" minOccurs="0"/>
 </xs:sequence>
 <!--xs:attribute ref="providerID" use="required"/-->
 <xs:attribute name="protocolSupportEnumeration" type="xs:NMTOKENS"
use="required"/>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 <xs:attribute name="validUntil" type="xs:dateTime"/>
 <xs:attribute name="cacheDuration" type="xs:duration"/>
 </xs:complexType>
 <!--added-->
 <xs:element name="KeyDescriptor" type="keyDescriptorType"/>
 <xs:complexType name="keyDescriptorType">
 <xs:sequence>
 <xs:element name="EncryptionMethod" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="KeySize" type="xs:integer" minOccurs="0"/>
 <xs:element ref="ds:KeyInfo" minOccurs="0"/>
 <xs:element ref="Extension" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="use" type="keyTypes" use="optional"/>
 </xs:complexType>
 <!-- -->
 <xs:element name="EntityDescriptor" type="entityDescriptorType"/>
 <xs:group name="providerGroup">
 <xs:sequence>
 <xs:element name="IDPDescriptor" type="IDPDescriptorType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="SPDescriptor" type="SPDescriptorType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:group>
 <xs:complexType name="entityDescriptorType">
 <xs:sequence>
 <xs:choice>
 <xs:group ref="providerGroup"/>
 <xs:element name="AffiliationDescriptor"
type="affiliationDescriptorType"/>
 </xs:choice>
 <xs:element name="ContactPerson" type="contactType" minOccurs="0"/>
 <xs:element name="Organization" type="organizationType"
minOccurs="0"/>

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

Metadata Description Schema

194 Access Manager 6 2005Q1 • Federation Management Guide

 <xs:element ref="Extension" minOccurs="0"/>
 <xs:element ref="ds:Signature" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="providerID" type="entityIDType" use="required"/>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 <xs:attribute name="validUntil" type="xs:dateTime"/>
 <xs:attribute name="cacheDuration" type="xs:duration"/>
 </xs:complexType>
 <xs:complexType name="SPDescriptorType">
 <xs:complexContent>
 <xs:extension base="providerDescriptorType">
 <xs:sequence>
 <xs:element name="AssertionConsumerServiceURL"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:anyURI">
 <xs:attribute name="id" type="xs:ID" use="required"/>
 <xs:attribute name="isDefault" type="xs:boolean"
default="false"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name="AuthnRequestsSigned" type="xs:boolean"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="IDPDescriptorType">
 <xs:complexContent>
 <xs:extension base="providerDescriptorType">
 <xs:sequence>
 <xs:element name="SingleSignOnServiceURL" type="xs:anyURI"/>
 <xs:element name="SingleSignOnProtocolProfile" type="xs:anyURI"
maxOccurs="unbounded"/>
 <xs:element name="AuthnServiceURL" type="xs:anyURI"
minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="EntitiesDescriptor" type="entitiesDescriptorType"/>
 <xs:complexType name="entitiesDescriptorType">
 <xs:sequence>
 <xs:element ref="EntityDescriptor" minOccurs="2"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="affiliationDescriptorType">
 <xs:sequence>
 <xs:element name="AffiliateMember" type="entityIDType"
maxOccurs="unbounded"/>
 <xs:element ref="Extension" minOccurs="0"/>

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

Metadata Description Schema

Appendix B Service Schema Files 195

 <xs:element name="KeyDescriptor" type="keyDescriptorType"
minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="ds:Signature" minOccurs="0"/>
 </xs:sequence>
 <!-- <xs:attribute name="affiliationID" type="entityIDType"
use="required"/> -->
 <xs:attribute name="affiliationOwnerID" type="entityIDType"
use="required"/>
 <xs:attribute name="validUntil" type="xs:dateTime"/>
 <xs:attribute name="cacheDuration" type="xs:duration"/>
 <xs:attribute name="id" type="xs:ID" use="optional"/>
 </xs:complexType>
</xs:schema>

Code Example B-6 Metadata Description and Discovery XSD File (Continued)

Metadata Description Schema

196 Access Manager 6 2005Q1 • Federation Management Guide

197

Glossary

For a list of terms used in this documentation set, refer to the latest Sun Java™
Enterprise System Glossary:

http://docs.sun.com/doc/816-6873

198 Access Manager 6 2005Q1 • Federation Management Guide

199

Index

A
Access Manager documentation set 21
affiliate entity descriptors 69
affiliation federation 49
API

Authentication Web Service 104
client for Discovery Service 145
common security 157
common service 155
Data Services Template 108, 118
Discovery Service 142
federation management 87
Interaction Service 159
list of packages 56
PAOS Binding 161
SOAP Binding Service 152

architecture
Discovery Service 124

attributes
Authentication Web Service 103
Discovery Service 127
Liberty Personal Profile Service 112
SOAP Binding Service 149

authentication domains 67
Authentication Web Service 101

API 104
attribute 103
extract 53
process 102
sample 105, 173
schema file 185
XML service file 102

Authorizer interface 113, 142, 156

B
bootstrapping for Discovery Service 139

C
client API

Data Services Template 119
Discovery Service 145

common domain services 65
common security API 157
common service interfaces 155
creating authentication domains 67
creating federation model 55
customizing federation management module 60

D
data services

defined 107
developing 120
Liberty Employee Profile Service 118
Liberty Personal Profile Service 111
see also Data Services Template

Section E

200 Access Manager 6 2005Q1 • Federation Management Guide

Data Services Template 108, 118
client API 119

default paths and file names 20
Default64ResourceIDMapper 144
DefaultDiscoAuthorizer class 142
DefaultHexResourceIDMapper 144
defined

discovery entries 122
identity 29
identity federation 30
Liberty Alliance Project terms 30

deploying Liberty-based system 44
developing data services 120
Directory Server documentation 18
DiscoEntryHandler interface 144
discovery entries 132

as dynamic attributes 136
as user attributes 132
defined 122
for bootstrapping Discovery Service 139

Discovery Service
architecture 124
attributes 127
client API 145
extract 54
overview 121
process 125
sample 146
XML service files 123

documentation
Access Manager 21

dynamic identity provider proxying 49
DynamicDiscoEntryHandler 145

E
employee profile service sample 172
entity descriptors 69

procedures 70
provider 69

F
federation

process 62
federation management

and JavaServer Pages 60
API 87
authentication domains 67
entity descriptors 69

affiliate 69
procedures 70
provider 69

extract 55
moduloe customization 60
overview 59, 67
pre-login process 64
process of federation 62
samples 88, 169
single sign-on process 65

federation model 55

I
identity defined 29
identity federation defined 30
Interaction Service 159
interfaces

Authentication Web Service 104
Authorizer 113, 142
common service 155
DiscoEntryHandler 144
Discovery Service 142
federation management 60
Liberty-based API 56
ResourceIDMapper 113, 144
SOAP Binding Service 152

J
JavaServer Pages and federation management 60

Section L

Index 201

L
Liberty Alliance Project

overview 27
service schema files 175
specifications 35
terms defined 30

Liberty Employee Profile Service 118
schema file 183

Liberty Identity Federation Framework specification
overview 35

Liberty Identity Service Interface Specifications
overview 43

Liberty Identity Web Services Framework
specifications overview 40

Liberty Metadata Description and Discovery
Specification 50

Liberty Personal Profile Service 111
attributes 112
extract 54
process 111
schema file 178

Liberty process sample 51
Liberty-based data services

overview 107
Liberty-based system deployment 44

M
Metadata Description

schema file 190

N
name identifier encryption profile 49
name identifier mapping protocol extract 48
new features

Liberty metadata description and discovery
specification
overview 50

name identifier mapping protocol 48

single sign-on and federation protocol 48

O
one-time federation 49
overview

Authentication Web Service 101
Data Services Template 108, 118
discovery entries 132
Discovery Service 121
federation management 59, 67
implementation of Liberty Alliance Project 47
implementation of Liberty Web services 52
Interaction Service 159
Liberty Alliance Project 27
Liberty Alliance Project specifications 35
Liberty metadata description and discovery

specification 50
Liberty-based data services 107
name identifier mapping protocol 48
PAOS Binding 161
public interfaces 153
resource offerings 132
samples 169
single sign-on and federation protocol 48
SOAP Binding Service 147

P
packages

Liberty-based 56
PAOS Binding 161

sample 163, 173
PAOS Binding Service

schema file 189
PAOS vs. SOAP 162
patches

Solaris 23
policy agent documentation 22
policy creation 142
procedures

Section R

202 Access Manager 6 2005Q1 • Federation Management Guide

create discovery entries as user attributes 132
create discovery entry as dynamic attributes 136
create policy for DefaultDiscoAuthorizer 142
creating authentication domains 67
creating federation model 55
entity descriptors 70

process
Authentication Web Service 102
Discovery Service 125
federation 62
pre-login in federation 64
single sign-on in federation 65
SOAP Binding Service 148

provider entity descriptors 69
public interfaces 153

R
related JES product documentation 23
RequestHandler interface 120, 152
Resource ID Mapper attribute 113
resource offerings 132
ResourceIDMapper interface 113, 144, 157

S
sample use case 51
samples

Authentication Web Service 105, 173
Discovery Service 146
employee profile service 172
federation management 88, 169
PAOS Binding 163, 173
use case process 51
web service consumer 172

samples overview 169
schema files 175

Authentication Web Service schema 185
Employee Profile schema 183
Metadata Description 190
PAOS Binding Service 189

Personal Profile schema 178
SOAP Binding schema 176

service schema files 175
services

common domain 65
shell prompts 20
single sign-on and federation protocol extract 48
SOAP Binding

extract 54
SOAP Binding Service

API 152
attributes 149
overview 147
process 148
schema file 176
XML service files 148

SOAP vs. PAOS 162
Solaris

patches 23
support 23

specifications (Liberty Alliance Project) 35
support

Solaris 23
symbols used 19

T
typographic conventions 18

U
use cases 50

sample process 51
UserDiscoEntryHandler 145
UserDynamicDiscoEntryHandler 145

W
web service consumer sample 172

Section X

Index 203

web services implementation 52

X
XML service files

Authentication Web Service 102
Discovery Service 123
SOAP Binding Service 148

XSD files 175

Section X

204 Access Manager 6 2005Q1 • Federation Management Guide

	Access Manager 6 Federation Management Guide
	Contents
	List of Figures
	List of Tables
	List of Code Examples
	Preface
	Who Should Use This Guide
	Before You Read This Guide
	Conventions Used in This Guide
	Typographic Conventions
	Symbols
	Default Paths and File Names
	Shell Prompts

	Access Manager Documentation Set
	Access Manager Core Documentation
	Access Manager Policy Agent Documentation

	Related JES Product Documentation
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Feedback

	Liberty Specifications and Federation Management
	Introduction to the Liberty Alliance Project
	Overview
	LAP Members
	LAP Objectives

	The Concept of Identity
	The Concept of Identity Federation
	Liberty Alliance Project Concepts
	Account Federation (Identity Federation)
	Affiliation
	Attribute Provider
	Authentication Domain
	Circle Of Trust
	Client
	Common Domain
	Defederation
	Federation Cookie
	Federated Identity
	Federation Termination
	Identity Provider
	Identity Service
	Liberty-enabled Client
	Liberty-enabled Proxy
	Name Identifier
	Principal
	Pseudonym
	Receiver
	Resource Offering
	Sender
	Server
	Service Provider
	Single Logout
	Single Sign-on
	Trusted Provider
	Web Service Consumer
	Web Service Provider

	The Liberty Alliance Project Specifications
	Liberty Identity Federation Framework
	Liberty Identity Web Services Framework
	Liberty Identity Service Interface Specifications
	Supporting Documents

	Deploying a Liberty-based System
	Size Up Your IT Staff
	Clean Your Directory Data
	Draft Business Agreements
	Liberty-compliant Technology

	Implementation of the Liberty Specifications
	Overview
	Name Identifier Mapping Protocol
	Single Sign-on and Federation Protocol
	Liberty Metadata Description and Discovery Specification

	Liberty Use Cases
	Unified Access to Intranet Resources
	Integrated Partner Networks
	Sample Use Case Process

	Access Manager Implementations
	Web Services
	Application Programming Interfaces
	Federation Management Module

	Packages and Global Interfaces
	Liberty-based Samples

	Federation Management
	Overview
	The Federation Management Interface
	The Process of Federation
	Pre-login Process
	Single Sign-on Process

	Common Domain Services
	Installing the Common Domain Services
	Common Domain Service URLs

	Federation Management
	Authentication Domains
	Creating and Maintaining Authentication Domains
	Entity Descriptors
	Creating and Maintaining Entity Descriptors

	Federation Management API
	Federation Management Samples
	Installing Access Manager
	Updating and Loading the Metadata
	Deploying the Service Provider
	Deploying the Identity Provider
	Creating and Managing a Federation

	Liberty-based Web Services
	Authentication Web Service
	Overview
	XML Service File
	Application Programming Interfaces

	Authentication Web Service Process
	Authentication Web Service Attribute
	Mechanism Handler List

	Authentication Web Service Interfaces
	com.sun.identity.liberty.ws.authnsvc
	com.sun.identity.liberty.ws.authnsvc.protocol

	Authentication Web Service Sample

	Data Services
	Overview
	Data Services Template Specifications
	Liberty Personal Profile Service
	Liberty Employee Profile Service
	Data Services Template API

	Liberty Personal Profile Service
	The Liberty Personal Profile Service Process
	Liberty Personal Profile Service Attributes

	Liberty Employee Profile Service
	Data Services Template API
	com.sun.identity.liberty.ws.dst
	com.sun.identity.liberty.ws.dst.service

	Developing A New Data Service

	Discovery Service
	Overview
	Discovery Entries
	XML Service Files
	Application Programming Interfaces

	Discovery Service Architecture
	Discovery Service Process
	Discovery Service Attributes
	Provider ID
	Supported Authentication Mechanisms
	Supported Directives
	Enable Policy Evaluation for DiscoveryLookup
	Enable Policy Evaluation for DiscoveryUpdate
	Authorizer Plugin Class
	Entry Handler Plugin Class
	Classes For ResourceIDMapper Plugin
	Authenticate Response Message
	Generate SessionContextStatement for Bootstrapping
	Encrypt NameIdentifier in Session Context for Bootstrapping
	Use Implied Resource; don't generate ResourceID for Bootstrapping
	Resource Offerings for Bootstrapping Resources

	Discovery Entries and Resource Offerings
	Storing Discovery Entries as User Attributes
	Storing Discovery Entries as Dynamic Attributes
	Storing Discovery Entries for Bootstrapping

	Discovery Service Interfaces
	DefaultDiscoAuthorizer Implementation
	Default ResourceIDMapper Implementations
	DiscoEntryHandler Interface
	Client APIs

	Discovery Service Sample

	SOAP Binding Service
	Overview
	XML Service File
	Application Programming Interfaces

	SOAP Binding Process
	SOAP Binding Attributes
	Request Handler List
	Web Service Authenticator
	Supported Authentication Mechanisms

	SOAP Binding Interfaces

	Application Programming Interfaces
	Overview of Public Interfaces
	Common Service Interfaces
	com.sun.identity.liberty.ws.common
	com.sun.identity.liberty.ws.interfaces

	Common Security API
	com.sun.identity.liberty.ws.security
	com.sun.identity.liberty.ws.common.wsse

	Interaction Service API
	Configuring the Interaction Service
	Interaction Service API

	PAOS Binding
	PAOS vs. SOAP
	PAOS Binding API
	PAOS Binding Sample

	Appendices
	Included Samples
	Overview
	Federation Framework Samples
	sample1
	sample2
	sample3

	Web Services Framework Samples
	wsc
	sis-ep
	paos
	authnsvc

	Service Schema Files
	Overview
	SOAP Binding Schema
	Personal Profile Schema
	Employee Profile Schema
	Authentication Web Service Schema
	PAOS Binding Schema
	Metadata Description Schema

	Glossary
	Index

