
Sun Java™ System

Directory Server 5.2
Deployment Planning Guide

2005Q1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-7607-10

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.
The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.
L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.
Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents 3

Contents

List of Figures . 9

List of Tables . 13

Preface . 15

Conventions . 15
Related Books . 18
Documentation, Support, and Training . 19
Related Third-Party Web Site References . 19
Sun Welcomes Your Comments . 19

Chapter 1 Directory Server Overview . 21
Server Architecture Overview . 21
Directory Design Overview . 22

Planning the Installation . 23
Planning Data and Data Access . 24
Designing the Schema . 24
Designing the Directory Tree . 24
Designing the Topology . 25
Designing the Replication Process . 25
Designing a Secure Directory . 25
Planning a Monitoring Strategy . 25

Directory Deployment Overview . 25
Piloting Your Directory . 26
Putting Your Directory Into Production . 26

4 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Chapter 2 Planning and Accessing Directory Data . 27
Introduction to Directory Data . 27

What Your Directory Might Include . 28
What Your Directory Should Not Include . 29

Defining Your Data Needs . 29
Performing a Site Survey . 30

Identifying Client Applications . 31
Identifying Data Sources . 33
Characterizing Directory Data . 33
Determining Directory Availability Requirements . 34
Considering a Data Master Server . 34
Determining Data Ownership . 36
Determining Data Access . 37
Documenting Your Site Survey . 38
Repeating the Site Survey . 40

Accessing Directory Data With DSML Over HTTP/SOAP . 40
DSMLv2 Over HTTP/SOAP Deployment . 40

Chapter 3 Directory Server Schema . 43
Directory Server Schema . 43
Schema Design Process . 44
Mapping Your Data to the Default Schema . 45

Viewing the Default Directory Schema . 45
Matching Data to Schema Elements . 46

Customizing the Schema . 47
When to Extend Your Schema . 48
Obtaining and Assigning Object Identifiers . 48
Naming Attributes and Object Classes . 49
Strategies for Defining New Object Classes . 49
Strategies for Defining New Attributes . 51
Deleting Schema Elements . 52
Creating Custom Schema Files - Best Practices and Pitfalls . 52

Maintaining Data Consistency . 55
Schema Checking . 55
Selecting Consistent Data Formats . 57
Maintaining Consistency in Replicated Schema . 57

Other Schema Resources . 58

Chapter 4 The Directory Information Tree . 59
Introduction to the Directory Tree . 59
Designing the Directory Tree . 61

Choosing a Suffix . 62
Creating Your Directory Tree Structure . 63

Contents 5

Distinguished Names, Attributes, and Syntax . 70
Naming Entries . 74

Grouping Directory Entries and Managing Attributes . 77
Static and Dynamic Groups . 78
Managed, Filtered, and Nested Roles . 79
Role Enumeration and Role Membership Enumeration . 80
Role Scope . 81
Role Limitations . 82
Deciding Between Groups and Roles . 82
Managing Attributes with Class of Service (CoS) . 84
About CoS . 85
Cos Definition Entries and CoS Template Entries . 86
CoS Priorities . 87
Pointer CoS, Indirect CoS, and Classic CoS . 87
CoS Limitations . 92

Other Directory Tree Resources . 93

Chapter 5 Distribution, Chaining, and Referrals . 95
Topology Overview . 95
Distributing Data . 96

Using Multiple Databases . 96
About Suffixes . 97

Referrals and Chaining . 100
Using Referrals . 100
Using Chaining . 106
Deciding Between Referrals and Chaining . 108

Chapter 6 Understanding Replication . 113
Introduction to Replication . 113

Replication Concepts . 114
Common Replication Configurations . 122

Single Master Replication . 123
Multi-Master Replication . 124
Cascading Replication . 130
Mixed Environments . 133
Fractional Replication . 135

Defining a Replication Strategy . 136
Performing a Replication Survey . 137
Replication Resource Requirements . 138
Replication Backward Compatibility . 139
Using Replication for High Availability . 139
Using Replication for Local Availability . 140

6 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Using Replication for Load Balancing . 141
Example Replication Strategy for a Small Site . 147
Example Replication Strategy for a Large Site . 147
Replication Strategy for a Large, International Enterprise . 148

Using Replication With Other Directory Features . 148
Replication and Access Control . 149
Replication and the Retro Change Log Plug-In . 149
Replication and the Referential Integrity Plug-In . 153
Replication and Pre-Operation and Post-Operation Plug-Ins . 154
Replication and Chained Suffixes . 154
Schema Replication . 154
Replication and Multiple Password Policies . 155

Replication Monitoring . 156

Chapter 7 Access Control, Authentication, and Encryption . 157
Security Threats . 158

Unauthorized Access . 158
Unauthorized Tampering . 158
Denial of Service . 159

Overview of Security Methods . 159
Analyzing Your Security Needs . 160

Determining Access Rights . 161
Ensuring Data Privacy and Integrity . 162
Conducting Security Audits . 162

Selecting Appropriate Authentication Methods . 162
Anonymous Access . 163
Simple Password . 164
Proxy Authorization . 165
Simple Password Over a Secure Connection . 166
Certificate-Based Client Authentication . 166
SASL-Based Client Authentication . 167

Preventing Authentication by Account Inactivation . 168
Designing Password Policies . 168

Password Policy Features . 169
Configuring Password Policies . 172
Preventing Dictionary-Style Attacks . 175
Password Policies in a Replicated Environment . 176

Designing Access Control . 177
ACI Format . 178
Default ACIs . 178
Setting Permissions . 178
Requesting Effective Rights Information . 181
Tips on Using ACIs . 183

Contents 7

ACI Limitations . 185
Securing Connections With SSL . 186
Encrypting Attributes . 187

What is Attribute Encryption? . 188
Attribute Encryption Implementation . 189
Attribute Encryption and Performance . 190
Attribute Encryption Usage Considerations . 190

Grouping Entries Securely . 192
Using Roles Securely . 192
Using CoS Securely . 193

Securing Configuration Information . 195
Other Security Resources . 195

Chapter 8 Directory Server Monitoring . 197
Defining a Monitoring and Event Management Strategy . 198
Directory Server Monitoring Tools . 198
Directory Server Monitoring . 200

Monitoring Directory Server Activity . 200
Monitoring Database Activity . 202
Monitoring Disk Status . 203
Monitoring Replication Activity . 203
Monitoring Indexing Efficiency . 205
Monitoring Security . 206

SNMP Monitoring . 207
About SNMP . 207
SNMP Monitoring in Directory Server . 209

Chapter 9 Reference Architectures and Topologies . 211
Addressing Failure and Recovery . 211
Planning a Backup Strategy . 212

Choosing a Backup Method . 213
Choosing a Restoration Method . 216

Sample Replication Topologies . 218
Single Data Center . 219
Two Data Centers . 224
Three Data Centers . 227
Five Data Centers . 231
Single Data Center Using the Retro Change Log Plug-In . 234

Chapter 10 System Sizing . 239
Suggested Minimum Requirements . 239

Minimum Available Memory . 240

8 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Minimum Local Disk Space . 240
Minimum Processing Power . 241
Minimum Network Capacity . 241

Sizing Physical Memory . 241
Sizing Memory for Directory Server . 242
Sizing Memory for the Operating System . 243
Sizing Total Memory . 244
Dealing With Insufficient Memory . 244

Sizing Disk Subsystems . 245
Sizing Directory Suffixes . 245
How Directory Server Uses Disks . 246
Distributing Files Across Disks . 249
Disk Subsystem Alternatives . 250
Monitoring I/O and Disk Use . 254

Sizing for Multiprocessor Systems . 254
Sizing Network Capacity . 254
Sizing for SSL . 255

Glossary . 257

Index .259

List of Figures 9

List of Figures

Figure 2-1 Sample DSML-Enabled Directory Deployment . 41

Figure 4-1 Two Root Suffixes in a Single Directory Server . 60

Figure 4-2 One Root Suffix with Multiple Subsuffixes . 61

Figure 4-3 Two Suffixes Stored in Two Different Databases . 63

Figure 4-4 Sample Directory Information Tree Using 5 Branching Points 65

Figure 4-5 ISP ExampleHost.com Directory Information Tree . 66

Figure 4-6 Example.com Corporation Directory Information Tree . 66

Figure 4-7 ExampleHost.com Internet Host Directory Information Tree . 67

Figure 4-8 Three Primary Networks in Example.com Corporation DIT . 68

Figure 4-9 Detailed View of Three Primary Networks in Example.com Corporation DIT 68

Figure 4-10 Directory Information Tree for ExampleHost.com . 69

Figure 4-11 Detailed View of the DIT for ExampleHost.com . 69

Figure 4-12 Example of a Pointer CoS Definition and Template . 88

Figure 4-13 Example of an Indirect CoS Definition and Template . 90

Figure 4-14 Example of a Classic CoS Definition and Template . 91

Figure 5-1 Directory Tree With Three Subsuffixes . 96

Figure 5-2 Three Subsuffixes Stored in Three Separate Databases . 97

Figure 5-3 Example.com’s Three Databases Stored on Two Servers A and B 97

Figure 5-4 Example.com Directory Tree . 98

Figure 5-5 Example.com Corporation’s Directory Tree Split Across Five Databases 98

Figure 5-6 Example.com Corporation Suffixes and Associated Entries . 99

Figure 5-7 ExampleISP.com Directory Tree with One Suffix . 99

Figure 5-8 ExampleISP.com’s Directory Tree With Two Suffixes . 100

Figure 5-9 Smart Referral From American Directory to European Directory 104

10 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 5-10 Smart Referral Traffic . 105

Figure 5-11 Circular Referral Pattern Caused by the Overuse of Smart Referrals 106

Figure 5-12 Chaining Operation . 107

Figure 5-13 Client Application Search Request Redirected Through a Referral 109

Figure 5-14 Search Request using Chaining . 110

Figure 5-15 Chaining Using Two Chained Suffixes to Process a Client’s Search Request 111

Figure 6-1 Single-Master Replication . 123

Figure 6-2 Multi-Master Replication Configuration (Two Masters) . 125

Figure 6-3 Fully Meshed, Four-Way, Multi-Master Replication Configuration 127

Figure 6-4 Replication Configuration for Master A (Fully Meshed Topology) 129

Figure 6-5 Replication Configuration for Consumer Server E (Fully Meshed Topology) 129

Figure 6-6 Cascading Replication Configuration . 130

Figure 6-7 Server Configuration in Cascading Replication . 132

Figure 6-8 Combined Multi-Master and Cascading Replication . 134

Figure 6-9 Using Multi-Master Replication for Load Balancing . 142

Figure 6-10 New York and Los Angeles Subtrees in Respective Geographical Locations 143

Figure 6-11 Load Balancing Using Multi-Master and Cascading Replication 145

Figure 6-12 Retro Change Log and Multi-Master Replication . 150

Figure 6-13 Simplified Topology for Replication of the Retro Change Log 151

Figure 6-14 Failover of the Retro Change Log . 152

Figure 7-1 Attribute Encryption Logic . 189

Figure 8-1 SNMP Monitoring in Directory Server . 210

Figure 9-1 Binary Backup . 215

Figure 9-2 Backup Using db2ldif -r . 216

Figure 9-3 Binary Restore . 217

Figure 9-4 Restore Using ldif2db . 218

Figure 9-5 One Data Center - Basic Topology . 219

Figure 9-6 One Data Center Scaled For Read Performance . 220

Figure 9-7 Single Data Center Recovery Sample Procedure (One Component) 222

Figure 9-8 Two Data Centers Basic Topology . 224

Figure 9-9 Two Data Centers Scaled For Read Performance . 225

Figure 9-10 Two Data Centers Recovery Replication Agreements . 226

Figure 9-11 Three Data Centers Basic Topology . 228

Figure 9-12 Three Data Centers Scaled For Read Performance . 229

Figure 9-13 Three Data Centers Recovery Replication Agreements . 230

Figure 9-14 Five Data Centers Basic Topology . 232

Figure 9-15 Five Data Centers Recovery Replication Agreements . 234

List of Figures 11

Figure 9-16 One Data Center Using the Retro Change Log Plug-in . 235

Figure 9-17 One Data Center Using the Retro Change Log Plug-in (Scaled) 236

Figure 9-18 One Data Center Using the Retro Change Log Plug-in (Recovery) 237

12 Directory Server 5.2 2005Q1 • Deployment Planning Guide

List of Tables 13

List of Tables

Table 2-1 Application Data Needs . 32

Table 2-2 Information Sources . 33

Table 2-3 Directory Data Characteristics . 34

Table 2-4 Data Tracking Table Example for Site Survey Documentation Purposes 39

Table 3-1 Data Mapped to Default Directory Schema . 46

Table 4-1 Traditional DN Branch Point Attributes . 65

Table 4-2 Common RDN Keywords Used in DNs . 71

Table 4-3 Common User and Group Directory Attributes . 73

Table 6-1 Replication Backward Compatibility With Different Directory Server Versions . . . 139

Table 8-1 Source of Database Monitoring Information in cn=config . 202

Table 9-1 Single Data Center - Failure Matrix . 220

Table 10-1 Minimum Disk Space and Memory Requirements . 240

Table 10-2 Values for Sizing Memory for Directory Server . 242

14 Directory Server 5.2 2005Q1 • Deployment Planning Guide

15

Preface

This guide contains the information you need in order to plan your directory
deployment, and to make up front decisions on issues such as data types, access
control, replication, and sizing.

For information about how to access Sun™ documentation and how to use Sun
documentation, see the following sections:

• Conventions

• Related Books

• Documentation, Support, and Training

• Related Third-Party Web Site References

• Sun Welcomes Your Comments

Conventions
Table 1 describes the typeface conventions used in this document.

Table 1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123

(Monospace)

API and language elements, HTML
tags, web site URLs, command
names, file names, directory path
names, on-screen computer output,
sample code.

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123

(Monospace
bold)

What you type, as contrasted with
on-screen computer output.

% su

Password:

Conventions

16 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Table 2 describes placeholder conventions used in this guide.

Table 3 describes the symbol conventions used in this book.

AaBbCc123

(Italic)

Book titles.

New words or terms.

Words to be emphasized.

Command-line variables to be
replaced by real names or values.

Read Chapter 6 in the Developer’s Guide.

These are called class options.

You must be superuser to do this.

The file is located in the ServerRoot
directory.

Table 2 Placeholder Conventions

Item Meaning Examples

install-dir Placeholder for the directory prefix
under which software binaries
reside after installation.

The default install-dir prefix on Solaris
systems is /.

The default install-dir prefix on Red Hat
systems is /opt/sun.

ServerRoot Placeholder for the directory where
server instances and data reside.

You can manage each server under
a ServerRoot remotely through your
client-side Server Console. The
Server Console uses the
server-side Administration Server to
perform tasks that must execute
directly on the server-side system.

The default ServerRoot directory is
/var/opt/sun/serverroot.

slapd-serverID Placeholder for the directory where
a specific server instance resides
under the ServerRoot and its
associated data resides by default.

The default serverID is the host name.

Table 3 Symbol Conventions

Symbol Meaning Notation Example

[] Contain optional command options. O[n] O4, O

{ }

|

Contain a set of choices for a required
command option.

Separates command option choices.

d{y|n} dy

Table 1 Typeface Conventions (Continued)

Typeface Meaning Examples

Conventions

Preface 17

Table 4 describes the shell prompt conventions used in this book.

Input and output of Directory Server commands are usually expressed using the
LDAP Data Interchange Format (LDIF) [RFC 2849]. Lines are wrapped for
readability.

+ Joins simultaneous keystrokes in keyboard
shortcuts that are used in a graphical user
interface.

Ctrl+A

- Joins consecutive keystrokes in keyboard
shortcuts that are used in a graphical user
interface.

Esc-S

> Indicates menu selection in a graphical user
interface.

File > New

File > New > Templates

Table 4 Shell Prompts

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Table 3 Symbol Conventions (Continued)

Symbol Meaning Notation Example

Related Books

18 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Related Books
The following books can be found in HTML and PDF at
http://www.sun.com/documentation/.

Directory Server Books
Directory Server Release Notes

Directory Server Technical Overview

Directory Server Deployment Planning Guide

Directory Server Installation and Migration Guide

Directory Server Performance Tuning Guide

Directory Server Administration Guide

Directory Server Administration Reference

Directory Server Plug-in Developer’s Guide

Directory Server Plug-in Developer’s Reference

Directory Server Man Page Reference

Administration Server Books
Administration Server Release Notes

Administration Server Administration Guide

Administration Server Man Page Reference

Directory Proxy Server Books
Directory Proxy Server Release Notes

Directory Proxy Server Administration Guide

Related Java Enterprise System Books
Java Enterprise System Installation Guide

Java Enterprise System Upgrade and Migration Guide

Java Enterprise System Glossary

Documentation, Support, and Training

Preface 19

Documentation, Support, and Training
Table 5 provides links to Sun documentation, support, and training information.

Related Third-Party Web Site References
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions. Use the web-based form to provide feedback to Sun:

http://www.sun.com/hwdocs/feedback/

Please provide the full document title and part number in the appropriate fields.
The part number is a seven-digit or nine-digit number that can be found on the title
page of the book or at the top of the document. For example, the part number of
this document is 817-7607-10.

Table 5 Documentation, Support, and Training links

Typeface Meaning Examples

Documentation http://www.sun.com/documentation/ Download PDF and HTML documents,
and order printed documents.

Support and Training http://www.sun.com/supportraining/ Obtain technical support, download
patches, and learn about Sun courses.

Sun Welcomes Your Comments

20 Directory Server 5.2 2005Q1 • Deployment Planning Guide

21

Chapter 1

Directory Server Overview

Directory Server provides a centralized directory service for your intranet,
network, and extranet information. It integrates with existing systems and acts as a
centralized repository for the consolidation of employee, customer, supplier, and
partner information. You can extend Directory Server to manage user profiles and
preferences, as well as extranet user authentication.

An introduction to basic LDAP and directory concepts is provided in the Directory
Server Technical Overview. This chapter provides an overview of the server
architecture, and describes at a high level the design and deployment process,
including issues to be taken into account when planning a Directory Server
installation. It is divided into the following sections:

• Server Architecture Overview

• Directory Design Overview

• Directory Deployment Overview

Server Architecture Overview
Any Directory Server deployment includes the following elements:

• Directory Server

• Administration Server

• Sun Java System Server Console

Each of these elements plays a separate role in the deployment.

Directory Design Overview

22 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Directory Server stores the server and application configuration settings, as well as
the user information used by other servers in the enterprise. Typically, application
and server configuration information is stored in one suffix of Directory Server
while user and group entries are stored in another suffix. (A suffix refers to the
name of the entry in the directory tree, below which data is stored.)

The configuration directory or Configuration Directory Server (CDS) stores
information about how Directory Server itself is configured. This directory is
generally installed first, and every subsequent server registers with it. A single
configuration directory provides for centralized administration of all servers.

The user directory stores entries for users and groups who access directory services.
The user directory is generally unique to the network domain, and other servers
access it for user and group information. A single user directory provides for
centralized administration of users and groups.

For small deployments, it is possible to install configuration, user, and other
directories on the same directory instance. For larger deployments, consider
placing the configuration and user directories on separate servers.

Server Console is the front-end management application for all Sun Java System
servers. It finds all servers and applications registered in the configuration
directory, displays them in a graphical interface, and lets you manage and
configure them.

When you log in to Server Console, it connects to an instance of Administration
Server using the Hypertext Transfer Protocol (HTTP.) Administration Server
manages requests for all Sun Java System products installed in a single root folder.

For more information on this architecture, see “Remote Server Administration
Overview” in the Administration Server Administration Guide.

Directory Design Overview
The directory design phase involves gathering data about your directory
requirements, such as environment and data sources, users, and the applications
that will use the directory.

The flexibility of Directory Server enables you to rework your design to meet
unexpected or changing requirements, even after deployment. However, the more
modifications you can avoid through good design, the better.

The design process can be broken into the following steps:

• Planning the Installation

Directory Design Overview

Chapter 1 Directory Server Overview 23

• Planning Data and Data Access

• Designing the Schema

• Designing the Directory Tree

• Designing the Topology

• Designing the Replication Process

• Designing a Secure Directory

• Planning a Monitoring Strategy

Planning the Installation
Before installing Directory Server, ensure that you have taken the following into
consideration:

1. If the deployment involves centralized administration of server configuration,
users, and groups for multiple directory installations, determine the
appropriate configuration and user directory locations. Refer to the
Administration Server Administration Guide for details on appropriate location
of configuration, user, and group data.

2. Restrict physical access to the host system. Although Directory Server includes
a number of security features, your directory security is compromised if
physical access to the host system is not controlled.

3. Ensure the host system uses a static IP address.

4. If the Directory Server instance is not itself providing a naming service for the
network or if the deployment involves remote administration of Directory
Server, ensure a naming service and the domain name for the host are properly
configured.

5. Select the port number you will use for each Directory Server instance at
design time, and, if possible, do not change that port number once your
Directory Server is in production. Changing the port number via the console at
a later stage does not make the necessary changes to the following scripts and
requires that these scripts be modified manually: bak2db.pl,
schema_push.pl, db2bak.pl, check-slapd, db2index.pl, db2ldif.pl,
monitor, ldif2db.pl, ns-accountstatus.pl, ldif2ldap,
ns-activate.pl, ns-inactivate.pl.

Directory Design Overview

24 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Note that the script names given here are the standalone tool names and that
the check-slapd command is not documented as it is not part of the publicly
exposed API. For more information, see the Directory Server Administration
Reference.

Planning Data and Data Access
Your directory will contain data, such as user names, telephone numbers, and
group details. Refer to Chapter 2, “Planning and Accessing Directory Data,” for
information on analyzing the various sources of data in your organization and
understanding their relationship with one another. This chapter describes the types
of data appropriate for storage in a directory, the ways in which this data can be
accessed, and other tasks you must perform when designing the contents of a
directory.

Designing the Schema
Directory Server is designed to support directory-enabled applications. These
applications have specific requirements of the data stored in the directory. The
schema determines the characteristics of the stored data. Chapter 3, “Directory
Server Schema,” introduces the standard schema shipped with Directory Server,
describes how to customize the schema, and provides tips for maintaining
consistent schema.

Designing the Directory Tree
Once you decide what data your directory contains, you need to organize and
reference this data. This is the purpose of the directory tree. Chapter 4, “The
Directory Information Tree,” introduces the directory tree, and guides you through
the design of your data hierarchy. It also describes the mechanisms used to
optimize entry grouping and attribute management, and provides sample
directory tree designs.

Directory Deployment Overview

Chapter 1 Directory Server Overview 25

Designing the Topology
Topology design involves determining how you divide your directory tree among
multiple physical servers and how these servers communicate with one another.
Chapter 5, “Distribution, Chaining, and Referrals,” describes the general principles
behind topology design. It discusses using multiple databases and the mechanisms
available for linking distributed data together, and explains how Directory Server
keeps track of distributed data.

Designing the Replication Process
With replication, multiple Directory Servers maintain the same directory data to
increase read performance and provide fault tolerance. Chapter 6, “Understanding
Replication,” describes how replication works, what kinds of data you can
replicate, common replication scenarios, and tips for building a highly available
directory service.

Designing a Secure Directory
It is essential that you plan how to protect the data in your directory and design the
other aspects of your service to meet the security requirements of your users and
applications. Chapter 7, “Access Control, Authentication, and Encryption,”
describes common security threats, provides an overview of security methods,
discusses the steps in analyzing your security needs, and provides tips for
designing access controls and protecting the integrity of directory data.

Planning a Monitoring Strategy
A well-designed monitoring strategy will enable you to evaluate the success of
your directory deployment and to follow day-to-day directory activities.
Chapter 8, “Directory Server Monitoring,” discusses how to monitor your
directory using SNMP, Directory Server Console, the log files, database
monitoring, and the replication monitoring tools provided with Directory Server.

Directory Deployment Overview
After you have designed your directory service, you start the deployment phase.
The deployment phase consists of the following steps:

Directory Deployment Overview

26 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Piloting Your Directory

• Putting Your Directory Into Production

Piloting Your Directory
The first step of the deployment phase is installing a server instance as a pilot and
testing whether the service can handle your user load. If the service is not
adequate, adjust your design and pilot it again. Adjust your pilot design until you
have a robust service that you can confidently introduce to your enterprise.

For a comprehensive overview of creating and implementing a directory pilot,
refer to Understanding and Deploying LDAP Directory Services (T. Howes, M. Smith,
G. Good, Macmillan Technical Publishing, 1999).

Putting Your Directory Into Production
Once you have piloted and tuned the service, you need to develop and execute a
plan for taking the directory service from a pilot to production. Create a
production plan that includes the following:

• An estimate of the resources you need

• A list of the tasks you must perform before installing servers

• A schedule of what needs to be accomplished and when

• A set of criteria for measuring the success of your deployment

For information on administering and maintaining your directory, refer to the
Directory Server Administration Guide.

27

Chapter 2

Planning and Accessing Directory
Data

The data stored in your directory may include user names, e-mail addresses,
telephone numbers, and information about groups users belong to, or it may
contain other types of information. The type of data in your directory determines
how you structure the directory, to whom you allow access to the data, and how
this access is requested and granted. Directory Server enables you to access
directory data either via LDAP or DSML, extending the types of applications that
can interact directly with the data.

This chapter describes the issues and strategies behind planning and accessing
directory data. It includes the following sections:

• Introduction to Directory Data

• Defining Your Data Needs

• Performing a Site Survey

• Accessing Directory Data With DSML Over HTTP/SOAP

Introduction to Directory Data
Some types of data are better suited to a directory than others. Ideal data for a
directory has the following characteristics:

• It is read more often than written.

Because the directory is tuned for read operations, write operations slow down
server performance.

• It is expressible in attribute-value format (for example, surname=jensen).

Introduction to Directory Data

28 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• It is of interest to more than one audience.

For example, an employee’s name or the physical location of a printer can be of
interest to many people and applications.

• It is accessed from more than one physical location.

For example, an employee’s preference settings for a software application may
not seem to be appropriate for the directory because only a single instance of
the application accesses the information. However, if the application is capable
of reading preferences from the directory and users interact with the
application according to their preferences from different sites, it is useful to
include the preference information in the directory.

What Your Directory Might Include
Examples of data you can store in your directory are:

• Contact information, such as telephone numbers, physical addresses, and
e-mail addresses.

• Descriptive information, such as an employee number, job title, manager or
administrator identification, and job-related interests.

• Organization contact information, such as a telephone number, physical
address, administrator identification, and business description.

• Device information, such as a printer’s physical location, type of printer, and
the number of pages per minute that the printer can produce.

• Contact and billing information for your corporation’s trading partners,
clients, and customers.

• Contract information, such as the customer’s name, due dates, job description,
and pricing information.

• Individual software preferences or software configuration information.

• Resource sites, such as pointers to web servers or the file system of a certain file
or application.

Apart from server administration data, you may want to store the following types
of information in your directory:

• Contract or client account details

• Payroll data

Defining Your Data Needs

Chapter 2 Planning and Accessing Directory Data 29

• Physical device information

• Home contact information

• Office contact information for the various sites within your enterprise

What Your Directory Should Not Include
Directory Server is well suited to managing large quantities of data that client
applications read and occasionally write, but it is not designed to handle large
objects, such as images or other media. These objects should be maintained in a file
system. However, your directory can store pointers to these kinds of applications
through the use of FTP, HTTP, or other types of URL.

Because Directory Server works best for read operations, you should avoid placing
rapidly changing information in the directory. Reducing the number of write
operations improves overall search performance.

Defining Your Data Needs
When you design your directory data, try to think not only of the data you
currently require but also what you may include in your directory in the future.
Considering the future needs of your directory during the design process will
influence how the data is structured and distributed.

As you plan your deployment, consider the following:

• What do you want to put in your directory today? What immediate problem
do you hope to solve by deploying a directory? What are the immediate needs
of the directory-enabled application you use?

• What do you want to put in your directory in the near future? For example,
your enterprise might use an accounting package that does not currently
support LDAP, but that you know will be LDAP-enabled or DSML-enabled in
the near future. You should identify the data used by applications such as this
and plan for the migration of the data into the directory when the technology
becomes available.

Performing a Site Survey

30 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• What do you think you might want to store in your directory in the future? For
example, if you are a hosting environment, perhaps future customers will have
different data requirements to your current customers. Maybe future
customers will want to use your directory to store JPEG images. At a
minimum, this kind of planning helps you identify data sources you might
otherwise not have considered.

Performing a Site Survey
A site survey is a formal method of discovering and characterizing the contents of a
directory. Budget plenty of time for performing a site survey, as data is the key to
your directory architecture. The site survey consists of the following tasks, which
are described briefly here and then in more detail:

• Identify the applications that use the directory.

Determine the directory-enabled applications you deploy and their data needs.

• Identify how the applications will access the directory.

Determine which mode of access - using LDAP or DSML over HTTP/SOAP -
your applications will use.

• Identify data sources.

Survey your enterprise and identify sources of data (such as NT or Netware
directories, PBX systems, human resources databases, e-mail systems, and so
forth).

• Characterize the data the directory must contain.

Determine what objects should be present in the directory (people or groups,
for example), and what attributes of these objects you need to maintain (such
as user name and passwords).

• Determine the level of service you must provide.

Decide how available the directory data must be to client applications and
design your architecture accordingly. How available your directory must be
affects how you replicate data and configure chaining policies to connect data
stored on remote servers.

For more information about replication, refer to Chapter 6, “Understanding
Replication.” For more information on chaining, refer to Chapter 5,
“Distribution, Chaining, and Referrals.”

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 31

• Identify a data master.

A data master contains the primary source for directory data. This data might
be mirrored to other servers for load balancing and recovery purposes. For
each piece of data, determine its data master.

• Determine data ownership.

For each piece of data, determine the person responsible for ensuring that the
data is up-to-date.

• Determine data access.

If you import data from other sources, develop a strategy for bulk imports and
incremental updates. As a part of this strategy, try to master data in a single
place, and limit the number of applications that can change the data. Also, limit
the number of people who write to any given piece of data. A smaller group
ensures data integrity and reduces administrative overhead.

• Document the site survey.

Because of the number of organizations that can be affected by the directory, it
may be helpful to create a directory deployment team that includes
representatives from each affected organization. This team performs the site
survey.

Corporations generally have a human resources department, an accounting or
accounts receivable department, one or more manufacturing organizations,
one or more sales organizations, and one or more development organizations.
Including representatives from each of these organizations can help you
perform the survey. Furthermore, directly involving all the affected
organizations can help build acceptance for the migration from local data
stores to a centralized directory.

• Repeating the site survey.

If your enterprise has more than one office you should repeat the survey to
ensure that each office has been taken into account. It is advisable to set up site
survey teams in each location, who feed their results back into a central site
survey team (with representatives from each location).

Identifying Client Applications
Generally, the applications that access your directory and the data needs of these
applications drive the planning of directory contents. Common applications that
may use your directory include:

Performing a Site Survey

32 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Directory browser applications, such as white pages. These kinds of
applications generally access information such as e-mail addresses, telephone
numbers, and employee names.

• Messaging applications, especially e-mail servers. All e-mail servers require
e-mail addresses, user names, and some routing information. Others require
more advanced information such as the place on disk where a user’s mailbox is
stored, vacation notification information, and protocol information (IMAP
versus POP, for example).

• Directory-enabled human resources applications. These require more personal
information such as government identification numbers, home addresses,
home telephone numbers, birth dates, salary details, and job titles.

• Security, web portal, or personalization applications. These kinds of
applications access profile information.

When you examine the applications that will use your directory, look at the types
of information each application uses. The following table gives an example of
applications and the information used by each:

When you have identified the applications and information used by each
application, you may see that some types of data are used by more than one
application. Doing this kind of exercise during the data planning stage can help
you avoid data redundancy.

The data maintained in your directory, and when it starts being maintained, is
affected by:

• Data required by legacy applications and your user population.

• The ability of legacy applications to communicate with an LDAP directory.

Table 2-1 Application Data Needs
Application Class of Data Data

Phone book People Name, e-mail address, phone number, user ID,
password, department number, manager, mail stop

Web server People, groups User ID, password, group name, group members,
group owner

Calendar server People, meeting rooms Name, user ID, cube number, conference room
name

Web portal People, groups Name, User ID, password, group name, group
members

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 33

Identifying Data Sources
To identify the data to be included in your directory, perform a survey of existing
data sources. Your survey should include the following:

• Identify organizations that provide information.

Locate all the organizations that manage information essential to your
enterprise. Typically this includes your information services, human resources,
payroll, and accounting departments.

• Identify the tools and processes that are information sources.

Some common sources for information are networking operating systems
(Windows, Novell Netware, UNIX NIS), e-mail systems, security systems, PBX
(telephone switching) systems, and human resources applications.

• Determine how centralizing each piece of data affects the management of data.

Centralized data management may require new tools and new processes.
Issues may arise when centralization requires increasing staff in some
organizations and decreasing staff in others.

During your survey, you may come up with a matrix that resembles the following
table, identifying all of the information sources in your enterprise.

Characterizing Directory Data
The data you identify can be characterized as follows:

• Format

• Size

• Number of occurrences in various applications

• Data owner

Table 2-2 Information Sources
Data Source Class of Data Data

Human resources database People Name, address, phone number,
department number, manager

E-mail system People, Groups Name, e-mail address, user ID,
password, e-mail preferences

Facilities system Facilities Building names, floor names, cube
numbers, access codes

Performing a Site Survey

34 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Relationship to other directory data

Study each piece of data you plan to include in your directory to determine what
characteristics it shares with other pieces of data. This helps save time during the
schema design stage, described in Chapter 3, “Directory Server Schema.”

For example, you can create a table that characterizes your directory data as
follows:

Determining Directory Availability Requirements
The level of service you provide, in terms of availability, depends on the
expectations of those who rely on directory-enabled applications. To determine the
level of service an application expects, first determine when and how the
application is used.

As your directory evolves, it may need to support a variety of service levels. It may
be difficult to raise the level of service after your directory is deployed, so make
sure your initial design can meet future needs.

Considering a Data Master Server
The data master is the server that is the primary source of data. If you have more
than one data center (physical site) you need to decide which server will be the
data master, and which servers receives updates from this data master.

Data Mastering for Replication
If you use replication, decide which server will be the master source of your data.
Directory Server supports multi-master configurations, in which more than one
server can be a master for the same data. For more information about replication
and multi-master replication, see Chapter 6, “Understanding Replication.”

Table 2-3 Directory Data Characteristics
Data Format Size Owner Related to

Employee Name Text string 128 characters Human resources User’s entry

Fax number Phone number 14 digits Facilities User’s entry

E-mail address Text Many characters IS department User’s entry

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 35

In the simplest case, put a master source of all your data on two Directory Servers
and then replicate that data to one or more consumer servers. Having two master
servers provides failover in the event that a server goes offline. In more complex
cases, you may want to store the data in multiple databases, so that the entries are
mastered by a server close to the applications that will update or search that data.

Data Mastering Across Multiple Applications
You also need to consider the master source of your data if you have applications
that communicate indirectly with the directory. Keep the processes for changing
data, and the places from which you can change data, as simple as possible. Once
you decide on a single site to master a piece of data, use the same site to master all
of the other data contained there. A single site simplifies troubleshooting if your
databases get out of sync across your enterprise.

Here are some ways you can implement data mastering:

• Master the data in both the directory and all applications that do not use the
directory.

Maintaining multiple masters does not require custom scripts for moving data
in and out of the directory and the other applications. However, if data
changes in one place, someone has to change it on all the other sites.
Maintaining master data in the directory and all applications not using the
directory can result in data being unsynchronized across your enterprise
(which is what your directory is supposed to prevent).

• Master the data in the directory and synchronize data with other applications
using Sun Java System Meta Directory.

Maintaining a data master that synchronizes with other applications makes the
most sense if you are using a variety of different directory and database
applications. Contact your Sun Java System sales representative for more
information about Meta Directory.

Master the data in some application other than the directory and then write
scripts, programs, or gateways to import that data into the directory.

Mastering data in non-directory applications makes the most sense if you can
identify one or two applications that you already use to master your data, and
you want to use your directory only for lookups (for example, for online
corporate telephone books).

Performing a Site Survey

36 Directory Server 5.2 2005Q1 • Deployment Planning Guide

How you maintain master copies of your data depends on your specific needs.
However, regardless of how you maintain data masters, keep it simple and
consistent. For example, you should not attempt to master data in multiple sites,
then automatically exchange data between competing applications. Doing so leads
to a “last change wins” scenario and increases your administrative overhead.

Suppose you want to manage an employee’s home telephone number. Both the
LDAP directory and a human resources (HR) database store this information. The
HR database is LDAP enabled, so you can write an application that automatically
transfers data from the LDAP directory to the HR database, and vice versa.
However, if you attempt to master changes to the telephone number in both the
LDAP directory and the HR database, the last place where the telephone number
was changed overwrites the information in the other database. This is fine if the
last application to write the data had the correct information. But if that
information was out of date (because the HR data was reloaded from a backup, for
example), the correct telephone number in the LDAP directory will be deleted.

Determining Data Ownership
Data ownership refers to the person or organization responsible for making sure the
data is up to date. During the data design phase, decide who can write data to the
directory. Common strategies for determining data ownership include the
following:

• Allow read-only access to the directory for everyone except a small group of
directory content managers.

• Allow individual users to manage strategic subsets of information themselves.

These subsets of information might include their passwords, descriptive
information about themselves and their role within the organization, their
automobile license plate number, and contact information such as telephone
numbers or office numbers.

• Allow a person’s manager to write to some strategic subset of that person’s
information, such as contact information or job title.

• Allow an organization’s administrator to create and manage entries for that
organization. (This makes your organization administrators your directory
content managers.)

• Create roles that give groups of people read or write access privileges.

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 37

For example, you might create roles for human resources, finance, or
accounting. Allow each of these roles to have read access, write access, or both
to the data needed by the group, such as salary information, government
identification number (social security number), and home phone numbers and
address.

For more information about roles and grouping entries, refer to Chapter 4,
“The Directory Information Tree.”

As you determine who can write to the data, you may find that multiple
individuals require write access to the same information. For example, you will
want an information systems or directory management group to have write access
to employee passwords. You may also want the employees themselves to have
write access to their own passwords. While you generally must give multiple
people write access to the same information, try to keep this group small and easy
to identify. Keeping the group small helps ensure your data’s integrity.

For information on setting access control for your directory, see Chapter 7, “Access
Control, Authentication, and Encryption.”

Determining Data Access
After determining data ownership, decide who can read each piece of data. For
example, you may decide to store an employee’s home phone number in your
directory. This data may be useful for a number of organizations, including the
employee’s manager and human resources. You may want the employee to be able
to read this information for verification purposes. However, home contact
information can be considered sensitive. Therefore, you must determine if you
want this kind of data to be widely available across your enterprise.

For each piece of information stored in your directory, decide the following:

• Can the data be read anonymously?

The LDAP protocol supports anonymous access, and allows easy lookups for
common information such as office sites, e-mail addresses, and business
telephone numbers. However, anonymous access gives anyone with access to
the directory access to the common information. You should therefore use
anonymous access sparingly.

• Can the data be read widely across your enterprise?

Performing a Site Survey

38 Directory Server 5.2 2005Q1 • Deployment Planning Guide

You can set up access control so that the client must log in (or bind) to the
directory to read specific information. Unlike anonymous access, this form of
access control ensures that only members of your organization can view
directory information. It also allows you to capture login information in the
directory’s access log, so you have a record of who accessed the information.

For more information about access control, refer to “Designing Access
Control” on page 177.

• Can you identify a group of people or applications that need to read the data?

Anyone who has write privileges to the data generally also needs read access
(with the exception of write access to passwords). You may also have data
specific to a particular organization or project group. Identifying these access
needs helps you determine what groups, roles, and access controls your
directory needs.

For information about groups and roles, see Chapter 4, “The Directory
Information Tree.” For information about access controls, see Chapter 7,
“Access Control, Authentication, and Encryption.”

As you make these decisions for each piece of directory data, you define a security
policy for your directory. Your decisions depend on the nature of your site and the
kinds of security already available. For example, if your site has a firewall or no
direct access to the Internet, you may feel more free to support anonymous access
than if you are placing your directory directly on the Internet.

In many countries, data protection laws govern how enterprises must maintain
personal information, and restrict who has access to the personal information. For
example, the laws may prohibit anonymous access to addresses and phone
numbers, or may require that users have the ability to view and correct information
in entries that represent them. Check with your organization’s legal department to
ensure that your directory deployment follows the necessary laws for the countries
in which your enterprise operates.

The creation of a security policy and the way you implement it is described in
detail in Chapter 7, “Access Control, Authentication, and Encryption.”

Documenting Your Site Survey
Because of the complexity of data design, it is advisable that you document the
results of your site surveys. During each step of the site survey we have suggested
simple tables for keeping track of your data. Consider building a master table that
outlines your decisions and outstanding concerns.

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 39

A basic data tracking example is provided in Table 2-4. This table identifies data
ownership and data access for each piece of data identified by the site survey.

The row representing the employee name data contains the following:

• Owner

Human resources owns this information and is therefore responsible for
updating and changing it.

• Master Server/Application

The PeopleSoft application manages employee name information.

• Self Read/Write

A person can read their own name, but not write (or change) it.

• Global Read

Employee names can be read anonymously by everyone with access to the
directory.

• HR Writable

Members of the HR group can add, change, and delete employee names.

• IS Writable

Members of the information services group can add, change, and delete
employee names.

Table 2-4 Data Tracking Table Example for Site Survey Documentation Purposes
Data Name Owner Master Server

Application
Self
Read/Write

Global Read HR Writable IS Writable

Employee Name HR People Soft Read-only Yes (anonymous) Yes Yes

User password IS Directory US-1 Read/Write No No Yes

Home phone
number

HR People Soft Read/Write No Yes No

Employee
location

IS Directory US-1 Read-only Yes (must log in) No Yes

Office phone
number

Facilities Phone switch Read-only Yes (anonymous) No No

Accessing Directory Data With DSML Over HTTP/SOAP

40 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Repeating the Site Survey
You may need to run more than one site survey, particularly if your enterprise has
offices in multiple cities or countries. You may find your informational needs to be
so complex that you have to allow several different organizations to keep
information at their local offices rather than at a single, centralized site. In this case,
each office that keeps a master copy of information should run its own site survey.
After the site survey process has been completed, the results of each survey should
be returned to a central team (probably consisting of representatives from each
office) for use in the design of the enterprise-wide data schema model and
directory tree.

Accessing Directory Data With DSML Over
HTTP/SOAP

Directory Server 5.2 enables you to access directory data by using Directory Service
Markup Language version 2 (DSMLv2) over HTTP/SOAP.

Versions of Directory Server prior to Directory Server 5.2 enable you to access
directory data using the Lightweight Directory Access Protocol (LDAP).

DSMLv2 is a markup language, that is, a vocabulary and schema that enables users
to describe the structure and content of directory services data operations in an
eXtensible Markup Language (XML) document. DSMLv2 standardizes the way
directory services information is represented in XML. Directory Server supports
the use of DSMLv2 over the Hypertext Transfer Protocol (HTTP/1.1) and uses the
Simple Object Access Protocol (SOAP) version 1.1 as a programming protocol to
transport the DSML content.

For information on configuring the DSML frontend and on accessing and searching
data using DSMLv2 over HTTP/SOAP, see “Configuring DSML” in the Directory
Server Administration Guide.

DSMLv2 Over HTTP/SOAP Deployment
The following sample deployment using DSML-enabled Directory Servers and Sun
Java System Web Proxy Server, enables non-LDAP clients to interact with directory
data.

Accessing Directory Data With DSML Over HTTP/SOAP

Chapter 2 Planning and Accessing Directory Data 41

Figure 2-1 Sample DSML-Enabled Directory Deployment

In this sample deployment, update requests in DSML arriving from non-LDAP
client applications cross a firewall over HTTP port 80 and enter a demilitarized
zone (DMZ.) From there Directory Proxy Server configured as a reverse proxy
server enforces the use of secure HTTP over port 443 for the requests to cross a
second firewall and enter the intranet domain. The requests are then processed by
the two master replicas on Master A and Master B, before being replicated to the
non-DSML enabled Consumers C and D.

Directory
Proxy
Server

Consumer
C

Consumer
D

DSML-
Enabled
Master A

DSML-
Enabled
Master B

Firewall

Firewall

DSML requests
over HTTP
(port 80)

DSML requests over
secure HTTP over SSL
(port 443)

Accessing Directory Data With DSML Over HTTP/SOAP

42 Directory Server 5.2 2005Q1 • Deployment Planning Guide

This deployment enables non-LDAP applications to perform directory operations.
If the client requests are solely lookup requests, it is irrelevant whether the
DSML-enabled Directory Servers hold read-only or read-write copies of the data,
because both would be able to process the lookup requests. However, if a
non-LDAP client issues modification requests, it is important for the
DSML-enabled Directory Servers to hold read-write copies of the data. The default
behavior for a consumer receiving a modification request is to return a referral
with a list of LDAP URLs of the possible masters that could satisfy the request.
Returning an LDAP URL over HTTP to a non-LDAP client application would not
fulfill the objective of keeping client/directory traffic LDAP-free, which is why
read-write copies are preferable. The deployment depicted in Figure 2-1, holds
read-write copies of the data on the DSML-enabled Directory Servers Master A and
Master B. These masters process modification requests and then replicate the data
to the non-DSML enabled Consumers C and D.

The DSML front end constitutes a restricted HTTP server. It accepts only DSML
HTTP post operations, and rejects requests that do not conform to the
SOAP/DSML specification. Therefore, the threat is less extensive than for other
types of HTTP web server. Nonetheless, you should take into account the
following security considerations when including DSML-enabled Directory
Servers in your deployment:

• Protect DSML-enabled Directory Servers by implementing a firewall.

• Use secure HTTP over SSL on port 443 or implement a web proxy server
solution, if you prefer not to impose the use of HTTP over SSL on your clients.

43

Chapter 3

Directory Server Schema

The site survey conducted in Chapter 2 provided information about the data you
plan to store in your directory. Next, you must decide how to represent this data.
The directory schema describes the types of data that can be stored in a directory.
During schema design, each data element is mapped to an LDAP attribute, and
related elements are gathered into LDAP object classes. Well-designed schema
helps maintain data integrity.

This chapter describes how to design schema, and includes the following sections:

• Directory Server Schema

• Schema Design Process

• Mapping Your Data to the Default Schema

• Customizing the Schema

• Maintaining Data Consistency

• Other Schema Resources

For more information about the object classes and attributes found in Directory
Server, in addition to the schema files and directory configuration attributes, refer
to the Directory Server Administration Reference. For information on replicating
schema between servers, refer to “Schema Replication” on page 154.

Directory Server Schema
The directory schema maintains data integrity by imposing constraints on the size,
range, and format of data values. You decide what types of entries your directory
contains (people, devices, organizations, and so forth) and the attributes available
to each entry.

Schema Design Process

44 Directory Server 5.2 2005Q1 • Deployment Planning Guide

The predefined schema included with Directory Server contains the standard RFC
LDAP schema, additional application-specific schema to support the features of
the server, and Directory Server-specific schema extensions. While this schema
meets most directory requirements, you may need to extend it with new object
classes and attributes to accommodate the unique needs of your directory. Refer to
“Customizing the Schema” on page 47 for information on extending the schema.

Directory Server bases its schema format on version 3 of the LDAP protocol
(LDAPv3). This protocol requires directory servers to publish their schemas
through LDAP itself, allowing directory client applications to retrieve the schema
programmatically and to adapt their behavior based on it. The global set of schema
for Directory Server can be found in the entry cn=schema.

The Directory Server schema supports not only the core LDAPv3 schema in RFC
2256, but many other popular product schemas as well. In addition to this,
Directory Server uses a private field in the schema entries called X-ORIGIN, which
describes where the schema entry was defined originally. For example, if a schema
entry is defined in the standard LDAPv3 schema, the X-ORIGIN field refers to RFC
2252. If the entry is defined by Sun for Directory Server’s use, the X-ORIGIN field
contains the value Sun ONE Directory Server.

For example, the standard person object class appears in the schema as follows:

objectclasses: (2.5.6.6 NAME 'person' DESC 'Standard Person
Object Class' SUP top MUST (objectclass $ sn $ cn) MAY (description $
seealso $ telephoneNumber $ userPassword) X-ORIGIN 'RFC 2252')

This schema entry states the object identifier, or OID, for the class (2.5.6.6), the
name of the object class (person), and a description of the class (Standard Person
Object Class), then lists the required attributes (objectclass, sn, and cn) and
the allowed attributes (description, seealso, telephoneNumber, and
userPassword).

Like all Directory Server schema, object classes are defined and stored directly in
Directory Server. This means that you can both query and change your directory’s
schema with standard LDAP operations.

Schema Design Process
During schema design, you select and define the object classes and attributes used
to represent the entries stored by Directory Server. Schema design involves the
following steps:

• Choosing predefined schema elements to meet as many of your needs as
possible.

Mapping Your Data to the Default Schema

Chapter 3 Directory Server Schema 45

• Extending the standard Directory Server schema to define new elements to
meet your remaining needs.

• Planning for schema maintenance.

Where possible, it is best to use the existing schema elements defined in the
standard schema provided with Directory Server. Choosing standard schema
elements helps ensure compatibility with directory-enabled applications. In
addition, as the schema is based on the LDAP standard, you are assured that it has
been reviewed and agreed to by a large number of directory users.

Mapping Your Data to the Default Schema
The data you identified during your site survey, (see “Performing a Site Survey”
on page 30) must be mapped to the default directory schema. This section
describes how to view the default schema and provides a method for mapping
your data to the appropriate schema elements.

If you find elements in your schema that do not match the default schema, you
may need to create custom object classes and attributes. Refer to “Customizing the
Schema” on page 47 for more information.

Viewing the Default Directory Schema
The schema provided with Directory Server is described in a set of files stored in
the following directory:

ServerRoot/slapd-serverID/config/schema

This directory contains all of the common schema for the Sun Java System
products. The LDAPv3 standard user and organization schema is located in the
00core.ldif file. The configuration schema used by earlier versions of the
directory is located in the 50ns-directory.ldif file.

NOTE Do not modify files in this directory while the server is running.

Any changes made manually will not be replicated until other
changes are made by using either LDAP or the Directory Server
Console.

Mapping Your Data to the Default Schema

46 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Matching Data to Schema Elements
The data identified in your site survey must now be mapped to the existing
directory schema. This process involves the following steps:

• Identify the type of object the data describes.

Select an object that best matches the data described in your site survey.
Sometimes, a piece of data can describe multiple objects. You need to
determine if the difference must be noted in your schema. For example, a
telephone number can describe an employee’s telephone number and a
conference room’s telephone number. It is up to you to determine if these
different sorts of data must be considered as different objects in your schema.

• Select a similar object class from the default schema.

Use the common object classes, such as groups, people, and organizations.

• Select a similar attribute from the matching object class.

Select an attribute from within the matching object class that best matches the
piece of data identified in your site survey.

• Identify the unmatched data from your site survey.

If there are some pieces of data that do not match the object classes and
attributes defined by the default directory schema, you will need to customize
the schema. See “Customizing the Schema” on page 47 for more information.

The following table maps directory schema elements to the data identified during
the site survey:

Table 3-1 Data Mapped to Default Directory Schema

Data Owner Object Class Attribute

Employee name HR person cn(commonName)

User password IS person userPassword

Home phone number HR inetOrgPerson homePhone

Employee location IS inetOrgPerson localityName

Office phone number Facilities person telephoneNumber

Customizing the Schema

Chapter 3 Directory Server Schema 47

In Table 3-1, the employee name describes a person. The default directory schema
contains the person object class, which inherits from the top object class. This
object class allows several attributes, one of which is the cn or commonName
attribute, which describes the full name of the person. This attribute makes the best
match for containing the employee name data.

The user password also describes an aspect of the person object. In the list of
allowed attributes for the person object, we find userPassword.

The home phone number describes an aspect of a person; however, there is not an
appropriate attribute in the list associated with the person object class. Analyzing
the home phone number more specifically, we can say it describes an aspect of a
person in an organization’s enterprise network. This object corresponds to the
inetOrgPerson object class in the directory schema. The inetOrgPerson object
class inherits from the organizationalPerson object class, which in turn inherits
from the person object class. The inetOrgPerson object’s allowed attributes
include the homePhone attribute, which is appropriate for containing the
employee’s home telephone number.

Customizing the Schema
You can extend the standard schema if it is too limited for your directory needs.
Directory Server Console assists in managing the schema definition. For more
information, refer to “Extending the Directory Schema” in the Directory Server
Administration Guide.

Keep the following rules in mind when customizing schema:

• Reuse existing schema elements whenever possible. For a complete list of the
existing schema elements, refer to “Object Class Reference” and “Attribute
Reference” in the Directory Server Administration Reference.

• Minimize the number of mandatory attributes you define for each object class.

• Do not define more than one object class or attribute for the same purpose.

• Keep the schema as simple as possible.

NOTE When customizing the schema, do not modify, delete, or replace any
existing definitions of attributes or object classes in the standard
schema. Doing so can lead to compatibility problems with other
directories or other LDAP client applications.

Customizing the Schema

48 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Custom object classes and attributes are defined in the following file:

ServerRoot/slapd-serverID/config/schema/99user.ldif

The following sections describe customizing the directory schema in more detail:

• When to Extend Your Schema

• Obtaining and Assigning Object Identifiers

• Naming Attributes and Object Classes

• Strategies for Defining New Object Classes

• Strategies for Defining New Attributes

• Deleting Schema Elements

• Creating Custom Schema Files - Best Practices and Pitfalls

When to Extend Your Schema
While the object classes and attributes supplied with Directory Server should meet
most of your needs, you may find that a given object class does not allow you to
store specialized information about your organization. Also, you may need to
extend your schema to support the object classes and attributes required by an
LDAP-enabled application’s unique data needs.

Obtaining and Assigning Object Identifiers
Each LDAP object class or attribute must be assigned a unique name and object
identifier (OID). When you define a schema, you need an OID unique to your
organization. One OID is enough to meet all of your schema needs. You simply
add another level of hierarchy to create new branches for your attributes and object
classes. Obtaining and assigning OIDs in your schema involves the following steps:

NOTE Do not modify any Directory Server internal operational attributes,
as these attributes may be modified or overwritten by Sun in future
releases. You can however create your own operational variables for
external applications.

Customizing the Schema

Chapter 3 Directory Server Schema 49

• Obtain an OID for your organization from the Internet Assigned Numbers
Authority (IANA) or a national organization.

In some countries, corporations already have OIDs assigned to them. If your
organization does not already have an OID, one can be obtained from IANA.
For more information, go to the IANA website at:
http://www.iana.org/cgi-bin/enterprise.pl

• Create an OID registry so you can track OID assignments.

An OID registry is a list you maintain that gives the OIDs and descriptions of
the OIDs used in your directory schema. This ensures that no OID is ever used
for more than one purpose. You should then publish your OID registry with
your schema.

• Create branches in the OID tree to accommodate schema elements.

Create at least two branches under the OID branch or your directory schema,
using OID.1 for attributes and OID.2 for object classes. If you want to define
your own matching rules or controls, you can add new branches as needed
(OID.3 for example).

Naming Attributes and Object Classes
When creating names for new attributes and object classes, make the name as
meaningful as possible. This makes your schema easier to use for Directory Server
administrators.

Avoid naming collisions between custom schema elements and existing schema
elements by including a unique prefix on custom elements. For example,
Example.com Corporation might add the prefix Example before each of their
custom schema elements. They might add a special object class called
ExamplePerson to identify Example.com employees in their directory.

Strategies for Defining New Object Classes
Add new object classes when the existing object classes do not support all of the
information you need to store in a directory entry. There are two ways to create
new object classes:

• You can create many new object classes, one for each object class structure to
which you want to add an attribute.

Customizing the Schema

50 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• You can create a single object class that supports all of the attributes that you
create for your directory. You create this kind of an object class by defining it to
be an AUXILIARY object class.

You may find it easiest to mix the two methods.

Suppose your site wants to create the attributes ExampleDepartmentNumber, and
ExampleEmergencyPhoneNumber. You can create several object classes that allow
some subset of these attributes. You might create an object class called
ExamplePerson and have it allow ExampleDepartmentNumber and
ExampleEmergencyPhoneNumber. The parent of ExamplePerson would be
inetOrgPerson. You might then create an object class called
ExampleOrganization and have it also allow ExampleDepartmentNumber and
ExampleEmergencyPhoneNumber. The parent of ExampleOrganization would be
the organization object class.

Your new object classes would appear in LDAPv3 schema format as follows:

objectclasses: (1.3.6.1.4.1.42.2.27.999.1.2.3 NAME 'ExamplePerson'
DESC 'Example Person Object Class' SUP inetorgPerson STRUCTURAL MAY
(ExampleDepartmentNumber $ ExampleEmergencyPhoneNumber))

objectclasses: (1.3.6.1.4.1.42.2.27.999.1.2.4 NAME
'ExampleOrganization' DESC 'Example Organization Object Class' SUP
organization STRUCTURAL MAY (ExampleDepartmentNumber
$ ExampleEmergencyPhoneNumber))

Alternatively, you can create a single object class that allows all of these attributes
and use it with any entry on which you want to use these attributes. The single
object class would appear as follows:

objectclasses: (1.3.6.1.4.1.42.2.27.999.1.2.5 NAME 'ExampleEntry'
DESC 'Example Auxiliary Object Class' SUP top AUXILIARY MAY
(ExampleDepartmentNumber $ ExampleEmergencyPhoneNumber))

The new ExampleEntry object class is marked AUXILIARY, meaning that it can be
used with any entry regardless of its structural object class.

Consider the following when deciding how to implement new object classes:

NOTE The OID of the new object classes in the examples is based on the
Sun Java System OID prefix and must not be used in the deployed
product. To create your own new object classes, you must obtain
your own OID. For more information, refer to “Obtaining and
Assigning Object Identifiers” on page 48.

Customizing the Schema

Chapter 3 Directory Server Schema 51

• Multiple STRUCTURAL object classes result in more schema elements to create
and maintain.

Generally, the number of elements remains small and needs little maintenance.
However, you may find it easier to use a single object class if you plan to add
more than two or three object classes to your schema.

• Multiple STRUCTURAL object classes require more careful and rigid data design.

Rigid data design forces you to consider the object class structure on which
every piece of data will be placed. You may find this to be either helpful or
cumbersome.

• Single AUXILIARY object classes simplify data design when you have data that
you want to put on more than one type of object class structure.

For example, suppose you want preferredOS on both a person and a group
entry. You may want to create only a single object class to allow this attribute.

• Try to design object classes which relate to real objects and group elements that
constitute sensible groupings.

• Avoid required attributes for new object classes.

Requiring attributes can make your schema inflexible. When you create a new
object class, allow rather than require attributes.

After defining a new object class, you need to decide what attributes it allows and
requires and from which object class(es) it inherits.

Strategies for Defining New Attributes
Add new attributes when the existing attributes do not support all of the
information you need to store in a directory entry. Try to use standard attributes
whenever possible. Search the attributes that already exist in the default directory
schema and use them in association with a new object class.

For example, you may find that you want to store more information on a person
entry than the person, organizationalPerson, or inetOrgPerson object classes
support. If you want to store birth dates in your directory, no attribute exists
within the standard Directory Server schema. You can create a new attribute called
dateOfBirth and allow this attribute to be used on entries representing people by
defining a new auxiliary class which allows this attribute.

Customizing the Schema

52 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Deleting Schema Elements
Do not delete the schema elements shipped with Directory Server. Unused schema
elements represent no operational or administrative overhead. If you delete parts
of the standard LDAP schema you may run into compatibility problems with
future installations of Directory Server and other directory-enabled applications.

If you extend the schema and find that you do not use the new elements, you can
delete these unused elements. Before removing schema elements, make sure that
no entry in the directory uses them. The easiest way to do this is to run an
ldapsearch that returns all entries containing that schema element.

For example, before deleting the object class named myObjectClass, you would
run the following ldapsearch command:

ldapsearch -h host -p port -s base "objectclass=myObjectClass"

If you find any such entries, you can delete them or the part that will be removed
from the schema. If you remove the schema definition before removing the entries
that use that definition, you might not be able to modify the entries afterwards.
Schema checks on modified entries will also fail unless you remove the unknown
values from the entry.

Creating Custom Schema Files - Best Practices
and Pitfalls
You can create custom schema files other than the 99user.ldif file provided with
Directory Server. However, you must bear the following in mind when creating
custom schema files, especially when you are using replication:

• When adding new schema elements, all attributes must be defined before they
can be used in an object class. You can define attributes and object classes in the
same schema file.

• Each custom attribute or object class you create should be defined in only one
schema file. This prevents the server from overriding any previous definitions
when it loads the most recently created schema (the server loads the schema in
numerical order first, then in alphabetical order).

• When defining new schema definitions manually it is best practice to add these
definitions to the 99user.ldif file.

Customizing the Schema

Chapter 3 Directory Server Schema 53

When you update schema elements using LDAP, the new elements are written
automatically to the 99user.ldif file. As a result, any other schema definition
changes you may have made in custom schema files may be overwritten.
Using only the 99user.ldif file prevents possible duplications of schema
elements and the danger of schema changes being overwritten.

• Because Directory Server loads schema files in alpha-numerical order, (with
numbers being loaded first), you should name custom schema files as follows:

[00-99]filename.ldif

where the number is higher than any directory standard schema already
defined.

If you name your schema file with a number that is lower than the standard
schema files, the server may encounter errors when loading the schema. In
addition, all standard attributes and object classes will be loaded only after
your custom schema elements have been loaded.

• Make sure that custom schema filenames are not numerically or alphabetically
higher than 99user.ldif as Directory Server uses the highest sequenced file
(numerically, then alphabetically) for its internal schema management.

If you created a schema file and named it 99zzz.ldif for example, the next
time you updated the schema using LDAP or Directory Server Console, all of
the attributes with an X-ORIGIN value of 'user defined' (usually stored in
the 99user.ldif file) would be written to 99zzz.ldif instead. The result
would be two LDIF files that contain duplicate information, and some
information in the 99zzz.ldif file might be erased.

• As a general rule, you should identify the custom schema elements you are
adding with the following two items:

❍ 'user defined' in the X-ORIGIN field of custom schema files,

❍ a more descriptive label such as 'Example.com Corporation defined'
in the X-ORIGIN field, so that the custom schema element is easy to
understand for other administrators. For example X-ORIGIN ('user
defined' 'Example.com Corporation defined').

If you are adding schema elements manually and you do not use 'user
defined' in the X-ORIGIN field, the schema elements will appear in the
read-only section of Directory Server Console and you will not be able to use
the console to edit them.

Customizing the Schema

54 Directory Server 5.2 2005Q1 • Deployment Planning Guide

The 'user defined' value is added automatically by the server if you add
custom schema definitions using LDAP or Directory Server Console. However,
if you do not add a more descriptive value in the X-ORIGIN field, you may
have difficulty understanding what the schema relates to at a later date.

• Propagate any custom schema files manually to all of your servers, because
these changes are not replicated automatically.

When you change the directory schema, the server keeps a time-stamp of when
the schema was changed. At the beginning of each replication session the
server compares its time-stamp with its consumer’s time-stamp and, if
necessary, pushes any schema changes. For custom schema files the server
maintains only one time-stamp, which is associated with the 99user.ldif file.
This means that any custom schema file changes or additions you make to files
other than 99user.ldif will not be replicated. Therefore, you must propagate
custom schema files to all other servers to ensure that all schema information is
present throughout the topology.

To propagate custom schema changes you can either:

❍ Replicate the changes by running the schema_push.pl script, or

❍ Manually copy these custom schema files to all of your servers.

Both methods require that each server is restarted. If you use the
schema_push.pl script to replicate custom schema definitions, you must
maintain your schema on one master only. When schema definitions are
replicated to a consumer on which they do not already exist, they will be stored
in the 99user.ldif file as opposed to the custom schema file in which you
defined them. Storing schema elements in the 99user.ldif file of consumers
does not create a problem as long as you ensure that you maintain your
schema on one master server only.

If you copy your schema files manually, you must remember to copy the files
each time changes are made. If you do not do this the changes may be
replicated and stored in the 99user.ldif file on the consumer. Having the
changes in the 99user.ldif file may make schema management difficult, as
some attributes will appear in two separate schema files on a consumer, once
in the original custom schema file you copied from the supplier and again in
the 99user.ldif file after replication.

• If you do not want custom schema elements to be replicated to other servers in
the replication topology:

❍ define the schema elements you do not want to replicate in a separate file,

❍ do not identify these elements as 'user defined' in the X-ORIGIN field,

Maintaining Data Consistency

Chapter 3 Directory Server Schema 55

❍ set the nsslapd-schema-repl-useronly attribute to on so that only
schema labeled as 'user defined' in the X-ORIGIN field will be
replicated.

For more information about replicating schema, see “Schema Replication” on
page 154.

Maintaining Data Consistency
Maintaining data consistency within Directory Server assists LDAP client
applications in locating directory entries. For each type of information you store in
the directory, select the required object classes and attributes to support that
information, and always use the same ones. If you use schema objects
inconsistently, it becomes difficult to locate information efficiently.

You can maintain schema consistency in the following ways:

• Use schema checking to ensure that attributes and object classes conform to the
schema rules.

• Select and apply a consistent data format.

The following sections describe in detail how to maintain schema consistency.

Schema Checking
Schema checking ensures that all new or modified directory entries conform to the
schema rules. When the rules are violated, the directory rejects the requested
change.

NOTE You must also set the nsslapd-schema-repl-useronly attribute to
on when replicating to a 5.0 or 5.1 Directory Server.

NOTE Schema checking only checks that the proper attributes are present.
It does not verify whether attribute values are in the correct syntax
for the attribute. Directory Server includes an attribute called
nsslapd-valuecheck which allows you to check attributes whose
values have the DN syntax. However, this attribute is turned off by
default, so no attribute values are checked.

Maintaining Data Consistency

56 Directory Server 5.2 2005Q1 • Deployment Planning Guide

By default, the directory enables schema checking. You should not turn schema
checking off on a server that is accepting client updates. For information on turning
schema checking on and off, refer to “Schema Checking” in the Directory Server
Administration Guide.

With schema checking on, you must take note of the required and allowed
attributes as defined by the object classes. Object class definitions usually contain at
least one required attribute, and one or more optional attributes. Optional
attributes are attributes that you are allowed, but not required, to add to the
directory entry. If you attempt to add an attribute to an entry that is neither
required nor allowed according to the entry’s object class definition, Directory
Server returns an object class violation message.

For example, if you define an entry to use the organizationalPerson object class,
then the commonName (cn) and surname (sn) attributes are required for the entry
(you must specify values for these attributes when you create the entry). In
addition, there is a fairly long list of attributes that you can optionally use on the
entry. This list includes such descriptive attributes as telephoneNumber, uid,
streetAddress, and userPassword.

When configuring schema checking, bear the following in mind:

• Generally, you replicate all required attributes for each entry as defined in the
schema, to avoid schema violations. If you want to filter out certain required
attributes using fractional replication, you must disable schema checking.

• If schema checking is enabled with fractional replication, you may not be able
to initialize the server off line (from an ldif file). This is because the server will
not allow you to load the ldif file if required attributes are filtered out.

• Turning schema checking off may improve performance.

• If you have disabled schema checking on a fractional consumer replica, the
whole server instance on which that fractional consumer replica resides will
not enforce schema. As a result, you should avoid configuring supplier
(read-write) replicas on the same server instance.

• Because schema is pushed by suppliers in fractional replication configurations,
the schema on the fractional consumer replica will be a copy of the master
replica’s schema. Therefore, it will not correspond to the fractional replication
configuration being applied.

Maintaining Data Consistency

Chapter 3 Directory Server Schema 57

Selecting Consistent Data Formats
LDAP schema allows you to place any data on any attribute value. However, it is
important to store data consistently in your directory tree by selecting a format
appropriate for your LDAP client applications and directory users.

With the LDAP protocol and Directory Server, you must represent data in the data
formats specified in RFC 2252. In addition, the correct LDAP format for telephone
numbers is defined in the following ITU-T Recommendations documents:

• ITU-T Recommendation E.123.

Notation for national and international telephone numbers.

• ITU-T Recommendation E.163.

Numbering plan for the international telephone services.

For example, a US phone number would be formatted as follows:

+1 555 222 1717

The postalAddress attribute expects an attribute value in the form of a multiline
string that uses dollar signs ($) as line delimiters. A properly formatted directory
entry appears as follows:

postalAddress: 1206 Directory Drive$Pleasant View, MN$34200

Maintaining Consistency in Replicated Schema
Consider the following points for maintaining consistent schema in a replicated
environment:

• Do not modify the schema on a consumer server.

If you modify the schema on a consumer server, it will be more recent than the
schema on the master server. When the master sends replication updates to the
consumer, you will probably observe a number of replication errors because
the schema on the consumer cannot support the new data.

• In a multi-master replication environment, only modify schema on a single
master server.

Other Schema Resources

58 Directory Server 5.2 2005Q1 • Deployment Planning Guide

If you modify the schema on two master servers, the master that was most
recently updated will propagate its version of the schema to the consumer.
This means that the schema on the consumer will be inconsistent with the
schema on the other master.

For more information on schema replication, refer to “Schema Replication” on
page 154.

Other Schema Resources
Refer to the following links for more information about standard LDAPv3 schema:

• Internet Engineering Task Force (IETF)
http://www.ietf.org

• Understanding and Deploying LDAP Directory Services
T. Howes, M. Smith, G. Good, Macmillan Technical Publishing, 1999.

• RFC 2252: LDAPv3 Attribute Syntax Definitions
http://www.ietf.org/rfc/rfc2252.txt

• RFC 2256: Summary of the X.500 User Schema for Use with LDAPv3
http://www.ietf.org/rfc/rfc2256.txt

• RFC 2251: Lightweight Directory Access Protocol (v3)
http://www.ietf.org/rfc/rfc2251.txt

NOTE Directory Server 5.2 uses the 11rfc2307.ldif schema file. The
schema file conforms to rfc2307:

Versions of Directory Server prior to Directory Server 5.2 use the
10rfc2307.ldif schema file.

If replication is enabled between servers running different schema
files, replication fails.

On the Directory Server instance that is using the 10rfc2307.ldif
file, remove the 10rfc2307.ldif file and replace it with a copy of
the 11rfc2307.ldif file.

59

Chapter 4

The Directory Information Tree

The directory information tree (DIT) provides a way to refer to the data stored in
your directory. The types of information stored, the physical nature of your
enterprise, the applications that use your directory, and the types of replication
you use shape the design of the directory tree. This chapter outlines the steps for
designing a directory tree, and includes the following sections:

• Introduction to the Directory Tree

• Designing the Directory Tree

• Grouping Directory Entries and Managing Attributes

• Other Directory Tree Resources

Introduction to the Directory Tree
The directory tree provides a way for directory data to be named and referred to by
client applications. The directory tree interacts closely with other design decisions,
including how you distribute, replicate, or control access to directory data.

A well-designed directory tree provides the following:

• Simplified directory data maintenance

• Flexibility in creating replication policies and access controls

• Support for the applications using the directory

• Simplified directory navigation for users

Introduction to the Directory Tree

60 Directory Server 5.2 2005Q1 • Deployment Planning Guide

The directory tree structure follows the hierarchical LDAP model. The directory
tree organizes data, for example, by group, by people, or by geographical location.
It also determines how data is partitioned across multiple servers. Because data can
only be partitioned at the suffix level, an appropriate directory tree structure is
required to enable you to spread your data across multiple servers.

Directory tree design also has an impact on replication configuration. If you want
to replicate only portions of your directory tree, this must be taken into account
when you design the directory tree. If you plan to use access controls on branch
points, you must also take this into account at design time.

To manage the directory tree, it is defined in terms of suffixes, subsuffixes, and
chained suffixes. A suffix is a branch or subtree whose entire contents are treated as
a unit for administrative tasks. For example, indexing is defined for an entire
suffix, an entire suffix may be initialized in a single operation, and a suffix is the
unit of replication. Data that you wish to access and manage in the same way
should be located in the same suffix. A suffix may be located at the root of the
directory tree where it is sometimes called a root suffix.

The following figure shows a directory with two root suffixes, each for a separate
corporate entity:

Figure 4-1 Two Root Suffixes in a Single Directory Server

A suffix may also be a branch of another in which case it is called a subsuffix. The
parent suffix does not include the contents of the subsuffix for administrative
operations, and the subsuffix is therefore managed independently of its parent.
However, LDAP operation results contain no information about suffixes, and
directory clients are unaware of whether entries are part of root suffixes or
subsuffixes.

The following figure shows a directory with a single root suffix and multiple
subsuffixes for a large corporate entity:

ou=contractors

ou=people ou=groups

dc=example,dc=com

ou=people ou=groups I=Europe

Designing the Directory Tree

Chapter 4 The Directory Information Tree 61

Figure 4-2 One Root Suffix with Multiple Subsuffixes

A suffix corresponds to an individual database within the server. However,
databases and their files are now managed internally by the server. Database
terminology is not used for Directory Server 5.2.

Chained suffixes create a virtual directory tree by referencing suffixes on other
servers. With chained suffixes, Directory Server performs the operation on the
remote suffix and returns the result as if it had been performed locally. The
location of the data is transparent because the client is unaware that the suffix is
chained and that the data is retrieved from a remote server. A root suffix on one
server may have sub-suffixes that are chained to another server, thus creating a
single tree structure from the client’s point of view.

In the special case of cascading chaining, the chained suffix may reference another
chained suffix on the remote server, and so on. Each server will forward the
operation and eventually return the result to the server handling the client’s
request.

For more general information about chaining, refer to Chapter 5, “Distribution,
Chaining, and Referrals”.

Designing the Directory Tree
Directory tree design involves choosing a suffix to contain your data, determining
the hierarchical relationship between data entries, and naming the entries in the
directory tree hierarchy. The following sections describe the design process in
more detail:

• Choosing a Suffix

• Creating Your Directory Tree Structure

• Distinguished Names, Attributes, and Syntax

• Naming Entries

dc=example,dc=com

ou=people ou=groups

dc=example,dc=org

ou=people ou=groups

Designing the Directory Tree

62 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Choosing a Suffix
The suffix is the name of the entry at the root of the directory tree, below which
directory data is stored. You may choose to use multiple suffixes if you have two or
more directory trees that do not have a natural common root.

A default Directory Server installation contains multiple suffixes, one for storing
data and the others for data needed by internal directory operations (such as
configuration information and directory schema). For more information on the
default directory suffixes, refer to “Creating Your Directory Tree” in the Directory
Server Administration Guide.

Suffix Naming Conventions
All directory entries should be located below a common base entry (the suffix.)
Each suffix name should be:

• Globally unique

• Static, so that it rarely changes

• Short, so that entries beneath it are easier to read on screen

• Easy for a person to type and remember

In a single enterprise environment, you should choose suffix name that aligns with
a DNS or internet domain name. For example, if your enterprise owns the domain
name Example.com, your suffix would be:

dc=example,dc=com

The dc (domainComponent) attribute represents your suffix by breaking the domain
name into its component parts.

You can use any attribute to name your suffix. In a hosting environment, however,
the suffix should contain only the following attributes:

• c (countryName)

Contains the two-digit code representing the country name, as defined by ISO.

• l (localityName)

Identifies the county, city, or other geographical area where the entry is located
or which is associated with the entry.

• st (stateOrProvinceName)

Identifies the state or province where the entry resides.

Designing the Directory Tree

Chapter 4 The Directory Information Tree 63

• o (organizationName)

Identifies the name of the organization to which the entry belongs.

The presence of these attributes enables interoperability with subscriber
applications. For example, a hosting organization might use these attributes to
create the following suffix for one of its clients, Example.com:

o=Example.com,st=Washington,c=US

For more information on these attributes, see Table 4-1 on page 65.

Using an organization name followed by a country designation is typical of the
X.500 naming convention for suffixes.

Working With Multiple Suffixes
Each suffix that you define constitutes a unique directory tree. You can create
multiple directory trees, stored in separate databases. For example, you could
create separate suffixes for Example.com and Example2.com and store them in
separate databases, as illustrated in Figure 4-3:

Figure 4-3 Two Suffixes Stored in Two Different Databases

The databases can be stored on a single server or on multiple servers, depending
on resource constraints.

Creating Your Directory Tree Structure
The structure of a directory tree can be flat or hierarchical. As a general rule, your
directory tree should be as flat as possible. However, a degree of hierarchy may be
required when you partition data across multiple databases, prepare replication,
and set access controls.

dc=Example2,dc=com

Database 2

ou=people ou=groups

dc=Example,dc=com

Database 1

ou=people ou=groups

Designing the Directory Tree

64 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Designing your directory tree structure includes the following steps:

• Branching Your Directory

• Identifying Branch Point Attributes

• Replication Considerations

• Access Control Considerations

Branching Your Directory
A branch point is a point at which you define a new subdivision within the directory
tree. When deciding on branch points, avoid potential problematic name changes.
The likelihood of a name changing is proportional to the number of components in
the name that can potentially change. The more hierarchical the directory tree, the
more components in the names, and the more likely the names are to change.

The following guidelines will assist you in defining branch points:

• Branch your tree to represent only the largest organizational subdivisions in
your enterprise. These branch points should be limited to divisions (Corporate
Information Services, Customer Support, Sales and Professional Services, and
so forth). Make sure that your divisions are stable; do not perform this kind of
branching if your enterprise reorganizes frequently.

• Use functional or generic names rather than actual organizational names.
Names change and you do not want to have to change your directory tree
every time your enterprise renames its divisions. Instead, use generic names
that represent the function of the organization (for example, use Engineering
instead of Widget Research and Development).

• If you have multiple organizations that perform similar functions, create a
single branch point for that function instead of branching based on divisional
lines. For example, even if you have multiple marketing organizations, each of
which is responsible for a specific product line, create a single Marketing
subtree. All marketing entries then belong to that tree.

The following sections provide sample directory tree structures for an enterprise
and hosting environment.

Branching in an Enterprise Environment
Name changes can be avoided if you base your directory tree structure on
information that is not likely to change. For example, base the structure on types of
objects in the tree rather than organizations. Some of the objects you might use to
define your structure are:

• ou=people

Designing the Directory Tree

Chapter 4 The Directory Information Tree 65

• ou=groups

• ou=contracts

• ou=employees

• ou=services

Figure 4-4 illustrates a directory tree organized using these objects in a sample
enterprise, Example.com.

Figure 4-4 Sample Directory Information Tree Using 5 Branching Points

Try to use only the traditional branch point attributes (shown in Table 4-1). Using
traditional attributes increases the likelihood of retaining compatibility with
third-party LDAP client applications. In addition, traditional attributes are known
to the default directory schema, which makes it easier to build entries for the
branch DN.

Table 4-1 Traditional DN Branch Point Attributes

Attribute Name Definition

c A country name.

o An organization name. This attribute is typically used to represent a
large divisional branching such as a corporate division, academic
discipline (the humanities, the sciences), subsidiary, or other major
branching within the enterprise. You should also use this attribute to
represent a domain name as discussed in “Suffix Naming
Conventions” on page 62.

ou An organizational unit. This attribute is typically used to represent a
smaller divisional branching of your enterprise than an organization.
Organizational units are generally subordinate to the preceding
organization.

st A state or province name.

l A locality, such as a city, country, office, or facility name.

dc A domain component as discussed in “Suffix Naming Conventions” on
page 62.

ou=people ou=groups ou=contracts ou=employees ou=services

dc=Example,dc=com

Designing the Directory Tree

66 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Branching in a Hosting Environment
For a hosting environment, create a tree that contains two entries of the
organization(o) object class and one entry of the organizationalUnit(ou) object
class beneath the suffix. A sample directory tree for an internet host,
ExampleHost.com, is illustrated in Figure 4-5.

Figure 4-5 ISP ExampleHost.com Directory Information Tree

Identifying Branch Point Attributes
As you design your directory tree, you must decide what attributes will be used to
identify the branch points. Remember that a DN is a unique string composed of
attribute-data pairs. For example, the DN of an entry for Barbara Jensen, an
employee of Example.com Corporation, appears as follows:

cn=Barbara Jensen,ou=people,dc=example,dc=com

Each attribute-data pair represents a branch point in your directory tree. The
directory tree for Example.com Corporation is illustrated in Figure 4-6.

Figure 4-6 Example.com Corporation Directory Information Tree

The directory tree for ExampleHost.com, is illustrated in Figure 4-7.

ou=groupso=interneto=ISP

o=ExampleHost.com,c=us

dc=Example,dc=com

ou=people

cn=Barbara Jensen cn=Billie Holiday

ou=groups

Designing the Directory Tree

Chapter 4 The Directory Information Tree 67

Figure 4-7 ExampleHost.com Internet Host Directory Information Tree

Beneath the root suffix entry, o=ExampleHost.com,c=us, the tree is split into three
branches. The ISP branch contains customer data and internal information for
ExampleHost.com. The internet branch is the domain tree. The groups branch
contains information about the administrative groups.

It is important to be consistent when choosing attributes for your branch points.
Some LDAP client applications may be confused if the distinguished name (DN)
format is inconsistent across your directory tree. For example, if l (localityName)
is subordinate to o (organizationName) in one part of your directory tree, you must
ensure that l is subordinate to o in all other parts of your directory.

A common mistake is to assume that you search your directory based on the
attributes used in the distinguished name. However, the distinguished name is
only a unique identifier for the directory entry and cannot be searched against.
Instead, search for entries based on the attribute-data pairs stored in the entry
itself.

Replication Considerations
When designing your directory tree, consider which entries will be replicated. A
natural way to describe a set of entries to be replicated is to specify the
distinguished name (DN) at the top of a subtree and replicate all entries below it.
This subtree also corresponds to a database, a directory partition containing a
portion of the directory data.

In an enterprise environment you can organize your directory tree so that it
corresponds to the network names in your enterprise. Network names tend not to
change, so the directory tree structure will be stable. Further, using network names
to create the top level branches of your directory tree is useful when you use
replication to tie together different directory servers.

o=customer o=ExampleHost.com

o=interneto=ISP ou=groups

o=ExampleHost.com,c=us

Designing the Directory Tree

68 Directory Server 5.2 2005Q1 • Deployment Planning Guide

For example, Example.com Corporation has three primary networks known as
flightdeck.Example.com, tickets.Example.com, and hangar.Example.com. They
initially branch their directory tree as illustrated in Figure 4-8.

Figure 4-8 Three Primary Networks in Example.com Corporation DIT

After creating the initial structure of the tree, they create additional branches as
illustrated in Figure 4-9.

Figure 4-9 Detailed View of Three Primary Networks in Example.com Corporation DIT

ExampleHost.com, the internet hosting company, branch their directory as
illustrated in Figure 4-10.

dc=Example,dc=com

dc=tickets dc=hangardc=flightdeck

dc=Example,dc=com

dc=ticketsdc=flightdeck dc=hangar

ou=peopleou=groups ou=services ou=peopleou=groups

ou=groups ou=people

ou=services

Designing the Directory Tree

Chapter 4 The Directory Information Tree 69

Figure 4-10 Directory Information Tree for ExampleHost.com

After creating the initial structure of their directory tree, they create additional
branches as illustrated in Figure 4-11.

Figure 4-11 Detailed View of the DIT for ExampleHost.com

Both the enterprise and the hosting organization design their data hierarchies
based on information that is not likely to change often.

Access Control Considerations
Introducing hierarchy into your directory tree can enable certain types of access
control. As with replication, it is easier to group similar entries and then administer
them from a single branch.

o=customer o=ExampleHost.com

o=interneto=ISP ou=groups

o=ExampleHost.com,c=us

o=ExampleHost.com,c=us

o=ExampleHost.com

o=ISP o=internet

dc=com

dc=customer dc=example

ou=groups

o=customer

ou=people ou=groups ou=devices

ou=people ou=groups ou=devices

Designing the Directory Tree

70 Directory Server 5.2 2005Q1 • Deployment Planning Guide

A hierarchical directory tree also enables distributed administration. For example,
if you want to give an administrator from the marketing department access to the
marketing entries and an administrator from the sales department access to the
sales entries, you can do so through your directory tree design.

You can also set access controls based on directory content, rather than the
directory tree. The ACI filtered target mechanism enables you to define a single
access control rule stating that a directory entry has access to all entries containing
a particular attribute value. For example, you could set an ACI filter that gives the
sales administrator access to all the entries containing the attribute ou=Sales.

However, ACI filters can be difficult to manage. You must decide which method of
access control is best suited to your directory: organizational branching in your
directory tree hierarchy, ACI filters, or a combination of the two. To make
managing ACIs easier, Directory Server 5.2 enables you to obtain the effective rights
of an entry, that is, the access control rights that a user has to directory entries and
attributes. The effective rights functionality eases user administration, access
control policy verification, and debugging. For more information, see “Requesting
Effective Rights Information” on page 181.

Distinguished Names, Attributes, and Syntax
This section presents a brief summary of distinguished names, attributes, and
syntax information.

Distinguished Names
A distinguished name (DN) is the string representation of an entry’s name and
location in an LDAP directory. A DN describes a path to a directory entry. Each
user and group in your enterprise is represented in Directory Server by a DN.
Whenever you make changes to user and group information in the directory, you
use distinguished names.

A DN is made up of a number of components called relative distinguished names
(RDNs). Each RDN identifies a specific entry in the directory. To ensure that every
directory entry is unique, LDAP dictates that a single parent entry cannot have two
identical RDNs below it.

Usually, a DN for a user or group contains at least three types of RDN:

• A user name, user ID, or group name (identified by the cn or uid keyword)

• An organization name (identified by the o keyword)

Designing the Directory Tree

Chapter 4 The Directory Information Tree 71

• One or more domain name components (identified by the dc keyword). For
example, example.com contains two domain name components: example and
com.

Other common RDNs are organizational unit (ou), state (st), and country (c).

The composition of a DN depends on the structure of the directory. Most
directories are organized by more categories than just country designations and
organization names. As a result, the DNs used to identify entries are longer and
contain more specific attribute-data pairs. For example, the DNs for three
employees or users in the same company might look like this:

cn=Ben Hurst, ou=Operations, o=Example Corp, st=CA, c=US

cn=Jeff Lee, ou=Marketing, o=Example Corp, st=CA, c=US

cn=Mary Smith, ou=Sales, o=Example Corp, st=MN, c=US

In these examples, all three users work in different departments or organizational
units (ou) and for the same company or organization (o), Example Corp. The third
user works in a different state (st) from the first two users.

LDAP allows organizations and organizational units to contain other organizations
and organizational units, enabling the representation of complex enterprises. For
example, the DN for a group within a large corporation might look like this:

cn=Technical Publications, ou=Super Server Group, ou=Server Division,
o=Example Corporation, o=MegaCorp, dc=megacorp, dc=com

Table 4-2 contains a list of common RDN keywords.

Table 4-2 Common RDN Keywords Used in DNs

RDN
Keyword

Meaning in a DN Description

c country Country in which the user or group resides.
Examples:

c=US

c=GB

cn common name or full name Full name of person or object defined by the
entry. Examples:

cn=Wally Henderson

cn=Database Administrators

cn=printer 3b

Designing the Directory Tree

72 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Attributes
Directory attributes hold descriptive information about an entry. For example, a
user entry might have attributes for a user ID, email address, given name, and
password.

dc domain component Part of a DNS domain. This keyword is typically
used at the top levels of a directory tree.

For example, a user in the example.com
domain might have the following DN:

cn=Barbara Jones,ou=Engineering,
dc=example, dc=com

l locality Locality in which the user or group resides. This
can be the name of a city, country, township, or
other geographic regions. Examples:

l=Tucson

l=Pacific Northwest

l=Anoka County

o organization Organization to which the user or group
belongs. Examples:

o=Sun Java System Software

o=Public Power & Gas

ou organizational unit Unit within an organization. Examples:

ou=Sales

ou=Manufacturing

sn surname User’s last name. Example:

sn=Henderson

st state or province State or province in which the user or group
resides. Examples:

st=Iowa

st=British Columbia

Table 4-2 Common RDN Keywords Used in DNs (Continued)

RDN
Keyword

Meaning in a DN Description

Designing the Directory Tree

Chapter 4 The Directory Information Tree 73

Table 4-3 contains a list of common user and group directory attributes.

A user entry can include many more attributes than those listed above. In addition,
you can create new attributes to meet your company’s needs. For more information
on attributes, see Chapter 3, “Directory Server Schema.”

DN and Attribute Guidelines and Syntax
As you create, select, and use directory entries, follow these guidelines:

Escape commas in RDN values (or enclose them in quotation marks.) If an RDN
value contains a comma, enclose the part of the name that uses the comma in
double-quotation marks or escape it with a backslash. For example, to include the
string Ace Industry, Corp in a DN, use the form:

o="Ace Industry, Corp", c=US

You may achieve the same effect using:

o=Ace Industry\, Corp, c=US

Table 4-3 Common User and Group Directory Attributes

Attribute Keyword Attribute Name Description

givenName given name User’s first name.

mail email address User’s or group’s email
address.

streetAddress street Street number and address of
user or group defined by the
entry. Example:

street=12 Main Street

telephoneNumber telephone User’s or group’s telephone
number. Example: (800)
555-9SUN

title title User’s job title. Examples:

title=writer

title=manager

uid user ID Name that uniquely identifies
the person or object defined by
the entry.

userPassword password A user’s password.

Designing the Directory Tree

74 Directory Server 5.2 2005Q1 • Deployment Planning Guide

When schema checking is turned on, attributes must match directory schema. If
schema checking is turned on, use RDN keywords and attributes that can be
recognized by Directory Server and are allowed by the entry’s object classes. If
schema checking is turned off, you can use all attributes, regardless of an entry’s
object classes. For more information on schema checking, see “Schema Checking”
on page 55.

Specify RDNs in the same sequence or path. Remember that a DN represents a
path through a directory tree. If RDN keywords are not specified in the
appropriate order, Directory Server may not be able to locate an entry. For
example,

cn=Ralph Swenson, ou=Accounting, o=Example Corp, c=US

is not the same as

cn=Ralph Swenson, o=Example Corp, ou=Accounting, c=US

because the organizational unit (ou) and organization (o) keywords are not listed in
the same order.

User IDs must be unique. Exercise caution when using the ldapmodify command
to create users, since the utility does not check for duplicate user IDs unless an
attribute uniqueness plug-in is enabled in the directory for the user ID attribute.
For more information, see “Enforcing Attribute Value Uniqueness,”in the Directory
Server Administration Guide.

Naming Entries
After designing your directory tree structure, you must decide which attributes to
use when naming the entries within the structure. Generally, names are created by
choosing one or more of the attribute values to form a relative distinguished name
(RDN). The attributes you use depend on the type of entry you are naming.

Entry names should adhere to the following rules:

• The attribute you select for naming should be unlikely to change.

• The name must be unique across your directory. A unique name ensures that a
DN can refer to at most one entry in your directory.

When creating entries, define the RDN within the entry. By defining at least the
RDN within the entry, you can locate the entry more easily. This is because
searches are not performed against the actual DN but rather against the attribute
values stored in the entry itself.

Designing the Directory Tree

Chapter 4 The Directory Information Tree 75

Attribute names have a meaning, so try to use the attribute name that matches the
type of entry it represents. For example, do not use l (locality) to represent an
organization, or c (country) to represent an organizational unit.

The following sections provide tips on naming entries:

• Naming Person Entries

• Naming Organization Entries

• Naming Other Kinds of Entries

Naming Person Entries
The person entry’s name, the DN, must be unique. Traditionally, distinguished
names use the commonName, or cn, attribute to name their person entries. That is, an
entry for a person named Babs Jensen might have the distinguished name of:

cn=Babs Jensen,dc=example,dc=com

While this naming method allows you to instantly recognize the person associated
with the entry, the entry might not be unique in an organization where two people
have identical names. This leads to a problem known as DN name collisions, which
are multiple entries with the same distinguished name.

You can avoid common name collisions by adding a unique identifier to the
common name. For example:

cn=Babs Jensen+employeeNumber=23,dc=example,dc=com

However, this naming method can be difficult to maintain, and can lead to
awkward common names for large directories.

A better method is to identify person entries with some attribute other than cn.
Consider using one of the following attributes:

• uid

Use the uid (userID) attribute to specify some unique value of the person.
Possibilities include a user login ID or an employee number. A subscriber in a
hosting environment should be identified by the uid attribute.

• mail

Designing the Directory Tree

76 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Use the mail attribute to contain the value for the person’s e-mail address. This
option can lead to awkward DNs that include duplicate attribute values (for
example: mail=bjensen@Example.com, dc=example,dc=com), so you should use
this option only if you cannot find a unique value that you can use with the uid
attribute. For example, you could use the mail attribute instead of the uid
attribute if your enterprise does not assign employee numbers or user IDs for
temporary or contract employees.

• employeeNumber

For employees of the inetOrgPerson object class, consider using an
employer-assigned attribute value such as employeeNumber.

Whatever attribute-data pair you use for person entry RDNs, make sure that they
are unique, permanent values.

If a person is a subscriber to a service, the entry should be of object class inetUser
and the entry should contain the uid attribute. The attribute must be unique within
a customer subtree. If a person is part of the hosting organization, represent them
as an inetOrgPerson with the nsManagedPerson object class.

When placing person entries in your directory tree remember:

• People in an enterprise should be located in the directory tree below the
organization’s entry.

• Subscribers to a hosting organization should be below the ou=people branch for
the hosted organization.

Naming Organization Entries
The organization entry name, like other entry names, must be unique. Using the
legal name of the organization along with other attribute values helps ensure the
name is unique. For example, you might name an organization entry as follows:

o=Example.com+st=Washington,o=ISP,c=US

You can also use trademarks; however, they are not guaranteed to be unique.

In a hosting environment, include the following attributes in the organization’s
entry:

• o (organizationName)

• objectClass with values of top, organization, and nsManagedDomain

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 77

Naming Other Kinds of Entries
Your directory will contain entries that represent many things, such as localities,
states, countries, devices, servers, network information, and other kinds of data.

For these types of entries, use the commonName (cn) attribute in the RDN if possible.
For example, if you are naming a group entry, name it as follows:

cn=allAdministrators,dc=example,dc=com

Sometimes you need to name an entry whose object class does not support the
commonName attribute. In this case, use an attribute that is supported by the entry’s
object class.

There does not have to be any correspondence between the attributes used for the
entry’s DN and the attributes actually used in the entry. However, having
identifying attributes visible in the DN simplifies the administration of your
directory tree.

Grouping Directory Entries and Managing
Attributes

The directory tree organizes the information of entries hierarchically. This
hierarchy is a type of grouping mechanism, though it is not well suited for
associations between dispersed entries, for organizations that change frequently, or
for data that is repeated in many entries. Directory Server provides two additional
grouping mechanisms; groups and roles, which offer more flexible associations
between entries.

In addition to these grouping mechanisms, Directory Server provides the class of
service (CoS) mechanism for managing attributes so that they are shared between
entries in a way that is invisible to applications. Like the role mechanism, CoS
generates virtual attributes on the entries as they are retrieved. However, CoS does
not define membership but rather allows related entries to share data for coherence
and space considerations.

These entry grouping and attribute management mechanisms and their associated
advantages and limitations are described in the following sections:

• Static and Dynamic Groups

• Managed, Filtered, and Nested Roles

• Role Enumeration and Role Membership Enumeration

• Role Scope

Grouping Directory Entries and Managing Attributes

78 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Role Limitations

• Deciding Between Groups and Roles

• Managing Attributes with Class of Service (CoS)

• About CoS

• Cos Definition Entries and CoS Template Entries

• CoS Priorities

• Pointer CoS, Indirect CoS, and Classic CoS

• CoS Limitations

Static and Dynamic Groups
A group is an entry that identifies the other entries that are its members. The scope
of possible members of a group is the entire directory, regardless of where the
group definition entry is located. Once you know the name of a group, it is easy to
retrieve all of its member entries. The following list describes the characteristics of
static and dynamic groups, and indicates when it is preferable to use each type:

• Static groups explicitly name their member entries. An entry that defines a
static group uses the groupOfNames or groupOfUniqueNames object class and
contains the DN of each member as a value of the member or uniqueMember
attribute respectively. The member attribute contains a DN against which the
server checks to establish group membership. The uniqueMember attribute
contains a DN optionally followed by a hash (#) and a unique identifier label,
against which the server checks membership.

• Static groups are suitable for groups with few members, such as the group of
directory administrators, and not for extremely large groups. You should
avoid creating static groups with more than 20,000 members, because they will
have very poor performance. For groups of this size and more, you should use
dynamic groups or roles. If you must use static groups for more than 20,000
members, use groups of groups rather than a single, large, static group.

• Dynamic groups specify a filter, and all entries that match the filter are
members of the group. These groups are dynamic because membership is
defined each time the filter is evaluated. The definition entry of a dynamic
group belongs to the groupOfUniqueNames and groupOfURLs object classes. The
group members are listed by one or more filters represented as LDAP URL
values of the memberURL attribute, or by one or more DNs as values of the
uniqueMember attribute.

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 79

Although both types of groups can identify members anywhere in the directory,
group definitions should be located under an appropriately named node such as
ou=Groups. This makes them easy to find, for example, when defining access control
instructions (ACIs) that grant or restrict access when the bind credentials are
members of a group.

Managed, Filtered, and Nested Roles
Roles are an entry grouping mechanism that enable you to determine role
membership as soon as an entry is retrieved from the directory. This overcomes the
main disadvantage of the group mechanism. Each role has members, or entries that
possess the role. Every entry that belongs to a role is given the nsRole virtual
attribute whose values are the DNs of all roles for which the entry is a member. As
with groups, you can specify role members explicitly or dynamically.

The role mechanism is simple from a client perspective because the directory
automatically computes role membership. The nsRole attribute is said to be virtual
because it is generated on-the-fly by the server and not stored in the directory. This
means that evaluating roles is more resource-intensive than evaluating groups,
because the server does the work for the client application. However, checking role
membership is uniform and is performed transparently on the server side.

Directory Server supports the following three types of roles:

• Managed Roles - Explicitly assign a role to member entries.

• Filtered Roles - Entries are members if they match a specified LDAP filter. In
this way, the role depends upon the attributes contained in each entry.

• Nested Roles - Enable you to create roles that contain other roles.

NOTE Using the DN of another group as the uniqueMember attribute of a
dynamic group enables you to place groups inside other groups.
These groups are called nested groups.

Grouping Directory Entries and Managing Attributes

80 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Managed Roles
Managed roles are similar to static groups, except that membership is defined in
each member entry and not in the role definition entry. With managed roles, the
administrator assigns a role by adding the nsRoleDN attribute to the participating
entries. The value of this attribute is the DN of the role definition entry. The static
role definition entry only defines the scope of its effect. Members of the role are
entries within that scope, that name the DN of the role definition entry in their
nsRoleDN attribute.

Filtered Roles
Filtered roles are similar to dynamic groups: they define a filter that determines the
members of the role. The value of their nsRoleFilter attribute defines the filtered
role. When the server returns an entry in the scope of a filtered role that matches its
filter string, that entry will contain the generated nsRole attribute identifying the
role.

Nested Roles
Nested roles enable you to create roles that contain other roles. A nested role lists
the definition entries of other roles and combines all the members of their roles. If
an entry is a member of a role that is listed in a nested role, then the entry is also a
member of the nested role.

Role Enumeration and Role Membership
Enumeration

Role Enumeration
The nsRole attribute is read like any other attribute, and clients may use it to
enumerate all roles to which an entry belongs. The nsRole attribute can only be
used by the roles mechanism and is protected against all modifications. However,
it can be read, so if you do not want to expose role membership, you should define
access controls to protect it against reading.

Role Membership Enumeration
Because you can perform searches on virtual attributes, so you can search on the
nsRole attribute and enumerate the members of a role. Note, however, that
non-indexed attributes in a search operation may have a considerable performance
impact.

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 81

Searches based on equality filters are likely to be indexed and as a result efficient,
but negation searches will not be indexed and will result in poorer performance.
The nsRoleDN attribute is indexed by default so searches on managed roles should
be relatively efficient. For filtered and nested roles, where filters can contain both
indexed and non-indexed attributes, you should ensure that the filter contains at
least one indexed attribute so as not to launch a non-indexed search.

Role Scope
Directory Server provides an attribute that allows the scope of a role to be extended
beyond the subtree of the role definition entry. This single-valued attribute,
nsRoleScopeDN, contains the DN of the scope to be added to an existing role. The
nsRoleScopeDN attribute can only be added to a nested role.

The nsRoleScopeDN attribute enables you to extend the scope of a role in one subtree
to include an entry in another subtree. For example, imagine two main subtrees in
the Example.com directory tree: o=eng,dc=example,dc=com (the engineering
subtree) and o=sales,dc=example,dc=com (the sales subtree.) A user in the
engineering subtree requires access to a sales application governed by a role in the
sales subtree (SalesAppManagedRole). To extend the scope of the role, you would:

1. Create a role for the user in the engineering subtree, for example,
EngineerManagedRole. (This example uses a managed role but it could just as
well have been a filtered or nested role).

2. Create a nested role, for example, SalesAppPlusEngNestedRole, in the sales
subtree to house the newly created EngineerManagedRole and the initial
SalesAppManagedRole.

3. Add the nsRoleScopeDN attribute to the SalesAppPlusEngNestedRole, with the
DN of the engineering subtree scope you want to add, (in this case
o=eng,dc=example,dc=com.)

The necessary permissions must be granted to the engineering user, so that he can
access the SalesAppPlusEngNestedRole role, and in turn the sales application. In
addition, the entire scope of the role must be replicated.

NOTE The restriction of extended scope to nested roles means that an
administrator who previously managed roles in one domain will
only have rights to use the roles that already exist in the other
domain, and will not be able to create an arbitrary role in the other
domain.

Grouping Directory Entries and Managing Attributes

82 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Role Limitations
When creating roles to support your directory service, be aware of the following
limitations:

• Roles and chaining

If your directory tree is distributed over several servers using the chaining feature,
entries that define roles must be located on the same server as the entries
possessing those roles. If one server, A, receives entries from another server, B,
through chaining, those entries will contain the roles defined on B, but will not be
assigned any of the roles defined on A.

• Filtered Roles cannot use CoS generated attributes

The filter string of a filtered role cannot be based on the values of a CoS virtual
attribute. For more information see “About CoS” on page 85. However, the
specifier attribute in a CoS definition may reference the nsRole attribute generated
by a role definition. For information on creating role-based attributes, refer to
“Creating Role-Based Attributes” in the Directory Server Administration Guide.

• Extending the Scope of Roles

You can extend the scope of roles to different subtrees but they must be on the
same server instance. Scoping roles to other servers is not supported.

Deciding Between Groups and Roles
The groups and roles mechanisms provide a degree of overlapping functionality,
and both have advantages and disadvantages. Generally, the more recent roles
mechanism is designed to provide frequently required functionality more
efficiently. Because the choice of a grouping mechanism influences server
complexity and determines how clients process membership information, you
must plan your grouping mechanism carefully. You should understand the set
membership queries and set management operations that will be performed, to
decide which mechanism is more suitable.

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 83

Advantages of the Groups Mechanism
• Static Groups are preferable to roles for enumerating members, when

membership does not exceed 20,000 members.

If you only need to enumerate members of a given set, it is less costly to use
static groups, provided that the number of members does not exceed 20,000.
Static groups with more than 20,000 members have a negative performance
impact. Enumerating members of a static group by retrieving the member
attribute is easier than recovering all entries that share a role.

• Static groups are preferable to roles for set management operations such as
assigning and removing members.

Static groups are the simplest mechanism for assigning a user to a set or
removing a user from a set, because special access rights are not required to
add the user to the group.

Having the right to create the group entry automatically gives you the right to
assign members to that group. This is not the case for managed and filtered
roles, where the administrator must also have the right to write the nsroledn
attribute to the user entry. The same access right restrictions also apply
indirectly to nested roles, as the ability to create a nested role implies the ability
to be able to pull together other roles that have already been defined.

• Dynamic groups are preferable to roles for use in filter-based ACIs.

If you only need to find all members based on a filter, such as for designating
bind rules in ACIs, use dynamic groups. Although filtered roles are similar to
dynamic groups, they will trigger the roles mechanism and generate the
virtual nsRole attribute. If your client does not need the nsRole value, opting
for dynamic groups will avoid the overhead of this computation.

• Groups are preferable to roles for adding or removing sets into or from existing
sets.

If you want to add or remove a set into or from an existing set, the groups
mechanism is simplest, as there are no nesting restrictions. The roles
mechanism only allows nested roles to receive other roles.

• Groups are preferable to roles if flexibility of scope for grouping entries is
critical.

Groups are flexible in terms of scope as the scope for possible members is the
entire directory, regardless of where the group definition entries are located.
Although roles can also extend their scope beyond a given subtree, they can
only do so by adding a scope-extending attribute nsRoleScopeDN to a nested
role, which constitutes a scope extension limitation.

Grouping Directory Entries and Managing Attributes

84 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Advantages of the Roles Mechanism
• Roles are preferable to groups if you want to enumerate members of a set and

find all set membership for an entry.

Roles push membership information out to the user entry where it can be
cached to make subsequent membership tests more efficient. The server
performs all computations, and the client only needs to read the values of the
nsRole attribute. In addition, all types of roles appear in this attribute, allowing
the client to process all roles uniformly. Roles can perform both operations
more efficiently and with simpler clients than is possible with groups.

• Roles are preferable to groups if you want to integrate your grouping
mechanism with existing Directory Server functionality such as CoS, Password
Policy, Account Inactivation and ACIs.

If you want to use the membership of a set “naturally” in the server, that is,
take advantage of the membership computations that the server will do
automatically, roles are a better option. Roles can be used in resource-oriented
ACIs, as a basis for CoS, as part of more complex search filters, Password
Policy, Account Inactivation, and so forth. Groups do not allow this kind of
integration.

Managing Attributes with Class of Service (CoS)
The CoS mechanism enables you to share attributes between entries in a way that is
transparent to applications. CoS generates virtual attributes on entries as they are
retrieved, in the same way as the roles mechanism. CoS does not define
membership, (it does not group entries in the way that the roles mechanism does,)
but allows related entries to share data for coherence and space considerations.
This section examines the CoS mechanism in more detail and is divided into the
following topics:

• About CoS

• Cos Definition Entries and CoS Template Entries

• CoS Priorities

• Pointer CoS, Indirect CoS, and Classic CoS

• CoS Limitations

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 85

About CoS
Imagine a directory containing thousands of entries that all have the same value for
the facsimileTelephoneNumber attribute. Traditionally, to change the fax number,
you would update each entry individually, a time consuming job for
administrators. Using CoS, the fax number is stored in a single place, and Directory
Server automatically generates the facsimileTelephoneNumber attribute on every
concerned entry as it is returned.

To client applications, a generated CoS attribute is retrieved just as any other
attribute. However, directory administrators now have only a single fax value to
manage. Also, because there are less values stored in the directory, the database
uses less disk space. The CoS mechanism also allows entries to override a
generated value or to generate multiple values for the same attribute.

Generated CoS attributes can be multi-valued. Specifiers may designate several
template entries, or there may be several CoS definitions for the same attribute.
Alternatively, you can specify template priorities so that only one value is
generated from all templates. For more information, refer to “Defining Class of
Service (CoS)” in the Directory Server Administration Guide . Roles and classic CoS
can be used together to provide role-based attributes. These attributes appear on an
entry because it possesses a particular role with an associated CoS template. You
could use a role-based attribute to set the server look through limit on a
role-by-role basis, for example.

CoS functionality can be used recursively; you can generate attributes through CoS
that depend on other attributes generated through CoS. Complex CoS schemes
may simplify client access to information and ease administration of repeated
attributes, but they also increase management complexity and degrade server
performance. Avoid overly complex CoS schemes; many indirect CoS schemes can
be redefined as classic or pointer CoS, for example.

You should also avoid changing CoS definitions more often than necessary.
Modifications to CoS definitions do not take effect immediately, because the server
caches CoS information. Although caching accelerates read access to generated
attributes, when changes to CoS information occur, the server must reconstruct the
cache. This task can take some time, usually in the order of seconds. During cache
reconstruction, read operations may still access the old cached information, rather
than the newly modified information, which means that if you change CoS
definitions too frequently, you are likely to be accessing outdated data.

NOTE As CoS virtual attributes are not indexed, referencing them in an
LDAP search filter may have an impact on performance.

Grouping Directory Entries and Managing Attributes

86 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Cos Definition Entries and CoS Template Entries
The CoS mechanism relies on two types of entries; the CoS definition entry and the
CoS template entry.

CoS Definition Entry
The CoS definition entry identifies the type of CoS and the names of the CoS
attributes that will be generated. Like the role definition entry, it inherits from the
LDAPsubentry object class. The location of the definition entry determines the scope
of the CoS, which is the entire subtree below the parent of the CoS definition entry.
All entries in the branch of the definition entry’s parent are called target entries for
the CoS definition. Multiple definitions may exist for the same CoS attribute,
which, as a result, may be multi-valued.

The CoS definition entry is an instance of the cosSuperDefinition object class. The
CoS definition entry also inherits from one of the following object classes to specify
the type of CoS:

• cosPointerDefinition

• cosIndirectDefinition

• cosClassicDefinition

The CoS definition entry contains the attributes specific to each type of CoS for
naming the virtual CoS attribute, the template DN, and the specifier attribute in
target entries. By default, the CoS mechanism will not override the value of an
existing attribute with the same name as the CoS attribute. However, the syntax of
the CoS definition entry allows you to control this behavior.

CoS Template Entry
The CoS template entry contains the value that is generated for the CoS attribute.
All entries within the scope of the CoS use the values defined here. There may be
several templates, each with a different value, in which case the generated attribute
may be multi-valued. The CoS mechanism selects one of these values based on the
contents of both the definition entry and the target entry.

NOTE When schema checking is turned on, the CoS attribute will be
generated on all target entries that allow that attribute. When
schema checking is turned off, the CoS attribute will be generated
on all target entries.

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 87

The CoS template entry is an instance of the cosTemplate object class. The CoS
template entry contains the value or values of the attributes generated by the CoS
mechanism. The template entries for a given CoS are stored in the directory tree at
the same level as the CoS definition.

CoS Priorities
It is possible to create CoS schemes that compete with each other to provide an
attribute value. For example, you might have a multi-valued cosSpecifier in your
CoS definition entry. In such a case, you can specify a template priority on each
template entry to determine which template provides the attribute value. Set the
template priority using the cosPriority attribute. This attribute represents the
global priority of a particular template numerically. A priority of zero is the highest
possible priority.

Templates that contain no cosPriority attribute are considered the lowest possible
priority. In the case where two or more templates are considered to supply an
attribute value and they have the same (or no) priority, a value is chosen
arbitrarily.

Pointer CoS, Indirect CoS, and Classic CoS
There are three types of CoS that differ in how the template, and thus the generated
value, is selected. The three different types of CoS are:

• Pointer CoS

• Indirect CoS

• Classic CoS

NOTE When possible, definition and template entries should be located in
the same place, for easier management. You should also name them
in a way that suggests the functionality they provide. For example, a
definition entry DN such as
"cn=classicCosGenEmployeeType,ou=People,dc=example,dc=com" is
more descriptive than
"cn=ClassicCos1,ou=People,dc=example,dc=com". For more
information about the object classes and attributes associated with
each type of CoS, refer to “Defining Class of Service (CoS)” in the
Directory Server Administration Guide.

Grouping Directory Entries and Managing Attributes

88 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Pointer CoS
Pointer CoS is the simplest type of CoS. The pointer CoS definition entry provides
the DN of a specific template entry of the cosTemplate object class. All target entries
have the same CoS attribute value, as defined by this template.

Pointer CoS Example
Figure 4-12 shows a pointer CoS that defines a common postal code for all of the
entries stored under dc=example,dc=com. The CoS definition entry, CoS template
entry and target entry are indicated.

Figure 4-12 Example of a Pointer CoS Definition and Template

The template entry is identified by its DN, cn=exampleUS,cn=data, in the CoS
definition entry. Each time the postalCode attribute is queried on entries under
dc=example,dc=com, Directory Server returns the value available in the template
entry cn=exampleUS,cn=data. Therefore, the postal code will appear with the entry
uid=wholiday,ou=people,dc=example,dc=com, but it is not stored there.

In a scenario where several shared attributes are generated by CoS for thousands
or millions of entries, instead of existing as real attributes in each entry, the storage
space savings and performance gains provided by CoS are considerable.

cn=exampleUS,cn=data

postalCode:44438

CoS Template Entry

uid=wholiday,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
postalCode:44438

Target Entry

cn=PointerCoS,dc=example,dc=com

cosTemplateDN:cn=exampleUS,cn=data
cosAttribute:postalCode

CoS Definition Entry

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 89

Indirect CoS
Indirect CoS allows any entry in the directory to be a template and provide the CoS
value. The indirect CoS definition entry identifies an attribute, called the indirect
specifier, whose value in a target entry determines the template used for that entry.
The indirect specifier attribute in the target entry must contain a DN. With indirect
CoS, each target entry may use a different template and thus have a different value
for the CoS attribute.

For example, an indirect CoS that generates the departmentNumber attribute may
use an employee’s manager as the specifier. When retrieving a target entry, the CoS
mechanism will use the DN value of the manager attribute as the template. It will
then generate the departmentNumber attribute for the employee using the same
value as the manager’s department number.

Indirect CoS Example
Figure 4-13 on page 90 shows an indirect CoS that uses the manager attribute of the
target entry to identify the template entry. In this way, the CoS mechanism can
generate the departmentNumber attribute of all employees to be the same as their
manager’s, ensuring that it is always up to date.

CAUTION Because templates may be arbitrary entries anywhere in the
directory tree, implementing access control for indirect CoS can
become extremely complex. In deployments where performance is
critical, you should also avoid overusing indirect CoS due to its
resource intensive nature.

In many cases, results that are similar to those made possible by
indirect CoS can be achieved by limiting the location of the target
entries with classic CoS or using the less flexible pointer CoS
mechanism.

Grouping Directory Entries and Managing Attributes

90 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 4-13 Example of an Indirect CoS Definition and Template

The indirect CoS definition entry names the specifier attribute, which in this
example, is the manager attribute. William Holiday’s entry is one of the target
entries of this CoS, and his manager attribute contains the DN of
uid=cfuentes,ou=people,dc=example,dc=com. Therefore, Carla Fuentes’ entry is the
template, which in turn provides the departmentNumber attribute value of 318842.

Classic CoS
Classic CoS combines the pointer and indirect CoS behavior. The classic CoS
definition entry identifies the base DN of the template and a specifier attribute. The
value of the specifier attribute in the target entries is then used to construct the DN
of the template entry as follows:

cn=specifierValue,baseDN

The template containing the CoS values is determined by the combination of the
RDN (relative distinguished name) value of the specifier attribute in the target
entry and the template’s base DN.

Classic CoS templates are entries of the cosTemplate object class to avoid the
performance issue associated with arbitrary indirect CoS templates.

cn=IndirectCoS,dc=example,dc=com

cosIndirectSpecifier:cn=manager
cosAttribute:departmentNumber

CoS Definition Entry

uid=cfuentes,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:Carla Fuentes
uid:cfuentes
departmentNumber:318842

CoS Template Entry

uid=wholiday,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
manager:uid=cfuentes,ou=people,

dc=example,dc=com
departmentNumber:318842

Target Entry

Grouping Directory Entries and Managing Attributes

Chapter 4 The Directory Information Tree 91

Classic CoS Example
The classic CoS mechanism determines the DN of the template from the base DN
given in the definition entry and the specifier attribute in the target entry. The
value of the specifier attribute is taken as the cn value in the template DN.
Template DNs for classic CoS must therefore have the following structure:

cn=specifierValue,baseDN

Figure 4-14 shows a classis CoS definition that generates a value for the postal code
attribute.

Figure 4-14 Example of a Classic CoS Definition and Template

In this example, the Cos definition entry’s cosSpecifier attribute names the
employeeType attribute. The combination of this attribute and the template DN
identifies the template entry as cn=sales,cn=exampleUS,cn=data. The template
entry then provides the value of the postalCode attribute to the target entry.

Cn=sales,cn=exampleUS,cn=data

postalCode:44438

CoS Definition Entry

uid=wholiday,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
employeeType:sales
postalCode:44438

Target Entry

cn=ClassicCoS,dc=example,dc=com

cosTemplateDN:cn=exampleUS,cn=data
cosSpecifier:employeeType
cosAttribute:postalCode

CoS Definition Entry

Grouping Directory Entries and Managing Attributes

92 Directory Server 5.2 2005Q1 • Deployment Planning Guide

CoS Limitations
The CoS functionality is a complex mechanism which, for performance and
security reasons, is subject to the following limitations.

• Restricted subtrees

You cannot create CoS definitions in either the cn=config or cn=schema
subtrees.

• Unindexed searches

Searches in suffixes where an attribute is declared as a CoS-generated attribute
will result in an unindexed search. This may have a significant impact on
performance. In suffixes where the same attribute is NOT declared as a CoS
attribute, the search will be indexed.

• Restricted attribute types

The following attributes should not be generated by CoS because they do not
have the same behavior as real attributes of the same name:

❍ userPassword - A CoS-generated password value cannot be used to bind to
Directory Server.

❍ aci - Directory Server will not apply any access control based on the
contents of a virtual ACI value defined by CoS.

❍ objectclass - Directory Server will not perform schema checking on the
value of a virtual object class defined by CoS.

❍ nsRoleDN - A CoS-generated nsRoleDN value will not be used by the server
to generate roles.

• All templates must be local

The DNs of template entries, either in a CoS definition or in the specifier of the
target entry, must refer to local entries in the directory. Templates and the
values they contain cannot be retrieved through directory chaining or referrals.

• CoS virtual values cannot be combined with real values

The values of a CoS attribute are never a combination of real values from the
entry and virtual values from the templates. When the CoS overrides a real
attribute value, it replaces all real values with those from the templates.
However, the CoS mechanism can combine virtual values from several CoS
definition entries. For more information, see “CoS Limitations” in the Directory
Server Administration Guide.

Other Directory Tree Resources

Chapter 4 The Directory Information Tree 93

• Filtered roles cannot use CoS-generated attributes

The filter string of a filtered role cannot be based on the values of a CoS virtual
attribute. However, the specifier attribute in a CoS definition may reference the
nsRole attribute generated by a role definition. For more information, see
“Creating Role-Based Attributes” in the Directory Server Administration Guide.

• Access Control Instructions (ACIs)

The server controls access to attributes generated by a CoS in exactly the same
way as regular, stored attributes. However, access control rules that depend on
the value of attributes generated by CoS are subject to the conditions described
in “Restricted attribute types” on page 92.

• CoS cache latency

The CoS cache is an internal Directory Server structure that keeps all CoS data
in memory to improve performance. This cache is optimized for retrieving CoS
data to be used in computing virtual attributes, even while CoS definition and
template entries are being updated. Therefore, once definition and template
entries have been added or modified, there may be a slight delay before they
are taken into account. This delay depends on the number and complexity of
CoS definitions, as well as the current server load, but it is usually in the order
of a few seconds. Consider this latency before designing overly complex CoS
configurations.

Other Directory Tree Resources
The following links provide additional information on designing your directory
tree:

• RFC 2247: Using Domains in LDAP/X.500 Distinguished Names
http://www.ietf.org/rfc/rfc2247.txt

• RFC 2253: LDAPv3, UTF-8 String Representation of Distinguished Names
http://www.ietf.org/rfc/rfc2253.txt

Other Directory Tree Resources

94 Directory Server 5.2 2005Q1 • Deployment Planning Guide

95

Chapter 5

Distribution, Chaining, and Referrals

Chapter 4, “The Directory Information Tree,” described how Directory Server
stores entries. Because Directory Server can store a large number of entries, you
may need to distribute entries across more than one server. The directory topology
describes how you divide your directory tree among multiple physical Directory
Servers, and how these servers link with one another.

This chapter describes how you can use data distribution, chaining, and referrals to
manage directory data more effectively. It is divided into the following topics:

• Topology Overview

• Distributing Data

• Referrals and Chaining

Topology Overview
A distributed directory is one in which the directory tree is spread across multiple
physical Directory Servers. Dividing your directory in this way enables you to:

• Achieve better performance for directory-enabled applications

• Increase the availability of your directory

• Improve the management of your directory

When a directory is divided among several servers, each server is responsible for
only a part of the directory tree. The distributed directory works in a similar way to
the Domain Name Service (DNS), which assigns each portion of the DNS
namespace to a particular DNS server. In the same way, you can distribute your
directory namespace across servers while maintaining, from a client point of view,
a single directory tree.

Distributing Data

96 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Directory Server also provides the referral and chaining mechanisms for linking
directory data stored in different databases. (The suffix is the basic unit for tasks
such as replication, performing backups, and restoring data.) The remainder of this
chapter describes suffixes, referrals, and chaining, and describes how you can
design indexes to improve directory performance.

Distributing Data
Distributing data enables you to scale your directory across multiple server
instances, without the need for all directory entries to be located on each server in
your enterprise. The server instances may or may not (depending on performance
requirements) be stored on several machines. A distributed directory can therefore
hold a much larger number of entries than would be possible with a single server.

In addition, you can configure your directory to hide the distribution details from
the user or client application. As far as directory clients are concerned, a single
directory answers their directory queries.

The following sections describe the mechanics of data distribution in more detail:

• Using Multiple Databases

• About Suffixes

Using Multiple Databases
Directory Server stores data in LDBM databases. The LDBM database is a
high-performance disk-based database. Each database consists of a set of large files
that contains all of the data assigned to it. You can store different portions of your
directory tree in different databases. Imagine, for example, your directory tree
contains three subsuffixes, as shown in Figure 5-1.

Figure 5-1 Directory Tree With Three Subsuffixes

dc=Example,dc=com

ou=people ou=groups ou=services

Distributing Data

Chapter 5 Distribution, Chaining, and Referrals 97

You can store the data of the three subsuffixes in three separate databases as shown
in Figure 5-2.

Figure 5-2 Three Subsuffixes Stored in Three Separate Databases

When you divide your directory tree among a number of databases, these
databases can be distributed across multiple servers, which generally equates to
several physical machines to improve performance. The three databases in the
preceeding figure can be stored on two servers as shown in Figure 5-3.

Figure 5-3 Example.com’s Three Databases Stored on Two Servers A and B

Distributing databases across multiple servers reduces the amount of work each
server needs to do. Thus, the directory can be made to scale to a much larger
number of entries than would be possible with a single server. Directory Server
also supports adding databases dynamically, so you can add new databases as
required, without taking the entire directory off-line.

About Suffixes
Each database contains the data within a suffix of Directory Server. You can create
both suffixes and subsuffixes to organize the contents of your directory tree. A
suffix is the entry at the root of a tree. It can be the root of the entire directory tree,
or part of a larger tree.

A subsuffix is a branch underneath a suffix. Subsuffixes represent the distribution
of directory data.

DB1

ou=people,dc=Example,dc=com

DB2

ou=groups,dc=Example,dc=com

DB3

ou=services,dc=Example,dc=com

Server A

DB2DB1

Server B

DB3

Distributing Data

98 Directory Server 5.2 2005Q1 • Deployment Planning Guide

For example, the directory tree for Example.com is shown in Figure 5-4.

Figure 5-4 Example.com Directory Tree

Example.com decides to split their directory tree across five different databases, as
illustrated in Figure 5-5.

Figure 5-5 Example.com Corporation’s Directory Tree Split Across Five Databases

o=NetscapeRoot and dc=Example,dc=com are both suffixes.
ou=testing,dc=Example,dc=com, ou=development,dc=Example,dc=com, and
ou=partners,ou=development,dc=Example,dc=com are subsuffixes of the
dc=Example,dc=com suffix. The suffix dc=Example,dc=com contains the data in the
ou=marketing branch of the original directory tree.

The suffixes and subsuffixes that result from this division contain entries as shown
in Figure 5-6.

dc=Example,dc=com

ou=developement ou=testingou=marketing

ou=partners

o=NetscapeRoot

dc=Example,dc=com

ou=developement ou=testingou=marketing

ou=partners

o=NetscapeRoot

Distributing Data

Chapter 5 Distribution, Chaining, and Referrals 99

Figure 5-6 Example.com Corporation Suffixes and Associated Entries

Your directory might contain more than one suffix. For example, an ISP,
ExampleISP.com might host several websites, one for its own website
ExampleISP.com and one for another website called HostedExample.com. The ISP
can choose between creating one suffix, which houses everything, or two suffixes
to separate the hosted part of the organization from internal ExampleISP.com data.

The first solution with just one suffix for all data, would result in a directory
information tree as shown in Figure 5-7 on page 99.

Figure 5-7 ExampleISP.com Directory Tree with One Suffix

If the ISP created two suffixes, one corresponding to its own naming context, and
one corresponding to the organizations it hosts, the directory information tree
would appear as follows:

ou=development,dc=Example,dc=comou=testing,dc=Example,dc=com

ou=partners,ou=development,dc=Example,dc=com

dc=Example,dc=como=NetscapeRoot

dc=ExampleISP,dc=com

o=internet ou=groupso=ISP

o=Example o=HostedExample

ou=people ou=groups ou=people ou=groups

Referrals and Chaining

100 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 5-8 ExampleISP.com’s Directory Tree With Two Suffixes

The entries for each hosted organization (o=Example and o=HostedExample) are
subsuffixes of the o=ISP suffix, with the ou=people and the ou=groups branches as
subsuffixes of each hosted organization.

Referrals and Chaining
When data is distributed over several suffixes, you must define the relationships
between the distributed data. You do this using pointers to directory information
held in different suffixes. Directory Server provides the referral and chaining
mechanisms to link distributed data into a single directory tree.

• Referrals

The server returns a piece of information to the client application indicating
that the client application needs to contact another server to fulfill the request.

• Chaining

The server contacts other servers on behalf of the client application and returns
the combined results to the client application after completing the operation.

The following sections describe and compare these two mechanisms.

Using Referrals
A referral is a piece of information returned by a server that tells a client
application which server to contact to proceed with an operation request. Directory
Server supports three types of referrals:

• Default referral

o=Example o=HostedExample

ou=people ou=groups ou=people ou=groups

dc=ExampleISP,dc=com

o=internet ou=groups

o=ISP

Referrals and Chaining

Chapter 5 Distribution, Chaining, and Referrals 101

The directory returns a default referral when a client application presents a DN
for which the server does not have a matching suffix. Default referrals are
configured at the server level using the nsslapd-referral attribute.

• Suffix Referrals

When an entire suffix has been taken offline for maintenance or security
reasons, the server will return the referrals defined by that suffix. Read-only
replicas of a suffix also return referrals to the master server when a client
requests a write operation.

• Smart referrals

Smart referrals are stored on entries within the directory itself. Smart referrals
point to Directory Servers that have knowledge of the subtree whose DN
matches the DN of the entry containing the smart referral.

All referrals are returned in the format of an LDAP uniform resource locator
(URL). The following sections describe the structure of an LDAP referral, and the
three referral types supported by Directory Server.

Structure of an LDAP Referral
An LDAP referral contains information in the format of an LDAP URL. An LDAP
URL contains the following information:

• The host name of the server to contact.

• The port number of the server.

• The base DN (for search operations) or target DN (for add, delete, and modify
operations).

For example, a client application searches dc=Example,dc=com for entries with a
surname Jensen. A referral returns the following LDAP URL to the client
application:

ldap://europe.Example.com:389/ou=people,l=europe,dc=Example,dc=com

The referral tells the client application to contact the host europe.Example.com on
LDAP port 389 and submit a search rooted at
ou=people,l=europe,dc=Example,dc=com.

Referrals and Chaining

102 Directory Server 5.2 2005Q1 • Deployment Planning Guide

The LDAP client application determines how a referral is handled. Some client
applications automatically retry the operation on the server to which they have
been referred. Other client applications simply return the referral information to
the user. Most LDAP client applications provided by Directory Server (such as the
command-line utilities) automatically follow the referral. The same bind
credentials you supply on the initial server request are used to access the referred
server.

Most client applications follow a limited number of referrals, or hops. The limit on
the number of referrals followed reduces the time a client application spends trying
to complete a directory lookup request and helps eliminate hung processes caused
by circular referral patterns.

Default Referrals
Directory Server determines whether a default referral should be returned by
comparing the DN of the requested directory object against the directory suffixes
supported by the local server. If the DN does not match the supported suffixes,
Directory Server returns a default referral.

For example, a directory client requests the following directory entry:

uid=bjensen,ou=people,dc=Example,dc=com

However, the server manages only entries stored under the
dc=europe,dc=Example,dc=com suffix. The directory returns a referral to the client
that indicates which server to contact for entries stored in the dc=Example,dc=com
suffix. The client then contacts the appropriate server and resubmits the original
request.

You configure the default referral to point to a Directory Server that has more
knowledge about the distribution of your directory. Default referrals for the server
are set by the nsslapd-referral attribute, stored in the dse.ldif configuration file.

For information on configuring default referrals, see “Setting the Default Referrals”
in the Directory Server Administration Guide.

Suffix Referrals
If you want to limit access to a suffix without disabling it completely, you can
modify the access permissions to allow read-only access. In this case you must
define a suffix referral to another server for write operations. You can also deny
both read and write access and define a referral for all operations on the suffix.
Suffix referrals can also be used to temporarily point a client application to a
different server. For example, you might add a referral to a suffix so that the suffix
points to a different server while backing up the contents of the suffix.

Referrals and Chaining

Chapter 5 Distribution, Chaining, and Referrals 103

Imagine you have two major sites in the US, one based in New York and the other
in Los Angeles. A client application sends a query which concerns the New York
site as follows:

uid=bjensen,ou=people,dc=US,dc=Example,dc=com

You can configure a suffix referral to dc=NewYork,dc=US,dc=Example,dc=com so that
the request is processed by the suffix that contains the dc=NewYork subtree.

Suffix referrals are configured with the nsslapd-state and nsslapd-referral
attributes in the mapping tree entry for that suffix. The nsslapd-referral attribute
specifies the LDAP URL(s) to be returned by the suffix. The nsslapd-state
attribute can take one of four values:

• nsslapd-state: backend where the suffix processes all operations.

• nsslapd-state: disabled where the suffix is not available for processing and
an error is returned in response to requests made by client applications.

• nsslapd-state: referral where a referral is returned for all requests made to
this suffix.

• nsslapd-state: referral on update where the suffix is used for all operations
except update requests, which receive a referral. The referral on update state
is used internally by the server when replication is configured, to prevent
consumers from processing update requests. However, you can also use this
state to restrict access to read operations on certain suffixes for load balancing
or performance.

For information on configuring suffix referrals, see “Setting Access Permissions
and Referrals” in the Directory Server Administration Guide.

Smart Referrals
Directory Server also supports smart referrals, which enable you to associate a
directory entry or directory tree to a specific LDAP URL. Associating directory
entries to specific LDAP URLs enables you to refer requests to any of the following:

• Same namespace contained on a different server

• Different namespaces on a local server

• Different namespaces on the same server

Unlike default referrals, smart referrals are stored within the directory itself.

For example, the directory for the American office of Example.com contains the
following directory branch point: ou=people,dc=Example,dc=com.

Referrals and Chaining

104 Directory Server 5.2 2005Q1 • Deployment Planning Guide

You redirect all requests on this branch to the ou=people branch of the European
office of Example.com by specifying a smart referral on the ou=people entry itself.
This smart referral appears as follows :

ldap://europe.Example.com:389/ou=people,dc=Example,dc=com

Any requests made to the people branch of the American directory are redirected
to the European directory. An illustration of this smart referral is shown in
Figure 5-9 on page 104.

Figure 5-9 Smart Referral From American Directory to European Directory

You can use the same mechanism to redirect queries to a different server that uses a
different namespace. For example, an employee working in the Italian office of
Example.com makes a request to the European directory for the phone number of
an Example.com employee in America. The referral returned by the directory is:

ldap://europe.Example.com:389/ou=US employees,dc=Example,dc=com

Finally, if you serve multiple suffixes on the same server, you can redirect queries
from one namespace to another namespace served on the same machine. If you
want to redirect all queries on the local machine for o=Example,c=us to
dc=Example,dc=com, you would put the following smart referral on the
o=Example,c=us entry:

ldap:///dc=Example,dc=com

as illustrated in Figure 5-10.

america.Example.com

europe.Example.com

dc=example,dc=com

ou=people ou=groups

dc=example,dc=com

ou=people ou=groups

Referrals and Chaining

Chapter 5 Distribution, Chaining, and Referrals 105

Figure 5-10 Smart Referral Traffic

Because you are redirecting queries from one namespace to another on the same
machine, there is no need to provide the host:port information pair which usually
appears in the URL. Because this pair is empty in the URL, the URL pointing to the
same Directory Server contains three slashes.

For more information on LDAP URLs see “LDAP URL Reference” in the Directory
Server Administration Reference. For more information on how to include smart
URLs on Directory Server entries, see “Creating Smart Referrals” in the Directory
Server Administration Guide.

Tips for Designing Smart Referrals
Consider the following points when using smart referrals:

• Keep the design simple.

A complex web of referrals makes directory administration difficult. Also,
overusing smart referrals can lead to circular referral patterns, in which a
referral points to an LDAP URL, which in turn points to another LDAP URL,
and so on until a referral somewhere in the chain points back to the original
server. A circular referral pattern is depicted in Figure 5-11 on page 106:

NOTE To make best use of referrals, do not make the base of your search
below where the referral is configured.

dc=Example,dc=como=Example,c=us

ou=groups ou=people

Referrals and Chaining

106 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 5-11 Circular Referral Pattern Caused by the Overuse of Smart Referrals

• Redirect at major branch points.

Limit referrals to handling redirection at the suffix level. Smart referrals allow
you to redirect lookup requests for leaf (non-branch) entries to different servers
and DNs. As a result, you may be tempted to use smart referrals as an aliasing
mechanism, leading to a complex directory structure that is difficult to secure.
By limiting referrals to the suffix or major branch points of your directory tree,
you can limit the number of referrals that you have to manage, and reduce
administrative overhead.

• Consider the security implications.

Access control does not cross referral boundaries. Even if the server where the
request originated allows access to an entry, when a smart referral sends a
client request to another server, the client application may be refused access.

Also, the client credentials must be available on the server to which the client is
referred for client authentication to take place.

Using Chaining
Chaining is a method for relaying requests to another server. This method is
implemented through chained suffixes. As described in “Distributing Data” on
page 96, a chained suffix contains no data. Instead, it redirects client application
requests to remote servers that contain the data.

dc=Example,dc=com

ou=groups ou=people

dc=Example,dc=com

ou=groups ou=people

dc=Example,dc=com

ou=groups ou=people

Referrals and Chaining

Chapter 5 Distribution, Chaining, and Referrals 107

During chaining, a server receives a request from a client application for data it
does not contain. Using the chained suffix, the server then contacts other servers on
behalf of the client application and returns the results to the client application. This
operation is illustrated in Figure 5-12.

Figure 5-12 Chaining Operation

Each chained suffix is associated to a remote server holding data. You can also
configure alternate remote servers containing replicas of the data for the chained
suffix to use when there is a failure. For more information on configuring chained
suffixes, refer to “Creating Chained Suffixes” in the Directory Server Administration
Guide.

Chained suffixes provide the following features:

• Invisible access to remote data.

Because the chained suffix takes care of client requests, data distribution is
completely hidden from the client.

• Dynamic management.

You can add or remove a part of the directory from the system while the entire
system remains available to client applications. The chained suffix can
temporarily return referrals to the application until entries have been
redistributed across the directory. You can also implement this functionality
through the suffix itself, which can return a referral rather than forwarding a
client application on to the database.

• Access control.

The chained suffix impersonates the client application, providing the
appropriate authorization identity to the remote server. You can disable user
impersonation on the remote servers when access control evaluation is not
required. For more information regarding access control and chained suffixes
see “Access Control Through Chained Suffixes”in the Directory Server
Administration Guide .

Forwarded
request

Result

Server A

Chained
Suffix

Client

Request

Result

Server B

Database

Referrals and Chaining

108 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Deciding Between Referrals and Chaining
Both methods of linking directory partitions have advantages and disadvantages.
The method, or combination of methods, you choose depends on the specific needs
of your directory.

The main difference between using referrals and using chaining is the location of
the intelligence that knows how to locate the distributed information. In a chained
system, the intelligence is implemented in the servers. In a system that uses
referrals, the intelligence is implemented in the client application.

While chaining reduces client complexity, it does so at the cost of increased server
complexity. Chained servers must work with remote servers and send the results
to directory clients.

With referrals, the client must handle locating the referral and collating search
results. However, referrals offer more flexibility for the writers of client
applications and allow developers to provide better feedback to users about the
progress of a distributed directory operation.

The following sections describe some of the more specific differences between
referrals and chaining in greater detail.

Usage Differences
Some client applications do not support referrals. Chaining allows client
applications to communicate with a single server and still access the data stored on
many servers. Sometimes referrals do not work when a company’s network uses
proxies. For example, a client application has permissions to speak to only one
server inside a firewall. If they are referred to a different server, they will not be
able to contact it successfully.

Also, with referrals a client must authenticate, meaning that the servers to which
clients are being referred need to contain the client credentials. With chaining,
client authentication takes place only once. Clients do not need to authenticate
again on the servers to which their requests are chained.

Evaluating Access Controls
Chaining evaluates access controls differently from referrals. With referrals, a bind
DN entry must exist on all of the target servers. With chaining, the client entry does
not need to be on all of the target servers.

For example, a client sends a search request to Server A. Figure 5-13 on page 109
shows how the operation would work using referrals.

Referrals and Chaining

Chapter 5 Distribution, Chaining, and Referrals 109

Figure 5-13 Client Application Search Request Redirected Through a Referral

In this figure, the client application performs the following steps:

1. The client application first binds with Server A.

2. Server A contains an entry for the client that provides a user name and
password, so returns a bind acceptance message. In order for the referral to
work, the client entry must be present on Server A.

3. The client application sends the operation request to Server A.

4. However, Server A does not contain the information requested. Instead, Server
A returns a referral to the client application telling them to contact Server B.

5. The client application then sends a bind request to Server B. To bind
successfully, Server B must also contain an entry for the client application.

6. The bind is successful, and the client application can now resubmit its search
operation to Server B.

This approach requires Server B to have a replicated copy of the client’s entry from
Server A.

Server A

Server B

Client
Entry3

4

5

1

2

6

Client

Client
Entry

Referrals and Chaining

110 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Chaining solves this problem. A search request using chaining would work as
shown in Figure 5-14.

Figure 5-14 Search Request using Chaining

In this figure, the following steps are performed:

1. The client application binds with Server A and Server A tries to confirm that
the user name and password are correct.

2. Server A does not contain an entry corresponding to the client application.
Instead, it contains a chained suffix to Server B, which contains the actual entry
of the client. Server A sends a bind request to Server B.

3. Server B sends an acceptance response to Server A.

4. Server A then processes the client application’s request using the chained
suffix. The chained suffix contacts a remote data store located on Server B to
process the search operation.

In a chained system, the entry corresponding to the client application does not
need to be located on the same server as the data the client requests. Figure 5-15
illustrates how two chained suffixes can be used to satisfy a client’s search request.

Server A

Server B

1

Client

Client
Entry

2 3 4

Referrals and Chaining

Chapter 5 Distribution, Chaining, and Referrals 111

Figure 5-15 Chaining Using Two Chained Suffixes to Process a Client’s Search Request

In Figure 5-15, the following steps are performed:

1. The client application binds with Server A and Server A tries to confirm that
the user name and password are correct.

2. Server A does not contain an entry corresponding to the client application.
Instead, it contains a chained suffix to Server B, which contains the actual entry
of the client. Server A sends a bind request to Server B.

3. Server B sends an acceptance response to Server A.

4. Server A then processes the client application’s request using another chained
suffix. The chained suffix contacts a remote data store located on Server C to
process the search operation.

However, chained suffixes do not support the following access controls:

• Controls that must access the content of the user entry are not supported when
the user entry is located on a different server. This includes access controls
based on groups, filters, and roles.

Server A

Server B

Server C

1 4

Client

Client
Entry

2 3

Referrals and Chaining

112 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Controls based on client IP addresses or DNS domains may be denied. This is
because the chained suffix impersonates the client when it contacts remote
servers. If the remote database contains IP-based access controls, it will
evaluate them using the chained suffix’s domain rather than the original client
domain.

113

Chapter 6

Understanding Replication

Replicating directory contents increases the availability of your directory. It can
also assist in increasing global search performance if additional measures such as
load balancing are implemented. Although replication can increase write
availability, it does not increase write or update performance.

In Chapter 4 and Chapter 5, you made decisions about the design of the directory
tree and the directory topology. This chapter addresses the physical and
geographical location of your data, and specifically, how to use replication to
ensure that the data is available when and where you need it.

This chapter discusses the use of replication in your deployment, and contains the
following topics:

• Introduction to Replication

• Common Replication Configurations

• Defining a Replication Strategy

• Using Replication With Other Directory Features

• Replication Monitoring

Introduction to Replication
Replication is the mechanism that automatically copies directory data from one
Directory Server to another. Using replication, you can copy any directory tree or
subtree (stored in its own suffix) between servers, except the configuration or
monitoring information subtrees.

Replication enables you to provide a highly available directory service, and to
distribute data geographically. In practical terms, replication provides the
following benefits:

Introduction to Replication

114 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Fault tolerance and failover

By replicating directory trees to multiple servers, you can ensure that your
directory is available even if a hardware, software, or network problem
prevents directory client applications from accessing a particular Directory
Server. Clients can be referred to another directory for read and write
operations. Note that to support write failover, you must have more than one
master copy of your data in the replication environment.

• Reduced response time by load balancing

By replicating your directory tree across servers, you can reduce the access
load on a given machine, thereby improving server response time. Replication
is not a solution for write scalability. To increase the write scalability in your
deployment, you must consider data partitioning.

• Reduced response time by localizing data

By replicating directory entries to a location close to your users, you can
improve directory response time.

• Local data management

Replication enables you to own and manage data locally, while sharing it with
other Directory Servers across your enterprise.

Before defining a replication strategy, you should have a basic understanding of
how replication works. This section includes an overview of:

• Replication Concepts

• Data Consistency

Replication Concepts
When considering implementing replication, start by answering the following
fundamental questions:

• What information do you want to replicate?

• Which server or servers hold the master copy of that information?

• Which server or servers hold read-only copies of the information?

• What should happen when a read-only server receives modification requests
from client applications; that is, to which server should requests be referred?

Introduction to Replication

Chapter 6 Understanding Replication 115

These decisions cannot be made effectively without an understanding of how
Directory Server implements replication. For example, when you decide what
information you want to replicate, you need to know the smallest replication unit
that Directory Server can handle. The following sections explain the replication
concepts as implemented in Directory Server.

Replica
A database that participates in replication is defined as a replica. There are three
kinds of replicas:

• Master replica or read-write replica: a read-write database that contains a
master copy of the directory data. A master replica can process update requests
from directory clients.

• Consumer replica: a read-only database that contains a copy of the information
held in the master replica. A consumer replica can process search requests
from directory clients but refers update requests to master replicas.

• Hub replica: a read-only database, like a consumer replica, but stored on a
Directory Server that supplies one or more consumer replicas.

You can configure Directory Server to manage several replicas. Each replica can
have a different role in replication.

Unit of Replication
The smallest unit of replication is the suffix. The replication mechanism requires
that one suffix correspond to one database. This means that you cannot replicate a
suffix (or namespace) that is distributed over two or more databases using custom
distribution logic. The unit of replication applies to both consumers and suppliers,
which means that you cannot replicate two suffixes to a consumer holding only
one suffix, and vice versa.

Replica ID
Master replicas require a unique replica identifier (ID) while consumer replicas all
have the same replica ID. The replica ID for masters can be any 16 bit integer
between 1 and 65534. Consumer replicas all have the replica ID of 65535. The
replica ID identifies the replica on which changes were made, enabling the changes
to be replicated correctly.

If a server hosts several replicas (or suffixes,) the replicas may all have the same
replica ID, provided that the replica ID is unique between the masters of a single,
replicated suffix. Using the same replica ID for all the suffixes on a master enables
you to associate a master with only one replica ID independently of the suffixes.

Introduction to Replication

116 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Suppliers and Consumers
A Directory Server that replicates to other servers is called a supplier. A Directory
Server that is updated by other servers is called a consumer. The supplier replays all
updates on the consumer through specially designed LDAP v3 extended
operations. In terms of performance, a supplier is therefore likely to be a
demanding client application for the consumer.

In some cases a server can be both a supplier and a consumer. This is true in the
following cases:

• When the server contains a hub replica; that is, it receives updates from a
supplier and replicates the changes to consumer(s). For more information, refer
to “Cascading Replication” on page 130.

• In multi-master replication, when a master replica is mastered on two different
Directory Servers, each server acts as a supplier and a consumer of the other
server. For more information, refer to “Multi-Master Replication” on page 124.

• When the server manages a combination of master replicas and consumer
replicas.

A server that plays the role of a consumer only (that is, it contains only a consumer
replica) is called a dedicated consumer.

In Directory Server, replication is always initiated by the supplier, never by the
consumer. This is called supplier-initiated replication, as suppliers push the data to
consumers. Earlier versions of Directory Server allowed consumer-initiated
replication, in which consumers could be configured to pull data from suppliers.
From Directory Server 5.0, this has been replaced by a procedure in which the
consumer can prompt the supplier to send updates.

For a master replica, the server must:

• Respond to update requests from directory clients.

• Maintain historical information and a change log for the replica.

• Initiate replication to consumers.

The server containing the master replica is responsible for recording the
changes made to the master replicas it manages. It makes sure that any changes
are replicated to consumers.

For a hub replica, the server must:

• Respond to read requests.

• Refer update requests to the servers that contain a master replica.

Introduction to Replication

Chapter 6 Understanding Replication 117

• Maintain historical information and a change log for the replica.

• Initiate replication to consumers.

For a consumer replica, the server must:

• Respond to read requests.

• Maintain historical information for the replica.

• Refer update requests to the servers that contain a master replica.

Whenever a request to add, delete, or change an entry is received by a
consumer, the request is referred via the client to the server, or servers, that
contain the master replica; that is, the server acting as the supplier in the
replication flow. The supplier performs the request, then replicates the change.

It is possible to configure consumer or hub replicas not to return a referral, but
to return an error instead (if this is required for security or performance
reasons.) See “Referrals” on page 118 for more information.

Online Replica Promotion and Demotion
Replicas can be promoted and demoted online. Promoting or demoting a replica
changes its role in the replication topology. Dedicated consumers may be
promoted to hubs, and hubs may be promoted to masters. Masters may be
demoted to hubs, and hubs may be demoted to dedicated consumers. To promote a
consumer replica to a master replica, you need to promote it first to a hub replica
and then to a master replica. The same incremental approach applies to online
demotion. For more information see “Promoting and Demoting Replicas” in the
Directory Server Administration Guide.

In addition to providing increased flexibility, online replica promotion and
demotion provides increased failover capabilities. Imagine, for example, a
two-way multi-master replication scenario, with two hubs configured for
additional load balancing and failover. Should one of the masters go offline, you
would simply need to promote one of the hubs to a master to maintain optimal
read-write availability. When the master replica came back online, a simple
demotion back to a hub replica would return you to the original topology.

NOTE Once a hub is demoted to a consumer, the replica is no longer able to
propagate changes (as a consumer it will not have a change log.)
Before demoting a hub to a consumer, you must therefore verify that
the hub is synchronized with the other servers. To ensure this, you
can use the replication monitoring tool insync (see “Replication
Monitoring” on page 156 for more information.)

Introduction to Replication

118 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Referrals
When a consumer receives a modification request, it does not forward the
modification request to the server that contains the master replica. Instead, it
returns a list containing the URLs of the possible masters that could satisfy the
client’s modification request. These URLs are referrals.

The replication mechanism automatically configures consumers to return referrals
for all known masters in the replication topology. However, you can also add your
own referrals and overwrite the referrals set automatically by the server. The
ability to control referrals helps you to optimize security and performance by
enabling you to:

• point referrals to secure ports only,

• point to a Directory Proxy Server for load balancing,

• redirect to local servers only in the case of servers separated by a WAN,

• limit referrals to a subset of masters in four-way multi-master topologies.

For information about configuring referrals see “Setting Referrals” in the
Directory Server Administration Guide.

Change Log
Every server acting as a supplier (a master replica or a hub replica,) maintains a
change log. A change log is a record that describes the modifications that have
occurred on a master replica. The supplier replays these modifications to its
consumers.

When an entry is modified, renamed, added or deleted, a change record describing
the LDAP operation that was performed is recorded in the change log.

In earlier versions of Directory Server, the change log was accessible over LDAP.
Now, however, it is intended only for internal use by the server, and is stored in its
own database which means that it is no longer accessible over LDAP. If you have
applications that need to read the change log, you must use the retro change log
plug-in for backward compatibility. For more information about the retro change
log plug-in, see “Replication and the Retro Change Log Plug-In” on page 149.

NOTE Once entries are purged from the change log, they can no longer be
replicated. You must therefore consider the number and size of the
changes you expect, and provide sufficient disk space for change
log. For more information, see “Multi-Master Replication Change
Logging” in the Directory Server Performance Tuning Guide.

Introduction to Replication

Chapter 6 Understanding Replication 119

Replication Authentication
The consumer server authenticates the supplier server when the supplier binds to
the consumer to send replication updates. This authentication process requires that
the entry used by the supplier to bind to the consumer is stored on the consumer
server. This entry is called the Replication Manager entry. When, in the context of
replication, Directory Server Console refers to the DN or bind DN, it is referring to
the DN of the Replication Manager entry.

The Replication Manager, or any entry you create to fulfill that role, must meet the
following criteria:

• At least one must exist on every consumer server (whether it be a dedicated
consumer, a hub, or a master in a multi-master environment.)

• This entry must not be part of the replicated data, for initialization and security
reasons.

The Replication Manager entry has a special user profile that bypasses all access
control rules defined on the consumer server. This special user profile is only valid
in the context of replication.

When you configure replication between two servers, you must identify the
Replication Manager entry on both servers:

• On the consumer server, you must specify this entry as the one authorized to
perform replication updates, when you configure the consumer replicas, hub
replicas, or master replicas (in the case of multi-master replication). If you use
the console, the Replication Manager entry is used by default.

• On supplier server (all master and hub replicas), you must specify the bind DN
of this entry when you configure the replication agreement.

The Replication Manager entry is created by default when you configure
replication through Directory Server Console. You can also create your own
Replication Manager entry.

If you are using SSL with replication, there are two possible methods of
authentication:

• When using SSL Server Authentication, you must have a Replication Manager
entry, and its associated password, in the server you are authenticating to.

• When using SSL Client Authentication you must have an entry containing a
certificate in the server you are authenticating to. This entry may or may not be
mapped to the Replication Manager entry.

Introduction to Replication

120 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Replication Agreement
Directory Server uses replication agreements to define how replication occurs
between two servers. A replication agreement describes replication between one
supplier and one consumer. The replication agreement is configured on the
supplier, and must be enabled for replication to work. You can enable or disable
existing replication agreements. This can be useful if you currently have no need
for a replication agreement, but want to maintain its configuration for future use.

A replication agreement identifies:

• The suffix to replicate.

• The consumer server to which the data is pushed.

• The times during which replication can occur.

• The bind DN and credentials the supplier must use to bind to the consumer
(see “Replication Authentication” on page 119.)

• How the connection is secured (SSL, client authentication).

• If fractional replication is configured, a pointer to the set of attributes to be
excluded or included (see “Fractional Replication” on page 135.)

• The group and window sizes to configure the number of changes you can
group into one request and the number of requests that can be sent before
consumer acknowledgement is required.

• Information about the replication status for this particular agreement.

• The level of compression used in replication on Solaris and Linux systems.

Consumer Initialization
Consumer initialization, or total update, is the process by which all data is
physically copied from the supplier to the consumer. Once you have created a
replication agreement, the consumer defined by that agreement must be initialized.
When a consumer has been initialized, the supplier can begin replaying, or
replicating update operations to the consumer. Under normal circumstances, the
consumer should not require further initialization. However, if the data on a
supplier is restored from a backup, you may need to reinitialize the consumers
dependent on that supplier. For example if a restored supplier is the only supplier
for a consumer in the topology, consumer reinitialization may be necessary.

You can initialize consumers online or offline. For more information on the
consumer initialization process see “Initializing Replicas” in the Directory Server
Administration Guide.

Introduction to Replication

Chapter 6 Understanding Replication 121

In a multi-master replication topology, the default behavior of a read-write replica
that has been reinitialized from a backup or LDIF file, is to REFUSE client update
requests. By default the replica remains in read-only mode indefinitely and refers
any update operations to other suppliers in the topology. In this case, you must
configure the replica to begin accepting updates again. See “Convergence After
Multi-Master Initialization” in the Directory Server Administration Guide.

Directory Server provides an advanced binary copy feature that can be used to clone
master or consumer replicas using the binary backup files of one server to restore
the identical directory contents on another server. Certain restrictions on this
feature make it practical and time-efficient only for replicas with large database
files. For information on the binary copy procedure and a list of the feature’s
limitations see “Initializing a Replica Using Binary Copy” in the Directory Server
Administration Guide.

Incremental Updates
Once a consumer has been initialized, replication updates are sent to the consumer
as the modifications are made on the supplier. These updates are called
incremental updates. A consumer can be incrementally updated by several
suppliers at once, provided that the updates originate from different replica IDs.

Data Consistency
Consistency refers to how closely the contents of replicated databases match each
other at any given time. When you set up replication between two servers, part of
the configuration is to schedule updates. The supplier determines when consumers
must be updated, and initiates replication. Replication can start only after
consumers have been initialized.

Directory Server provides the option of keeping replicas always synchronized, or
of scheduling updates for a particular time of day, or day of the week. The
advantage of keeping replicas always in sync is that data remains consistent across
your topology. The cost, however, is the network traffic resulting from the frequent
update operations. This solution is preferable when:

• You have a reliable high-speed connection between servers.

• The client requests serviced by your directory are mainly search, read, and
compare operations, with relatively few add and modify operations.

If you can afford to have looser data consistency, you can choose a frequency of
updates that lowers the effect on network traffic. This solution is preferable when:

• You have unreliable or intermittently available network connections (such as a
dial-up connection to synchronize replicas.)

Common Replication Configurations

122 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• The client requests serviced by your directory are mainly add and modify
operations.

• You need to reduce communication costs.

In the case of multi-master replication, the replicas on each master are said to be
loosely consistent because at any given time, there can be differences in the data
stored on each master. This is true even when you have selected to keep replicas in
sync, because:

• There is a latency in the propagation of replication updates between masters.

• The master that serviced the add or modify operation does not wait for the
second master to validate it before returning an “operation successful”
message to the client.

Common Replication Configurations
Your replication topology determines how updates flow from server to server, and
how the servers interact when propagating updates. There are five basic
replication configurations, which can be combined to suit your deployment.

• Single Master Replication

• Multi-Master Replication

• Cascading Replication

• Mixed Environments

• Fractional Replication

The following sections describe these configurations and provide strategies for
deciding which method is most suited to your deployment.

NOTE Whatever replication configuration you implement, you must
consider the schema replication. See “Schema Replication” on
page 154 for more information.

Common Replication Configurations

Chapter 6 Understanding Replication 123

Single Master Replication
In the most basic replication configuration, a supplier copies a master replica
directly to one or more consumers. In this configuration, all directory
modifications are made to the master replica, and the consumers contain read-only
copies of the data.

The supplier maintains a change log that records all changes made to the replica.
The supplier also defines the replication agreement.

The consumer stores the entry corresponding to the Replication Manager entry, so
that the consumer can authenticate the supplier when the supplier binds to send
replication updates.

The supplier propagates all modifications to the consumer replicas, in accordance
with the replication agreement. This basic scenario is illustrated in the following
figure.

Figure 6-1 Single-Master Replication

Client

ou=people,dc=example,dc=com

Master
Replica

Change
log

Replication Agreement
(bind DN)

Server A — Master

ou=people,dc=example,dc=com

Consumer
Replica

Master A Replication
Manager Entry

Server B — Consumer

Replication

Referral

Common Replication Configurations

124 Directory Server 5.2 2005Q1 • Deployment Planning Guide

In this example, the ou=people,dc=example,dc=com suffix receives a large number of
search and update requests from clients. To distribute the load, this suffix, which is
mastered on Server A, is replicated to a consumer replica located on Server B.

Server B can process and respond to search requests from clients, but cannot
process requests to modify directory entries. Server B processes modification
requests received from clients by sending a referral to Server A back to the client.
The consumer stores referral information about the supplier, but does not forward
modification requests from clients to the supplier. Instead, the client follows the
referral sent back by the consumer.

Although this example shows just one server acting as a consumer, a supplier can
replicate to several consumers. The total number of consumers that a single
supplier can manage depends on the speed of your network and the total number
of entries that are modified on a daily basis.

Multi-Master Replication
In a multi-master replication configuration, master replicas of the same data exist
on more than one server. This section includes the following topics:

• Multi-Master Replication Basic Concepts

• Multi-Master Replication Capabilities

• Multi-Master Replication over Wide Area Networks

• Fully Meshed Multi-Master Topology

Multi-Master Replication Basic Concepts
In a multi-master configuration, data can be updated simultaneously in different
locations. Each master maintains a change log for its replica, and the changes that
occur on each master are replicated to the other servers. This means that each
master plays the role of supplier and consumer. Multi-master configurations have
the following advantages:

• Automatic write failover when one supplier is inaccessible.

• Updates can be made on a local supplier in a geographically distributed
environment.

Common Replication Configurations

Chapter 6 Understanding Replication 125

When updates are sent between the two servers, the conflicting changes need to be
resolved. Mostly, resolution occurs automatically, based on the timestamp
associated with each change. The most recent change takes precedence. However,
there are some cases where change conflicts require manual intervention in order
to reach a resolution. For more information, see “Solving Common Replication
Conflicts” in the Directory Server Administration Guide.

Although two separate servers can have master copies of the same data, within the
scope of a single replication agreement, there is only ever one supplier and one
consumer. Therefore, to create a multi-master environment between two suppliers
that share responsibility for the same data, you must create two replication
agreements, one on each supplier. Figure 6-2 on page 125 shows this configuration:

Figure 6-2 Multi-Master Replication Configuration (Two Masters)

In the preceding figure, Master A and Master B each hold a master replica of the
same data and there are two replication agreements governing the replication flow.
Master A acts as a master in the scope of Replication Agreement 1, and as a
consumer in the scope of Replication Agreement 2.

Up to four masters are supported in a multi-master replication topology. The
number of consumer replicas and hubs is theoretically unlimited, although the
number of consumers to which a single supplier can replicate will depend on the
capacity of the supplier server.

Multi-Master Replication Capabilities
The replication protocol enables you to:

• Replicate updates based on the replica ID. Replica ID-based updates result in
improved performance because they make it possible for a consumer to be
updated by multiple suppliers at the same time (provided that the updates
originate from different replica IDs).

Master B
Example.com

Master A
Example.com

Replication Agreement 2

Replication Agreement 1

Common Replication Configurations

126 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Enable or disable a replication agreement, providing greater replication
configuration flexibility. Replication agreements can be configured but left
disabled, then enabled rapidly should they be required.

Multi-Master Replication over Wide Area Networks
Multi-master replication over WAN cannot be used on versions of Directory Server
prior to Directory Server 5.2. On versions of Directory Server prior to Directory
Server 5.2, multiple masters must be connected via high-speed, low-latency
networks. The networks require a minimum connection speed of 100Mb/second,
for full support, ruling out the possibility of multi-master replication over WAN.

Directory Server 5.2 supports multi-master replication over WANs. This feature
enables multi-master replication configurations across geographical boundaries in
international, multiple data center deployments.

The replication protocol provides full asynchronous support, window and
grouping mechanisms, and support for compression on Solaris and Linux systems.
These features render multi-master replication over WAN a viable deployment
possibility. Although the viability of multi-master replication over WAN is a direct
result of these protocol improvements, they are equally valid for Local Area
Network (LAN) deployments.

In a multi-master replication over WAN configuration, all Directory Server
instances separated by a WAN must be Directory Server 5.2.

Group and Window Mechanisms
To optimize replication flow, Directory Server enables you to group changes,
rather than sending them individually. It also allows you to specify a certain
number of requests that can be sent to the consumer without the supplier having to
wait for an acknowledgement from the consumer before continuing.

Since both the group and window mechanisms are based on entry size, optimizing
replication performance using these mechanisms may be impractical if the size of
your entries varies considerably. If the size of your entries is relatively constant,
you can use the group and window mechanisms to optimize incremental and total
updates. Note that the performance of multi-master replication over WAN will
depend on the latency and bandwidth of your WAN.

For more information on adjusting the window and group size, see “Configuring
Network Parameters” in the Directory Server Administration Guide.

Common Replication Configurations

Chapter 6 Understanding Replication 127

Replication Compression
In addition to the grouping and window mechanisms, Directory Server provides a
compression mechanism on Solaris and Linux systems. On versions of Directory
Server prior to Directory Server 5.2, limited bandwidth often caused a bottleneck in
replication over WAN. Replication compression helps to streamline replication
flow and avoid this bottleneck. For information on how to configure replication
compression via the command line, see the Directory Server Administration
Reference.

Fully Meshed Multi-Master Topology
A fully meshed topology implies that each of the masters in a topology is connected
to each of the other masters. Such a topology provides high availability and
guaranteed data integrity. Figure 6-3 on page 127 shows a fully meshed, four-way,
multi-master topology.

Figure 6-3 Fully Meshed, Four-Way, Multi-Master Replication Configuration

Replication
Traffic

Consumer
E

Consumer Replica
on Server E Consumer

F

Consumer Replica
on Server F

Master
A

Master Replica
on Server A Master

B

Master Replica
on Server B

Master
C

Master Replica
on Server C Master

D

Master Replica
on Server D

Consumer
G

Consumer Replica
on Server G Consumer

H

Consumer Replica
on Server H

Common Replication Configurations

128 Directory Server 5.2 2005Q1 • Deployment Planning Guide

In this example, the ou=people,dc=example,dc=com suffix is held on four masters to
ensure that it is always available for modification requests. Each master maintains
its own change log. When one of the masters processes a modification request from
a client, it records the operation in its change log. It then sends the replication
update to the other masters, and in turn to the other consumers. This requires that
the masters have replication agreements with each other, as well as with the
consumers. Each master also stores a Replication Manager entry that it uses to
authenticate the other masters when they bind to send replication updates.

Each consumer stores one or more entries, corresponding to the Replication
Manager entries, so that they can authenticate the masters when they bind to send
replication updates. It is possible for each consumer to have just one Replication
Manager entry, enabling all masters to use the same Replication Manager entry for
authentication. The consumers have referrals set up by default for all masters in the
topology. When consumers receive modification requests from the clients, referrals
to the masters are sent back to the clients by the consumers. For more information
on referrals, see “Referrals” on page 118.

Although this topology is the most secure in terms of read-write failover capability,
using this capability may impact performance. A fully meshed topology is
preferable if high availability is crucial to your deployment. If your high
availability requirements are not as important, or if you want to reduce replication
traffic for performance reasons, you may want to opt for a “lighter” deployment in
terms of read-write failover.

To assist you in understanding the replication elements required to configure this
fully meshed, four-way, multi-master replication topology, Figure 6-4 presents a
detailed view of the replication agreements, change logs, and Replication Manager
entries that must be set up on master A. Figure 6-5 provides the same detailed view
for consumer E.

Common Replication Configurations

Chapter 6 Understanding Replication 129

Figure 6-4 Replication Configuration for Master A (Fully Meshed Topology)

As Figure 6-4 illustrates, Master A requires a master replica, a change log and
Replication Manager entries for Masters B, C, and D (if you do not use the same
Replication Manager entry for all four masters). Master A also requires replication
agreements for Masters B, C, and D, and for consumers E and F.

Figure 6-5 Replication Configuration for Consumer Server E (Fully Meshed Topology)

Master
Replica

Change
log

Replication
Agreement
Master B

Replication
Agreement
Master C

Server A: Master

Replication
Manager
Entry for
Master B

Replication
Manager
Entry for
Master C

Replication
Manager
Entry for
Master D

Replication
Agreement
Master D

Replication
Agreement

Consumer E

Replication
Agreement

Consumer F

Consumer
Replica

Replication
Manager
Entry for
Master A

Replication
Manager
Entry for
Master B

Server: Consumer

Common Replication Configurations

130 Directory Server 5.2 2005Q1 • Deployment Planning Guide

The replication configuration presented in Figure 6-5 illustrates that Consumer E
requires a consumer replica and Replication Manager entries to authenticate
Master A and Master B when they bind to send replication updates.

Cascading Replication
In a cascading replication configuration, a server acting as a hub receives updates
from a server acting as a supplier, and replays those updates to consumers. The
hub is a hybrid: it holds a read-only copy of the data, like a consumer and it
maintains a change log like a supplier.

Hubs pass on copies of the master data as they are received from the original
masters and refer update requests from directory clients to masters.

Figure 6-6 illustrates a cascading replication configuration:

Figure 6-6 Cascading Replication Configuration

Cascading replication is particularly useful in the following cases:

• When you need to balance heavy traffic loads. Because the masters in a
replication topology handle all update traffic, it may put them under a heavy
load to support replication traffic to consumers as well. You can off-load
replication traffic to a hub that can service replication updates to a large
number of consumers.

dc=Example,dc=com

ou=groups ou=people

SUPPLIER

dc=Example,dc=com

ou=groups ou=people

HUB

dc=Example,dc=com

ou=groups ou=people

CONSUMER

Common Replication Configurations

Chapter 6 Understanding Replication 131

• To reduce connection costs by using a local hub in geographically distributed
environments.

• To increase performance of your directory service: if you direct all client
applications performing read operations to the consumers, and all those
performing update operations to the master, you can remove all of the indexes
(except system indexes) from your hub. This will increase the speed of
replication between the master and the hub.

Figure 6-7 shows how the servers described in the previous example are
configured in terms of Replication Agreements, change logs, and default referrals.

Common Replication Configurations

132 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 6-7 Server Configuration in Cascading Replication

In this example, Hub B is used to relay replication updates to Consumers C and D,
leaving Master A with more resources to process directory updates. The master
and the hub both maintain a change log. However, only the master can process
directory modification requests from clients. The hub contains a Replication

Master
Replica

Change
log

Server A — Master

Hub
Replica

Change
log

Replication
Agreement

Consumer C

Replication
Agreement

Consumer D

Server B — Hub B

Replication

Replication Replication

Replication
Manager
Entry for
Master A

Replication
Agreement

Hub B

Consumer
Replica

Replication
Manager
Entry for
Hub B

Server C — Consumer C

Consumer
Replica

Replication
Manager
Entry for
Hub B

Server D — Consumer D

Common Replication Configurations

Chapter 6 Understanding Replication 133

Manager entry for Master A, so that Master A can bind to the hub to send
replication updates. Consumers C and D both contain Replication Manager entries
for Hub B, which it uses to authenticate when sending its updates to the
consumers.

The consumers and the hub can process search requests received from clients, but
in the case of modification requests, send the client a referral to the master.
Figure 6-7 shows that Consumer C and D have a referral to Master A. These are the
automatic referrals that are created when you create the replication agreement
between the hub and the consumers. You can, however, overwrite these referrals
for performance or security reasons. For more information see the “Referrals” on
page 118.

Mixed Environments
You can combine any of the replication configurations outlined in the previous
sections to suit your deployment. For example, you could combine a multi-master
configuration with a cascading configuration to produce a topology similar to that
illustrated in Figure 6-8.

Common Replication Configurations

134 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 6-8 Combined Multi-Master and Cascading Replication

Figure 6-8 shows two masters and two hubs replicating data to four consumers. As
in the previous scenario, the hubs are used to balance the load of replication
updates by sharing it between the masters and the hubs.

Master
A

Master Replica
on Server A Master

B

Master Replica
on Server B

ou=people,dc=example,dc=com ou=people,dc=example,dc=com

Consumer

Supplier

ou=people,dc=example,dc=com

Consumer

Supplier

ou=people,dc=example,dc=com

Hub Replicas

Consumer

ou=people,dc=example,dc=com

Consumer

ou=people,dc=example,dc=com

Consumer

ou=people,dc=example,dc=com

Consumer

ou=people,dc=example,dc=com

Replication Traffic

Disabled Replication Agreements

Common Replication Configurations

Chapter 6 Understanding Replication 135

In this example, the dotted lines represent disabled replication agreements. If these
replication agreements are not enabled, the topology presented contains a single
point of failure (if one of the hubs were to go off line.) In deploying this topology,
you would need to weigh up performance requirements against high availability
requirements to determine whether you enable all replication agreements to
provide full read-write failover.

Fractional Replication
While the unit of replication is the suffix or subsuffix, fractional replication
functionality provides a greater degree of granularity in replication. Fractional
replication enables you to replicate a subset of the attributes of all entries in a suffix
or subsuffix.

Benefits of Fractional Replication
Fractional replication is useful in a variety of scenarios.

When you need to synchronize between intranet and extranet servers and filter out
content for security reasons, fractional replication provides the filtering
functionality.

Because fractional replication enables you to be selective in what you replicate, you
can reduce replication costs. If your deployment requires only certain attributes to
be available everywhere, you can use the fractional replication functionality to
replicate the required attributes only, rather than replicating all attributes.

For example, you may want e-mail and phone attributes to be replicated but not all
attributes on a user entry, particularly if the other attributes are modified
frequently and generate heavy network traffic. Fractional replication enables you
to filter in the required attributes and reduce traffic to a minimum. This filtering
functionality is particularly valuable where replication is over a WAN.

Fractional replication is not backward compatible with versions of Directory Server
prior to Directory Server 5.2. If you are using fractional replication, ensure that all
other instances of Directory Server are Directory Server 5.2.

Configuring Fractional Replication
Fractional replication can be configured easily from Directory Server Console.
Configuring fractional replication involves either:

• Specifying the list of attributes that will be included in the replication.

• Selecting all attributes and specifying those that will be excluded.

Defining a Replication Strategy

136 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Under most circumstances, an exclusion configuration approach is preferable. The
complexity of certain features such as ACIs, CoS and Roles, and the dependency
these features have on certain attributes, make managing a list of excluded
attributes far safer, and less prone to human error, than managing a list of included
attributes.

When configuring fractional replication, the server being replicated to must be a
read-only replica.

Generally, you replicate all required attributes for each entry as defined in the
schema, to avoid schema violations. If you want to filter out certain required
attributes using fractional replication, you must disable schema checking. If
schema checking is enabled with fractional replication, you may not be able to
initialize the server off line (from an LDIF file). This is because the server will not
allow you to load the LDIF file if required attributes are filtered out. If you have
disabled schema checking on a fractional consumer replica, the whole server
instance on which that fractional consumer replica resides will not enforce the
schema. Because schema is pushed by suppliers in fractional replication
configurations, the schema on the fractional consumer replica will be a copy of the
master replica’s schema. Therefore, it will not correspond to the fractional
replication configuration being applied.

Before modifying a fractional replication configuration, you must disable the
replication agreements it affects. Once you have modified the configuration, you
will need to re-enable the replication agreements and re-initialize the consumers so
that the new configuration is taken into account.

For more information see “Configuring Fractional Replication” in the Directory
Server Administration Guide.

Defining a Replication Strategy
Your replication strategy will be determined by the service you want to provide.
This section provides replication topology examples that focus on the following:

• Using Replication for High Availability

• Using Replication for Local Availability

• Using Replication for Load Balancing

To assess how important each of these aspects is in your deployment, start by
performing a survey of your network, users, client applications, and how they will
use the directory service. For guidelines on performing this survey, refer to
“Performing a Replication Survey” on page 137.

Defining a Replication Strategy

Chapter 6 Understanding Replication 137

When you understand your replication strategy, you can start deploying Directory
Server. Putting your directory into production in stages, will give you a better
sense of the load that your enterprise places on the directory. Unless you can base
your load analysis on an operating directory, be prepared to alter your directory as
you develop a better understanding of how the directory is used.

The following sections describe the main factors affecting your replication strategy:

• Performing a Replication Survey

• Replication Resource Requirements

• Replication Backward Compatibility

• Using Replication for High Availability

• Using Replication for Local Availability

• Using Replication for Load Balancing

• Example Replication Strategy for a Small Site

• Example Replication Strategy for a Large Site

Performing a Replication Survey
When performing a replication survey, concentrate on gathering the following
information:

• Quality of the networks connecting different buildings or remote sites, and the
amount of available bandwidth.

• Physical location of users, number of users at each site, and potential user
activity on the directory.

For example, a site that manages human resource databases or financial
information is likely to put a heavier load on the directory than a site
containing engineering staff who use the directory for simple telephone book
purposes.

• Number of applications that access the directory, and relative percentage of
read/search/compare operations to write operations.

Defining a Replication Strategy

138 Directory Server 5.2 2005Q1 • Deployment Planning Guide

For example, if your messaging server uses the directory, you need to know
how many operations it performs for each e-mail message it handles. Other
products that rely on the directory are typically products such as
authentication applications, or meta-directory applications. For each one you
must determine the type and frequency of operations performed on the
directory.

• Approximate number and size of entries stored in the directory.

Replication Resource Requirements
Replication functionality requires system resources. Consider the following
resource requirements when defining your replication strategy:

• Disk usage

On suppliers, the change log is written to after each update operation. If a
supplier contains multiple replicated suffixes, the change log will be updated
more frequently, and disk usage will be higher.

Consumers must be at least equivalent to suppliers in terms of machine size, to
prevent bottlenecks.

• Server threads

Each replication agreement creates two additional threads. Replication
agreement threads are separate from operational threads. If there are several
replication agreements, the number of threads available to client applications is
reduced, possibly affecting the server performance for the client applications.

• File descriptors

The number of file descriptors available to the server is reduced by the change
log (one file descriptor) and each replication agreement (one file descriptor per
agreement).

Defining a Replication Strategy

Chapter 6 Understanding Replication 139

Replication Backward Compatibility
If you are using several versions of Directory Server in a replication topology you
should take into account the backward compatibility information in Table 6-1.This
table presents the supplier and consumer combinations that are possible between
different versions of Directory Server.

If you are using replication with different Directory Server versions, take note of
the following:

• If you configure a 4.x master to replicate to a 5.x master and you enable legacy
replication on the 5.x master, the 5.x master will not be able to receive either
client updates or replication updates from other 5.x masters in the topology. It
will only receive replication updates from the 4.x master. However, when
legacy replication is disabled, the 5.x master will resume fully-operational
master replication behavior.

• When you are replicating from a server running Directory Server 5.2 to a server
running Directory Server 5.0/5.1, the features and enhancements that are new
in Directory Server 5.2 should not be used. These features include fractional
replication, multiple password policies, multi-master replication over WAN,
and online promotion and demotion.

• The nsslapd-schema-replicate-useronly attribute must be set to on to make
sure that 5.1 servers are not disrupted by Directory Server 5.2 schema
extensions.

Using Replication for High Availability
Replication can be used to prevent the loss of a single server from causing your
directory to become unavailable. At a minimum you should replicate the local
directory tree to at least one backup server.

Table 6-1 Replication Backward Compatibility With Different Directory Server Versions

4.x
Consumer

5.0/5.1
Consumer

5.0/5.1
Master

5.2
Consumer

5.2
Master

5.x Hub
Supplier

4.x Master Yes Yes Yes Yes Yes No

5.0/5.1 Master No Yes Yes Yes Yes Yes

5.2 Master No Yes Yes Yes Yes Yes

Defining a Replication Strategy

140 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Some directory architects argue that you should replicate three times per physical
location for maximum data reliability. How much you use replication for fault
tolerance is up to you, but you should base this decision on the quality of the
hardware and networks used by your directory. Unreliable hardware requires
more backup servers.

To guarantee write failover for directory clients, you should use a multi-master
replication topology. If read failover is sufficient, and your directory is not
geographically dispersed, you can use single-master replication.

LDAP client applications are usually configured to search one LDAP server only.
That is, unless you have written a custom client application to rotate through
LDAP servers located at different DNS hostnames, you can only configure your
LDAP client application to look at a single DNS hostname for Directory Server.
Therefore, you may need to use either DNS round robins or network sorts to
provide failover to your backup Directory Servers. For information on setting up
and using DNS round robins or network sorts, see your DNS documentation.

To maintain write failover over two geographically distributed sites, you can use
four-way multi-master replication over WAN. In this scenario, you would set up
two master servers in one location and two master servers in the second location,
and configure them to be fully meshed over the WAN. This safeguards against the
eventuality of one master going off line.

Alternatively, you can use the Sun Java System Directory Proxy Server product.
For more information on Directory Proxy Server, see
http://www.sun.com/software/products/directory_proxy/home_dir_proxy.html.

Using Replication for Local Availability
You can use replication for local availability when:

• You need a local master copy of the data.

NOTE You should not use replication as a replacement for a regular data
backup policy. For information on backing up directory data, refer
to “Choosing a Backup Method” on page 213 and to “Backing Up
Data” in the Directory Server Administration Guide.

Defining a Replication Strategy

Chapter 6 Understanding Replication 141

This is important for large, multinational enterprises that need to maintain
directory information of interest only to users in a specific geographical
location. Having a local master copy of the data is also useful in enterprises
where there is a need for data to be managed at a divisional or organizational
level.

• You are using unreliable or intermittent network connections.

Having a copy of data locally means that your directory will still be available
should a network problem occur.

• Your networks periodically experience extremely heavy loads that may cause
the performance of your directory to be reduced.

Enterprises with ageing networks may experience these conditions during
normal business hours.

• You want to reduce both the network load and the work load on the master
replica.

Your network may be perfectly reliable and available, but you want to reduce
network costs.

Using Replication for Load Balancing
Replication can balance the load on your Directory Server in several ways:

• By spreading your user’s search activities across several servers.

• By dedicating servers to read-only activities (writes occur only on the server
containing the master replica).

• By dedicating special servers to specific tasks, such as supporting mail server
activities.

Figure 6-9 shows how replication can be used to divide directory activities between
different types of applications, thereby reducing the load placed on each supplier
server.

Defining a Replication Strategy

142 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 6-9 Using Multi-Master Replication for Load Balancing

Replicating directory data also balances the load placed on your network. Where
possible, you should move data to servers that can be accessed using a fast and
reliable network connection.

Directory entries generally average around one KB in size. Therefore, an entire
entry lookup adds about one KB to your network load each time. If your directory
users perform around ten directory lookups per day, then for every directory user
you will see an increased network load of around 10,000 bytes per day. If you have
a slow, heavily loaded, or unreliable WAN, you may need to replicate your
directory tree to a local server.

Note that the benefit of locally available data must be weighed up against the cost
of the increased network traffic caused by replication. For example, if you replicate
an entire directory tree to a remote site, you are potentially adding a large strain on
your network in comparison to the traffic caused by your users’ directory lookups.
This is especially true if your directory tree changes frequently, yet you have only a
few users at the remote site performing a few directory lookups per day.

Consider that your directory tree on average includes in excess of 1,000,000 entries
and that it is not unusual for about ten percent of those entries to change every day.
If your average directory entry is only one KB in size, you could be increasing your
network load by 100 MB per day. However, if your remote site has only 100
employees, and they are performing an average of ten directory lookups per day,
the network load caused by their directory access is only one MB per day.

Master B
Example.com

Master A
Example.com

Replication Agreement 2

Replication Agreement 1

Corporate
Applications

Client
Applications

Defining a Replication Strategy

Chapter 6 Understanding Replication 143

Given the difference in network load caused by replication versus that caused by
normal directory usage, you may decide that replication purely for network
load-balancing is not viable. On the other hand, you may find that the benefits of
locally available directory data far outweigh any considerations you may have
regarding network load.

A compromise between making data available to local sites without overloading
the network is to use scheduled replication. For more information on data
consistency and replication schedules, refer to “Data Consistency” on page 121.

Example of Network Load Balancing
Suppose your enterprise has offices in two cities. Each office manages a separate
subtree, as illustrated in Figure 6-10:

Figure 6-10 New York and Los Angeles Subtrees in Respective Geographical Locations

Each office contains a high-speed LAN, but uses a dial-up connection to network
between the two cities. To balance network load:

• Select one server in each office to be the master for the locally managed data.

Replicate locally managed data from that server to the corresponding master in
the remote office. Having a master copy of the data in each location prevents
users from having to perform update and lookup operations over the dial-up
connection, which optimizes performance.

• Replicate the directory tree on each master (including data supplied from the
remote office) to at least one local Directory Server to ensure local availability
of directory data.

• Configure cascading replication in each location with an increased number of
consumers dedicated to lookups on the local data to provide further load
balancing.

NEW YORK

dc=Example,dc=com

l=New York

ou=people

LOS ANGELES

dc=Example,dc=com

l=LosAngeles

ou=people

Defining a Replication Strategy

144 Directory Server 5.2 2005Q1 • Deployment Planning Guide

The New York office has to deal with more New York specific lookups than
Los Angeles specific lookups and as a result, our example shows the New York
office with three New York data consumers and one Los Angeles consumer.
Following the same logic, the Los Angeles office has three Los Angeles data
consumers and one New York data consumer.

This network load balancing configuration is illustrated in Figure 6-11:

Defining a Replication Strategy

Chapter 6 Understanding Replication 145

Figure 6-11 Load Balancing Using Multi-Master and Cascading Replication

NEW
 YORK

l=NY
Consumer

l=NY
Consumer

ou=people

l=NY
Consumer

ou=people

l=LA
Consumer

ou=people

dc=Example,dc=com
LOS

 ANGELES

l=NY
Consumer

l=LA
Consumer

ou=peopleou=people

l=LA
Consumer

ou=people

l=LA
Consumer

ou=people

dc=Example,dc=com

NEW
 YORK

l=NY
Hub

l=LA
Hub

ou=peopleou=people

dc=Example,dc=com

NEW
 YORK

l=NY
Master

l=LA
Master

ou=peopleou=people

dc=Example,dc=com

LOS
 ANGELES

l=NY
Hub

l=LA
Hub

ou=peopleou=people

dc=Example,dc=com

LOS
 ANGELES

l=NY
Master

l=LA
Master

ou=peopleou=people

dc=Example,dc=com

New York Data Replication Flow

Los Angeles Data Replication Flow

Defining a Replication Strategy

146 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Example of Load Balancing for Improved Performance
In this example, the directory contains 15,000,000 entries, is accessed by 10,000,000
users, and each user performs ten directory lookups a day. The messaging server
handles 250,000,000 mail messages a day, and performs five directory lookups for
every mail message that it handles. There are approximately 1,250,000,000
directory lookups per day, just as a result of mail. The total combined traffic is,
therefore, 1,350,000,000 directory lookups per day.

Assuming an eight-hour business day, with the directory users clustered in four
time zones, the business day (or peak usage) across the four time zones is 12 hours.
Therefore, the directory must support 1,350,000,000 lookups in a 12-hour day. This
equates to 31,250 lookups per second (1,350,000,000 / (60*60*12)). That is:

Assume a combination of CPU and RAM that allows the directory to support 5,000
reads per second. Simple division indicates that in this scenario, you need at least
six or seven Directory Servers to support this load. For enterprises with 10,000,000
directory users, you would add more Directory Servers for local availability.

A single Directory Server 5.2 with the appropriate hardware and configuration can
sustain much more than the 5,000 reads per second.

In this scenario, you would replicate as follows:

• Place two Directory Servers in a multi-master configuration in one city to
handle all write traffic.

This configuration assumes that you want a single point of control for all
directory data.

• Use these masters to replicate to one or more hubs.

The read, search, and compare requests serviced by your directory should be
targeted at the consumers, thereby freeing the masters to handle write
requests. For more information, see “Cascading Replication” on page 130.

• Use the hub to replicate to local sites throughout the enterprise.

10,000,000 users 10 lookups per user = 100,000,000 reads/day

250,000,000 messages 5 lookups per message = 1,250,000,000 reads/day

Total reads/day = 1,350,000,000

12-hour day includes 43,200
seconds

Total reads/second = 31,250

Defining a Replication Strategy

Chapter 6 Understanding Replication 147

Replicating to local sites helps balance the load on your servers and your
network, and ensures high availability of directory data.

• At each site, replicate at least once to ensure high availability, at least for read
operations.

Use DNS sort to ensure that users always find a local Directory Server they can
use for directory lookups.

Example Replication Strategy for a Small Site
Suppose your entire enterprise is contained within a single building. This building
has a fast (100 MB per second) and lightly used network. The network is stable and
you are reasonably confident of the reliability of your server hardware and OS
platforms. You are also sure that a single server’s performance will easily handle
your site’s load.

In this case, you should replicate at least once to ensure availability when your
primary server is shut down for maintenance or hardware upgrades. Also, set up a
DNS round robin to improve LDAP connection performance in the event that one
of your Directory Servers becomes unavailable. Alternatively, use an LDAP proxy
such as Sun Java System Directory Proxy Server. For more information on
Directory Proxy Server, see
http://www.sun.com/software/products/directory_proxy/home_dir_proxy.html.

Example Replication Strategy for a Large Site
Suppose your entire enterprise is contained within two buildings. Each building
has a fast (100 MB per second) and lightly used network. The network is stable and
you are reasonably confident of the reliability of your server hardware and OS
platforms. You are also sure that a single server’s performance will easily handle
the load placed on a server within each building.

Also assume that you have slow (ISDN) connections between the buildings, and
that this connection is very busy during normal business hours.

A typical replication strategy for this scenario would be:

• Choose a single server in one of the two buildings to contain a master copy of
the directory data.

This server should be placed in the building that contains the largest number of
people responsible for the master copy of the data. Call this Building A.

Using Replication With Other Directory Features

148 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Replicate at least once within Building A for high availability of data.

Use multi-master replication to ensure write-failover.

• Create two replicas in the second building (Building B).

• If there is no need for close consistency between the master copy of the data
and the replicated copies, schedule replication so that it occurs only during off
peak hours.

Replication Strategy for a Large, International
Enterprise
Suppose your enterprise comprises two major data centers - one in France and the
other in the USA - separated by a WAN. Not only do you need to replicate over a
WAN, but you do not want your partners to have access to all data and want to
filter out certain data. Your network is very busy during normal business hours.

A typical replication strategy for this scenario would be:

• Hold master copies of directory data on servers in both data centers.

• For write-failover within the French and American sites, replicate your data to
a second master in each data center.

• Deploy a fully meshed, four-way, multi-master replication topology between
France and the USA to provide high-availability and write-failover across the
deployment.

• Deploy as many consumers as you require in each data center to reduce the
load on your masters in terms of directory lookups.

• Set up fractional replication agreements between masters and consumers in
both geographical locations, to filter out the data you do not wish your
partners to access.

• Schedule replication so that it occurs only during off peak hours to optimize
bandwidth.

Using Replication With Other Directory Features
Replication interacts with other Directory Server features to provide advanced
replication functionality. The following sections describe feature interactions to
assist you in designing your replication strategy.

Using Replication With Other Directory Features

Chapter 6 Understanding Replication 149

Replication and Access Control
The directory stores ACIs as attributes of entries. This means that the ACI is
replicated along with other directory content. This is important because Directory
Server evaluates ACIs locally.

For more information about designing access control for your directory, refer to
Chapter 7, “Access Control, Authentication, and Encryption.”

Replication and the Retro Change Log Plug-In
Retro change log is a plug-in used by LDAP clients for maintaining application
compatibility with Directory Server 4.x versions. The retro change log is stored in a
separate database from the Directory Server change log, under the suffix
cn=changelog.

A retro change log can be enabled on a standalone server or on each server in a
replication topology. When the retro change log is enabled on a server, updates to
all suffixes on that server are logged by default.

In versions of Directory Server prior to Directory Server 5.2 2005Q1, the retro
change log did not identify the order in which changes where made to each replica
in a multi-master topology. Therefore, the retro change log could not be used in a
multi-master replication environment.

In Directory Server 5.2 2005Q1, the retro change log identifies the order in which
updates are made for each replica identifier. The retro change log can now be used
in a multi-master replication environment. For restrictions on using the retro
change log, see “Restrictions on Using the Retro Change Log” on page 153.

For information about how to use the retro change log, see “Using the Retro
Change Log Plug-In” in the Directory Server Administration Guide. For information
about the attributes used by the retro change log plug-in, see “Server
Configuration Reference” in the Directory Server Administration Reference.

Retro Change Log and Multi-Master Replication
When a retro change log is enabled with replication, the retro change log receives
updates from all master replicas in the topology. The updates from each master
replica are combined in the retro change log. The following figure illustrates the
retro change log on two servers in a multi-master topology.

Using Replication With Other Directory Features

150 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 6-12 Retro Change Log and Multi-Master Replication

The retro change log uses the following attributes during replication:

• replicaIdentifier (RI) - identifies the replica that is updating the retro change
log

• changeNumber (cN) - identifies the order in which an update is logged to the
retro change log

• replicationCSN (CSN) - identifies the time when an update is made to a given
replica

For information about the other attributes of the retro change log, and for more
information about the replicationCSN attribute, see the Directory Server
Administration Reference.

Figure 6-12 shows that the retro change logs, RCL1 and RCL2, contain the same list
of updates, but that the updates do not have the same order. However, for a given
replicaIdentifier, updates are logged in the same order on each retro change log.
The order in which updates are logged to the retro change log is given by the
changeNumber attribute (cN).

Failover of the Retro Change Log
Figure 6-13 illustrates a simplified replication topology where a client reads a retro
change log on a consumer server.

Master
Replica RI1

(suffix A)

Master
Replica RI2

(suffix B)

Directory Server 1

Master
Replica RI3

(suffix A)

Master
Replica RI4

(suffix B)

RCL2

cN1-CSN1 from RI3

cN2-CSN2 from RI3

cN3-CSN1 from RI2

cN4-CSN1 from RI1

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

cN8-CSN2 from RI1

cN9-CSN2 from RI4

cN10-CSN3 from RI2

Directory Server 2

changeNumber attributecN =

replicationCSN attributeCSN =

Replica identifierRI =

RCL1

cN1-CSN1 from RI1

cN2-CSN1 from RI2

cN3-CSN1 from RI3

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN3 from RI3

cN7-CSN1 from RI4

cN8-CSN2 from RI1

cN9-CSN3 from RI2

cN10-CSN2 from RI4

Replication

Using Replication With Other Directory Features

Chapter 6 Understanding Replication 151

Figure 6-13 Simplified Topology for Replication of the Retro Change Log

All of the updates made to each master replica in the topology are logged to each
retro change log in the topology.

The client application reads the retro change log of Directory Server 3 and stores
the last CSN for each replica identifier. The last CSN for each replica identifier is
given by the replicationCSN attribute.

The following figure shows the client redirecting its reads to Directory Server 2
after the failure of Directory Server 3.

Master
Replica RI3

(suffix A)

Master
Replica RI4

(suffix B)

RCL2

cN1-CSN1 from RI3

cN2-CSN2 from RI3

cN3-CSN1 from RI2

cN4-CSN1 from RI1

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

Directory Server 2

Master
Replica RI1

(suffix A)

Master
Replica RI2

(suffix B)

Directory Server 1

RCL1

cN1-CSN1 from RI1

cN2-CSN1 from RI2

cN3-CSN1 from RI3

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN3 from RI3

cN7-CSN1 from RI4

Client

Record of last CSN for
each replica identifier:

— CSN 1 from RI1
— CSN 2 from RI2
— CSN 3 from RI3
— CSN 1 from RI4

Customer
Replica
(suffix A)

Customer
Replica

(suffix B)

Directory Server 3

RCL3

cN1-CSN1 from RI1

cN2-CSN1 from RI3

cN3-CSN1 from RI2

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

Replication

Replication

Read

Using Replication With Other Directory Features

152 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 6-14 Failover of the Retro Change Log

After failover, the client application must use the retro change log (RCL2) of
Directory Server 2 to manage its updates. Because the order of the updates in RCL2
is not the same as the order in RCL3, the client must synchronize its updates with
RCL2.

The client examines RCL2 to identify the cN that corresponds to its record of the
last CSN for each replica identifier. In the example in Figure 6-14, the client
identifies the following correspondence between last CSN and cN:

• CSN 1 from R1 corresponds to cN4 on RCL2

Master
Replica RI1

(suffix A)

Master
Replica RI2

(suffix B)

Directory Server 1

Master
Replica RI3

(suffix A)

Master
Replica RI4

(suffix B)

RCL2

cN1-CSN1 from RI3

cN2-CSN2 from RI3

cN3-CSN1 from RI2

cN4-CSN1 from RI1

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

cN8-CSN2 from RI1

cN9-CSN2 from RI4

cN10-CSN3 from RI2

Directory Server 2

RCL1

cN1-CSN1 from RI1

cN2-CSN1 from RI2

cN3-CSN1 from RI3

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN3 from RI3

cN7-CSN1 from RI4

cN8-CSN2 from RI1

cN9-CSN3 from RI2

cN10-CSN2 from RI4

Client

Record of last CSN for
each replica identifier:

— CSN 1 from RI1
— CSN 2 from RI2
— CSN 3 from RI3
— CSN 1 from RI4

Replication

Customer
Replica
(suffix A)

Customer
Replica

(suffix B)

Directory Server 3

RCL3

cN1-CSN1 from R1

cN2-CSN1 from R3

cN3-CSN1 from R2

cN4-CSN2 from R3

cN5-CSN2 from R2

cN6-CSN1 from R4

cN7-CSN3 from R3

Client synchronizes its
updates with RCL2.

Client matches the last CSN
from each replica identifier to
the corresponding cN on RCL2.

Client makes the following
correspondence:

• CSN1 from R1 - cN4

• CSN2 from R2 - cN5

• CSN3 from R3 - cN6

• CSN1 from R4 - cN7

Client identifies the update
corresponding to the lowest
cN in this list.

Client processes all updates
made to RCL2 after cN4.

Using Replication With Other Directory Features

Chapter 6 Understanding Replication 153

• CSN 2 from R2 corresponds to cN5 on RCL2

• CSN 3 from R3 corresponds to cN6 on RCL2

• CSN 1 from R4 corresponds to cN7 on RCL2

The client identifies the update corresponding to the lowest cN in this list. In the
example in Figure 6-14, the lowest cN in the list is cN4. To ensure that the client
processes all updates, it must process all updates logged to RCL2 after cN4. The
client does not process updates logged to RCL2 before cN4 nor does it process the
update corresponding to cN4.

Restrictions on Using the Retro Change Log
Observe the following restrictions when you use the retro change log:

• A master replica running Directory Server 5.2 cannot be a supplier to a
consumer replica running Directory Server 4.x. However, a master replica
running Directory Server 4.x can be a supplier to a consumer replica running
Directory Server 5.2.

• In a replicated topology, switchover between retro change logs does not work
where there are conflicting updates. Conflicts can be prevented by ensuring
that a given entry is modified by one master only.

• When updates are sent between the two servers, conflicting updates are
usually resolved by using the timestamp associated with each change.
Conflicting changes can result in the same CSN being used by more than one
entry in a retro change log.

• In a replicated topology, the retro change logs on replicated servers must be
up-to-date with each other. This allows switchover of the retro change log.
Using the example in Figure 6-14, the last CSN for each replica ID on RCL3
must be present on RCL2.

Replication and the Referential Integrity Plug-In
You can use the referential integrity plug-in with multi-master replication,
provided that the plug-in is enabled on all master replicas. By default the
referential integrity plug-in is disabled, and must be enabled using Directory
Server Console or the command line.

Before enabling the referential integrity plug-in on servers issuing chaining
requests, analyze your performance resource, time and integrity needs, as integrity
checks can consume significant memory and CPU resources.

Using Replication With Other Directory Features

154 Directory Server 5.2 2005Q1 • Deployment Planning Guide

For more information, see “Using Referential Integrity with Replication” in the
Directory Server Administration Guide.

Replication and Pre-Operation and
Post-Operation Plug-Ins
When writing pre- and post-operation plug-ins, you can specify that the plug-ins
ignore any replicated operations. This is likely to be the desired plug-in behavior,
in most cases. Be aware that changing replicated operations can result in
unexpected behavior.

For more information, see “Pre-Operation and Post-Operation Plug-Ins” in the
Directory Server Plug-in Developer’s Guide.

Replication and Chained Suffixes
When you distribute entries using chaining, the server containing the chained
suffix points to a remote server that contains the actual data. This remote server is
also called a farm server. In this environment, you cannot replicate the chained
suffix itself. You can, however, replicate the suffix that contains the actual data on
the remote server. You must configure the replication agreement on the remote
server and not on the server containing the chained suffix.

Do not use replication as a backup for chained suffixes. You must back up chained
suffixes manually. For more information about chaining and entry distribution
refer to “Referrals and Chaining” on page 100.

Schema Replication
When Directory Server is used in a replicated environment, the schema must be
consistent across all of the servers that participate in replication. If the schema is
not consistent across servers, the replication process is likely to generate errors.

The best way to guarantee schema consistency is to make schema modifications on
a single master, even in a multi-master replication topology. There is no conflict
resolution with regard to schema modifications. Therefore, if you make schema
modifications on two masters in a multi-master topology, the master that was
updated last will propagate its schema to the consumer. This means that you risk
losing modifications made to one master, if different modifications are made to
another master at a later stage.

Using Replication With Other Directory Features

Chapter 6 Understanding Replication 155

Never update the schema on a consumer. If you update the schema on a consumer,
and as a result the version of the schema on the supplier is older than the version
on the consumer, you will encounter errors when you attempt to search the
consumer or update the supplier.

Schema replication occurs automatically. If replication has been configured
between a supplier and a consumer, the schema is replicated by default.

The logic used by Directory Server for schema replication can be described as
follows:

1. Before pushing data to a consumer, the supplier checks whether its own
version of the schema is in sync with the version of the schema held by the
consumer.

2. If the schema entries on both supplier and consumer are the same, the
replication operation proceeds.

3. If the version of the schema on the supplier is more recent than the version on
the consumer, the supplier replicates its schema to the consumer before
proceeding with data replication.

Changes made to custom schema files are only replicated if the schema is updated
using LDAP or Directory Server Console. Custom schema files should be copied to
each server to maintain the information in the same schema file on all servers. For
more information, see “Replicating Schema Definitions” in the Directory Server
Administration Guide.

Replicating only user-defined schema reduces the amount of data transferred and
thus speeds up the replication of schema. For more information, see “Limiting
Schema Replication” in the Directory Server Administration Guide.

Replication and Multiple Password Policies
When using multiple password policies, you must replicate the LDAP subentry
containing the definition of the policy to apply to the replicated entries. If you do
not do so, the default password policy is applied. This policy will not work for
entries that have been configured to use a non-default password policy.

NOTE ACIs present in the schema are replicated.

Replication Monitoring

156 Directory Server 5.2 2005Q1 • Deployment Planning Guide

If you replicate these entries to a Directory Server 5.0/5.1 server, replication
functions correctly but the password policy is not enforced on the Directory Server
5.0/5.1 server. Multiple password policy functionality is supported for Directory
Server 5.2.

Replication Monitoring
Command-line tools enable replication monitoring between servers. The ability to
monitor replication activity assists in identifying the causes of replication
problems. All the monitoring tools can be used over a secure connection.

The replication monitoring tools constitute an LDAP client, and as such, need to
authenticate to the server and use a bind DN that has read access to cn=config.

The following replication monitoring tools are provided:

• insync - indicates the state of synchronization between a master replica and
one or more consumer replicas.

• entrycmp - enables you to compare the same entry on two or more servers.

• repldisc - enables you to “discover” a replication topology. Topology
discovery starts with one server and builds a graph of all known servers within
the topology. This replication topology discovery tool is useful for large,
complex deployments where it might be difficult to recall the global topology
you have deployed.

For more information regarding the replication monitoring tools, refer to
“Replication Monitoring Tools” in the Directory Server Administration Reference. For
information on the monitoring possibilities available with certain replication
attributes, see the replication attributes section of in “Core Server Configuration
Attributes” in the Directory Server Administration Reference.

157

Chapter 7

Access Control, Authentication, and
Encryption

How you secure data in Directory Server has an impact on all other areas of design.
This chapter describes how to analyze your security needs and explains how to
design your directory to meet those needs. It includes the following sections:

• Security Threats

• Overview of Security Methods

• Analyzing Your Security Needs

• Selecting Appropriate Authentication Methods

• Preventing Authentication by Account Inactivation

• Designing Password Policies

• Designing Access Control

• Securing Connections With SSL

• Encrypting Attributes

• Grouping Entries Securely

• Securing Configuration Information

• Other Security Resources

Security Threats

158 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Security Threats
There are many potential threats to the security of your directory. Understanding
the most common threats helps you plan your overall security design. The most
typical threats to directory security fall into the following broad categories:

• Unauthorized Access

• Unauthorized Tampering

• Denial of Service

Unauthorized Access
While it may seem simple to protect your directory from unauthorized access, the
problem can be more complicated. There are several opportunities along the path
of directory information delivery for an unauthorized client to gain access to data.
Unauthorized access includes:

• Unauthorized access to data via data-fetching operations

• Unauthorized access to reusable client authentication information by
monitoring the access of others

• Unauthorized access to data by monitoring the access of others

For example, an unauthorized client can use another client’s credentials to access
the data, or an unauthorized client can eavesdrop on the information exchanged
between a legitimate client and Directory Server.

Unauthorized access can occur from inside your company, or if your company is
connected to an extranet or to the Internet, from outside.

The authentication methods, password policies, and access control mechanisms
provided by Directory Server offer efficient ways of preventing unauthorized
access. Refer to “Selecting Appropriate Authentication Methods” on page 162,
“Designing Password Policies” on page 168, and “Designing Access Control” on
page 177 for more information.

Unauthorized Tampering
If intruders gain access to your directory or intercept communication between
Directory Server and a client application, they have the potential to modify (or
tamper with) directory data. These unauthorized modifications may include:

Overview of Security Methods

Chapter 7 Access Control, Authentication, and Encryption 159

• Unauthorized modification of data

• Unauthorized modification of configuration information

Your directory is rendered useless if the data can no longer be trusted by clients, or
if the directory itself cannot trust the modifications and queries it receives from
clients.

If your directory cannot detect tampering, an attacker could alter a client’s request
to the server, cancel the request, or change the server’s response to the client. The
Secure Socket Layer (SSL) protocol and similar technologies can solve this problem
by signing information at either end of the connection. For more information about
using SSL with Directory Server, refer to “Securing Connections With SSL” on
page 186.

Denial of Service
With a denial of service attack, the attacker’s goal is to prevent the directory from
providing service to its clients. For example, an attacker might simply use the
system’s resources to prevent them from being used by someone else.

Directory Server offers a way of preventing denial of service attacks by setting
limits on the resources allocated to a particular bind DN. For more information,
refer to “Setting Individual Resource Limits” in the Administration Server
Administration Guide.

Overview of Security Methods
Your security policy must be strong enough to prevent sensitive information from
being modified or retrieved by unauthorized users, but simple enough to
administer easily. A complex security policy can lead to mistakes that either
prevent people from accessing the information that you want them to access or,
worse, allow people to modify or retrieve directory information that you do not
want them to access.

Directory Server provides the following security methods:

• Authentication

A means for one party to verify another’s identity. For example, a client gives a
password to Directory Server during an LDAP bind operation.

• Password policies

Analyzing Your Security Needs

160 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Defines the criteria that a password must satisfy to be considered valid, for
example, age, length, and syntax.

• Encryption

Protects the privacy of information. When data is encrypted, it is scrambled in
a way that only the recipient can understand.

• Access control

Tailors the access rights granted to different directory users, and provides a
means of specifying required credentials or bind attributes.

• Account inactivation

Disables a user account, group of accounts, or an entire domain so that all
authentication attempts are automatically rejected.

• Secure Sockets Layer (SSL)

Maintains the integrity of information. If encryption and message digests are
applied to the information being sent, the recipient can determine that it was
not tampered with during transit.

• Auditing

Allows you to determine if the security of your directory has been
compromised. For example, you can audit the log files maintained by your
directory.

These tools for maintaining security can be used in combination in your security
design. You can also use other features of the directory such as replication and data
distribution to support your security design.

Analyzing Your Security Needs
When you performed your site survey in Chapter 2, “Planning and Accessing
Directory Data,” you made certain decisions about who can read and write the
individual pieces of data in your directory. This information now forms the basis of
your security design.

How you implement security is also dependent on how you use the directory to
support your business. A directory that serves an intranet does not require the
same security measures as a directory that supports an extranet, or e-commerce
applications that are open to the Internet.

If your directory serves an intranet only, your concerns are primarily:

Analyzing Your Security Needs

Chapter 7 Access Control, Authentication, and Encryption 161

• Providing users and applications with access to the information they need to
perform their jobs.

• Protecting sensitive employee or company data from general access.

• Ensuring information integrity.

If your directory serves an extranet, or supports e-commerce applications over the
Internet, you also need to offer your customers and business partners a guarantee
of privacy.

This section contains the following information about analyzing your security
needs:

• Determining Access Rights

• Ensuring Data Privacy and Integrity

• Conducting Security Audits

Determining Access Rights
When you perform a data analysis, you decide what information your users,
groups, partners, customers, and applications need to access.

You can grant access rights in two ways:

• Grant all categories of users the ability to perform self-administration or
delegate management, while still protecting your sensitive data.

If you choose this open method, you must concentrate on determining what
data is sensitive or critical to your business.

• Grant each category of users the minimum access they require to do their jobs.

If you choose this restrictive method, you must spend some time
understanding the information needs of each category of user inside, and
possibly outside of your organization.

Regardless of how you decide to grant access rights, you should create a simple
table that lists the categories of users in your organization and the access rights you
grant to each. You may also want to create a table that lists the sensitive data held
in the directory, and for each piece of data, the steps taken to protect it.

For information about checking the identity of users, refer to “Selecting
Appropriate Authentication Methods” on page 162. For information about
restricting access to directory information, refer to “Designing Access Control” on
page 177.

Selecting Appropriate Authentication Methods

162 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Ensuring Data Privacy and Integrity
When you are using the directory to support exchanges with business partners
over an extranet, or to support e-commerce applications with customers on the
Internet, you must ensure the privacy and the integrity of the data exchanged.

You can do this in several ways, by:

• Encrypting data

• Using certificates to sign data

• Encrypting data transfers

For information about encryption methods provided in Directory Server, refer to
“Password Storage Scheme” on page 171 and “Encrypting Attributes” on page 187.
For information about signing data, refer to “Securing Connections With SSL” on
page 186.

Conducting Security Audits
Security audits ensure that the implementation of a security policy is working.
There are several aspects to a security audit. A basic audit procedure is to automate
testing using a network-based security scanner that identifies vulnerabilities on
your network. You can also conduct audits by examining the log files and the
information recorded by the SNMP agents. For more information about
monitoring your directory, refer to Chapter 8, “Directory Server Monitoring.”

Selecting Appropriate Authentication Methods
A basic decision you must make regarding your security policy is how users access
Directory Server. Will you allow anonymous access, or will you require every
person who uses Directory Server to bind to the directory?

Directory Server supports the following authentication mechanisms:

• Anonymous Access

• Simple Password

• Proxy Authorization

• Simple Password Over a Secure Connection

• Certificate-Based Client Authentication

Selecting Appropriate Authentication Methods

Chapter 7 Access Control, Authentication, and Encryption 163

• SASL-Based Client Authentication

The same authentication mechanism applies to all users, whether they are people
or LDAP-aware applications.

For information about preventing authentication by a client or group of clients, see
“Preventing Authentication by Account Inactivation” on page 168.

Anonymous Access
Anonymous access provides the easiest form of access to your directory. It makes
data available to any user of your directory, regardless of whether they have
authenticated.

However, anonymous access does not allow you to track who is performing what
kinds of searches; only that someone is performing searches. When you allow
anonymous access, anyone who connects to your directory can access the data.

Therefore, if you attempt to block a specific user or group of users from seeing
some kinds of directory data, but you have allowed anonymous access to that data,
then those users can still access the data simply by binding to the directory
anonymously.

You can restrict the privileges of anonymous access. Usually directory
administrators allow anonymous access only for read, search, and compare
privileges. Often, administrators limit access to a subset of attributes that contain
general information such as names, telephone numbers, and email addresses.
Anonymous access should never be allowed for sensitive data such as government
identification numbers (social security numbers in the US), home telephone
numbers and addresses, and salary information.

If a user attempts to bind with an entry that does not contain a user password
attribute, Directory Server either:

• Grants anonymous access if the user does not attempt to provide a password.

• Denies access if the user provides any non-null string for the password.

For example, consider the following ldapsearch command:

% ldapsearch -h ds.example.com -D "cn=joe,dc=Example,dc=com"
-w secretpwd -b "cn=joe,dc=Example,dc=com" "objectclass=*"

ldap_simple_bind_s: Invalid credentials

Selecting Appropriate Authentication Methods

164 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Although Directory Server allows anonymous access for read, Joe cannot access his
own entry because it does not contain a password that matches the one he
provided in the ldapsearch command.

Simple Password
If you have not set up anonymous access, clients must authenticate to Directory
Server before they can access the directory contents. With simple password
authentication, a client authenticates to the server by sending a simple, reusable
password.

For example, a client authenticates to Directory Server via a bind operation in
which it provides a distinguished name and its credentials. The server locates the
entry in the directory that corresponds to the client DN and checks whether the
password given by the client matches the value stored with the entry. If it does, the
server authenticates the client. If it does not, the authentication operation fails and
the client receives an error message.

The bind DN often corresponds to the entry of a person. However, some directory
administrators find it useful to bind as an administrative entry rather than as a
person. Directory Server requires the entry used to bind to be of an object class that
allows the userPassword attribute. This ensures that the directory recognizes the
bind DN and password.

Most LDAP clients hide the bind DN from the user because users may find the long
strings of DN characters hard to remember. When a client attempts to hide the bind
DN from the user, it uses a bind algorithm such as the following:

1. The user enters a unique identifier such as a user ID (for example, bjensen).

2. The LDAP client application searches the directory for that identifier and
returns the associated distinguished name (such as
uid=bjensen,ou=people,dc=Example,dc=com).

3. The LDAP client application binds to the directory using the retrieved
distinguished name and the password supplied by the user.

NOTE The drawback of simple password authentication is that the
password is sent in clear text. If a rogue user is listening, this can
compromise the security of your Directory Server because that
person can impersonate an authorized user.

Selecting Appropriate Authentication Methods

Chapter 7 Access Control, Authentication, and Encryption 165

Simple password authentication offers an easy way of authenticating users, but it is
best to restrict its use to your organization’s intranet. It does not offer the level of
security required for transmissions between business partners over an extranet, or
for transmissions with customers out on the Internet.

Proxy Authorization
Proxy authorization is a special form of access control: a user that binds to
Directory Server using his own identity is granted the rights of another user,
through proxy authorization.

Using proxy authorization, directory administrators can request access to
Directory Server by assuming the identity of a regular user. They bind to the
directory using their own credentials, but for purposes of access control evaluation,
are granted the rights of the regular user. This assumed identity is called the proxy
user, and the DN of that user, the proxy DN.

To configure Directory Server to allow proxy requests:

• You must grant the administrators the right to proxy as other users

• You must grant your regular users normal access rights as defined in your
access control policy.

One of the main advantages of the proxy mechanism is that you can enable an
LDAP application to use a single thread with a single bind to service multiple users
making requests against Directory Server. Instead of having to bind and
authenticate for each user, the client application binds to Directory Server and uses
proxy rights.

For more information on proxy authorization, refer to “Managing Access Control”
in the Directory Server Administration Guide.

NOTE You can grant proxy rights to any users of the directory except the
Directory Manager. You should exercise great care when granting
proxy rights because you grant the right to specify any DN (except
the Directory Manager DN) as the proxy DN.

Selecting Appropriate Authentication Methods

166 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Simple Password Over a Secure Connection
A secure connection uses encryption to make data unreadable to third parties
while it is sent over the network between Directory Server and its clients. Clients
may establish secure connections in either of the following ways:

• Bind to the secure port using the Secure Socket Layer (SSL).

• Bind to the insecure port with anonymous access, and then send the Start TLS
control to begin using Transport Layer Security (TLS).

In either case, the server must have a security certificate, and the client must be
configured to trust this certificate. The server sends its certificate to the client to
perform server authentication using public-key cryptography. As a result, the client
knows that it is connected to the intended server and that the server is not being
tampered with.

The client and server then begin to encrypt all data transmitted through the
connection for privacy. The client sends the bind DN and password on the
encrypted connection to authenticate the user. All further operations are
performed with the identity of the user or with a proxy identity if the bind DN has
proxy rights to other user identities. In all cases, the results of operations are
encrypted when they are returned to the client.

For more information about SSL, refer to “Securing Connections With SSL” on
page 186. For information about configuring certificates and activating SSL, see
“Managing Authentication and Encryption” in the Directory Server Administration
Guide.

Certificate-Based Client Authentication
When establishing encrypted connections over SSL or TLS, you can also configure
the server to require client authentication. The client must send its credentials to the
server to confirm the identity of the user. The user's credentials, and not the DN,
are used to determine the bind DN. Client authentication protects against user
impersonation and is the most secure type of connection.

One form of credentials that a client may send is the user's certificate. To perform
certificate-based authentication, the directory must be configured to perform
certificate mapping, and all users must store a copy of their certificate in their
entry. After receiving a user certificate from a client, the server performs a

Selecting Appropriate Authentication Methods

Chapter 7 Access Control, Authentication, and Encryption 167

mapping based on the certificate contents to find a user entry in the directory. This
entry must contain an exact copy of the certificate for the user to be positively
identified. All operations proceed using this entry's DN as the bind DN, and all
results are encrypted over the SSL or TLS connection.

For more information about certificate mapping, see “Using Client Authentication”
in the Administration Server Administration Guide and “Configuring
Certificate-Based Authentication in Clients” in the Directory Server Administration
Guide.

Directory Server now supports a version of the Network Security Services (NSS)
component with a certificate base that allows for larger certificates than were
previously possible. In addition, a directory is automatically created next to the
certificate database when an object larger than 14 KB is imported.

SASL-Based Client Authentication
Another type of client authentication during an SSL or TLS connection uses the
Simple Authentication and Security Layer (SASL) to establish the identity of the
client. Directory Server supports the following mechanisms through the generic
security interface of SASL:

• DIGEST-MD5 - This mechanism authenticates clients by comparing a hashed
value sent by the client with a hash of the user's password. However, because
the mechanism must read user passwords, all users wishing to be
authenticated through DIGEST-MD5 must have {CLEAR} passwords in the
directory.

• GSSAPI - Available only on the Solaris Operating System, the General Security
Services API (GSSAPI) allows Directory Server to interact with the Kerberos V5
security system to identify a user. The client application must present its
credentials to the Kerberos system, which in turn validates the user's identity
to Directory Server.

When using either SASL mechanism, the server must also be configured to
perform identity mapping. The SASL credentials are called the Principal, and each
mechanism must have specific mappings to determine the bind DN from the
contents of the Principal. When the Principal is mapped to a single user entry and
the SASL mechanism validates that user's identity, the user's DN is the bind DN for
the connection.

For more information, see “Using SASL DIGEST-MD5 in Clients”and “Using
Kerberos SASL GSSAPI in Clients”in the Directory Server Administration Guide.

Preventing Authentication by Account Inactivation

168 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Preventing Authentication by Account Inactivation
You can temporarily inactivate a user account or a set of accounts. Once
inactivated, a user cannot bind to Directory Server, and the authentication
operation fails.

Account inactivation is implemented through the operational attribute,
nsAccountLock. When an entry contains the nsAccountLock attribute with a
value of true, the server rejects the bind. (The nsAccountLock attribute should
never be modified manually, but using the command-line utilities.)

You use the same procedures for inactivating users and roles. However,
inactivating a role means that you inactivate all of the members of that role and not
the role entry itself. For more information about roles, refer to “Managed, Filtered,
and Nested Roles” on page 79.

Designing Password Policies
A password policy is a set of rules that govern how passwords are administered in
a given system.

The password policy can be used to configure multiple password policies, as
opposed to one global policy for your entire directory. You can assign password
policies either to particular users or to sets of users by using the CoS and Roles
functionality. This provides significantly more scope when implementing
password policy security measures, because you can tailor password policies to
specific users or roles.

Password policies cannot be applied to static groups.

For detailed information about the attributes available to build password policies,
see “Password Policy Attributes” and “Account Lockout Attributes” in the
Directory Server Administration Reference. For information about configuring and
managing password policies, refer to “Managing User Accounts and Passwords”
in the Directory Server Administration Guide. This section is divided into the
following topics:

• Password Policy Features

• Configuring Password Policies

• Preventing Dictionary-Style Attacks

• Password Policies in a Replicated Environment

Designing Password Policies

Chapter 7 Access Control, Authentication, and Encryption 169

Password Policy Features
This section describes the main password policy features, and is divided into the
following sub-sections:

• User-Defined Passwords

• Password Change at First Login or Reset

• Password Expiration

• Expiration Warning

• Password Syntax Checking

• Password Length

• Password Minimum Age

• Password History

• Password Storage Scheme

User-Defined Passwords
You can set up your password policy to either allow or not allow users to change
their own passwords. A good password is the key to a strong password policy.
Good passwords do not use trivial words—that is, any word that can be found in a
dictionary, names of pets or children, birthdays, user IDs, or any other information
about the user that can be easily discovered (or stored in the directory itself).

Also, a good password should contain a combination of letters, numbers, and
special characters. Often, however, users simply use passwords that are easy to
remember. This is why some enterprises choose to set passwords for users that
meet the criteria of a “good” password, and do not allow the users to change
passwords.

However, assigning passwords to users takes a substantial amount of an
administrator’s time. In addition, by providing passwords for users rather than
letting them come up with passwords that are meaningful to them and therefore
more easily remembered, you run the risk that the users will write their passwords
down somewhere where they can be discovered. By default, user-defined
passwords are allowed.

Password Change at First Login or Reset
The Directory Server password policy lets you decide whether users must change
their passwords at the first login or after the password is reset by an administrator.

Designing Password Policies

170 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Often the initial passwords set by the administrator follow some sort of
convention, such as the user’s initials, user ID, or the company name. Once the
convention is discovered, it is usually the first value tried by a hacker trying to
break in. In this case, it is a good idea to require users to change their passwords
after such a change. If you configure this option for your password policy, users
are required to change their password even if user-defined passwords are disabled.
(see the previous section on “User-Defined Passwords”.)

By default, users do not need to change their passwords at first login or after a
reset.

Password Expiration
You can configure your password policy so that users can use the same passwords
indefinitely, or so that passwords expire after a given time. In general, the longer a
password is in use, the more likely it is to be discovered. However, if passwords
expire too often, users may have trouble remembering them and resort to writing
their passwords down. A common policy is to have passwords expire every 30 to
90 days.

Directory Server remembers the password expiration configuration even if you
disable password expiration. This means that if you re-enable password expiration,
passwords are valid only for the duration you set before you last disabled the
feature. For example, suppose you set up passwords to expire every 90 days and
then decided to disable password expiration. When you re-enable password
expiration, the default password expiration duration is 90 days because that is
what you had it set to before you disabled the feature.

By default, user passwords never expire.

The new global configuration attribute, usePwdChangedTime, enables you to limit
the duration during which a user can log in after a password is changed, for
example, after a password is reset by an administrator.

Expiration Warning
If you choose to set your password policy so that user passwords expire after a
given number of days, it is a good idea to send users a warning before their
passwords expire. You can set your policy so that users are sent a warning 1 to
24,855 days before their passwords expire. Directory Server displays the warning
when the user binds to the server. By default, if password expiration is turned on, a
warning is sent (via an LDAP message) to the user one day before the user’s
password expires, provided the user’s client application supports this feature.

Designing Password Policies

Chapter 7 Access Control, Authentication, and Encryption 171

Password Syntax Checking
The password policy establishes syntax guidelines for password strings. The
password syntax-checking mechanism ensures that password strings conform to
these guidelines. By default, password syntax checking is turned off. Password
length is checked, only if password syntax checking is enabled.

Password Length
Directory Server enables you to specify a minimum length for user passwords. In
general, shorter passwords are easier to crack. You can require passwords that are
from 2 to 512 characters. A good length for passwords is 8 characters. This is long
enough to be difficult to crack, but short enough so that users can remember the
password without writing it down.

By default the minimum password length is 6 characters. The minimum length of a
password is checked only if password syntax checking is turned on.

Password Minimum Age
You can configure your password policy to prevent users from changing their
passwords with a specified period. You can use this feature in conjunction with the
password history feature to discourage users from reusing old passwords.

Setting the password minimum age to 2 days, for example, prevents users from
repeatedly changing their password during a single session to cycle through the
password history and reuse an old password once it is removed from the history
list. You can specify any number from 0 to 24,855 days. A value of zero (0) indicates
that the user can change the password immediately.

Password History
You can configure Directory Server to store a maximum of 24 used passwords in
history.

With password history enabled, if a user attempts to reuse one of the passwords
Directory Server has stored, the password is rejected. This feature prevents users
from reusing one or two passwords that are easy to remember.

If you disable the password history feature, no previously used passwords are
stored and users are able to reuse passwords. By default, Directory Server does
maintain a password history.

Password Storage Scheme
The password storage scheme specifies the type of encryption used to store
passwords within the directory. You can specify:

Designing Password Policies

172 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Clear text (no encryption).

• Secure Hash Algorithm (SHA).

• Salted Secure Hash Algorithm (SSHA). This encryption method is the default
method.

• UNIX CRYPT algorithm.

Although passwords stored in the directory can be protected through the use of
access control information (ACI) instructions, it is still not a good idea to store clear
text passwords in the directory. The CRYPT algorithm provides compatibility with
UNIX passwords. SSHA is the most secure, and is the default hash algorithm for
Directory Server.

Configuring Password Policies
The following password policy options are provided:

• A global password policy, stored under cn=Password Policy,cn=config, is
applied by default. The parameters of this global policy can be changed.

• In versions of Directory Server prior to Directory Server 5.2, the global
password policy was the only password policy that existed. As a backup to the
global password policy, a hard-coded password policy is provided. This policy is
applied if the global password policy is absent or, following modifications, no
longer valid. The attribute values of the hard-coded password policy are the
same as those of the default global password policy.

• You can define a password policy and apply it to a particular user.

• You can define a password policy and apply it to a set of users by using the
CoS and Roles functionality.

Note: password policies cannot be applied to static groups.

This section describes these options in more detail, and explains the order of
precedence that governs the application of password policies when multiple
password policies exist for a given user entry. This section is divided into the
following topics:

• Global Password Policy

• Defining Password Policies for Users or Sets of Users

• Multiple Password Policies and Their Order of Precedence

Designing Password Policies

Chapter 7 Access Control, Authentication, and Encryption 173

Global Password Policy
The global password policy is stored under cn=Password Policy,cn=config, and is
applied by default. You can modify this policy to suit your security needs. The
default global policy enforces the following:

• The SSHA storage scheme.

• Users can change their passwords.

• Users do not have to change their password at their first login or after the
password is reset by an administrator.

• Password syntax checks (compliance with the minimum number of characters)
are not performed.

• Passwords never expire.

• If you activate password expiration, the maximum age of a password is 100
days.

• No time needs to elapse between modifications to the password.

• If you activate password expiration, a password expiration warning is sent one
day before the password is due to expire on the user’s first bind attempt.

• Used passwords are not recorded.

• Users are never locked out of their accounts.

• If you activate account lockout, users are locked out after a maximum number
of three failed bind attempts, and the lockout lasts for one hour.

• Password failures are purged from the failure counter after 600 seconds.

The default policy (where passwords never expire, no syntax checks are
performed, and the account lockout mechanism is not enabled) has low
management overheads but is not the most secure. You should balance your
security requirements against the management overheads generated by a
demanding password policy.

NOTE In previous versions of Directory Server, global password policy
attributes were stored directly under cn=config. They are now
stored under cn=Password Policy,cn=config. If this entry does
not exist, the hard-coded password policy provided with Directory
Server is applied.

Designing Password Policies

174 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Defining Password Policies for Users or Sets of Users
You define a password policy for a specific user entry or for a set of users, with the
passwordPolicySubentry attribute. The value of this attribute is the DN of an
LDAPsubentry that contains the password policy attributes you wish to apply
directly to the user’s entry. This attribute can either be a real attribute or a virtual
attribute generated by a CoS definition.

You can define password policies for a set of users by configuring the CoS
definition to provide values for the passwordPolicySubentry attribute in user
entries as a function of the Roles that those user entries have. While this is not the
only way to define password policies for sets of users, it is the method used by
Directory Server Console. Password policies cannot be applied to static groups.

To make managing your password policy easier, you should co-locate the user or
set of users to which the password policy applies, and the password policy itself.
This will ensure that the password policy LDAP subentry is replicated along with
the password policy.

You can apply password policies to dynamic groups, but not static groups.

For procedural information on defining individual password policies, see
“Managing Individual Password Policies”in the Directory Server Administration
Guide.

Multiple Password Policies and Their Order of Precedence
There are three main rules of precedence that govern the application of password
policies when a user entry has more than one password policy assigned to it. The
rules are as follows:

1. A password policy generated by a CoS definition will take precedence over a
password policy assigned directly to the user entry. This is because the
cosAttribute value defined in the CoS definition entry is obliged to contain
an operational qualifier, which causes the CoS generated password policy to
override any real attributes that may have been assigned directly to the user.
For more information about the Roles and CoS mechanism, see Chapter 4,
“The Directory Information Tree.”

2. A password policy assigned directly to a user entry will take precedence over
the global password policy.

3. The global password policy, stored under cn=Password Policy,cn=config,
will take precedence over the hard-coded password policy values provided
with Directory Server.

Designing Password Policies

Chapter 7 Access Control, Authentication, and Encryption 175

Preventing Dictionary-Style Attacks
In a dictionary-style attack, an intruder attempts to crack a password by repeatedly
guessing from a list of common words and variations, until gaining authorization.
The server provides three tools to counter such attacks:

• Password syntax checking verifies that a password does not match values of
the uid, cn, sn, givenName, ou, or mail attributes of the user entry. The server
will not allow a user to set a password if it matches one of these values.
However, syntax checking does not thwart actual dictionary attacks, in which
the intruder tries every word in /usr/dict/words, for example.

• A minimum password length ensures that the user cannot set a short
password. Passwords with more characters are exponentially harder to guess
or attempt all values. In Directory Server, you must enable password syntax
checking and minimum length simultaneously.

• The account lockout mechanism prevents binding after a certain number of
failed authentication attempts. The lockout may either be temporary or
permanent, depending on how strict you wish to make your password policy.

Both will effectively prevent automated guessing of passwords. For example, if
you allow five attempts and then lock the user account for five minutes, the
intruder can make only one guess per minute, on average, and a poor typist is
inconvenienced only momentarily. If the lock is permanent, the user’s
password must be reset manually by the Directory Manager.

Account lockout counters are local to a directory server. This feature is not
designed as a global lockout from your directory service, which means that
even in a replicated environment, account lockout counters are not replicated.

CAUTION When you are configuring password policies using CoS, it is
important to establish an order of precedence in case a user entry is
affected by more than one CoS generated password policy. You
specify order of precedence by entering the appropriate value in the
cosPriority attribute when you create your CoS template entry.
You assign the highest priority with a value of 0. CoS templates that
contain no cosPriority attribute are considered lowest priority,
and when templates have the same (or no) cosPriority attribute
value, a priority is chosen arbitrarily. For more information on Roles
and CoS, see Chapter 4, “The Directory Information Tree.”

Designing Password Policies

176 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Password Policies in a Replicated Environment
Configuration information for the global password policy is not replicated, because
it is an entry under cn=config. If you modify the global password policy, you must
therefore make the same modifications on each of the servers in your topology
manually. If you require a global password policy that is replicated, you must
define such a policy under a part of the directory tree that is replicated.

All password information that is stored in the user entry (current password,
password history, password expiration dates, and so forth) is replicated. Account
lockout counters are stored at the local server level and are not replicated.

You should consider the following impact of password policies in a replicated
environment:

• A user with an impending password expiration will receive a warning from
every replica to which they bind before changing their password.

• When a user changes their password, it may take time for this information to
be updated on all replicas. If a user changes a password and then immediately
rebinds to one of the consumer replicas with the new password, the bind may
fail until the replica receives the updated password.

• Each replica keeps separate, non-replicated account lockout counters. As a
result, the lockout policy will be enforced on any single replica, but may be
circumvented when a user attempts to bind to several replicas. For example, if
you have 10 servers in the replication topology, and lock out is activated after
three attempts, an intruder could potentially try 30 guesses of the password.

While replication does allow an intruder more guesses, the number is
insignificant when compared to the billions of password values. It is much
more important to force users to have strong passwords by turing on password
checking and setting a password length of six characters or more. You should
also give them guidelines on how to select and remember a password that is
not a common dictionary word. Finally, you should ensure that all directory
administrator users have very strong passwords.

• In an environment that uses multiple password policies, you must replicate the
LDAP subentry containing the policy definition to be applied to the replicated
entries. If you fail to do so, the LDAP subentry containing the policy definition
will not exist and the default password policy will be applied.

Designing Access Control

Chapter 7 Access Control, Authentication, and Encryption 177

• Entries that are created for replication (for example, the server identity
Replication Manager entries) must have passwords that never expire. To make
sure that these special users have passwords that do not expire, add the
passwordExpirationTime attribute to the entry and give it a value of
20380119031407Z (the maximum value in the valid range).

Designing Access Control
Access control enables you to specify that certain clients have access to particular
information, while other clients do not. You implement access control using one or
more access control lists (ACLs). ACLs consist of a series of access control
instructions (ACIs) that either allow or deny permissions (such as read, write,
search, proxy, add, delete, and compare) to specified entries and their attributes.

Using an ACL, you can set permissions for the following:

• The entire directory

• A particular subtree of the directory

• Specific entries in the directory

• A specific set of entry attributes

• Any entry that matches a given LDAP search filter

In addition, you can set permissions for a specific user, for all users belonging to a
group, or for all users of the directory. You can also define access for a network
location such as an IP address or a DNS name.

This section describes the Directory Server access control mechanism, and is
divided into the following topics:

• ACI Format

• Default ACIs

• Setting Permissions

• Requesting Effective Rights Information

• Tips on Using ACIs

• ACI Limitations

Designing Access Control

178 Directory Server 5.2 2005Q1 • Deployment Planning Guide

ACI Format
ACIs are stored in the directory, as attributes of entries. The aci attribute is an
operational attribute; it is available for use on every entry in the directory,
regardless of whether it is defined for the object class of the entry. It is used by
Directory Server to evaluate what rights are granted or denied when it receives an
LDAP request from a client. The aci attribute is returned in an ldapsearch
operation if specifically requested. For more information on the format of ACIs see
“ACI Syntax,”in the Directory Server Administration Guide.

Default ACIs
When you install Directory Server, or when you add a new suffix, a number of
default ACIs are defined. These ACIs can be modified to suit your security
requirements. For details on the default ACIs and how to modify them, refer to
“Default ACIs”in the Directory Server Administration Guide.

Setting Permissions
If no ACIs are present in the directory, the default policy is not to grant users access
rights (with the exception of the Directory Manager.) Therefore, you must set some
ACIs to enable your users to access the directory. The following sections describe
the access control mechanism provided by Directory Server. For information on
setting ACIs, see “Creating ACIs From the Command Line”and “Creating ACIs
Using the Console” in the Directory Server Administration Guide.

The Precedence Rule
When a user attempts any kind of access to a directory entry, Directory Server
examines the access control set in the directory. To determine access, Directory
Server applies the precedence rule. This rule states that when two conflicting
permissions exist, the permission that denies access always takes precedence over
the permission that grants access.

For example, if you deny write permission at the directory’s root level, and you
make that permission applicable to everyone accessing Directory Server, then no
user can write to the directory regardless of any other permissions that you may
allow. To allow a specific user write permissions to Directory Server, you have to
restrict the scope of the original deny-for-write so that it does not include that user.
Then you have to create an additional allow-for-write permission for the user.

Designing Access Control

Chapter 7 Access Control, Authentication, and Encryption 179

Allowing or Denying Access
You can explicitly allow or deny access to your directory tree. Be careful of
explicitly denying access to Directory Server. Because of the precedence rule, if the
directory finds rules explicitly forbidding access, it will forbid access regardless of
any conflicting permissions that may grant access.

Limit the scope of your allow access rules to include only the smallest possible
subset of users or client applications. For example, you can set permissions that
allow users to write to any attribute on their directory entry, but then deny all users
except members of the Directory Administrators group the privilege of writing to
the uid attribute. Alternatively, you can write two access rules that allow write
access in the following ways:

• Create one rule that allows write privileges to every attribute except the uid
attribute. This rule should apply to everyone.

• Create one rule that allows write privileges to the uid attribute. This rule
should apply only to members of the Directory Administrators group.

By providing only allow access, you avoid the need to set explicit deny access.

When to Deny Access
You rarely need to set an explicit deny. However, you may find an explicit deny
useful in the following circumstances:

• You have a large directory tree with a complicated ACL spread across it.

For security reasons, you find that you suddenly need to deny access to a
particular user, group, or physical location. Rather than take the time to
carefully examine your existing ACL to understand how to appropriately
restrict the allow permissions, you may want to temporarily set the explicit
deny until you have time to do this analysis. If your ACL has become this
complicated, then, in the long run, the deny ACI only adds to your
administrative burden. As soon as possible, rework your ACL to avoid the
explicit deny and simplify your overall access control scheme.

• You want to restrict access control based on a day of the week or an hour of the
day.

For example, you can deny all writing activities from Sunday at 11:00 p.m.
(2300) to Monday at 1:00 a.m. (0100). From an administrative point of view, it
may be easier to manage an ACI that explicitly restricts time-based access of
this kind than to search through the directory for all the allow for write ACIs
and restrict their scopes in this time frame.

Designing Access Control

180 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• You want to restrict privileges when you are delegating directory
administration authority to multiple people.

If you are allowing a person or group of people to manage some part of the
directory tree, but you want to make sure that they do not modify some aspect
of the tree, use an explicit deny. For example, if you want to make sure the Mail
Administrators do not allow write access to the common name attribute, then
set an ACI that explicitly denies write access to the common name attribute.

Where to Place Access Control Rules
Access control rules can be placed on any entry in the directory. Often
administrators place access control rules on entries of type country,
organization, organizationalUnit, inetOrgPerson, or group.

To simplify your ACL administration, group your rules as much as possible. Since
a rule generally applies to its target entry and to all that entry’s children, it is best to
place access control rules on root points in the directory or on directory branch
points, rather than to scatter them across individual leaf (such as person) entries.

Using Filtered Access Control Rules
One of the more powerful features of the Directory Server ACI model is the ability
to use LDAP search filters to set access control. LDAP search filters enable you to
set access to any directory entry that matches a set of defined criteria.

For example, you could allow read access for any entry that contains an
organizationalUnit attribute with a value of Marketing.

Filtered access control rules let you use predefined levels of access. For example,
suppose your directory contains home address and telephone number information.
Some people want to publish this information, while others want to be “unlisted.”
You can handle this situation by doing the following:

• Create an attribute on every user’s directory entry called
publishHomeContactInfo.

• Set an access control rule that grants read access to the homePhone and
homePostalAddress attributes only for entries whose
publishHomeContactInfo attribute is set to TRUE (meaning enabled). Use an
LDAP search filter to express the target for this rule.

• Allow your directory users to change the value of their own
publishHomeContactInfo attribute to either TRUE or FALSE. In this way, the
directory user can decide whether this information is publicly available.

Designing Access Control

Chapter 7 Access Control, Authentication, and Encryption 181

For more information about using LDAP search filters with ACIs, see “Targeting
Entries or Attributes Using LDAP Filters” in the Directory Server Administration
Guide.

Using Macro ACIs
Macro ACIs are placeholders that are used to represent a DN, or a portion of a DN,
in an ACI. You can use a macro to represent a DN in the target portion of the ACI,
in the bind rule portion, or both. When Directory Server receives an LDAP request,
the macro ACIs are matched against the resource targeted by the LDAP operation.
If there is a match, the macro is replaced by the value of the DN of the targeted
resource. Directory Server then evaluates the ACI normally.

When the server starts, all ACIs are brought into memory, although cache limits do
not apply to them. This can have a considerable impact on memory consumption.
If you use repeating directory tree structures, you should therefore optimize the
number of ACIs used in Directory Server by using macro ACIs where possible.

For more information on macro ACIs see “Advanced Access Control: Using Macro
ACIs” in the Directory Server Administration Guide.

Requesting Effective Rights Information
The access control model provided by Directory Server is powerful in that access
can be granted to users via many different mechanisms. However, this flexibility
can make determining what your security policy comprises fairly complex.
Because there are several parameters that can define the security context of a user
(IP address and machine name, time of day, and authentication method, for
example,) it is useful to be able to list the rights of a given user to directory entries
and attributes.

Directory Server enables you to request the effective access rights that a user has to
specified directory entries and attributes. The effective rights information obtained
corresponds to:

• The ACIs effective at the time of your request

• The authentication method used

• The host machine name and address from which you make the request

When establishing why a user does or does not have access to certain data, you
must reflect all of the user’s parameters when initiating your effective rights search
operation.

Designing Access Control

182 Directory Server 5.2 2005Q1 • Deployment Planning Guide

This section examines the effective rights feature in more detail and is divided into
the following topics:

• About the Effective Rights Feature

• Access Control on the Effective Rights Feature

• Results of an Effective Rights Request

About the Effective Rights Feature
The effective rights feature uses the ldapsearch utility supplied with the Directory
Server Resource Kit (DSRK). The rights information you require is specified using a
particular option and the information relative to these rights is returned with your
ldapsearch results. For information on how to use the effective rights feature, see
“Viewing Effective Rights”in the Directory Server Administration Guide.

Access Control on the Effective Rights Feature
To obtain effective rights information, users must have the access control rights to
use the Effective Rights control and read access to the aclRights attribute. This
double layer of access control for the effective rights feature provides basic security
which can be more finely tuned if necessary. By analogy with proxy, if you have
read access to the aclRights attribute in an entry, you can request information
about anyone’s rights to that entry and its attributes. This implies that the user who
manages the resource can determine who has rights to that resource, even if that
user does not actually manage those with the rights.

If a user requesting rights information does not have the rights to use the Effective
Rights control, the operation will fail and an error message will be returned.
However, if the user requesting rights information does have the rights to use the
control but lacks the rights to read the aclRights attribute, the aclRights
attribute will simply be absent from the returned entry. This behavior reflects
Directory Server’s general search operation behavior.

If a proxy control is attached to an Effective Rights control-based search operation,
the effective rights operation will be authorized as the proxy user. This means that
the proxy user will require the rights to use the Effective Rights control, and the
entries returned will be those entries that the proxy user has the right to search and
view.

Results of an Effective Rights Request
The information returned as a result of an effective rights request includes :

• Rights information, including entry level rights, attribute level rights and
logging.

Designing Access Control

Chapter 7 Access Control, Authentication, and Encryption 183

• Write, selfwrite add, and selfwrite delete permissions.

• Logging information, which enables you to debug access control problems.

For detailed information on each of these aspects, refer to “Understanding
Effective Rights Results,” in the Directory Server Administration Guide.

Tips on Using ACIs
The following tips can help to lower the administrative burden of managing your
directory security model and improve directory performance. Some of the
following hints have already been described earlier in this chapter, but are
included here to provide a complete list.

• Minimize the number of ACIs in your directory and use macro ACIs where
possible.

Although Directory Server can evaluate over 50,000 ACIs, it is difficult to
manage a large number of ACI statements, and excessive ACIs may have a
negative impact on memory consumption.

• Balance allow and deny permissions.

Although the default rule is to deny access to any user who has not been
specifically granted access, you might find that you can save on the number of
ACIs by using one ACI allowing access close to the root of the tree, and a small
number of deny ACIs close to the leaf entries. This scenario can prevent
excessive allow ACIs close to the leaf entries.

• Identify the smallest set of attributes on any given ACI.

If you are allowing or restricting access to a subset of attributes on an object,
determine whether the smallest list is the set of attributes that are allowed or
the set of attributes that are denied. Then express your ACI so that you are
managing the smallest list.

For example, the people object class contains dozens of attributes. If you want
to allow a user to update just one or two of these attributes, then write your
ACI so that it allows write access for just those few attributes. If, however, you
want to allow a user to update all but one or two attributes, then create the ACI
so that it denies write access for those few attributes.

• Use LDAP search filters cautiously.

Designing Access Control

184 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Because search filters do not directly name the object for which you are
managing access, their use can result in unexpected surprises, especially as
your directory becomes more complex. If you are using search filters in ACIs,
run an ldapsearch operation using the same filter to make sure you know
what the results of the changes mean to your directory.

• Do not duplicate ACIs in differing parts of your directory tree.

Watch out for overlapping ACIs. For example, if you have an ACI at your
directory root point that allows a group write access to the commonName and
givenName attributes and another ACI that allows the same group write access
to just the commonName attribute, consider reworking your ACIs so that only
one control grants the write access for the group.

As your directory grows more complicated, it becomes increasingly easy to
accidentally overlap ACIs in this manner. By avoiding ACI overlap, you make
your security management easier while potentially reducing the total number
of ACIs contained in your directory.

• Name your ACIs.

While naming ACIs is optional, giving each ACI a short, meaningful name
helps you to manage your security model, especially when examining ACIs
from Directory Server Console.

• Use standard attributes in user entries to determine access rights.

As far as possible, use information that is already part of standard user entries
to define access rights. If you need to create special attributes, consider creating
them as part of a role or Class of Service (CoS) definition. For more information
on roles and CoS, refer to “Grouping Directory Entries and Managing
Attributes” on page 77.

• Group your ACIs as closely together as possible within your directory.

Try to limit ACI placement to your directory root point and to major directory
branch points. Grouping ACIs helps you manage the total list of ACIs, and also
helps you keep the total number of ACIs in your directory to a minimum.

• Avoid using double negatives, such as deny write if the bind DN is not equal
to cn=Joe.

Although this syntax is perfectly acceptable to the server, it can be confusing
for an administrator.

Designing Access Control

Chapter 7 Access Control, Authentication, and Encryption 185

ACI Limitations
When creating an access control policy, be aware of the following restrictions:

• If your directory tree is distributed over several servers using the chaining
feature, some restrictions apply to the keywords you can use in access control
statements:

❍ ACIs that depend on group entries (groupdn keyword) must be located on
the same server as the group entry. If the group is dynamic, all members of
the group must have an entry on the server too. If the group is static, the
members’ entries can be located on remote servers.

❍ ACIs that depend on role definitions (roledn keyword) must be located on
the same server as the role definition entry. Every entry that is intended to
have the role must also be located on the same server.

However, you can do value matching of values stored in the target entry with
values stored in the entry of the bind user (for example, using the userattr
keyword). Access is evaluated normally even if the bind user does not have an
entry on the server that holds the ACI.

For more information on how to chain access control evaluation, see “Access
Control Through Chained Suffixes” in the Directory Server Administration
Guide.

• Attributes generated by a CoS cannot be used in all ACI keywords.
Specifically, you should not use attributes generated by CoS with the
userattr keyword because the access control rule will not work.

• Access control rules are always evaluated on the local server. Therefore, it is
not necessary to specify the hostname or port number of the server in LDAP
URLs used in ACI keywords. If you do, the LDAP URL will not be taken into
account. For more information on LDAP URLs, see LDAP URL Reference in
the Directory Server Administration Reference.

• The cache settings used for ensuring that the server fits the physical memory
available do not apply to ACI caches, which means that an excessive number of
ACIs may saturate available memory.

• When granting proxy rights, you cannot grant a user the right to proxy as the
Directory Manager, nor can you grant proxy rights to the Directory Manager.

Securing Connections With SSL

186 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Securing Connections With SSL
In addition to designing an authentication scheme for identifying users and an
access control scheme for protecting information, you must protect the integrity of
the information in transit over the network between servers and client applications.

To provide secure communications over the network you can use both the LDAP
and DSML-over-HTTP protocols over the Secure Sockets Layer (SSL). When you
have configured and activated SSL, clients connect to a dedicated secure port
where all communications are encrypted once the SSL connection is established.
Directory Server also supports the Start Transport Layer Security (Start TLS)
control, which allows the client to initiate an encrypted connection over the
standard LDAP port. For a comprehensive overview of SSL and TLS, refer to
“Using SSL and TLS with Sun Java System Servers“ in the Administration Server
Administration Guide.

Directory Server supports SSL-secured connections and non-SSL connections
simultaneously.

SSL uses encryption for privacy and hashing of checksums for data integrity. When
establishing an SSL connection, the client application and Directory Server select
the strongest encryption algorithm (cipher) common to their configurations.
Directory Server may use any of the following ciphers:

• DES - 56-bit block cipher

• 3DES (“triple-DES”) - 156-bit block cipher

• RC2 - 128-bit block cipher (or 40-bit export cipher)

• RC4 - 128-bit stream cipher (or 40-bit export cipher)

Ciphers are combined with one of the following hashing algorithms:

• MD5

• SHA-1

After a secure connection has been established, the SSL protocol requires the server
to send its certificate to the client. Using public-key cryptography, the client can
determine the authenticity of the certificate and verify that it was issued by a
certificate authority that the client trusts. By verifying the certificate, the client can
prevent a man-in-the-middle impersonation of the server by a third party.

Encrypting Attributes

Chapter 7 Access Control, Authentication, and Encryption 187

You can also configure the server to request authentication from the client.
Directory Server supports certificate-based and SASL-based client authentication.
These mechanisms are described in “Selecting Appropriate Authentication
Methods” on page 162. Client authentication to the server provides the highest
level of security by ensuring that no third party may intercept or interfere with the
communication between the client and the server.

Directory Server 5.2 supports the Sun Crypto Accelerator Board . This feature
enhances the performance for connections using the SSL protocol with
certificate-based authentication. This board accelerates SSL key-related
calculations, and may be useful in deployments where client applications
repeatedly bind over SSL, search, and then unbind. SSL accelerator boards may not
improve Directory Server performance when key-related calculations are not the
performance bottleneck. In addition, SSL accelerator boards are most effective if
the clients that are establishing connections are doing so from different machines.
If a system establishes multiple SSL-based connections, it is likely that the SSL
caching session will limit the number of RSA operations, which will in turn limit
the benefit that the accelerator board may provide. For information on how to
install and configure the Sun Crypto Accelerator Board see “Using the Sun Crypto
Accelerator Board” in the Directory Server Administration Guide.

For information about configuring and enabling SSL in Directory Server and its
clients, refer to “Managing Authentication and Encryption” in the Directory Server
Administration Guide.

Encrypting Attributes
This section presents the attribute encryption functionality, and is divided into the
following topics:

• What is Attribute Encryption?

• Attribute Encryption Implementation

• Attribute Encryption and Performance

• Attribute Encryption Usage Considerations

Encrypting Attributes

188 Directory Server 5.2 2005Q1 • Deployment Planning Guide

What is Attribute Encryption?
Directory Server provides a variety of features to protect data at access level
(during reads and writes to the directory), including simple password
authentication, certificate-based authentication, Secure Sockets Layer (SSL), and
proxy authorization. However, there is often an additional need for the data stored
in database files, backup files, and LDIF files to be protected. Consider a bank
storing 4-digit PIN codes in the directory. If the database files were unprotected
and were dumped, unauthorized users could have access to this sensitive
information. The attribute encryption feature prevents users from accessing
sensitive data while it is in storage.

Attribute encryption enables you to specify that certain attributes be stored in an
encrypted form. It is configured at the database level, which means that once you
decide to encrypt an attribute, that attribute will be encrypted for every entry in the
database. Because attribute encryption occurs at an attribute level rather than an
entry level, the only way to encrypt an entire entry is to encrypt all of its attributes.

In addition to protecting data while in storage, attribute encryption enables you to
export data to another database in encrypted format. However, because the
purpose of attribute encryption is to protect sensitive data only when it is in
storage or being exported, the encryption is always reversible. Encrypted attributes
are therefore decrypted when returned via search requests.

Figure 7-1 shows a user entry being added to the database, where attribute
encryption has been configured to encrypt the salary attribute.

Encrypting Attributes

Chapter 7 Access Control, Authentication, and Encryption 189

Figure 7-1 Attribute Encryption Logic

Attribute Encryption Implementation
The attribute encryption feature supports a wide range of encryption algorithms,
and ensures portability across different platforms. As an additional security
measure, attribute encryption uses the private key of the server’s SSL certificate to
generate its own key, which is used to perform the encryption and decryption
operations. This implies that, in order to be able to encrypt attributes, your server
must be running over SSL. The SSL certificate and its private key are stored

dn: cn=Charlene
Daniels,ou=People,dc=example,dc=COM
changetype: add
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectClass: inetorgperson
sn: Daniels
cn: Charlene Daniels
uid: CDaniels
salary: $64,000

Entry in Database

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass= op
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels
salary={DES}2qX28AERbpL8e+Ss2ElnZ4crUb

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels
salary=$64,000

Database

ldapmodify ldapsearch

Encrypting Attributes

190 Directory Server 5.2 2005Q1 • Deployment Planning Guide

securely in the database in that they are protected by a password, and it is this key
database password that is required to authenticate to the server. It is assumed that
whoever has access to this key database password will be authorized to export
decrypted data.

When importing data online with a view to encrypting it, you will already have
provided the key database password to authenticate to the server, and will not be
prompted a second time. If you are importing data offline, Directory Server will
prompt you for the password before it allows you to encrypt the data you are
importing. When decrypting data (a more security sensitive operation), Directory
Server automatically prompts you for the key database password, regardless of
whether the export operation is online or offline. This provides an additional
security layer.

Attribute Encryption and Performance
While attribute encryption offers increased data security, it does incur certain
performance costs. Bearing this in mind, you should think carefully about which
attributes require encryption and encrypt only those attributes you consider to be
particularly sensitive.

Because sensitive data can be accessed directly through index files, it is necessary
to encrypt the index keys corresponding to the encrypted attributes, to ensure that
the attributes are fully protected. Given that indexing already has an impact on
Directory Server performance (without the added cost of encrypting index keys), it
is advisable to configure attribute encryption before data is imported or added to
the database for the first time. This procedure will ensure that encrypted attributes
are indexed as such from the outset.

Attribute Encryption Usage Considerations
Consider the following when implementing the attribute encryption feature:

NOTE As long as the certificate or private key does not change, the server
will continue to generate the same key, which will make it possible
to transport (export then import) data from one server instance to
another (provided both server instances have used the same
certificate.)

Encrypting Attributes

Chapter 7 Access Control, Authentication, and Encryption 191

• As a general best practice when modifying attribute encryption configuration,
you should export your data, make the configuration changes, and then import
the newly configured data.

This will ensure that all configuration changes are taken into account in their
entirety, without any loss in functionality. Failing to do so could result in some
functionality loss and thus compromise the security of your data.

• Modifying attribute encryption configuration on an existing database can have
a significant performance impact.

Imagine for example that you have a database instance with existing data. The
database contains previously stored entries with a sensitive attribute called
mySensitiveAttribute. The value of this attribute is stored in clear text, in
the database and in the index files. If you decide to encrypt the
mySensitiveAttribute attribute, all the data in the database instance must be
exported and re-imported into the database to ensure that the server updates
the database and index files taking the attribute encryption configuration into
account. This will have a significant performance impact that could have been
avoided had the attribute been encrypted from the beginning.

• When exporting data in decrypted format the export will be refused if an
incorrect password is given.

As a security measure, the server prompts users for passwords if they want to
export data in decrypted format, and refuses the decrypted export operation
should users provide an incorrect password. Passwords can be entered directly
or by providing the path to a file containing the password (which has the same
syntax as the SSL password file.)

• Algorithm changes are supported, but can result in lost indexing functionality,
if they are not made correctly.

To change the algorithm used to encrypt data, export the data, modify the
attribute encryption configuration, and then import the data, to avoid any
functionality loss related to indexing. If you do not follow this procedure, the
indexes created on the basis of the initial encryption algorithm will no longer
function.

Because the encrypted attributes are prefaced with a cipher tag that indicates
the encryption algorithm used, the internal server operations take care of
importing the data. Directory Server therefore enables you to export data in
encrypted form before making the algorithm change.

Grouping Entries Securely

192 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Changing the server’s SSL certificate will result in you no longer being able to
decrypt encrypted data.

Because the server’s SSL certificate is used by the attribute encryption feature
to generate its own key, which is then used to perform the encryption and
decryption operations, this certificate is required to decrypt encrypted data.
Changing the certificate without decrypting the data beforehand will result in
you no longer being able to decrypt the data. To avoid this, you should export
your data in decrypted format, changing the certificate and then re-import the
data.

• To transport data in encrypted format, that is, export and import it from one
server instance to another, both server instances must use the same certificate.

For procedural information on the attribute encryption feature, see “Encrypting
Attribute Values” in the Directory Server Administration Guide.

Grouping Entries Securely
This section deals with the security issues related to grouping entries and contains
the following topics:

• Using Roles Securely

• Using CoS Securely

Using Roles Securely
Not every role is suitable for use within a security context. When creating a new
role, consider how easily the role can be assigned to and removed from an entry.
Sometimes it is appropriate for users to be able to add themselves to or remove
themselves from a role. For example, if you had an interest group role called
Mountain Biking, you would want interested users to add themselves or remove
themselves easily.

However, in some security contexts it is inappropriate to have such open roles. For
example, consider account inactivation roles. By default, account inactivation roles
contain ACIs defined for their suffix (for more information about account
inactivation, see “Inactivating Users and Roles” in the Directory Server
Administration Guide. When creating a role, the server administrator decides
whether or not a user can assign themselves to or remove themselves from the role.

Grouping Entries Securely

Chapter 7 Access Control, Authentication, and Encryption 193

For example, user A possesses the managed role, MR. The MR role has been locked
using account inactivation through the command line. This means that user A
cannot bind to the server because the nsAccountLock attribute is computed as
“true” for that user. However, suppose the user was already bound and noticed
that he is now locked through the MR role. If there are no ACIs preventing him, the
user can remove the nsRoleDN attribute from his entry and unlock himself.

To prevent users from removing the nsRoleDN attribute, you would need to apply
ACIs. With filtered roles you would have to protect the part of the filter that would
prevent the user from being able to relinquish the filtered role by modifying an
attribute. Users should not be allowed to add, delete, or modify the attribute used
by the filtered role, and in the same way if the value of the filter attribute is
computed then all the attributes that can modify the value of the filter attribute
should be protected too. As nested roles can be comprised of filtered and managed
roles, the above points should be considered for each of the roles that comprise the
nested role.

Using CoS Securely
Access control for reading applies to both the real and virtual attributes of an entry.
A virtual attribute generated by the Class of Service mechanism is read just as a
normal attribute and should be given read protection in the same way.

However, in order to make the CoS value secure, you must protect all of the
sources of information it uses: the definition entries, the template entries, and the
target entries. The same is true for update operations: write access to each source of
information should be controlled to protect the value that is generated from them.

The following sections describe the general principals for read and write protection
of data in each of the CoS entries. The detailed procedure for defining individual
access control instructions (ACIs) is described in “Managing Access Control” in the
Directory Server Administration Guide.

Protecting the CoS Definition Entry
Although the CoS definition entry does not contain the value of the generated
attribute, it provides the information to find that value. Reading the CoS definition
entry would reveal how to find the template entry containing the value, and
writing to this entry would modify how the virtual attribute is generated.

You should therefore define both read and write access control on the CoS
definition entries.

Grouping Entries Securely

194 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Protecting the CoS Template Entries
The CoS template entry contains the value of the generated CoS attribute.
Therefore, as a minimum, the CoS attribute in the template should be protected for
both reading and updating.

In the case of pointer CoS, there is a single template entry that should not be
allowed to be renamed. In most cases, it is simplest to protect the entire template
entry.

With classic CoS, all template entries have a common parent given in the definition
entry. If only templates are stored in this parent entry, access control to the parent
entry will protect the templates. However, if other entries beneath the parent
require access, the template entries must be protected individually.

In the case of indirect CoS, the template may be any entry in the directory,
including user entries that might still need to be accessed. Depending on your
needs, you can either control access to the CoS attribute throughout the directory,
or choose to ensure that the CoS attribute is secure in each entry used as a template.

Protecting the Target Entries of a CoS
All entries in the scope of a CoS definition, for which the virtual CoS attribute will
be generated, also contribute to computing its value.

When the CoS attribute already exists in a target entry, by default, the CoS
mechanism will not override this value. If you do not want this behavior, you
should either define your CoS to override the target entry or protect the CoS
attribute in all potential target entries. For information on these procedures see
“Managing Identity and Roles”in the Directory Server Administration Guide.

Both indirect and classic CoS also rely on a specifier attribute in the target entry.
This attribute gives the DN or RDN of the template entry to use. You should
protect this attribute either globally throughout the scope of the CoS or
individually on each target entry where needed.

Protecting Other Dependencies
It is possible to define virtual CoS attributes in terms of other generated CoS
attributes and roles. You will need to understand and protect these dependencies
in order to guarantee the protection of your virtual CoS attribute.

For example, the CoS specifier attribute in a target entry could be nsRole, and
therefore the role definition would also need to be protected. For more
information, see “Grouping Entries Securely” on page 192.

Securing Configuration Information

Chapter 7 Access Control, Authentication, and Encryption 195

In general, any attribute or entry that is involved in the computation of the virtual
attribute value should have both read and write access control. For this reason,
complex dependencies should be well planned or simplified to reduce subsequent
complexity of access control implementation. Keeping dependencies on other
virtual attributes to a minimum also improves directory performance and reduces
maintenance.

Securing Configuration Information
For the majority of deployments no additional access controls are required either
for the root DSE entry (the entry returned for a base object search with a
zero-length DN) or for the subtrees below cn=config, cn=monitor or cn=schema.
The root DSE entry and these subtrees contain attributes that are automatically
generated by Directory Server and used by LDAP clients to determine the
capabilities and configuration of the directory server.

However, one of the root DSE entry attributes called namingContexts contains a
list of the base DNs for each of the Directory Server databases. In addition to this
list, these DNs are also stored in the mapping tree entries below cn=config and
cn=monitor. Should you wish to hide the existence of one or more subtrees and
protect your configuration information for security reasons, it will be necessary to
place:

• An ACI attribute in the entry at the base of the subtree you wish to hide.

• An ACI in the root DSE entry on the namingContexts attribute.

• An ACI on the cn=config and cn=monitor subtrees.

Other Security Resources
For more information about designing a secure directory, see the following:

• Sun Developer Security Resources
http://developers.sun.com/techtopics/security/index.html

• Understanding and Deploying LDAP Directory Services.
T. Howes, M. Smith, G. Good, Macmillan Technical Publishing, 1999.

• SecurityFocus.com
http://www.securityfocus.com/

Other Security Resources

196 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Computer Emergency Response Team (CERT) Coordination Center
http://www.cert.org/

• CERT Security Improvement Modules
http://www.cert.org/security-improvement/

197

Chapter 8

Directory Server Monitoring

An effective monitoring and event management strategy is crucial to any
successful Directory Server deployment. Such a strategy defines which events
should be monitored, which tools to use, and what action to take should an event
occur. Having a plan for common-place events helps prevent possible outages and
reduced levels of service, improving the availability and quality of service.

A monitoring and event management strategy should include specific components
of the architecture such as the replication configuration, but should also include
system and network monitoring. This chapter examines what an effective
monitoring strategy should include, and presents the monitoring features within
Directory Server.

This chapter is divided into the following sections:

• Defining a Monitoring and Event Management Strategy

• Directory Server Monitoring Tools

• Directory Server Monitoring

• SNMP Monitoring

NOTE This chapter does not focus on system and network monitoring, as
this is an area not specific to Directory Server.

Defining a Monitoring and Event Management Strategy

198 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Defining a Monitoring and Event Management
Strategy

This section provides an outline of the stages involved in defining a monitoring
and event management strategy. The process can be broken down into the
following steps:

1. Select the appropriate monitoring tools, whether they be operating system
tools, Directory Server monitoring tools, or third party monitoring tools.

2. Identify the key areas to be monitored in the directory architecture (these are
frequently the same as the sizing and tuning attributes).

3. Define what triggers an event or alarm condition when monitoring the key
performance measure. This implies defining an acceptable level of
performance or operation for each performance measure.

4. Determine what action should be taken when an alarm condition occurs.

Directory Server Monitoring Tools
This section provides a summary of the monitoring tools available in Directory
Server, and other tools that can be used to monitor Directory Server activity. All of
the key performance measures, described in the next section, can be monitored
using one, or a combination of, these tools.

• Command-Line Tools

Command-line monitoring tools include operating system-specific tools to
monitor performance such as disk usage, LDAP tools such as ldapsearch to
collect server statistics stored in the directory, third party tools, or custom shell
or Perl scripts.

• Directory Server logs

The access, audit, and error logs provided with Directory Server are a rich
source of monitoring information. These logs can be monitored manually or
parsed using custom scripts to extract monitoring information relevant to your
deployment. The Directory Server Resource Kit provides a log analyzer tool,
logconv.pl, that enables you to analyze Directory Server access logs. The log
analyzer tool extracts usage statistics and counts the occurrences of significant

Directory Server Monitoring Tools

Chapter 8 Directory Server Monitoring 199

events. For more information this tool, refer to ”The Log Analyzer Tool” in the
Directory Server Resource Kit Tools Reference. For information on viewing and
configuring log files refer to “Monitoring Directory Server Using Log Files” in
the Directory Server Administration Guide.

• Directory Server Console

Directory Server Console enables you to monitor directory operations in real
time, via a graphical user interface. The Console provides general server
information, including a resource summary, current resource usage,
connection status, and global database cache information. It also provides
general database information such as the database type, status and entry cache
statistics, cache information, and information relative to each index file within
the database. In addition, the Console provides information relative to the
connections and operations performed on each chained suffix.

• Replication Monitoring Tools

The replication monitoring tools provided with Directory Server enable you to:

❍ monitor the state of synchronization between a master replica and one or
more consumer replicas

❍ compare the same entry on two or more different replicas, enabling you to
assess replication status

❍ depict your complete replication topology, which is particularly beneficial
when dealing with complex directory deployments

• Simple Network Management Protocol (SNMP)

Directory Server supports monitoring with the Simple Network Management
Protocol (SNMP). SNMP is the standard mechanism for global network control
and monitoring, and enables network administrators to centralize network
monitoring activity.

For a detailed description of SNMP and Directory Server’s SNMP managed
object support see “SNMP Monitoring” on page 207. For information on how
to set up and configure SNMP refer to “Monitoring Directory Server Using
SNMP” in the Directory Server Administration Guide.

Directory Server Monitoring

200 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Directory Server Monitoring
The most important step in defining a monitoring and event management strategy
is determining the key areas to be monitored on one or more components in your
directory architecture. What you monitor, and to what extent, will depend largely
on the specifics of your deployment.

This section describes the performance measures that should be monitored, and
includes the following:

• Monitoring Directory Server Activity

• Monitoring Database Activity

• Monitoring Disk Status

• Monitoring Replication Activity

• Monitoring Indexing Efficiency

• Monitoring Security

Monitoring Directory Server Activity
Directory Server provides a number of ways in which you can monitor server
status. These include, but are not limited to, the following:

• The Servers and Applications tab of Sun Java System Server Console displays
general information regarding your server including the installation date, the
version, the server status (whether or not it is started) and the port numbers.

• Directory Server Console provides access to additional monitoring
information. The Status tab on this console displays the following information:

NOTE • When running ldapsearch commands on the monitoring
information in the cn=monitor branch of the directory, users
must be authenticated and have the appropriate permissions to
access the information. Having such permissions is therefore a
prerequisite in defining your monitoring strategy

• It is essential to monitor the operating system environment on
which Directory Server is running, to ensure that the system is
running efficiently and not compromising the server. However,
this area is not covered in this chapter as it is not specific to
Directory Server. Refer to your operating system documentation
for further information.

Directory Server Monitoring

Chapter 8 Directory Server Monitoring 201

❍ The startup and current time on the server.

❍ A Resource Summary that details connections, initiated and completed
operations, and entries and bytes sent to clients.

❍ Current Resource Usage information, including active threads, open and
available connections, number of threads waiting to read from the client,
and number of databases in use.

❍ Information on all Open Connections, including when they were opened,
how many connections were started and completed, the distinguished
name used by the client to bind to the server, the state of the connection
(Blocked or Not blocked), and the type of connection (LDAP, or DSML.)

For more information regarding the performance counters available through
Directory Server Console, refer to “Monitoring Your Server Using the Console”
in the Directory Server Administration Guide.

• Running an ldapsearch command on the cn=monitor entry provides access
to the same information presented in the Status tab of Directory Server
Console. Note that certain monitoring information is accessible only if the user
issuing the ldapsearch command is bound as Directory Manager. You can
remove this access constraint by reconfiguring the access control associated
with this information. For details regarding the performance counters stored
under cn=monitor, refer to “Monitoring Your Server From the Command
Line” in the Directory Server Administration Guide.

• The ps command displays processes that are currently running. This enables
you to determine whether the Directory Server slapd daemon is running.
Refer to the ps(1) man page for more information.

• The ldapsearch command-line utility enables you to test whether Directory
Server is responding to requests. To avoid launching time-consuming,
unindexed searches, it is wise to use base level searches. Where you have more
than one database, it is also wise to create an LDAP query for each database
suffix to test whether or not the database is online and responding.

• Directory Server access logs enable you to monitor server operations and to
establish whether the server is running. For more information on the access
logs and connection codes refer to “Access Log Content” and “Common
Connection Codes” in the Directory Server Administration Reference.

• The Directory Server error log records the server’s start and stop status, and
enables you to establish that the server is running. For more information about
viewing and configuring log files refer to “Monitoring Directory Server Using
Log Files”in the Directory Server Administration Guide.

Directory Server Monitoring

202 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Monitoring Database Activity
Monitoring database activity helps to ensure that your database is online and
accessible when it is required. Database monitoring information can be accessed by
running an ldapsearch command on a specific area of the cn=config branch. The
kind of monitoring information provided and the corresponding area of the
cn=config branch are presented in Table 8-1.

The areas of database monitoring information are presented in more detail in the
following section.

• The cn=database,cn=monitor,cn=ldbm database,dn=plugins,cn=config
branch provides access to cache, transaction, locks and log information. For a
complete list of Directory Server configuration attributes, refer to Chapter 2,
“Server Configuration Reference”in the Directory Server Administration
Reference.

The type of general database information you monitor will depend on the
specific requirements of your directory deployment. For example, if your
Directory Server frequently handles several simultaneous transactions, you
may want to monitor the maximum number of transactions being handled at a
particular time. If this number (defined by the nsslapd-db-max-txns
attribute) approaches the maximum number of transactions allowed (defined
by the nsslapd-db-configured-txns attribute), you may want to increase
the maximum number of transactions allowed, to prevent operations from
failing.

Table 8-1 Source of Database Monitoring Information in cn=config

Information Area Corresponding Branch of cn=config

General Database
Information

cn=database,cn=monitor,cn=ldbm database,
cn=plugins,cn=config

Database Cache
Information

cn=monitor,cn=ldbm database,cn=plugins,cn=config

Specific Database
Instance Information

cn=monitor,cn=suffixName,cn=ldbm database,
cn=plugins,cn=config

Chained Suffix
Information

cn=monitor,cn=suffixName,cn=chaining database,
cn=plugins,cn=config

Directory Server Monitoring

Chapter 8 Directory Server Monitoring 203

• To monitor database cache performance and database indexing performance,
use the Status tab of Directory Server Console or run ldapsearch commands
on the the following branches:

cn=monitor,cn=ldbm database,cn=plugins,cn=config and
cn=monitor,cn=suffixName,cn=ldbm database,cn=plugins,cn=config

For a complete list of the relevant configuration attributes refer to “Server
Configuration Reference” in the Directory Server Administration Reference.

• The cn=monitor,cn=suffixName,cn=chaining
database,cn=plugins,cn=config branch provides access to information
about connections and the LDAP and bind/unbind operations being
performed. This information is also accessible via the Status tab of Directory
Server Console.

Monitoring Disk Status
Effectively monitoring disk space enables you to prevent the problems associated
with inadequate disk resources. The cn=disk,cn=monitor entry provides access
to the following monitoring information:

• The path to the database instance. Where several database instances reside on
the same disk or an instance refers to several directories on the same disk, the
short path name is displayed.

• The amount of disk space available to the server in MB.

• The status of the disk (normal, low or full). This status is based on the available
space and on the thresholds configured to trigger a disk “low” and disk “full”
warning. It is particularly important to monitor the disk full threshold, since
the directory will no longer accept updates once this limit is reached.

For more information on the cn=disk,cn=monitor attributes as well as the
configurable disk low or full thresholds, refer to “Server Configuration
Reference”in the Directory Server Administration Reference.

Monitoring Replication Activity
Monitoring replication status is an essential element of your global monitoring
strategy. The earlier you become aware of potential replication problems, the
quicker you can resolve those problems and reestablish correct replication
operation.

Directory Server Monitoring

204 Directory Server 5.2 2005Q1 • Deployment Planning Guide

There are three replication monitoring tools which enable you to monitor various
aspects of replication functionality. The replication monitoring tools function as
LDAP clients and can be used over a standard or secure connection (LDAPS.) The
following replication monitoring tools are provided:

• insync

• entrycmp

• repldisc

insync
The insync tool indicates the state of synchronization (or replication delay)
between a master replica and one or more consumer replicas. This replication
delay is an indication of how accurate the data is on a consumer, compared to the
data on the master.

entrycmp
The entrycmp tool allows you to compare the same entry on two or more different
servers. An entry is retrieved from the master replica and the entry’s nsuniqueid
is used to retrieve the same entry from a given consumer. Entry attributes and
values are compared and, if these are identical, the entries are considered to be the
same.

NOTE The machine on which you are running the insync and entrycmp
tools must be able to reach all the specified hosts. If the hosts are
unreachable due to a firewall, VPN, or other network setup reasons,
you will encounter difficulties using these tools. For the same
reason, you should ensure that all the servers are up and running
before attempting to use the replication monitoring tools.

Directory Server Monitoring

Chapter 8 Directory Server Monitoring 205

repldisc
The repldisc tool allows you to discover a replication topology. Topology
discovery starts with one server and constructs a graph of all known servers within
the topology. The repldisc tool then prints an adjacency matrix describing the
topology. This replication topology discovery tool is useful for large, complex
deployments where it might be difficult to recall the global topology you have
deployed.

For more information about the replication monitoring tools, see the Directory
Server Man Page Reference.

Monitoring Indexing Efficiency
Indexing has a positive impact on read performance and a negative impact on
write performance. It is therefore important to monitor indexing efficiency to
maintain an appropriate balance between read and write performance. An effective
indexing strategy eliminates unnecessary indexes and maintains only those
indexes required for client applications.

Indexing efficiency can be monitored in the following ways:

NOTES • When using the replication monitoring tools, you must use
either all symbolic names or all IP addresses when identifying
hosts. Using a combination of the two can be problematic.

• When running the replication monitoring tools over SSL, the
server on which you are running the tools must have a copy of
all the certificates used by the other servers in the topology.

• These tools are based on LDAP clients, and as such, will need to
authenticate to the server and use a bind DN that has read
access to cn=config. For more information about the
configuration details of these tools and using the tools with SSL
enabled refer to “Monitoring Replication Status” in the Directory
Server Administration Guide.

Directory Server Monitoring

206 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• By consulting the access logs and monitoring the time unindexed searches take
to complete, you can identify the unindexed searches that have taken a
disproportionate amount of time. (Unindexed searches are identified in the log
files by notes=U and long searches have a high value for etime.)

The access log also provides additional information on searches and their
filters, enabling you to decide whether it might be worth creating an index to
improve performance. The Directory Server Resource Kit provides a log
analyzer tool, logconv.pl, that enables you to analyze Directory Server access
logs. For more information this tool, refer to ”The Log Analyzer Tool” in the
Directory Server Resource Kit Tools Reference.

• The Status tab of Directory Server Console allows you to monitor the most
frequently used indexes per suffix or chained suffix. It indicates how many
attempts have been made to use the indexes and how many attempts have
been successful. The same monitoring information can be accessed by running
an ldapsearch command on the cn=monitor,cn=suffixName,cn=ldbm
database,cn=plugins,cn=config branch.

A list of configured indexes is available in the Configuration tab of Directory
Server Console (under the Data > suffixName node). Comparing the frequently
used indexes, described above, with the list of configured indexes enables you
you to identify the indexes that are using resources unnecessarily, and to
decide whether they can be removed. If entries contain indexed attributes and
the indexes are not used, removing these indexes will improve add
performance.

For more information on access log content and connection codes refer to “Access
Log Content” and “Common Connection Codes”in the Directory Server
Administration Reference. For a complete list of Directory Server configuration
attributes, refer to “Server Configuration Reference” in the Directory Server
Administration Reference.

Monitoring Security
Monitoring the security of your deployment is vital in maintaining a secure,
accessible directory. Suggestions on how to monitor Directory Server with a view
to maintaining an acceptable level of security follow:

• Monitoring the number of failed bind attempts alerts you to attempts to break
into your directory. If the SNMP agent is running, failed bind attempts can be
monitored by running an ldapsearch command on the SNMP managed object
counter dsBindSecurityErrors located under cn=snmp,cn=config.

SNMP Monitoring

Chapter 8 Directory Server Monitoring 207

• Monitoring the number of open connections without any activity alerts you to
potential denial of service attacks. The number of current connections and the
number of completed operations can be accessed via the Status tab of Directory
Server Console or by searching the attributes located under cn=monitor.

• The Effective Rights feature enables clients to query the access control rights
they have to directory entries and attributes. Being able to request the access
rights of a user simplifies user administration, access control policy
verification, and configuration decision making.

The Effective Rights feature would most likely be used periodically rather than
on a day-to-day operations basis. For more detailed information regarding the
Effective Rights feature see “Requesting Effective Rights Information” on
page 181.

SNMP Monitoring
SNMP is the standard mechanism for global network control and monitoring. It
allows network administrators to centralize network monitoring activities, and can
be used to monitor a wide range of devices in real time. This section describes how
SNMP can be used to monitor Directory Server operation, and contains the
following topics:

• About SNMP

• SNMP Monitoring in Directory Server

About SNMP
SNMP is a protocol used to exchange data about network activity. With SNMP,
data travels between a managed device and a network management station (NMS)
where users manage the network remotely. A managed device is anything that
runs SNMP, such as hosts, routers, and Directory Server. An NMS is usually a
powerful workstation running one or more network management applications. A
network management application usually displays graphical information about
managed devices (which device is up or down, which and how many error
messages were received, and so on).

SNMP Monitoring

208 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Information is transferred between the NMS and the managed device through the
use of two types of agents: the subagent and the master agent. The subagent
gathers information about the managed device and passes the information to the
master agent. Directory Server has a subagent. The master agent exchanges
information between the various subagents and the NMS. The master agent runs
on the same host machine as the subagents it talks to.

Multiple subagents can be installed on a host machine. For example, if Directory
Server, Application Server, and Messaging Server are all installed on the same host,
the subagents for each of these servers communicates with the same master agent.
The master agent is installed with Administration Server.

Values for SNMP attributes that can be queried are kept on the managed device
and reported to the NMS as necessary. Each attribute or variable is known as a
managed object, which is anything the agent can access and send to the NMS. All
managed objects are defined in a management information base (MIB), which is a
database with a tree-like hierarchy. The top level of the hierarchy contains the most
general information about the network. Each branch below is more specific and
deals with a separate network area.

SNMP exchanges network information in the form of protocol data units (PDUs).
PDUs contain information about variables stored on the managed device. These
variables, also known as managed objects, have values and titles that are reported
to the NMS as necessary. Communication between an NMS and a managed device
takes place in one of two ways:

• NMS-Initiated Communication

• Managed Device-Initiated Communication

Directory Server supports NMS-initiated communication, described in the
following section.

NMS-Initiated Communication
This is the most common type of communication between an NMS and a managed
device. In this type of communication, the NMS either requests information from
the managed device or changes the value of a variable stored on the managed
device.

The following steps make up an NMS-initiated SNMP session:

1. The NMS determines which managed devices and objects must be monitored.

SNMP Monitoring

Chapter 8 Directory Server Monitoring 209

2. The NMS sends a protocol data unit to the managed device’s subagent through
the master agent. This protocol data unit either requests information from the
managed device or tells the subagent to change the values for variables stored
on the managed device.

3. The subagent for the managed device receives the protocol data unit from the
master agent.

4. If the protocol data unit from the NMS is a request for information about
variables, the subagent gives information to the master agent and the master
agent sends it back to the NMS in the form of another protocol data unit. The
NMS then displays the information textually or graphically.

If the protocol data unit from the NMS requests that the subagent set variable
values, the subagent sets these values.

SNMP Monitoring in Directory Server
Directory Server supports SNMP monitoring in two ways:

• Monitoring via an SNMP agent. SNMP attributes are mapped to a statistics file
which is read each time the SNMP agent is queried. This statistics file is not
present if Directory Server is not running.

• Monitoring using the ldapsearch command-line utility. SNMP attributes are
stored under the cn=snmp,cn=monitor entry. The following ldapsearch
command provides a list of all SNMP attributes in Directory Server:

ldapsearch -h host -p port -s base -b "cn=snmp,cn=monitor"
"objectclass=*"

Figure 8-1 shows the two ways in which SNMP monitoring information can be
retrieved from Directory Server.

SNMP Monitoring

210 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 8-1 SNMP Monitoring in Directory Server

For information on where the MIBs are defined, and how to use SNMP refer to
“Monitoring Directory Server Using SNMP”in the Directory Server Administration
Guide.

The SNMP managed objects supported by Directory Server are based on an early
draft of the Directory Server Monitoring MIB RFC 2605. The SNMP operations
managed objects returned by the SNMP agent are the same as the SNMP
monitoring attributes returned by an ldapsearch command. These attributes are
described in “Monitoring Attributes,”in the Directory Server Administration
Reference. Names of attributes returned by the SNMP agent are prefixed with ds.

In addition to the operations managed objects, Directory Server supports managed
objects related to the interactions between the monitored server and its peer
servers, and entity related managed objects, containing information about the
current server installation. These objects are described in the “Interactions Table of
Supported SNMP Managed Objects”and the “Entity Table of SNMP Supported
Managed Objects“ in the Directory Server Administration Reference.

Statistics
file

SNMP
Agent

ldapsearch -b "cn=snmp,cn=monitor"

SNMP functions . . . ?

?

cn=SNMP,cn=monitor?

211

Chapter 9

Reference Architectures and
Topologies

There are several factors to take into consideration when planning your directory
deployment. Some of the most important considerations include the physical
location of your data, how and where this data is replicated, what you can do to
minimize failures, and how to react when failures do occur. The architectural
strategies outlined in this chapter provide you with some guidelines.

This chapter is divided into the following sections:

• Addressing Failure and Recovery

• Planning a Backup Strategy

• Sample Replication Topologies

Addressing Failure and Recovery
It is essential to have a strategy in place for providing minimum disruption of
service in the case of failure. For our purposes, failure is defined as anything that
prevents Directory Server from providing the minimum level of service you
require. This section describes the various reasons for which failure can occur,
which will assist you in identifying and managing failures in your deployment.

Failure can be divided into two main areas:

• System unavailable

• System unreliable

The system may be unavailable due to any of the following:

• Network problem - the network may be down, slow or intermittent.

Planning a Backup Strategy

212 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• Process (slapd) problem - the process may be down, busy, restarting, or
unwilling to perform.

• Hardware problem - the hardware may be off, may have failed, or may be
rebooting.

The system may be unreliable due to any of the following:

• Replication failure or latency, causing data to be out of date or
unsynchronized.

• System too busy - an excess of read or write operations may result in unreliable
data.

To maintain the ability to add and modify data in the directory, write operations
should be routed to an alternative server in the event of a writable server becoming
unavailable. Various methods can be used to reroute write operations, including
the Sun Java System Directory Proxy Server.

To maintain the ability to read data in the directory, a suitable load balancing
strategy must be put in place. Both software and hardware load balancing
solutions exist to distribute read load across multiple consumer replicas. Each of
these solutions also has the capability (to varying degrees of completeness and
accuracy) to determine the state of each replica and to manage its participation in
the load balancing topology.

Replicating directory contents increases the availability of Directory Server. A
reliable replication topology will ensure that the most recent data is available to
clients across data centers, even in the case of failure.

In the following sections, failure strategies for read and write operations are
discussed as they relate to each replication topology.

Planning a Backup Strategy
In any failure situation involving data corruption or data loss, it is imperative that
you have a recent backup of your data. If you do not have a recent backup, you will
be required to re-initialize a failed master from another master. For information
about how to back up data, see “Backing Up Data” in the Directory Server
Administration Guide.

This section provides a brief overview of what you should consider when planning
a backup and recovery strategy.

Planning a Backup Strategy

Chapter 9 Reference Architectures and Topologies 213

Choosing a Backup Method
Directory Server provides two methods of backing up data: binary backup
(db2bak) and backup to an LDIF file (db2ldif). These commands are both
subcommands of the directoryserver command. See the Directory Server Man
Page Reference for more information. Both of these methods have advantages and
limitations, and knowing how to use each method will assist you in planning an
effective backup strategy.

Binary Backup (db2bak)
Binary backup is performed at the file system level. The output of a binary backup
is a set of binary files containing all entries, indexes, the change log and the
transaction log.

Performing a binary backup has the following advantages:

• All suffixes can be backed up at once.

• Binary backup is significantly faster than a backup to LDIF.

Binary backup has the following limitations:

• Restoration from a binary backup can be performed only on a server with an
identical configuration. This implies that:

❍ Both machines must use the same hardware and the same operating
system, including any service packs or patches.

❍ Both machines must have the same version of Directory Server installed,
including binary format (32 bits or 64 bits), service pack and patch level.

❍ Both servers must have the same directory tree divided into the same
suffixes. The database files for all suffixes must be copied together,
individual suffixes cannot be copied.

❍ Each suffix must have the same indexes configured on both servers,
including VLV (virtual list view) indexes. The databases for the suffixes
must have the same name.

NOTE The dse.ldif configuration file is not backed up in a binary
backup. You should back this file up manually to enable you to
restore a previous configuration.

Planning a Backup Strategy

214 Directory Server 5.2 2005Q1 • Deployment Planning Guide

❍ The Directory Server to be copied must not hold the o=NetscapeRoot
suffix, which means it cannot be a configuration directory for
Administration Server.

❍ Each server must have the same suffixes configured as replicas, and
replicas must have the same role (master, hub, or consumer) on both
servers. If fractional replication is configured, it must be configured
identically on all master servers.

❍ Attribute encryption must not be used on either server.

For more information on restoring data with the binary restore feature, refer to
“Initializing a Replica Using Binary Copy” in the Directory Server
Administration Guide.

At a minimum, you should perform a regular binary backup on each set of
coherent machines (machines that have an identical configuration, as defined
previously).

In all of the diagrams that follow in this chapter:

• M = master

• H = hub

• C = consumer

• RA = replication agreement.

Figure 9-1 assumes that M1 and M2 have an identical configuration and that H1
and H2 have an identical configuration. In this scenario, a binary backup would be
performed on M1 and on H1. In the case of failure, either master could be restored
from the binary backup of M1 (db1) and either hub could be restored from the
binary backup of H1 (db2). A master could not be restored from the binary backup
of H1 and a hub could not be restored from the binary backup of M1.

NOTE Because it is easier to restore from a local backup, you should
perform a binary backup on each server.

Planning a Backup Strategy

Chapter 9 Reference Architectures and Topologies 215

Figure 9-1 Binary Backup

Backup to LDIF (db2ldif)
Backup to LDIF is performed at the suffix level. The output of db2ldif is a
formatted LDIF file. As such, this process takes longer than a binary backup.

Backup to LDIF has the following advantages:

• Backup to LDIF can be performed from any server, regardless of its
configuration.

• Restoration from a backup to LDIF can be performed on any server, regardless
of its configuration (if the -r option is used to export replication information.)

Backing up using backup to LDIF has the following limitations:

• In situations where rapid backup and restoration are required, backup to LDIF
may take too long to be viable.

You should perform a regular backup using backup to LDIF for each replicated
suffix, on a single master in your topology.

In the following diagram, db2ldif -r would be performed for each replicated
suffix, on M1 only, or additionally on H1:

NOTES Replication information is not backed up unless you use the -r option when
running db2ldif.

The dse.ldif configuration file is not backed up in a backup to LDIF. You
should back this file up manually to enable you to restore a previous configuration.

H1 H2

M1 M2

db1

db2

db2bak

db2bak

Planning a Backup Strategy

216 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-2 Backup Using db2ldif -r

Choosing a Restoration Method
Directory Server provides two methods of restoring data: binary restore (bak2db)
and restoration from an LDIF file (ldif2db). As with the backup methods
discussed previously, both of these methods have advantages and limitations.

Binary Restore (bak2db)
Binary restore copies data at the database level. Restoring data using binary restore
therefore has the following advantages:

• All suffixes can be restored at once.

CAUTION It is essential that your backup be performed more frequently than
the purge delay. The purge delay, specified by the
nsDS5ReplicaPurgeDelay attribute, is the period of time, in
seconds, after which internal purge operations are performed on the
change log. The default purge delay is 604800 seconds (1 week.) The
change log maintains a record of updates, which may or may not
have been replicated.

If your backup is less frequent than the purge delay, the change log
may be cleared before it has been backed up. Changes will therefore
be lost if you use the backup to restore data.

H1 H2

M1 M2

db2ldif -r
dc=us,dc=example,dc=com

db2ldif -r
dc=uk,dc=example,dc=com

db2ldif -r
dc=uk,dc=example,dc=com

Planning a Backup Strategy

Chapter 9 Reference Architectures and Topologies 217

• Binary restore is significantly faster than restoring from an LDIF file.

Restoring data using binary restore has the following limitations:

• Restoration can be performed only on a server with an identical configuration,
as defined in “Binary Backup (db2bak)” on page 213. For more information on
restoring data with the binary restore feature, refer to “Initializing a Replica
Using Binary Copy” in the Directory Server Administration Guide.

• If you are unaware that your database was corrupt when you performed the
binary backup, you risk restoring a corrupt database, since binary backup
creates an exact copy of the database.

Binary restore is the preferred restoration method if the machines have an identical
configuration, and time is a major consideration.

Figure 9-3 assumes that M1 and M2 have an identical configuration and that H1
and H2 have an identical configuration. In this scenario, either master can be
restored from the binary backup of M1 (db1) and either hub can be restored from
the binary backup of H1 (db2).

Figure 9-3 Binary Restore

Restoration From LDIF (ldif2db)
Restoration from an LDIF file is performed at the suffix level. As such, this process
takes longer than a binary restore. Restoration from an LDIF file has the following
advantages:

• It can be performed on any server, regardless of its configuration.

H1 H2

M1 M2

db1

db2

bak2db

bak2db

bak2db

bak2db

Sample Replication Topologies

218 Directory Server 5.2 2005Q1 • Deployment Planning Guide

• A single LDIF file can be used to deploy an entire directory service, regardless
of its replication topology. This is particularly useful for the dynamic
expansion and contraction of a directory service according to anticipated
business needs.

Restoration from an LDIF file has the following limitations:

• In situations where rapid restoration is required, ldif2dbmay take too long to
be viable.

In the following diagram, ldif2db can be performed for each replicated suffix, on
M1 only, or additionally on H1:

Figure 9-4 Restore Using ldif2db

Sample Replication Topologies
Your replication topology will be determined by the size of your enterprise and the
physical location of your data centers. For this reason, we have provided sample
replication topologies, categorized by the number of data centers (sites) in which
the organization has a directory.

When you first deploy your directory, you will deploy according to the current
number of entries and the current volume of reads/writes to the directory. As the
number of entries increases, you will need to scale your directory for improved
read performance. Suggestions for scalability are provided for each organization.

These topologies aim to provide continued service in the event of failure of one
component, without immediate manual intervention. In the case of one and two
data centers, local read/write failover is also provided.

H1 H2

M1 M2

ldif2db
dc=us,dc=example,dc=com

ldif2db
dc=uk,dc=example,dc=com

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 219

Single Data Center
In a single data center, your topology is largely dependent on the anticipated
performance requirements of the directory. In the basic topology suggested, it is
assumed that the deployment warrants at least two servers to handle read and
write operations. Two masters also provide a high-availability solution.

Single Data Center Basic Topology
The topology depicted in Figure 9-5 assumes one data center, with two masters for
read and write performance. In this basic scenario, clients write to either master,
and read from either master.

Figure 9-5 One Data Center - Basic Topology

Single Data Center Scaled For Read Performance
Increased read performance is achieved by adding hubs, and then consumers, as
indicated in Figure 9-6. Hubs are added below the masters first to make adding a
third level of consumers easier. Configuring the second level servers as hubs
immediately will allow consumers to be added below them without having to
reconfigure any of the machines.

M1 M2

Replication Agreement

Sample Replication Topologies

220 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-6 One Data Center Scaled For Read Performance

Single Data Center Failure Matrix
In the scenario depicted in Figure 9-6, various components may be rendered
unavailable for any one of the reasons described in “Addressing Failure and
Recovery” on page 211. These points of failure, and the related recovery actions are
described in table Table 9-1.

Table 9-1 Single Data Center - Failure Matrix

Failed Component Action

M1 Local writes are routed to M2, via Directory Proxy Server, client
server lists, or a hardware or software load balancer. M2 continues
to replicate to both H1 and H2.

M2 Local writes are routed to M1, via Directory Proxy Server, client
server lists, or a hardware or software load balancer. M1 continues
to replicate to both H1 and H2.

LAN link
supporting RA1

Both masters continue to receive local writes. Conflicts are resolved
at the level of the hubs, assuring that consumers contain the same
data.

H1 or H2 Both masters continue to receive local writes. Conflicts are resolved
at the level of the masters, and replicated through the alternate hub
to all consumers, assuring that consumers contain the same data.

LAN link
supporting RA2

Both masters continue to receive local writes. M2 replicates to H1
and replication traffic from the hubs to the consumers continues as
normal.

Replication Agreement

Two Replication Agreements

RA1

H1 H2

RA2 RA3

C1 C2

M1 M2

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 221

Single Data Center Recovery Procedure (One Component)
In a single data center with two masters, read and write capability is maintained if
one master fails. This section describes a sample recovery strategy that can be
applied to reinstate the failed component.

The flowchart depicted in Figure 9-7, and the procedure that follows, assumes that
one master (M1) has failed.

Sample Replication Topologies

222 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-7 Single Data Center Recovery Sample Procedure (One Component)

Run
insync

Run the insync command
to check that replication
is functioning correctly.

Stop M1
(if not already

stopped)

Perform total
initialization

from M2 to M1

Online export
from H1, or H2

and import to M1

Identify cause
of failure

Make repair

Restart M1Restart M1

No

YesEasy repair
(e.g. replace

cable)?

Redirect
applications

No

YesSevere time
constraints?

Reinitialize M1
from backup

No

Yes
Recent
backup

available?

Redirect applications
accessing M1 to point

 to M2 (via Directory
 Proxy Server, client

 server lists, or a
 hardware or soft

are load balancer).

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 223

1. Stop M1 (if it is not already stopped).

2. Identify the cause of the failure. If it is easily repaired (by replacing a network
cable, for example) make the repair.

3. If the problem is more serious and will take time to fix, ensure that any
applications accessing M1 are redirected to point to M2, via Sun Java System
Directory Proxy Server, client server lists, or a hardware or software load
balancer.

4. If a recent backup is available, re-initialize M1 from the backup.

5. If a recent backup is not available, restart M1 and perform a total initialization
from M2 to M1. For details on this procedure, refer to “Performing Online
Replica Initialization” in the Directory Server Administration Guide.

6. If a recent backup is not available, and time considerations prevent you from
performing a total initialization, perform an online export from H1, or H2, and
an import (ldif2db) to M1.

7. Start M1 (if it is not already started.)

8. Set M1 to read/write mode (if it is in read-only mode.)

9. Use the insync command to check that replication is now functioning
correctly. For more information, see the Directory Server Man Page Reference.

Single Data Center Recovery Procedure (Two Components)
In the event of two masters failing in this scenario, write capability is lost. If the
failure is serious and will take a long time to repair, it is necessary to implement a
strategy that will provide write capability as rapidly as possible.

The following procedure assumes that both M1 and M2 have failed, and are
unrecoverable in the near term. Note that you need to assess the quickest and least
complicated method of recovery. This procedure depicts server promotion as the
least complicated method, for illustration purposes.

1. Promote H1 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Directory Server Administration
Guide.

NOTE Performing an online export will impact the performance of the
server. You should therefore use a hub for the export, rather than
the master, M2, which is currently the only server available for
write operations.

Sample Replication Topologies

224 Directory Server 5.2 2005Q1 • Deployment Planning Guide

2. Ensure that any applications that were accessing either M1 or M2 are
redirected to point to the new master.

3. Add a replication agreement between the new master and H2 to ensure that
modifications continue to be replicated to the consumers.

Two Data Centers
When data is shared across sites, an effective replication topology is imperative, for
both performance and failover.

Two Data Centers Basic Topology
The topology depicted in Figure 9-8 assumes two masters and two hubs in each
data center, for optimized read and write performance. Configuring the second
level servers as hubs immediately will allow consumers to be added below them
without having to reconfigure any of the machines.

In this scenario, the replication agreements RA1 and RA2 are configured over
separate network links. This configuration will enable replication to continue across
data centers, in the case of one of the network links becoming unavailable or
unreliable.

Figure 9-8 Two Data Centers Basic Topology

RA1

H1 H2

M1 M2

New York

H3 H4

M3 M4

London

RA2

Replication Agreement

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 225

Two Data Centers Scaled For Read Performance
As in the scenario for one data center, increased read performance is achieved by
adding hubs, and then consumers, as indicated in Figure 9-6.

In this scenario, the replication agreements RA1 and RA2 are configured over
separate network links. This configuration will enable replication to continue across
data centers, in the case of one of the network links becoming unavailable or
unreliable.

Figure 9-9 Two Data Centers Scaled For Read Performance

Two Data Centers Recovery Scenarios
For the deployment depicted in Figure 9-9, if one master fails, the same recovery
strategy can be applied as described for a single data center. The replication
agreements between M1 and M4, and between M2 and M3, will ensure that both
data centers continue to receive replicated updates, even if one of the masters in the
data center is not available.

If more than one master fails, however, an advanced recovery strategy is required.
This involves the creation of recovery replication agreements, that are disabled by
default but can be enabled rapidly in the event of a failure.

Replication Agreement

H1 H2

M1 M2

New York

C1 C2 C3 C4

H3 H4

M3 M4

London

C5 C6 C7 C8

RA2

RA1

Sample Replication Topologies

226 Directory Server 5.2 2005Q1 • Deployment Planning Guide

This recovery strategy is illustrated in Figure 9-10.

Figure 9-10 Two Data Centers Recovery Replication Agreements

The recovery strategy applied will depend on which combination of components
fails. However, once you have a basic strategy in place to cope with multiple
failures, you can apply that strategy should other components fail.

In the sample topology depicted in Figure 9-10, assume that both masters in the
New York data center fail. The recovery strategy in this scenario would be as
follows:

1. Enable the recovery replication agreement between M3 and H2.

This ensures that remote writes on the London site continue to be replicated to
the New York site.

2. Promote H2 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Directory Server Administration
Guide.

This ensures that write-capability is maintained on the New York site.

H1 H2

M1 M2

New York

C1 C2 C3 C4

H3 H4

M3 M4

London

C5 C6 C7 C8

RA2

RA1

Default Replication Agreement

Recovery Replication Agreement

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 227

3. Create a replication agreement between the new promoted master (was H2)
and M3.

This ensures that writes on the New York site continue to be replicated to the
London site.

4. Enable the recovery replication agreement between H2 and H1 (one direction
only.)

This ensures that H1 continues to receive updates from the entire replication
topology.

Three Data Centers
Directory Server 5.2 supports four-way multi-master replication. In an enterprise
spread over three main geographical regions, you have the possibility of two
masters in one data center and one in each of the others. How you divide this
directory capacity will be determined (amongst other issues) by the relative
volume of read and write traffic anticipated in each data center.

Three Data Centers Basic Topology
The topology depicted in Figure 9-11 assumes that the New York data center
receives the largest number of read and write requests, although local read and
write requests are possible in each of the three data centers.

Sample Replication Topologies

228 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-11 Three Data Centers Basic Topology

Three Data Centers Scaled For Read Performance
As in the previous scenarios, increased read performance is achieved by adding
hubs and consumers, once again taking into account the anticipated performance
requirements across the different data centers. This topology is indicated in
Figure 9-12.

H1 H2

M1 M2

New York

Replication Agreement

H3 H4

M3

London

H5 H6

M4

Tokyo

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 229

Figure 9-12 Three Data Centers Scaled For Read Performance

Three Data Centers Recovery Scenarios
As was the case for two data centers, if more than one master fails, a recovery
strategy involving the creation of recovery replication agreements is required.
These agreements are disabled by default but can be enabled rapidly in the event of
a failure, as shown in Figure 9-13.

H3 H4

M3

London

C5 C6

H5 H6

M4

Tokyo

C7 C8

H1 H2

M1 M2

New York

C1 C2 C3 C4

Replication Agreement

Sample Replication Topologies

230 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-13 Three Data Centers Recovery Replication Agreements

Three Data Centers Recovery Procedure (One Component)
In the scenario depicted in Figure 9-13, losing one master in either London or
Tokyo implies that local write capability is lost. The following procedure assumes
that M3 (London) has failed.

H3 H4

M3

London

C5 C6

H5 H6

M4

Tokyo

C7

H1 H2

M1 M2

New York

C1 C2 C3 C4

Default Replication Agreement

Recovery Replication Agreement

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 231

1. Promote H4 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Directory Server Administration
Guide.

2. Enable the recovery replication agreement from H4 to H3, to ensure that local
writes are replicated to all local consumers.

3. Enable the recovery replication agreements between M1 and H4 to ensure that
local writes are replicated to remote data centers and that remote writes are
replicated to local consumers.

4. Ensure that any applications that were accessing M3 are redirected to point to
the new master.

Five Data Centers
Directory Server 5.2 supports four-way multi-master replication. In an enterprise
spread over five main geographical regions, you must assess which region has the
lowest requirements in terms of local update performance. This region will not
have a master server and will redirect writes to one of the masters in the other
regions.

Five Data Centers Basic Topology
The topology depicted in Figure 9-14 assumes that the Sydney data center receives
the smallest number of write requests. Local read requests are possible in each of
the five data centers.

NOTE This procedure is an intermediate solution that will provide
immediate local read and write capability, while you set about
repairing M3.

Sample Replication Topologies

232 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-14 Five Data Centers Basic Topology

Five Data Centers Scaled For Read Performance
As in the previous scenarios, increased read performance is achieved by adding
hubs and consumers, once again taking into account the anticipated performance
requirements across the different data centers.

Five Data Centers Recovery Scenarios
As was the case for two data centers, if more than one master fails, a recovery
strategy involving the creation of recovery replication agreements is required.
These agreements are disabled by default but can be enabled rapidly in the event of
a failure, as shown in Figure 9-15 on page 234.

Default Replication Agreement

M3

H3

Tokyo

M1

H1

New York

M2

H2

London

H5

H6

Sydney

M4

H4

Frankfurt

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 233

Five Data Centers Recovery Procedure (One Component)
In the scenario depicted in Figure 9-15, losing a master in any data center implies
that local write capability is lost. The following procedure assumes that M1
(New York) has failed.

1. Promote H1 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Directory Server Administration
Guide.

2. Enable the recovery replication agreement from M2 to H1, to ensure that local
writes are replicated to remote data centers and that remote writes are
replicated to local consumers.

3. Ensure that any applications that were accessing M1 are redirected to point to
the new master.

NOTE This procedure is an intermediate solution that will provide
immediate local read and write capability, while you set about
repairing M1.

Sample Replication Topologies

234 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-15 Five Data Centers Recovery Replication Agreements

Single Data Center Using the Retro Change Log
Plug-In
The previous topology for a single data center does not take into account the use of
the retro change log plug-in. Most applications that rely on the retro change log
assume that it contains ordered changes and thus would fail due to the effects on
the retro change log of the loose consistency multi-master replication model. In
general, if the requirements of any application being deployed include the retro

M3

H3

Tokyo

M1

H1

New York

M2

H2

London

H5

H6

Sydney

M4

H4

Frankfurt

Default Replication Agreement

Recovery Replication Agreement

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 235

change log, a multi-master replication topology should not be used in this
deployment. For more information, refer to “Replication and the Retro Change Log
Plug-In” on page 149, and to “Using the Retro Change Log Plug-In” in the
Directory Server Administration Guide.

Retro Change Log Plug-in Basic Topology
If multi-master replication cannot be deployed, the basic topology depicted in
Figure 9-16 is suggested.

Figure 9-16 One Data Center Using the Retro Change Log Plug-in

Retro Change Log Plug-in Scaled For Read Performance
As in the standard single data center topology, increased read performance is
achieved by adding hubs, and then consumers, as indicated in Figure 9-17.

M1

H1

Default Replication Agreement

Retro Change Log Plug-inRCL =

RCL

Sample Replication Topologies

236 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Figure 9-17 One Data Center Using the Retro Change Log Plug-in (Scaled)

Retro Change Log Plug-in Recovery Procedure
For the deployment depicted in Figure 9-17, the following strategy can be applied
if the master server fails:

1. Stop M1 (if it is not already stopped).

2. Promote H1 or H2 to a master server. For information on how to do this, refer
to “Promoting or Demoting Replicas” in the Directory Server Administration
Guide.

3. Enable the retro change log plug-in on the new master (M2.)

4. Restore the backup retro change log on M2.

5. Restart the server.

6. Add a replication agreement between M2 and the remaining hub to ensure that
modifications continue to be replicated to the hub.

This recovery strategy is illustrated in Figure 9-18.

Default Replication Agreement

Retro Change Log Plug-inRCL =

C1 C2

H1 H2

M1

RCL

Sample Replication Topologies

Chapter 9 Reference Architectures and Topologies 237

Figure 9-18 One Data Center Using the Retro Change Log Plug-in (Recovery)

Default Replication Agreement

Recovery Replication Agreement

Retro Change Log Plug-inRCL =

C1 C2

H2

M1

M2
(was H1)

RCL

Sample Replication Topologies

238 Directory Server 5.2 2005Q1 • Deployment Planning Guide

239

Chapter 10

System Sizing

Appropriate hardware sizing is a critical component of directory service planning
and deployment. When sizing hardware, the amount of memory available and the
amount of local disk space available are of key importance.

This chapter suggests ways of estimating disk and memory requirements for a
Directory Server instance. It also touches on network and SSL accelerator hardware
requirements.

Suggested Minimum Requirements
Table 10-1 proposes minimum memory and disk space requirements for installing
and using the software in a production environment.

Minimum requirements for specified numbers of entries may in fact differ from
those provided in Table 10-1. Sizes here reflect relatively small entries, with
indexes set according to the default configuration, and with caches minimally
tuned. If entries include large binary attribute values such as digital photos, or if
indexing or caching is configured differently, then revise minimum disk space and
memory estimates upward accordingly.

NOTE For best results, install and configure a test system with a subset of
entries representing those used in production. You can then use the
test system to approximate the behavior of the production server.

When optimizing for particular systems, ensure you understand
how system buses, peripheral buses, I/O devices, and supported file
systems work so you can take advantage of I/O subsystem features
when tuning these to support Directory Server.

Suggested Minimum Requirements

240 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Minimum disk space requirements include 1 GB devoted to access logs. By default,
Directory Server is configured to rotate through 10 access log files
(nsslapd-accesslog-maxlogsperdir on cn=config) each holding up to 100 MB
(nsslapd-accesslog-maxlogsize on cn=config) of messages. Volume for error
and audit logs depends on how Directory Server is configured. Refer to the
“Monitoring Directory Server Using Log Files,“ in the Directory Server
Administration Guide for details on configuring logging.

Minimum Available Memory
Minimum memory estimates reflect memory used by an instance of Directory
Server in a typical deployment. The estimates do not account for memory used by
the system and by other applications. For a more accurate picture, you must
measure memory use empirically. Refer to “Sizing Physical Memory” on page 241
for details.

As a rule, the more available memory, the better.

Minimum Local Disk Space
Minimum local disk space estimates reflect the space needed for an instance of
Directory Server in a typical deployment. Experience suggests that if directory
entries are large, the space needed is at minimum four times the size of the
equivalent LDIF on disk. Refer to “Sizing Disk Subsystems” on page 245 for details.

Do not install the server or any data it accesses on network disks. Directory Server
software does not support the use of network attached storage via NFS, AFS, or
SMB. Instead, all configuration, log, database, and index files must reside on local
storage at all times, even after installation.

Table 10-1 Minimum Disk Space and Memory Requirements

Required for... Free Local Disk Space Free RAM

Unpacking product At least 125 MB -

Product installation At least 200 MB At least 256 MB

10,000-250,000 entries Add at least 3 GB Add at least 256 MB

250,000-1,000,000 entries Add at least 5 GB Add at least 512 MB

Over 1,000,000 entries Add 8 GB or more Add 1 GB or more

Sizing Physical Memory

Chapter 10 System Sizing 241

Minimum Processing Power
High volume systems typically employ multiple, high-speed processors to provide
appropriate processing power for multiple simultaneous searches, extensive
indexing, replication, and other features. Refer to “Sizing for Multiprocessor
Systems” on page 254 for details.

Minimum Network Capacity
Testing has demonstrated that 100 Mbit Ethernet may be sufficient for even service
provider performance, depending on the maximum throughput expected. You
may estimate theoretical maximum throughput as follows:

max. throughput = max. entries returned/second x average entry size

Imagine for example that a Directory Server must respond to a peak of 5000
searches per second for which it returns 1 entry each with entries having average
size of 2000 bytes, then the theoretical maximum throughput would be 10 MB, or
80 Mbit. 80 Mbit is likely to be more than a single 100 Mbit Ethernet adapter can
provide. Actual observed performance may vary.

If you expect to perform multi-master replication over a wide area network, ensure
the connection provides sufficient throughput with minimum latency and
near-zero packet loss.

Refer to “Sizing Network Capacity” on page 254 for more information.

Sizing Physical Memory
Directory Server stores information using database technology. As is the case for
any application relying on database technology, adequate fast memory is key to
optimum Directory Server performance. As a rule, the more memory available, the
more directory information can be cached for quick access. In the ideal case, each
server has enough memory to cache the entire contents of the directory at all times.
As Directory Server 5.2 supports 64-bit memory addressing, it is now possible to
handle total cache sizes of as much as the 64-bit processor can address.

NOTE When deploying Directory Server in a production environment,
configure cache sizes well below theoretical process limits, leaving
appropriate resources available for general system operation.

Sizing Physical Memory

242 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Estimating memory size required to run Directory Server involves estimating the
memory needed both for a specific Directory Server configuration, and for the
underlying system on which Directory Server runs.

Sizing Memory for Directory Server
Given estimated configuration values for a specific deployment, you can estimate
physical memory needed for an instance of Directory Server. Table 10-2
summarizes the values used for the calculations in this section.

To estimate approximate memory size, perform the following steps.

1. Estimate the base size of the server process, slapdBase.

slapdBase = 75 MB +(nsslapd-threadnumber x 0.5 MB) +(nsslapd-maxconnections x 0.5 KB)

2. Determine the sum of entry cache sizes, entryCacheSum.

entryCacheSum = Sumall entry caches(nsslapd-cachememsize)

Table 10-2 Values for Sizing Memory for Directory Server

Value Description1

1. For complete descriptions, refer to the Directory Server Administration Reference.

nsslapd-cachememsize Entry cache size for a suffix

An entry cache contains formatted entries, ready
to be sent in response to a client request. One
instance may handle several entry caches.

nsslapd-dbcachesize Database cache size

The database cache holds elements from
databases and indexes used by the server.

nsslapd-import-cachesize Database cache size for bulk import

Import cache is used only when importing
entries. You may be able to avoid budgeting
extra memory for import cache, instead reusing
memory budgeted for entry or database cache if
you perform only offline imports.

nsslapd-maxconnections Maximum number of connections managed.

nsslapd-threadnumber Number of operation threads created at server
startup

Sizing Physical Memory

Chapter 10 System Sizing 243

Note that the entry cache includes an allocation overhead (in other words, the
cache will consume more memory than you specify in the nsslapd-cachememsize

parameter.) This may appear to be a memory leak, but it is not. Depending on how
the memory allocation library handles requests, actual memory used may be much
larger than the memory specified. For more information see “Entry Cache,” in the
Directory Server Performance Tuning Guide.

3. Determine the total size for all caches, cacheSum.

cacheSum = entryCacheSum + nsslapd-dbcachesize + nsslapd-import-cachesize

4. Determine the total size for the Directory Server process, slapdSize.

slapdSize = slapdBase + cacheSum

You may use utilities such as pmap(1) on Solaris systems or the Windows Task
Manager to measure physical memory used by Directory Server.

5. Estimated memory needed to handle incoming client requests, slapdGrowth.

slapdGrowth = 20% x slapdSize

As a first estimate, we assume 20 percent overhead for handling client
requests. The actual percentage may depend on the characteristics of your
particular deployment. Validate this percentage empirically before putting
Directory Server into production.

6. Determine total memory size for Directory Server, slapdTotal.

slapdTotal = slapdSize + slapdGrowth

For large deployments involving 32-bit servers, slapdTotal may exceed the
practical limit of about 3.4 GB, (2.5GB on Linux systems) and perhaps even the
theoretical process limit of about 3.7 GB. In this case, you may choose either to
tune caching to work within the limits of the system, or to use a 64-bit version
of the product. For more information, see “Tuning Cache Sizes ”in the
Directory Server Performance Tuning Guide.

Sizing Memory for the Operating System
Estimating the memory needed to run the underlying operating system must be
done empirically, as operating system memory requirements vary widely based on
the specifics of the system configuration. For this reason, consider tuning a
representative system for deployment before attempting to estimate how much
memory the underlying operating system needs. For more information, see

Sizing Physical Memory

244 Directory Server 5.2 2005Q1 • Deployment Planning Guide

“Tuning the Operating System” in the Directory Server Performance Tuning Guide.
After tuning the system, monitor memory use to arrive at an initial estimate,
systemBase. You may use utilities such as sar(1M) on Solaris systems or the Task
Manager on Windows to measure memory use.

Additionally, allocate memory for general system overhead and normal
administrative use. A first estimate for this amount, systemOverhead, should be at
least several hundred megabytes, or 10 percent of the total physical memory,
whichever is greater. The goal is to allocate enough space for systemOverhead that
the system avoids swapping pages in and out of memory while in production.

The total memory needed by the operating system, systemTotal, can then be
estimated as follows.

systemTotal = systemBase + systemOverhead

Sizing Total Memory
Given slapdTotal and systemTotal estimates from the preceding sections,
estimate the total memory needed, totalRAM.

totalRAM = slapdTotal + systemTotal

Notice totalRAM is an estimate of the total memory needed, including the
assumption that the system is dedicated to the Directory Server process, and
including estimated memory use for all other applications and services expected to
run on the system.

Dealing With Insufficient Memory
In many cases, it is not cost effective to provide enough memory to cache all data
used by Directory Server.

NOTE For top performance, dedicate the system running Directory Server
to this service only.

If you must run other applications or services, monitor the memory
they use as well when sizing total memory required.

Sizing Disk Subsystems

Chapter 10 System Sizing 245

At minimum, equip the server with enough memory that running Directory Server
does not cause constant page swapping. Constant page swapping has a strong
negative performance impact. You may use utilities such as vmstat(1M) on Solaris
and other systems to view memory statistics before and after starting Directory
Server and priming the entry cache. Unsupported utilities available separately
such as MemTool for Solaris systems can be useful in monitoring how memory is
used and allocated when applications are running on a test system.

If the system cannot accommodate additional memory, yet you continue to observe
constant page swapping, reduce the size of the database and entry caches. Running
out of swap space can cause Directory Server to shut itself down.

Refer to “Tuning Cache Sizes” in the Directory Server Performance Tuning Guide for
a discussion of the alternatives available when providing adequate physical
memory to cache all directory data is not an option.

Sizing Disk Subsystems
Disk use and I/O capabilities can strongly impact performance. Especially for a
deployment supporting large numbers of modifications, the disk subsystem can
become an I/O bottleneck. This section offers recommendations for estimating
overall disk capacity for a Directory Server instance, and for alleviating disk I/O
bottlenecks.

Refer to “Tuning Logging” in the Directory Server Performance Tuning Guide for
more information on alleviating disk I/O bottlenecks.

Sizing Directory Suffixes
Disk space requirements for a suffix depend not only on the size and number of
entries in the directory, but also on the directory configuration and in particular
how the suffix is indexed. To gauge disk space needed for a large deployment,
perform the following steps:

1. Generate LDIF for three representative sets of entries like those expected for
deployment, one of 10,000 entries, one of 100,000, one of 1,000,000.

Generated entries should reflect not only the mix of entry types (users, groups,
roles, entries for extended schema) expected, but also the average size of
individual attribute values, especially if single large attribute values such as
userCertificate and jpegPhoto are expected.

Sizing Disk Subsystems

246 Directory Server 5.2 2005Q1 • Deployment Planning Guide

2. Configure an instance of Directory Server as expected for deployment.

In particular, index the database as you would for the production directory. If
you expect to add indexes later, expect to have to add space for those indexes
as well.

3. Load each set of entries, recording the disk space used for each set.

4. Graph the results to extrapolate estimated suffix size for deployment.

5. Add extra disk space to compensate for error and variation.

If you are using replication, note that entry state information (a list of old values) is
stored with the entry, and used during conflict resolution. State information can
cause an entry to grow significantly in size and should be taken into account when
sizing the suffix.

Disk space for suffixes is only part of the picture; you must also consider how
Directory Server uses disks.

How Directory Server Uses Disks
Directory suffixes are part of what Directory Server stores on disk. A number of
other factors affecting disk use may vary widely depending even on how Directory
Server is used after deployment and so are covered here in general terms. Refer to
the Directory Server Administration Guide for instructions on configuring the items
discussed here.

Directory Server Binaries
You need approximately 200 MB disk space to install this version of Directory
Server. This estimate is not meant to include space for data or logs, but only for the
product binaries.

Event Logging
Disk use estimates for log files depend on the rate of Directory Server activity, the
type and level of logging, and the strategy for log rotation.

Many logging requirements can be predicted and planned in advance. If Directory
Server writes to logs and in particular audit logs, disk use increases with load level.
When high load deployments call for extensive logging, plan for extra disk space to
accommodate the high load. You may decrease disk space requirements for

Sizing Disk Subsystems

Chapter 10 System Sizing 247

deployments with high load logging by establishing an intelligent log rotation and
archival system, rotating the logs often, and automating migration of old files to
less expensive, higher capacity storage mediums such as tape or cheaper disk
clusters.

Some logging requirements cannot easily be predicted. Debug logging can cause
temporary but explosive growth in the size of the errors log, for example. For a
large, high load deployment, consider setting aside several gigabytes of dedicated
disk space for temporary, high-volume debug logging. Refer to “Tuning Logging”
in the Directory Server Performance Tuning Guide for further information.

Transaction Log
Transaction log volume depends upon peak write loads. If writes occur in bursts,
transaction logs use more space than if the write load is constant. Directory Server
trims transaction logs periodically. Transaction logs therefore should not continue
to grow unchecked.

Transaction logs are not flushed during online backup, because database files
cannot be modified while they are being copied (this would result in an
inconsistent data image.) Transaction logs are copied to the backup location as the
last step of the backup.

Directory Server is generally run with durable transactions enabled. When durable
transaction capabilities are enabled, Directory Server performs a synchronous
write to the transaction log for each modification (add, delete, modify, modrdn)
operation. In this case, an operation can be blocked if the disk is busy, resulting in a
potential I/O bottleneck.

If update performance is critical, plan to use a disk subsystem having fast write
cache for the transaction log. Refer to “Tuning Logging”in the Directory Server
Performance Tuning Guide for further information.

Replication Changelog Database
If the deployment involves replication, the Directory Server suppliers perform
change logging. Changelog size depends on the volume of modifications and on
the type of changelog trimming employed. Plan capacity based on how the
changelog is trimmed. For a large, high load deployment, consider setting aside
several gigabytes of disk space to handle changelog growth during periods of
abnormally high modification rates. Refer to “Tuning Logging” in the Directory
Server Performance Tuning Guide for further information.

Sizing Disk Subsystems

248 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Suffix Initialization and LDIF Files
During suffix initialization, also called bulk loading or importing, Directory Server
requires disk space not only for the suffix database files and the LDIF used to
initialize the suffix, but also for intermediate files used during the initialization
process. Plan extra (temporary) capacity in the same directory as the database files
for the LDIF files and for the intermediate files used during suffix initialization.
This may be as much as double the size of the largest index, depending on what
indexes you have created.

Backups and LDIF Files
Backups often consume a great deal of disk space. The size of a backup equals the
size of the database files involved, and the transaction logs. Accommodate for
several backups by allocating space equal to several times the volume of the
database files, ensuring that databases and their corresponding backups are
maintained on separate disks. Employ intelligent strategies for migrating backups
to cheaper storage mediums as they age.

If the deployment involves replication, plan additional space to hold initialization
LDIF files, as these differ from backup LDIF files.

Memory Based Rather Than Disk Based File Systems
Some systems support memory based tmpfs file systems. On Solaris for example
/tmp is often mounted as a memory based file system to increase performance.

Only database cache files should be placed on a memory based file system. For
more information, see “nsslapd-db-home-directory“ in the Directory Server
Administration Reference. Never put database or transaction log binaries or
configuration files on a memory based file system.

If cache files are placed on /tmp, a location shared with other applications on the
system, ensure that the system never runs out of space under /tmp. Otherwise,
when memory is low, Directory Server files in memory based file systems may be
paged to the disk space dedicated for the swap partition.

Some systems support RAM disks and other alternative memory based file
systems. Refer to the operating system documentation for instructions on creating
and administering memory based file systems. Notice that everything in such file
systems is volatile and must be reloaded into memory after system reboot. This
reinitialization can take a long time to complete, depending on factors such as the
processor speed, memory speed, and memory size.

Sizing Disk Subsystems

Chapter 10 System Sizing 249

Core Files
Leave room for at minimum one or two core files. Although Directory Server
should not dump core, recovery and troubleshooting after a crash can be greatly
simplified if the core file generated during the crash is available for inspection.
When generated, core files are stored either in the same directory as the file
specified by nsslapd-errorlog on cn=config, or under
ServerRoot/bin/slapd/server/ if a crash occurs during startup.

Space for Administration
Leave room for expected system use, including system and Directory Server
administration. Ensure that sufficient space is allocated for the base Directory
Server installation, for the configuration suffix if it resides on the local instance, for
configuration files, and so forth.

Distributing Files Across Disks
By placing commonly-updated Directory Server database and log files on separate
disk subsystems, you can spread I/O traffic across multiple disk spindles and
controllers, avoiding I/O bottlenecks. Consider providing dedicated disk
subsystems for each of the following items.

Transaction Logs
When durable transaction capabilities are enabled, Directory Server performs a
synchronous write to the transaction log for each modification operation. An
operation is thus blocked when the disk is busy. Placing transaction logs on a
dedicated disk can improve write performance, and increase the modification rate
Directory Server can handle.

Refer to “Transaction Logging” in the Directory Server Performance Tuning Guide.

Databases
Multiple database support allows each database to reside on its own physical disk.
You can thus distribute the Directory Server load across multiple databases each
on its own disk subsystem. To prevent I/O contention for database operations,
consider placing each set of database files on a separate disk subsystem.

For top performance, place database files on a dedicated fast disk subsystem with a
large I/O buffer. Directory Server reads data from the disk when it cannot find
candidate entries in cache. It regularly flushes writes. Having a fast, dedicated disk
subsystem for these operations can alleviate a potential I/O bottleneck.

Sizing Disk Subsystems

250 Directory Server 5.2 2005Q1 • Deployment Planning Guide

The nsslapd-directory attribute on cn=config,cn=ldbm

database,cn=plugins,cn=config specifies the disk location where Directory
Server stores database files, including index files. By default, such files are located
under ServerRoot/slapd-ServerID/db/.

Changing database location of course requires not only that you restart Directory
Server, but also that you rebuild the database completely. Changing database
location on a production server can be a major undertaking, so identify your most
important database and put it on a separate disk before putting the server into
production.

Log Files
Directory Server provides access, error, and audit logs featuring buffered logging
capabilities. Despite buffering, writes to these log files require disk access that may
contend with other I/O operations. Consider placing log files on separate disks for
improved performance, capacity, and management.

Refer to “Tuning Logging” in the Directory Server Performance Tuning Guide for
more information.

Cache Files on Memory Based File Systems
In a tmpfs file system, for example, files are swapped to disk only when physical
memory is exhausted. Given sufficient memory to hold all cache files in physical
memory, you may derive improved performance by allocating equivalent disk
space for a tmpfs file system on Solaris platforms or other memory based file
systems such as RAM disks for other platforms, and setting the value of
nsslapd-db-home-directory to have the Directory Server store cache files on that
file system. This prevents the system from unnecessarily flushing memory mapped
cache files to disk.

Disk Subsystem Alternatives
“Fast, cheap, safe: pick any two.” — Sun Performance and Tuning, Cockroft and Pettit.

Fast and Safe
When implementing a deployment in which both performance and uptime are
critical, consider hardware-based RAID controllers having non-volatile memory
caches to provide high speed buffered I/O distributed across large arrays of disks.
By spreading load across many spindles and buffering access over very fast
connections, I/O can be optimized, and excellent stability provided through high
performance RAID striping or parity blocks.

Sizing Disk Subsystems

Chapter 10 System Sizing 251

Large non-volatile I/O buffers and high performance disk subsystems such as
those offered in Sun StorEdge™ products can greatly enhance Directory Server
performance and uptime.

Fast write cache cards provide potential write performance improvements,
especially when dedicated for database and/or transaction log use. Fast write
cache cards provide non-volatile memory cache that is independent from the disk
controller.

Fast and Cheap
For fast, low-cost performance, ensure you have adequate capacity distributed
across a number of disks. Consider disks having high rotation speed and low seek
times. For best results, dedicate one disk to each distributed component. Consider
using multi-master replication to avoid single points of failure.

Cheap and Safe
For cheap, safe configurations, consider low-cost, software-based RAID controllers
such as Solaris Volume Manager.

RAID Alternatives
RAID stands for Redundant Array of Inexpensive Disks. As the name suggests, the
primary purpose of RAID is to provide resiliency. If one disk in the array fails, data
on that disk is not lost but remains available on one or more other disks in the
array. To implement resiliency, RAID provides an abstraction allowing multiple
disk drives to be configured as a larger virtual disk, usually referred to as a
volume. This is achieved by concatenating, mirroring, or striping physical disks.
Concatenation is implemented by having blocks of one disk logically follow those
of another disk. For example, disk 1 has blocks 0-99, disk 2 has blocks 100-199 and
so forth. Mirroring is implemented by copying blocks of one disk to another and
then keeping them in continuous synchronization. Striping uses algorithms to
distribute virtual disk blocks over multiple physical disks.

The purpose of striping is performance. Random writes can be dealt with very
quickly as data being written is likely to be destined for more than one of the disks
in the striped volume, hence the disks are able to work in parallel. The same
applies to random reads. For large sequential reads and writes the case may not be
quite so clear. It has been observed, however, that sequential I/O performance can
be improved. An application generating many I/O requests can swamp a single
disk controller, for example. If the disks in the striped volume all have their own
dedicated controller, however, swamping is far less likely to occur and so
performance is improved.

Sizing Disk Subsystems

252 Directory Server 5.2 2005Q1 • Deployment Planning Guide

RAID can be implemented using either a software or a hardware RAID manager
device. There are advantages and disadvantages in using either method:

• Hardware RAID generally provides higher performance as it is implemented
in hardware and hence incurs less processing overhead than software RAID.
Furthermore, hardware RAID is dissociated from the host system, leaving host
resources free to execute applications.

• Hardware RAID is generally more expensive than software RAID.

• Software RAID can be more flexible than hardware RAID. For example, a
hardware RAID manager is usually associated with a single array of disks or
with a prescribed set of arrays, whereas software RAID can encapsulate any
number of arrays of disks, or, if desired, only certain disks within an array.

The following sections discuss RAID configurations, known as levels. The most
common RAID levels, 0, 1, 1+0 and 5 are covered in some detail, whereas less
common levels are merely compared and contrasted.

RAID 0, Striped Volume
Striping spreads data across multiple physical disks. The logical disk, or volume, is
divided into chunks or stripes and then distributed in a round-robin fashion on
physical disks. A stripe is always one or more disk blocks in size, with all stripes
having the same size.

The name RAID 0 is a contradiction in that it provides no redundancy. Any disk
failure in a RAID 0 stripe causes the entire logical volume to be lost. RAID 0 is,
however, the least expensive of all RAID levels as all disks are dedicated to data.

RAID 1, Mirrored Volume
The purpose of mirroring is to provide redundancy. If one of the disks in the
mirror fails then the data remains available and processing may continue. The
trade off is that each physical disk is mirrored, meaning that half the physical disk
space is devoted to mirroring.

RAID 1+0
Also known as RAID 10, RAID 1+0 provides the highest levels of performance and
resiliency. Consequently, it is the most expensive level of RAID to implement. Data
continues to remain available after up to three disk failures as long as all of the
disks that fail form different mirrors. RAID 1+0 is implemented as a striped array
where segments are RAID 1.

Sizing Disk Subsystems

Chapter 10 System Sizing 253

RAID 0+1
RAID 0+1 is slightly less resilient than RAID 1+0. A stripe is created and then
mirrored. If one or more disks fails on the same side of the mirror, then the data
remains available. If a disk then fails on the other side of the mirror, however, the
logical volume is lost. This subtle difference with RAID 1+0 means disks on either
side can fail simultaneously yet data remains available. RAID 0+1 is implemented
as a mirrored array where segments are RAID 0.

RAID 5
RAID 5 is not as resilient as mirroring yet nevertheless provides redundancy in
that data remains available after a single disk failure. RAID 5 implements
redundancy using a parity stripe created by performing logical exclusive or on
bytes of corresponding stripes on other disks. When one disk fails, data for that
disk is recalculated using the data and parity in the corresponding stripes on the
remaining disks. Performance suffers however when such corrective calculations
must be performed.

During normal operation, RAID 5 usually offers lower performance than RAID 0,
1+0 and 0+1, as a RAID 5 volume must do four physical I/O operations for every
logical write. The old data and parity are read, two exclusive or operations are
performed, and the new data and parity are written. Read operations do not suffer
the same penalty and thus provide only slightly lower performance than a
standard stripe using an equivalent number of disks. That is, the RAID 5 volume
has effectively one less disk in its stripe because the space is devoted to parity. This
means a RAID 5 volume is generally cheaper than RAID 1+0 and 0+1, because
RAID 5 devotes more of the available disk space to data.

Given the performance issues, RAID 5 is not generally recommended unless the
data is read-only or unless there are very few writes to the volume. Disk arrays
with write caches and fast exclusive or logic engines can mitigate these
performance issues however, making RAID 5 a cheaper, viable alternative to
mirroring for some deployments.

RAID Levels 2, 3, and 4
RAID levels 2 and 3 are good for large sequential transfers of data such as video
streaming. Both levels can process only one I/O operation at time, making them
inappropriate for applications demanding random access. RAID 2 is implemented
using Hamming error correction coding (ECC). This means three physical disk
drives are required to store ECC data, making it more expensive than RAID 5, but
less expensive than RAID 1+0 as long as there are more than three disks in the
stripe. RAID 3 uses a bitwise parity method to achieve redundancy. Parity is not
distributed as per RAID 5, but is instead written to a single dedicated disk.

Sizing for Multiprocessor Systems

254 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Unlike RAID levels 2 and 3, RAID 4 uses an independent access technique where
multiple disk drives are accessed simultaneously. It uses parity in a manner similar
to RAID 5, except parity is written to a single disk. The parity disk can therefore
become a bottleneck as it is accessed for every write, effectively serializing multiple
writes.

Software Volume Managers
Volume managers such as Solaris™ Volume Manager may also be used for
Directory Server disk management. Solaris Volume Manager compares favorably
with other software volume managers for deployment in production
environments.

Monitoring I/O and Disk Use
Disks should not be saturated under normal operating circumstances. You may use
utilities such as iostat(1M) on Solaris and other systems to isolate potential I/O
bottlenecks. Refer to Windows help for details on handling I/O bottlenecks on
Windows systems.

Sizing for Multiprocessor Systems
Directory Server software is optimized to scale across multiple processors. In
general, adding processors may increase overall search, index maintenance, and
replication performance.

In specific directory deployments, however, you may reach a point of diminishing
returns where adding more processors does not impact performance significantly.
When handling extremely demanding performance requirements for searching,
indexing, and replication, consider load balancing and directory proxy
technologies as part of the solution.

Sizing Network Capacity
Directory Server is a network intensive application. To improve network
availability for a Directory Server instance, equip the system with two or more
network interfaces. Directory Server can support such a hardware configuration,
listening on multiple network interfaces within the same process.

Sizing for SSL

Chapter 10 System Sizing 255

If you intend to cluster directory servers on the same network for load balancing
purposes, ensure the network infrastructure can support the additional load
generated. If you intend to support high update rates for replication in a wide area
network environment, ensure through empirical testing that the network quality
and bandwidth meet your requirements for replication throughput.

Sizing for SSL
By default, support for the Secure Sockets Layer (SSL) protocol is implemented in
software. Using the software-based SSL implementation may have significant
negative impact on Directory Server performance. Running the directory in SSL
mode may require the deployment of several directory replicas to meet overall
performance requirements.

Although hardware accelerator cards cannot eliminate the impact of using SSL,
they can improve performance significantly compared with software-based
implementation. Directory Server 5.2 supports the use of SSL hardware
accelerators such as supported Sun Crypto Accelerator hardware.

Using a Sun Crypto Accelerator board can be useful when SSL key calculation is a
bottleneck. Such hardware may not improve performance when SSL key
calculation is not a bottleneck, however, as it specifically accelerates key
calculations during the SSL handshake to negotiate the connection, but not
encryption and decryption of messages thereafter. Refer to “Using the Sun Crypto
Accelerator Board” in the Directory Server Administration Guide for instructions on
using such hardware with a Directory Server instance.

Sizing for SSL

256 Directory Server 5.2 2005Q1 • Deployment Planning Guide

257

Glossary

Refer to the Java Enterprise System Glossary (http://docs.sun.com/doc/816-6873)
for a complete list of terms that are used in this documentation set.

258 Directory Server 5.2 2005Q1 • Deployment Planning Guide

Section A

Index 259

Index

A
access

anonymous 162, 163
determining general types of 162
precedence rule 178

access control
ACI attribute 178
roles 192

access control information (ACI)
filtered rules 180
where to place 180

access control instruction (ACI) 177
access rights

granting 161
account inactivation 168
account lockout, see password policies
ACI attribute 178
ACI. See access control instruction
Administration Server

master agents and 208
agents

subagent 208
anonymous access 162, 163

overview 163
attribute

ACI 178
defining in schema 51
required and allowed 56

attributes
defined 72
naming 49
syntax 73

audits
security 162

authentication methods 162
anonymous access 163
proxy authorization 165
simple password 164

B
backup

binary 213
methods 213
planning 212
to ldif 215

bak2db 216
binary backup 213
binary restore 216
branch point

DN attributes 66
for replication and referrals 67
network names 67

Section C

260 Directory Server 5.2 2005Q1 • Deployment Planning Guide

C
c, RDN keyword 71
cascading replication 130
chained suffixes 106
chaining 106–107

and referrals 108
roles limitation 82

change log 118
checking password syntax 171
class of service (CoS)

access control 93
cache 93
classic 91
filtered role limitation 93
indirect 89
limitations 92
pointer 88
template entry 87

classic CoS 91
clients

bind algorithm 164
cn, RDN keyword 71
commonName attribute 75, 77
configuration directory 22
consumer replica 115
consumer server 117

role 117
core files

sizing for 249
CoS template entry 87
country attribute 180
custom schema files 52

D
data

backing up 213, 215
consistency 55
management 143
privacy 162
restoring 216

database

chaining 96
LDBM 96
multiple 96

db2bak 213
db2ldif 215
dc, RDN keyword 72
default referrals 102
Directory Server

attributes 72
common attributes in 73
DN and attribute syntax 73

directory tree
access control considerations 69
branch point

DN attributes 66
for replication and referrals 67
network names 67

branching 64
creating structure 63
design

choosing a suffix 62
replication considerations 67

distinguished name
collisions 75

DIT. See directory tree
DN

defined 70
syntax 73

DN name collisions 75
documentation 15
dynamic groups 78

E
entries

naming 74
non-person 77
organization 76
person 75

entry distribution 96
multiple databases 96
suffixes 97

expiration of passwords

Section F

Index 261

overview 170
warning message 170

F
failure 211
filtered access control rules 180

G
givenName, Directory Server attribute 73
group attribute 180
groups

dynamic 78
static 78

H
high availability 139, 141
hub replica 115
hub supplier 130

I
indirect CoS 89
inetOrgPerson attribute 180

L
l, RDN keyword 72
LDAP referrals 101
LDIF

LDAP Data Interchange Format 17
load balancing 142

M
mail attribute 75
mail, Directory Server attribute 73
managed devices 207
managed object 208
master agent 208
master replica 115
multi-master replication 124–126
multiple databases 96

N
naming entries 74

organization 76
people 75

network management station (NMS) 208
network names, branching to reflect 67
network, load balancing 142
nsslapd-cachememsize 242
nsslapd-dbcachesize 242
nsslapd-db-home-directory 250
nsslapd-directory 250
nsslapd-errorlog 249
nsslapd-import-cachesize 242
nsslapd-maxconnections 242
nsslapd-threadnumber 242

O
o, RDN keyword 72
object classes

defining in schema 49
naming 49
standard 44

object identifiers. See OIDs
OID registry 49
OIDs

obtaining and assigning 48
organization attribute 180

Section P

262 Directory Server 5.2 2005Q1 • Deployment Planning Guide

organizationalPerson object class 56
organizationalUnit attribute 180
ou, RDN keyword 72

P
password policies

account lockout 175
and replication 176
design 168
expiration warning 170
password expiration 170
password length 171, 175
syntax checking 171, 175

passwords
expiration 170
expiration warning 170
minimum length 171
simple 164
syntax checking 171

PDUs 208
performance

replication and 131
permissions

allowing 179
denying 179
precedence rule 178

person entries 75
pointer CoS 88
precedence rule 178
protocol data units. See PDUs
proxy authentication 165
proxy authorization 165
proxy DN 165

R
RDN

defined 70
keywords 71

referrals 100–106

and chaining 108
branching to support 67
default 102
LDAP 101
smart referrals 103

relative distinguished name, See RDN
replicas 115

consumer 115
hub 115
master 115

replication 113
access control 149
branching to support 67
cascading 130
change log 118
consumer server 117
consumer-initiated 116
data consistency 121
database links 154
high availability 141
hub server 130
load balancing 142
local availability 140
local data management and 143
overview 113
performance 131
replication manager 119
resource requirements 138
schema 155
single-master 123
site survey 137
strategy 136
supplier bind DN 119
supplier-initiated 116

replication examples
large sites 147
load balancing 146
small sites 147

replication manager 119
replication topologies 218–237

five data centers 231
one data center 219
three data centers 227
two data centers 224
using retro changelog 234

restore

Section S

Index 263

binary 216
restoring data 216
roles 79–82

access control 192
chaining limitation 82
compared to groups 82
CoS limitation 82
limitations 82

root suffix 97

S
schema

assigning OIDs 48
checking 55
custom files 52
designing 44
naming attributes 49
naming object classes 49
standard 43

schema replication 155
schema_push.pl 54
security

audits 162
security audits 162
security methods 159
security threats 158

denial of service 159
unauthorized access 158
unauthorized tampering 158

Simple Network Management Protocol. See SNMP
simple password 164
single-master replication 123
site survey

network capabilities 137
sizing

backups 248
core files 249
database files 249
disk subsystems 245–254
insufficient RAM 244
iostat 254
LDIF files 248

logs 246, 249, 250
minimum requirements 239–241
multiprocessor systems 254
network capacity 254
RAID 250–254
RAM 241–245
SSL 255

smart referrals 103
sn, RDN keyword 72
SNMP

agents 208
managed devices 207
managed objects 208
master agent 208
NMS-initiated communication 208
overview 207
subagent 208

st, RDN keyword 72
standard object classes 44
standard schema 43–44
static groups 78
streetAddress, Directory Server attribute 73
sub suffix 97
subagents 208
suffix

naming conventions 62
root suffix 97
sub suffix 97

supplier bind DN 119
syntax

password 171

T
telephoneNumber, Directory Server attribute 73
template entry. See CoS template entry.
title, Directory Server attribute 73
topology

overview 95
total update 120

Section U

264 Directory Server 5.2 2005Q1 • Deployment Planning Guide

U
uid attribute 75
uid, Directory Server attribute 73
user accounts

lockout policy after wrong passwords 175
user authentication 164
user directory 22
userPassword, Directory Server attribute 73

W
warning, password expiration 170

	Directory Server 5.2 Deployment Planning Guide
	Contents
	List of Figures
	List of Tables
	Preface
	Conventions
	Related Books
	Directory Server Books
	Administration Server Books
	Directory Proxy Server Books
	Related Java Enterprise System Books

	Documentation, Support, and Training
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	Directory Server Overview
	Server Architecture Overview
	Directory Design Overview
	Planning the Installation
	Planning Data and Data Access
	Designing the Schema
	Designing the Directory Tree
	Designing the Topology
	Designing the Replication Process
	Designing a Secure Directory
	Planning a Monitoring Strategy

	Directory Deployment Overview
	Piloting Your Directory
	Putting Your Directory Into Production

	Planning and Accessing Directory Data
	Introduction to Directory Data
	What Your Directory Might Include
	What Your Directory Should Not Include

	Defining Your Data Needs
	Performing a Site Survey
	Identifying Client Applications
	Identifying Data Sources
	Characterizing Directory Data
	Determining Directory Availability Requirements
	Considering a Data Master Server
	Data Mastering for Replication
	Data Mastering Across Multiple Applications

	Determining Data Ownership
	Determining Data Access
	Documenting Your Site Survey
	Repeating the Site Survey

	Accessing Directory Data With DSML Over HTTP/SOAP
	DSMLv2 Over HTTP/SOAP Deployment

	Directory Server Schema
	Directory Server Schema
	Schema Design Process
	Mapping Your Data to the Default Schema
	Viewing the Default Directory Schema
	Matching Data to Schema Elements

	Customizing the Schema
	When to Extend Your Schema
	Obtaining and Assigning Object Identifiers
	Naming Attributes and Object Classes
	Strategies for Defining New Object Classes
	Strategies for Defining New Attributes
	Deleting Schema Elements
	Creating Custom Schema Files - Best Practices and Pitfalls

	Maintaining Data Consistency
	Schema Checking
	Selecting Consistent Data Formats
	Maintaining Consistency in Replicated Schema

	Other Schema Resources

	The Directory Information Tree
	Introduction to the Directory Tree
	Designing the Directory Tree
	Choosing a Suffix
	Suffix Naming Conventions
	Working With Multiple Suffixes

	Creating Your Directory Tree Structure
	Branching Your Directory
	Identifying Branch Point Attributes
	Replication Considerations
	Access Control Considerations

	Distinguished Names, Attributes, and Syntax
	Distinguished Names
	Attributes
	DN and Attribute Guidelines and Syntax

	Naming Entries
	Naming Person Entries
	Naming Organization Entries
	Naming Other Kinds of Entries

	Grouping Directory Entries and Managing Attributes
	Static and Dynamic Groups
	Managed, Filtered, and Nested Roles
	Managed Roles
	Filtered Roles
	Nested Roles

	Role Enumeration and Role Membership Enumeration
	Role Enumeration
	Role Membership Enumeration

	Role Scope
	Role Limitations
	Deciding Between Groups and Roles
	Advantages of the Groups Mechanism
	Advantages of the Roles Mechanism

	Managing Attributes with Class of Service (CoS)
	About CoS
	Cos Definition Entries and CoS Template Entries
	CoS Definition Entry
	CoS Template Entry

	CoS Priorities
	Pointer CoS, Indirect CoS, and Classic CoS
	Pointer CoS
	Indirect CoS
	Classic CoS

	CoS Limitations

	Other Directory Tree Resources

	Distribution, Chaining, and Referrals
	Topology Overview
	Distributing Data
	Using Multiple Databases
	About Suffixes

	Referrals and Chaining
	Using Referrals
	Structure of an LDAP Referral
	Default Referrals
	Suffix Referrals
	Smart Referrals
	Tips for Designing Smart Referrals

	Using Chaining
	Deciding Between Referrals and Chaining
	Usage Differences
	Evaluating Access Controls

	Understanding Replication
	Introduction to Replication
	Replication Concepts
	Replica
	Unit of Replication
	Replica ID
	Suppliers and Consumers
	Online Replica Promotion and Demotion
	Referrals
	Change Log
	Replication Authentication
	Replication Agreement
	Consumer Initialization
	Incremental Updates
	Data Consistency

	Common Replication Configurations
	Single Master Replication
	Multi-Master Replication
	Multi-Master Replication Basic Concepts
	Multi-Master Replication Capabilities
	Multi-Master Replication over Wide Area Networks
	Fully Meshed Multi-Master Topology

	Cascading Replication
	Mixed Environments
	Fractional Replication
	Benefits of Fractional Replication
	Configuring Fractional Replication

	Defining a Replication Strategy
	Performing a Replication Survey
	Replication Resource Requirements
	Replication Backward Compatibility
	Using Replication for High Availability
	Using Replication for Local Availability
	Using Replication for Load Balancing
	Example of Network Load Balancing
	Example of Load Balancing for Improved Performance

	Example Replication Strategy for a Small Site
	Example Replication Strategy for a Large Site
	Replication Strategy for a Large, International Enterprise

	Using Replication With Other Directory Features
	Replication and Access Control
	Replication and the Retro Change Log Plug-In
	Retro Change Log and Multi-Master Replication
	Failover of the Retro Change Log
	Restrictions on Using the Retro Change Log

	Replication and the Referential Integrity Plug-In
	Replication and Pre-Operation and Post-Operation Plug-Ins
	Replication and Chained Suffixes
	Schema Replication
	Replication and Multiple Password Policies

	Replication Monitoring

	Access Control, Authentication, and Encryption
	Security Threats
	Unauthorized Access
	Unauthorized Tampering
	Denial of Service

	Overview of Security Methods
	Analyzing Your Security Needs
	Determining Access Rights
	Ensuring Data Privacy and Integrity
	Conducting Security Audits

	Selecting Appropriate Authentication Methods
	Anonymous Access
	Simple Password
	Proxy Authorization
	Simple Password Over a Secure Connection
	Certificate-Based Client Authentication
	SASL-Based Client Authentication

	Preventing Authentication by Account Inactivation
	Designing Password Policies
	Password Policy Features
	User-Defined Passwords
	Password Change at First Login or Reset
	Password Expiration
	Expiration Warning
	Password Syntax Checking
	Password Length
	Password Minimum Age
	Password History
	Password Storage Scheme

	Configuring Password Policies
	Global Password Policy
	Defining Password Policies for Users or Sets of Users
	Multiple Password Policies and Their Order of Precedence

	Preventing Dictionary-Style Attacks
	Password Policies in a Replicated Environment

	Designing Access Control
	ACI Format
	Default ACIs
	Setting Permissions
	The Precedence Rule
	Allowing or Denying Access
	When to Deny Access
	Where to Place Access Control Rules
	Using Filtered Access Control Rules
	Using Macro ACIs

	Requesting Effective Rights Information
	About the Effective Rights Feature
	Access Control on the Effective Rights Feature
	Results of an Effective Rights Request

	Tips on Using ACIs
	ACI Limitations

	Securing Connections With SSL
	Encrypting Attributes
	What is Attribute Encryption?
	Attribute Encryption Implementation
	Attribute Encryption and Performance
	Attribute Encryption Usage Considerations

	Grouping Entries Securely
	Using Roles Securely
	Using CoS Securely
	Protecting the CoS Definition Entry
	Protecting the CoS Template Entries
	Protecting the Target Entries of a CoS
	Protecting Other Dependencies

	Securing Configuration Information
	Other Security Resources

	Directory Server Monitoring
	Defining a Monitoring and Event Management Strategy
	Directory Server Monitoring Tools
	Directory Server Monitoring
	Monitoring Directory Server Activity
	Monitoring Database Activity
	Monitoring Disk Status
	Monitoring Replication Activity
	insync
	entrycmp
	repldisc

	Monitoring Indexing Efficiency
	Monitoring Security

	SNMP Monitoring
	About SNMP
	NMS-Initiated Communication

	SNMP Monitoring in Directory Server

	Reference Architectures and Topologies
	Addressing Failure and Recovery
	Planning a Backup Strategy
	Choosing a Backup Method
	Binary Backup (db2bak)
	Backup to LDIF (db2ldif)

	Choosing a Restoration Method
	Binary Restore (bak2db)
	Restoration From LDIF (ldif2db)

	Sample Replication Topologies
	Single Data Center
	Single Data Center Basic Topology
	Single Data Center Scaled For Read Performance
	Single Data Center Failure Matrix
	Single Data Center Recovery Procedure (One Component)
	Single Data Center Recovery Procedure (Two Components)

	Two Data Centers
	Two Data Centers Basic Topology
	Two Data Centers Scaled For Read Performance
	Two Data Centers Recovery Scenarios

	Three Data Centers
	Three Data Centers Basic Topology
	Three Data Centers Scaled For Read Performance
	Three Data Centers Recovery Scenarios
	Three Data Centers Recovery Procedure (One Component)

	Five Data Centers
	Five Data Centers Basic Topology
	Five Data Centers Scaled For Read Performance
	Five Data Centers Recovery Scenarios
	Five Data Centers Recovery Procedure (One Component)

	Single Data Center Using the Retro Change Log Plug-In
	Retro Change Log Plug-in Basic Topology
	Retro Change Log Plug-in Scaled For Read Performance
	Retro Change Log Plug-in Recovery Procedure

	System Sizing
	Suggested Minimum Requirements
	Minimum Available Memory
	Minimum Local Disk Space
	Minimum Processing Power
	Minimum Network Capacity

	Sizing Physical Memory
	Sizing Memory for Directory Server
	Sizing Memory for the Operating System
	Sizing Total Memory
	Dealing With Insufficient Memory

	Sizing Disk Subsystems
	Sizing Directory Suffixes
	How Directory Server Uses Disks
	Directory Server Binaries
	Event Logging
	Transaction Log
	Replication Changelog Database
	Suffix Initialization and LDIF Files
	Backups and LDIF Files
	Memory Based Rather Than Disk Based File Systems
	Core Files
	Space for Administration

	Distributing Files Across Disks
	Transaction Logs
	Databases
	Log Files
	Cache Files on Memory Based File Systems

	Disk Subsystem Alternatives
	Fast and Safe
	Fast and Cheap
	Cheap and Safe
	RAID Alternatives

	Monitoring I/O and Disk Use

	Sizing for Multiprocessor Systems
	Sizing Network Capacity
	Sizing for SSL

	Glossary
	Index

