
Sun Java System Directory Server
Enterprise Edition 6.3 Reference

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–2765
April 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080404@19860

Contents

Preface ...21

Part I Directory Server Reference ... 31

1 Directory Server Overview ...33
Introduction to Directory Server ... 33
Directory Server Architecture .. 34

Comparison of Software Installation and Server Instances .. 34
Communication With Client Applications .. 35
Directory Server Configuration ... 36
Data Storage in Directory Server .. 37
Data Replication Between Server Instances .. 38
Access Control in Directory Server .. 38

2 Directory Server Security ...41
How Directory Server Provides Security .. 41
How Directory Server Provides Access Control .. 42

Introduction to ACIs ... 42
ACI Syntax .. 45
ACI Targets ... 46
ACI Permissions ... 51
ACI Bind Rules ... 54
Tuning and Access Control .. 66

How Directory Server Provides Authentication .. 67
Anonymous Access .. 67
Password-Based Authentication .. 68
Certificate-based Authentication ... 70

3

SASL-based Authentication .. 85
Proxy Authorization .. 86
Account Inactivation ... 87
Global Account Lockout ... 87

How Directory Server Provides Encryption ... 88
Secure Sockets Layer (SSL) ... 88
Digital Signatures ... 99
Key Encryption ... 101
Attribute Encryption ... 103

3 Directory Server Monitoring ...107
Ways to Monitor Directory Server .. 107
Directory Server and SNMP ... 108
Directory Server and CMM/JMX .. 110
Directory ServerMonitoring Attributes .. 111

cn=monitor ... 111
cn=disk,cn=monitor .. 113
cn=counters,cn=monitor .. 114
cn=monitor,cn=Class of Service,cn=plugins, cn=config .. 114

4 Directory Server Replication ...117
Introduction to Replication .. 117

Types of Replica ... 117
Unit of Replication ... 118
Replica Identity .. 119
Replication Agreements .. 119
Replication Authentication ... 119
Replication Change Log .. 120
Change Sequence Number .. 120
Replica Update Vector .. 121
Deleted Entries: Tombstones ... 121
Consumer Initialization and Incremental Updates ... 121
Referrals and Replication .. 122

Replication Configurations .. 122
Multi-Master Replication .. 122

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 20084

Cascading Replication ... 127
Prioritized Replication .. 128
Fractional Replication ... 129

Replication and the Retro Change Log Plug-In ... 130
Retro Change Log and Multi-Master Replication .. 130
Failover of the Retro Change Log ... 131
Replication Conflicts and the Retro Change Log ... 134
Restrictions on Using the Retro Change Log .. 134

5 Directory Server Data Caching ..135
Caches and How Directory Server Uses Them .. 135

Types of Cache ... 135
How Directory Server Performs Searches by Using Cache ... 138
How Directory Server Performs Updates by Using the Cache ... 140
How Directory Server Initializes a Suffix by Using the Cache .. 142

Tuning Cache Settings .. 144
Basic Tuning Recommendations ... 144
Small, Medium, and Large Data Sets ... 145
Optimum Search Performance (Searches Only) .. 145
Optimum Modify Performance (Modifications Only) ... 146

6 Directory Server Indexing ..149
Overview of Indexes .. 149

Tuning Indexes for Performance ... 150
System Indexes and Default Indexes ... 151

System Indexes ... 151
Default Indexes ... 152

Types of Index .. 153
Presence Index .. 153
Equality Index .. 154
Substring Index .. 156
Browsing Index .. 157
Approximate Index .. 158
International Index .. 159

Contents

5

7 Directory Server Logging ...161
Introduction to Logs ... 161
Retro Changelog .. 162
Transaction Log ... 162
Access, Error, and Audit Logs .. 163

Access Logs ... 163
Error Logs ... 164
Audit Logs ... 164
Content of Access, Error, and Audit Logs ... 164
Connection Codes in Log Files ... 169
Result Codes in Log Files ... 170

8 Directory Server Groups and Roles .. 173
Directory Server Groups ... 173

Static Groups .. 173
Dynamic Groups .. 174
Nested Groups .. 174

Directory Server Roles .. 174
Managed Roles ... 174
Filtered Roles .. 175
Nested Roles .. 175
Limitations on Using Roles ... 175

9 Directory Server Class of Service .. 177
About CoS .. 177
CoS Definition Entries and CoS Template Entries .. 178

CoS Definition Entry ... 178
CoS Template Entry ... 179

Pointer CoS, Indirect CoS, and Classic CoS ... 180
Pointer CoS ... 180
Indirect CoS .. 181
Classic CoS .. 182

CoS Priorities ... 183
CoS Limitations ... 184

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 20086

10 Directory Server DSMLv2 ...187
Introduction to DSML .. 187
Implementation of the DSMLv2 Standard ... 189
DSML Security ... 189
DSML Identity Mapping .. 189
Content of the HTTP Header ... 192
Accessing the Directory Using DSMLv2 .. 192

An Empty Anonymous DSML Ping Request ... 193
Issuing a DSML Request to Bind as a Particular User .. 195
A DSML Search Request ... 197

11 Directory Server Internationalization Support ..201
About Locales ... 201
Identifying Supported Locales ... 202
Supported Language Subtypes ... 208

12 Directory Server LDAP URLs ..213
Components of an LDAP URL .. 213
Escaping Unsafe Characters ... 215
Examples of LDAP URLs .. 215

13 Directory Server LDIF and Search Filters ... 219
LDIF File Format ... 219

Continuing Lines in LDIF ... 221
Binary Data in LDIF ... 221

Directory Entries in LDIF ... 223
Organization Entries in LDIF ... 223
Organizational Unit Entries in LDIF ... 224
Organizational Person Entries in LDIF ... 225

Guidelines for Defining Directories by Using LDIF ... 227
Storing Information in Multiple Languages ... 229
Guidelines for Providing LDIF Input .. 230

Terminating LDIF Input on the Command Line ... 230
Using Special Characters ... 231

Contents

7

Using Attribute OIDs .. 231
Schema Checking ... 231
Ordering of LDIF Entries .. 231
Managing Large Entries .. 232

▼ To Modify the Size Limit Enforced by the Server on Data Sent by Clients 232
Error Handling ... 233

Searching the Directory .. 233
Searching the Directory With ldapsearch ... 233
ldapsearch Examples ... 236
LDAP Search Filters ... 239
Search Filter Examples .. 244

14 Directory Server File Reference ..247
Software Layout for Directory Server ... 247
Directory Server Instance Default Layout .. 251

Part II Directory Proxy Server Reference .. 255

15 Directory Proxy Server Overview ...257
Introduction to Directory Proxy Server .. 257
Directory Proxy Server Architecture .. 258
Overview of Directory Proxy Server Features .. 260

16 Directory Proxy Server Load Balancing and Client Affinity ... 261
LDAP Data Source Pools .. 261
Load Balancing .. 262

Introduction to Load Balancing ... 262
Proportional Algorithm for Load Balancing .. 263
Saturation Algorithm for Load Balancing .. 264
Operational Affinity Algorithm for Load Balancing ... 265
Failover Algorithm for Load Balancing ... 267

Client Affinity .. 268

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 20088

17 Directory Proxy Server Distribution ...271
LDAP Data Views .. 271

LDAP Data View Features .. 271
Distributing Entries In a Subtree to Different Data Views ... 274

Limitations of Distribution Algorithms .. 275
Use Cases for Data Views ... 276

Data Views to Route All Requests, Irrespective of the Target DN of the Request 276
Data Views to Route Requests When a List of Subtrees Are Stored on Multiple,
Data-Equivalent Data Sources ... 277
Data Views to Provide a Single Point of Access When Different Subtrees Are Stored on
Different Data Sources .. 278
Data Views to Route Requests When Different Parts of a Subtree Are Stored in Different
Data Sources ... 279
Data Views to Route Requests When Superior and Subordinate Subtrees Are Stored in
Different Data Sources .. 281
Data Views With Hierarchy and a Distribution Algorithm ... 283

18 Directory Proxy Server Virtualization ..287
Construction of Virtual Data Views ... 287
Virtual Data Transformations ... 288

Transformation Models .. 289
Transformation Actions .. 291
Transformation Parameters ... 292
Transformation Examples .. 294

Additional Virtual Data View Properties ... 298
Join Data Views .. 299

Primary and Secondary Data Views .. 299
Additional Secondary Data View Properties .. 299
How Directory Proxy Server Handles Read and Write Operations to Join Data Views 301
Virtual Data Transformations on Join Data Views ... 302

LDIF Data Views ... 302
JDBC Data Views .. 302

JDBC Data Sources and Data Source Pools .. 303
JDBC Object Classes .. 304
JDBC Tables .. 304
JDBC Attributes ... 305

Contents

9

Case Sensitivity in JDBC Data Views .. 306
Access Control On Virtual Data Views .. 306

Virtual ACI Definition .. 306
Global ACIs ... 307
Virtual ACI Syntax ... 307
Virtual ACI Storage and Access ... 308
Virtual ACI Application .. 308

Virtual Schema Checking ... 308
Schema Checking ... 308

Virtual Data Views and LDAP Groups ... 309

19 Connections Between Directory Proxy Server and Backend LDAP Servers311
LDAP Data Sources ... 311
Connections Between Directory Proxy Server and Backend LDAP Servers 312

Opening and Closing Connections Between Directory Proxy Server and Backend LDAP
Servers ... 312
Connection Pools Between Directory Proxy Server and Backend LDAP Servers 312

Forwarding Request From Directory Proxy Server to Backend LDAP Servers 313
Directory Proxy Server Configured for BIND Replay ... 313
Directory Proxy Server Configured for Proxy Authorization .. 315
Directory Proxy Server Configured to Forward Requests Without the Client Identity 319
Directory Proxy Server Configured to Forward Requests As an Alternate User 319

20 Connections Between Clients and Directory Proxy Server .. 321
Criteria for Allocating a Connection to a Connection Handler .. 321
Data Views for Connection Handlers ... 324
Resource Limits Policies for Connection Handlers ... 326

Customized Search Limits .. 327
Request Filtering Policies for Connection Handlers ... 327

Subtrees in the Request Filtering Policy .. 328
Search Data Hiding Rules in the Request Filtering Policy ... 328

21 Directory Proxy Server Client Authentication .. 331
Client Authentication Overview .. 331
Simple Bind Authentication ... 332

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200810

Password Encryption and Verification ... 332
Certificate-Based Authentication .. 333

Configuring Certificates in Directory Proxy Server .. 334
Using SASL External Bind .. 335

Anonymous Access ... 336
Directory Proxy Server Client Listeners ... 336

22 Security in Directory Proxy Server ... 339
How Directory Proxy Server Provides Security ... 339
Secure Sockets Layer for Directory Proxy Server .. 340
Ciphers and Protocols for Directory Proxy Server .. 341

23 Directory Proxy Server Logging ..343
Introduction to Directory Proxy Server Logs .. 343
Log File Rotation ... 344
Log File Deletion .. 344
Message Severity .. 345
Error Logs for Directory Proxy Server .. 345

Error Log Levels ... 346
Format of an Error Message .. 346

Access Logs for Directory Proxy Server .. 348
Access Log Levels ... 348
Format of an Access Log Message .. 348
Message Parts in an Access Log .. 349
Access Log Buffer ... 350

Tracking Client Requests Through Directory Proxy Server and Directory Server Access
Logs ... 351

Tracking Operations by Connection ... 351
Client Identification ... 353

24 Directory Proxy Server Alerts and Monitoring ... 355
Administrative Alerts for Directory Proxy Server ... 355
Monitoring Data Sources ... 356

How Data Sources Are Monitored ... 356
Responding to the Failure of a Data Source .. 358

Contents

11

Monitoring Directory Proxy Server .. 359
Monitoring Framework for Directory Proxy Server .. 359
Simplified Layout of the cn=monitor Entry .. 360
Status of Monitored Information ... 362
Description of Each Entry Under the cn=monitor Entry .. 362
Detailed Layout of the cn=monitor Entry ... 373

25 Directory Proxy Server File Reference ... 381
Software Layout for Directory Proxy Server .. 381
Directory Proxy Server Instance Default Layout ... 384

A Directory Server Resource Kit File Reference ... 385
Software Layout for Directory Server Resource Kit .. 385

Index ... 389

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200812

Figures

FIGURE 2–1 Password-Based Authentication ... 68
FIGURE 2–2 Certificate-Based Authentication .. 71
FIGURE 2–3 Hierarchy of Certificate Authorities .. 74
FIGURE 2–4 Certificate Chain .. 75
FIGURE 2–5 Verifying A Certificate Chain .. 77
FIGURE 2–6 Verifying A Certificate Chain to an Intermediate CA .. 78
FIGURE 2–7 Certificate Chain That Cannot Be Verified .. 79
FIGURE 2–8 Where SSL Runs .. 89
FIGURE 2–9 Authenticating a Client Certificate During SSL Handshake 94
FIGURE 2–10 Authentication and Verification During SSL Handshake 97
FIGURE 2–11 Digital Signatures .. 100
FIGURE 2–12 Symmetric-Key Encryption ... 101
FIGURE 2–13 Public-Key Encryption ... 102
FIGURE 2–14 Attribute Encryption ... 104
FIGURE 3–1 Overall Monitoring Information Flow ... 109
FIGURE 3–2 SNMP Information Flow .. 110
FIGURE 4–1 Multi-Master Replication Configuration (Two Masters) 123
FIGURE 4–2 Fully Meshed, Four-Way, Multi-Master Replication Configuration 125
FIGURE 4–3 Replication Configuration for Master A (Fully Meshed Topology) 126
FIGURE 4–4 Replication Configuration for Consumer Server E (Fully Meshed Topology) 126
FIGURE 4–5 Cascading Replication Configuration .. 127
FIGURE 4–6 Cascading Replication to a Large Number of Consumers 128
FIGURE 4–7 Retro Change Log and Multi-Master Replication ... 131
FIGURE 4–8 Simplified Topology for Replication of the Retro Change Log 132
FIGURE 4–9 Failover of the Retro Change Log .. 133
FIGURE 5–1 Entry and Database Caches in Context ... 136
FIGURE 5–2 How Directory Server Performs Searches .. 139
FIGURE 5–3 How Directory Server Performs Updates ... 141

13

FIGURE 5–4 How Directory Server Initializes a Suffix .. 143
FIGURE 5–5 Search Performance .. 146
FIGURE 5–6 Modify Performance ... 147
FIGURE 6–1 Presence Index ... 154
FIGURE 6–2 Equality Index .. 155
FIGURE 6–3 Substring Index for the SNAttribute .. 156
FIGURE 6–4 Representation of a Browsing Index ... 158
FIGURE 9–1 CoS Scope ... 179
FIGURE 9–2 Example of a Pointer CoS Definition and Template ... 180
FIGURE 9–3 Example of an Indirect CoS Definition and Template .. 182
FIGURE 9–4 Example of a Classic CoS Definition and Template .. 183
FIGURE 10–1 Sample DSML-Enabled Directory Deployment .. 188
FIGURE 15–1 Simplified Architecture of Directory Proxy Server ... 258
FIGURE 16–1 Distribution of Requests According to the Proportional Algorithm for Load

Balancing .. 264
FIGURE 16–2 Distribution of Requests According to the Saturation Algorithm for Load

Balancing .. 265
FIGURE 16–3 Distribution of Requests According to the Operational Affinity Algorithm for

Load Balancing .. 266
FIGURE 17–1 Attribute Renaming .. 273
FIGURE 17–2 DN Renaming .. 273
FIGURE 17–3 Example Deployment That Routes All Requests to a Data Source Pool,

Irrespective of the Target DN .. 277
FIGURE 17–4 Example Deployment That Routes Requests When a List of Subtrees Is Stored

on Multiple, Data-Equivalent Data Sources .. 278
FIGURE 17–5 Example Deployment That Provides a Single Point of Access When Different

Subtrees Are Stored on Different Data Sources ... 279
FIGURE 17–6 Example Deployment That Routes Requests When Different Parts of a Subtree

Are Stored in Different Data Sources .. 280
FIGURE 17–7 Example Deployment to Route Requests When Superior and Subordinate

Subtrees Are Stored in Different Data Sources .. 282
FIGURE 17–8 Data View With Hierarchy and a Distribution Algorithm 284
FIGURE 18–1 Virtual Data View .. 288
FIGURE 18–2 Mapping Transformation ... 289
FIGURE 18–3 Write Transformation .. 290
FIGURE 18–4 Read Transformation .. 291
FIGURE 19–1 Authentication in BIND Replay .. 314

Figures

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200814

FIGURE 19–2 Connections for Proxy Authorization .. 316
FIGURE 19–3 Information Flow When Proxy Authorization Control Is Added by Directory

Proxy Server ... 317
FIGURE 19–4 Information Flow When Proxy Authorization Control Is Contained in the

Client Request .. 318
FIGURE 19–5 Local Mapping of a Client Identity to an Alternate Identity 320
FIGURE 19–6 Remote Mapping of Client Identity to an Alternate Identity 320
FIGURE 20–1 List of Data Views in a Connection Handler .. 325
FIGURE 24–1 Monitoring Framework for Directory Proxy Server ... 360

Figures

15

16

Tables

TABLE 2–1 Target Keywords and Their Expressions .. 47
TABLE 2–2 Bind Rule Keywords and Their Expressions .. 55
TABLE 5–1 Import Operations and Cache Use .. 138
TABLE 6–1 System Indexes in Every Suffix ... 151
TABLE 6–2 Default Indexes in Every New Suffix ... 152
TABLE 7–1 Logs Used by Directory Server ... 161
TABLE 7–2 Summary of Connection Codes .. 169
TABLE 7–3 Summary of Result Codes for LDAP Servers ... 170
TABLE 7–4 Summary of Result Codes for LDAP Clients ... 172
TABLE 11–1 Supported Locales ... 203
TABLE 11–2 Supported Language Subtypes ... 209
TABLE 12–1 LDAP URL Components .. 213
TABLE 12–2 Characters That Are Unsafe Within URLs ... 215
TABLE 13–1 LDIF Fields ... 220
TABLE 13–2 Organization Entries in LDIF .. 224
TABLE 13–3 Organizational Unit Entries in LDIF .. 225
TABLE 13–4 Organizational Person Entries in LDIF .. 226
TABLE 13–5 Search Filter Operators ... 240
TABLE 13–6 Search Filter Boolean Operators .. 242
TABLE 13–7 Special Characters in Search Filters ... 243
TABLE 23–1 Message Categories for Error Logs .. 346
TABLE 23–2 Message Categories for Access Logs .. 348
TABLE 23–3 Message Parts for Connections Between a Client and a Directory Proxy Server

.. 350
TABLE 23–4 Message Parts for Connections Between a Directory Proxy Server and a Data

Source ... 350
TABLE 24–1 Administrative Alerts for Directory Proxy Server ... 355
TABLE 24–2 Status of Monitored Information .. 362

17

18

Examples

EXAMPLE 2–1 Using the targetfilterKeyword to Target Specific Entries 49
EXAMPLE 2–2 Using the targattrfiltersKeyword to Allow Users to Add Roles to Their

Own Entries ... 50
EXAMPLE 2–3 Granting ACI Permissions to Perform a Search .. 53
EXAMPLE 2–4 Using the userdnKeyword With a Logical OR Operator in LDAP URLs 58
EXAMPLE 2–5 Using the userdnKeyword With a Not-Equal Operator in LDAP URLs 58
EXAMPLE 2–6 Using the userattrKeyword With the USERDNBind Type 59
EXAMPLE 2–7 Using the userattrKeyword With the GROUPDNBind Type 60
EXAMPLE 2–8 Using the userattrKeyword With the ROLEDNBind Type 60
EXAMPLE 2–9 Using the userattrKeyword With the LDAPURLBind Type 61
EXAMPLE 2–10 Using the userattrKeyword With Any Attribute Value 61
EXAMPLE 2–11 Boolean Bind Rule ... 66
EXAMPLE 2–12 Data and Signature Sections of a Certificate in Human-Readable Format 81
EXAMPLE 2–13 Certificate In the 64-Byte Encoded Form Interpreted by Software 82
EXAMPLE 10–1 Empty Anonymous DSML Request .. 193
EXAMPLE 10–2 Empty Anonymous DSML Response ... 194
EXAMPLE 10–3 DSML Extended Operation: Bind as a Particular User 195
EXAMPLE 10–4 Response to DSML Extended Operation .. 196
EXAMPLE 10–5 DSML Search Request ... 197
EXAMPLE 10–6 DSML Search Response .. 198
EXAMPLE 12–1 Base Search for an Entry ... 215
EXAMPLE 12–2 Retrieving postalAddressAttribute of an Entry .. 216
EXAMPLE 12–3 Retrieving cn and mailAttributes of an Entry ... 216
EXAMPLE 12–4 Retrieving the Surname JensenUnder dc=example,dc=com 216
EXAMPLE 12–5 Retrieving the Object Class for all Entries One Level Under dc=example,dc=com

.. 217
EXAMPLE 13–1 A Directory Entry in LDIF ... 220
EXAMPLE 13–2 Example LDIF File With Entries for Organization, Organizational Units, and

Organizational Person .. 227

19

EXAMPLE 18–1 When Would You Use a Mapping Transformation? .. 289
EXAMPLE 18–2 When Would You Use a Write Transformation ... 290
EXAMPLE 18–3 When Would You Use a Read Transformation ... 291
EXAMPLE 18–4 Adapting an ADAM Object Class For LDAP Compliance 294
EXAMPLE 18–5 Constructing an Attribute With a Write Transformation 294
EXAMPLE 18–6 Constructing an Attribute With a Read Transformation 295
EXAMPLE 18–7 Adding a Default Attribute Value .. 296
EXAMPLE 18–8 Using a Virtual Transformation to Rename a DN .. 297
EXAMPLE 23–1 Extract of an Error Log ... 347
EXAMPLE 23–2 Extract of an Access Log ... 349

Examples

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200820

Preface

This book describes product architecture, configuration, tools, APIs, and schema for Directory
Server and Directory Proxy Server.

Who Should Use This Book
This Reference is intended for directory service administrators, designers, and developers.

Before You Read This Book
Review pertinent information in the Sun Java System Directory Server Enterprise Edition 6.3
Release Notes.

If you are deploying Directory Server Enterprise Edition software in production, also review
pertinent information in the Sun Java System Directory Server Enterprise Edition 6.3
Deployment Planning Guide.

How This Book Is Organized
Part I covers Directory Server features and architecture.

Part II covers Directory Proxy Server features and architecture.

Appendix A, “Directory Server Resource Kit File Reference” describes the installed product
layout for Directory Server Resource Kit.

21

Directory Server Enterprise Edition Documentation Set
This Directory Server Enterprise Edition documentation set explains how to use Sun Java
System Directory Server Enterprise Edition to evaluate, design, deploy, and administer
directory services. In addition, it shows how to develop client applications for Directory Server
Enterprise Edition. The Directory Server Enterprise Edition documentation set is available at
http://docs.sun.com/coll/1224.4.

For an introduction to Directory Server Enterprise Edition, review the following documents in
the order in which they are listed.

TABLE P–1 Directory Server Enterprise Edition Documentation

Document Title Contents

Sun Java System Directory Server Enterprise
Edition 6.3 Release Notes

Contains the latest information about Directory Server Enterprise Edition,
including known problems.

Sun Java System Directory Server Enterprise
Edition 6.3 Documentation Center

Contains links to key areas of the documentation set.

Sun Java System Directory Server Enterprise
Edition 6.3 Evaluation Guide

Introduces the key features of this release. Demonstrates how these features
work and what they offer in the context of a fictional deployment that you can
implement on a single system.

Sun Java System Directory Server Enterprise
Edition 6.3 Deployment Planning Guide

Explains how to plan and design highly available, highly scalable directory
services based on Directory Server Enterprise Edition. Presents the basic
concepts and principles of deployment planning and design. Discusses the
solution life cycle, and provides high-level examples and strategies to use when
planning solutions based on Directory Server Enterprise Edition.

Sun Java System Directory Server Enterprise
Edition 6.3 Installation Guide

Explains how to install the Directory Server Enterprise Edition software. Shows
how to select which components to install, configure those components after
installation, and verify that the configured components function properly.

For instructions on installing Directory Editor, go to
http://docs.sun.com/coll/DirEdit_05q1.

Make sure you read the information in Sun Java System Directory Server
Enterprise Edition 6.3 Release Notes concerning Directory Editor before you
install Directory Editor.

Sun Java System Directory Server Enterprise
Edition 6.3 Migration Guide

Provides migration instructions from the earlier versions of Directory Server,
Directory Proxy Server, and Identity Synchronization for Windows.

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200822

http://docs.sun.com/coll/1224.4
http://docs.sun.com/coll/DirEdit_05q1

TABLE P–1 Directory Server Enterprise Edition Documentation (Continued)
Document Title Contents

Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide

Provides command-line instructions for administering Directory Server
Enterprise Edition.

For hints and instructions on using the Directory Service Control Center,
DSCC, to administer Directory Server Enterprise Edition, see the online help
provided in DSCC.

For instructions on administering Directory Editor, go to
http://docs.sun.com/coll/DirEdit_05q1.

For instructions on installing and configuring Identity Synchronization for
Windows, see Part II, Installing Identity Synchronization for Windows.

Sun Java System Directory Server Enterprise
Edition 6.3 Developer’s Guide

Shows how to develop directory client applications with the tools and APIs that
are provided as part of Directory Server Enterprise Edition.

Sun Java System Directory Server Enterprise
Edition 6.3 Reference

Introduces the technical and conceptual foundations of Directory Server
Enterprise Edition. Describes its components, architecture, processes, and
features. Also provides a reference to the developer APIs.

Sun Java System Directory Server Enterprise
Edition 6.3 Man Page Reference

Describes the command-line tools, schema objects, and other public interfaces
that are available through Directory Server Enterprise Edition. Individual
sections of this document can be installed as online manual pages.

Sun Java System Directory Server Enterprise
Edition 6.3 Troubleshooting Guide

Provides information for defining the scope of the problem, gathering data,
and troubleshooting the problem areas using various tools.

Sun Java System Identity Synchronization for
Windows 6.0 Deployment Planning Guide

Provides general guidelines and best practices for planning and deploying
Identity Synchronization for Windows

Related Reading
The SLAMD Distributed Load Generation Engine is a JavaTM application that is designed to
stress test and analyze the performance of network-based applications. It was originally
developed by Sun Microsystems, Inc. to benchmark and analyze the performance of LDAP
directory servers. SLAMD is available as an open source application under the Sun Public
License, an OSI-approved open source license. To obtain information about SLAMD, go to
http://www.slamd.com/. SLAMD is also available as a java.net project. See
https://slamd.dev.java.net/.

Java Naming and Directory Interface (JNDI) technology supports accessing the Directory
Server using LDAP and DSML v2 from Java applications. For information about JNDI, see
http://java.sun.com/products/jndi/. The JNDI Tutorial contains detailed descriptions and
examples of how to use JNDI. This tutorial is at
http://java.sun.com/products/jndi/tutorial/.

Preface

23

http://docs.sun.com/coll/DirEdit_05q1
http://www.slamd.com/
https://slamd.dev.java.net/
http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/

Directory Server Enterprise Edition can be licensed as a standalone product, as a component of
Sun Java Enterprise System, as part of a suite of Sun products, such as the Sun Java Identity
Management Suite, or as an add-on package to other software products from Sun. Java
Enterprise System is a software infrastructure that supports enterprise applications distributed
across a network or Internet environment. If Directory Server Enterprise Edition was licensed
as a component of Java Enterprise System, you should be familiar with the system
documentation at http://docs.sun.com/coll/1286.3.

Identity Synchronization for Windows uses Message Queue with a restricted license. Message
Queue documentation is available at http://docs.sun.com/coll/1307.2.

Identity Synchronization for Windows works with Microsoft Windows password policies.

■ Information about password policies for Windows 2003 is available in the Microsoft
documentation online.

■ Information about the Microsoft Certificate Services Enterprise Root certificate authority is
available in the Microsoft support documentation online.

■ Information about configuring LDAP over SSL on Microsoft systems is available in the
Microsoft support documentation online.

Redistributable Files
Directory Server Enterprise Edition does not provide any files that you can redistribute.

Default Paths and Command Locations
This section explains the default paths used in the documentation, and gives the locations of
commands on different operating systems and deployment types.

Default Paths
The table in this section describes the default paths that are used in this document. For complete
descriptions of the files installed, see the following product documentation.

■ Chapter 14, “Directory Server File Reference,”
■ Chapter 25, “Directory Proxy Server File Reference,”
■ Appendix A, “Directory Server Resource Kit File Reference”

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200824

http://docs.sun.com/coll/1286.3
http://docs.sun.com/coll/1307.2
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/directory/activedirectory/stepbystep/strngpw.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/directory/activedirectory/stepbystep/strngpw.mspx
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B247078
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B321051

TABLE P–2 Default Paths

Placeholder Description Default Value

install-path Represents the base installation
directory for Directory Server
Enterprise Edition software.

The software is installed in directories
below this base install-path. For
example, Directory Server software is
installed in install-path/ds6/.

When you install from a zip distribution using
dsee_deploy(1M), the default install-path is the current
directory. You can set the install-path using the -i option
of the dsee_deploy command. When you install from a
native package distribution, such as you would using the
Java Enterprise System installer, the default install-path is
one of the following locations:
■ Solaris systems - /opt/SUNWdsee/.
■ Red Hat systems - /opt/sun/.
■ Windows systems - C:\Program

Files\Sun\JavaES5\DSEE.

instance-path Represents the full path to an instance
of Directory Server or Directory Proxy
Server.

The documentation uses /local/ds/
for Directory Server and /local/dps/

for Directory Proxy Server.

No default path exists. Instance paths must nevertheless
always be found on a local file system.

The following directories are recommended:

/var on Solaris systems

/global if you are using Sun Cluster

serverroot Represents the parent directory of the
Identity Synchronization for Windows
installation location

Depends on your installation. Note the concept of a
serverroot no longer exists for Directory Server.

isw-hostname Represents the Identity
Synchronization for Windows
instance directory

Depends on your installation

/path/to/cert8.db Represents the default path and file
name of the client’s certificate database
for Identity Synchronization for
Windows

current-working-dir/cert8.db

serverroot/isw-hostname/
logs/

Represents the default path to the
Identity Synchronization for Windows
local logs for the System Manager,
each connector, and the Central
Logger

Depends on your installation

serverroot/isw-hostname/
logs/central/

Represents the default path to the
Identity Synchronization for Windows
central logs

Depends on your installation

Preface

25

Command Locations
The table in this section provides locations for commands that are used in Directory Server
Enterprise Edition documentation. To learn more about each of the commands, see the relevant
man pages.

TABLE P–3 Command Locations

Command Java ES, Native Package Distribution Zip Distribution

cacaoadm Solaris -

/usr/sbin/cacaoadm

Solaris -

install-path/dsee6/
cacao_2/usr/sbin/cacaoadm

Red Hat -

/opt/sun/cacao/bin/cacaoadm

Red Hat, HP-UX -

install-path/dsee6/
cacao_2/cacao/bin/cacaoadm

Windows -

install-path\share\
cacao_2\bin\cacaoadm.bat

Windows -

install-path\
dsee6\cacao_2\bin\cacaoadm.bat

certutil Solaris -

/usr/sfw/bin/certutil

install-path/dsee6/bin/certutil

Red Hat -

/opt/sun/private/bin/certutil

dpadm(1M) install-path/dps6/bin/dpadm install-path/dps6/bin/dpadm

dpconf(1M) install-path/dps6/bin/dpconf install-path/dps6/bin/dpconf

dsadm(1M) install-path/ds6/bin/dsadm install-path/ds6/bin/dsadm

dsccmon(1M) install-path/dscc6/bin/dsccmon install-path/dscc6/bin/dsccmon

dsccreg(1M) install-path/dscc6/bin/dsccreg install-path/dscc6/bin/dsccreg

dsccsetup(1M) install-path/dscc6/bin/dsccsetup install-path/dscc6/bin/dsccsetup

dsconf(1M) install-path/ds6/bin/dsconf install-path/ds6/bin/dsconf

dsee_deploy(1M) Not provided install-path/dsee6/bin/dsee_deploy

dsmig(1M) install-path/ds6/bin/dsmig install-path/ds6/bin/dsmig

entrycmp(1) install-path/ds6/bin/entrycmp install-path/ds6/bin/entrycmp

fildif(1) install-path/ds6/bin/fildif install-path/ds6/bin/fildif

idsktune(1M) Not provided At the root of the unzipped zip distribution

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200826

TABLE P–3 Command Locations (Continued)
Command Java ES, Native Package Distribution Zip Distribution

insync(1) install-path/ds6/bin/insync install-path/ds6/bin/insync

ns-accountstatus(1M) install-path/ds6/bin/ns-accountstatus install-path/ds6/bin/ns-accountstatus

ns-activate(1M) install-path/ds6/bin/ns-activate install-path/ds6/bin/ns-activate

ns-inactivate(1M) install-path/ds6/bin/ns-inactivate install-path/ds6/bin/ns-inactivate

repldisc(1) install-path/ds6/bin/repldisc install-path/ds6/bin/repldisc

schema_push(1M) install-path/ds6/bin/schema_push install-path/ds6/bin/schema_push

smcwebserver Solaris, Linux -

/usr/sbin/smcwebserver

This command pertains only to DSCC when it is
installed using native packages distribution.

Windows -

install-path\share\
webconsole\bin\smcwebserver

wcadmin Solaris, Linux -

/usr/sbin/wcadmin

This command pertains only to DSCC when it is
installed using native packages distribution.

Windows -

install-path\share\
webconsole\bin\wcadmin

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–4 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

Preface

27

TABLE P–4 Typographic Conventions (Continued)
Typeface Meaning Example

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–5 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–6 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200828

TABLE P–6 Symbol Conventions (Continued)
Symbol Description Example Meaning

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Searching Sun Product Documentation
Besides searching for Sun product documentation from the docs.sun.com web site, you can use
a search engine of your choice by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for Directory Server, type the following:

"Directory Server" site:docs.sun.com

To include other Sun web sites in your search, such as java.sun.com, www.sun.com, and
developers.sun.com, use sun.com in place of docs.sun.com in the search field.

Preface

29

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-2765.

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200830

http://docs.sun.com

Directory Server Reference
This part explains how Directory Server works. The information here is primarily
descriptive. For instructions, try Part I, “Directory Server Administration,” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide instead.

This part covers the following chapters.

■ Chapter 1, “Directory Server Overview,”
■ Chapter 2, “Directory Server Security,”
■ Chapter 3, “Directory Server Monitoring,”
■ Chapter 4, “Directory Server Replication,”
■ Chapter 5, “Directory Server Data Caching,”
■ Chapter 6, “Directory Server Indexing,”
■ Chapter 7, “Directory Server Logging,”
■ Chapter 8, “Directory Server Groups and Roles,”
■ Chapter 9, “Directory Server Class of Service,”
■ Chapter 10, “Directory Server DSMLv2,”
■ Chapter 11, “Directory Server Internationalization Support,”
■ Chapter 12, “Directory Server LDAP URLs,”
■ Chapter 13, “Directory Server LDIF and Search Filters,”
■ Chapter 14, “Directory Server File Reference,”

For additional reference information, see Sun Java System Directory Server Enterprise
Edition 6.3 Man Page Reference.

P A R T I

31

32

Directory Server Overview

This chapter outlines the architecture of Directory Server. This chapter includes the following
topics.

■ “Introduction to Directory Server” on page 33
■ “Directory Server Architecture” on page 34

Introduction to Directory Server
Directory Server serves directory data to standards compliant LDAP and DSML applications.
Directory Server stores the data in customized, binary tree databases, allowing quick searches
even for large data sets.

Directories are object oriented databases. Directories organize their data objects, called entries,
into a directory information tree, often called a DIT. Each entry is identified by a distinguished
name, such as uid=bjensen,ou=people,dc=example,dc=com. The distinguished name
identifies where the entry is located in the directory information tree. For example,
uid=bjensen,ou=people,dc=example,dc=com is a user entry for Barbara Jensen on the
ou=people branch of the dc=example,dc=com part of the tree.

Each directory entry has attributes. For entries that concern people, these attributes may reflect
names, phone numbers, and email addresses, for example. An attribute has at least one type
name, which is the name of the attribute. For example, people entries can have an attribute
surname, which can also be called by the shorter name sn. Attributes can also have one or more
values. For example, if Barbara Jensen marries Quentin Cubbins, and takes Quentin's surname,
her entry could have sn: Jensen and sn: Cubbins.

Directories are designed to be fast when looking up entries based on the values of their
attributes. An example query might be, “Find all the entries under dc=example,dc=com with
surname Jensen.” This fast lookup capability makes directories well suited for applications
where you store information that must be read often. Directories are therefore good data stores

1C H A P T E R 1

33

for telephone and email information. Directories are also good for handling authentication
credentials, identity information, and application configuration data.

Directory Server is also designed to handle high update rates as the information in the directory
changes. Today, the size of many directory deployments mean that handling updates well can
be as important as handling lookups.

Directory Server supports many directory related standards and RFCs. Directory Server allows
fast data replication across the network for high availability. Directory Server lets you configure
servers comprehensively without restarting them. Furthermore, Directory Server gives you
extensive control over access to directory data.

The list of Directory Server features is too long to cover in a short introduction. Sun Java System
Directory Server Enterprise Edition 6.3 Evaluation Guide includes a more extensive list. The
other chapters in this part of this Reference help you to understand many of the features in
detail.

Directory Server Architecture
This section succinctly addresses key concepts of Directory Server from the point of view of
someone who must install and manage Directory Server. This section touches on the following
topics.

■ “Comparison of Software Installation and Server Instances” on page 34
■ “Communication With Client Applications” on page 35
■ “Directory Server Configuration” on page 36
■ “Data Storage in Directory Server” on page 37
■ “Data Replication Between Server Instances” on page 38
■ “Access Control in Directory Server” on page 38

Comparison of Software Installation and Server
Instances
For each installation of Directory Server software, you can create multiple server instances.
Although you may create server instances in the place on the file system where you install the
software, nothing requires you to put both the software and the instances side by side.

The Directory Server software you install includes the executable files, template data, and
sample files needed to create, run, and manage actual servers. As the software is separate from
the actual servers, you can apply patches or service packs to the software without changing the
server data. You therefore do not need to patch each server instance, but instead only the
software installation.

Directory Server Architecture

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200834

A Directory Server instance holds the configuration data and the directory data required to
serve directory client applications. Although in production systems you carefully control the
user identity of the server, you can typically create and run a Directory Server instance as any
user on the system. The directory data belongs then to the user who created the instance.

In Chapter 14, “Directory Server File Reference,” you see that “Software Layout for Directory
Server” on page 247 is clearly separate from “Directory Server Instance Default Layout” on
page 251. In particular, notice that the documentation mentions install-path when referring to
the software installation, but instance-path when referring to a server instance.

Communication With Client Applications
Directory Server listens for LDAP and DSML client application traffic on the port numbers you
configure. Directory Server listens for LDAP connections as soon as the server starts. Directory
Server only listens for DSML connections over HTTP if you enable the DSML service.

By default, Directory Server listens for LDAP connections on port 389 if the instance was
created by root, 1389 if the instance was created by non-root. By default, Directory Server
listens for LDAP connections over SSL on port 636 if the instance was created by root, 1636 if
the instance was created by non-root. The DSML/HTTP port number is not defined by default.
Instead, you supply a port number when enabling the DSML service.

In order to enable client applications to reach Directory Server, you create instances on hosts
with static IP addresses. The hostname is also usually referenced in DNS. Client applications
typically need at least two pieces of information to access the directory.

1. The hostname, or at least the IP address, of the system on which Directory Server runs.
2. The port number on which Directory Server listens for client connections.

LDAP clients and servers do not usually open a new connection for every request. In the LDAP
model, a client connects to the server to authenticate before performing other operations. The
connection and authentication process is referred to as binding. Client applications can bind
with credentials, but they can also bind anonymously. Directory Server lets you configure access
accordingly both for known and anonymous clients. Client applications can also keep a
connection open, but bind again, thus changing the authentication identity. This technique can
reduce the costs of creating a new connection.

Once the bind has been performed and the client is authenticated, the client can request the
following operations.

add Add a new directory entry.

compare Checks whether an attribute value is the same as a given value.

delete Delete a directory entry.

modify Change one or more attributes of a directory entry.

Directory Server Architecture

Chapter 1 • Directory Server Overview 35

modDN Change the distinguished name of a directory entry.

This operation is for moving directory entries from one part of the directory
information tree to another. For example, you could move
uid=bjensen,ou=employees,dc=example,dc=com to
uid=bjensen,ou=people,dc=example,dc=com.

When you move an parent entry, such as ou=people,dc=example,dc=com, the
operation can take a very long time as Directory Server must move all child entries
of the parent as well.

modRDN Change the relative distinguished name of a directory entry.

The relative distinguished name is the attribute value used to distinguish a
directory entry from the others at the same level of the directory information tree.

This operation is for renaming directory entries. For example, you could rename
uid=bjensen,ou=employees,dc=example,dc=com to
uid=bcubbins,ou=people,dc=example,dc=com.

This operation is a special case of modDN. The modRDN operation is always
relatively fast, however, as it involves modifying only leaf entries.

search Find all the directory entries under a specified point in the directory tree that have
attribute values matching a filter.

A search filter can specify one or more attribute characteristics. For example, to
find entries with the surname Jensen, you use the LDAP filter (sn=Jensen). To
find entries with surname Jensen and user ID beginning with the letter B, you use
the LDAP filter (&(sn=Jensen)(uid=b*)).

When finished performing operations, a client can unbind. After unbinding, the connection is
dropped by the client and the server. Client applications can also abandon operations, such as a
search that is taking too long.

Directory Server can handle many client connections simultaneously. To handle connections,
Directory Server consumes free file descriptors, and manages a number of threads. You can
limit the system resources available to Directory Server through the server configuration. See
Chapter 6, “Tuning System Characteristics and Hardware Sizing,” in Sun Java System Directory
Server Enterprise Edition 6.3 Deployment Planning Guide for details.

Directory Server Configuration
Directory Server stores server instance configuration data in files, but the configuration data is
also accessible over LDAP.

Directory Server Architecture

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200836

The files are stored under instance-path as follows. Directory Server stores the LDAP schema,
which define what directory entries can contain, under instance-path/config/schema/. See Sun
Java System Directory Server Enterprise Edition 6.3 Man Page Reference for reference
information about the schema, and Chapter 12, “Directory Server Schema,” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide for instructions on managing
schema. Directory Server stores other configuration information in the dse.ldif(4) file,
instance-path/config/dse.ldif. Avoid updating this file by hand.

Over LDAP, the schema information is accessible under cn=schema. The other configuration
information is accessible under cn=config. In practice, you do not generally update data under
cn=config directly. Instead, you use either the web based Directory Service Control Center, or
the dsconf command. Both Directory Service Control Center and the dsconf command
change Directory Server over LDAP. Yet, both also spare you much of the complexity of making
configuration adjustments with LDAP modify operations.

Almost all Directory Server product documentation is devoted to Directory Server
configuration. In Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide,
you find extensive instructions for accomplishing a variety of tasks using command line
configuration tools. The Directory Service Control Center online help can help get you back on
track when the Directory Service Control Center interface does not seem intuitive enough.

Data Storage in Directory Server
Directory Server manages at least one binary tree database to hold directory data. By default,
database files are stored under instance-path/db/. In general, do not change or move these files.

If you examine the content of the instance-path/db/ directory, you find database log files. You
also find subdirectories for each database managed by the server. For instance,
instance-path/db/example/ holds data for the directory entries under dc=example,dc=com.
When you examine the files, you find a number of database indexes, such as example_sn.db3
for surname attribute values. You also find a example_id2entry.db3 file containing directory
entry information. You can configure Directory Server to encrypt the information in these files
if necessary.

From the point of view of client applications, Directory Server presents the directory data
stored as directory entries arranged in the directory information tree. Directory Server uses the
attribute value indexes to retrieve entries quickly. You can configure which indexes Directory
Server maintains.

For instructions on backing up directory data, see Chapter 9, “Directory Server Backup and
Restore,” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide. For
instructions on configuring indexes, see Chapter 13, “Directory Server Indexing,” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide. You can also back up
directory data and configure indexes using Directory Service Control Center.

Directory Server Architecture

Chapter 1 • Directory Server Overview 37

Data Replication Between Server Instances
Directory Server allows you to replicate directory data among as many server instances as
necessary. Directory Server replication works as an LDAP extended operation that replays
update operations from one server to another. The protocol for Directory Server replication is
optimized to work quickly over the network. The protocol is also optimized to resolve conflicts
when the same data is modified simultaneously on two different server instances.

The unit of Directory Server replication is the suffix. A replication agreement between two
servers handles all the directory entries under a base entry in the directory information tree,
such as dc=example,dc=com. Each agreement to replicate is set up point to point. On one hand,
point to point agreements prevent replication from single points of failure when the network
becomes partitioned. On the other hand, point to point agreements can be complex to manage
as the number of replicas increases. Luckily, Directory Service Control Center handles much of
the complexity for you. Directory Service Control Center allows you to manage groups of
replicas that provide a common directory service.

You can configure timing, priority, and which data is replicated. You can also configure some
servers, called masters, to accepts both updates and lookups. You can configure other servers,
called consumers, to accept only lookups. In addition, you can publish update information over
LDAP for client applications that must follow updates as they happen. For further explanation
of replication, see Chapter 4, “Directory Server Replication.” For instructions on configuring
replication, see Chapter 11, “Directory Server Replication,” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

Access Control in Directory Server
Directory Server offers an access control mechanism that works through aci attributes placed
on directories entries. ACI stands for Access Control Instruction.

ACIs are evaluated based on a user's bind identity. ACIs can be evaluated therefore for all users
who can bind to the directory. ACIs can also be applied for anonymous users who did not
provide bind credentials. Rules about the bind identity can specify not only which users, but
also which systems the users connect from, what time of day they connect, or what
authentication method they use.

You configure an ACI to apply to the entries in its scope. Entries that can be in scope include
entries on the branch of the directory information tree starting with the entry holding the ACI.
Directory Server allows you to configure ACIs to be applied according to a number of different
criteria. Directory Server also lets you configure ACIs not only to allow access, but also to deny
access.

ACIs can specify which operations are allowed and denied. For example, you typically allow
many users to read information, but only a few to update and add directory data.

Directory Server Architecture

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200838

For further explanation of access control in Directory Server, see “How Directory Server
Provides Access Control” on page 42. For instructions on configuring access control, see
Chapter 7, “Directory Server Access Control,” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

Directory Server Architecture

Chapter 1 • Directory Server Overview 39

40

Directory Server Security

For information about the security in Directory Server, see the following sections:

■ “How Directory Server Provides Security” on page 41
■ “How Directory Server Provides Access Control” on page 42
■ “How Directory Server Provides Authentication” on page 67
■ “How Directory Server Provides Encryption” on page 88

How Directory Server Provides Security
Directory Server provides security through a combination of the following methods:

■ Authentication
Authentication is a means for one party to verify another’s identity. For example, a client
gives a password to Directory Server during an LDAP bind operation. Policies define the
criteria that a password must satisfy to be considered valid, for example, age, length, and
syntax. Directory Server supports anonymous authentication, password-based
authentication, certificate-based authentication, SASL-based authentication, and proxy
authentication. When authentication is denied, Directory Server provides the following
mechanisms to protect data: account inactivation and global lockout. For information about
authentication, see “How Directory Server Provides Authentication” on page 67.

■ Encryption
Encryption protects the privacy of information. When data is encrypted, the data is
scrambled in a way that only a legitimate recipient can decode. Directory Server supports
SSL encryption and attribute encryption. For information about encryption, see “How
Directory Server Provides Encryption” on page 88.

■ Access control
Access control tailors the access rights granted to different directory users, and provides a
means of specifying required credentials or bind attributes. For information about access
control , see “How Directory Server Provides Access Control” on page 42.

2C H A P T E R 2

41

■ Auditing
Auditing determines whether the security of a directory has been compromised. For
example, log files maintained by a directory can be audited. For information about log files,
see Chapter 7, “Directory Server Logging.”

How Directory Server Provides Access Control
Directory Server uses access control instructions (ACIs) to define what rights to grant or deny
to requests from LDAP clients. When a directory server receives a request, it uses the ACIs
defined in the server, and any authentication information provided by the user to allow or deny
access to directory information. The server can allow or deny permissions such as read, write,
search, or compare.

For information about ACIs in Directory Server, see the following sections:
■ “Introduction to ACIs” on page 42
■ “ACI Syntax” on page 45
■ “ACI Targets” on page 46
■ “ACI Permissions” on page 51
■ “ACI Bind Rules” on page 54
■ “Tuning and Access Control” on page 66

Introduction to ACIs
ACIs are stored in the aci operational attribute. The aci attribute is available for use on every
entry in the directory, regardless of whether the aci attribute is defined for the object class of
the entry. The aci attribute is multi-valued, therefore multiple ACIs can be defined for the same
portion of a directory.

ACIs can be used to control access to the following portions of a directory:
■ The entire directory
■ A subtree of the directory
■ Specific entries in the directory, including entries that define configuration tasks
■ A specific set of entry attributes
■ Specific entry attribute values

ACIs can be used to define access for the following users:
■ A specific user
■ All users belonging to a specific group or role
■ All users of the directory
■ A specific client identified by its IP address or DNS name

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200842

Scope and Hierarchy in ACIs
ACIs can be created at any node in a directory tree, including the root DSE.

The scope of an ACI can be the target entry, the target entry and its immediate children, or the
target entry and all of its children. When no scope is specified, the ACI applies to the target
entry and all of its children.

When a server evaluates access permissions to an entry, it verifies the ACIs for the entry and the
ACIs for the parent entries back up to the base of the entry’s root suffix. ACIs are not evaluated
across chained suffixes on other servers.

Access to an entry in a server must be explicitly granted by an ACI. By default, ACIs define
anonymous read access and allow users to modify their own entries, except for attributes
needed for security. If no ACI applies to an entry, access is denied to all users except the
Directory Manager.

Access granted by an ACI is allowed unless any other ACI in the hierarchy denies it. ACIs that
deny access, no matter where they appear in the hierarchy, take precedence over ACIs that allow
access to the same resource.

The Directory Manager is the only privileged user to whom access control does not apply.
When a client is bound to the directory as the Directory Manager, the server does not evaluate
any ACIs before performing operations.

In previous versions of Directory Server, ACIs could not be added or deleted directly under the
root DSE. Now this limitation has been removed in Directory Server.

ACI Limitations
The following restrictions apply to ACIs
■ If your directory tree is distributed over several servers by using the chaining feature, the

following restrictions apply to the use of keywords in access control statements:
■ ACIs that depend on the groupdn keyword must be located on the same server as the

group entry. If the group is dynamic, then all members of the group must have an entry
on the server too. If the group is static, the members’ entries can be located on remote
servers.

■ ACIs that depend on the roledn keyword must be located on the same server as the role
definition entry. Every entry that is intended to have the role must also be located on the
same server.

■ Attributes generated by a CoS cannot be used in all ACI keywords. Specifically, you
should not use attributes generated by CoS with the userattr and userdnattr

keywords because the access control rule will not work.
■ Access control rules are always evaluated on the local server. You must not specify the

hostname or port number of the server in LDAP URLs used in ACI keywords.

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 43

■ You cannot grant a user the right to proxy as the Directory Manager, nor can you grant
proxy rights to the Directory Manager.

■ The cache settings used for ensuring that the server fits the physical memory available do not
apply to ACI caches, which means that an excessive number of ACIs may saturate available
memory.

Default ACIs
The following default ACIs are defined on the root DSE:

■ All users have anonymous access to the directory for search, compare, and read operations
(except for the userpassword attribute).

■ Bound users can modify their own password.
■ Users in the group cn=Administrators,cn=config have full access to all entries. This is

equivalent to Directory Manager access, although unlike Directory Manager, users in the
Administration Group are subject to ACIs.

ACIs and Replication
ACIs are stored as attributes of entries. Therefore, if an entry that contains ACIs is part of a
replicated suffix, the ACIs are replicated like any other attribute.

ACIs are always evaluated locally, on the directory server that services the incoming LDAP
requests.

When a consumer server receives an update request, the consumer server returns a referral to
the master server for evaluation of whether the request can be serviced on the master.

Effective Rights
The effective rights feature can be used to obtain the following information:

■ Rights information, including entry level rights, attribute level rights and logging.
■ Permissions for write, self write add, and self write delete.
■ Logging information for debugging access control problems.

To use the effective rights feature, you must have the access control rights to use the effective
rights control and read access to the aclRights attribute.

If a proxy control is attached to an effective rights control-based search operation, the effective
rights operation is authorized as the proxy user. Therefore the proxy user needs to have the
right to use the effective rights control. The entries that the proxy user has the right to search
and view are returned.

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200844

ACI Syntax
The aci attribute has the following syntax:

aci: (target)(version 3.0; acl "name";permission bindRules;)

The following values are used in the ACI syntax:

target Specifies the entry, attributes, or set of entries and attributes for which you want
to control access. The target can be a distinguished name, one or more
attributes, or a single LDAP filter. The target is optional. When a target is not
specified, the ACI applies to the entry on which it is defined and its subtree. For
information about targets, see “ACI Targets” on page 46.

version 3.0 A required string that identifies the ACI version.

name A required string that identifies the ACI. Although there are no restrictions on
the name, it is good practice to use unique, descriptive names for ACIs. Using
unique names, will allow you to use Get Effective Rights to determine which
ACI is in force.

permission States what rights you are allowing or denying. For information about
permissions, see “ACI Permissions” on page 51.

bindRules Specifies the credentials and bind parameters that a user has to provide to be
granted access. Bind rules can also be based on user membership, group
membership, or connection properties of the client. For information about bind
rules, see “ACI Bind Rules” on page 54.

The permission and bind rule portions of the ACI are set as a pair, also called an Access Control
Rule (ACR). The specified permission to access the target is granted or denied depending on
whether the accompanying bind rule is evaluated to be true or false.

Multiple targets and multiple permission-bind rule pairs can be used. This allows you to refine
both the entry and attributes being targeted and efficiently set multiple access controls for a
given target. The following example shows an ACI with multiple targets and multiple
permission-bind rule pairs:

aci: (targetdefinition)...(targetdefinition)(version 3.0;acl "name";
permission bindRule; ...; permission bindRule;)

In the following example, the ACI states that bjensen has rights to modify all attributes in her
own directory entry:

aci: (target="ldap:///uid=bjensen,dc=example,dc=com"
(targetattr="*")(targetScope="subtree")(version 3.0; acl "example";
allow (write) userdn="ldap:///self";)

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 45

The following sections describe the syntax of targets, permissions and bind rules.

ACI Targets
An ACI target statement specifies the entry, attributes, or set of entries and attributes for which
you want to control access.

■ “Target Syntax” on page 46
■ “Target Keywords” on page 46

Target Syntax
An ACI target statement has this syntax:

(keyword = "expression")

The following values are used in the target.

keyword Indicates the type of target.

expression Identifies the target. The quotation marks ("") around expression are syntactically
required, although the current implementation accepts expressions like
targetattr=*.

=

!= Indicates that the target is or is not the object specified in the expression.

The != operator cannot be used with the targettrfilters keyword or the
targetscope keyword.

Target Keywords
For a description of target keywords, see the following sections:

■ “target Keyword” on page 47
■ “targetattr Keyword” on page 48
■ “targetfilter Keyword” on page 49
■ “targattrfilters Keyword” on page 49
■ “targetScope Keyword” on page 50

The following table lists the target keywords and their associated expressions.

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200846

TABLE 2–1 Target Keywords and Their Expressions

Keyword Type of target Expression

target A directory entry or its subtree ldap:///distinguished_name

targetattr The attributes of an entry attribute

targetfilter A set of entries or attributes that
match an LDAP filter

LDAP_filter

targattrfilters An attribute value or combination
of values that match an LDAP filter

LDAP_operation:LDAP_filter

targetScope The scope of the target base, onelevel, subtree

targetKeyword

The target keyword specifies that an ACI is defined for a directory entry. The target keyword
uses the following syntax:

(target = "distinguished_name")

or

(target != "distinguished_name")

The distinguished name must be in the subtree rooted at the entry where the ACI is defined. For
example, the following target may be used in an ACI on ou=People,dc=example,dc=com:

(target = "ldap:///uid=bjensen,ou=People,dc=example,dc=com")

The DN of the entry must be a distinguished name in string representation (RFC 4514).
Therefore, characters that are syntactically significant for a DN, such as commas, must be
escaped with a single backslash (\).

Wild cards, show as asterisk characters can be used in the expression for the target keyword.
The asterisk matches an attribute value, a substring of a value, or a DN component. For
example, all of the following expressions match uid=bjensen,ou=people,dc=example,dc=com.

■ target= "ldap:///uid=bj*,ou=people,dc=example,dc=com"
■ target= "ldap:///uid=*,ou=people,dc=example,dc=com"
■ target= "ldap:///*,ou=people,dc=example,dc=com"
■ target= "ldap:///uid=bjensen,*,dc=com"
■ target= "ldap:///uid=bjensen*"

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 47

The following further examples show permitted uses of wild cards.
■ target="ldap:///uid=*,dc=example,dc=com"

This target matches every entry in the entire example.com tree that has the UID attribute in
the entry's RDN.

■ target="ldap:///*Anderson,ou=People,dc=example,dc=com"

This target matches every entry in the ou=People branch whose RDN ends with Anderson,
regardless of the naming attribute.

■ target="ldap:///uid=*,ou=*,dc=example,dc=com"

This target matches every entry in the example.com tree whose distinguished name contains
the uid and ou attributes.

Other usage of wild cards to such as target="ldap:///uid=bjensen,o*,dc=com" might be
accepted, but are deprecated.

targetattrKeyword

The targetattr keyword specifies that an ACI is defined for one or more attributes in the
targeted entries. The targetattr keyword uses the following syntax:

(targetattr = "attribute")

or

(targetattr != "attribute")

If no targetattr keyword is present, no attributes are targeted. To target all attributes, the
targetattr keyword must be targetattr="*".

Targeted attributes do not need to exist on the target entry or its subtree, but the ACI applies
whenever they do.

Targeted attributes do not need to be defined in the schema. The absence of schema checking
makes it possible to implement an access control policy before importing data and its schema.

The targetattr keyword can be used for multiple attributes, by using this syntax:

(targetattr = "attribute1 || attribute2|| ... attributeN")

Note – If you configure attribute aliases, you must specify both the attribute name and the alias
in the targetattr keyword for the ACI to take them into account.

Targeted attributes include all subtypes of the named attribute. For example, (targetattr =
"locality") also targets locality;lang-fr.

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200848

Wild cards can be used in the expression for the targetattr keyword, but the use of wild cards
would serve no purpose and may reduce performance.

targetfilterKeyword
The targetfilter keyword is used in ACIs to target entries that match an LDAP filter. The
ACI applies to all entries that match the LDAP filter and that are in the scope of the ACI. The
targetfilter keyword uses the following syntax:

(targetfilter = "(standard LDAP search filter)")

EXAMPLE 2–1 Using the targetfilterKeyword to Target Specific Entries

The following example is for employees with a status of salaried or contractor, and an attribute
for the number of hours worked as a percentage of a full-time position. The filter targets entries
for contractors or part-time employees:

(targetfilter = "(|(status=contractor)(fulltime<=79))")

The Netscape extended filter syntax is not supported in ACIs. For example, the following target
filter is not valid:

(targetfilter = "(locality:fr:=<= Québec)")

The filter syntax that describes matching rules for internationalized values is supported. For
example, the following target filter is valid:

(targetfilter = "(locality:2.16.840.1.113730.3.3.2.18.1.4:=Québec)")

The targetfilter keyword selects whole entries as targets of the ACI. The targetfilter
keyword and the targetattr keyword can be used together to create ACIs that apply to a subset
of attributes in the targeted entries.

targattrfiltersKeyword
The targattrfilters keyword is used in ACIs to target specific attribute values by using LDAP
filters. By using the targattrfilters keyword, you can grant or deny permissions on an
attribute if that attribute's value meets the criteria defined in the ACI. An ACI that grants or
denies access based on an attribute's value, is called a value-based ACI. The targattrfilters
keyword uses this syntax:

(targattrfilters="add=attr1:F1 && attr2:F2... && attrn:Fn, \

del=attr1:F1 && attr2:F2 ... && attrn:Fn")

where

add represents the operation of creating an attribute.

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 49

del represents the operation of deleting an attribute.

attrn represents the target attributes.

Fn represents filters that apply only to the associated attribute.

The following conditions must be met when filters apply to entries, and those entries are
created, deleted or modified:

■ When an entry is created or deleted, each instance of that attribute must satisfy the filter.
■ When an entry is modified, if the operation adds an attribute, then the add filter that applies

to that attribute must be satisfied; if the operation deletes an attribute, then the delete filter
that applies to that attribute must be satisfied.

■ If individual values of an attribute already present in the entry are replaced, then the add and
delete filters must be satisfied.

EXAMPLE 2–2 Using the targattrfilters Keyword to Allow Users to Add Roles to Their Own Entries

The following ACI allows users to add any role to their own entry, except the superAdmin role.
It also allows users to add a telephone number with a 123 prefix.

(targattrfilters="add=nsroleDN:(!(nsRoleDN=cn=superAdmin)) \

&& telephoneNumber:(telephoneNumber=123*)")

targetScopeKeyword

The targetScope keyword is used in ACIs to specify the scope of the ACI. The targetScope
keyword uses this syntax:

(targetScope="base")

The targetScope keyword can have one of these values:

base The ACI applies to the target resource only

onelevel The ACI applies to the target resource and its first-generation children

subtree The ACI applies to the target resource and its subtree

If the targetScope keyword is not specified, the default value is subtree.

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200850

ACI Permissions
Permissions specify the type of access that is allowed or denied by the ACI. For information
about bind rules, see the following sections:

■ “Permission Syntax” on page 51
■ “Permission Rights” on page 51
■ “Permissions for Typical LDAP Operations” on page 52

Permission Syntax
An ACI permission statement has this syntax:

allow|deny (right1, right2 ...)

Rights define the operations you can perform on directory data. In an ACI statement, rights is a
list of comma-separated keywords enclosed within parentheses.

Rights are granted independently of one another. This means, for example, that a user who is
granted add rights but not delete rights can create an entry but cannot delete an entry. When
you are planning the access control policy for your directory, ensure that you grant rights in a
way that makes sense for users. For example, it might not make sense to grant write permission
without granting read and search permissions.

Permission Rights
The following rights can be allowed or denied in an ACI permission statement:

Read Permission to read directory data. This permission applies only to the search
operation.

Write Permission to modify an entry by adding, modifying, or deleting attributes. This
permission applies to the modify and modify DN operations.

Add Permission to create entries. This permission applies only to the add operation

Delete Permission to delete entries. This permission applies only to the delete operation.

Search Permission to search for directory data. Users must have Search and Read rights
in order to view the data returned as part of a search result. This permission
applies only to the search operation.

Compare Permission for users to compare data they supply with data stored in the directory.
With compare rights, the directory returns a success or failure message in
response to an inquiry, but the user cannot see the value of the entry or attribute.
This permission applies only to the compare operation.

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 51

Selfwrite Permission for users to add or delete their own DN in an attribute of the target
entry. The syntax of this attribute must be distinguished name. This right is used
only for group management. The Selfwrite permission works with proxy
authorization; it grants the right to add or delete the proxy DN from the group
entry (not the DN of the bound user).

Proxy Permission for the specified DN to access the target with the rights of another
entry. You can grant proxy access using the DN of any user in the directory except
the Directory Manager DN. You cannot grant proxy rights to the Directory
Manager.

Import Permission for an entry to be imported to the specified DN. This permission
applies the modify DN operation.

Export Permission for an entry to be exported from the specified DN. This permission
applies the modify DN operation.

All Permission for the specified DN to have the following rights for the targeted entry:
read, write, search, delete, compare, and selfwrite. The All access right does
control permission for the following rights to the target entry: proxy, import, and
export.

Permissions for Typical LDAP Operations
This section describes the rights required to perform a set of LDAP operations.

Adding an entry:
■ Grant add permission on the entry being added.
■ Grant write permission on the value of each attribute in the entry. This right is granted by

default but could be restricted using the targettrfilters keyword.

Deleting an entry:
■ Grant delete permission on the entry to be deleted.
■ Grant write permission on the value of each attribute in the entry. This right is granted by

default but could be restricted using the targettrfilters keyword.

Modifying an attribute in an entry:
■ Grant write permission on the attribute type.
■ Grant write permission on the value of each attribute type. This right is granted by

default but could be restricted using the targettrfilters keyword.

Modifying the RDN of an entry:
■ Grant write permission on the entry.
■ Grant write permission on the attribute type used in the new RDN.

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200852

■ Grant write permission on the attribute type used in the old RDN, if you want to grant
the right to delete the old RDN.

■ Grant write permission on the value of attribute type used in the new RDN. This right is
granted by default but could be restricted using the targettrfilters keyword.

Moving an entry to another subtree:
■ Grant export permissions on the entry that you want to move.
■ Grant import permission on the new superior entry of the entry that you want to move.

Comparing the value of an attribute:
Grant compare permission on the attribute type.

Searching for entries:
■ Grant search permission on each attribute type used in the search filter.
■ Grant read permission on at least one attribute type used in the entry to ensure that the

entry is returned.
■ Grant read permission an each attribute type to be returned with the entry.

EXAMPLE 2–3 Granting ACI Permissions to Perform a Search

This example configures permissions to allow bjensen to search her own entry.

(target="ldap:///dc=example,dc=com")
ldapsearch -h host -p port -D "uid=bjensen,dc=example,dc=com" \

-w password -b "dc=example,dc=com" \

"(objectclass=*)" mail

The following ACI determines whether bjensen can be granted access for searching her own
entry:

aci: (targetattr = "mail")(version 3.0; acl "self access to

mail"; allow (read, search) userdn = "ldap:///self";)

The search result list is empty because this ACI does not allow bjensen the right to search on
the objectclass attribute. To perform the search operation described, you must modify the
ACI as follows:

aci: (targetattr = "mail || objectclass")(version 3.0; acl

"self access to mail"; allow (read, search) userdn =

"ldap:///self";)

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 53

ACI Bind Rules
Bind rules identify the set of users to which an ACI applies. The permission and bind rule
portions of the ACI are set as a pair. The specified permission to access the target is granted or
denied depending on whether the accompanying bind rule is evaluated to be true or false.

For information about bind rules, see the following sections:
■ “Introduction to Bind Rules” on page 54
■ “Bind Rule Syntax” on page 54
■ “Bind Rule Keywords” on page 55
■ “Boolean Bind Rules” on page 66

Introduction to Bind Rules
Bind rules identify a set of users by using the following methods:
■ The users, groups, and roles that are granted access.
■ The location from which an entity must bind. The location from which a user authenticates

can be spoofed and cannot be trusted. Do not base ACIs on this information alone.
■ The time or day on which binding must occur.
■ The type of authentication that must be in use during binding.

A simple bind rule might require a person accessing the directory to belong to a specific group.
A complex bind rule can require a person to belong to a specific group and to log in from a
machine with a specific IP address, between 8 am and 5 pm. Additionally, bind rules can be
complex constructions that combine these criteria by using Boolean operators.

The server evaluates the logical expressions used in ACIs according to a three-valued logic,
similar to the one used to evaluate LDAP filters, as described in section 4.5.1.7 of RFC 4511
Lightweight Directory Access Protocol (v3). Therefore, if any component in the expression
evaluates to Undefined (for example if the evaluation of the expression aborted due to a
resource limitation), then the server handles this case correctly. The server does not erroneously
grant access because an Undefined value occurred in a complex Boolean expression.

Bind Rule Syntax
An ACI bind rule has this syntax:

keyword = "expression";

or

keyword != "expression";

The following values are used in the bind rule:

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200854

keyword Indicates the type of bind rule.

expression Identifies the bind rule.

Bind Rule Keywords
For information about bind rule keywords, see the following sections:

■ “userdn Keyword” on page 56
■ “Syntax of the userdn Keyword” on page 56
■ “LDAP URLs in the userdn Keyword” on page 57
■ “groupdn Keyword” on page 58
■ “roledn Keyword” on page 58
■ “userattr Keyword” on page 59
■ “Examples of userattr Keyword With Various Bind Types” on page 59
■ “Use of the userattr Keyword With the parent Keyword for Inheritance” on page 61
■ “Use of the userattr Keyword to Grant Add Permissions” on page 62
■ “ip Keyword” on page 63
■ “dns Keyword” on page 64
■ “timeofday Keyword” on page 64
■ “dayofweek Keyword” on page 65
■ “authmethod Keyword” on page 65

The following table summarizes the keywords for bind rules.

TABLE 2–2 Bind Rule Keywords and Their Expressions

Keyword Used to define access based on Expression

userdn Specified user ldap:///distinguished_name
ldap:///all

ldap:///anyone

ldap:///self

ldap:///parent

ldap:///suffix??sub?(filter)

groupdn Specified group or groups [ldap:///DN]

roledn Specified role or roles [ldap:///DN]

userattr Matched attribute value attribute#bindType

or

attribute#value

ip Specified IP address or IP
addresses

IP_address

dns Specified domain or domains DNS_host_name

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 55

TABLE 2–2 Bind Rule Keywords and Their Expressions (Continued)
Keyword Used to define access based on Expression

timeofday Specified time of day 0 - 2359

dayofweek Specified day or days of the
week

sun, mon, tue, wed, thu, fri, and sat

authmethod Specified authentication
method

none, simple, ssl, sasl authentication_method

userdnKeyword

The userdn keyword is used to allow or deny access to a specified user. The following sections
contain more information about the userdn keyword.

Syntax of the userdnKeyword

The userdn keyword uses this syntax:

userdn = "ldap:///dn [|| ldap:///dn]..."
userdn != "ldap:///dn [|| ldap:///dn]..."

The userdn keyword can alternatively be expressed as an LDAP URL filter. For information
about expressing the userdn keyword as an LDAP URL, see “LDAP URLs in the userdn
Keyword” on page 57.

dn can have of the following values:

distinguished-name A fully qualified DN. Characters that are syntactically significant for a
DN, such as commas, must be escaped with a single backslash (\). The
wild card * can be used to specify a set of users. For example, if the
following user DN is specified, users with a bind DN beginning with the
letter b are allowed or denied access:

uid=b*,dc=example,dc=com

anyone Allows or denies access for anonymous and authenticated users,
regardless of the circumstances of the bind.

This access can be limited to specific types of access (for example,
access for read or access for search) or to specific subtrees or individual
entries within the directory. The following ACI on the
dc=example,dc=com node allows anonymous access to read and search
the entire dc=example,dc=com tree.

aci: (version 3.0; acl "anonymous-read-search";
allow (read, search) userdn = "ldap:///anyone";)

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200856

all Allows or denies access for authenticated users. This all value prevents
anonymous access. The following ACI on the dc=example,dc=com
node allows authenticated users to read the entire dc=example,dc=com
tree:

aci: (version 3.0; acl "all-read";
allow (read) userdn="ldap:///all";)

self Allows or denies users access to their own entries if the bind DN
matches the DN of the targeted entry. The following ACI on the
dc=example,dc=com node allows authenticated users in the
dc=example,dc=com tree to write to their userPassword attribute.

aci: (targetattr = "userPassword")
(version 3.0; acl "modify own password"; allow (write)

userdn = "ldap:///self";)

parent Allows or denies users access to the entry if the bind DN is the parent of
the targeted entry.

The following ACI on the dc=example,dc=com node allows
authenticated users in the dc=example,dc=com tree to modify any child
entries of their bind DN:

aci: (version 3.0; acl "parent access";
allow (write) userdn="ldap:///parent";)

LDAP URLs in the userdnKeyword

The userdn keyword can also be expressed as an LDAP URL with a filter, by using this syntax:

userdn = ldap:///suffix??sub?(filter)

LDAP URLs always apply to the local server. Do not specify a hostname or port number within
an LDAP URL.

The following ACI on the dc=example,dc=com node allows all users in the accounting and
engineering branches of the example.com tree to access to the targeted resource dynamically
based on the following URL

userdn = "ldap:///dc=example,dc=com??sub?(|(ou=eng)(ou=acct))"

LDAP URLs can be used with the logical OR operator and the not-equal operator as shown in
the following examples.

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 57

EXAMPLE 2–4 Using the userdnKeyword With a Logical OR Operator in LDAP URLs

This bind rule is evaluated to be true for users that bind with either of the specified DN patterns.

userdn = "ldap:///uid=b*,c=example.com || ldap:///cn=b*,dc=example,dc=com";

EXAMPLE 2–5 Using the userdnKeyword With a Not-Equal Operator in LDAP URLs

This bind rule is evaluated to be true if the client is not binding as a UID-based DN in the
accounting subtree. This bind rule only makes sense if the targeted entry is not under the
accounting branch of the directory tree.

userdn != "ldap:///uid=*,ou=Accounting,dc=example,dc=com";

groupdnKeyword

The groupdn keyword specifies that access to a targeted entry is granted or denied if the user
binds by using a DN that belongs to a specific group. The groupdn keyword uses this syntax:

groupdn="ldap:///groupDN [|| ldap:///groupDN]..."

The bind rule is evaluated to be true if the bind DN belongs to a group that is specified by any of
the values for groupDN.

In the following example, the bind rule is true if the bind DN belongs to the Administrators
group :

aci: (version 3.0; acl "Administrators-write"; allow (write)

groupdn="ldap:///cn=Administrators,dc=example,dc=com";)

Characters that are syntactically significant for a DN, such as commas, must be escaped with a
single backslash (\).

rolednKeyword

The roledn keyword specifies that access to a targeted entry is granted or denied if the user
binds using a DN that belongs to a specific role. The roledn keyword requires one or more valid
distinguished names, in this format:

roledn = "ldap:///dn [|| ldap:///dn]... [|| ldap:///dn]"

The bind rule is evaluated to be true if the bind DN belongs to the specified role.

Characters that are syntactically significant for a DN, such as commas, must be escaped with a
single backslash (\).

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200858

The roledn keyword has the same syntax and is used in the same way as the groupdn keyword.

userattrKeyword

The userattr keyword specifies which attribute values in the entry that was used to bind must
match those in the targeted entry. The userattr keyword can be used for the following
attributes:

■ User DN
■ Group DN
■ Role DN
■ LDAP filter, in an LDAP URL
■ Any attribute type

An attribute generated by a Class of Service (CoS) definition cannot be used with the userattr
keyword. ACIs that contain bind rules that depend on attribute values generated by CoS will not
work.

The userattr keyword uses this syntax:

userattr = "attrName#bindType"

Alternatively, if you are using an attribute type that requires a value other than a user DN, group
DN, role DN, or an LDAP filter, the userattr keyword uses this syntax:

userattr = "attrName#attrValue"

The userattr keyword can have one of the following values:

attrName The name of the attribute used for value matching

bindType One of the following types of bind: USERDN,GROUPDN,ROLEDN,LDAPURL

attrValue Any string that represents an attribute value

Examples of userattrKeyword With Various Bind Types

EXAMPLE 2–6 Using the userattrKeyword With the USERDNBind Type

The following is an example of the userattr keyword associated with a bind based on the user
DN:

userattr = "manager#USERDN"

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 59

EXAMPLE 2–6 Using the userattrKeyword With the USERDNBind Type (Continued)

The bind rule is evaluated to be true if the bind DN matches the value of the manager attribute
in the targeted entry. You can use this to allow a user’s manager to modify employees’ attributes.
This mechanism only works if the manager attribute in the targeted entry is expressed as a full
DN.

The following example grants a manager full access to his or her employees’ entries:

aci: (target="ldap:///dc=example,dc=com")(targetattr="*")
(version 3.0;acl "manager-write";
allow (all) userattr = "manager#USERDN";)

EXAMPLE 2–7 Using the userattrKeyword With the GROUPDNBind Type

The following is an example of the userattr keyword associated with a bind based on a group
DN:

userattr = "owner#GROUPDN"

The bind rule is evaluated to be true if the bind DN is a member of the group specified in the
owner attribute of the targeted entry. For example, you can use this mechanism to allow a group
to manage employees’ status information. You can use an attribute other than owner, as long as
the attribute you use contains the DN of a group entry.

The group you point to can be a dynamic group, and the DN of the group can be under any
suffix in the directory. However, the evaluation of this type of ACI by the server is very resource
intensive.

If you are using static groups that are under the same suffix as the targeted entry, you can use the
following expression:

userattr = "ldap:///dc=example,dc=com?owner#GROUPDN"

In this example, the group entry is under the dc=example,dc=com suffix. The server can process
this type of syntax more quickly than the previous example.

EXAMPLE 2–8 Using the userattrKeyword With the ROLEDNBind Type

The following is an example of the userattr keyword associated with a bind based on a role
DN:

userattr = "exampleEmployeeReportsTo#ROLEDN"

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200860

EXAMPLE 2–8 Using the userattrKeyword With the ROLEDNBind Type (Continued)

The bind rule is evaluated to be true if the bind DN belongs to the role specified in the
exampleEmployeeReportsTo attribute of the targeted entry. For example, if you create a nested
role for all managers in your company, you can use this mechanism to grant managers at all
levels access to information about employees that are at a lower grade than themselves.

The DN of the role can be under any suffix in the directory. If, in addition, you are using filtered
roles, the evaluation of this type of ACI uses a lot of resources on the server.

EXAMPLE 2–9 Using the userattrKeyword With the LDAPURLBind Type

The following is an example of the userattr keyword associated with a bind based on an LDAP
filter:

userattr = "myfilter#LDAPURL"

The bind rule is evaluated to be true if the bind DN matches the filter specified in the myfilter
attribute of the targeted entry. The myfilter attribute can be replaced by any attribute that
contains an LDAP filter.

EXAMPLE 2–10 Using the userattrKeyword With Any Attribute Value

The following is an example of the userattr keyword associated with a bind based on any
attribute value:

userattr = "favoriteDrink#Milk"

The bind rule is evaluated to be true if the bind DN and the target DN include the
favoriteDrink attribute with a value of Milk.

Use of the userattrKeyword With the parentKeyword for Inheritance

The userattr keyword can be used with the parent keyword to specify the number of levels
below the target that should inherit the ACI. The userattr keyword and parent keyword use
this syntax:

userattr = "parent[inheritance_level].attribute#bindType"

The userattr keyword and parent keyword can have the following values:

inheritance_level A comma separated list that indicates how many levels below the target
should inherit the ACI. These levels below the targeted entry can be
specified: [0,1,2,3,4]. Zero (0) indicates the targeted entry.

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 61

attribute The attribute targeted by the userattr or groupattr keyword.

bindType The type of bind can be USERDN or GROUPDN. Inheritance cannot be used
with LDAPURL and ROLEDN binds.

The following example shows how the userattr keyword is used with the parent keyword for
inheritance:

userattr = "parent[0,1].manager#USERDN"

This bind rule is evaluated to be true if the bindDN matches the manager attribute of the targeted
entry. The permissions granted when the bind rule is evaluated to be true apply to the target
entry and to all entries immediately below it.

Use of the userattrKeyword to Grant Add Permissions

If you use the userattr keyword in conjunction with all or add permissions, you might find
that the behavior of the server is not what you expect. Typically, when a new entry is created in
the directory, Directory Server evaluates access rights on the entry being created, and not on the
parent entry. However, for ACIs that use the userattr keyword, this behavior could create a
security hole, and the server’s normal behavior is modified to avoid it.

Consider the following example:

aci: (target="ldap:///dc=example,dc=com")(targetattr="*")
(version 3.0; acl "manager-write"; allow (all)

userattr = "manager#USERDN";)

This ACI grants managers all rights on the entries of employees that report to them. However,
because access rights are evaluated on the entry being created, this type of ACI would also allow
any employee to create an entry in which the manager attribute is set to their own DN. For
example, disgruntled employee Joe (cn=Joe,ou=eng,dc=example,dc=com), might want to
create an entry in the Human Resources branch of the tree, to use (or misuse) the privileges
granted to Human Resources employees.

He could do this by creating the following entry:

dn: cn= Trojan Horse,ou=Human Resources,dc=example,dc=com

objectclass: top

...

cn: Trojan Horse

manager: cn=Joe,ou=eng,dc=example,dc=com

To avoid this type of security threat, the ACI evaluation process does not grant add permission
at level 0, that is, to the entry itself. You can, however, use the parent keyword to grant add
rights below existing entries. You must specify the number of levels below the parent for add

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200862

rights. For example, the following ACI allows child entries to be added to any entry in the
dc=example,dc=com that has a manager attribute that matches the bind DN:

aci: (target="ldap:///dc=example,dc=com")(targetattr="*")
(version 3.0; acl "parent-access"; allow (add)

userattr = "parent[0,1].manager#USERDN";)

This ACI ensures that add permission is granted only to users whose bind DN matches the
manager attribute of the parent entry.

ipKeyword

The ip keyword is used to specify that a bind operation must originate from a specific IP
address. The ip keyword uses this syntax:

ip = "IPaddressList" or ip != "IPaddressList"

The IPaddressList value is a list of one or more comma-separated elements from the following
elements:

■ A specific IPv4 address: 123.45.6.7
■ An IPv4 address with wild cards to specify a subnetwork: 12.3.45.*
■ An IPv4 address or subnetwork with subnetwork mask: 123.45.6.*, 255.255.255.0
■ An IPv6 address in any of its legal forms and contained in square brackets [and], as defined

by RFC 2373 (http://www.ietf.org/rfc/rfc2373.txt).
The following addresses are equivalent:
■ 12AB:0000:0000:CD30:0000:0000:0000:0000

■ 12AB::CD30:0:0:0:0

■ 12AB:0:0:CD30::

■ An IPv6 address with a subnet prefix length: 12AB::CD30:0:0:0:0/60

The bind rule is evaluated to be true if the client accessing the directory is located at the named
IP address.

The ip keyword can be used to force all directory updates to occur from a given machine or
network domain. However, the IP address from which a user authenticates can be spoofed, and
can therefore not be trusted. Do not base ACIs on this information alone.

The wild card * can be used to specify a set of IP addresses.

The wild card * cannot be used in IPv6 addresses.

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 63

http://www.ietf.org/rfc/rfc2373.txt

dnsKeyword

Note – The dns keyword requires that the naming service used on your machine is DNS. If the
name service is not DNS, you should use the ip keyword instead.

The dns keyword is used to specify that a bind operation must originate from a specific domain
or host machine. The dns keyword uses this syntax:

dns = "DNS_Hostname" or dns != "DNS_Hostname"

The dns keyword requires a fully qualified DNS domain name. Granting access to a host
without specifying the domain creates a potential security threat. For example, the following
expression is allowed but not recommended:

dns = "legend.eng";

You should use a fully qualified name such as:

dns = "legend.eng.example.com";

The dns keyword allows wild cards.

dns = "*.example.com";

The bind rule is evaluated to be true if the client accessing the directory is located in the named
domain. This can be useful for allowing access only from a specific domain. Note that wild cards
do not work if your system uses a naming service other than DNS.

timeofdayKeyword

The timeofday keyword is used to specify that access can occur at a certain time of day. The
time and date on the server are used for the evaluation of the timeofday and dayofweek bind
rules, and not the time on the client. The timeofday keyword uses this syntax:

timeofday operator "time"

The timeofday keyword can have the following values:

operator
■ Equal to (=)
■ Not equal to (!=)
■ Greater than or equal to (>=)
■ Less than (<)
■ Less than or equal to (<=)

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200864

time Four digits representing hours and minutes in the 24-hour clock (0 to 2359)
■ timeofday = "1200"; is true if the client is accessing the directory during the

minute that the system clock shows noon.
■ timeofday != "0100"; is true for access at any other time than 1 a.m.
■ timeofday > "0800"; is true for access from 8:01 a.m. through 11:59 p.m.
■ timeofday >= "0800"; is true for access from 8:00 a.m. through 11:59 p.m.
■ timeofday < "1800"; is true for access from 12:00 midnight through 5:59 p.m.

dayofweekKeyword

The dayofweek keyword is used to specify that access can occur on a certain day or on certain
days of the week. The time and date on the server are used for the evaluation of the timeofday
and dayofweek bind rules, and not the time on the client. The dayofweek keyword uses this
syntax:

dayofweek = "day1, day2 ..."

The bind rule is true if the directory is being accessed on one of the days listed.

The dayofweek keyword can have one or more of the following values: sun, mon, tue, wed, thu,
fri, sat.

authmethodKeyword

The authmethod keyword is used to specify that a client must bind to the directory by using a
specific authentication method. The authmethod keyword uses this syntax:

authmethod = "authentication_method"

The authmethod keyword can have the following values:

None Authentication is not checked during bind rule evaluation. This is
the default.

Simple The bind rule is evaluated to be true if the client is accessing the
directory using a username and password.

SSL The client must bind to the directory over a Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) connection.

The bind rule is evaluated to be true if the client authenticates to the
directory by using a certificate over LDAPS. It will not be true if the
client authenticates by using simple authentication (bind DN and
password) over LDAPS.

How Directory Server Provides Access Control

Chapter 2 • Directory Server Security 65

SASL sasl_mechanism The bind rule is evaluated to be true if the client authenticates to the
directory by using one of the following SASL mechanisms:
DIGEST-MD5, GSSAPI, or EXTERNAL.

Boolean Bind Rules
Bind rules can be complex expressions that use the Boolean expressions AND, OR, and NOT to set
precise access rules. Boolean bind rules use this syntax:

(bindRuleA and (bindRuleB or (bindRuleC and bindRuleD));)

Parentheses defines the order in which rules are evaluated, and a trailing semicolon must appear
after the final rule.

EXAMPLE 2–11 Boolean Bind Rule

The bind rule is true if both of the following conditions are met:

■ The bind DN client is accessed from within the example.com domain
■ The bind DN client is a member of either the administrators group or the bind DN client a

member of both the mail administrators and calendar administrators groups

(dns = "*.example.com"
and (groupdn = "ldap:///cn=administrators, dc=example,dc=com"
or (groupdn = "ldap:///cn=mail administrators, dc=example,dc=com"
and groupdn = "ldap:///cn=calendar administrators, dc=example,dc=com"));)

Tuning and Access Control
Directory Server offers performance and scalability improvements for Access Control
Instructions. The improvements include better memory management. The improvements also
include support for macro ACIs. Improvements notwithstanding, Directory Server uses
significant system resources to evaluate complex ACIs. Extensive use of complex ACIs can
therefore negatively impact performance.

Macro ACIs help you limit the number of ACIs used. By limiting the number of ACIs, you
render access control easier to manage and reduce the load on the system. Macros are
placeholders that represent a DN, or a portion of a DN, in an ACI. A macro can be used in an
ACI target, in an ACI bind rule, or in both. When Directory Server receives a request, it checks
which ACI macros match against the resource targeted for the resulting operation. If a macro
matches, Directory Server replaces it with the value of the actual DN. Directory Server then
evaluates the ACI normally.

How Directory Server Provides Access Control

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200866

Testing has demonstrated that a Directory Server instance can support more than 50,000 ACIs.
Nevertheless, keep the number of ACIs as small as possible. Keeping the number of ACIs small
limits negative impact on performance. Keeping the number small also reduces the complexity
of managing access controls. For deployments involving complex ACI environments, consider
using Directory Proxy Server to provide some access control features.

How Directory Server Provides Authentication
Authentication is the process of confirming an identity. In network interactions, authentication
involves the confident identification of one party by another party. Network interactions
typically take place between a client, such as browser software running on a personal computer,
and a server, such as the software and hardware used to host a Web site. Client authentication
refers to the confident identification of a client by a server; server authentication refers to the
confident identification of a server by a client.

For information about authentication, see the following sections:

■ “Anonymous Access” on page 67
■ “Password-Based Authentication” on page 68
■ “Certificate-based Authentication” on page 70
■ “SASL-based Authentication” on page 85
■ “Proxy Authorization” on page 86
■ “Account Inactivation” on page 87
■ “Global Account Lockout” on page 87

Anonymous Access
Anonymous access lets a user bind to the directory without providing authentication
credentials. With access control, you can give anonymous users whatever privileges you choose.
Often, anonymous users are allowed to read non-sensitive data from the directory, such as
names, telephone numbers, and email addresses.

You can also restrict the privileges of anonymous access, or limit anonymous access to a subset
of attributes that contain address book information. Anonymous access should not be allowed
for sensitive data.

In cases where anonymous users have access to something, you may want to prevent users who
fail to bind properly nevertheless being granted access as anonymous. See the
require-bind-pwd-enabled in server(5dsconf) for more information.

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 67

Password-Based Authentication
Simple password authentication offers an easy way of authenticating users. In password
authentication, the user must supply a password for each server, and the administrator must
keep track of the name and password for each user, typically on separate servers.

Steps in Password-Based Authentication
Figure 2–1 shows the steps involved in authenticating a client by using a name and password.
The figure assumes the following points.

■ The user has already decided to trust the system, either without authentication, or on the
basis of server authentication via SSL.

■ The user has requested a resource controlled by the server.
■ The server requires client authentication before permitting access to the requested resource.

In Figure 2–1, password authentication is performed in the following steps.

1. The user enters a name and password.
For the LDAP bind to Directory Server, the client application must bind with a
Distinguished Name. Therefore the client application may use the name entered by the user
to retrieve the DN.

2. The client sends the DN and password across the network.
3. The server determines whether the password sent from the client matches the password

stored for the entry with the DN sent from the client.
If so, the server accepts the credentials as evidence authenticating the user identity.

4. The server determines whether the identified user is permitted to access the requested
resource.
If so, the server allows the client to access the resource.

User enters name
and password.

Client sends name
and password
across network. Server uses password to

authenticate userʼs identity.

Directory Server

Server authorizes
access for
authenticated identity.

1

2

3

4

FIGURE 2–1 Password-Based Authentication

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200868

Password Policy
A password policy is a set of rules that govern how passwords are administered in a system.
Directory Server supports multiple password policies. The password policy can be configured to
suit the security requirements of your deployment.

Instances of Directory Server are created with a default password policy.

Types of Password Policy

Directory Server provides the following password policies.

Default password policy
The default password policy is defined in the configuration entry
cn=PasswordPolicy,cn=config. The default password policy applies to all accounts in the
directory except for the directory manager.

The parameters of the default policy can be modified to override the default settings.
However, because the default password policy is part of the configuration for the instance,
modifications to the default password policy cannot be replicated.

Specialized password policy
A password policy can be configured for an individual user or for set of users by using the
CoS and roles features. However, specialized password policies can not be applied to static
groups.

A specialized password policy is defined in a subentry in the directory tree. Like the default
password policy, the specialized password policy uses the pwdPolicy object class. For
example, the following entry defines a specialized password policy:

dn: cn=TempPolicy,dc=example,dc=com

objectClass: top

objectClass: pwdPolicy

objectClass: LDAPsubentry

cn: TempPolicy

pwdCheckQuality: 2

pwdLockout: on

pwdLockoutDuration: 300

pwdMaxFailure: 3

pwdMustChange: on

A specialized password policy can be assigned to a single user account or can be assigned to a
set of users by using roles. For example, in the following entry the password policy defined in
cn=TempPolicy,dc=example,dc=com is assigned to the pwdPolicySubentry attribute of the
user entry:

dn: uid=dmiller,ou=people,dc=example,dc=com

objectClasaccess controls: person

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 69

objectClass: top

sn: miller

cn: david

userPassword: secret12

pwdPolicySubentry: cn=TempPolicy,dc=example,dc=com

When referenced by a user entry, a specialized password policy overrides the default
password policy.

Because specialized password policies are defined the directory data, they can be replicated.

Configuration of Password Policy

For information about how to configure password policy, see Chapter 8, “Directory Server
Password Policy,” in Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide.

For information about the attributes used to configure password policies, see the
pwpolicy(5dssd) man page.

Certificate-based Authentication
For information about client authentication with certificates, see the following sections:

■ “Introduction to Certificate-based Authentication” on page 70
■ “Steps for Configuring Certificate-based Authentication” on page 72
■ “Certificates and Certificate Authorities (CA)” on page 72
■ “Types of Certificates” on page 79
■ “Contents of a Certificate” on page 80
■ “Certificate Management” on page 83

Introduction to Certificate-based Authentication
Figure 2–2 shows how certificates and the SSL protocol are used together for authentication. To
authenticate a user to a server, a client digitally signs a randomly generated piece of data and
sends both the certificate and the signed data across the network. For the purposes of this
discussion, the digital signature associated with some data can be thought of as evidence
provided by the client to the server. The server authenticates the user’s identity on the strength
of this evidence.

Like for password-based authentication illustrated in Figure 2–1, Figure 2–2 assumes that the
user has already decided to trust the server and has requested a resource. The server has
requested client authentication in the process of evaluating whether to grant access to the
requested resource.

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200870

Unlike for password-based authentication illustrated in Figure 2–1, Figure 2–2 requires the use
of SSL. In Figure 2–2 it is assumed that the client has a valid certificate that can be used to
identify the client to the server.

Certificate-based authentication is generally considered preferable to password-based
authentication because it is based on what the user has, the private key, as well as what the user
knows, the password that protects the private key. However, it’s important to note that these
two assumptions are true only if unauthorized personnel have not gained access to the user’s
machine or password, the password for the client software’s private key database has been set,
and the software is set up to request the password at reasonably frequent intervals.

Note – Neither password-based authentication nor certificate-based authentication address
security issues related to physical access to individual machines or passwords. Public-key
cryptography can only verify that a private key used to sign some data corresponds to the public
key in a certificate. It is the user’s responsibility to protect a machine’s physical security and to
keep the private-key password secret.

Certificates replace the authentication portion of the interaction between the client and the
server. Instead of requiring a user to send passwords across the network throughout the day,
single sign-on requires the user to enter the private-key database password just once, without
sending it across the network. For the rest of the session, the client presents the user’s certificate
to authenticate the user to each new server it encounters. Existing authorization mechanisms
based on the authenticated user identity are not affected.

User enters private-key
password.

Client sends certificate
and evidence across
network.

Server uses certificate and
evidence to authenticate
the userʼs identity.

Directory Server

Server authorizes
access for
authenticated identity.

1

3

Client retrieves private-key and uses it
to create “evidence” (digital signature).

2

4

5
SSL Connection

FIGURE 2–2 Certificate-Based Authentication

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 71

Steps for Configuring Certificate-based Authentication
In Figure 2–2, certificate-based authentication is set in the following steps.

1. The client software maintains a database of the private keys that correspond to the public
keys published in any certificates issued for that client. The client asks for the password to
this database the first time the client needs to access it during a given session—for example,
the first time the user attempts to access an SSL-enabled server that requires
certificate-based client authentication. After entering this password once, the user doesn’t
need to enter it again for the rest of the session, even when accessing other SSL-enabled
servers.

2. The client unlocks the private-key database, retrieves the private key for the user’s certificate,
and uses that private key to digitally sign some data that has been randomly generated for
this purpose on the basis of input from both the client and the server. This data and the
digital signature constitute “evidence” of the private key’s validity. The digital signature can
be created only with that private key and can be validated with the corresponding public key
against the signed data, which is unique to the SSL session.

3. The client sends both the user’s certificate and the evidence, the randomly generated piece of
data that has been digitally signed, across the network.

4. The server uses the certificate and the evidence to authenticate the user’s identity.
5. At this point the server may optionally perform other authentication tasks, such as checking

that the certificate presented by the client is stored in the user’s entry in an LDAP directory.
The server then continues to evaluate whether the identified user is permitted to access the
requested resource. This evaluation process can employ a variety of standard authorization
mechanisms, potentially using additional information in an LDAP directory, company
databases, and so on. If the result of the evaluation is positive, the server allows the client to
access the requested resource.

Certificates and Certificate Authorities (CA)
A certificate is an electronic document that identifies an individual, a server, a company, or
some other entity. A certificate also associates that identity with a public key. Like a driver’s
license, a passport, or other commonly used personal IDs, a certificate provides generally
recognized proof of someone's or something's identity.

Certificate authorities, CAs, validate identities and issue certificates. CAs can be independent
third parties or organizations that run their own certificate-issuing server software. The
methods used to validate an identity vary depending on the policies of a given CA. In general,
before issuing a certificate, the CA must use its published verification procedures for that type
of certificate to ensure that an entity requesting a certificate is in fact who it claims to be.

A certificate issued by a CA binds a particular public key to the name of the entity the certificate
identifies, such as the name of an employee or a server. Certificates help prevent the use of fake
public keys for impersonation. Only the public key certified by the certificate works with the
corresponding private key possessed by the entity identified by the certificate.

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200872

In addition to a public key, a certificate always includes the name of the entity it identifies, an
expiration date, the name of the CA that issued the certificate, a serial number, and other
information. Most importantly, a certificate always includes the digital signature of the issuing
CA. The CA’s digital signature allows the certificate to function as a “letter of introduction” for
users who know and trust the CA but don’t know the entity identified by the certificate.

Any client or server software that supports certificates maintains a collection of trusted CA
certificates. These CA certificates determine which other certificates the software can validate,
in other words, which issuers of certificates the software can trust. In the simplest case, the
software can validate only certificates issued by one of the CAs for which it has a certificate. It’s
also possible for a trusted CA certificate to be part of a chain of CA certificates, each issued by
the CA above it in a certificate hierarchy.

For information about CAs, see the following sections:

■ “CA Hierarchies” on page 73
■ “Certificate Chains” on page 74
■ “Verifying a Certificate Chain” on page 76

CA Hierarchies

In large organizations, it may be appropriate to delegate the responsibility for issuing
certificates to several different certificate authorities. For example, the number of certificates
required may be too large for a single CA to maintain; different organizational units may have
different policy requirements; or it may be important for a CA to be physically located in the
same geographic area as the people to whom it is issuing certificates.

It’s possible to delegate certificate-issuing responsibilities to subordinate CAs. The X.509
standard includes a model for setting up a hierarchy of CAs.

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 73

In this model, the root CA is at the top of the hierarchy. The root CA’s certificate is a self-signed
certificate. That is, the certificate is digitally signed by the same entity, the root CA, that the
certificate identifies. The CAs that are directly subordinate to the root CA have CA certificates
signed by the root CA. CAs under the subordinate CAs in the hierarchy have their CA
certificates signed by the higher-level subordinate CAs.

Organizations have a great deal of flexibility in terms of the way they set up their CA
hierarchies. Figure 2–3 shows just one example; many other arrangements are possible.

Certificate Chains

CA hierarchies are reflected in certificate chains. A certificate chain is a series of certificates
issued by successive CAs. Figure 2–4 shows a certificate chain leading from a certificate that
identifies some entity through two subordinate CA certificates to the CA certificate for the root
CA (based on the CA hierarchy shown in the following figure).

Marketing
CA

Engineering
CA

Root CA

Europe CA USA CAAsia CA

Sales CA

Certificate
Issued by
Engineering CA

Subordinate CA

FIGURE 2–3 Hierarchy of Certificate Authorities

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200874

A certificate chain traces a path of certificates from a branch in the hierarchy to the root of the
hierarchy. In a certificate chain, the following occur:

■ Each certificate is followed by the certificate of its issuer.
■ In Figure 2–4, the Engineering CA certificate contains the DN of the CA (that is, USA CA),

that issued that certificate. USA CA’s DN is also the subject name of the next certificate in the
chain.

■ Each certificate is signed with the private key of its issuer. The signature can be verified with
the public key in the issuer’s certificate, which is the next certificate in the chain.

In Figure 2–4, the public key in the certificate for the USA CA can be used to verify the USA CA’s
digital signature on the certificate for the Engineering CA.

Marketing
CA

Engineering
CA

Root CA

Europe CA USA CAAsia CA

Sales CA

Trusted Authority

Untrusted Authority

Program
Verifying the
Certificate

CA Certificate
Signed by
Self

CA Certificate
Signed by
Root CA

CA Certificate
Signed by
USA CA

Certificate
Issued by
Engineering CA

FIGURE 2–4 Certificate Chain

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 75

Verifying a Certificate Chain

Certificate chain verification is the process of making sure a given certificate chain is
well-formed, valid, properly signed, and trustworthy. Directory Server software uses the
following steps to form and verify a certificate chain, starting with the certificate being
presented for authentication:

1. The certificate validity period is checked against the current time provided by the verifier’s
system clock.

2. The issuer’s certificate is located. The source can be either the verifier’s local certificate
database (on that client or server) or the certificate chain provided by the subject (for
example, over an SSL connection).

3. The certificate signature is verified using the public key in the issuer certificate.

4. If the issuer’s certificate is trusted by the verifier in the verifier’s certificate database,
verification stops successfully here. Otherwise, the issuer’s certificate is checked to make
sure it contains the appropriate subordinate CA indication in the Directory Server
certificate type extension, and chain verification returns to step 1 to start again, but with this
new certificate.

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200876

Figure 2–5 shows what happens when only Root CA is included in the verifier’s local database. If
a certificate for one of the intermediate CAs shown in Figure 2–6, such as Engineering CA, is
found in the verifier’s local database, verification stops with that certificate, as shown in the
following figure.

Trusted Authority

Untrusted Authority

Program
Verifying the
Certificate

Root CA
Certificate

USA CA
Certificate

Check validity period and verify that this
is signed by Root CA. Since Root CA is
trusted, verification stops here.

Engineering
CA Certificate

Check validity period and verify that this
is signed by USA CA. Since USA CA is
not trusted, check the next certificate.

Check validity period and verify that this is
signed by Engineering CA. Since Engineering
CA is not trusted, check the next certificate.

Certificate
Issued by
Engineering CA

FIGURE 2–5 Verifying A Certificate Chain

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 77

Expired validity dates, an invalid signature, or the absence of a certificate for the issuing CA at
any point in the certificate chain causes authentication to fail. For example, the following figure
shows how verification fails if neither the Root CA certificate nor any of the intermediate CA
certificates are included in the verifier’s local database.

Trusted Authority

Program
verifying the

certificate

Engineering
CA Certificate

Check validity period and verify that this is
signed by Engineering CA. Since Engineering
CA is trusted, verification stops here.

Certificate
Issued by
Engineering CA

FIGURE 2–6 Verifying A Certificate Chain to an Intermediate CA

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200878

For general information about the way digital signatures work, see “Digital Signatures” on
page 99.

Types of Certificates
Directory Server uses the following types of certificate:

Client SSL certificates
Client SSL certificates are used to identify clients to servers via SSL (client authentication).
Typically, the identity of the client is assumed to be the same as the identity of a human
being, such as an employee in an enterprise. Client SSL certificates can also be used for form
signing and as part of a single sign-on solution.

For example, a bank gives a customer a client SSL certificate that allows the bank’s servers to
identify that customer and authorize access to the customer’s accounts. A company might

Untrusted Authority

Program
verifying the

certificate

USA CA
Certificate

Engineering
CA Certificate

Check validity period and verify that this
is signed by USA CA. Since USA CA is
not trusted, check the next certificate.

Check validity period and verify that this is
signed by Engineering CA. Since Engineering
CA is not trusted, check the next certificate.

Certificate
Issued by
Engineering CA

Check validity period and verify that this
is signed by Root CA. Since Root CA is
not trusted, certificate chain cannot be
verified and client authentication fails.

Root CA
Certificate

FIGURE 2–7 Certificate Chain That Cannot Be Verified

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 79

give a new employee a client SSL certificate that allows the company’s servers to identify that
employee and authorize access to the company’s servers.

Server SSL certificates
Server SSL certificates are used to identify servers to clients via SSL (server authentication).
Server authentication may be used with or without client authentication. Server
authentication is a requirement for an encrypted SSL session.

For example, internet sites that engage in electronic commerce usually support
certificate-based server authentication, at a minimum, to establish an encrypted SSL session
and to assure customers that they are dealing with a web site identified with a particular
company. The encrypted SSL session ensures that personal information sent over the
network, such as credit card numbers, cannot easily be intercepted.

S/MIME certificates
S/MIME certificates are used for signed and encrypted email. As with client SSL certificates,
the identity of the client is typically assumed to be the same as the identity of a human being,
such as an employee in an enterprise. A single certificate may be used as both an S/MIME
certificate and an SSL certificate. S/MIME certificates can also be used for form signing and
as part of a single sign-on solution.

For example, a company deploys combined S/MIME and SSL certificates solely for the
purpose of authenticating employee identities, thus permitting signed email and client SSL
authentication but not encrypted email. Another company issues S/MIME certificates solely
for the purpose of both signing and encrypting email that deals with sensitive financial or
legal matters.

Object-signing certificates
Object-signing certificates are used to identify signers of Java code, JavaScript scripts, or
other signed files.

For example, a software company signs software distributed over the Internet to provide
users with some assurance that the software is a legitimate product of that company. Using
certificates and digital signatures in this manner can also make it possible for users to
identify and control the kind of access downloaded software has to their computers.

CA certificates
CA certificates are used to identify CAs. Client and server software use CA certificates to
determine what other certificates can be trusted.

For example, the CA certificates stored in client software determine what other certificates
that client can authenticate. An administrator can implement some aspects of corporate
security policies by controlling the CA certificates stored in each user’s client.

Contents of a Certificate
The contents of certificates supported by Directory Server and many other software companies
are organized according to the X.509 v3 certificate specification, which has been recommended

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200880

by the International Telecommunications Union (ITU), an international standards body, since
1988. Examples in this section show samples of the data and signature sections of a certificate.

Every X.509 certificate consists of the following sections.

■ A data section, including the following information.
■ The version number of the X.509 standard supported by the certificate.
■ The certificate’s serial number. Every certificate issued by a CA has a serial number that

is unique among the certificates issued by that CA.
■ Information about the user’s public key, including the algorithm used and a

representation of the key itself.
■ The DN of the CA that issued the certificate.
■ The period during which the certificate is valid (for example, between 1:00 p.m. on

November 15, 2003 and 1:00 p.m. November 15, 2004).
■ The DN of the certificate subject (for example, in a client SSL certificate this would be the

user’s DN), also called the subject name.
■ Optional certificate extensions, which may provide additional data used by the client or

server. For example, the certificate type extension indicates the type of certificate—that
is, whether it is a client SSL certificate, a server SSL certificate, a certificate for signing
email, and so on. Certificate extensions can also be used for a variety of other purposes.

■ A signature section, includes the following information.
■ The cryptographic algorithm, or cipher, used by the issuing CA to create its own digital

signature.
■ The CA’s digital signature, obtained by hashing all of the data in the certificate together

and encrypting it with the CA's private key.

EXAMPLE 2–12 Data and Signature Sections of a Certificate in Human-Readable Format

Certificate:

Data:

Version: v3 (0x2)

Serial Number: 3 (0x3)

Signature Algorithm: PKCS #1 MD5 With RSA Encryption

Issuer: OU=Certificate Authority, O=Example Industry, C=US

Validity:

Not Before: Fri Oct 17 18:36:25 2003

Not After: Sun Oct 17 18:36:25 2004

Subject: CN=Jane Doe, OU=Finance, O=Example Industry, C=US

Subject Public Key Info:

Algorithm: PKCS #1 RSA Encryption

Public Key:

Modulus:

00:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:e6:2a:2a:86:

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 81

EXAMPLE 2–12 Data and Signature Sections of a Certificate in Human-Readable Format (Continued)

ed:27:40:4d:86:b3:05:c0:01:bb:50:15:c9:de:dc:85:19:22:

43:7d:45:6d:71:4e:17:3d:f0:36:4b:5b:7f:a8:51:a3:a1:00:

98:ce:7f:47:50:2c:93:36:7c:01:6e:cb:89:06:41:72:b5:e9:

73:49:38:76:ef:b6:8f:ac:49:bb:63:0f:9b:ff:16:2a:e3:0e:

9d:3b:af:ce:9a:3e:48:65:de:96:61:d5:0a:11:2a:a2:80:b0:

7d:d8:99:cb:0c:99:34:c9:ab:25:06:a8:31:ad:8c:4b:aa:54:

91:f4:15

Public Exponent: 65537 (0x10001)

Extensions:

Identifier: Certificate Type

Critical: no

Certified Usage:

SSL Client

Identifier: Authority Key Identifier

Critical: no

Key Identifier:

f2:f2:06:59:90:18:47:51:f5:89:33:5a:31:7a:e6:5c:fb:36:

26:c9

Signature:

Algorithm: PKCS #1 MD5 With RSA Encryption

Signature:

6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6c:01:69:8e:54:65:fc:06:

30:43:34:d1:63:1f:06:7d:c3:40:a8:2a:82:c1:a4:83:2a:fb:2e:8f:fb:

f0:6d:ff:75:a3:78:f7:52:47:46:62:97:1d:d9:c6:11:0a:02:a2:e0:cc:

2a:75:6c:8b:b6:9b:87:00:7d:7c:84:76:79:ba:f8:b4:d2:62:58:c3:c5:

b6:c1:43:ac:63:44:42:fd:af:c8:0f:2f:38:85:6d:d6:59:e8:41:42:a5:

4a:e5:26:38:ff:32:78:a1:38:f1:ed:dc:0d:31:d1:b0:6d:67:e9:46:a8:

d:c4

EXAMPLE 2–13 Certificate In the 64-Byte Encoded Form Interpreted by Software

-----BEGIN CERTIFICATE-----

MIICKzCCAZSgAwIBAgIBAzANBgkqhkiG9w0BAQQFADA3MQswCQYDVQQGEwJVUzER

MA8GA1UEChMITmV0c2NhcGUxFTATBgNVBAsTDFN1cHJpeWEncyBDQTAeFw05NzEw

MTgwMTM2MjVaFw05OTEwMTgwMTM2MjVaMEgxCzAJBgNVBAYTAlVTMREwDwYDVQQK

EwhOZXRzY2FwZTENMAsGA1UECxMEUHViczEXMBUGA1UEAxMOU3Vwcml5YSBTaGV0

dHkwgZ8wDQYJKoZIhvcNAQEFBQADgY0AMIGJAoGBAMr6eZiPGfjX3uRJgEjmKiqG

7SdATYazBcABu1AVyd7chRkiQ31FbXFOGD3wNktbf6hRo6EAmM5/R1AskzZ8AW7L

iQZBcrXpc0k4du+2Q6xJu2MPm/8WKuMOnTuvzpo+SGXelmHVChEqooCwfdiZywyZ

NMmrJgaoMa2MS6pUkfQVAgMBAAGjNjA0MBEGCWCGSAGG+EIBAQQEAwIAgDAfBgNV

HSMEGDAWgBTy8gZZkBhHUfWJM1oxeuZc+zYmyTANBgkqhkiG9w0BAQQFAAOBgQBt

I6/z07Z635DfzX4XbAFpjlRl/AYwQzTSYx8GfcNAqCqCwaSDKvsuj/vwbf91o3j3

UkdGYpcd2cYRCgKi4MwqdWyLtpuHAH18hHZ5uvi00mJYw8W2wUOsY0RC/a/IDy84

hW3WWehBUqVK5SY4/zJ4oTjx7dwNMdGwbWfpRqjd1A==

-----END CERTIFICATE-----

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200882

Certificate Management
The set of standards and services that facilitate the use of public-key cryptography and X.509 v3
certificates in a network environment is called thepublic key infrastructure (PKI). For
information about the certificate management issues addressed by Directory Server, see the
following sections:

■ “Issuing Certificates” on page 83
■ “Certificates and the LDAP Directory” on page 83
■ “Key Management” on page 84
■ “Renewal and Revocation of Certificates” on page 84
■ “Registration Authorities” on page 85

Issuing Certificates

The process for issuing a certificate depends on the certificate authority that issues it and the
purpose for which it is used. The process for issuing non-digital forms of identification varies in
similar ways. For example, if you want to get a generic ID card (not a driver’s license) from the
Department of Motor Vehicles in California, the requirements are straightforward: you need to
present some evidence of your identity, such as a utility bill with your address on it and a
student identity card. If you want to get a regular driving license, you also need to take a test — a
driving test when you first get the license, and a written test when you renew it. If you want to
get a commercial license for an eighteen-wheeler, the requirements are much more stringent. If
you live in some other state or country, the requirements for various kinds of licenses differ.

Similarly, different CAs have different procedures for issuing different kinds of certificates. In
some cases the only requirement may be your mail address. In other cases, your UNIX login and
password may be sufficient. At the other end of the scale, for certificates that identify people
who can authorize large expenditures or make other sensitive decisions, the issuing process may
require notarized documents, a background check, and a personal interview.

Depending on an organization’s policies, the process of issuing certificates can range from being
completely transparent for the user to requiring significant user participation and complex
procedures. In general, processes for issuing certificates should be highly flexible, so
organizations can tailor them to their changing needs.

Issuing certificates is one of several management tasks that can be handled by separate
Registration Authorities.

Certificates and the LDAP Directory

The Lightweight Directory Access Protocol (LDAP) for accessing directory services supports
great flexibility in the management of certificates within an organization. System
administrators can store much of the information required to manage certificates in an
LDAP-compliant directory. For example, a CA can use information in a directory to
pre-populate a certificate with a new employee’s legal name and other information. The CA can

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 83

leverage directory information in other ways to issue certificates one at a time or in bulk, using a
range of different identification techniques depending on the security policies of a given
organization. Other routine management tasks, such as key management and renewing and
revoking certificates, can be partially or fully automated with the aid of the directory.

Information stored in the directory can also be used with certificates to control access to various
network resources by different users or groups. Issuing certificates and other certificate
management tasks can thus be an integral part of user and group management.

Key Management
Before a certificate can be issued, the public key it contains and the corresponding private key
must be generated. Sometimes it may be useful to issue a single person one certificate and key
pair for signing operations, and another certificate and key pair for encryption operations.
Separate signing and encryption certificates make it possible to keep the private signing key on
the local machine only, thus providing maximum nonrepudiation, and to back up the private
encryption key in some central location where it can be retrieved in case the user loses the
original key or leaves the company.

Keys can be generated by client software or generated centrally by the CA and distributed to
users via an LDAP directory. There are trade-offs involved in choosing between local and
centralized key generation. For example, local key generation provides maximum
nonrepudiation, but may involve more participation by the user in the issuing process. Flexible
key management capabilities are essential for most organizations.

Key recovery, or the ability to retrieve backups of encryption keys under carefully defined
conditions, can be a crucial part of certificate management (depending on how an organization
uses certificates). Key recovery schemes usually involve an m of n mechanism: for example, m of
n managers within an organization might have to agree, and each contribute a special code or
key of their own, before a particular person’s encryption key can be recovered. This kind of
mechanism ensures that several authorized personnel must agree before an encryption key can
be recovered.

Renewal and Revocation of Certificates
Like a driver’s license, a certificate specifies a period of time during which it is valid. Attempts to
use a certificate for authentication before or after its validity period fails. Therefore,
mechanisms for managing certificate renewal are essential for any certificate management
strategy. For example, an administrator may wish to be notified automatically when a certificate
is about to expire, so that an appropriate renewal process can be completed in plenty of time
without causing the certificate’s subject any inconvenience. The renewal process may involve
reusing the same public-private key pair or issuing a new one.

A driver’s license can be suspended even if it has not expired—for example, as punishment for a
serious driving offense. Similarly, it’s sometimes necessary to revoke a certificate before it has
expired—for example, if an employee leaves a company or moves to a new job within the
company.

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200884

Certificate revocation can be handled in several different ways. For some organizations, it may
be sufficient to set up servers so that the authentication process includes checking the directory
for the presence of the certificate being presented. When an administrator revokes a certificate,
the certificate can be automatically removed from the directory, and subsequent authentication
attempts with that certificate fails even though the certificate remains valid in every other
respect. Another approach involves publishing a certificate revocation list (CRL)—that is, a list
of revoked certificates—to the directory at regular intervals and checking the list as part of the
authentication process. For some organizations, it may be preferable to check directly with the
issuing CA each time a certificate is presented for authentication. This procedure is sometimes
called real-time status checking.

Registration Authorities
Interactions between entities identified by certificates (sometimes called end entities) and CAs
are an essential part of certificate management. These interactions include operations such as
registration for certification, certificate retrieval, certificate renewal, certificate revocation, and
key backup and recovery. In general, a CA must be able to authenticate the identities of end
entities before responding to the requests. In addition, some requests need to be approved by
authorized administrators or managers before being serviced.

As previously discussed, the means used by different CAs to verify an identity before issuing a
certificate can vary widely, depending on the organization and the purpose for which the
certificate is used. To provide maximum operational flexibility, interactions with end entities
can be separated from the other functions of a CA and handled by a separate service called a
Registration Authority RA.

An RA acts as a front end to a CA by receiving end entity requests, authenticating them, and
forwarding them to the CA. After receiving a response from the CA, the RA notifies the end
entity of the results. RAs can be helpful in scaling a PKI across different departments,
geographical areas, or other operational units with varying policies and authentication
requirements.

SASL-based Authentication
Client authentication during an SSL or TLS connection can also use the Simple Authentication
and Security Layer (SASL). Directory Server supports the following SASL mechanisms.

DIGEST-MD5 The DIGEST-MD5 mechanism authenticates clients by comparing a hashed
value sent by the client with a hash of the user's password. However, because
the mechanism must read user passwords, all users wishing to be
authenticated through DIGEST-MD5 must have clear text passwords in the
directory.

GSSAPI GSSAPI is available on the Solaris Operating System only. The General
Security Services API (GSSAPI) allows Directory Server to interact with the
Kerberos V5 security system to identify a user. The client application must

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 85

present its credentials to the Kerberos system, which in turn validates the
user's identity to Directory Server.

For information about how to configure SASL-based authentication, see “Configuring
Credential Levels and Authentication Methods” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

Proxy Authorization
Proxy authorization allows requests from clients to be processed with a proxy identity instead of
the identity of the client. A client, binding with its own identity is granted, through proxy
authorization, the rights of a proxy user. The Access Control Instructions (ACIs) of the proxy
user, not the ACIs of the client, are evaluated to allow or deny the operation.

Before performing an operation with proxy authorization, the account of the proxy user is
validated. If the proxy user account is locked out, inactivated, if the password has been reset or
has expired the client operation is aborted.

By using proxy authorization, an LDAP application can use a single bind to service multiple
users who are making requests against Directory Server. Instead of having to bind and
authenticate for each user, the client application binds to Directory Server and uses proxy
rights.

The following conditions must be satisfied in order to use proxy authorization:

■ The Directory Server must be configured with appropriate ACIs for the proxy identity.
For example, the following ACI gives the administrator the ALL access right:

aci: (targetattr="*") (version 3.0; acl "allowAll-Admin";
allow (all) userdn="ldap:///uid=Administrator,
ou=Administrators, dc=example,dc=com";)

■ The Directory Server must be configured with permission for proxy identity to act as the
proxy for other users.
For example, the following ACI gives the administrator the right to act as the proxy for the
user ClientApplication:

aci: (targetattr="*") (version 3.0; acl "allowproxy-
accountingsoftware"; allow (proxy) userdn=

"ldap:///dn:uid=ClientApplication,ou=Applications,
dc=example,dc=com";)

The following sample shows the user ClientApplication performing a search operation by
using the Administrator proxy identity:

How Directory Server Provides Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200886

$ ldapsearch \

-D "uid=ClientApplication,ou=Applications,dc=example,dc=com" \

-w password \

-y "uid=Administrator,ou=Administrators,dc=example,dc=com" ...

Note that the client binds as itself, but is granted the privileges of the proxy entry. The client
does not need the password of the proxy entry.

Proxy rights can be granted to any user except the Directory Manager.

For information about how to configure proxy authorization, see “Proxy Authorization” in Sun
Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Account Inactivation
A user account or a set of accounts can be inactivated temporarily or indefinitely by using the
ns-inactivate(1M) command. When the account is inactivated, the user cannot bind to
Directory Server. This feature is called account inactivation.

User accounts and roles can be inactivated. When a role is inactivated, the members of the role
are inactivated, not the role itself.

For information about how to configure account inactivation, see “Manually Locking
Accounts” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Global Account Lockout
Depending on the password policy settings, a client account can be locked out of an account
when the number of failed bind attempts exceeds the number of allowed bind attempts. In a
replicated topology the client is locked out of all instances of Directory Server, not just the
instance to which the client was attempting to bind. This feature is called global account lockout.

In versions of Directory Server prior to Directory Server 6, account lockout was based on
integer counters. By default, these counters were not replicated.

In this version of the product, bind failures are recorded by using timestamps. By default, the
timestamps are replicated, and prioritized replication is used to replicate updates to the lockout
data that are caused by failed bind requests.

How Directory Server Provides Authentication

Chapter 2 • Directory Server Security 87

Global account lockout can be used in the following scenarios:

■ When replication is used to propagate bind failures
Bind requests must not be directed to read-only consumers. When a client fails to bind to a
read-only consumer, the lockout data is not replicated. Therefore, if a bind request fails on a
read-only consumer, the lockout data is updated on that instance only and is not replicated
across the topology.
Even if all bind attempts are directed at master replicas, the client might be able to perform
bind attempts on multiple servers faster than the lockout data can be replicated. In this way,
a client can exceed the limit on failed bind attempts for the password policy. Note that this
risk is present even though bind failures are replicated by using prioritized replication.

■ When Directory Proxy Server manages the routing of bind operations
The Directory Proxy Server can achieve global account lockout by using the hash algorithm
for load-balancing to route all bind requests for a given account to the same Directory
Server. For information about using the hash algorithm for global account lockout, see
“Operational Affinity Algorithm for Global Account Lockout” on page 266.

How Directory Server Provides Encryption
For information about how Directory Server encrypts data, see the following sections:

■ “Secure Sockets Layer (SSL)” on page 88
■ “Digital Signatures” on page 99
■ “Key Encryption” on page 101
■ “Attribute Encryption” on page 103

Secure Sockets Layer (SSL)
SSL provides encrypted communications and optional authentication between a Directory
Server and its clients. SSL can be used over LDAP or DSML over HTTP. SSL is enabled by
default over LDAP and can be enabled for DSML over HTTP.

Replication can be configured to use SSL for secure communications between servers. When
replication is configured to use SSL, data sent to and from the server is encrypted by using SSL.

By default, Directory Server allows simultaneous unsecured and secure communications, suing
different port numbers. Unsecured LDAP communications are handled on one port,
conventionally port number 389. Secure LDAP communications are handled on another port,
conventionally port number 636.

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200888

For security reasons, you can also restrict all communications to the secure port. Client
authentication is also configurable. You can set client authentication to required or allowed.
This setting determines the level of security you enforce.

SSL enables support for the Start TLS extended operation that provides security on a regular
LDAP connection. Clients can bind to the non-SSL port and then use the Transport Layer
Security protocol to initiate an SSL connection. The Start TLS operation allows more flexibility
for clients, and can help simplify port allocation.

For information about SSL, see the following sections:

■ “Overview of SSL” on page 89
■ “Cryptographic Algorithms Used With SSL” on page 90
■ “SSL Handshake” on page 91

Overview of SSL
TCP/IP governs the transport and routing of data over the Internet. Other protocols, such as
the HTTP, LDAP, or IMAP use TCP/IP to support typical application tasks such as displaying
web pages or running mail servers.

The SSL protocol runs above TCP/IP and below higher-level protocols such as HTTP or IMAP.
It uses TCP/IP on behalf of the higher-level protocols, and in the process allows an SSL-enabled
server to authenticate itself to an SSL-enabled client, allows the client to authenticate itself to the
server, and allows both machines to establish an encrypted connection.

SSL addresses the following concerns about communication over the Internet and other
TCP/IP networks:

SSL server authentication allows a user to confirm a server’s identity.
SSL-enabled client software can use standard techniques of public-key cryptography to
check that a server’s certificate and public ID are valid and have been issued by a certificate
authority (CA) listed in the client’s list of trusted CAs. This confirmation might be important
if the user, for example, is sending a credit card number over the network and wants to check
the receiving server’s identity.

Secure Sockets Layer

TCP/IP Layer

HTTP LDAP IMAP . . .

Network Layer

Application Layer

FIGURE 2–8 Where SSL Runs

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 89

SSL client authentication allows a server to confirm a user’s identity.
Using the same techniques as those used for server authentication, SSL-enabled server
software can check that a client’s certificate and public ID are valid and have been issued by a
certificate authority (CA) listed in the server’s list of trusted CAs. This confirmation might be
important if the server, for example, is a bank sending confidential financial information to a
customer and wants to check the recipient’s identity.

An encrypted SSL connection requires all information sent between a client and a server to be
encrypted by the sending software and decrypted by the receiving software, thus providing a
high degree of confidentiality.

Confidentiality is important for both parties to any private transaction. In addition, all data
sent over an encrypted SSL connection is protected with a mechanism for detecting
tampering—that is, for automatically determining whether the data has been altered in
transit.

The SSL protocol includes two sub-protocols: the SSL record protocol and the SSL
handshake protocol.

The SSL record protocol defines the format used to transmit data. The SSL handshake
protocol involves using the SSL record protocol to exchange a series of messages between an
SSL-enabled server and an SSL-enabled client when they first establish an SSL connection.
This exchange of messages is designed to facilitate the following actions:
■ Authenticate the server to the client.
■ Allow the client and server to select the cryptographic algorithms, or ciphers, that they

both support.
■ Optionally authenticate the client to the server.
■ Use public-key encryption techniques to generate shared secrets.
■ Establish an encrypted SSL connection.

For more information about the handshake process, see “SSL Handshake” on page 91.

Cryptographic Algorithms Used With SSL
Cipher suites define the following aspects of SSL communication:
■ The key exchange Algorithm
■ The encryption cipher
■ The encryption cipher key length
■ The message authentication method

The SSL protocol supports many ciphers. Clients and servers can support different cipher
suites, depending on factors such as the version of SSL they support, and company policies
regarding acceptable encryption strength. The SSL handshake protocol determines how the
server and client negotiate which cipher suites they use to authenticate each other, to transmit
certificates, and to establish session keys.

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200890

SSL 2.0 and SSL 3.0 protocols support overlapping sets of cipher suites. Administrators can
enable or disable any of the supported cipher suites for both clients and servers. When a client
and server exchange information during the SSL handshake, they identify the strongest enabled
cipher suites they have in common and use those for the SSL session. Decisions about which
cipher suites to enable depend on the sensitivity of the data involved, the speed of the cipher,
and the applicability of export rules.

Key-exchange algorithms like KEA and RSA govern the way in which a server and client
determine the symmetric keys they use during an SSL session. The most commonly used SSL
cipher suites use the RSA key exchange.

The list of ciphers enabled for Directory Server, and also the list of ciphers supported by
Directory Server can be obtained with the dsconf command. For information about using the
dsconf command to list available ciphers and manage ciphers, see “Choosing Encryption
Ciphers” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Support for ciphers is provided by the Network Security Services, NSS, component. For details
about NSS, see theNSS project site
(http://www.mozilla.org/projects/security/pki/nss/).

SSL Handshake
The SSL protocol uses a combination of public-key and symmetric key encryption. Symmetric
key encryption is much faster than public-key encryption, but public-key encryption provides
better authentication techniques. An SSL session always begins with an exchange of messages
called the SSL handshake. The handshake allows the server to authenticate itself to the client by
using public-key techniques, and then allows the client and the server to cooperate in the
creation of symmetric keys used for rapid encryption, decryption, and tamper detection.
Optionally, the handshake also allows the client to authenticate itself to the server.

For information about the SSL handshake, see the following sections:

■ “Messages Exchanged During SSL Handshake” on page 91
■ “Server Authentication During SSL Handshake” on page 93
■ “Man-In-the-Middle Attack” on page 95
■ “Client Authentication During SSL Handshake” on page 96

Messages Exchanged During SSL Handshake

The following steps describes the sequence of messages exchanged during an SSL handshake.
These step describe the programmatic details of the messages exchanged during the SSL
handshake.

1. The client sends the server the client’s SSL version number, cipher settings, randomly
generated data, and other information the server needs to communicate with the client
using SSL.

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 91

http://www.mozilla.org/projects/security/pki/nss/
http://www.mozilla.org/projects/security/pki/nss/

2. The server sends the client the server’s SSL version number, cipher settings, randomly
generated data, and other information the client needs to communicate with the server over
SSL. The server also sends its own certificate and, if the client is requesting a server resource
that requires client authentication, requests the client’s certificate.

3. The client uses some of the information sent by the server to authenticate the server. For
details, see “Server Authentication During SSL Handshake” on page 93. If the server cannot
be authenticated, the user is warned of the problem and informed that an encrypted and
authenticated connection cannot be established. If the server can be successfully
authenticated, the client goes on to Step 4.

4. Using all data generated in the handshake so far, the client, with the cooperation of the
server, depending on the cipher being used, creates the pre-master secret for the session,
encrypts it with the server’s public key, obtained from the server’s certificate, sent in Step 2,
and sends the encrypted pre-master secret to the server.

5. If the server has requested client authentication (an optional step in the handshake), the
client also signs another piece of data that is unique to this handshake and known by both
the client and server. In this case the client sends both the signed data and the client’s own
certificate to the server along with the encrypted pre-master secret.

6. If the server has requested client authentication, the server attempts to authenticate the
client. For details, see “Server Authentication During SSL Handshake” on page 93. If the
client cannot be authenticated, the session is terminated. If the client can be successfully
authenticated, the server uses its private key to decrypt the pre-master secret, then performs
a series of steps (which the client also performs, starting from the same pre-master secret) to
generate the master secret.

7. Both the client and the server use the master secret to generate the session keys, which are
symmetric keys used to encrypt and decrypt information exchanged during the SSL session
and to verify its integrity—that is, to detect changes in the data between the time it was sent
and the time it is received over the SSL connection.

8. The client sends a message to the server informing it that future messages from the client are
encrypted with the session key. It then sends a separate (encrypted) message indicating that
the client portion of the handshake is finished.

9. The server sends a message to the client informing it that future messages from the server
are encrypted with the session key. It then sends a separate (encrypted) message indicating
that the server portion of the handshake is finished.

10. The SSL handshake is now complete, and the SSL session has begun. The client and the
server use the session keys to encrypt and decrypt the data they send to each other and to
validate its integrity.

Before continuing with a session, directory servers can be configured to check that the client’s
certificate is present in the user’s entry in an LDAP directory. This configuration option
provides one way of ensuring that the client’s certificate has not been revoked.

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200892

Both client and server authentication involve encrypting some piece of data with one key of a
public-private key pair and decrypting it with the other key:

■ In the case of server authentication, the client encrypts the pre-master secret with the
server’s public key. Only the corresponding private key can correctly decrypt the secret, so
the client has some assurance that the identity associated with the public key is in fact the
server with which the client is connected. Otherwise, the server cannot decrypt the
pre-master secret and cannot generate the symmetric keys required for the session, and the
session is terminated.

■ In the case of client authentication, the client encrypts some random data with the client’s
private key—that is, it creates a digital signature. The public key in the client’s certificate can
correctly validate the digital signature only if the corresponding private key was used.
Otherwise, the server cannot validate the digital signature and the session is terminated.

Server Authentication During SSL Handshake

SSL-enabled client software always requires server authentication, or cryptographic validation
by a client of the server’s identity. The server sends the client a certificate to authenticate itself.
The client uses the certificate to authenticate the identity the certificate claims to represent.

To authenticate the binding between a public key and the server identified by the certificate that
contains the public key, an SSL-enabled client must receive a yes answer to the four questions
shown in the following figure.

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 93

An SSL-enabled client goes through the following steps to authenticate a server’s identity:

1. Is today’s date within the validity period?

Server s
Public Key

Certificate s
Serial Number

Certificate s
Validity Period

Server s DN

Issuer s DN

Server s
Certificate

Issuer s Digital
Signature

Issuer s
Public Key

Issuer s DN

Issuing CA s
Certificate

Client s List of
Trusted CAs

Issuer s Digital
Signature

Is today s date within
validity period?

.

.

.

.

.

.

1

Does issuing CAs public key
validate issuer's digital signature?

3

Does the domain name specified
in the server s DN match the
server s actual domain name?

4

Is issuing CA a trusted CA?2

FIGURE 2–9 Authenticating a Client Certificate During SSL Handshake

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200894

The client checks the server certificate’s validity period. If the current date and time are
outside of that range, the authentication process won’t go any further. If the current date
and time are within the certificate’s validity period, the client goes on to the next step.

2. Is the issuing CA a trusted CA?
Each SSL-enabled client maintains a list of trusted CA certificates, represented by the
shaded area on the right—hand side of Figure 2–9. This list determines which server
certificates the client accepts. If the distinguished name (DN) of the issuing CA matches the
DN of a CA on the client’s list of trusted CAs, the answer to this question is yes, and the
client goes on to the next step. If the issuing CA is not on the list, the server is not
authenticated unless the client can verify a certificate chain ending in a CA that is on the list.

3. Does the issuing CA’s public key validate the issuer’s digital signature?
The client uses the public key from the CA’s certificate (which it found in its list of trusted
CAs in step 2) to validate the CA’s digital signature on the server certificate being presented.
If the information in the server certificate has changed since it was signed by the CA or if the
CA certificate’s public key doesn’t correspond to the private key used by the CA to sign the
server certificate, the client won’t authenticate the server’s identity. If the CA’s digital
signature can be validated, the server treats the user’s certificate as a valid “letter of
introduction” from that CA and proceeds. At this point, the client has determined that the
server certificate is valid.

4. Does the domain name in the server’s certificate match the domain name of the server itself?
This step confirms that the server is actually located at the same network address specified
by the domain name in the server certificate. Although step 4 is not technically part of the
SSL protocol, it provides the only protection against a form of security attack known as
man-in-the-middle. Clients must perform this step and must refuse to authenticate the
server or establish a connection if the domain names don’t match. If the server’s actual
domain name matches the domain name in the server certificate, the client goes on to the
next step.

5. The server is authenticated.
The client proceeds with the SSL handshake. If the client doesn’t get to step 5 for any reason,
the server identified by the certificate cannot be authenticated, and the user is warned of the
problem and informed that an encrypted and authenticated connection cannot be
established. If the server requires client authentication, the server performs the steps
described in “Client Authentication During SSL Handshake” on page 96.

After the steps described here, the server must successfully use its private key to decrypt the
pre-master secret sent by the client.

Man-In-the-Middle Attack

The man-in-the-middle is a rogue program that intercepts all communication between the
client and a server with which the client is attempting to communicate via SSL. The rogue

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 95

program intercepts the legitimate keys that are passed back and forth during the SSL
handshake, substitutes its own, and makes it appear to the client that it is the server, and to the
server that it is the client.

The encrypted information exchanged at the beginning of the SSL handshake is actually
encrypted with the rogue program’s public key or private key, rather than the client’s or server’s
real keys. The rogue program ends up establishing one set of session keys for use with the real
server, and a different set of session keys for use with the client. This allows the rogue program
not only to read all the data that flows between the client and the real server, but also to change
the data without being deleted. Therefore, it is extremely important for the client to check that
the domain name in the server certificate corresponds to the domain name of the server with
which a client is attempting to communicate—in addition to checking the validity of the
certificate by performing the other steps described in “Server Authentication During SSL
Handshake” on page 93

Client Authentication During SSL Handshake

SSL-enabled servers can be configured to require client authentication, or cryptographic
validation by the server of the client’s identity. When a server configured this way requests client
authentication separate piece of digitally signed data to authenticate itself. The server uses the
digitally signed data to validate the public key in the certificate and to authenticate the identity
the certificate claims to represent.

The SSL protocol requires the client to create a digital signature by creating a one-way hash
from data generated randomly during the handshake and known only to the client and server.
The hash of the data is then encrypted with the private key that corresponds to the public key in
the certificate being presented to the server.

To authenticate the binding between the public key and the person or other entity identified by
the certificate that contains the public key, an SSL-enabled server must receive a yes answer to
the first four questions shown in Figure 2–10. Although the fifth question is not part of the SSL
protocol, directory servers can be configured to support this requirement to take advantage of
the user entry in an LDAP directory as part of the authentication process.

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200896

An SSL-enabled server goes through the following steps to authenticate a user’s identity:

1. Does the user’s public key validate the user’s digital signature?

John Doe s
Public Key

Certificate s
Serial Number

Certificate s
Validity Period

John Doe s DN

Issuer s DN

John Doe s
Certificate

Issuer s Digital
Signature

Issuer s
Public Key

Issuer s DN

Issuing CA s
Certificate

Server s List of
Trusted CAs

Issuer s Digital
Signature

Is today s date within
validity period?

.

.

.

.

.

.

2

Does issuing CAs public key
validate issuer's digital signature?

4

Is user's certificate
listed in LDAP entry
for user?

5

Is issuing CA a trusted CA?3

Random Data

John Doe s
Digital Signature

Does user s public
key validate user s
digital signature?

1

Directory
Server

FIGURE 2–10 Authentication and Verification During SSL Handshake

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 97

The server checks that the user’s digital signature can be validated with the public key in the
certificate. If so, the server has established that the public key asserted to belong to John Doe
matches the private key used to create the signature and that the data has not been tampered
with since it was signed.

At this point, however, the binding between the public key and the DN specified in the
certificate has not yet been established. The certificate might have been created by someone
attempting to impersonate the user. To validate the binding between the public key and the
DN, the server must also complete steps 3 and 4 in this list.

2. Is today’s date within the validity period?

The server checks the certificate’s validity period. If the current date and time are outside of
that range, the authentication process won’t go any further. If the current date and time are
within the certificate’s validity period, the server goes onto the next step.

3. Is the issuing CA a trusted CA?

Each SSL-enabled server maintains a list of trusted CA certificates, represented by the
shaded area on the right—hand side of Figure 2–10. This list determines which certificates
the server accepts. If the DN of the issuing CA matches the DN of a CA on the server’s list of
trusted CAs, the answer to this question is yes, and the server goes on to the next step. If the
issuing CA is not on the list, the client is not authenticated unless the server can verify a
certificate chain ending in a CA that is trusted or not trusted within their organizations by
controlling the lists of CA certificates maintained by clients and servers.

4. Does the issuing CA’s public key validate the issuer’s digital signature?

The server uses the public key from the CA’s certificate (which it found in its list of trusted
CAs in the previous step) to validate the CA’s digital signature on the certificate being
presented. If the information in the certificate has changed since it was signed by the CA or
if the public key in the CA certificate doesn’t correspond to the private key used by the CA to
sign the certificate, the server won’t authenticate the user’s identity. If the CA’s digital
signature can be validated, the server treats the user’s certificate as a valid “letter of
introduction” from that CA and proceeds. At this point, the SSL protocol allows the server
to consider the client authenticated and proceed with the connection as described in step 6.
The directory servers may optionally be configured to perform step 5 before step 6.

5. Is the user’s certificate listed in the LDAP entry for the user?

This optional step provides one way for a system administrator to revoke a user’s certificate
even if it passes the tests in all the other steps. The Certificate Management System can
automatically remove a revoked certificate from the user’s entry in the LDAP directory. All
servers that are set up to perform this step then refuses to authenticate that certificate or
establish a connection. If the user’s certificate in the directory is identical to the user’s
certificate presented in the SSL handshake, the server goes on to the next step.

6. Is the authenticated client authorized to access the requested resources?

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 200898

The server checks what resources the client is permitted to access according to the server’s
access control lists (ACLs) and establishes a connection with appropriate access. If the server
doesn’t get to step 6 for any reason, the user identified by the certificate cannot be
authenticated, and the user is not allowed to access any server resources that require
authentication.

Digital Signatures
Digital signatures can be used by Directory Server to maintain integrity of information. If
encryption and message digests are applied to the information being sent, the recipient can
determine that the information was not tampered with during transit.

Tamper detection and related authentication techniques rely on a mathematical function called
a one-way hash. This function is also called a message digest. A one-way hash is a number of
fixed length with the following characteristics:

■ The value of the hash is unique for the hashed data. Any change in the data, even deleting or
altering a single character, results in a different value.

■ The content of the hashed data cannot, for all practical purposes, be deduced from the hash
— which is why it is called one-way.

It is possible to use a private key for encryption and a public key for decryption. Although this is
not desirable when you are encrypting sensitive information, it is a crucial part of digitally
signing any data. Instead of encrypting the data itself, the signing software creates a one-way
hash of the data, then uses your private key to encrypt the hash. The encrypted hash, along with
other information, such as the hashing algorithm, is known as a digital signature. Figure 2–11
shows two items transferred to the recipient of some signed data.

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 99

In Figure 2–11, the original data and the digital signature, which is basically a one-way hash (of
the original data) that has been encrypted with the signer's private key. To validate the integrity
of the data, the receiving software first uses the signer’s public key to decrypt the hash. It then
uses the same hashing algorithm that generated the original hash to generate a new one-way
hash of the same data. (Information about the hashing algorithm used is sent with the digital
signature, although this isn’t shown in the figure.) Finally, the receiving software compares the
new hash against the original hash. If the two hashes match, the data has not changed since it
was signed. If they don’t match, the data may have been tampered with since it was signed, or
the signature may have been created with a private key that doesn’t correspond to the public key
presented by the signer.

If the two hashes match, the recipient can be certain that the public key used to decrypt the
digital signature corresponds to the private key used to create the digital signature. Confirming
the identity of the signer, however, also requires some way of confirming that the public key
really belongs to a particular person or other entity.

The significance of a digital signature is comparable to the significance of a handwritten
signature. Once you have signed some data, it is difficult to deny doing so later — assuming that
the private key has not been compromised or out of the owner’s control. This quality of digital
signatures provides a high degree of nonrepudiation — that is, digital signatures make it
difficult for the signer to deny having signed the data. In some situations, a digital signature may
be as legally binding as a handwritten signature.

Original
Data

Original
Data

Encryption

Private
Key

Decryption

One-way
Hash

Digital
Signature

Hashing
Algorithm

One-way
Hash

One-way
Hash

Digital
Signature

Hashing
Algorithm

Identical Hashes
 Validate Data Integrity

Network

Private
Key

FIGURE 2–11 Digital Signatures

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008100

Key Encryption
With most modern cryptography, the ability to keep encrypted information secret is based not
on the cryptographic algorithm, which is widely known, but on a key. A key is a number that
must be used with the algorithm to produce an encrypted result or to decrypt previously
encrypted information. For information about encryption and decryption with keys, see the
following sections:

■ “Symmetric-Key Encryption” on page 101
■ “Public-Key Encryption” on page 102
■ “Key Length and Encryption Strength” on page 103

Symmetric-Key Encryption
With symmetric-key encryption, the encryption key can be calculated from the decryption key,
and vice versa. With most symmetric algorithms, the same key is used for both encryption and
decryption. The following figure shows a symmetric-key encryption.

Implementations of symmetric-key encryption can be highly efficient, so that users do not
experience any significant time delay as a result of the encryption and decryption.
Symmetric-key encryption also provides a degree of authentication, since information
encrypted with one symmetric key cannot be decrypted with any other symmetric key. Thus, as
long as the symmetric key is kept secret by the two parties using it to encrypt communications,
each party can be sure that it is communicating with the other as long as the decrypted messages
continue to make sense.

Symmetric-key encryption is effective only if the symmetric key is kept secret by the two parties
involved. If anyone else discovers the key, it affects both confidentiality and authentication. A
person with an unauthorized symmetric key not only can decrypt messages sent with that key,
but can encrypt new messages and send them as if they came from one of the two parties who
were originally using the key.

Symmetric-key encryption plays an important role in the SSL protocol, which is widely used for
authentication, tamper detection, and encryption over TCP/IP networks. SSL also uses
techniques of public-key encryption, which is described in the next section.

Original
Data

Scrambled
Data

Encryption
Key

Original
Data

Decryption Key =
f(encryption) key

FIGURE 2–12 Symmetric-Key Encryption

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 101

Public-Key Encryption
The most commonly used implementations of public-key encryption are based on algorithms
patented by RSA Data Security. Therefore, this section describes the RSA approach to
public-key encryption.

Public-key encryption (also called asymmetric encryption) involves a pair of keys—a public key
and a private key—associated with an entity that needs to authenticate its identity electronically
or to sign or encrypt data. Each public key is published, and the corresponding private key is
kept secret. The following figure shows a simplified view of the way public-key encryption
works.

Public—key encryption lets you distribute a public key, and only you can read data encrypted
by this key. In general, to send encrypted data to someone, you encrypt the data with that
person’s public key, and the person receiving the encrypted data decrypts it with the
corresponding private key.

Compared with symmetric-key encryption, public-key encryption requires more computation
and is therefore not always appropriate for large amounts of data. However, it’s possible to use
public-key encryption to send a symmetric key, which can then be used to encrypt additional
data. This is the approach used by the SSL protocol.

As it happens, the reverse of the scheme shown in Figure 2–13 also works: data encrypted with
your private key can be decrypted with your public key only. This would not be a desirable way
to encrypt sensitive data, however, because it means that anyone with your public key, which is
by definition published, could decrypt the data. Nevertheless, private-key encryption is useful,
because it means you can use your private key to sign data with your digital signature—an
important requirement for electronic commerce and other commercial applications of
cryptography. Client software can then use your public key to confirm that the message was
signed with your private key and that it hasn’t been tampered with since being signed. “Digital
Signatures” on page 99 on “Digital Signatures” on page 99 and subsequent sections describe
how this confirmation process works.

Original
Data

Scrambled
Data

Encryption

Public
Key

Original
Data

Decryption

Private
Key

FIGURE 2–13 Public-Key Encryption

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008102

Key Length and Encryption Strength
The strength of encryption is related to the difficulty of discovering the key, which in turn
depends on both the cipher used and the length of the key. For example, the difficulty of
discovering the key for the RSA cipher most commonly used for public-key encryption depends
on the difficulty of factoring large numbers, a well-known mathematical problem.

Encryption strength is often described in terms of the size of the keys used to perform the
encryption: in general, longer keys provide stronger encryption. Key length is measured in bits.
For example, 128-bit keys for use with the RC4 symmetric-key cipher supported by SSL provide
significantly better cryptographic protection than 40-bit keys for use with the same cipher.
Roughly speaking, 128-bit RC4 encryption is 3 x 1026 times stronger than 40-bit RC4
encryption.

Different ciphers may require different key lengths to achieve the same level of encryption
strength. The RSA cipher used for public-key encryption, for example, can use only a subset of
all possible values for a key of a given length, due to the nature of the mathematical problem on
which it is based. Other ciphers, such as those used for symmetric key encryption, can use all
possible values for a key of a given length, rather than a subset of those values. Thus a 128-bit
key for use with a symmetric-key encryption cipher would provide stronger encryption than a
128-bit key for use with the RSA public-key encryption cipher. This difference explains why the
RSA public-key encryption cipher must use a 512-bit key (or longer) to be considered
cryptographically strong, whereas symmetric key ciphers can achieve approximately the same
level of strength with a 64-bit key. Even this level of strength may be vulnerable to attacks in the
near future.

Attribute Encryption
Attribute encryption enables sensitive attributes of an entry to be stored in encrypted form. By
encrypting sensitive attributes, you can prevent them from being read while the data is stored in
database files, backup files, or exported LDIF files, or while the data is exported. Figure 2–14
shows a user entry being added to the database, where attribute encryption has been configured
to encrypt the salary attribute.

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 103

The attribute encryption feature supports a wide range of encryption algorithms and different
platforms. Attribute encryption uses the private key of the server’s SSL certificate to generate its
own key. This key is then used to perform the encryption and decryption operations.

Attribute encryption is configured at the suffix level. This means that an attribute is encrypted
for every entry in which it appears in a suffix. To encrypt an attribute in an entire directory, you
must enable encryption for that attribute in every suffix.

If you choose to encrypt an attribute that some entries use as a naming attribute, values that
appear in the DN will not be encrypted, but values stored in the entry will be encrypted.

dn: cn=Charlene
 Daniels,ou=People,dc=example,dc=COM
changetype: add
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectClass: inetorgperson
sn: Daniels
cn: Charlene Daniels
uid: CDaniels
salary: $64,000

Entry in Database

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass= op
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels
salary={DES}2qX28AERbpL8e+Ss2ElnZ4crUb

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels
salary=$64,000

ldapmodify ldapsearch

Database

FIGURE 2–14 Attribute Encryption

How Directory Server Provides Encryption

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008104

Encrypting the userPassword attribute provides no security benefit unless the password needs
to be stored in clear text, as is the for DIGEST-MD5 SASL authentication. If the password
already has an encryption mechanism defined in the password policy, further encryption
provides little additional security.

When encrypted attributes are stored, they are prefaced with a cipher tag that indicates what
encryption algorithm has been used. An encrypted attribute using the DES encryption
algorithm would appear as follows:

{CKM_DES_CBC}3hakc&jla+=snda%

While attribute encryption offers increased data security, the feature does impact performance.
you should think carefully about which attributes require encryption and encrypt only those
attributes that are particularly sensitive. Because sensitive data can be accessed directly through
index files, it is necessary to encrypt the index keys corresponding to the encrypted attributes, to
ensure that the attributes are fully protected.

For information about how to encrypt attributes, see “Encrypting Attribute Values” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide.

How Directory Server Provides Encryption

Chapter 2 • Directory Server Security 105

106

Directory Server Monitoring

For information about monitoring Directory Server, see the following sections.

■ “Ways to Monitor Directory Server” on page 107
■ “Directory Server and SNMP” on page 108
■ “Directory Server and CMM/JMX” on page 110
■ “Directory ServerMonitoring Attributes” on page 111

Ways to Monitor Directory Server
Directory Server can be monitored in the following ways:

Directory Service Control Center
Directory Service Control Center, DSCC, can be used to monitor current activities of a
Directory Server instance.

DSCC provides general server information, including a resource summary, current resource
usage, connection status, and global database cache information. It also provides general
database information, such as the database type, status, and entry cache statistics. Cache
information and information relative to each index file within the database is also provided.
In addition, DSCC provides information relative to the connections and the operations
performed on each chained suffix.

Command line
The dsconf command can be used to configure logging and to monitor the replication status
of Directory Server. For information about how to configure logging, see “Configuring Logs
for Directory Server” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide. For information about how to use the dsconf command for
monitoring, see “Getting Replication Status by Using the Command Line” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide.

3C H A P T E R 3

107

The ldapsearch command can be used to search the cn=monitor entry for information
about current activities of a Directory Server instance. For information about cn=monitor,
see “Directory ServerMonitoring Attributes” on page 111.

Log analyzer tool
The Directory Server Resource Kit provides a log analyzer tool called logconv(1).

The logconv tool extracts usage statistics and counts the occurrences of significant events in
the access logs.

Java Management Extensions, JMX
Directory Server exposes management information through JMX according to the Common
Monitoring Information and Data Model. See the Sun Java Enterprise System 5 Monitoring
Guide for details.

Java ES Monitoring Framework, Java ES MF, provides an JMX entry point to retrieve data.
For information about the JMX entry points exposed for monitoring Directory Server, see
“Directory Server and SNMP” on page 108.

Simple Network Management Protocol, SNMP
Directory Server exposes management information through SNMP. See the Sun Java
Enterprise System 5 Monitoring Guide for details.

Java ES MF provides an SNMP entry point to retrieve SNMP data. For information about the
SNMP entry points exposed for monitoring Directory Server, see “Directory Server and
SNMP” on page 108.

Simple Object Access Protocol, SOAP
Java ES MF provides a SOAP entry point to retrieve data. See the Sun Java Enterprise
System 5 Monitoring Guide for details.

Directory Server and SNMP
Directory Server implements the dsTable and the dsApplIfOpsTable of the Directory Server
Monitoring MIB defined by RFC 2605 (http://www.ietf.org/rfc/rfc2605.txt). It does not
implement the dsIntTable.

Directory Server also implements the Network Services Monitoring MIB defined by RFC 2788
(http://www.ietf.org/rfc/rfc2788.txt).

Directory Server support for SNMP has the following limitations.

■ SNMP support is for monitoring only, no SNMP management is supported.
■ No SNMP traps are implemented.

This rest of this section explains how the information flows from the monitoring application to
Directory Server and back, particularly in the case where you use SNMP.

Directory Server and SNMP

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008108

http://www.ietf.org/rfc/rfc2605.txt
http://www.ietf.org/rfc/rfc2788.txt
http://www.ietf.org/rfc/rfc2788.txt

The SNMP interface is exposed by Java ES MF. See the Sun Java Enterprise System 5 Monitoring
Guide for details.

The monitoring framework is contained within the Common Agent Container, cacao, which is
installed alongside Directory Server. Figure 3–1 shows the monitoring framework.

SNMP support for monitoring Directory Server is managed by a Directory Server agent in the
Common Agent Container. On Directory Server startup, the Monitoring server plug-in
registers theDirectory Server instance with the Directory Server agent within the Common
Agent Container.

Figure 3–2 shows how SNMP information about Directory Server flows through the Common
Agent Container.

Host Machine

SNMP Client

SNMP
Mediation
Layer Port

11161

SOAP
11163/4

JMX
11162

Network
Management

Station

SOAP Client

HTTP
Application

JMX Client
DSCC, Java ES

Monitoring
Console

Java Application

Directory Server
Monitoring Agent

Directory
Server

Directory
Server

Java ES Monitoring
Framework

Common Agent Container

get operations

monitoring jobs
or get/set
operations

Directory
Server

•
•
•

•
•
•

FIGURE 3–1 Overall Monitoring Information Flow

Directory Server and SNMP

Chapter 3 • Directory Server Monitoring 109

SNMP information about Directory Server flows as follows.

1. The network management station sends a GET message through the master SNMP agent,
which by default uses standard port 161, to the SNMP mediation layer, which by default
uses port 11161.
For information about how to configure access to the SNMP mediation layer, see the Sun
Java Enterprise System 5 Monitoring Guide.

2. The SNMP mediation layer forwards any requests destined for the Directory Server to the
Directory Server agent.

3. When the server state changes, Directory Server pushes SNMP information to the Directory
Server agent.

4. The Directory Server agent relays the response back to the SNMP client via the SNMP
mediation layer and master SNMP agent to the network management station. The network
management station then displays the data through its network management application.

Directory Server and CMM/JMX
Directory Server supports monitoring through JMX, which is exposed by Java ES MF. See the
Sun Java Enterprise System 5 Monitoring Guide for details on the interface itself.

The monitoring framework is contained within the Common Agent Container, cacao, which is
installed alongside Directory Server. Figure 3–1 shows the monitoring framework. The
information flow for JMX is similar to the flow shown for SNMP in Figure 3–2.

FIGURE 3–2 SNMP Information Flow

Directory Server and CMM/JMX

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008110

The monitoring information exposed through JMX is organized according to the Common
Monitoring Information and Data Model, CMM. CMM allows applications exposing their
monitoring information to associate human-readable descriptions with the individual counters
and other information. CMM is therefore meant to be self-documenting. Directory Server
implements the following CMM classes.

■ CMM_ApplicationSystem

■ CMM_ApplicationSystemSetting

■ CMM_ApplicationSystemStats

■ CMM_InstalledProduct

■ CMM_RFC2605ApplicationSystemSettings

■ CMM_RFC2605ApplicationSystemStats

■ CMM_RFC2605ServiceAccessURIStats

■ CMM_ServiceAccessBySAP

■ CMM_ServiceAccessBySAPStats

■ CMM_ServiceAccessURI

■ CMM_ServiceAccessURIStats

When examining the content of the monitoring information, notice that
CMM_ServiceAccessURI is implemented not only for LDAP and for LDAPS, but also for
DSML/HTTP or DSML/HTTPS if the DSML front end has been enabled.

Java ES Monitoring Console offers a browser-based user interface to examine the information
exposed. See the Sun Java Enterprise System 5 Monitoring Guide for instructions on preparing
the Monitoring Console for use.

Directory ServerMonitoring Attributes
Read-only monitoring information is stored under the cn=monitor entry.

cn=monitor
The cn=monitor entry is an instance of the extensibleObject object class. For cn=monitor
configuration attributes to be taken into account by the server, this object class, in addition to
the top object class, is present in the entry. The cn=monitor read-only attributes are presented
in this section.

backendMonitorDN
DN for each Directory Server backend.

For further database monitoring information, refer to dse.ldif(4).

Directory ServerMonitoring Attributes

Chapter 3 • Directory Server Monitoring 111

bytesSent
Number of bytes sent by Directory Server.

cache-avail-bytes
The number of bytes available for caching.

connection
List of open connections given in the following format:

connection=31:20010201164808Z:45:45::cn=admin,cn=Administrators,cn=config:LDAP

■ 31 is number of the file descriptor used by the server in handling the connection
■ 20010201164808Z is the date the connection was opened
■ 45 is the number of operations received
■ 45 is the number of completed operations
■ cn=admin,cn=Administrators,cn=config is the bind DN

connectionPeak
Maximum number of simultaneous connections since server startup.

currentConnections
Number of current Directory Server connections.

currentTime
Current time usually given in Greenwich Mean Time, indicated by GeneralizedTime syntax Z
notation, for example 20010202131102Z.

dTableSize
Size of the Directory Server descriptor table.

entriesSent
Number of entries sent by Directory Server.

nbackEnds
Number of Directory Server backends.

opsCompleted
Number of Directory Server operations completed.

Directory ServerMonitoring Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008112

opsInitiated
Number of Directory Server operations initiated.

request-que-backlog
The number of requests waiting to be processed by a thread. Each request received by the server
is accepted, then placed in a queue until a thread is available to process it. The queue backlog
should always be small, 0 or close to 0. If the queue backlog is large, use the
nsslapd-threadnumber attribute to increase the number of threads available in the server.

readWaiters
Number of connections where some requests are pending and not currently being serviced by a
thread in Directory Server.

currentpsearches
Number of persistent searches currently running on the server. You can set a maximum
number of persistent searches on the server by using the command dsconf set-server-prop

max-psearch-count:number.

startTime
Directory Server start time.

threads
Number of operation threads Directory Server creates during startup. This attribute can be set
using the nsslapd-threadnumber attribute under cn=config. The nsslapd-threadnumber
attribute is not present in the configuration by default, but can be added.

totalConnections
Total number of Directory Server connections.

version
Directory Server version and build number.

cn=disk,cn=monitor
The cn=disk entry enables you to monitor disk conditions over LDAP. This entry is an instance
of the extensibleObject object class. A cn=disknumber,cn=disk,cn=monitor entry exists for
each disk. The following disk monitoring attributes appear under each of these individual disk
entries.

Directory ServerMonitoring Attributes

Chapter 3 • Directory Server Monitoring 113

disk-dir
Specifies the pathname of a directory used by the server on disk. Where several database
instances reside on the same disk or an instance refers to several directories on the same disk,
the short pathname is displayed. The disk numbering is arbitrary.

disk-free
Indicates the amount of free disk space available to the server, in MB.

Note – The disk space available to the server process may be less than the total free disk space.
For example, on some platforms a process that is not running as root may not have all the free
disk space available to it.

disk-state
Indicates the state of the disk, based on the available free space and on the thresholds set for disk
low and disk full with the configuration parameters nsslapd-disk-low-threshold and
nsslapd-disk-full-threshold. Possible values are normal, low, and full.

cn=counters,cn=monitor
This entry holds counter information for the various subtree entry counter plug-ins, if they are
enabled.

cn=monitor,cn=Class of Service,cn=plugins,
cn=config
This entry holds counters related to the Class of Service plug-in. This entry is an instance of the
extensibleObject object class.

classicHashAvgClashListLength
When the CoS plug-in uses the hash table for fast lookup, if more than one classic CoS template
corresponds to the hash key used, the plug-in next checks for matches in what is called the clash
list, a list of templates sharing an identical hash key. The value of this attribute provides the
average length across all hash tables of classic CoS template clash lists, giving some indication of
how much linear searching the plug-in must perform after using the hash table during fast
lookup.

classicHashAvgClashPercentagePerHash
The average number of clashes per hash table. That is, the average percentage per hash of classic
CoS templates sharing an identical hash key.

Directory ServerMonitoring Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008114

classicHashMemUsage
The memory overhead in bytes to hold hash tables for fast classic CoS template lookups.

classicHashValuesMemUsage
The memory in bytes used to hold hash values for fast classic CoS template lookups.

numClassicDefinitions
The number of classic CoS definition entries in use.

numClassicHashTables
The number of hash tables created for fast lookup where more than 10 classic CoS templates
apply for a single CoS definition. Hash tables are not created for smaller lists of templates.

numClassicTemplates
The number of classic CoS template entries in use.

numCoSAttributeTypes
The number of distinct attributes with values calculated through CoS.

numIndirectDefinitions
The number of indirect CoS definition entries in use.

numPointerDefinitions
The number of pointer CoS definition entries in use.

numPointerTemplates
The number of pointer CoS template entries in use.

Directory ServerMonitoring Attributes

Chapter 3 • Directory Server Monitoring 115

116

Directory Server Replication

This chapter includes the following sections:
■ “Introduction to Replication” on page 117
■ “Replication Configurations” on page 122
■ “Replication and the Retro Change Log Plug-In” on page 130

Introduction to Replication
This introduction to replication addresses the following topics:
■ “Types of Replica” on page 117
■ “Unit of Replication” on page 118
■ “Replica Identity” on page 119
■ “Replication Agreements” on page 119
■ “Replication Authentication” on page 119
■ “Replication Change Log” on page 120
■ “Change Sequence Number” on page 120
■ “Replica Update Vector” on page 121
■ “Deleted Entries: Tombstones” on page 121
■ “Consumer Initialization and Incremental Updates” on page 121
■ “Referrals and Replication” on page 122

Types of Replica
A database that participates in replication is called a replica. There are three kinds of replica:
■ A master replica is a read-write database that contains a master copy of the directory data. A

master replica can perform the following tasks:
■ Respond to update requests and read requests from directory clients
■ Maintain historical information and a change log for the replica

4C H A P T E R 4

117

■ Initiate replication to consumers or hubs
■ A consumer replica is a read-only database that contains a copy of the information held in a

master replica. A consumer replica can perform the following tasks:
■ Respond to read requests
■ Maintain historical information for the replica
■ Refer update requests to servers that contain a master replica

■ A hub replica is a read-only database, like a consumer replica, but stored on a directory
server that supplies one or more consumer replicas. A hub replica can perform the following
tasks:
■ Respond to read requests
■ Maintain historical information and a change log for the replica
■ Initiate replication to consumers
■ Refer update requests to servers that contain a master replica

A single instance of Directory Server can be configured to manage several replicas.

A replica can act as a supplier of updates, or a consumer of updates, or both.

■ A supplier is a replica that copies information to another replica.
A master replica can be a supplier to a hub replica and a consumer replica. A hub replica can
be a supplier to a consumer replica. In multi-master replication, one master replica can be a
supplier to another master replica.

■ A consumer is a replica to which another replica copies information.
A hub replica and a consumer replica can be consumers of a master replica. A consumer
replica can be a consumer of a hub replica. In multi-master replication, one master replica
can be a consumer of another master replica.

A replica can be promoted or demoted to change its behavior with respect to other replicas.
Dedicated consumers can be promoted to hubs, and hubs can be promoted to masters. Masters
can be demoted to hubs, and hubs can be demoted to dedicated consumers.

A server that contains a consumer replica only is called a dedicated consumer.

Unit of Replication
The smallest logical unit of replication is a suffix, also known as a naming context. The term
suffix arises from the way the base DN for the naming context is a suffix for all DNs in that
context. For example, the suffix dc=example,dc=com contains all directory entries in the
Example.com naming context.

The replication mechanism requires one suffix to correspond to one database. The unit of
replication applies to both suppliers and consumers. Therefore, two suffixes on a master replica
cannot be replicated to one suffix on a consumer replica, and vice versa.

Introduction to Replication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008118

Replica Identity
Master replicas require a unique replica identifier that is a 16-bit integer between 1 and 65534.
Consumer and hub replicas all have the replica ID of 65535. The replica ID identifies the replica
on which changes are made.

If multiple suffixes are configured on one master, you can use the same replica ID for each suffix
on the master. In this way, when a change is made on that replica ID, it is possible to identify the
server on which change was made.

Replication Agreements
Replication agreements define the relationships between a supplier and a consumer. The
replication agreement is configured on the supplier. A replication agreement contains the
following replication parameters:

■ The suffix to replicate.
■ The consumer server to which the data is pushed.
■ The replication schedule.
■ The bind DN and credentials the master must use to bind to the consumer.
■ How the connection is secured.
■ Which attributes to exclude or include in fractional replication, if fractional replication is

configured.
■ The group and window sizes to configure the number of changes you can group into one

request and the number of requests that can be sent before consumer acknowledgement is
required.

■ Information about the replication status for this agreement.
■ The level of compression used in replication on Solaris and Linux systems.

Replication Authentication
Before a master can update a consumer, the consumer authenticates the master by using a
special entry called the Replication Manager entry. The master uses the Replication Manager
entry to bind to the consumer.

The Replication Manager entry has a special user profile that bypasses all access control rules
defined on the consumer server. The special user profile is only valid in the context of
replication.

Introduction to Replication

Chapter 4 • Directory Server Replication 119

The Replication Manager entry has the following characteristics.

■ On a consumer server, the Replication Manager is the user who is allowed to perform
updates. The entry for Replication Manager must be present for all replicas.

■ The bind DN of the Replication Manager entry is set in the replication agreement. The bind
DN must be configured for hubs, or masters to point to an existing Replication Manager
entry.

■ For initialization and security reasons, the Replication Manager entry cannot be part of the
replicated data.

The Replication Manager entry is created by default when you configure replication through
the browser-based interfaceDirectory Service Control Center. You can also create your own
Replication Manager entry. For information about how to create a Replication Manager entry,
see “Using a Non-Default Replication Manager” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

Authentication can be performed in the following ways for SSL with replication.

■ For SSL server authentication, you must have a Replication Manager entry, and its
associated password, in the server you are authenticating to.

■ For SSL client authentication, you must have an entry that contains a certificate in the server
you are authenticating to. This entry may or may not be mapped to the Replication Manager
entry.

Replication Change Log
All modifications received by a master replica are recorded in a change log. A change log is
maintained on all master replicas and hub replicas.

In earlier versions of Directory Server, the change log was accessible over LDAP. In this version
of the product, the change log is not accessible over LDAP but is stored in its own database. If
your application needs to read the change log, use the retro change log plug-in for backward
compatibility. For more information about the retro change log plug-in, see “Replication and
the Retro Change Log Plug-In” on page 130.

Change Sequence Number
Each change to a master replica is identified by a change sequence number, CSN. The CSN is
generated by the master server and is not visible to the client application. The CSN contains the
timestamp, a sequence number, the replica ID, and a subsequence number. The change log is
ordered by the CSN.

Introduction to Replication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008120

Replica Update Vector
The replica update vector, RUV, identifies the state of each replica in a topology. Stored on the
supplier and on the consumer, the RUV is used to establish which changes need to be
replicated. The RUV stores the URL of the supplier, the ID of the supplier, the minimum CSN,
and the maximum CSN.

RUVs can be read through nsds50ruv(5dsconf) and nsds50ruv(5dsconf) attributes.

Deleted Entries: Tombstones
Directory entries deleted on one replica are maintained by Directory Server until no longer
needed for replication. Such deleted entries are called tombstones, as they have objectclass:
nsTombstone. In rare cases, you might need to remove tombstones manually over LDAP.

Tombstones visible only to Directory Manager. Furthermore, tombstones show up only in a
search with filter (objectclass=nsTombstone). The following ldapsearch command returns
tombstone entries under dc=example,dc=com.

$ ldapsearch -D "cn=Directory Manager" -b dc=example,dc=com "(objectclass=nsTombstone)"

Consumer Initialization and Incremental Updates
During consumer initialization, or total update, all data is physically copied from a master to a
consumer. When you have created a replication agreement, the consumer defined by that
agreement must be initialized. When a consumer has been initialized, the master can begin to
replay, or replicate, update operations to the consumer. Under normal circumstances, the
consumer should not require further initialization. However, if the data on a master is restored
from a backup, it might be necessary to re-initialize the consumers that depend on that master.

In a multi-master replication topology, the default behavior of a read-write replica that has been
re-initialized from a backup or from an LDIF file, is to refuse client update requests. By default,
the replica remains in read-only mode until it is configured to accept updates again. You set the
suffix property repl-accept-client-update-enabled to on using the dsconf
set-suffix-prop command when the oldest updates are on the read-only replica.

When a consumer has been initialized, replication updates are sent to the consumer when the
modifications are made on the supplier. These updates are called incremental updates. A
consumer can be incrementally updated by several suppliers at once, provided that the updates
originate from different replica IDs.

The binary copy feature can be used to clone master replicas or consumer replicas by using the
binary backup files of one server to restore another server. For information about how to use
binary copy for replication, see “Initializing a Replicated Suffix by Using Binary Copy” in Sun
Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Introduction to Replication

Chapter 4 • Directory Server Replication 121

Referrals and Replication
When a consumer receives a request to modify data, it does not forward the request to the server
that contains the master replica. Instead, it returns to the client a list of the URLs of the masters
that can satisfy the request. These URLs are called referrals.

The replication mechanism automatically configures consumers to return referrals for all
known masters in the replication topology. However, you can also add your own referrals and
overwrite the referrals set automatically by the server. The ability to control referrals helps
enables you to perform the following tasks:

■ Point referrals to secure ports only
■ Point to a Directory Proxy Server instead for load balancing
■ Redirect to local servers only in the case of servers separated by a WAN
■ Limit referrals to a subset of masters in four-way multi-master topologies

Directory Proxy Server is able to follow referrals.

Replication Configurations
This section covers the following topics:

■ “Multi-Master Replication” on page 122
■ “Cascading Replication” on page 127
■ “Prioritized Replication” on page 128
■ “Fractional Replication” on page 129

For information about planning your replication, see the Sun Java System Directory Server
Enterprise Edition 6.3 Deployment Planning Guide.

Multi-Master Replication
In multi-master replication, replicas of the same data exist on more than one server. For
information about multi-master replication, see the following sections:

■ “Concepts of Multi-Master Replication” on page 122
■ “Multi-Master Replication Over Wide Area Networks” on page 123
■ “Fully Meshed Multi-Master Topology” on page 124

Concepts of Multi-Master Replication
In a multi-master configuration, data is updated on multiple masters. Each master maintains a
change log, and the changes made on each master are replicated to the other servers. Each
master plays the role of supplier and consumer.

Replication Configurations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008122

Multi-master replication can cause synchronization conflicts. Conflicts are usually resolved
automatically by using the timestamp associated with each change, where the most recent
change takes precedence. Some rare conflicts must be resolved manually. For more
information, see “Solving Common Replication Conflicts” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

Each supplier in a multi-master environment must have a replication agreement. The following
figure shows two master servers and their replication agreements.

In the preceding figure, Master A and Master B have a master replica of the same data. Each
master has a replication agreement that specifies the replication flow. Master A acts as a master
in the scope of Replication Agreement 1, and as a consumer in the scope of Replication
Agreement 2.

Multi-master replication can be used for the following tasks:
■ To replicate updates by using the replica ID.

Updates by using the replica ID make it possible for a consumer to be updated by multiple
suppliers at the same time, provided that the updates originate from different replica IDs.

■ To enable or disable a replication agreement.
Replication agreements can be configured but left disabled, then enabled rapidly when
required. This feature provides flexibility in replication configuration. This can be done
whether you use multiple masters or not.

Multi-Master Replication Over Wide Area Networks
Directory Server supports multi-master replication over WANs, enabling multi-master
replication configurations across geographical boundaries in international, multiple data center
deployments.

The replication protocol provides full asynchronous support, window and grouping
mechanisms, and support for compression. These features render multi-master replication over
WAN a viable deployment possibility.

In a multi-master replication over WAN configuration, all instances of Directory Server
separated by a WAN must support multi-master replication over WANs.

Master B
Example.com

Replication Agreement 1

Replication Agreement 2

Master A
Example.com

FIGURE 4–1 Multi-Master Replication Configuration (Two Masters)

Replication Configurations

Chapter 4 • Directory Server Replication 123

Group Mechanism and Window Mechanism

The group mechanism and window mechanism can be used to group changes rather than send
them individually. The group mechanism and window mechanism can also be used to specify a
number of requests that can be sent to the consumer without the supplier waiting for an
acknowledgement from the consumer.

For information about how to adjust the group size and window size, see “Configuring Network
Parameters” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Replication Compression Mechanisms

Replication compression helps to streamline replication flow and avoid bottlenecks caused by
limited bandwidth.

Fully Meshed Multi-Master Topology
In a fully meshed multi-master topology, each master is connected to each of the other masters.
A fully meshed topology provides high availability and guaranteed data integrity. The following
figure shows a fully meshed, four-way, multi-master replication topology with some
consumers.

Replication Configurations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008124

In Figure 4–2, the suffix is held on four masters to ensure that it is always available for
modification requests. Each master maintains its own change log. When one of the masters
processes a modification request from a client, it records the operation in its change log. The
master then sends the replication update to the other masters, and in turn to the other
consumers. Each master also stores a Replication Manager entry used to authenticate the other
masters when they bind to send replication updates.

Each consumer stores one or more entries that correspond to the Replication Manager entries.
The consumers use the entries to authenticate the masters when they bind to send replication
updates. It is possible for each consumer to have just one Replication Manager entry that
enables all masters to use the same Replication Manager entry for authentication. By default, the
consumers have referrals set up for all masters in the topology. When consumers receive
modification requests from the clients, they send the referrals to back to the client. For more
information about referrals, see “Referrals and Replication” on page 122.

Consumer
E

Consumer Replica
on Server E Consumer

F

Consumer Replica
on Server F

Master
A

Master Replica
on Server A Master

B

Master Replica
on Server B

Master
C

Master Replica
on Server C Master

D

Master Replica
on Server D

Consumer
G

Consumer Replica
on Server G Consumer

H

Consumer Replica
on Server H

FIGURE 4–2 Fully Meshed, Four-Way, Multi-Master Replication Configuration

Replication Configurations

Chapter 4 • Directory Server Replication 125

Figure 4–3 presents a detailed view of the replication agreements, change logs, and Replication
Manager entries that must be set up on Master A.Figure 4–4 provides the same detailed view for
Consumer E.

Master A requires the following:

■ A master replica
■ A change log

Server A: Master

Replication
Agreement

Consumer E

Replication
Agreement

Consumer F

Master
Replica

Change
Log

Replication
Manager
Entry for
Master B

Replication
Manager
Entry for
Master C

Replication
Agreement
Master C

Replication
Agreement
Master D

Replication
Agreement
Master C

Replication
Manager
Entry for
Master D

FIGURE 4–3 Replication Configuration for Master A (Fully Meshed Topology)

Server: Consumer

Consumer
Replica

Replication
Manager
Entry for
Master A

Replication
Manager
Entry for
Master B

FIGURE 4–4 Replication Configuration for Consumer Server E (Fully Meshed Topology)

Replication Configurations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008126

■ Replication Manager entries for Masters B, C, and D, unless you use the same Replication
Manager entry on each replica

■ Replication agreements for Masters B, C, and D, and for Consumers E, and F

Consumer E requires the following:

■ A consumer replica
■ Replication Manager entries to authenticate Masters A, and B when they bind to send

replication updates

Cascading Replication
In a cascading replication configuration, a server acting as a hub receives updates from a server
acting as a supplier. The hub replays those updates to consumers. The following figure
illustrates a cascading replication configuration.

Cascading replication is useful in the following scenarios:

■ When there are a lot of consumers.

Because the masters in a replication topology handle all update traffic, it could put them
under a heavy load to support replication traffic to the consumers. You can off-load
replication traffic to several hubs that can each service replication updates to a subset of the
consumers.

■ To reduce connection costs by using a local hub in geographically distributed environments.

The following figure shows cascading replication to a large number of consumers.

dc=Example,dc=com

ou=peopleou=groups

Supplier

dc=Example,dc=com

ou=peopleou=groups

Hub

dc=Example,dc=com

ou=peopleou=groups

Consumer

FIGURE 4–5 Cascading Replication Configuration

Replication Configurations

Chapter 4 • Directory Server Replication 127

In Figure 4–6, hubs 1 and 2 relay replication updates to consumers 1 through 10, leaving the
master replicas with more resources to process directory updates.

The masters and the hubs maintain a change log. However, only the masters can process
directory modification requests from clients. The hubs contains a Replication Manager entry
for each master that sends updates to them. Consumers 1 through 10 contain Replication
Manager entries for hubs 1 and 2.

The consumers and hubs can process search requests received from clients, but cannot process
modification requests. The consumers and hubs refer modification requests to the masters.

Prioritized Replication
In previous versions of Directory Server, updates were replicated in chronological order. In this
version of the product, updates can be prioritized for replication. Priority is a boolean feature, it

FIGURE 4–6 Cascading Replication to a Large Number of Consumers

Replication Configurations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008128

is on or off. There are no levels of priority. In a queue of updates waiting to be replicated,
updates with priority are replicated before updates without priority.

Priority rules are configured with the following replication priority rule properties:

■ The identity of the client, bind-dn.
■ The type of update, op-tyupe.
■ The entry or subtree that was updated, base-dn.
■ The attributes changed by the update, att.

For information about these properties, see repl-priority(5dsconf).

When the master replicates an update to one or more hubs or consumer replicas, the priority of
the update is the same across all of the hubs and consumer replicas. If one parameter is
configured in a priority rule for prioritized replication, all updates that match that parameter
are prioritized for replication. If two or more parameters are configured in a priority rule for
prioritized replication, all updates that match all parameters are prioritized for replication.

In the following scenario, it is possible that a master replica attempts to replicate an update to an
entry before it has replicated the addition of the entry:

■ The entry is added on the master replica and then updated on the master replica
■ The update operation has replication priority but the add operation does not have

replication priority

In this scenario, the update operation cannot be replicated until the add operation is replicated.
The update waits for its chronological turn, after the add operation, to be replicated.

Fractional Replication
Fractional replication can be used to replicate a subset of the attributes of all entries in a suffix or
sub-suffix. Fractional replication can be configured, per agreement, to include attributes in the
replication or to exclude attributes from the replication. Usually, fractional replication is
configured to exclude attributes. The interdependency between features and attributes make
managing a list of included attributes difficult.

Fractional replication can be used for the following purposes:

■ To filter content for synchronization between intranet and extranet servers
■ To reduce replication costs when a deployment requires only certain attributes to be

available everywhere

Fractional replication is configured with the replication agreement properties
repl-fractional-include-attr and repl-fractional-exclude-attr attributes. For
information about these properties, see repl-agmt(5dsconf). For information about how to
configure fractional replication, see “Fractional Replication” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

Replication Configurations

Chapter 4 • Directory Server Replication 129

Fractional replication is not backward compatible with versions of Directory Server prior to
Directory Server 5.2. If you are using fractional replication, ensure that no other instances of
Directory Server are prior to Directory Server 5.2.

Replication and the Retro Change Log Plug-In
The retro change log is a plug-in used by LDAP clients for maintaining application
compatibility with earlier versions of Directory Server. The retro change log is stored in a
separate database from the Directory Server change log, under the suffix cn=changelog.

A retro change log can be enabled on a standalone server or on each server in a replication
topology. When the retro change log is enabled on a server, updates to all suffixes on that server
are logged by default.

For information about how to use the retro change log, see “Using the Retro Change Log” in
Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Retro Change Log and Multi-Master Replication
When a retro change log is enabled with replication, the retro change log receives updates from
all master replicas in the topology. The updates from each master replica are combined in the
retro change log. The following figure illustrates the retro change log on two servers in a
multi-master topology.

Replication and the Retro Change Log Plug-In

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008130

The retro change log uses the following attributes during replication:

changeNumber (cN) Identifies the order in which an update is logged to the retro
change log

replicationCSN (CSN) Identifies the time when an update is made to a given replica

replicaIdentifier (RI) Identifies the replica that is updating the retro change log

The diagram shows that the retro change logs, RCL1 and RCL2, contain the same list of
updates, but that the updates do not have the same order. However, for a given
replicaIdentifier, updates are logged in the same order on each retro change log. The order
in which updates are logged to the retro change log is given by the changeNumber attribute.

Failover of the Retro Change Log
The following figure illustrates a simplified replication topology where a client reads a retro
change log on a consumer server.

Master
Replica RI1

(suffix A)

Master
Replica RI2

(suffix B)

Directory Server 1

Master
Replica RI3

(suffix A)

Master
Replica RI4

(suffix B)

Directory Server 2

RCL1

cN1-CSN1 from RI1

cN2-CSN1 from RI2

cN3-CSN1 from RI3

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN3 from RI3

cN7-CSN1 from RI4

cN8-CSN2 from RI1

cN9-CSN3 from RI2

cN10-CSN2 from RI4

Replication

RCL2

cN1-CSN1 from RI3

cN2-CSN2 from RI3

cN3-CSN1 from RI2

cN4-CSN1 from RI1

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

cN8-CSN2 from RI1

cN9-CSN2 from RI4

cN10-CSN3 from RI2

changeNumber attributecN =

replicationCSN attributeCSN =

Replica identifierRI =

FIGURE 4–7 Retro Change Log and Multi-Master Replication

Replication and the Retro Change Log Plug-In

Chapter 4 • Directory Server Replication 131

All of the updates made to each master replica in the topology are logged to each retro change
log in the topology.

The client application reads the retro change log of Directory Server 3 and stores the last CSN
for each replica identifier. The last CSN for each replica identifier is given by the
replicationCSN attribute.

Master
Replica RI3

(suffix A)

Master
Replica RI4

(suffix B)

RCL2

cN1-CSN1 from RI3

cN2-CSN2 from RI3

cN3-CSN1 from RI2

cN4-CSN1 from RI1

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

Directory Server 2

Master
Replica RI1

(suffix A)

Master
Replica RI2

(suffix B)

Directory Server 1

RCL1

cN1-CSN1 from RI1

cN2-CSN1 from RI2

cN3-CSN1 from RI3

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN3 from RI3

cN7-CSN1 from RI4

Client

Record of last CSN for
each replica identifier:

– CSN 1 from RI1
– CSN 2 from RI2
– CSN 3 from RI3
– CSN 1 from RI4

Customer
Replica

(suffix A)

Customer
Replica

(suffix B)

Directory Server 3

RCL3

cN1-CSN1 from RI1

cN2-CSN1 from RI3

cN3-CSN1 from RI2

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

Replication

Replication

Read

FIGURE 4–8 Simplified Topology for Replication of the Retro Change Log

Replication and the Retro Change Log Plug-In

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008132

The following figure shows the client redirecting its reads to Directory Server 2 after the failure
of Directory Server 3.

After failover, the client application must use the retro change log (RCL2) of Directory Server 2
to manage its updates. Because the order of the updates in RCL2 is not the same as the order in
RCL3, the client must synchronize its updates with RCL2.

Master
Replica RI1

(suffix A)

Master
Replica RI2

(suffix B)

Directory Server 1

Master
Replica RI3

(suffix A)

Master
Replica RI4

(suffix B)

RCL2

cN1-CSN1 from RI3

cN2-CSN2 from RI3

cN3-CSN1 from RI2

cN4-CSN1 from RI1

cN5-CSN2 from RI2

cN6-CSN1 from RI4

cN7-CSN3 from RI3

cN8-CSN2 from RI1

cN9-CSN2 from RI4

cN10-CSN3 from RI2

Directory Server 2

RCL1

cN1-CSN1 from RI1

cN2-CSN1 from RI2

cN3-CSN1 from RI3

cN4-CSN2 from RI3

cN5-CSN2 from RI2

cN6-CSN3 from RI3

cN7-CSN1 from RI4

cN8-CSN2 from RI1

cN9-CSN3 from RI2

cN10-CSN2 from RI4

Customer
Replica

(suffix A)

Customer
Replica

(suffix B)

Directory Server 3

RCL3

cN1-CSN1 from R1

cN2-CSN1 from R3

cN3-CSN1 from R2

cN4-CSN2 from R3

cN5-CSN2 from R2

cN6-CSN1 from R4

cN7-CSN3 from R3

Client synchronizes its
updates with RCL2.

Client matches the last CSN
from each replica identifier to
the corresponding cN on RCL2.

Client makes the following
correspondence:

 • CSN1 from R1 - cN4

 • CSN2 from R2 - cN5

 • CSN3 from R3 - cN7

 • CSN1 from RI4 - cN6

Client identifies the update
corresponding to the lowest
cN in this list.

Client processes all updates
made to RCL2 after cN4.

Client

Record of last CSN for
each replica identifier:

– CSN 1 from RI1
– CSN 2 from RI2
– CSN 3 from RI3
– CSN 1 from RI4

Replication

FIGURE 4–9 Failover of the Retro Change Log

Replication and the Retro Change Log Plug-In

Chapter 4 • Directory Server Replication 133

The client examines RCL2 to identify the cN that corresponds to its record of the last CSN for
each replica identifier. In the example in “Failover of the Retro Change Log” on page 131, the
client identifies the following correspondence between last CSN and cN:

■ CSN 1 from R1 corresponds to cN4 on RCL2
■ CSN 2 from R2 corresponds to cN5 on RCL2
■ CSN 3 from R3 corresponds to cN7 on RCL2
■ CSN 1 from R4 corresponds to cN6 on RCL2

The client identifies the update corresponding to the lowest cN in this list. In the example in
“Failover of the Retro Change Log” on page 131, the lowest cN in the list is cN4. To ensure that
the client processes all updates, it must process all updates logged to RCL2 after cN4. The client
does not process updates logged to RCL2 before cN4 nor does it process the update
corresponding to cN4.

Replication Conflicts and the Retro Change Log
When a replication conflict occurs, Directory Server performs operations to resolve the conflict.
When the retro change log is running and the changeIsReplFixupOp attribute is set to true, the
following information about the operations is logged in the changeHasReplFixupOp attribute:

■ Target DN of the operation
■ The type of update
■ The change made

For more information about these attributes, see the Sun Java System Directory Server
Enterprise Edition 6.3 Man Page Reference.

Restrictions on Using the Retro Change Log
Observe the following restrictions when you use the retro change log:

■ A master replica running this version of Directory Server cannot be a supplier to a consumer
replica running Directory Server 4.x.

■ In a replicated topology, the retro change logs on replicated servers must be up-to-date with
each other. This allows switchover of the retro change log. Using the example in “Failover of
the Retro Change Log” on page 131, the last CSN for each replica ID on RCL3 must be
present on RCL2.

Replication and the Retro Change Log Plug-In

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008134

Directory Server Data Caching

For fast response time to client requests, Directory Server caches directory information in
memory. If you must have top Directory Server performance, but cannot fit all directory data in
available memory, you can tune cache settings to optimize performance.

This chapter covers what cache is, and also provides recommendations about tuning cache
settings. This chapter includes the following sections:

■ “Caches and How Directory Server Uses Them” on page 135
■ “Tuning Cache Settings” on page 144

Caches and How Directory Server Uses Them
This section describes the types of cache whose settings you can tune. It also describes how
Directory Server uses those types of cache. This section covers the following topics:

■ “Types of Cache” on page 135
■ “How Directory Server Performs Searches by Using Cache” on page 138
■ “How Directory Server Performs Updates by Using the Cache” on page 140
■ “How Directory Server Initializes a Suffix by Using the Cache” on page 142

Types of Cache
This section describes the types of cache used by Directory Server.

Figure 5–1 shows the caches for an instance of Directory Server with three suffixes, each with its
own entry cache.

Directory Server also uses a file system cache. The file system cache is managed by the
underlying operating system, and by I/O buffers in disk subsystems.

5C H A P T E R 5

135

Database Cache
Each instance of Directory Server has one database cache. The database cache holds pages from
the database that contain indexes and entries. Each page is not an entry, but a slice of memory
that contains a portion of the database.

Directory Server moves pages between the database files and the database cache to maintain the
maximum database cache size you specify. The amount of memory used by Directory Server for
the database cache can be larger than the specified size. This is because Directory Server
requires additional memory to manage the database cache.

For very large database caches, it is important that the memory used by Directory Server does
not exceed the size of available physical memory. If the available physical memory is exceeded,
the system pages repeatedly and performance is degraded.

The memory can be monitored by empirical testing and by the use of tools such as pmap(1) on
Solaris systems. The ps(1) utility can also be used with the -p pid and -o format options to view
current memory used by a particular process such as Directory Server ns-slapd. For more
information, refer to the operating system documentation.

Entry cache
for o=suffix2

(formatted entries)

Entry cache
for o=suffix3

(formatted entries)

Indexes from
databases

Database Cache for the instance

Memory (RAM), including File System Cache

Directory Server Instance

Operating System

Entry
pages from
databases

Disk Subsystems

Entry cache
for o=suffix1

(formatted entries)

FIGURE 5–1 Entry and Database Caches in Context

Caches and How Directory Server Uses Them

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008136

For 32-bit servers, the database cache size must be limited so that the total Directory Server
ns-slapd process size is less than the maximum process size allowed by the operating system.
Usually, this limit is in the 2-3 GB range.

Entry Cache
The entry cache holds recently accessed entries that are formatted for delivery to client
applications. The entry cache is allocated as required until it reaches a size larger than, but based
on the maximum entry cache size you specify.

As entries stored in the entry cache are already formatted, Directory Server returns entries from
an entry cache efficiently. Entries in the database must be formatted and stored in the entry
cache before they are delivered to client applications.

The maximum size you specify indicates how much memory Directory Server requests from
the underlying memory allocation library. Depending on how the memory allocation library
handles requests for memory, the actual memory used may be much larger than the amount of
memory available to Directory Server for the entry cache.

The memory used by the Directory Server process depends on the memory allocation library
that is used, and depends on the entries cached. Entries with many small attribute values usually
require more overhead than entries with few large attribute values.

For 32-bit servers, the entry cache size must be limited so that the total Directory Server
ns-slapd process size is less than the maximum process size allowed by the operating system.
In practice, this limit is generally in the 2-3 GB range.

Import Cache
The import cache is created and used when a suffix is initialized. If the deployment involves
offline suffix initialization only, import cache and database cache are not used together. In this
case, the import cache and database cache do not need to be added together when the cache size
is aggregated. See “Total Aggregate Cache Size” on page 138. When the import cache size is
changed, the change takes effect the next time the suffix is reset and initialized. The import
cache is allocated for the initialization, then released after the initialization.

Directory Server handles import cache in the same way as it handles database cache. Sufficient
physical memory must be available to prevent swapping. The benefits of having a larger import
cache diminish for cache sizes larger than 2 GB.

File System Cache
The operating system allocates available memory not used by Directory Server caches and other
applications to the file system cache. The file system cache holds data that was recently read
from the disk, making it possible for subsequent requests to obtain data from cache rather than
having to read it again from the disk. Because memory access is many times faster than disk
access, leaving some physical memory available for the file system cache can boost performance.

Caches and How Directory Server Uses Them

Chapter 5 • Directory Server Data Caching 137

For 32-bit servers, a file system cache can be used as a replacement for some of the database
cache. Database cache is more efficient for Directory Server use than file system cache, but file
system cache is not directly associated with the Directory Server ns-slapd process. Potentially,
a larger total cache can be made available to Directory Server than would be available by using
database cache alone.

64-bit servers do not have the same process size limit issue as 32-bit servers. Use database cache
instead of file system cache with 64-bit servers.

Refer to the operating system documentation for information about file system cache.

Total Aggregate Cache Size
The sum of all caches used simultaneously must remain smaller than the total size of available
physical memory, minus the memory intended for file system cache, minus the memory
intended for other processes such as Directory Server itself.

For 32-bit servers, the total aggregate cache size must be limited so that the total Directory
Server ns-slapd process size is less than the maximum process size allowed by the operating
system. In practice, this limit is generally in the 2-3 GB range.

If suffixes are initialized while Directory Server is online, the sum of the database cache, the
entry cache, and the import cache sizes should remain smaller than the total size of available
physical memory.

TABLE 5–1 Import Operations and Cache Use

Cache Type Offline Import Online Import

Database no yes

Entry yes yes

Import yes yes

If all suffixes are initialized while Directory Server is offline, the import cache does not coexist
with the database cache, so the same memory can be allocated to the import cache for offline
suffix initialization and to the database cache for online use. If you opt to implement this special
case, however, ensure that no online bulk loads are performed on a production server. The sum
of the caches used simultaneously must remain smaller than the total size of available physical
memory.

How Directory Server Performs Searches by Using
Cache
In Figure 5–2, individual lines represent threads that access different levels of memory. Broken
lines represent probable bottlenecks to minimize through effective tuning of Directory Server.

Caches and How Directory Server Uses Them

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008138

The following sections describe how Directory Server performs searches by using the cache. By
processing subtree searches as described in the following sections, Directory Server returns
results without loading the whole set of results into memory.

Sub-tree or
one-level search

Base search
(DN specified)

Entry cache
for o=suffix2

(formatted entries)

Entry cache
for o=suffix3

(formatted entries)

Indexes from
databases

Database Cache
for the instance

Memory (RAM), including File System Cache

Directory Server
Instance

Operating
System

Entry
pages from
databases

Entry cache
for o=suffix1

(formatted entries)

Candidate list
for filter

Disk Subsystems

1

1 2

2

3

FIGURE 5–2 How Directory Server Performs Searches

Caches and How Directory Server Uses Them

Chapter 5 • Directory Server Data Caching 139

How Directory Server Performs Base Searches
Base searches specify a base DN and are the simplest type of searches for Directory Server to
manage. Directory Server processes base searches in the following stages.

1. Directory Server attempts to retrieve the entry from the entry cache.

If the entry is found in the entry cache, Directory Server checks whether the candidate entry
matches the filter provided for the search.

If the entry matches the filter provided for the search, Directory Server returns the
formatted, cached entry to the client application.

2. Directory Server attempts to retrieve the entry from the database cache.

If the entry is found in the database cache, Directory Server copies the entry to the entry
cache for the suffix. Directory Server proceeds as if the entry had been found in the entry
cache.

3. Directory Server attempts to retrieve the entry from the database itself.

If the entry is found in the database, Directory Server copies the entry to the database cache .
Directory Server proceeds as if the entry had been found in the database cache.

How Directory Server Performs Subtree and One-Level Searches
Searches on a subtree or a level of a tree involve additional processing to handle multiple
entries. Directory Server processes subtree searches and one-level search in the following stages.

1. Directory Server attempts to define a set of candidate entries that match the filter from
indexes in the database cache.

If no appropriate index is present, the set of candidate entries must be found directly in the
database itself.

2. For each candidate entry, Directory Server performs the following tasks.

a. Performs a base search to retrieve the entry.
b. Checks whether the entry matches the filter provided for the search.
c. Returns the entry to the client application if the entry matches the filter.

How Directory Server Performs Updates by Using the
Cache
In Figure 5–3, individual lines represent threads that access different levels of memory. Broken
lines represent probable bottlenecks to minimize through effective tuning of Directory Server.

Caches and How Directory Server Uses Them

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008140

The figure does not show the impact of the internal base search performed to get the entry for
update.

Directory Server processes updates in the following stages.

1. Directory Server performs a base DN search to retrieve the entry, or to update or verify the
entry in the case of an add operation that it does not already exist.

2. Directory Server updates the database cache and any indexes affected.

If data affected by the change have not been loaded into the database cache, this step can
result in disk activity while the relevant data are loaded into the cache.

ACK sent to
 client application

Update

Entry cache
for o=suffix2

(formatted entries)

Entry cache
for o=suffix3

(formatted entries)

Indexes from
databases

Database Cache
for the instance

Memory (RAM), including File System Cache

Directory Server
Instance

Operating
System

Entry
pages from
databases

Entry cache
for o=suffix1

(formatted entries)

Disk Subsystems

1

2

5

4

3

FIGURE 5–3 How Directory Server Performs Updates

Caches and How Directory Server Uses Them

Chapter 5 • Directory Server Data Caching 141

3. Directory Server writes information about the changes to the transaction log and waits for
the information to be flushed to disk, which happens periodically, at each checkpoint.
Directory Server database files are thus updated during the checkpoint operation, not for
each write.

4. Directory Server formats and copies the updated entry to the entry cache for the suffix.

5. Directory Server returns an acknowledgement of successful update to the client application.

How Directory Server Initializes a Suffix by Using the
Cache
The following figure illustrates how Directory Server initializes a suffix by using the cache.
Individual lines represent threads that access different levels of memory. Broken lines represent
probable bottlenecks to minimize through effective tuning of Directory Server.

Caches and How Directory Server Uses Them

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008142

Directory Server initializes a suffix in the following stages:

1. Starts a thread to feed an entry cache, used as a buffer, from LDIF.

2. Starts a thread for each index affected and a thread to create entries in the import cache.
These threads consume entries fed into the entry cache.

3. Reads from and writes to the database files when import cache runs out.

Directory Server can also write log messages during suffix initialization, but does not write to
the transaction log.

Entry cache
for o=suffix2

(formatted entries)

LDIF to import
into o=suffix2

Entry cache
for o=suffix3

(formatted entries)

Indexes from
databases

Import Cache
for the instance

Directory Server
Instance

Entry
pages from
databases

Entry cache
for o=suffix1

(formatted entries)

Database
Cache
for the

instance

Memory (RAM), including File System Cache

Operating
System

Disk Subsystems

3

2

1

FIGURE 5–4 How Directory Server Initializes a Suffix

Caches and How Directory Server Uses Them

Chapter 5 • Directory Server Data Caching 143

Tools for suffix initialization delivered with Directory Server provide feedback on the cache hit
rate and import throughput. If cache hit rate and import throughput drop together, it is possible
that the import cache is too small.

Tuning Cache Settings
This section provides recommendations for setting database and entry cache sizes. It does not
cover import cache sizes. The recommendations here pertain to maximizing either search rate
or modify rate, not both at once.

This section covers the following topics:
■ “Basic Tuning Recommendations” on page 144
■ “Small, Medium, and Large Data Sets” on page 145
■ “Optimum Search Performance (Searches Only)” on page 145
■ “Optimum Modify Performance (Modifications Only)” on page 146

Basic Tuning Recommendations
Here you find the basic recommendations for maximizing search rates or maximizing
modification rates achieved by Directory Server. Set cache sizes according to the following
recommendations:

For Maximum Search Rate (Searches Only)
If the directory data do not fit into available physical memory, or only just fit with no extra room
to spare, set cache sizes to their minimum values, 500k for db-cache-size, 200k for
entry-cache-size, and allow the server to use as much of the operating system's file system
cache as possible.

If the directory data fit into available physical memory with physical memory to spare, allocate
memory to the entry cache until either the entry cache is full or, on a 32–bit system, the entry
cache reaches maximum size. Then allocate memory to the database cache until it is full or
reaches maximum size.

See “Configuring Memory” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide for instructions on setting cache sizes.

For Maximum Modification Rate (Modifications Only)
If the directory data do not fit into available physical memory, or only just fit with no extra room
to spare, set the entry cache sizes to the minimum value, 200k for entry-cache-size, set the
database cache to a value in the 100M to 1G range, and allow the server to use as much of the
operating system's file system cache as possible. Keeping some database cache available ensures
that modifications remain cached between each database checkpoint.

Tuning Cache Settings

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008144

If the directory data fit into available physical memory with physical memory to spare, allocate
memory to the entry cache until either the entry cache is full or, on a 32–bit system, the entry
cache reaches maximum size. Then allocate memory to the database cache until it is full or
reaches maximum size.

See “Configuring Memory” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide for instructions on setting cache sizes.

Small, Medium, and Large Data Sets
A working set refers to the data actually pulled into memory so that the server can respond to
client applications. The data set is then the entries in the directory that are being used due to
client traffic. The data set may include every entry in the directory, or may be composed of some
smaller number of entries, such as entries corresponding to people in a time zone where users
are active.

We define three data set sizes, based on how much of the directory data set fits into available
physical memory:

Small The data set fits entirely into physical memory with fully-loaded database and
entry caches.

Medium The data set fits in physical memory, and extra physical memory can be dedicated
to entry cache.

Large The data set is too small to fit completely in available physical memory.

The ideal case is of course the small data set. If your data set is small, set database cache size and
entry cache size such that all entries fit in both the database cache and the entry cache.

The following sections provide recommendations for medium and large data sets where the
server performs either all searches or all modify operations.

Optimum Search Performance (Searches Only)
Figure 5–5 shows search performance on a hypothetical system. As expected, Directory Server
offers top search performance for a given system configuration when the whole data set fits into
memory.

Tuning Cache Settings

Chapter 5 • Directory Server Data Caching 145

For large data sets better performance has been observed when database cache and entry cache
are set to their minimum sizes and available memory is left to the operating system for use in
allocating file system cache. As shown, performance improves when more of the data set fits
into the file system cache.

For medium data sets better performance has been observed when the file system cache holds
the whole data set, and extra physical memory available is devoted to entry cache. As shown,
performance improves when more of the medium data set fits in entry cache.

Optimum Modify Performance (Modifications Only)
Figure 5–6 shows modify performance on a hypothetical system. As expected, Directory Server
offers top modify performance for a given system configuration when the whole data set fits
into memory.

Search Performance

Large Data Set Medium Data Set Small Data Set

S
ea

rc
h

 R
at

e

0% 100%

% of Data Set in
File System Cache

% of Data Set in
Entry Cache

Data Set Fits in
Entry & Database

Caches

0%

S
lo

w
er

F
as

te
r

100%

FIGURE 5–5 Search Performance

Tuning Cache Settings

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008146

For large data sets better performance has been observed when database cache and entry cache
are set to their minimum sizes and available memory is left to the operating system for use in
allocating file system cache. As shown, performance improves when more of the data set fits
into the file system cache.

For medium data sets, modify performance reaches its maximum as all entries fit into file
system cache. As suggested in “Basic Tuning Recommendations” on page 144, keeping some
database cache available ensures the modifications to remain cached between each database
checkpoint.

Large Data Set Medium and Small Data Sets

0% 100%
% of Data Set in

File System Cache

S
ea

rc
h

 R
at

e
S

lo
w

er
F

as
te

r

Modify Performance

FIGURE 5–6 Modify Performance

Tuning Cache Settings

Chapter 5 • Directory Server Data Caching 147

148

Directory Server Indexing

Like a book index, Directory Server indexes speed up searches by associating search strings with
the contents of a directory. For information about indexes used by Directory Server, see
following sections:

■ “Overview of Indexes” on page 149
■ “System Indexes and Default Indexes” on page 151
■ “Types of Index” on page 153

Overview of Indexes
Directory Server uses indexes to speed up search operations by associating lookup information
with Directory Server entries. During a search operation, Directory Server uses the index to find
entries that match the search key . Without an index, Directory Server must check every entry
in a suffix to find matches for the search key.

Indexes are stored in database files, and are created and managed independently for each suffix
in a directory. Each index file contains all of the indexes defined in the suffix for a given
attribute. For example, all indexes maintained for the cn attribute are stored in the
databaseName_cn.db3 file. When an indexed entry is modified, Directory Server updates the
index files.

Directory Server supports the following types of indexes:

■ Default indexes to improve search performance or support searches performed by other
applications. Default indexes are added when a suffix is created.

■ System indexes to help Directory Server to function properly and efficiently.
■ User indexes, added when a user creates an attribute or defines a new index.

6C H A P T E R 6

149

Tuning Indexes for Performance
The use of indexes can enhance performance by reducing the time taken to perform a search.
However, indexes also have an associated cost. When an entry is updated, the indexes referring
to that entry must also be updated. The more an entry is indexed, the more resources are
required to update the index; indexes take up disk space and memory space.

When you design indexes, ensure that you offset the benefit of faster searches against the
associated costs of the index. Maintaining useful indexes is good practice; maintaining unused
indexes for attributes on which clients rarely search is wasteful.

You can optimize performance of searches in the following ways:

■ By preventing Directory Server from performing searches on non-indexed entries
■ By limiting the length of an index list
■ By ensuring that the size of a data base cache is appropriately tuned

To prevent Directory Server from performing searches on non-indexed entries, set the
require-index-enabled suffix property for the suffix.

To limit the number of values per index key for a given search you can set an index list
threshold. If the number of entries in the list for a search key exceeds the index list threshold, an
unindexed search is performed. The threshold can be set for an entire server instance, for an
entire suffix, and for an individual attribute type. You can also set individual thresholds for
equality, presence, and substring indexes.

For a detailed procedure on how to change the index list threshold, see“Changing the Index List
Threshold” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.
This procedure modifies the all-ids-threshold configuration property.

The global value of all-ids-threshold for the server instance should be about 5% of the total
number of entries in the directory. For example, the default value of 4000 is generally right for
instances of Directory Server that handle 80 000 entries or less. You should avoid setting the
threshold above 50 000, even for very large deployments. However, you might set
all-ids-threshold to a value other than the 5% guideline in the following situations:

■ You expect the directory to grow considerably and wish to set the threshold higher than 5
percent of the total.

■ You have consumers that support many searches and masters that support mostly writes,
and you wish to set a different threshold for consumers and masters.

■ You plan to initialize a large directory from an LDIF file and you wish to change the
threshold just before initialization.

■ Your directory has a deeply hierarchical directory information tree, and you are running
one–level or subtree searches. In this case you could set the all-ids-threshold high for
parent and ancestor indexes so that all entries below a given branch are indexed.

Overview of Indexes

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008150

You should limit the number of unindexed searches that are performed. Use the logconv utility
provided with the Directory Server Resource Kit to examine the access logs for evidence of
frequent unindexed searches. For more information, see the logconv(1) man page.

System Indexes and Default Indexes
This section addresses the following topics:

■ “System Indexes” on page 151
■ “Default Indexes” on page 152

System Indexes
System indexes are required for Directory Server to function properly and efficiently. System
indexes cannot be deleted or modified. Table 6–1 lists the system indexes created automatically
in every suffix.

TABLE 6–1 System Indexes in Every Suffix

Attribute
Equality
Index

Presence
Index Description

aci X Allows the directory server to quickly obtain the
access control information maintained in the
directory

ancestorid X Enhances directory performance during subtree
searches

entrydn X Speeds up entry retrieval based on DN searches

id2entry X Contains the actual database of directory entries. All
other database files can be recreated from this one

nsUniqueId X Used to search for specific entries

nscpEntryDN X Used internally in Directory Server for replication

nsds5ReplConflict X X Helps to find replication conflicts

numsubordinates X Used by Directory Service Control Center to
enhance display performance on the Directory tab

objectClass X Accelerate subtree searches

parentID X Enhances directory performance during one-level
searches

System Indexes and Default Indexes

Chapter 6 • Directory Server Indexing 151

Default Indexes
When you create a new suffix in your directory, the server configures a set of default indexes in
the corresponding database directory. The default indexes can be modified depending on your
indexing needs, although you should ensure that no server plug-ins or other servers in your
enterprise depend on an indexed attribute before you eliminate index.

Table 6–2 lists the default indexes that are configured in Directory Server.

TABLE 6–2 Default Indexes in Every New Suffix

Attribute
Equality
Index

Presence
Index

Substring
Index Description

cn X X X Improves the performance of the most common
types of directory searches.

givenName X X X Improves the performance of the most common
types of directory searches.

mail X X X Improves the performance of the most common
types of directory searches.

mailAlternateAddress X Used by Messaging Server.

mailHost X Used by Messaging Server.

member X Improves server performance. This index is also
used by the referential integrity plug-in.

nsCalXItemId X X X Used by Calendar Server.

nsLIProfileName X Used by roaming feature of Messaging Server.

nsRoleDN X Improves the performance of role-based
operations.

nswcalCALID X Used by Calendar Server.

owner X Improves server performance. This index is also
used by the referential integrity plug-in.

pipstatus X Used by other servers.

pipuid X Used by other servers.

seeAlso X Improves server performance. This index is used by
the referential integrity plug-in.

sn X X X Improves the performance of the most common
types of user directory searches.

System Indexes and Default Indexes

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008152

TABLE 6–2 Default Indexes in Every New Suffix (Continued)

Attribute
Equality
Index

Presence
Index

Substring
Index Description

telephoneNumber X X X Improves the performance of the most common
types of user directory searches.

uid X Improves server performance.

uniquemember X Improves server performance. This index is also
used by the referential integrity plug-in.

Types of Index
With the exception of the approximate index, the indexes in this section are used by Directory
Server to speed up basic matching rules. This section covers the following index types:

■ “Presence Index” on page 153
■ “Equality Index” on page 154
■ “Substring Index” on page 156
■ “Browsing Index” on page 157
■ “Approximate Index” on page 158
■ “International Index” on page 159

Presence Index
The presence index includes all entries in the database that have a value for a specified attribute,
irrespective of that value. The following figure shows a presence index for the nsRoleDN
attribute. For information about this attribute, see nsRoleDN(5dsat).

Types of Index

Chapter 6 • Directory Server Indexing 153

Directory Server uses the value of the entryid attribute to store a reference to the entry.
Directory Server retrieves the entry by using the
instance-path/db/dbinstance/dbinstance_id2entry.db3 index file, where dbinstance depends
on the database identifier.

When Directory Server receives a request to remove an attribute value indexed for presence, it
must remove the entry from the presence index for that attribute before acknowledging the
update to the client application.

The cost of presence indexes is generally low, although the list of entries maintained for a
presence index may be long. When the index list length is small, presence indexes are useful for
attributes in a relatively small percentage of directory entries.

Equality Index
The equality index includes all entries in the database that have a specified value for a given
attribute. This index requires a value to be specified in the search filter. The following figure
shows an equality index for the sn, surname, attribute. The index maintains a list of values for
the sn attribute. For information about this attribute, see sn(5dsat).

nsroledn entryid+ entryid entryid entryid entryid entryid entryid entryid entryid . . .

Entry IDs

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com
nsRoleDN: cn:managers,ou=People,dc=example,dc=com

FIGURE 6–1 Presence Index

Types of Index

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008154

When Directory Server receives a request to update an entry indexed for equality, it must do the
following tasks before performing the update and acknowledging the update to the client:

■ Determine whether the entry must be removed from the index
■ Determine whether a list must be added to or removed from the index

entryid entryid entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid entryid entryid entryid

allids

entryid entryid entryid entryid entryid

entryid

blinn

cubbins

cooper

smith

. . .

wilson

yorgenson entryid entryid entryid entryid entryid entryid entryid entryid entryid

SN

Entry IDs

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com

. . .

FIGURE 6–2 Equality Index

Types of Index

Chapter 6 • Directory Server Indexing 155

The cost of equality indexes is generally lower than for substring indexes, but equality indexes
require more space than presence indexes. Some client applications such as messaging servers
might rely on equality indexes for search performance. Avoid using equality indexes for large
binary attributes such as photos and hashed passwords.

Substring Index
Substring indexes are used for searches on three-character groups, for example, sn=*abc*. The
three-character groups are stored in the index. Substring indexes cannot be applied to binary
attributes such as photos. The following figure shows a substring index for the SN attribute.

The Directory Server search algorithm includes optimizations for the following searches,
however, these searches are more likely to reach the index list threshold:

■ Searches on two-character substrings with this format sn=*ab*
■ Searches on one-character group with this format sn=a*. Searches cannot be performed on

one-character groups with this format sn=*a and sn=*a*

Directory Server builds an index of substrings according to its own built-in rules. Substring
indexes cannot be configured by the system administrator.

entryid entryid entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid entryid entryid entryid

entryid

entryid entryid

entryid

entryid

entryid

entryid entryid entryid

entryid

^yo

yor

org

. . .

gen

son

on$ entryid entryid entryid entryid entryid entryid entryid entryid entryid

SN

Entry IDs

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com

rge

FIGURE 6–3 Substring Index for the SNAttribute

Types of Index

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008156

When Directory Server receives a request to update an entry that has an attribute indexed for
substrings, it must do the following tasks before performing the update and acknowledging the
update to the client:

■ Determine whether the entry must be removed from the index
■ Determine whether and how modifications to the entry affect the index
■ Determine whether the entry IDs or lists of entry IDs must be added to or removed from the

index

Maintaining substring indexes is relatively costly; the cost is a function of the length of the
string indexed. To minimize cost, avoid unnecessary substring indexes, especially for attributes
that have potentially long string values such as a description.

Browsing Index
Browsing indexes are also called virtual list view indexes. Browsing indexes are used for search
operations that request server-side sorting or virtual list view, VLV, results. By using browsing
indexes, you can improve the performance of searches that request server-side sorting of a large
number of results. Depending on your directory configuration, the server may refuse to
perform searches that request sorting when no browsing index is defined. This prevents large
sorting operations from overloading server resources.

Browsing indexes are configured with the following parameters in the vlvSearch(5dsoc) object
class, vlvBase(5dsat)vlvScope(5dsat), vlvScope(5dsat), and vlvFilter(5dsat). Browsing
index are sorted by the following parameter in the vlvIndex(5dsoc) object class,
vlvSort(5dsat).

Browsing indexes are configured in two steps.

1. The base of the search, the scope of the search, and a filter for the search are configured by
the vlvBase, vlvScope, and vlvFilter attributes in the vlvSearch object class.

2. The name of the attributes that sort the index are configured by the vlvSort attribute in the
vlvIndex object class.

The following figure shows a browsing index.

Types of Index

Chapter 6 • Directory Server Indexing 157

When Directory Server receives a request to update an entry with a vlvFilter value, it must do
the following tasks before performing the update and acknowledging the update to the client:

■ Determine whether the entry must be removed from the index
■ Determine the correct position of the entry in the list

Approximate Index
Approximate indexes work with the English language only to provide efficient “sounds-like”
searches. For example, the approximate index is useful for searching partial names or
misspelled names. Directory Server uses a variation of the metaphone phonetic algorithm to

vlvSort: cn givenname sn

vlvIndex VLV
Information

entryid entryid entryid entryid entryid entryid entryid entryid entryid . . .

Entry IDs

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com
nsRoleDN: cn: managers,ou=People,dc=example,dc=com

vlvBase: “dc=example,dc=com”
vlvScope: subtree
vlvFilter: (objectclass=inetOrgPerson)

FIGURE 6–4 Representation of a Browsing Index

Types of Index

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008158

perform searches on an approximate index. Because the algorithm is based loosely on syllables,
it is not effective for attributes that contain numbers, such as telephone numbers.

International Index
International indexes are also called matching rule indexes. International indexes associate
language-specific matching rules with attributes. This index type enables attributes to be sorted
and searched for in accordance with the language rules. International indexes use matching
rules for particular locales to maintain indexes.

Standard support for international and other types of indexing can be extended by using a
custom matching rule server plug-in.

Types of Index

Chapter 6 • Directory Server Indexing 159

160

Directory Server Logging

For information about the types of logs used in Directory Server and for a description of the
server logs, see the following sections:

■ “Introduction to Logs” on page 161
■ “Retro Changelog” on page 162
■ “Transaction Log” on page 162
■ “Access, Error, and Audit Logs” on page 163

Introduction to Logs
The following table summarizes the different logs used by the Directory Server.

TABLE 7–1 Logs Used by Directory Server

Log Type Description

Retro change
log

Database Maintaining application compatibility with earlier versions of Directory Server.

Transaction
log

Database Ensuring data integrity by committing each update operation to the transaction
log on disk before the result code for the update operation is returned to the client
application.

When Directory Server accepts an update operation, it writes a log message about
the operation to the transaction log. If the system crashes, Directory Server uses
the transaction log to recover the database.

Access log Flat file Evaluating directory use patterns, verifying configuration settings, diagnosing
access problems. For information about access logs, see “Access Logs” on
page 163.

Error log Flat file Debugging directory deployments. For information about error logs, see “Error
Logs” on page 164.

7C H A P T E R 7

161

TABLE 7–1 Logs Used by Directory Server (Continued)
Log Type Description

Audit log Flat file Providing audit trails for security and data integrity. For information about audit
logs, see “Audit Logs” on page 164.

Retro Changelog
The following server properties configure the retro change log.

retro-cl-deleted-entry-attr

Attributes to record when an entry is deleted

retro-cl-enabled

Whether the retro changelog is enabled

retro-cl-ignored-attr

Attributes not to record when updates occur

retro-cl-max-age

Maximum age of records maintained

retro-cl-max-entry-count

Maximum total records maintained

retro-cl-path

File system directory where the log is housed

retro-cl-suffix-dn

Suffixes for which the log is maintained

See server(5dsconf) for details.

Transaction Log
The following server properties configure the transaction log.

db-checkpoint-interval

How often Directory Server checkpoints the transaction log, ensures the entire database
system is synchronized to disk, and cleans up transaction logs

db-durable-transaction-enabled

Whether update operations are committed to the transaction log on disk before result codes
are sent to clients

db-log-buf-size

The buffer size for log information stored in memory until the buffer fills or the transaction
commit forces the buffer to be written to disk

Retro Changelog

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008162

db-log-path

The path of the transaction log

db-batched-transaction-count

How many updates are accumulated before being committed to the directory database

See server(5dsconf) for details.

Access, Error, and Audit Logs
Access logs, error logs and audit logs are flat files that contain information about operations.
For information about how to view and configure logs, see Chapter 15, “Directory Server
Logging,” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

By default, the logs are stored in the directory instance-path/logs/.

Log files can be rotated on demand, or can be scheduled to be rotated on a specific day-of-the
week and time of day, or when the log file exceeds a specified minimum size.

Old log files are stored in the same path with the same name and an extension that contains the
date that the file was created, in the format filename.YYYYMMDD-hhmmss. The server also
maintains a file with the same name and the .rotationinfo extension to record the creation dates
of all log files.

For information about access logs, error logs and audit logs, see the following sections:

■ “Access Logs” on page 163
■ “Error Logs” on page 164
■ “Audit Logs” on page 164
■ “Content of Access, Error, and Audit Logs” on page 164
■ “Connection Codes in Log Files” on page 169
■ “Result Codes in Log Files” on page 170

Access Logs
Access logs contain information about connections between an LDAP client and a directory
server. A connection is a sequence of requests from the same client, and can contain the
following components:

■ Connection index and the IP address of the client
■ Bind record
■ Bind result record
■ Sequence of operation request/result pairs, or individual records in the case of connection,

closed, and abandon records

Access, Error, and Audit Logs

Chapter 7 • Directory Server Logging 163

■ Unbind record
■ Closed record

Error Logs
Error logs contain a unique identifier of the error, warning or information message, and a
human readable message. Errors are defined according to the following severity.

Error The error is severe. Immediate action should be taken to avoid the loss or
corruption of directory data.

Warning The error is important. Action should be taken at some stage to prevent a severe
error occurring in the future.

Info An informative message, usually describing server activity. No action is necessary.

Audit Logs
Audit logs contain records of all modifications to configuration or suffix entries. The
modifications are written in LDIF format.

Audit logging is not enabled by default. To enable audit logging, use the procedure “To Enable
the Audit Log” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Content of Access, Error, and Audit Logs
The remainder of this chapter describes each of the parts of the log files.

Time Stamp
Each line of an access log file begins with a timestamp of this format:[20/Dec/2006:11:39:51
-0700]. The time stamp, -0700 indicates the time difference in relation to GMT.

The format of the time stamp can vary according to your platform. The connection, closed, and
abandon records appear individually. All other records appear in pairs, consisting of a request
for service record followed by a result record. The record pairs usually, but not exclusively,
appear on adjacent lines.

Connection Number
The connection number is represented by conn=value. Every external request is listed with an
incremental connection number.

Access, Error, and Audit Logs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008164

When conn=Internal the operation is an internal operation. To log internal access operations,
specify an access logging level of acc-internal in the dsconf configuration attribute.

File Descriptor
The file descriptor is represented by fd=value.

Every connection from an external LDAP client to a directory server requires a file descriptor
from the operating system. The file descriptor is taken from a pool of available file descriptors.

Slot Number
The slot number has the same meaning as file descriptor. Slot number is a legacy section of the
access log and can be ignored.

Operation Number
The operation number is represented by op=value.

For a connection, all operation request and result pairs are given incremental operation
numbers beginning with op=0. The operation number identifies the operation being performed.

When op=-1, the LDAP request for the connection was not issued by an external LDAP client,
but was initiated internally.

Method Type
The method type is represented by method=value.

The method type indicates which bind method was used by the client. The method type can
have one of the following values.

0 No authentication

128 Simple bind with user password

sasl SASL bind using external authentication mechanism

LDAP Version
The LDAP version can be LDAPv2 or LDAPv3. The LDAP version gives the LDAP version
number that the LDAP client used to communicate with the LDAP server.

Error Number
The error number is represented by err=number.

Access, Error, and Audit Logs

Chapter 7 • Directory Server Logging 165

The error number provides the LDAP result code returned from the LDAP operation. The
LDAP error number 0 means that the operation was successful. For a list of LDAP result codes
refer to “Result Codes in Log Files” on page 170.

Tag Number
The tag number is represented by tag=value.

The tags are used internally for message decoding and are not intended for use outside. The
following tags are used most often.

tag=97 A client bind operation

tag=100 The entry for which you were searching

tag=101 The result from a search operation

tag=103 The result from a modify operation

tag=105 The result from an add operation

tag=107 The result from a delete operation

tag=109 The result from a modify DN operation

tag=111 The result from a compare operation

tag=115 A search reference when the entry you perform your search on holds a referral to
the entry you require. Search references are expressed in terms of a referral.

tag=120 A result from an extended operation

Number of Entries
The number of entries is represented by nentries=value.

The number of entries indicates the number of entries that matched an LDAP search request.

Elapsed Time
The elapsed time is represented by etime=value.

Elapsed time indicates the time that it took to perform the LDAP operation. An etime value of 0
means that the operation took milliseconds to perform.

To log the time in microseconds, specify an access logging level of acc-timing in the dsconf
configuration attribute.

Access, Error, and Audit Logs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008166

LDAP Request Type
The LDAP request type indicates the type of LDAP request made by the client. The following
types of LDAP requests can be made:

SRCH Search

MOD Modify

DEL Delete

ADD Add

MODDN Modify DN

EXT Extended operation

ABANDON Abandon operation

LDAP Response Type
The LDAP response type indicates the LDAP response being returned by the server. The
following LDAP responses can be returned:

RESULT Result

ENTRY Entry

REFERRAL Referral or search reference

Unindexed Search Indicator
The unindexed search indicator is represented by notes=U.

In an unindexed search, the database is searched instead of the index file. Unindexed searches
occur for the following reasons:

■ The all IDs threshold was reached in the index file used for the search
■ An index file does not exist
■ The index file is not configured in the way required by the search

An unindexed search indicator is often accompanied by a large etime value because unindexed
searches are usually more time consuming than indexed searches.

Extended Operation OID
An extended operation OID is represented by EXT oid="OID number". See
extended-operations(5dsconf) for a list of supported extended operations.

Access, Error, and Audit Logs

Chapter 7 • Directory Server Logging 167

Change Sequence Number in Log Files
The replication change sequence number is represented in log files by csn=value.

The presence of a change sequence number indicates that replication is enabled for this naming
context.

Abandon Message
The abandon message is represented by ABANDON.

The presence of the abandon message indicates that an operation has been aborted. If the
message ID succeeds in locating the operation that has been aborted, the log message reads as
follows:

conn=12 op=2 ABANDON targetop=1 msgid=2 nentries=0 etime=0

However, if the message ID does not succeed in locating the operation, or if the operation had
already finished prior to the ABANDON request being sent, then the log message reads as follows:

conn=12 op=2 ABANDON targetop=NOTFOUND msgid=2

The abandon message uses the following parameters:

nentries Gives the number of entries sent before the operation was aborted

etime Gives the number of seconds that elapsed before the operation was aborted

targetop Identifies the operation to be aborted. If the value is NOTFOUND, the operation to be
aborted was either an unknown operation or already complete

Message ID
The message ID is represented by msgId=value.

The message ID is the LDAP operation identifier generated by the client. The message ID can
have a different value to the operation number, but identifies the same operation. The message
ID in an ABANDON operation specifies which client operation is being abandoned.

The operation number starts counting at 0. However, in many client implementations the
message ID number starts counting at 1. This explains why the message ID is frequently equal
to the operation number plus 1.

SASL Multi-Stage Bind Logging
Directory Server logs each stage in the multi stage bind process and, where appropriate, the
progress statement SASL bind in progress is included.

Access, Error, and Audit Logs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008168

The DN used for access control decisions is logged in the BIND result line and not in the bind
request line.

conn=14 op=1 RESULT err=0 tag=97 nentries=0 etime=0 dn="uid=myname,dc=example,dc=com"

For SASL binds, the DN value displayed in the BIND request line is not used by the server and
is, therefore, not relevant. However, for SASL binds, the authenticated DN must be used for
audit purposes. Therefore, the authenticated DN must be clearly logged. Having the
authenticated DN logged in the BIND result line avoids any confusion as to which DN is which.

Options Description
The options description, options=persistent, indicates that a persistent search is being
performed. Persistent searches can be used as a form of monitoring and can be configured to
return changes to given configurations. The access log distinguishes between persistent and
regular searches.

Connection Codes in Log Files
A connection code is included in the closing message of a log file. The connection code
provides additional information about why the connection was closed. The following table
describes the common connection codes.

TABLE 7–2 Summary of Connection Codes

Connection
Code Description

A1 The client has closed the connection without performing an UNBIND.

B1 This connection code can have one of the following causes:
■ The client has closed the connection without performing an UNBIND.

■ The BER element was corrupt. If BER elements, which encapsulate data being sent over the
wire, are corrupt when they are received, a B1 connection code is logged to the access log.
BER elements can be corrupted by physical layer network problems or bad LDAP client
operations, such as an LDAP client aborting before receiving all request results.

B2 The BER element is longer than the nsslapd-maxbersize attribute value.

B3 A corrupt BER tag was encountered.

B4 The server failed to flush data response back to client. This code can occur when the client closes
the connection to the server, before the server finished sending data to the client.

P1 The client connection was closed by a custom plug-in. None of the plug-ins provided by
Directory Server close a connection.

Access, Error, and Audit Logs

Chapter 7 • Directory Server Logging 169

TABLE 7–2 Summary of Connection Codes (Continued)
Connection
Code Description

P2 A closed connection or corrupt connection has been detected.

T1 The server closed the client connection because it was idle for longer than the idle-timeout
server property.

T2 The server closed the client connection because it was stalled for longer than the
nsslapd-ioblocktimeout attribute value. This code can occur for the following reasons:
■ There is a network problem.

■ The server sends a lot of data to the client but the client does not read the data. As a result, the
server’s transmit buffer becomes full.

U1 The server closed the client connection because client sent an UNBIND request.

Result Codes in Log Files
The following tables summarizes the LDAP result codes generated by an LDAP server and an
LDAP client.

TABLE 7–3 Summary of Result Codes for LDAP Servers

Result Code Description

0 Success

1 Operations error

2 Protocol error

3 Time limit exceeded

4 Size limit exceeded

5 Compare false

6 Compare true

7 Authentication method not supported

8 Strong authentication required

9 Partial results and referral received

10 Referral received

11 Administrative limit exceeded

12 Unavailable critical extension

Access, Error, and Audit Logs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008170

TABLE 7–3 Summary of Result Codes for LDAP Servers (Continued)
Result Code Description

13 Confidentiality required

14 SASL bind in progress

16 No such attribute

17 Undefined attribute type

18 Inappropriate matching

19 Constraint violation

20 Type or value exists

21 Invalid syntax

32 No such object

33 Alias problem

34 Invalid DN syntax

35 Object is a leaf

36 Alias de-referencing problem

48 Inappropriate authentication

49 Invalid credentials

50 Insufficient access

51 Server is busy

52 Server is unavailable

53 Server is unwilling to perform

54 Loop detected

64 Naming violation

65 Object class violation

66 Operation not permitted on a non-leaf entry

67 Operation not permitted on a RDN

68 Entry already exists

69 Cannot modify object class

70 Results too large

71 Affects multiple servers

Access, Error, and Audit Logs

Chapter 7 • Directory Server Logging 171

TABLE 7–3 Summary of Result Codes for LDAP Servers (Continued)
Result Code Description

76 Virtual list view error

TABLE 7–4 Summary of Result Codes for LDAP Clients

Result Code Description

80 Unknown error

81 Cannot contact LDAP server

82 Local error

83 Encoding error

84 Decoding error

85 Timed out

86 Unknown authentication method

87 Bad search filter

88 User cancelled operation

89 Bad parameter to an LDAP routine

90 Out of memory

91 Cannot connect to the LDAP server

92 Not supported by this version of LDAP

93 Requested LDAP control not found

94 No results returned

95 Additional results to return

96 Client detected loop

97 Referral hop limit exceeded

Access, Error, and Audit Logs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008172

Directory Server Groups and Roles

This chapter describes how groups and roles are used by Directory Server to associate entries
with each other. This chapter covers the following topics:

■ “Directory Server Groups” on page 173
■ “Directory Server Roles” on page 174

Directory Server Groups
A group is an entry that identifies the other entries that are in the group. The group mechanism
makes it easy to retrieve a list of entries that are members of a given group. Directory Server
supports static and dynamic groups.

Static Groups
Static groups specify the DN of each member of the group. Static groups use one of the
following object class and attribute pairs:

■ The groupOfNames object class, with a multivalued member attribute
■ The groupOfUniqueNames object class, with a multivalued uniqueMember attribute

The member attribute and uniqueMember attribute contain the DN for every entry that is a
member of the group. The uniqueMember attribute value for the DN is optionally followed by a
hash, #, and a unique identifier label to guarantee uniqueness.

8C H A P T E R 8

173

Dynamic Groups
Dynamic groups specify one or more URL search filters. All entries that match the URL search
filters are members of the group. Membership of a dynamic group is defined each time the
filters are evaluated. Dynamic groups use one of the following object class and attribute pairs:

■ The groupOfURLs object class, with the memberURL attribute
■ The groupOfUniqueNames object class, with the uniqueMember attribute

The group members are listed either by one or more filters represented as LDAP URL values of
the memberURL attribute or by one or more DNs as values of the uniqueMember attribute.

Nested Groups
Static and dynamic groups can be nested by specifying the DN of another group as a value for
the member attribute or uniqueMember attribute. The depth to which nested groups are
supported by ACIs is controlled by the nsslapd-groupevalnestlevel configuration
parameter.

Directory Server Roles
Roles are similar to groups but work in the opposite way — where a group entry lists the DN of
the member entries, the DN of a role entry is listed on each member entry. The role mechanism
makes it is easy to retrieve a list of roles that are assigned to an entry.

Each role has members, or entries that possess the role. The role mechanism is managed by the
nsRoleDN attribute and the nsRole attribute. The nsRoleDN attribute is used to add an entry to a
role. The nsRole attribute is a read-only attribute, maintained by the directory server, that lists
the roles to which an entry belongs. The nsRole attribute can be read or searched by clients to
enumerate all roles to which an entry belongs. If you do not want to expose role membership,
define access controls to read-protect the nsRole attribute.

By default, the scope of a role is limited to the subtree where it is defined. The scope of a role can
be extended to other subtrees on the same server instance.

Managed Roles
Managed roles are functionally very similar to static groups. Managed roles explicitly assign a
role to each member entry by adding the nsRoleDN attribute to the entry. The value of this
attribute is the DN of the role definition entry.

The role definition entry only defines the scope of the role in the directory. Members of the role
are entries that lie within the scope of the role definition, and that identify the role definition
entry with their nsRoleDN attributes.

Directory Server Roles

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008174

Filtered Roles
Filtered roles are equivalent to dynamic groups. Entries are assigned a role if they match a
specified search filter. The value of the search filter is defined by the nsRoleFilter attribute.
When the server returns an entry in the scope of a filtered role, that entry contains the generated
nsRole attribute that identifies the role.

Nested Roles
Nested roles are equivalent to nested groups. Nested roles enable you to create roles that contain
other roles and to extend the scope of existing roles. A nested role can itself contain another
nested role. Up to 30 levels of nesting are supported

A nested role lists the definition entries of other roles and combines all the members of their
roles. If an entry is a member of a role that is listed in a nested role, then the entry is also a
member of the nested role.

Limitations on Using Roles
When you use roles to support your directory service, be aware of the following limitations.

Roles and chaining
If your directory tree is distributed over several servers by using the chaining feature, entries
that define roles must be located on the same server as the entries that possess those roles. If
one server, A, receives entries from another server, B, through chaining, those entries will
contain the roles defined on B, but will not be assigned any of the roles defined on A.

Filtered Roles cannot use CoS generated attributes
The filter string of a filtered role cannot be based on the values of a CoS virtual attribute.
However, the specifier attribute in a CoS definition may reference the nsRole attribute
generated by a role definition. For information about CoS, see Chapter 9, “Directory Server
Class of Service.”

Extending the scope of roles
You can extend the scope of roles to different subtrees but they must be on the same server
instance. You cannot extend the scope of roles to other servers.

Searches on the nsRole attribute
The nsRole attribute can be used in any search filter with any of the comparison operators.
When you search on nsRole attribute, consider the following points:
■ Searches on the nsRole attribute can take a long time because all roles must be evaluated

before the entries can be filtered.
■ Directory Server is optimized for equality searches on membership in managed roles. For

example, this search will be nearly as fast as a search on real attributes.

Directory Server Roles

Chapter 8 • Directory Server Groups and Roles 175

(&(nsRole=cn=managersRole,ou=People,dc=example,dc=com)

(objectclass=person)

■ The nsRoleDN attribute is indexed by default in all suffixes. Optimizations for searching
the membership of managed roles are lost if indexing is disabled for the nsRoleDN
attribute.

■ Searches for entries that contain a filtered role involve an internal search with the role
filter. This internal operation will be fastest if all attributes that appear in the role filter are
indexed in all suffixes in the scope of the role.

Directory Server Roles

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008176

Directory Server Class of Service

The Class of Service (CoS) mechanism allows attributes to be shared between entries. CoS
values are calculated dynamically when they are requested. For information about CoS, see the
following sections:
■ “About CoS” on page 177
■ “CoS Definition Entries and CoS Template Entries” on page 178
■ “Pointer CoS, Indirect CoS, and Classic CoS” on page 180
■ “CoS Priorities” on page 183
■ “CoS Limitations” on page 184

About CoS
Imagine a directory containing thousands of entries that all have the same value for the
facsimileTelephoneNumber attribute. Traditionally, to change the fax number, you would
update each entry individually, a time consuming job for administrators. Using CoS, the fax
number is stored in a single place, and the facsimileTelephoneNumber attribute is
automatically generated on every entry as it is returned.

To client applications, a CoS attribute is generated in the same ways as any other attribute.
However, directory administrators now have only a single fax value to manage. Also, because
there are fewer values stored in the directory, the database uses less disk space. The CoS
mechanism also allows entries to override a generated value or to generate multiple values for
the same attribute.

Note – Because CoS virtual attributes are not indexed, referencing them in an LDAP search filter
may have an impact on performance.

Generated CoS attributes can be multivalued. Specifiers can designate several template entries,
or there can be several CoS definitions for the same attribute. Alternatively, you can specify
template priorities so that only one value is generated from all templates.

9C H A P T E R 9

177

Roles and classic CoS can be used together to provide role-based attributes. These attributes
appear on an entry because it possesses a particular role with an associated CoS template. You
could use a role-based attribute to set the server look through limit on a role-by-role basis, for
example.

CoS functionality can be used recursively; you can generate attributes through CoS that depend
on other attributes generated through CoS. Complex CoS schemes can simplify client access to
information and ease administration of repeated attributes, but they also increase management
complexity and degrade server performance. Avoid overly complex CoS schemes; many
indirect CoS schemes can be redefined as classic or pointer CoS, for example.

You should also avoid changing CoS definitions more often than necessary. Modifications to
CoS definitions do not take effect immediately, because the server caches CoS information.
Although caching accelerates read access to generated attributes, when changes to CoS
information occur, the server must reconstruct the cache. This task can take some time, usually
in the order of seconds. During cache reconstruction, read operations may still access the old
cached information, rather than the newly modified information, which means that if you
change CoS definitions too frequently, you are likely to be accessing outdated data.

CoS Definition Entries and CoS Template Entries
The CoS mechanism relies on two types of entries, the CoS definition entry and the CoS
template entry. This section describes the CoS definition entry and the CoS template entry.

CoS Definition Entry
The CoS definition entry identifies the type of CoS and the names of the CoS attributes that will
be generated. Like the role definition entry, the CoS definition entry inherits from the
LDAPsubentry object class. Multiple definitions may exist for the same CoS attribute, which, as
a result, may be multivalued.

The CoS definition entry is an instance of the cosSuperDefinition object class. The CoS
definition entry also inherits from one of the following object classes to specify the type of CoS:

■ cosPointerDefinition

■ cosIndirectDefinition

■ cosClassicDefinition

The CoS definition entry contains the attributes specific to each type of CoS for naming the
virtual CoS attribute, the template DN, and the specifier attribute in target entries. By default,
the CoS mechanism will not override the value of an existing attribute with the same name as
the CoS attribute. However, the syntax of the CoS definition entry allows you to control this
behavior.

CoS Definition Entries and CoS Template Entries

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008178

When schema checking is turned on, the CoS attribute will be generated on all target entries
that allow that attribute. When schema checking is turned off, the CoS attribute will be
generated on all target entries.

The location of the definition entry determines the scope of the CoS, which is the entire subtree
below the parent of the CoS definition entry. All entries in the branch of the definition entry’s
parent are called target entries for the CoS definition.

The following figure shows a CoS definition entry at the root of the ou=people subtree. The
scope of the CoS is only the two subtrees beneath the root. The CoS does not extend above this
root, or to other subtrees in the DIT.

CoS Template Entry
The CoS template entry contains the value that is generated for the CoS attribute. All entries
within the scope of the CoS use the values defined here. There may be several templates, each
with a different value, in which case the generated attribute may be multivalued. The CoS
mechanism selects one of these values based on the contents of both the definition entry and the
target entry.

The CoS template entry is an instance of the cosTemplate object class. The CoS template entry
contains the value or values of the attributes generated by the CoS mechanism. The template
entries for a given CoS are stored in the directory tree at the same level as the CoS definition.

When possible, definition and template entries should be located in the same place, for easier
management. You should also name them in a way that suggests the functionality they provide.
For example, a definition entry DN such as
"cn=classicCosGenEmployeeType,ou=People,dc=example,dc=com" is more descriptive than
"cn=ClassicCos1,ou=People,dc=example,dc=com". For more information about the object
classes and attributes associated with each type of CoS, see “Class of Service” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

FIGURE 9–1 CoS Scope

CoS Definition Entries and CoS Template Entries

Chapter 9 • Directory Server Class of Service 179

Pointer CoS, Indirect CoS, and Classic CoS
The following types of CoS differ in how the template, and therefore the generated value, is
selected:
■ “Pointer CoS” on page 180
■ “Indirect CoS” on page 181
■ “Classic CoS” on page 182

Pointer CoS
Pointer CoS is the simplest type of CoS. The pointer CoS definition entry provides the DN of a
specific template entry of the cosTemplate object class. All target entries have the same CoS
attribute value, as defined by this template.

The following figure shows a pointer CoS that defines a common postal code for all of the
entries stored under dc=example,dc=com. The CoS definition entry, CoS template entry and
target entry are indicated.

The template entry is identified by its DN, cn=exampleUS,cn=data, in the CoS definition entry.
Each time the postalCode attribute is queried on entries under dc=example,dc=com, Directory
Server returns the value available in the template entry cn=exampleUS,cn=data. Therefore, the
postal code will appear with the entry uid=wholiday,ou=people,dc=example,dc=com, but it is
not stored there.

In a scenario where several shared attributes are generated by CoS for thousands or millions of
entries, instead of existing as real attributes in each entry, the storage space savings and
performance gains provided by CoS are considerable.

cn=PointerCoS,dc=example,dc=com

cosTemplateDN:cn=exampleUS,cn=data
cosAttribute:postalCode

CoS Definition Entry

cn=exampleUS,cn=data

postalCode:44438

CoS Template Entry

uid=wholiday,ou=people,dc=example,dc=com

objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
postalCode:44438

Target Entry

FIGURE 9–2 Example of a Pointer CoS Definition and Template

Pointer CoS, Indirect CoS, and Classic CoS

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008180

Indirect CoS
Indirect CoS allows any entry in the directory to be a template and provide the CoS value. The
indirect CoS definition entry identifies an attribute, called the indirect specifier, whose value in
a target entry determines the template used for that entry. The indirect specifier attribute in the
target entry must contain a DN. With indirect CoS, each target entry may use a different
template and thus have a different value for the CoS attribute.

For example, an indirect CoS that generates the departmentNumber attribute may use an
employee’s manager as the specifier. When retrieving a target entry, the CoS mechanism will
use the DN value of the manager attribute as the template. It will then generate the
departmentNumber attribute for the employee using the same value as the manager’s
department number.

Note – Because templates may be arbitrary entries anywhere in the directory tree, implementing
access control for indirect CoS can become extremely complex. In deployments where
performance is critical, you should also avoid overusing indirect CoS due to its resource
intensive nature.

In many cases, results that are similar to those made possible by indirect CoS can be achieved by
limiting the location of the target entries with classic CoS or using the less flexible pointer CoS
mechanism.

The following figure shows an indirect CoS that uses the manager attribute of the target entry to
identify the template entry. In this way, the CoS mechanism can generate the
departmentNumber attribute of all employees to be the same as their manager’s, ensuring that it
is always up to date.

Pointer CoS, Indirect CoS, and Classic CoS

Chapter 9 • Directory Server Class of Service 181

The indirect CoS definition entry names the specifier attribute, which in this example, is the
manager attribute. William Holiday’s entry is one of the target entries of this CoS, and his
manager attribute contains the DN of uid=cfuentes,ou=people,dc=example,dc=com.
Therefore, Carla Fuentes’s entry is the template, which in turn provides the departmentNumber
attribute value of 318842.

Classic CoS
Classic CoS combines the pointer and indirect CoS behavior. The classic CoS definition entry
identifies the base DN of the template and a specifier attribute. The value of the specifier
attribute in the target entries is then used to construct the DN of the template entry as follows:

cn=specifierValue, baseDN

The template containing the CoS values is determined by the combination of the RDN (relative
distinguished name) value of the specifier attribute in the target entry and the template’s base
DN.

Classic CoS templates are entries of the cosTemplate object class to avoid the performance
issue associated with arbitrary indirect CoS templates.

The classic CoS mechanism determines the DN of the template from the base DN given in the
definition entry and the specifier attribute in the target entry. The value of the specifier attribute
is taken as the cn value in the template DN. Template DNs for classic CoS must therefore have
the following structure:

cn=specifierValue,baseDN

CoS Template Entry
Target Entry

uid=cfuentes,ou=people,dc=example,dc=com

objectclass:inetOrgPerson
cn:Carla Fuentes
uid:cfuentes
departmentNumber:318842

uid=wholiday,ou=people,dc=example,dc=com

objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
manager:uid=cfuentes,ou=people,
 dc=example,dc=com
departmentNumber:318842

cn=IndirectCoS,dc=example,dc=com

cosIndirectSpecifier:cn=manager
cosAttribute:departmentNumber

CoS Definition Entry

FIGURE 9–3 Example of an Indirect CoS Definition and Template

Pointer CoS, Indirect CoS, and Classic CoS

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008182

The following figure shows a classic CoS definition that generates a value for the postal code
attribute.

In this example, the cosSpecifier attribute names the employeeType attribute. The
combination of the cosSpecifier attribute and the template DN identifies the template entry
as cn=sales,cn=exampleUS,cn=data. The template entry then provides the value of the
postalCode attribute to the target entry.

CoS Priorities
It is possible to create CoS schemes that compete with each other to provide an attribute value.
For example, you might have a multivalued cosSpecifier in your CoS definition entry. In such
a case, you can specify a template priority on each template entry to determine which template
provides the attribute value. Set the template priority using the cosPriority attribute. This
attribute represents the global priority of a particular template numerically. A priority of zero is
the highest possible priority.

Templates that contain no cosPriority attribute are considered the lowest possible priority. In
the case where two or more templates are considered to supply an attribute value and they have
the same (or no) priority, a value is chosen arbitrarily. Directory Server can be configured to log
messages when it is forced to choose a template arbitrarily.

cn=ClassicCoS,dc=example,dc=com

cosTemplateDN:cn=exampleUS,cn=data
cosSpecifier:employeeType
cosAttribute:postalCode

CoS Definition Entry

cn=sales,cn=exampleUS,cn=data

postalCode:44438

CoS Definition Entry

uid=wholiday,ou=people,dc=example,dc=com

objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
employeeType:sales
postalCode:44438

Target Entry

FIGURE 9–4 Example of a Classic CoS Definition and Template

CoS Priorities

Chapter 9 • Directory Server Class of Service 183

CoS Limitations
The CoS functionality is a complex mechanism which, for performance and security reasons, is
subject to the following limitations:
■ Restricted subtrees

You cannot create CoS definitions in either the cn=config or cn=schema subtrees.
■ Unindexed searches

Searches in suffixes where an attribute is declared as a CoS-generated attribute will result in
an unindexed search. This may have a significant impact on performance. In suffixes where
the same attribute is NOT declared as a CoS attribute, the search will be indexed.

■ Restricted attribute types

The following attributes should not be generated by CoS because they do not have the same
behavior as real attributes of the same name.
■ userPassword - A CoS-generated password value cannot be used to bind to Directory

Server.
■ aci - Directory Server will not apply any access control based on the contents of a virtual

ACI value defined by CoS.
■ objectclass - Directory Server will not perform schema checking on the value of a

virtual object class defined by CoS.
■ nsRoleDN - A CoS-generated nsRoleDN value will not be used by the server to generate

roles.
■ All templates must be local

The DNs of template entries, either in a CoS definition or in the specifier of the target entry,
must refer to local entries in the directory. Templates and the values they contain cannot be
retrieved through directory chaining or referrals.

■ CoS virtual values cannot be combined with real values
The values of a CoS attribute are never a combination of real values from the entry and
virtual values from the templates. When the CoS overrides a real attribute value, it replaces
all real values with those from the templates. However, the CoS mechanism can combine
virtual values from several CoS definition entries. For more information, see “CoS
Limitations” in the Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide.

■ Filtered roles cannot use CoS-generated attributes
The filter string of a filtered role cannot be based on the values of a CoS virtual attribute.
However, the specifier attribute in a CoS definition may reference the nsRole attribute
generated by a role definition. For more information, see “Creating Role-Based Attributes”
in the Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

■ Access Control Instructions (ACIs)

CoS Limitations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008184

The server controls access to attributes generated by a CoS in exactly the same way as
regular, stored attributes. However, access control rules that depend on the value of
attributes generated by CoS are subject to the conditions described in “CoS Limitations” on
page 184.

■ CoS cache latency
The CoS cache is an internal structure that keeps all CoS data in memory to improve
performance. This cache is optimized for retrieving CoS data to be used in computing
virtual attributes, even while CoS definition and template entries are being updated.
Therefore, once definition and template entries have been added or modified, there may be a
slight delay before they are taken into account. This delay depends on the number and
complexity of CoS definitions, as well as the current server load, but it is usually in the order
of a few seconds. Consider this latency before designing overly complex CoS configurations.

CoS Limitations

Chapter 9 • Directory Server Class of Service 185

186

Directory Server DSMLv2

For information about DSMLv2 in Directory Server, see the following sections:

■ “Introduction to DSML” on page 187
■ “Implementation of the DSMLv2 Standard” on page 189
■ “DSML Security” on page 189
■ “DSML Identity Mapping” on page 189
■ “Content of the HTTP Header” on page 192
■ “Accessing the Directory Using DSMLv2” on page 192

Introduction to DSML
Directory Services Markup Language version 2, DSMLv2, is a markup language that describes
directory operations in an eXtensible Markup Language (XML) document. For information
about the DSMLv2 standard, see Directory Services Markup Language (DSML) v2.0 [OASIS
200201] at http://www.oasis-open.org/specs.

The complete DSMLv2 specification and supporting documentation can be found at the
following locations:

■ http://www.oasis-open.org/committees/dsml/docs/DSMLv2.xsd

■ http://www.oasis-open.org/committees/dsml/docs/DSMLv2.doc

Directory Server supports DSMLv2 SOAP over HTTP binding. DSML requests and responses
are embedded in the body of SOAP v1.1, and transported in an HTTP/1.1 payload.

The Directory Server Resource Kit contains tools for searching and modifying directories using
DSMLv2. See dsmlsearch(1) and dsmlmodify(1).

By using DSML, non-LDAP clients can perform directory operations. The following figure
shows an example deployment where a non-LDAP client makes a requests to modify data on
DSML-enabled directory servers.

10C H A P T E R 1 0

187

http://www.oasis-open.org/specs
http://www.oasis-open.org/committees/dsml/docs/DSMLv2.xsd
http://www.oasis-open.org/committees/dsml/docs/DSMLv2.doc

In the example deployment, update requests in DSML arrive from non-LDAP client
applications cross a firewall over HTTP port 80. The web proxy server enforces the use of secure
HTTP over port 443 for the requests to cross a second firewall and enter the intranet domain.
The requests are then processed by the two master replicas on Master A and Master B, before
being replicated to the non-DSML enabled Consumers C and D.

Directory
Proxy
Server

Consumer
C

Consumer
D

DSML-
Enabled
Master A

DSML-
Enabled
Master B

Firewall

Firewall

DSML requests
over HTTP
(port 80)

DSML requests over
secure HTTP over SSL
(port 443)

FIGURE 10–1 Sample DSML-Enabled Directory Deployment

Introduction to DSML

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008188

Implementation of the DSMLv2 Standard
The Directory Server implementation of the DSMLv2 specification has the following
restrictions:

Bindings DSMLv2 defines two normative bindings: a SOAP request/response
binding and a file binding that serves as the DSMLv2 analog of LDIF.
Directory Server supports the SOAP request/response binding.

Modify DN Directory Server supports the DSML modDNRequest and modDNResponse

operations.

Abandon request Directory Server does not support the abandonRequest operation,
because this operation is of no use over HTTP.

Search operations Some DSML clients incorrectly send an equality match with value *
when a presence match is intended. Directory Server will return zero
results from these badly formatted queries. You can detect these
incorrect clients by searching for the characters =\2a in the access log.

DSML Security
The DSML front end constitutes a restricted HTTP server; it accepts only DSML post
operations, it rejects requests that do not conform to the DSMLv2 SOAP binding specifications.

The security of DSML is configured by the following server properties
dsml-client-auth-mode, dsml-port, dsml-secure-port, and dsml-relative-root-url. For
information about these properties, see server(5dsconf).

For additional security, consider the following.

■ Protect DSML-enabled directory servers by implementing a firewall.
■ If you do not impose the use of HTTP over SSL on your clients, implement a demilitarized

zone.

DSML Identity Mapping
Identity mapping is required for the following mechanisms: DSML over HTTP, DIGEST-MD5,
and GSSAPI SASL. Identity mapping is used to determine a bind DN based on protocol specific
credentials provided by the client.

Identity mapping uses the entries in the cn=identity mapping, cn=config configuration
branch. This branch includes the following containers for the protocols that perform identity
mapping:

DSML Identity Mapping

Chapter 10 • Directory Server DSMLv2 189

cn=HTTP-BASIC, cn=identity mapping, cn=config

Contains the mappings for DSML-over-HTTP connections.

cn=DIGEST-MD5, cn=identity mapping, cn=config

Contains the mappings for client authentication using the DIGEST-MD5 SASL mechanism.

cn=GSSAPI, cn=identity mapping, cn=config

Must be created to contain the mappings for client authentication using the GSSAPI SASL
mechanism.

A mapping entry defines how to extract credentials about the protocol to use them in a search
operation. If a search returns a single user entry, the mapping has succeeded and the connection
uses the mapping entry as the bind DN for all operations. If the search returns zero or more
than one entry, the mapping fails and the connection does not use the mapping entry as the
bind DN.

The protocols that perform identity mapping must have a default mapping. Additionally, The
protocols can have any number of custom mappings. The default mapping has the RDN
cn=default, and custom mappings may have any other RDN that uses cn as the naming
attribute. All of the custom mappings are evaluated first, in a non deterministic order until one
of them succeeds. If all custom mappings fail, the default mapping is applied. If the default
mapping fails, authentication of the client fails.

A mapping entry must contain the object classes top, container, and dsIdentityMapping.

The entry can contain the following attributes.

dsMappedDN: DN
A literal string that defines a DN in the directory. This DN will be used for binding if it exists
when the mapping is performed. You may also define the following attributes to perform a
search in case this DN does not exist.

dsSearchBaseDN: DN
The base DN for a search. If omitted, the mapping will search all root suffixes in the entire
directory tree, including all naming contexts, but excluding cn=config, cn=monitor, and
cn=schema.

dsSearchScope: base|one|sub

The scope for a search, either the search base itself, one level of children below the base, or
the entire subtree below the base. The default scope for mapping searches is the entire
subtree when this attribute is omitted.

dsSearchFilter: filterString
A filter string to perform the mapping search. LDAP search filters are defined in RFC 4515
on http://www.ietf.org/rfc/rfc4515.txt.

Additionally, a mapping entry may also contain the dsPatternMatching object class which
allows it to use the following attributes:

DSML Identity Mapping

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008190

dsMatching-pattern: patternString
A string on which to perform pattern matching.

dsMatching-regexp: regularExpression
A regular expression to apply to the pattern string.

All of the attribute values above, except for dsSearchScope may contain placeholders of the
format ${keyword}, where keyword is the name of an element in the protocol-specific
credentials. During mapping, the placeholder is substituted for the actual value of the element
provided by the client.

After all of the placeholders have been substituted, the pattern matching is performed. The
matching pattern is compared to the regular expression, as follows.

■ If the regular expression does not match the pattern string, the mapping fails.
■ If the regular expression does match the pattern string, the matching values of the regular

expression terms in parentheses are available as numbered placeholders for use in other
attribute values.

For example, the following mapping could be defined for SASL.

dsMatching-pattern: ${Principal}

dsMatching-regexp: (.*)@(.*)\\.(.*)

dsMappedDN: uid=$1,ou=people,dc=$2,dc=$3

If a client authenticates with the Principal of bjensen@example.com, this mapping will define
the following bind DN: uid=bjensen,ou=people,dc=example,dc=com. If this DN exists in the
directory, the mapping will succeed, the client will be authenticated, and all operations
performed during this connection will use this bind DN.

The dsMatching-pattern is compared to the dsMatching-regexp by using the POSIX
regexec(3C) and regcomp(3C) function calls. Directory Server uses extended regular
expressions and all comparisons are case insensitive. For more information, refer to the man
pages for these functions.

The attribute values that can contain placeholders must encode any $, {, and } characters that
are not part of a placeholder, even if no placeholder is used. You must encode these characters
with the following values: $ as \\24, { as \\7B, and } as \\7D.

The use of placeholders and substitutions allows you to create mappings that extract a
username or any other value from the protocol-specific credentials. The credential can be used
to define a mapped DN or perform a search for a corresponding DN anywhere in the directory.

DSML Identity Mapping

Chapter 10 • Directory Server DSMLv2 191

Caution – Creating a poorly defined mapping is a security hole. For example, a mapping to a hard
coded DN without pattern matching will always succeed, thereby authenticating clients who
might not be directory users. It is safer to define several mappings to handle different client
credential formats than to create a single, overly generic and permissive mapping. Always try to
map client connections to specific users according to the client credentials.

Content of the HTTP Header
Directory Server supports the HTTP POST operation only. The following example shows the
minimum fields required to send a DSML request to the server over HTTP:

POST /dsml HTTP/1.1

content-length: 450

HOST: hostname
SOAPAction: ""
Content-Type: text/xml

Connection: close

The Connection field is optional. In HTTP 1.0, the default value of this field is close. In HTTP
1.1, however, the default value is keep-alive. It is therefore recommended that you include this
field with a value of close in your last request if you are using HTTP 1.1, to accelerate the
dialog.

Additional fields may be included in the HTTP header. If they are supported by Directory
Server, their values will override the defaults. If the fields are not supported, the request is not
rejected by the server but the fields are ignored.

Accessing the Directory Using DSMLv2
The following examples indicate how to use DSML requests to access and search the directory.

■ “An Empty Anonymous DSML Ping Request” on page 193
■ “Issuing a DSML Request to Bind as a Particular User” on page 195
■ “A DSML Search Request” on page 197

Note that the content-length: header in these examples contains the exact length of the
DSMLv2 request. For these examples to function correctly, ensure that the editor you use
respects these content lengths, or that you modify them accordingly.

Content of the HTTP Header

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008192

An Empty Anonymous DSML Ping Request
The DSML front end is disabled by default. For information on how to enable it, refer to
“Configuring DSML” in Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide. To check whether the DSML front end is enabled, send an empty DSML batch request,
as shown in Example 10–1.

EXAMPLE 10–1 Empty Anonymous DSML Request

POST /dsml HTTP/1.1

content-length: 451

HOST: hostname

SOAPAction: ""
Content-Type: text/xml

Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?\>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’\>
<soap-env:Body\>

<batchRequest

xmlns=’urn:oasis:names:tc:DSML:2:0:core’ requestID=’Ping!’\>
<!-- empty batch request --\>

</batchRequest\>

</soap-env:Body\>

</soap-env:Envelope\>

The first section of this DSML request contains the HTTP method line, POST /dsml HTTP/1.1,
followed by a number of HTTP headers. The HTTP method line specifies the HTTP method
request and URL to be used by the DSML front end. POST is the only HTTP method request
accepted by the DSML front end. The /dsml URL is the default URL for Directory Server, but
can be configured with any other valid URL. The HTTP headers that follow, specify the
remaining details of the DSML request.

■ content-length: 451specifies the exact length of the SOAP/DSML request
■ HOST: hostnamespecifies the name of the host Directory Server being contacted.
■ SOAPAction:is mandatory and informs the directory that you want to perform a DSML

request on the HTTP/SOAP stack. It may however, be left empty.
■ Content-Type: text/xmlmust have a value of text/xml which defines the content as XML.
■ Connection: closespecifies that the connection will be closed once the request has been

satisfied. The default HTTP/1.1 behavior is to maintain the connection open.
The remainder of the request is the SOAP/DSML section. The DSML request begins with
the XML prologue header:

Accessing the Directory Using DSMLv2

Chapter 10 • Directory Server DSMLv2 193

<?xml version=’1.0’ encoding=’UTF-8’?\>

This specifies that the request must be encoded with the UTF-8 character set. The header is
followed by the SOAP envelope and body elements that contain the mandatory inclusion of
the XML schema, XML schema instance and SOAP name spaces.

The DSML batch request element marks the beginning of the DSML batch request, and is
immediately followed by the mandatory inclusion of the DSMLv2 namespace:

xmlns=’urn:oasis:names:tc:DSML:2:0:core’.

The request is optionally identified by the following request ID

requestID=’Ping!’

The empty batch request

<!-- empty batch request --\>

is XML commented as such, and the SOAP/DSML batch request is closed using the close
batch request, close SOAP body, and close SOAP envelope elements.

If the DSML front end is enabled, an empty DSML response is returned, as shown in
Example 10–2.

EXAMPLE 10–2 Empty Anonymous DSML Response

HTTP/1.1 200 OK

Cache-control: no-cache

Connection: close

Date: Mon, 11 Dec 2006 13:56:49 GMT

Accept-Ranges: none

Server: Sun-Java(tm)-System-Directory/6.3

Content-Type: text/xml; charset="utf-8"
Content-Length: 500

<?xml version=’1.0’ encoding=’UTF-8’ ?\>

<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’
\>

<soap-env:Body\>

<batchResponse

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns=’urn:oasis:names:tc:DSML:2:0:core’
requestID=’Ping!’
\>

Accessing the Directory Using DSMLv2

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008194

EXAMPLE 10–2 Empty Anonymous DSML Response (Continued)

</batchResponse\>

</soap-env:Body\>

</soap-env:Envelope\>

If nothing is returned, you can conclude that the front end is disabled.

Maximum limits exist for the number of clients connecting simultaneously to the directory and
for the size of the DSML requests. The limit for the number of clients is specified by the
dsml-max-parser-count and dsml-min-parser-count server properties and the request size
limit by the server property dsml-request-max-size. See server(5dsconf).

Issuing a DSML Request to Bind as a Particular User
To issue a DSML request you can bind to the directory as a specified user or anonymously. To
bind as a specified user, the request must include an HTTP authorization header containing a
UID and a password that are mapped to a DN, as shown in Example 10–3.

EXAMPLE 10–3 DSML Extended Operation: Bind as a Particular User

POST /dsml HTTP/1.1

content-length: 578

content-Type: text/xml; charset="utf-8"
HOST: hostname
Authorization: Basic ZWFzdGVyOmVnZw==

SOAPAction: ""
Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?\>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’\>
<soap-env:Body\>

<batchRequest

xmlns=’urn:oasis:names:tc:DSML:2:0:core’\>
<extendedRequest\>

<requestName\>1.3.6.1.4.1.4203.1.11.3</requestName\>

</extendedRequest\>

</batchRequest\>

</soap-env:Body\>

</soap-env:Envelope\>

In this example the HTTP authorization header transports the user ID easter and the
password egg, which, in clear, appears as easter:egg, and encoded in base64 as
Authorization: Basic ZWFzdGVyOmVnZw==.

Accessing the Directory Using DSMLv2

Chapter 10 • Directory Server DSMLv2 195

The <extendedRequest\> tag is used to specify an LDAP Extended Operation. The
<requestName\> tag is used to specify the OID of the extended operation. In this example, the
OID 1.3.6.1.4.1.4203.1.11.3 identifies the whoami extended operation.

The response to the DSML extended operation shows the DN of the user that made the bind
request. In Example 10–4, the whoami response, which contains the DN, is shown in the
response line.

<response\>dn:uid=easter,ou=people,dc=example,dc=com</response\>

EXAMPLE 10–4 Response to DSML Extended Operation

HTTP/1.1 200 OK

Cache-control: no-cache

Connection: close

Date: Fri, 15 Dec 2006 09:15:09 GMT

Accept-Ranges: none

Server: Sun-Java(tm)-System-Directory/6.3

Content-Type: text/xml; charset="utf-8"
Content-Length: 697

<?xml version=’1.0’ encoding=’UTF-8’ ?\>

<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’
\>

<soap-env:Body\>

<batchResponse

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns=’urn:oasis:names:tc:DSML:2:0:core’
\>

<extendedResponse\>

<resultCode code=’0’ descr=’success’/\>
<responseName\>1.3.6.1.4.1.4203.1.11.3</responseName\>

<response\>dn:uid=easter,ou=people,dc=example,dc=com</response\>

</extendedResponse\>

</batchResponse\>

</soap-env:Body\>

</soap-env:Envelope\>

For anonymous access, no HTTP authorization header is required, although anonymous access
is often subject to strict access controls, and possibly to data access restrictions. Similarly, you
can issue DSML requests to perform LDAP operations by LDAP proxy.

Because DSML requests are managed on a batch basis, if you issue requests by LDAP proxy, the
required DSML proxy authorization request must be the first in a given batch of requests.

Accessing the Directory Using DSMLv2

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008196

A DSML Search Request
Example 10–5 shows a DSML base object search request on the root DSE entry.

EXAMPLE 10–5 DSML Search Request

POST /dsml HTTP/1.1

HOST: hostname

Content-Length: 1081

Content-Type: text/xml

SOAPAction: ""
Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?\>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’
\>

<soap-env:Body\>

<batchRequest

xmlns=’urn:oasis:names:tc:DSML:2:0:core’
requestID=’Batch of search requests’
\>

<searchRequest

dn=""
requestID="search on Root DSE"
scope="baseObject"
derefAliases="neverDerefAliases"
typesOnly="false"
\>

<filter\>

<present name="objectClass"/\>
</filter\>

<attributes\>

<attribute name="namingContexts"/\>
<attribute name="supportedLDAPversion"/\>
<attribute name="vendorName"/\>
<attribute name="vendorVersion"/\>
<attribute name="supportedSASLMechanisms"/\>

</attributes\>

</searchRequest\>

</batchRequest\>

</soap-env:Body\>

</soap-env:Envelope\>

■ dn=""requestID="search on Root DSE"specifies that the search operation requests data
under the root DSE entry (empty DN) and is identified with an optional request ID
attribute.

Accessing the Directory Using DSMLv2

Chapter 10 • Directory Server DSMLv2 197

■ scope="baseObject"specifies that the search is a base object search.
■ derefAliases="neverDerefAliases"specifies that the aliases should not be dereferenced

while searching or locating the base object of the search. This is the only derefAliases
value supported by Directory Server.

■ typesOnly="false"specifies that both the attribute names and their values be returned.
typesOnly="true" would return attribute names only. The default value for this attribute is
false.
For the entry to match the filter, the presence of objectclass filter is used as follows.

<filter\>

<present name="objectClass"/\>
</filter\>

This is equivalent to the LDAP filter string (objectclass=*). The filter is followed by the
list of desired attributes.

<attributes\>

<attribute name="namingContexts"/\>
<attribute name="supportedLDAPversion"/\>
<attribute name="vendorName"/\>
<attribute name="vendorVersion"/\>
<attribute name="supportedSASLMechanisms"/\>

</attributes\>

EXAMPLE 10–6 DSML Search Response

HTTP/1.1 200 OK

Cache-control: no-cache

Connection: close

Date: Fri, 15 Dec 2006 09:21:43 GMT

Accept-Ranges: none

Server: Sun-Java(tm)-System-Directory/6.3

Content-Type: text/xml; charset="utf-8"
Content-Length: 1287

<?xml version=’1.0’ encoding=’UTF-8’ ?\>

<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’
\>

<soap-env:Body\>

<batchResponse

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns=’urn:oasis:names:tc:DSML:2:0:core’

Accessing the Directory Using DSMLv2

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008198

EXAMPLE 10–6 DSML Search Response (Continued)

requestID=’Batch of search requests’
\>

<searchResponse requestID=’search on Root DSE’\>
<searchResultEntry\>

<attr name=’namingContexts’\>
<value\>dc=example,dc=com</value\>

</attr\>

<attr name=’supportedLDAPVersion’\>
<value\>2</value\>

<value\>3</value\>

</attr\>

<attr name=’vendorName’\>
<value\>Sun Microsystems, Inc.</value\>

</attr\>

<attr name=’vendorVersion’\>
<value\>Sun-Java(tm)-System-Directory/6.3</value\>

</attr\>

<attr name=’supportedSASLMechanisms’\>
<value\>EXTERNAL</value\>

<value\>GSSAPI</value\>

<value\>DIGEST-MD5</value\>

</attr\>

</searchResultEntry\>

<searchResultDone\>

<resultCode code=’0’ descr=’success’/\>
</searchResultDone\>

</searchResponse\>

</batchResponse\>

</soap-env:Body\>

</soap-env:Envelope\>

Accessing the Directory Using DSMLv2

Chapter 10 • Directory Server DSMLv2 199

200

Directory Server Internationalization Support

Directory Server provides support for storing, managing, and searching for entries and their
associated attributes in different languages.

Data inside the internationalized directory is stored in UTF-8 format. Therefore, Directory
Server supports all international characters by default. The internationalized directory can be
used to specify matching rules and collation orders based on language preferences in search
operations. For information about the internationalized directory, see the following sections:
■ “About Locales” on page 201
■ “Identifying Supported Locales” on page 202
■ “Supported Language Subtypes” on page 208

About Locales
A locale identifies language-specific information about how users in a specific region, culture,
or custom expect data to be presented. Locales define how data in different languages is
interpreted, sorted, and collated.Directory Server supports multiple languages through the use
of locales.

A locale specifies the following information.

Code page
The code page is an internal table used by an operating system to relate keyboard keys to
character fonts displayed on a screen. A locale can indicate what code page an application
should select for interaction with an end user.

Collation order

The collation order provides information about how the characters of a given language
should be sorted. The collation order specifies the following information:
■ The sequence of the letters in the alphabet
■ How to compare letters with accents to letters without accents

11C H A P T E R 1 1

201

■ Whether there are characters that can be ignored when comparing strings
■ The direction, left to right, right to left, or up and down, in which the language is read

Character type
The character type distinguishes alphabetic characters from numeric or other characters. It
defines the mapping of uppercase letters to lowercase letters. For example, in some
languages, the pipe character (|) is considered punctuation, while in other languages it is
considered as alphabetic.

Monetary format
The monetary format specifies the following information: the monetary symbol used in a
region, whether the symbol goes before or after its value, and how monetary units are
represented.

Time and date formats
The time and date formats determine the appearance of times and dates in a region. The time
format indicates whether the locale uses a 12–hour clock or 24-hour clock. The date format
includes both the short date order and the long date format, and include the names of
months and days of the week in each language.

Identifying Supported Locales
When you perform directory operations that require you to specify a locale, such as a search
operation, you can use a language tag or a collation order object identifier, OID.

A language tag is a string that begins with the two-character lowercase language code that
identifies the language, as defined in ISO standard 639. If necessary to distinguish regional
differences in language, the language tag may also contain a country code, which is a
two-character string, as defined in ISO standard 3166. The language code and country code are
separated by a hyphen. For example, the language tag used to identify the American English
locale is en-US.

An OID is a decimal number that uniquely identifies an object, such as an attribute or object
class.

When you perform an international search in a directory, use either the language tag or the OID
to identify the collation order you want to use. When you set up an international index, use the
OIDs.

The following table lists the locales supported by Directory Server. It identifies the associated
language tags and OIDs.

Identifying Supported Locales

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008202

TABLE 11–1 Supported Locales

Locale Tag Collation Order OID Backward Compatible OID

Afrikaans af 1.3.6.1.4.1.42.2.27.9.4.1.1

Amharic Ethiopia am 1.3.6.1.4.1.42.2.27.9.4.2.1

Arabic ar 1.3.6.1.4.1.42.2.27.9.4.3.1 2.16.840.1.113730.3.3.2.1.1

Arabic United Arab Emirates ar-AE 1.3.6.1.4.1.42.2.27.9.4.4.1

Arabic Bahrain ar-BH 1.3.6.1.4.1.42.2.27.9.4.5.1

Arabic Algeria ar-DZ 1.3.6.1.4.1.42.2.27.9.4.6.1

Arabic Egypt ar-EG 1.3.6.1.4.1.42.2.27.9.4.7.1

Arabic India ar-IN 1.3.6.1.4.1.42.2.27.9.4.8.1

Arabic Iraq ar-IQ 1.3.6.1.4.1.42.2.27.9.4.9.1

Arabic Jordan ar-JO 1.3.6.1.4.1.42.2.27.9.4.10.1

Arabic Kuwait ar-KW 1.3.6.1.4.1.42.2.27.9.4.11.1

Arabic Lebanon ar-LB 1.3.6.1.4.1.42.2.27.9.4.12.1

Arabic Libya ar-LY 1.3.6.1.4.1.42.2.27.9.4.13.1

Arabic Morocco ar-MA 1.3.6.1.4.1.42.2.27.9.4.14.1

Arabic Oman ar-OM 1.3.6.1.4.1.42.2.27.9.4.15.1

Arabic Qatar ar-QA 1.3.6.1.4.1.42.2.27.9.4.16.1

Arabic Saudi Arabia ar-SA 1.3.6.1.4.1.42.2.27.9.4.17.1

Arabic Sudan ar-SD 1.3.6.1.4.1.42.2.27.9.4.18.1

Arabic Syria ar-SY 1.3.6.1.4.1.42.2.27.9.4.19.1

Arabic Tunisia ar-TN 1.3.6.1.4.1.42.2.27.9.4.20.1

Arabic Yemen ar-YE 1.3.6.1.4.1.42.2.27.9.4.21.1

Byelorussian be 1.3.6.1.4.1.42.2.27.9.4.22.1 2.16.840.1.113730.3.3.2.2.1

Bulgarian bg 1.3.6.1.4.1.42.2.27.9.4.23.1 2.16.840.1.113730.3.3.2.3.1

Bengali India bn 1.3.6.1.4.1.42.2.27.9.4.24.1

Catalan ca 1.3.6.1.4.1.42.2.27.9.4.25.1 2.16.840.1.113730.3.3.2.4.1

Czech cs 1.3.6.1.4.1.42.2.27.9.4.26.1 2.16.840.1.113730.3.3.2.5.1

Danish da 1.3.6.1.4.1.42.2.27.9.4.27.1 2.16.840.1.113730.3.3.2.6.1

Identifying Supported Locales

Chapter 11 • Directory Server Internationalization Support 203

TABLE 11–1 Supported Locales (Continued)
Locale Tag Collation Order OID Backward Compatible OID

German de or
de-DE

1.3.6.1.4.1.42.2.27.9.4.28.1 2.16.840.1.113730.3.3.2.7.1

German Austria de-AT 1.3.6.1.4.1.42.2.27.9.4.29.1 2.16.840.1.113730.3.3.2.8.1

German Belgium de-BE 1.3.6.1.4.1.42.2.27.9.4.30.1

German Swiss de-CH 1.3.6.1.4.1.42.2.27.9.4.31.1 2.16.840.1.113730.3.3.2.9.1

German Luxembourg de-LU 1.3.6.1.4.1.42.2.27.9.4.32.1

Greek el 1.3.6.1.4.1.42.2.27.9.4.33.1 2.16.840.1.113730.3.3.2.10.1

English (US) en-US 1.3.6.1.4.1.42.2.27.9.4.34.1 2.16.840.1.113730.3.3.2.11.1

English Australian en-AU 1.3.6.1.4.1.42.2.27.9.4.35.1

English Canada en-CA 1.3.6.1.4.1.42.2.27.9.4.36.1 2.16.840.1.113730.3.3.2.12.1

English Great Britain en-GB 1.3.6.1.4.1.42.2.27.9.4.37.1 2.16.840.1.113730.3.3.2.13.1

English Hong Kong en-HK 1.3.6.1.4.1.42.2.27.9.4.38.1

English Ireland en-IE 1.3.6.1.4.1.42.2.27.9.4.39.1 2.16.840.1.113730.3.3.2.14.1

English India en-IN 1.3.6.1.4.1.42.2.27.9.4.40.1

English Malta en-MT 1.3.6.1.4.1.42.2.27.9.4.41.1

English New Zealand en-NZ 1.3.6.1.4.1.42.2.27.9.4.42.1

English Philippines en-PH 1.3.6.1.4.1.42.2.27.9.4.43.1

English Singapore en-SG 1.3.6.1.4.1.42.2.27.9.4.44.1

English Virgin Island en-VI 1.3.6.1.4.1.42.2.27.9.4.45.1

English South Africa en-ZA 1.3.6.1.4.1.42.2.27.9.4.46.1

English Zimbabwe en-ZW 1.3.6.1.4.1.42.2.27.9.4.47.1

Esperanto eo 1.3.6.1.4.1.42.2.27.9.4.48.1

Spanish es or
es-ES

1.3.6.1.4.1.42.2.27.9.4.49.1 2.16.840.1.113730.3.3.2.15.1

Spanish Argentina es-AR 1.3.6.1.4.1.42.2.27.9.4.50.1

Spanish Bolivia es-BO 1.3.6.1.4.1.42.2.27.9.4.51.1

Spanish Chile es-CL 1.3.6.1.4.1.42.2.27.9.4.52.1

Spanish Colombia es-CO 1.3.6.1.4.1.42.2.27.9.4.53.1

Identifying Supported Locales

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008204

TABLE 11–1 Supported Locales (Continued)
Locale Tag Collation Order OID Backward Compatible OID

Spanish Costa Rica es-CR 1.3.6.1.4.1.42.2.27.9.4.54.1

Spanish Dominican Rep. es-DO 1.3.6.1.4.1.42.2.27.9.4.55.1

Spanish Ecuador es-EC 1.3.6.1.4.1.42.2.27.9.4.56.1

Spanish Guatemala es-GT 1.3.6.1.4.1.42.2.27.9.4.57.1

Spanish Honduras es-HN 1.3.6.1.4.1.42.2.27.9.4.58.1

Spanish Mexico es-MX 1.3.6.1.4.1.42.2.27.9.4.59.1

Spanish Nicaragua es-NI 1.3.6.1.4.1.42.2.27.9.4.60.1

Spanish Panama es-PA 1.3.6.1.4.1.42.2.27.9.4.61.1

Spanish Peru es-PE 1.3.6.1.4.1.42.2.27.9.4.62.1

Spanish Puerto Rico es-PR 1.3.6.1.4.1.42.2.27.9.4.63.1

Spanish Paraguay es-PY 1.3.6.1.4.1.42.2.27.9.4.64.1

Spanish El Salvador es-SV 1.3.6.1.4.1.42.2.27.9.4.65.1

Spanish US es-US 1.3.6.1.4.1.42.2.27.9.4.66.1

Spanish Uruguay es-UY 1.3.6.1.4.1.42.2.27.9.4.67.1

Spanish Venezuela es-VE 1.3.6.1.4.1.42.2.27.9.4.68.1

Estonian et 1.3.6.1.4.1.42.2.27.9.4.69.1 2.16.840.1.113730.3.3.2.16.1

Basque eu 1.3.6.1.4.1.42.2.27.9.4.70.1

Persian fa 1.3.6.1.4.1.42.2.27.9.4.71.1

Persian India fa-IN 1.3.6.1.4.1.42.2.27.9.4.72.1

Persian Iran fa-IR 1.3.6.1.4.1.42.2.27.9.4.73.1

Finnish fi 1.3.6.1.4.1.42.2.27.9.4.74.1 2.16.840.1.113730.3.3.2.17.1

Faeroese fo 1.3.6.1.4.1.42.2.27.9.4.75.1

French fr or fr-FR 1.3.6.1.4.1.42.2.27.9.4.76.1 2.16.840.1.113730.3.3.2.18.1

French Belgium fr-BE 1.3.6.1.4.1.42.2.27.9.4.77.1 2.16.840.1.113730.3.3.2.19.1

French Canada fr-CA 1.3.6.1.4.1.42.2.27.9.4.78.1 2.16.840.1.113730.3.3.2.20.1

French Swiss fr-CH 1.3.6.1.4.1.42.2.27.9.4.79.1 2.16.840.1.113730.3.3.2.21.1

French Luxembourg fr-LU 1.3.6.1.4.1.42.2.27.9.4.80.1

Irish ga 1.3.6.1.4.1.42.2.27.9.4.81.1

Identifying Supported Locales

Chapter 11 • Directory Server Internationalization Support 205

TABLE 11–1 Supported Locales (Continued)
Locale Tag Collation Order OID Backward Compatible OID

Galician gl 1.3.6.1.4.1.42.2.27.9.4.82.1

Gujarati gu 1.3.6.1.4.1.42.2.27.9.4.83.1

Manx Gaelic (Isle of Man) gv 1.3.6.1.4.1.42.2.27.9.4.84.1

Hebrew he or iw 1.3.6.1.4.1.42.2.27.9.4.85.1 2.16.840.1.113730.3.3.2.27.1

Hindi hi 1.3.6.1.4.1.42.2.27.9.4.86.1

Croatian hr 1.3.6.1.4.1.42.2.27.9.4.87.1 2.16.840.1.113730.3.3.2.22.1

Hungarian hu 1.3.6.1.4.1.42.2.27.9.4.88.1 2.16.840.1.113730.3.3.2.23.1

Armenian hy 1.3.6.1.4.1.42.2.27.9.4.89.1

Indonesian id 1.3.6.1.4.1.42.2.27.9.4.90.1

Icelandic is 1.3.6.1.4.1.42.2.27.9.4.91.1 2.16.840.1.113730.3.3.2.24.1

Italian it 1.3.6.1.4.1.42.2.27.9.4.92.1 2.16.840.1.113730.3.3.2.25.1

Italian Swiss it-CH 1.3.6.1.4.1.42.2.27.9.4.93.1 2.16.840.1.113730.3.3.2.26.1

Japanese ja 1.3.6.1.4.1.42.2.27.9.4.94.1 2.16.840.1.113730.3.3.2.28.1

Greenlandic kl 1.3.6.1.4.1.42.2.27.9.4.95.1

Kannada kn 1.3.6.1.4.1.42.2.27.9.4.96.1

Korean ko 1.3.6.1.4.1.42.2.27.9.4.97.1 2.16.840.1.113730.3.3.2.29.1

Konkani kok 1.3.6.1.4.1.42.2.27.9.4.98.1

Cornish kw 1.3.6.1.4.1.42.2.27.9.4.99.1

Lithuanian lt 1.3.6.1.4.1.42.2.27.9.4.100.1 2.16.840.1.113730.3.3.2.30.1

Latvian or Lettish lv 1.3.6.1.4.1.42.2.27.9.4.101.1 2.16.840.1.113730.3.3.2.31.1

Macedonian mk 1.3.6.1.4.1.42.2.27.9.4.102.1 2.16.840.1.113730.3.3.2.32.1

Marathi mr 1.3.6.1.4.1.42.2.27.9.4.103.1

Maltese mt 1.3.6.1.4.1.42.2.27.9.4.104.1

Dutch nl or
nl-NL

1.3.6.1.4.1.42.2.27.9.4.105.1 2.16.840.1.113730.3.3.2.33.1

Dutch Belgium nl-BE 1.3.6.1.4.1.42.2.27.9.4.106.1 2.16.840.1.113730.3.3.2.34.1

Norwegian no or
no-NO

1.3.6.1.4.1.42.2.27.9.4.107.1 2.16.840.1.113730.3.3.2.35.1

Identifying Supported Locales

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008206

TABLE 11–1 Supported Locales (Continued)
Locale Tag Collation Order OID Backward Compatible OID

Norwegian Nynorsk no-NO-NY 1.3.6.1.4.1.42.2.27.9.4.108.1 2.16.840.1.113730.3.3.2.37.1

Norwegian Nynorsk nn 1.3.6.1.4.1.42.2.27.9.4.109.1

Norwegian Bokmål nb or
no-NO-B

1.3.6.1.4.1.42.2.27.9.4.110.1 2.16.840.1.113730.3.3.2.36.1

Oromo (Afan) om 1.3.6.1.4.1.42.2.27.9.4.111.1

Oromo Ethiopia om-ET 1.3.6.1.4.1.42.2.27.9.4.112.1

Oromo Kenya om-KE 1.3.6.1.4.1.42.2.27.9.4.113.1

Polish pl 1.3.6.1.4.1.42.2.27.9.4.114.1 2.16.840.1.113730.3.3.2.38.1

Portuguese pt or
pt-PT

1.3.6.1.4.1.42.2.27.9.4.115.1

Portuguese Brazil pt-BR 1.3.6.1.4.1.42.2.27.9.4.116.1

Romanian ro 1.3.6.1.4.1.42.2.27.9.4.117.1 2.16.840.1.113730.3.3.2.39.1

Russian ru or
ru-RU

1.3.6.1.4.1.42.2.27.9.4.118.1 2.16.840.1.113730.3.3.2.40.1

Russian Ukraine ru-UA 1.3.6.1.4.1.42.2.27.9.4.119.1

Serbo-Croatian sh 1.3.6.1.4.1.42.2.27.9.4.120.1 2.16.840.1.113730.3.3.2.41.1

Slovak sk 1.3.6.1.4.1.42.2.27.9.4.121.1 2.16.840.1.113730.3.3.2.42.1

Slovenian sl 1.3.6.1.4.1.42.2.27.9.4.122.1 2.16.840.1.113730.3.3.2.43.1

Somali so or
so-SO

1.3.6.1.4.1.42.2.27.9.4.123.1

Somali Djibouti so-DJ 1.3.6.1.4.1.42.2.27.9.4.124.1

Somali Ethiopia so-ET 1.3.6.1.4.1.42.2.27.9.4.125.1

Somali Kenya so-KE 1.3.6.1.4.1.42.2.27.9.4.126.1

Albanian sq 1.3.6.1.4.1.42.2.27.9.4.127.1 2.16.840.1.113730.3.3.2.44.1

Serbian sr 1.3.6.1.4.1.42.2.27.9.4.128.1 2.16.840.1.113730.3.3.2.45.1

Swedish sv-SE 1.3.6.1.4.1.42.2.27.9.4.129.1 2.16.840.1.113730.3.3.2.46.1

Swedish Finland sv-FI 1.3.6.1.4.1.42.2.27.9.4.130.1

Swahili sw 1.3.6.1.4.1.42.2.27.9.4.131.1

Swahili Kenya sw-KE 1.3.6.1.4.1.42.2.27.9.4.132.1

Identifying Supported Locales

Chapter 11 • Directory Server Internationalization Support 207

TABLE 11–1 Supported Locales (Continued)
Locale Tag Collation Order OID Backward Compatible OID

Swahili Tanzania sw-TZ 1.3.6.1.4.1.42.2.27.9.4.133.1

Tamil ta 1.3.6.1.4.1.42.2.27.9.4.134.1

Telugu te 1.3.6.1.4.1.42.2.27.9.4.135.1

Thai th 1.3.6.1.4.1.42.2.27.9.4.136.1

Tigrinya ti 1.3.6.1.4.1.42.2.27.9.4.137.1

Tigrinya Eritrea ti-ER 1.3.6.1.4.1.42.2.27.9.4.138.1

Tigrinya Ethiopia ti-ET 1.3.6.1.4.1.42.2.27.9.4.139.1

Turkish tr 1.3.6.1.4.1.42.2.27.9.4.140.1 2.16.840.1.113730.3.3.2.47.1

Ukrainian uk 1.3.6.1.4.1.42.2.27.9.4.141.1 2.16.840.1.113730.3.3.2.48.1

Vietnamese vi 1.3.6.1.4.1.42.2.27.9.4.142.1

Chinese zh 1.3.6.1.4.1.42.2.27.9.4.143.1 2.16.840.1.113730.3.3.2.49.1

Chinese China zh-CN 1.3.6.1.4.1.42.2.27.9.4.144.1

Chinese Hong Kong zh-HK 1.3.6.1.4.1.42.2.27.9.4.145.1

Chinese Mongolia zh-MO 1.3.6.1.4.1.42.2.27.9.4.146.1

Chinese Singapore zh-SG 1.3.6.1.4.1.42.2.27.9.4.147.1

Chinese Taiwan zh-TW 1.3.6.1.4.1.42.2.27.9.4.148.1 2.16.840.1.113730.3.3.2.50.1

Supported Language Subtypes
Language subtypes can be used by clients to indicate specific attributes in characters of a
language other than the default language of a deployment. For example, German users may
prefer to see addresses in German when possible. In this case, you can select German as a
language subtype for the streetAddress attribute so that users can search for either the English
or the German representation of the address. If you specify a language subtype for an attribute,
the subtype is added to the attribute name as follows:attribute;lang-subtype.

The following listing shows an English language and German language subtype for the
streetAddress attribute:

streetAddress;lang-en: 10 Schlossplatz, 76113, Karlsruhe, Germany

streetAddress;lang-de: Schloßplatz 10, 76113, Karlsruhe, Deutschland

The following table contains the list of supported language subtypes.

Supported Language Subtypes

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008208

TABLE 11–2 Supported Language Subtypes

Language Language Tag

Afrikaans af

Albanian sq

Amharic Ethiopia am

Arabic ar

Armenian hy

Basque eu

Bengali India bn

Bulgarian bg

Byelorussian be

Catalan ca

Chinese zh

Cornish kw

Croatian hr

Czech cs

Danish da

Dutch nl

English en

Esperanto eo

Estonian et

Faeroese fo

Finnish fi

French fr

Galician gl

German de

Greek el

Greenlandic kl

Gujarati gu

Supported Language Subtypes

Chapter 11 • Directory Server Internationalization Support 209

TABLE 11–2 Supported Language Subtypes (Continued)
Language Language Tag

Hebrew he or iw

Hindi hi

Hungarian hu

Icelandic is

Indonesian id

Irish ga

Italian it

Japanese ja

Kannada kn

Konkani kok

Korean ko

Latvian or Lettish lv

Lithuanian lt

Macedonian mk

Maltese mt

Manx (Isle of Man) gv

Marathi mr

Norwegian no

Oromo om

Persian fa

Polish pl

Portuguese pt

Romanian ro

Russian ru

Serbian sr

Serbo-Croatian sh

Slovak sk

Slovenian sl

Supported Language Subtypes

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008210

TABLE 11–2 Supported Language Subtypes (Continued)
Language Language Tag

Somali so

Spanish es

Swahili sw

Swedish sv

Tamil ta

Telugu te

Thai th

Tigrinya ti

Turkish tr

Ukrainian uk

Vietnamese vi

Supported Language Subtypes

Chapter 11 • Directory Server Internationalization Support 211

212

Directory Server LDAP URLs

One way to express an LDAP query is to use a URL to specify the Directory Server host machine
and the DN or filter for the search. Directory Server responds to queries sent as LDAP URLs and
returns an HTML page representing the results. In this way, if anonymous searching is
permitted, web browsers can perform searches of the directory. You can also use LDAP URLs to
specify target entries when you manage Directory Server referrals or when you access control
instructions.

For information about LDAP URLs, see the following sections:

■ “Components of an LDAP URL” on page 213
■ “Escaping Unsafe Characters” on page 215
■ “Examples of LDAP URLs” on page 215

Components of an LDAP URL
LDAP URLs have the following syntax:

ldap[s]://hostname:port/base_dn?attributes?scope?filter

When ldap:// is specified, standard LDAP is used to connect to the LDAP servers. When
ldaps:// is specified, LDAP over SSL is used to connect to the LDAP server.

TABLE 12–1 LDAP URL Components

Component Description

hostname Name (or IP address in dotted format) of the LDAP server. For example:

ldap.example.com or 192.168.1.100

12C H A P T E R 1 2

213

TABLE 12–1 LDAP URL Components (Continued)
Component Description

port Port number of the LDAP server.

If no port is specified, the standard LDAP port (389) or LDAPS port (636) is used.

base_dn Distinguished name (DN) of an entry in the directory. This DN identifies the entry
that is the starting point of the search.

If no base DN is specified, the search starts at the root of the directory tree.

attributes The attributes to be returned. To specify more than one attribute, use commas to
separate the attributes. For example, "cn,mail,telephoneNumber".

If no attributes are specified in the URL, all attributes are returned.

scope The scope of the search. The scope can be one of these values:
■ base retrieves information about the distinguished name (base_dn) specified in

the URL only.

■ one retrieves information about entries one level below the distinguished name
(base_dn) specified in the URL. The base entry is not included in this scope.

■ sub retrieves information about entries at all levels below the distinguished
name (base_dn) specified in the URL. The base entry is included in this scope.
If no scope is specified, the server performs a base search.

filter Search filter to apply to entries within the specified scope of the search.

If no filter is specified, the server uses the filter objectClass=*.

The following components are identified by their positions in the URL: attributes, scope, and
filter are. If you do not want to specify a component, you must include a question mark to
delimit the field. Two consecutive question marks, ??, indicate that no attributes have been
specified.

For example, to specify a subtree search starting from "dc=example,dc=com" that returns all
attributes for entries matching "(sn=Jensen)", use the following LDAP URL.

ldap://ldap.example.com/dc=example,dc=com??sub?(sn=Jensen)

Because no specific attributes are identified in the URL, all attributes are returned in the search.

Components of an LDAP URL

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008214

Escaping Unsafe Characters
Unsafe characters in a URL must be represented by a special sequence of characters. The
following table lists the characters that are unsafe within URLs, and provides the associated
escape characters to use in place of the unsafe character.

TABLE 12–2 Characters That Are Unsafe Within URLs

Unsafe Character Escape Characters

space %20

< %3c

\> %3e

" %22

%23

% %25

{ %7b

} %7d

| %7c

\\ %5c

^ %5e

~ %7e

[%5b

] %5d

” %60

Examples of LDAP URLs
The syntax for LDAP URLs does not include any means for specifying credentials or passwords.
Search request initiated through LDAP URLs are unauthenticated (anonymous), unless the
LDAP client that supports LDAP URLs provides an authentication mechanism. This section
gives examples of LDAP URLs.

EXAMPLE 12–1 Base Search for an Entry

The following LDAP URL specifies a base search for the entry with the distinguished name
dc=example,dc=com.

Examples of LDAP URLs

Chapter 12 • Directory Server LDAP URLs 215

EXAMPLE 12–1 Base Search for an Entry (Continued)

ldap://ldap.example.com/dc=example,dc=com

■ Because no port number is specified, the standard LDAP port number 389 is used.
■ Because no attributes are specified, the search returns all attributes.
■ Because no search scope is specified, the search is restricted to the base entry

dc=example,dc=com.
■ Because no filter is specified, the directory uses the default filter objectclass=*.

EXAMPLE 12–2 Retrieving postalAddressAttribute of an Entry

The following LDAP URL retrieves the postalAddress attribute of the entry with the DN
dc=example,dc=com:

ldap://ldap.example.com/dc=example,dc=com?postalAddress

■ Because no search scope is specified, the search is restricted to the base entry
dc=example,dc=com.

■ Because no filter is specified, the directory uses the default filter objectclass=*.

EXAMPLE 12–3 Retrieving cn and mailAttributes of an Entry

The following LDAP URL retrieves the cn, and mail attributes of the entry for Barbara Jensen.

ldap://ldap.example.com/cn=Barbara%20Jensen,dc=example, dc=com?cn,mail

■ Because no search scope is specified, the search is restricted to the base entry cn=Barbara
Jensen,dc=example,dc=com.

■ Because no filter is specified, the directory uses the default filter objectclass=*.

EXAMPLE 12–4 Retrieving the Surname JensenUnder dc=example,dc=com

The following LDAP URL specifies a search for entries that have the surname Jensen and are at
any level under dc=example,dc=com:

ldap://ldap.example.com/dc=example,dc=com??sub?(sn=Jensen)

■ Because no attributes are specified, the search returns all attributes.
■ Because the search scope is sub, the search encompasses the base entry dc=example,dc com

and entries at all levels under the base entry.

Examples of LDAP URLs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008216

EXAMPLE 12–5 Retrieving the Object Class for all Entries One Level Under dc=example,dc=com

The following LDAP URL specifies a search for the object class for all entries one level under
dc=example,dc=com:

ldap://ldap.example.com/dc=example,dc=com?objectClass?one

■ Because the search scope is one, the search encompasses all entries one level under the base
entry dc=example,dc=com. The search scope does not include the base entry.

■ Because no filter is specified, the directory uses the default filter objectclass=*.

Examples of LDAP URLs

Chapter 12 • Directory Server LDAP URLs 217

218

Directory Server LDIF and Search Filters

Directory Server uses the LDAP Data Interchange Format (LDIF) to describe a directory and its
entries in text format. LDIF can be used to build the initial directory database or to add large
numbers of entries to a directory. LDIF can also be used to describe changes to directory entries.
Most command-line utilities rely on LDIF for input or output.

All directory data is stored by using the UTF-8 encoding of Unicode, and, therefore, LDIF files
must also be UTF-8 encoded.

This chapter also provides information about searching the directory, and LDAP search filters.

For information about LDIF and searching the directory, see the following sections:

■ “LDIF File Format” on page 219
■ “Directory Entries in LDIF” on page 223
■ “Guidelines for Defining Directories by Using LDIF” on page 227
■ “Storing Information in Multiple Languages” on page 229
■ “Guidelines for Providing LDIF Input” on page 230
■ “Searching the Directory” on page 233

LDIF File Format
LDIF files consist of one or more directory entries separated by a blank line. Each LDIF entry
consists of the following parts:

■ Entry ID (optional)
■ Distinguished name (required)
■ One or more object classes
■ Multiple attribute definitions

The LDIF format is defined in RFC 2849.

The following example shows a basic directory entry in LDIF.

13C H A P T E R 1 3

219

EXAMPLE 13–1 A Directory Entry in LDIF

dn: distinguished_name
objectClass: object_class
objectClass: object_class
...

attribute_type[;subtype]: attribute_value
attribute_type[;subtype]: attribute_value
...

An LDIF file must contain the following parts:

■ A DN
■ At least one object class definition
■ Any attributes required by the object classes that you define for the entry

All other attributes and object classes are optional. Object classes and attributes can be specified
in any order. The space after the colon is optional.

The following table describes the fields in a LDIF file.

TABLE 13–1 LDIF Fields

Field Definition

[id] Optional. A positive decimal number representing the entry ID.
The database creation tools generate this ID for you. Never add
or edit this value yourself.

dn: distinguished_name The distinguished name for the entry.

objectClass: object_class An object class to use with this entry. The object class identifies
the types of attributes or schema that are allowed and required
for the entry.

attribute_type A descriptive attribute to use with the entry. The attribute should
be defined in the schema.

[subtype] Optional. A subtype of one of the following types:
■ Language (attribute;lang-subtype) identifies the language in

which the corresponding attribute value is expressed

■ Binary (attribute;binary) identifies whether the attribute
value is binary

■ Pronunciation (attribute;phonetic) identifies whether the
attribute value is a pronunciation of an attribute value

attribute_value The attribute value to be used with the attribute type.

LDIF File Format

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008220

The LDIF syntax for representing a change to an entry in the directory is different from the
syntax described above.

Continuing Lines in LDIF
When you specify LDIF, you can break and continue a line or fold a line by indenting the
continued portion of the line by one space. For example, the following two statements are
identical:

dn: cn=Babs Jensen,dc=example,dc=com

dn: cn=Babs J

ensen,dc=exam

ple,dc=com

You are not required to break and continue LDIF lines. However, doing so can improve the
readability of an LDIF file.

Binary Data in LDIF
You can represent binary data in LDIF by using one of the following methods:

■ Standard LDIF notation, the lesser than, <, symbol
■ Command-line utility, ldapmodify with the -b option
■ Base 64 encoding

Representing Binary Data by Using Standard LDIF Notation
The following example gives the standard LDIF notation of binary data:

jpegphoto:< file:/path/to/photo

In the example, the path is relative to the client, not to the server. To use standard notation, you
do not need to specify the ldapmodify -b parameter. However, you must add the following line
to the beginning of your LDIF file or to your LDIF update statements:

version:1

For example, you could use the ldapmodify command, as follows:

$ ldapmodify -D userDN -w passwd
version: 1

dn: cn=Barbara Jensen,ou=People,dc=example,dc=com

changetype: modify

add: userCertificate

userCertificate;binary:< file: BabsCert

LDIF File Format

Chapter 13 • Directory Server LDIF and Search Filters 221

Representing Binary Data by Using the ldapmodify -b Command
For backward compatibility with earlier versions of Directory Server, binary data can be
represented by using the ldapmodify -b command. However, when possible, use the standard
LDIF notation to represent binary data.

Directory Server accepts the ldapmodify command with the -b parameter and the following
LDIF notation:

jpegphoto: /path/to/photo

This notation indicates that the ldapmodify command should read the referenced file for
binary values if the attribute value begins with a slash.

Representing Binary Data by Using Base 64 Encoding
Base 64 encoded data is represented by the :: symbol, as shown in this example:

jpegPhoto:: encoded_data

In addition to binary data, the following values must be base 64 encoded:
■ Any value that begins with a semicolon, ;, or a space
■ Any value that contains non ASCII data, including new lines

Use the ldif command with the -b parameter to convert binary data to LDIF format, as
follows.

$ ldif -b attributeName

For more information about how to use the ldif command, see the ldif(1) man page.

In the above example, attributeName is the name of the attribute to which you are supplying the
binary data. The binary data is read from standard input and the results are written to standard
output. Use redirection operators to select input and output files.

The command takes any input and formats it with the correct line continuation and
appropriate attribute information. The command also assesses whether the input requires
base–64 encoding. The following example takes a binary file containing a JPEG image and
converts it into LDIF format for the attribute named jpegPhoto. The output is saved to
out.ldif:

$ ldif -b jpegPhoto < aphoto.jpg > out.ldif

The -b option specifies that the utility should interpret the entire input as a single binary value.
If the -b option is not present, each line is considered as a separate input value.

You can edit the output file to add the LDIF statements required to create or modify the
directory entry that will contain the binary value. For example, you can open the file out.ldif
in a text editor and add the following lines at the top of the file.

LDIF File Format

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008222

dn: cn=Barbara Jensen,ou=People,dc=example,dc=com

changetype: modify

add: jpegPhoto

jpegPhoto:: encoded_data

In this example, encoded_data represents the contents of the out.ldif file produced by the
command.

Directory Entries in LDIF
This section covers the following topics:
■ “Organization Entries in LDIF” on page 223
■ “Organizational Unit Entries in LDIF” on page 224
■ “Organizational Person Entries in LDIF” on page 225

Organization Entries in LDIF
Directories often have at least one organization entry. Typically the organization entry is the
first, or topmost entry in the directory. The organization entry often corresponds to the suffix
set for the directory. For example, a directory defined to use a suffix of o=example.com will
probably have an organization entry named o=example.com.

The LDIF that defines an organization entry should appear as follows:

dn: distinguished_name
objectClass: top

objectClass: organization

o: organization_namelist_of_optional_attributes...

The following is an example organization entry in LDIF format:

dn: o=example.com

objectclass: top

objectclass: organization

o: example.com Corporation

description: Fictional company for example purposes

telephonenumber: 555-5555

The organization name in the following example uses a comma:

dn: o=example.com Chile\, S.A.

objectclass: top

objectclass: organization

o: example.com Chile\, S.A.

description: Fictional company for example purposes

telephonenumber: 555-5556

Directory Entries in LDIF

Chapter 13 • Directory Server LDIF and Search Filters 223

The following table describes each element of the organization entry.

TABLE 13–2 Organization Entries in LDIF

LDIF Element Description

dn: distinguished_name Required. Specifies the distinguished name for the entry.

objectClass: top Required. Specifies the top object class.

objectClass: organization Specifies the organization object class. This line defines the entry
as an organization.

o: organization_name Specifies the organization’s name. If the organization name
includes a comma, you must escape the comma by a single
backslash or the entire organization argument must be enclosed
in quotation marks. However, if you are working with a UNIX
shell, you must also escape the backslash. Therefore, you must
use two back slashes. For example, to set the suffix to
example.com Bolivia, S.A. you would enter o: example.com

Bolivia\, S.A..

list_of_attributes Specifies the list of optional attributes that you want to maintain
for the entry.

Organizational Unit Entries in LDIF
In a directory tree, an organizational unit represents a major subdirectory. A directory tree
usually contains more than one organizational unit. An LDIF file that defines an organizational
unit entry must appear as follows:

dn: distinguished_name
objectClass: top

objectClass: organizationalUnit

ou: organizational_unit_namelist_of_optional_attributes...

The following example shows an organizational unit entry in LDIF format:

dn: ou=people, o=example.com

objectclass: top

objectclass: organizationalUnit

ou: people

description: Fictional organizational unit for example purposes

The following table defines each element of the organizational unit entry.

Directory Entries in LDIF

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008224

TABLE 13–3 Organizational Unit Entries in LDIF

LDIF Element Description

dn: distinguished_name Required. Specifies the distinguished name for the entry.

If there is a comma in the DN, the comma must be escaped with a
backslash (\). For example:

dn: ou=people,o=example.com Bolivia\,S.A.

objectClass: top Required. Specifies the top object class.

objectClass: organizationalUnit Specifies the organizationalUnit object class. This line defines
the entry as an organizationalUnit.

ou: organizational_unit_name Specifies an attribute containing the name of the organizational
unit.

list_of_attributes Specifies the list of optional attributes that maintain for the entry.

Organizational Person Entries in LDIF
The majority of the entries in a directory represent organizational people. In LDIF, the
definition of an organizational person is as follows:

dn: distinguished_name
objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: common_name
sn: surname
list_of_optional_attributes

The following example shows an organizational person entry in LDIF format:

dn: uid=bjensen,ou=people,o=example.com

objectclass: top

objectclass: person

objectclass: organizationalPerson

objectclass: inetOrgPerson

cn: Babs Jensen

sn: Jensen

givenname: Babs

uid: bjensen

ou: Marketing

ou: people

description: Fictional person for example purposes

Directory Entries in LDIF

Chapter 13 • Directory Server LDIF and Search Filters 225

telephonenumber: 555-5557

userpassword: {sha}dkfljlk34r2kljdsfk9

The following table defines each element of the LDIF person entry.

TABLE 13–4 Organizational Person Entries in LDIF

LDIF Element Description

dn: distinguished_name Required. Specifies the distinguished name for the
entry.

If there is a comma in the DN, the comma must be
escaped with a backslash (\). For example,
dn:uid=bjensen,ou=people,o=example.com

Bolivia\,S.A.

objectClass: top Required. Specifies the top object class.

objectClass: person Specifies the person object class. This object class
specification should be included because many LDAP
clients require it during search operations for a person
or an organizational person.

objectClass: organizationalPerson Specifies the organizationalPerson object class. This
object class specification should be included because
some LDAP clients require it during search operations
for an organizational person.

objectClass: inetOrgPerson Specifies the inetOrgPerson object class. The
inetOrgPerson object class is recommended for the
creation of an organizational person entry because
this object class includes the widest range of attributes.
The uid attribute is required by this object class, and
entries that contain this object class are named based
on the value of the uid attribute.

cn: common_name Required. Specifies the person’s common name which
is the full name commonly used by the person. For
example, cn: Bill Anderson.

sn: surname Required. Specifies the person’s surname, or last
name. For example, sn: Anderson.

list_of_attributes Specifies the list of optional attributes that you
maintain for the entry.

Directory Entries in LDIF

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008226

Guidelines for Defining Directories by Using LDIF
Follow these guidelines to create a directory by using LDIF.

■ Create an ASCII file that contains the entries you want to add in LDIF format.
■ Separate entries with a single empty line. Do not allow the first line of the file to be blank,

otherwise the ldapmodify command will exit.
■ Begin each file with the topmost, or root, entry in the database. The root entry must

represent the suffix or sub-suffix contained by the database. For example, if your database
has the suffix dc=example,dc=com, the first entry in the directory must be

dn: dc=example,dc=com

■ Create the branch point for a subtree before you create entries to go in the subtree.
■ Create the directory from the LDIF file by using one of the following methods:

■ By using the Directory Service Control Center
■ By using the dsadm command and dsconf command
■ By using theldapmodify command with the -a option or -B option

Create the directory by using ldapmodify command if you currently have a directory
database but you are adding a new subtree to the database. Unlike the other methods for
creating the directory from an LDIF file, Directory Server must be running before you can
add a subtree by using the ldapmodify command.

The following example shows an LDIF file with one organization entry, two organizational unit
entries, and three organizational person entries.

EXAMPLE 13–2 Example LDIF File With Entries for Organization, Organizational Units, and Organizational
Person

dn: o=example.com Corp

objectclass: top

objectclass: organization

o: example.com Corp

description: Fictional organization for example purposes

dn: ou=People,o=example.com Corp

objectclass: top

objectclass: organizationalUnit

ou: People

description: Fictional organizational unit for example purposes

tel: 555-5559

dn: cn=June Rossi,ou=People,o=example.com Corp

objectClass: top

objectClass: person

objectClass: organizationalPerson

Guidelines for Defining Directories by Using LDIF

Chapter 13 • Directory Server LDIF and Search Filters 227

EXAMPLE 13–2 Example LDIF File With Entries for Organization, Organizational Units, and Organizational
Person (Continued)

objectClass: inetOrgPerson

cn: June Rossi

sn: Rossi

givenName: June

mail: rossi@example.com

userPassword: {sha}KDIE3AL9DK

ou: Accounting

ou: people

telephoneNumber: 2616

roomNumber: 220

dn: cn=Marc Chambers,ou=People,o=example.com Corp

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Marc Chambers

sn: Chambers

givenName: Marc

mail: chambers@example.com

userPassword: {sha}jdl2alem87dlacz1

telephoneNumber: 2652

ou: Manufacturing

ou: People

roomNumber: 167

dn: cn=Robert Wong,ou=People,o=example.com Corp

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Robert Wong

cn: Bob Wong

sn: Wong

givenName: Robert

givenName: Bob

mail: bwong@example.com

userPassword: {sha}nn2msx761

telephoneNumber: 2881

roomNumber: 211

ou: Manufacturing

ou: people

dn: ou=Groups,o=example.com Corp

objectclass: top

Guidelines for Defining Directories by Using LDIF

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008228

EXAMPLE 13–2 Example LDIF File With Entries for Organization, Organizational Units, and Organizational
Person (Continued)

objectclass: organizationalUnit

ou: groups

description: Fictional organizational unit for example purposes

Storing Information in Multiple Languages
For directories that contains a single language, it is not necessary to do anything special to add a
new entry to the directory. However, for multinational organizations, it can be necessary to
store information in multiple languages so that users in different locales can view directory
information in their own language.

When information is represented in multiple languages, the server associates language tags with
attribute values. When a new entry is added, attribute values used in the RDN (Relative
Distinguished Name) must be added without any language codes.

Multiple languages can be stored within a single attribute. The attribute type is the same, but
each attribute value has a different language code. The language tag has no effect on how the
string is stored within the directory. All object class and attribute strings are stored using
UTF-8.

For a list of the languages supported by Directory Server and their associated language tags,
refer to “Identifying Supported Locales” on page 202.

For example, the example.com Corporation has offices in the United States and France. The
company wants employees to be able to view directory information in their native language.
When a directory entry is added for a new employee, Babs Jensen, the administrator creates the
entry in LDIF. The administrator creates values for the personalTitle attribute in English and
French, as follows:

dn: uid=bjensen,ou=people, o=example.com Corp

objectclass: top

objectclass: person

objectclass: organizationalPerson

name: Babs Jensen

cn: Babs Jensen

sn: Jensen

uid: bjensen

personalTitle: Miss

personalTitle;lang-en: Miss

personalTitle;lang-fr: Mlle

preferredLanguage: fr

Storing Information in Multiple Languages

Chapter 13 • Directory Server LDIF and Search Filters 229

Users accessing this directory entry with an LDAP client with the preferred language set to
English will see the personal title Miss. Users accessing the directory with an LDAP client with
the preferred language set to French will see the title Mlle.

Guidelines for Providing LDIF Input
All directory data is stored using the UTF-8 encoding of Unicode. Therefore, any LDIF input
you provide must also be UTF-8 encoded. The LDIF format is described in detail in “LDAP
Data Interchange Format Reference” in the Sun Java System Directory Server Enterprise
Edition 6.3 Reference.

Consider the following points when you provide LDIF input:

■ An object is a blank line followed by a line that starts with dn:. This line is the distinguished
name of the object. All other lines are the object’s attributes.

■ Comments start with # (and end with the EOL.)
■ Lines starting with a single space continue the previous line.
■ Binary values are base-64 encoded, and represented with a double colon (::) after the

attribute name.
■ Carriage returns and line feeds unsafe in LDIF values, and should be base-64 encoded.
■ Do not unintentionally leave trailing spaces at the end of an attribute value when you change

the attribute value by using the ldapmodify command.

Terminating LDIF Input on the Command Line
The ldapmodify and ldapdelete utilities read the LDIF statements that you enter after the
command in exactly the same way as if they were read from a file. When you finish providing
input, enter the character that your shell recognizes as the end of file (EOF) escape sequence.

Typically, the EOF escape sequence is Control-D (^D).

The following example shows how to terminate input to the ldapmodify command:

prompt\> ldapmodify -h host -p port -D cn=admin,cn=Administrators,cn=config -w -

dn: cn=Barry Nixon,ou=People,dc=example,dc=com

changetype: modify

delete: telephonenumber

^D

prompt\>

For simplicity and portability, examples in this document do not show prompts or EOF
sequences.

Guidelines for Providing LDIF Input

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008230

Using Special Characters
When entering command options on the command line, you may need to escape characters
that have special meaning to the command-line interpreter, such as space (), asterisk (*),
backslash (\\), and so forth. For example, many DNs contain spaces, and you must enclose the
value in double quotation marks ("") for most UNIX shells:

-D "cn=Barbara Jensen,ou=Product Development,dc=example,dc=com"

Depending on your command-line interpreter, you should use either single or double
quotation marks for this purpose. Refer to your operating system documentation for more
information.

In addition, if you are using DNs that contain commas, you must escape the commas with a
backslash (\\). For example:

-D "cn=Patricia Fuentes,ou=People,o=example.com Bolivia\\,S.A."

Note that LDIF statements after the ldapmodify command are being interpreted by the
command, not by the shell, and therefore do not need special consideration.

Using Attribute OIDs
Attribute OIDs are by default not supported in attribute names. This was not the case in some
previous versions of Directory Server. If you used attribute OIDs as attribute names in a
previous version of Directory Server, you must set the attribute
nsslapd-attribute-name-exceptions to on for the attribute OIDs to be accepted.

Schema Checking
When adding or modifying an entry, the attributes you use must be required or allowed by the
object classes in your entry, and your attributes must contain values that match their defined
syntax.

When modifying an entry, Directory Server performs schema checking on the entire entry, not
only the attributes being modified. Therefore, the operation may fail if any object class or
attribute in the entry does not conform to the schema.

Ordering of LDIF Entries
In any sequence of LDIF text for adding entries, either on the command line or in a file, parent
entries must be listed before their children. This way, when the server process the LDIF text, it
will create the parent entries before the children entries.

Guidelines for Providing LDIF Input

Chapter 13 • Directory Server LDIF and Search Filters 231

For example, if you want to create entries in a People subtree that does not exist in your
directory, then list an entry representing the People container before the entries within the
subtree:

dn: dc=example,dc=com

dn: ou=People,dc=example,dc=com

...

People subtree entries...
dn: ou=Group,dc=example,dc=com

...

Group subtree entries...

You can use the ldapmodify command-line utility to create any entry in the directory, however,
the root of a suffix or subsuffix is a special entry that must be associated with the necessary
configuration entries.

Managing Large Entries
Before adding or modifying entries with very large attribute values, you may need to configure
the server to accept them. To protect against overloading the server, clients are limited to
sending data no larger than 2 MB by default.

If you add an entry larger than this, or modify an attribute to a value which is larger, the server
will refuse to perform the operation and immediately close the connection. For example, binary
data such as multi-media contents in one or more attributes of an entry may exceed this limit.

Also, the entry defining a large static group may contain so many members that their
representation exceeds the limit. However, such groups are not recommended for performance
reasons, and you should consider redesigning your directory structure.

▼ To Modify the Size Limit Enforced by the Server on Data Sent by Clients

Set a new value for the nsslapd-maxbersize attribute of the cn=config entry.

■ To do this from the command line, use the following command:

ldapmodify -h host -p port -D cn=admin,cn=Administrators,cn=config -w -

dn: cn=config

changetype: modify

replace: nsslapd-maxbersize

nsslapd-maxbersize: sizeLimitInBytes
^D

For more information, see “nsslapd-maxbersize” in the Sun Java System Directory Server
Enterprise Edition 6.3 Reference.

1

Guidelines for Providing LDIF Input

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008232

Restart the server.

Error Handling
The command-line tools process all entries or modifications in the LDIF input sequentially.
The default behavior is to stop processing when the first error occurs. Use the -c option to
continue processing all input regardless of any errors. You will see the error condition in the
output of the tool.

In addition to the considerations listed above, common errors are:

■ Not having the appropriate access permission for the operation.
■ Adding an entry with a DN that already exists in the directory.
■ Adding an entry below a parent that does not exist.

Searching the Directory
You can locate entries in a directory using any LDAP client. Most clients provide some form of
search interface that enables you to search the directory and retrieve entry information.

The access control that has been set in your directory determines the results of your searches.
Common users typically do not “see” much of the directory, and directory administrators have
full access to all data, including configuration.

Searching the Directory With ldapsearch
You can use the ldapsearch command-line utility to locate and retrieve directory entries. Note
that the ldapsearch utility described in this section is not the utility provided with the Solaris
platform, but is part of the Directory Server Resource Kit.

This utility opens a connection to the server with a specified a user identity (usually a
distinguished name) and password, and locates entries based on a search filter. Search scopes
can include a single entry, an entry’s immediate subentries, or an entire tree or subtree.

Search results are returned in LDIF format.

ldapsearch Command-Line Format
When you use ldapsearch, you must enter the command using the following format:

ldapsearch [optional_options] [search_filter] [optional_list_of_attributes]

where

2

Searching the Directory

Chapter 13 • Directory Server LDIF and Search Filters 233

■ optional_options represents a series of command-line options. These must be specified
before the search filter, if any.

■ search_filter represents an LDAP search filter in a file using the -f option.
■ optional_list_of_attributes represents a list of attributes separated by a space. Specifying a

list of attributes reduces the number of attributes returned in the search results. This list of
attributes must appear after the search filter. If you do not specify a list of attributes, the
search returns values for all attributes permitted by the access control set in the directory
(with the exception of operational attributes).

Note – If you want operational attributes returned as a result of a search operation, you must
explicitly specify them in the search command. To retrieve regular attributes in addition to
explicitly specified operational attributes, use an asterisk (*) in the list of attributes in the
ldapsearch command.

Using Special Characters
When using the ldapsearch command-line utility, you may need to specify values that contain
characters that have special meaning to the command-line interpreter (such as space [], asterisk
[*], backslash [\\], and so forth). When you specify special characters, enclose the value in
quotation marks (“”). For example:

-D "cn=Charlene Daniels,ou=People,dc=example,dc=com"

Depending on your command-line interpreter, use either single or double quotation marks for
this purpose. Refer to your shell documentation for more information.

Commonly Used ldapsearch options
The following lists the most commonly used ldapsearch command-line options. If you specify
a value that contains a space [], the value should be surrounded by double quotation marks, for
example, -b "ou=groups, dc=example,dc=com".

-b Specifies the starting point for the search. The value specified here must be a
distinguished name that currently exists in the database. This option is optional if the
LDAP_BASEDN environment variable has been set to a base DN.

The value specified in this option should be provided in double quotation marks. For
example:

-b "cn=Charlene Daniels, ou=People, dc=example,dc=com"

-D Specifies the distinguished name with which to authenticate to the server. This option is
optional if anonymous access is supported by your server. If specified, this value must be
a DN recognized by Directory Server, and it must also have the authority to search for
the entries. For example:

Searching the Directory

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008234

-D "uid=cdaniels, dc=example,dc=com"

-h Specifies the hostname or IP address of the machine on which Directory Server is
installed. If you do not specify a host, ldapsearch uses the localhost. For example, -h
myServer.

-l Specifies the maximum number of seconds to wait for a search request to complete.
Regardless of the value specified here, ldapsearch will never wait longer than is allowed
by the server’s nsslapd-timelimit attribute (except in the case of a persistent
search.)Sun Java System Directory Server Enterprise Edition 6.3 Reference.

For example, -l 300. The default value for the nsslapd-timelimit attribute is 3,600
seconds (1 hour.)

-p Specifies the TCP port number that Directory Server uses. For example, -p 5201. The
default is 389, and 636 when the SSL options are used.

-s Specifies the scope of the search. The scope can be one of:
■ base—Search only the entry specified in the -b option or defined by the LDAP_BASEDN

environment variable.
■ one—Search only the immediate children of the entry specified in the -b option.

Only the children are searched; the actual entry specified in the -b option is not
searched.

■ sub—Search the entry specified in the -b option and all of its descendants. That is,
perform a subtree search starting at the point identified in the -b option. This is the
default.

-w Specifies the password associated with the distinguished name that is specified in the -D
option. If you do not specify this option, anonymous access is used. For example, -w
diner892.

-x Specifies that the search results are sorted on the server rather than on the client. This is
useful if you want to sort according to a matching rule, as with an international search. In
general, it is faster to sort on the server rather than on the client, although server-side
sorting uses server resources.

-z Specifies the maximum number of entries to return in response to a search request. For
example, -z 1000.

Normally, regardless of the value specified here, ldapsearch never returns more entries
than the number allowed by the server’s nsslapd-sizelimit attribute. However, you
can override this limitation by binding as the root DN when using this command-line
argument. When you bind as the root DN, this option defaults to zero (0). The default
value for the nsslapd-sizelimit attribute is 2,000 entries.

For detailed information on all ldapsearch utility options, refer to ldapmodify(1).

Searching the Directory

Chapter 13 • Directory Server LDIF and Search Filters 235

ldapsearch Examples
In the next set of examples, the following assumptions are made:

■ You want to perform a search of all entries in the directory.
■ The server is located on hostname myServer.
■ The server uses port number 5201.
■ You are binding to the directory as cn=admin,cn=Administrators,cn=config. Using the

symbol “-” means that you will be prompted for the password on the command line.
■ SSL is enabled for the server on port 636 (the default SSL port number).
■ The suffix under which all data is stored is dc=example,dc=com.

Returning All Entries
Given the previous information, the following call will return all entries in the directory:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config

-b "dc=example,dc=com" -s sub "(objectclass=*)"

"(objectclass=*)" is a search filter that matches any entry in the directory.

Specifying Search Filters on the Command Line
You can specify a search filter directly on the command line. If you do this, be sure to enclose
your filter in quotation marks (“filter”). Also, do not specify the -f option.

For example:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

-b "dc=example,dc=com" "(cn=Charlene Daniels)"

Searching the Root DSE Entry
The root DSE is a special entry that contains information related to the current server instance,
such as a list of supported suffixes, available authentication mechanisms, and so forth. You can
search this entry by supplying a search base of “”. You must also specify a search scope of base
and a filter of "(objectclass=*)".

For example:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

-b "" -s base "(objectclass=*)"

Searching the Directory

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008236

Searching the Schema Entry
Directory Server stores all directory server schema in the special cn=schema entry. This entry
contains information on every object class and attribute defined for your directory server.

You can examine the contents of this entry as follows:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config

-b "cn=schema" -s base "(objectclass=*)"

Note – For strict compliance, the location of the schema subentry for a given entry is specified by
the subschemaSubentry operational attribute. In this version of Directory Server, the value of
this attribute is always cn=schema.

Using LDAP_BASEDN
To make searching easier, you can set your search base using the LDAP_BASEDN environment
variable. Doing this allows you to skip specifying the search base with the -b option (for
information on how to set environment variables, see the documentation for your operating
system).

Typically, you set LDAP_BASEDN to your directory’s suffix value. Since your directory suffix is
equal to the root, or topmost, entry in your directory, this causes all searches to begin from your
directory’s root entry.

For example, if you have set LDAP_BASEDN to dc=example,dc=com, you can search for
(cn=Charlene Daniels) in your directory using the following command-line call:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

"(cn=Charlene Daniels)"

In this example, the default scope of sub is used because the -s option was not used to specify
the scope.

Displaying Subsets of Attributes
The ldapsearch command returns all search results in LDIF format. By default, ldapsearch
returns the entry’s distinguished name and all of the attributes that you are allowed to read. You
can set up the directory access control such that you are allowed to read only a subset of the
attributes on any given directory entry.) Only operational attributes are not returned. If you
want operational attributes returned as a result of a search operation, you must explicitly specify
them in the search command. For more information on operational attributes, refer to the
TODO: No more AdminServerAdminGuide.

Searching the Directory

Chapter 13 • Directory Server LDIF and Search Filters 237

Suppose you do not want to see all of the attributes returned in the search results. You can limit
the returned attributes to just a few specific attributes by specifying the ones you want on the
command line immediately after the search filter. For example, to show the cn and sn attributes
for every entry in the directory, use the following command:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

"(objectclass=*)" sn cn

This example assumes you set your search base with LDAP_BASEDN.

Searching Multi-Valued Attributes
During a search, Directory Server does not necessarily return multi-valued attributes in sorted
order. For example, suppose you want to search for configuration attributes on cn=config

requiring that the server be restarted before changes take effect.

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

-b cn=config "(objectclass=*)" nsslapd-requiresrestart

The following result is returned:

dn: cn=config

nsslapd-requiresrestart: cn=config:nsslapd-port

nsslapd-requiresrestart: cn=config:nsslapd-secureport

nsslapd-requiresrestart: cn=config:nsslapd-plugin

nsslapd-requiresrestart: cn=config:nsslapd-changelogdir

nsslapd-requiresrestart: cn=config:nsslapd-changelogsuffix

nsslapd-requiresrestart: cn=config:nsslapd-changelogmaxentries

nsslapd-requiresrestart: cn=config:nsslapd-changelogmaxage

nsslapd-requiresrestart: cn=config:nsslapd-db-locks

nsslapd-requiresrestart: cn=config:nsslapd-return-exact-case

nsslapd-requiresrestart: cn=config,cn=ldbm database,cn=plugins,

cn=config:nsslapd-allidsthreshold

nsslapd-requiresrestart: cn=config,cn=ldbm database,cn=plugins,

cn=config:nsslapd-dbcachesize

nsslapd-requiresrestart: cn=config,cn=ldbm database,cn=plugins,

cn=config:nsslapd-dbncache

nsslapd-requiresrestart: cn=config,cn=ldbm database,cn=plugins,

cn=config:nsslapd-directory

nsslapd-requiresrestart: cn=encryption,cn=config:nssslsessiontimeout

nsslapd-requiresrestart: cn=encryption,cn=config:nssslclientauth

nsslapd-requiresrestart: cn=encryption,cn=config:nssslserverauth

nsslapd-requiresrestart: cn=encryption,cn=config:nsssl2

nsslapd-requiresrestart: cn=encryption,cn=config:nsssl3

...

Searching the Directory

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008238

As shown here, the nsslapd-requiresrestart attribute takes multiple values. These values are
not, however, in sorted order. If you develop an application that requires multi-valued
attributes in sorted order, make sure that your application performs the sort.

Using Client Authentication When Searching
This example shows user cdaniels searching the directory using client authentication:

ldapsearch -h myServer -p 636 -b "dc=example,dc=com"
-N "cdanielsscertname" -Z -W certdbpassword
-P /home/cdaniels/certdb/cert.db "(givenname=Richard)"

LDAP Search Filters
Search filters select the entries to be returned for a search operation. They are most commonly
used with the ldapsearch command-line utility. When you use ldapsearch, you can place
multiple search filters in a file, with each filter on a separate line in the file, or you can specify a
search filter directly on the command line.

For example, the following filter specifies a search for the common name Lucie Du Bois:

(cn=Lucie Du Bois)

This search filter returns all entries that contain the common name Lucie Du Bois. Searches for
common name values are not case sensitive.

When the common name attribute has values associated with a language tag, all of the values
are returned. Thus, the following two attribute values both match this filter:

cn: Lucie Du Bois

cn;lang-fr: Lucie Du Bois

Search Filter Syntax
The basic syntax of a search filter is:

(attribute operator value)

For example:

(buildingname\>=alpha)

In this example, buildingname is the attribute, \>= is the operator, and alpha is the value. You
can also define filters that use different attributes combined together with Boolean operators.

Searching the Directory

Chapter 13 • Directory Server LDIF and Search Filters 239

Using Attributes in Search Filters
When searching for an entry, you can specify attributes associated with that type of entry. For
example, when you search for people entries, you can use the cn attribute to search for people
with a specific common name.

Examples of attributes that people entries might include:

■ cn (the person’s common name)
■ sn (the person’s surname, or last name, or family name)
■ telephoneNumber (the person’s telephone number)
■ buildingName (the name of the building in which the person resides)
■ l (the locality in which you can find the person)

Using Operators in Search Filters
The operators that you can use in search filters are listed in Table 13–5:

TABLE 13–5 Search Filter Operators

Search Type Operator Description

Equality = Returns entries containing attribute values that
exactly match the specified value. For example,
cn=Bob Johnson

Substring =string*string Returns entries containing attributes containing the
specified substring. For example,

cn=Bob*cn=*Johnsoncn=*John*cn=B*John

(The asterisk (*) indicates zero (0) or more
characters.)

Greater than or equal to \>= Returns entries containing attributes that are greater
than or equal to the specified value. For example,

buildingname \>= alpha

Less than or equal to <= Returns entries containing attributes that are less
than or equal to the specified value. For example,

buildingname <= alpha

Presence =* Returns entries containing one or more values for the
specified attribute. For example,

cn=*

telephonenumber=*

manager=*

Searching the Directory

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008240

TABLE 13–5 Search Filter Operators (Continued)
Search Type Operator Description

Approximate ~= Returns entries containing the specified attribute
with a value that is approximately equal to the value
specified in the search filter. For example,

cn~=suret

l~=san fransico

could return

cn=sarette

l=san francisco

The Approximate operator is experimental and
works only with English language strings. It does not
work with non-ASCII based strings, such as Ja or Zn.

Extended operators exist that extend searches to dn attributes (cn:dn:=John, for example) and
provide support for internationalized searches.

Using OIDs in Search Filters
LDAPv3 enables you to build match operators and rules for a particular attribute. Matching
rules define how to compare attribute values with a particular syntax. In other words, a
matching rule defines how potentially matching attributes are compared. For example, a
matching rule can define whether or not to take text case into account when comparing
attributes.

When the rules are created, they can be referred to in a search filter.

For example, the following search filter compares entries containing the surname “Jensen” by
using the matching rule designated by OID 2.5.13.5:

(sn:2.5.13.5:=Jensen)

The following example illustrates the use of the ":dn" notation to indicate that OID 2.5.13.5

should be used when making comparisons, and that the attributes of an entry\qs distinguished
name should be considered part of the entry when evaluating the match:

(sn:dn:2.5.13.5:=Jensen)

Using Compound Search Filters
Multiple search filter components can be combined using Boolean operators expressed in prefix
notation as follows:

(Boolean-operator(filter)(filter)(filter)...)

Searching the Directory

Chapter 13 • Directory Server LDIF and Search Filters 241

where Boolean-operator is any one of the Boolean operators listed in Table 13–6.

Boolean operators can be combined and nested together to form complex expressions, such as:

(Boolean-operator(filter)(Boolean-operator(filter)(filter)))

The Boolean operators available for use with search filters include the following:

TABLE 13–6 Search Filter Boolean Operators

Operator Symbol Description

AND & All specified filters must be true for the statement to be true. For
example,

(&(filter)(filter)(filter)...)

OR | At least one specified filter must be true for the statement to be
true. For example,

(|(filter)(filter)(filter)...)

NOT ! The specified statement must not be true for the statement to be
true. Only one filter is affected by the NOT operator. For
example,

(!(filter))

The use of the NOT operator results in an unindexed search.

Boolean expressions are evaluated in the following order:

■ Innermost to outermost parenthetical expressions first
■ All expressions from left to right

Specifying Search Filters Using a File
You can enter search filters into a file instead of entering them on the command line. When you
do this, specify each search filter on a separate line in the file. The ldapsearch command runs
each search in the order in which it appears in the file.

For example, if the file contains:

(sn=Daniels)

(givenname=Charlene)

then ldapsearch first finds all the entries with the surname Daniels, and then all the entries
with the given name Charlene. If an entry is found that matches both search criteria, the entry is
returned twice.

Searching the Directory

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008242

For example, suppose you specified the previous search filters in a file named searchdb, and you
set your search base using LDAP_BASEDN. The following returns all the entries that match either
search filter:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

-f searchdb

You can limit the set of attributes returned here by specifying the attribute names that you want
at the end of the search line. For example, the following ldapsearch command performs both
searches, but returns only the DN and the givenname and sn attributes of each entry:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

-f searchdb sn givenname

Specifying Non 7-Bit ASCII Characters in Search Filters
Non 7-bit ASCII characters in search filters must be replaced with a representation of the
character, where each byte of the UTF-8 encoding is preceded by a backslash. In UTF-8,
characters are represented by a hexadecimal code for each byte.

For example, the character é has UTF-8 representation c3a9. Thus, in a search filter, you
represent é as \\c3\\a9. So, to search for cn=Véronique Martin:

ldapsearch -h myServer -b "dc=example,dc=com" "(cn=V\\c3\\a9ronique Martin)"

The special characters listed in Table 13–7 must also be represented in this fashion when used in
search filters.

TABLE 13–7 Special Characters in Search Filters

Special character Value With Special Character Example Filter

* Five*Star (cn=Five\\2aStar)

\\ c:\\File (cn=\\5cFile)

() John (2nd) (cn=John \\282nd\\29)

null 0004 (bin=\\00\\00\\00\\04)

Escaped Characters in Distinguished Names within Search Filters
When using a DN in any part of Directory Server, you must escape commas and certain other
special characters with a backslash (\\). If you are using a DN in a search filter, the backslash
used for escaping special characters in DNs must be represented by \\5c. For example:

DN: cn=Julie Fulmer,ou=Marketing\\,Bolivia,dc=example,dc=com

DN in a search filter: ldapsearch -h myServer -b "dc=example,dc=com"
"(manager=cn=Julie Fulmer,ou=Marketing\\5c,Bolivia,dc=example,dc=com)"

Searching the Directory

Chapter 13 • Directory Server LDIF and Search Filters 243

Search Filter Examples
The following filter searches for entries containing one or more values for the manager
attribute. This is also known as a presence search:

(manager=*)

The following filter searches for entries containing the common name Ray Kultgen. This is also
known as an equality search:

(cn=Ray Kultgen)

The following filter returns all entries that contain a description attribute that contains the
substring X.500:

(description=*X.500*)

The following filter returns all entries whose organizational unit is Marketing and whose
description field does not contain the substring X.500:

(&(ou=Marketing)(!(description=*X.500*)))

The following filter returns all entries whose organizational unit is Marketing and that have
Julie Fulmer or Cindy Zwaska as a manager:

(&(ou=Marketing)(|(manager=cn=Julie Fulmer,ou=Marketing,

dc=example,dc=com)(manager=cn=Cindy Zwaska,ou=Marketing,

dc=example,dc=com)))

The following filter returns all entries that do not represent a person:

(!(objectClass=person))

Note that the previous filter will have a negative performance impact and should be used as part
of a complex search. The following filter returns all entries that do not represent a person and
whose common name is similar to printer3b:

(&(cn~=printer3b)(!(objectClass=person)))

Searching for Operational Attributes
If you want operational attributes returned as a result of a search operation, you must explicitly
specify them in the search command.

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

"(objectclass=*)" aci

Searching the Directory

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008244

To retrieve regular attributes in addition to explicitly specified operational attributes, specify
“*” in addition to the operational attributes. For example:

ldapsearch -h myServer -p 5201 -D cn=admin,cn=Administrators,cn=config -w -

"(objectclass=*)" aci *

Searching the Directory

Chapter 13 • Directory Server LDIF and Search Filters 245

246

Directory Server File Reference

This chapter describes the files found after you install Directory Server, and after you create
server instances.

The examples shown in this chapter are for Solaris systems. File extensions and path separators
may differ for your operating system. This chapter includes the following sections.

■ “Software Layout for Directory Server” on page 247
■ “Directory Server Instance Default Layout” on page 251

If you installed software from native packages, you may also use the packaging commands on
your system to list the files installed. For example, after installing from native packages on
Solaris systems, you can obtain a full list for a particular package using the pkgchk -v
package-name command.

If you installed software from a zip distribution, find lists of installed files in the
install-path/dsee6/data/ directory.

Software Layout for Directory Server
This section describes the file layout you find after installing Directory Server from the zip
distribution. All files locations are relative to the path where you installed the product. For
information on default native package installation locations, see “Default Paths and Command
Locations” on page 24.

install-path/ds6/
Directory Server files shared by server instances. This directory houses the following files of
interest.

install-path/ds6/bin/dsadm
Directory Server command for local administration. See dsadm(1M).

install-path/ds6/bin/dsconf
Directory Server command for configuration over LDAP. See dsconf(1M).

14C H A P T E R 1 4

247

install-path/ds6/bin/dsmig
Directory Server command for migration to this version of Directory Server. See
dsmig(1M).

install-path/ds6/bin/dsrepair
Directory Server command for repairing replicated directory entries, not intended for use
without help for qualified support personnel. See dsrepair(1M).

install-path/ds6/bin/entrycmp
Directory Server command for comparing directory entries across replica. See
entrycmp(1).

install-path/ds6/bin/fildif
Directory Server command for filtering LDIF content. See fildif(1).

install-path/ds6/bin/insync
Directory Server command for examining replica synchronization. See insync(1).

install-path/ds6/bin/mmldif
Directory Server command for combining LDIF content. See mmldif(1).

install-path/ds6/bin/ns-accountstatus
Directory Server command for examining whether an account is locked. See
ns-accountstatus(1M).

install-path/ds6/bin/ns-activate
Directory Server command for activating a locked account. See ns-activate(1M).

install-path/ds6/bin/ns-inactivate
Directory Server command for explicitly locking an account. See ns-inactivate(1M).

install-path/ds6/bin/pwdhash
Directory Server command for displaying the hashed form of a password value. See
pwdhash(1).

install-path/ds6/bin/repldisc
Directory Server command for discovering a replication topology. See repldisc(1).

install-path/ds6/bin/schema_push
Directory Server command for pushing schema updates to replicas. See
schema_push(1M).

install-path/ds6/etc/
Registration configuration for Directory Server monitoring agents, not intended to be
used directly.

install-path/ds6/examples/
Sample Directory Server plug-ins.

install-path/ds6/include/
Directory Server plug-in header files.

Software Layout for Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008248

install-path/ds6/install/
Directory Server instance installation templates, not intended to be used directly.

install-path/ds6/ldif/Example.ldif
Sample Directory Server LDIF content.

install-path/ds6/ldif/Example-roles.ldif
Sample Directory Server LDIF content with grouping based on roles.

install-path/ds6/lib/
Shared Directory Server libraries, not intended for use directly.

install-path/ds6/plugins/
Directory Server plug-in configuration files, not intended to be used directly.

install-path/ds6/resources/
Directory Server resource files, not intended to be used directly.

install-path/ds6/schema/
Directory Server instance LDAP schema templates, not intended to be used directly.

install-path/dscc6/
Directory Service Control Center agent files shared by multiple Directory Server Enterprise
Edition component products. This directory houses the following files of interest.

install-path/dscc6/bin/dsccmon
Command to monitor servers managed through Directory Service Control Center. See
dsccmon(1M).

install-path/dscc6/bin/dsccreg
Command to manage the Directory Service Control Center registry. See dsccreg(1M).

install-path/dscc6/bin/dsccsetup
Command to set up Directory Service Control Center. See dsccsetup(1M).

install-path/dscc6/etc/
Directory Service Control Center agent configuration information, not intended to be
used directly.

install-path/dscc6/lib/
Shared libraries, not intended to be used directly.

install-path/dsee6/
Files shared by multiple Directory Server Enterprise Edition component products. This
directory houses the following files of interest.

install-path/dsee6/bin/certutil
NSS certificate manipulation command used by other tools, not intended to be used
directly.

install-path/dsee6/bin/dsee_deploy
Command to install and remove software. See dsee_deploy(1M).

Software Layout for Directory Server

Chapter 14 • Directory Server File Reference 249

install-path/dsee6/bin/ldif
Command to base64 encode LDIF attribute values. See ldif(1)

install-path/dsee6/cacao_2.0/
Common agent container files shared by Directory Server Enterprise Edition component
products, not intended to be used directly.

install-path/dsee6/data/
Lists of installed files used by the dsee_deploy command, not intended to be used
directly.

install-path/dsee6/lib/
Libraries shared by Directory Server Enterprise Edition component products, not
intended to be used directly.

install-path/dsee6/man/
Directory Server Enterprise Edition online reference manual pages. See also Sun Java
System Directory Server Enterprise Edition 6.3 Man Page Reference.

install-path/dsrk6/bin/ldapcmp
Directory Server Resource Kit command to compare LDAP entries from two directories. See
ldapcmp(1).

install-path/dsrk6/bin/ldapcompare
Directory Server Resource Kit command to perform LDAP compare operations. See
ldapcompare(1).

install-path/dsrk6/bin/ldapdelete
Directory Server Resource Kit command to delete directory entries. See ldapdelete(1).

install-path/dsrk6/bin/ldapmodify
Directory Server Resource Kit command to update entries over LDAP. See ldapmodify(1).

install-path/dsrk6/bin/ldappasswd
Directory Server Resource Kit command to change user passwords. See ldappasswd(1).

install-path/dsrk6/bin/ldapsearch
Directory Server Resource Kit command to search a directory. See ldapsearch(1).

install-path/dsrk6/lib/
Libraries used by Directory Server Resource Kit commands, not intended to be used directly.

install-path/etc/
Container for configuration files.

install-path/jre/
Java Runtime Environment, not intended to be used directly.

install-path/var/
Container for runtime files, not intended to be used directly.

Software Layout for Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008250

Directory Server Instance Default Layout
This section describes the file layout you find after creating a Directory Server instance. The
instance-path is the file system path where you created the instance.

This section does not cover the following deprecated scripts, generated for backwards
compatibility:

■ bak2db

■ db2bak

■ db2ldif

■ ldif2db

■ restart-slapd

■ start-slapd

■ stop-slapd

If you do not use the scripts, you can safely remove them.

instance-path/alias/
NSS certificate database directory.

instance-path/alias/certmap.conf
NSS certificate mapping configuration file.

instance-path/bak/
Default data backup directory.

Each directory database backup is held in its own file system directory. The name of the
backup directory corresponds to the time and date of the backup.

instance-path/confbak/
Default configuration backup directory provided for you to backup up versions of your
configuration.

instance-path/conf_bk/
Default server configuration backup directory.

This directory contains a backup copy of the original Directory Server configuration file,
dse.ldif, generated when the server instance was created. This copy can be compared with
the current configuration file for troubleshooting.

instance-path/config/
Server configuration directory.

instance-path/config/dse.ldif
Server configuration file, not intended to be edited directly.

instance-path/config/schema/
LDAP schema configuration files. See dirserv(5dssd).

Directory Server Instance Default Layout

Chapter 14 • Directory Server File Reference 251

instance-path/db/
Default server database files directory. When a suffix has been created, the following
database files are stored in this file system directory.

__db.00x Files used internally by the database. Do not move, delete,
or modify these files.

DBVERSION File that identifies the version of the database.

guardian File used to store information about the state of the
database, used to determine whether database recovery is
required.

log.xxxxxxxxxx Files used to store the database transaction logs.

suffix Files that store your directory suffix information. The
directory name is derived from the suffix name, such that
the database for a suffix identified by DN
dc=example,dc=com is stored in a file system directory
named example.

For every index defined in the database, the suffix directory
contains a file with a name of the form
suffix_indexedAttr.db3, such that an index of CNs for
dc=example,dc=com has file name example_cn.db3.

Suffix directories also contain a file named
suffix_id2entry.db3. The suffix_id2entry.db3 file
contains the directory database entries.

If necessary, all index files can be rebuild from the
suffix_id2entry.db3 file. To recreate the index files,
reindex the suffix.

instance-path/locks/
Lock files directory.

Lock files stored here in subdirectories exports/, imports/, and server/ prevent
simultaneous operations from conflicting with each other. The lock mechanisms allow one
server instance to run at a time. The lock mechanisms also permit only one dsadm import
(offline import) operation at a time. As a result, no export or server instance operations can
be run during import.

The lock restriction does not however apply to dsconf import (online import) operations.
Multiple online imports can run at the same time.

instance-path/logs/
Default server logs directory. The following files are stored here.

Directory Server Instance Default Layout

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008252

access logs This file records information about client access to
Directory Server. For detail about access logs, see “Access
Logs” on page 163.

audit logs This file records information about modifications to
Directory Server data. For detail about audit logs, see
“Audit Logs” on page 164.

core files By default, server core files are dumped here during a
crash.

errors logs This file records errors, warnings, and informational
messages logged during Directory Server operation. For
detail about errors logs, see “Error Logs” on page 164.

pid file This file holds the process identifier of the running server.

slapd.stats file This memory mapped-file cannot be read in an editor. The
slapd.stats file contains data collected for SNMP, which
is communicated to the agent responsible for handling
SNMP requests.

instance-path/plugins/signatures/
Plug-in signatures directory, not intended to be used directly.

instance-path/tmp/
Server runtime files directory, not intended to be used directly.

Directory Server Instance Default Layout

Chapter 14 • Directory Server File Reference 253

254

Directory Proxy Server Reference
This part explains how Directory Proxy Server works. The information here is primarily
descriptive. For instructions, try Part II, “Directory Proxy Server Administration,” in Sun
Java System Directory Server Enterprise Edition 6.3 Administration Guide instead.

This part includes the following chapters:
■ Chapter 15, “Directory Proxy Server Overview,” outlines the architecture of Directory

Proxy Server and describes, at a high level, the most important features of this release.
■ Chapter 16, “Directory Proxy Server Load Balancing and Client Affinity,” describes how

Directory Proxy Server can be configured for load balancing, and how client affinity can
be used to reduce the risk of propagation delay in load balanced deployments.

■ Chapter 17, “Directory Proxy Server Distribution,” describes how data in an LDAP
server is exposed to a client request.

■ Chapter 18, “Directory Proxy Server Virtualization,” explains how virtual data views
enable you to display physical data in a different way, and describes the kinds of virtual
data views that are available in Directory Proxy Server.

■ Chapter 19, “Connections Between Directory Proxy Server and Backend LDAP
Servers,” describes the connections between Directory Proxy Server and backend LDAP
servers.

■ Chapter 20, “Connections Between Clients and Directory Proxy Server,” describes how
connection handlers are used to apply limits and filters to a connection, and to restrict
the data to which clients are exposed.

P A R T I I

255

■ Chapter 21, “Directory Proxy Server Client Authentication,” describes the client
authentication mechanisms available in Directory Proxy Server.

■ Chapter 22, “Security in Directory Proxy Server,” describes the mechanisms that can be used
to secure data that passes through Directory Proxy Server.

■ Chapter 23, “Directory Proxy Server Logging,” provides an overview of the Directory Proxy
Server logging interface.

■ Chapter 24, “Directory Proxy Server Alerts and Monitoring,” describes the mechanisms that
can be used to monitor both Directory Proxy Server and the availability of backend LDAP
servers.

■ Chapter 25, “Directory Proxy Server File Reference,” describes the files found after you
install Directory Proxy Server, and after you create server instances.

Directory Proxy Server Reference

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008256

Directory Proxy Server Overview

This chapter outlines the architecture of Directory Proxy Server, and describes at a high level,
the most important features of this release.

The chapter covers the following topics:

■ “Introduction to Directory Proxy Server” on page 257
■ “Directory Proxy Server Architecture” on page 258
■ “Overview of Directory Proxy Server Features” on page 260

Introduction to Directory Proxy Server
Directory Proxy Server is an LDAP application-layer protocol gateway. Directory Proxy Server
delivers enhanced directory access control, schema compatibility, and high availability.

The Directory Proxy Server architecture enables you to configure several objects that control
how client requests are routed to backend data sources. These configuration objects are
illustrated at a high level in the following simplified schematic of the Directory Proxy Server
architecture. This illustration will help you to understand the architectural concepts presented
in the remainder of this book.

15C H A P T E R 1 5

257

Directory Proxy Server Architecture
This section briefly presents the new Directory Proxy Server architecture and what is new
compared to 5.x. Its aim is to help you understand why literal translation of some 5.x
configuration attributes is not possible.

A Directory Proxy Server instance proxies client application requests to data sources through
data views. Data sources and pools of data sources correspond to load balanced groups from
5.x.

Data views, however, are new. They do not correspond to anything present in 5.x.
Fundamentally Directory Proxy Server handles incoming connections individually, assigning a
connection handler when the connection is opened, and reassigning a connection handler upon
rebind when the bind identity changes.

Secure and
Non-Secure Listener

Connection Handlers

Data Views

Data Source Pools

Data Sources

Directory Proxy Server

LDAP Client
Applications

LDAP
Servers

LDIF
Files

JDBC Enabled
Repositories

Request/Response

Access Control, Request Filters
Resources Limits

Load Balancing
and Failover

Selection of Data to
Expose

Request/Response

FIGURE 15–1 Simplified Architecture of Directory Proxy Server

Directory Proxy Server Architecture

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008258

The connection handler gives Directory Proxy Server a set of policy rules for making decisions
about what to do with operations requested through a given connection. Connection handlers
correspond roughly to network groups in 5.x, yet whereas network groups are configured to use
load balanced groups directly.

Directory Proxy Server uses connection handlers mainly to determine policies about a
connection, so it can take appropriate decisions about operations performed on that
connection. For example, if a connection handler is configured to prevent write operations on a
certain connection, Directory Proxy Server can use that property of the policy to short circuit
evaluations concerning write operation requests on that connection. In this case, the
appropriate errors are returned to the client as soon as Directory Proxy Server has decoded the
operation.

LDAP operations on a connection are handled in Directory Proxy Server first through data
views. Data views enable Directory Proxy Server to perform DN-based routing. In other words,
operations concerning one set of data can be sent to one set of data sources, and operations
concerning another set of data can be sent elsewhere. This new architectural form seems
unnecessary when you look at it from the point of view of reproducing a 5.x configuration. Yet
data views become indispensable when you want to distribute different directory data across
various directories, or when you want to recover different data from disparate data sources to
present a virtual directory view of those sources to a client application.

Data views therefore enable Directory Proxy Server to select the data sources via a data source
pool to handle the LDAP operation. Data source pools, which correspond to 5.x load balanced
groups, represent sets of data sources each holding equivalent data. A pool defines the load
balancing and failover management that Directory Proxy Server performs to spread load across
different data sources. As load balancing is performed per operation, the balancing itself is by
nature operation based.

Data sources can be understood as sources of data for reads, and sinks of data for writes.
Directory Proxy Server handles the following kinds of data sources:

■ LDAP directories
■ LDIF files
■ JDBC-enabled data repositories

Directory Proxy Server 5.x was essentially a connection based router. In Directory Proxy Server
5.x, a client connection was routed to a directory server. All requests from that client
connection were sent to the same directory server until the connection was broken. For
compatibility, Directory Proxy Server can be configured to behave in a similar way to Directory
Proxy Server 5.2. For information about how to configure this, see “Configuring Directory
Proxy Server as a Connection Based Router” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide. For information about how to migrate to this version of
Directory Proxy Server, see the Sun Java System Directory Server Enterprise Edition 6.3
Migration Guide.

Directory Proxy Server Architecture

Chapter 15 • Directory Proxy Server Overview 259

Overview of Directory Proxy Server Features
Directory Proxy Server provides the following features:

■ Manageability
■ Single point of access to directory data stored on multiple directory servers
■ Automatic referral following
■ Reactive and proactive monitoring of directory servers
■ Configuration on the command line or with a GUI
■ All connections have a normal listener port and a secure listener port

■ Authentication and authorization
■ Certificate-based authentication with certificate mapping
■ Secure LDAP reverse proxy
■ LDAP control filtering
■ Proxy authorization
■ Identity mapping
■ Access control

■ Distribution
■ Single point of access to a directory service spread over multiple directory servers
■ Extensible and customizable distribution algorithm
■ Server affinity to address propagation delay problem
■ Connection pooling and partial BER-decoding for performance and scalability

■ Load-balancing/Fail-over
■ Routing based on the operation or the connection
■ Automatic load balancing and automatic fail over and fail back among a set of replicated

LDAP directory servers
■ Three load-balancing algorithms

■ Virtualization
■ Multiple virtual views for client applications
■ Aggregation of multiple heterogeneous data sources
■ Mapping of attribute names and values
■ Access to JDBC-compliant data repositories
■ Access to flat LDIF file resources

Overview of Directory Proxy Server Features

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008260

Directory Proxy Server Load Balancing and
Client Affinity

Deployments that use more than one data source to respond to client requests use load
balancing to distribute work load. Client affinity can be used to reduce the risk of propagation
delay in load balanced deployments.

For information about how to configure load balancing and client affinity, see Chapter 21,
“Directory Proxy Server Load Balancing and Client Affinity,” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

For information about how the Directory Proxy Server performs load balancing and client
affinity, see the following sections:

■ “LDAP Data Source Pools” on page 261
■ “Load Balancing” on page 262
■ “Client Affinity” on page 268

LDAP Data Source Pools
Requests from clients are distributed to an LDAP data source pool. One or more data sources
are attached to the data source pool. The properties of a data source pool determine how client
requests are routed to the different LDAP data sources that are attached to the pool. The
following properties can be configured for an LDAP data source pool:

client-affinity-policy The algorithm used to determine when client requests should
exhibit affinity to a single LDAP data source

client-affinity-timeout The client affinity time-out duration

description A description of the LDAP data source pool

enable-client-affinity A flag indicating whether or not consecutive requests from
the same client should be directed to the same LDAP data
source

16C H A P T E R 1 6

261

load-balancing-algorithm The algorithm used to distribute operations over
load-balanced LDAP data sources

For information about how to create and configure an LDAP data source pool, see “Creating
and Configuring LDAP Data Source Pools” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

Load Balancing
When more than one data source is attached to a pool, load balancing determines which data
source in the pool responds to the request.

For information about load balancing, see the following sections:

■ “Introduction to Load Balancing” on page 262
■ “Proportional Algorithm for Load Balancing” on page 263
■ “Saturation Algorithm for Load Balancing” on page 264
■ “Operational Affinity Algorithm for Load Balancing” on page 265
■ “Failover Algorithm for Load Balancing” on page 267

Introduction to Load Balancing
Directory Proxy Server distributes requests according to a load balancing algorithm. The
following load balancing algorithms can be configured:

Proportional algorithm
Requests are distributed according to the weight of the data source and the cumulative load
of the data source since the last startup of Directory Proxy Server.

Saturation algorithm
Requests are distributed according to the weight of the data source and the number of
available connections on the data source.

Operational affinity algorithm
Requests are distributed according to the hash value. The number of hash values that are
allocated to an attached data source is proportional to the weight of that data source.

Failover algorithm
Requests are distributed exclusively to the attached data source with the highest weight for
that operation.

Load Balancing

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008262

In all load balancing algorithms, each attached data source can be configured with an
independent weight for each of the following types of operation:
■ Add
■ Bind
■ Compare
■ Delete
■ Modify DN
■ Modify
■ Search

If multiple attached data sources are configured with the same weight for a given type of
operation, Directory Proxy Server distributes the requests evenly between the data sources. If a
data source has a weight of disabled for a particular type of operation, Directory Proxy Server
never distributes requests of that type to the data source. If a data source has a weight of 0 (zero)
no requests are distributed to that data source.

An attached data source cannot be selected by the load balancing algorithm in the following
circumstances:
■ The data source is unavailable because an error occurred.
■ All connections between the Directory Proxy Server and the data source are in use.

If a data source is configured as read-only, the data source cannot receive add, delete, or modify
requests. The data source can receive search requests.

The load balancing algorithm works on a best-effort basis. If there are not sufficient resources
for the load balancing algorithm to distribute requests by respecting weights, the weights are
overruled. For example, if the number of simultaneous requests to a data source exceeds the
maximum number of connections to that data source, requests are distributed to other data
sources.

When the client affinity feature is active, Directory Proxy Server distributes requests by using
the client affinity feature instead of using the load balancing algorithm. For information about
client affinity, see “Client Affinity” on page 268.

Proportional Algorithm for Load Balancing
In the proportional algorithm, requests are distributed to attached data sources according to the
following criteria:

■ The type of request
■ The weight of the data source as a ratio of the total weights of the other data sources in the

pool
■ The cumulative load since the last startup of Directory Proxy Server

Load Balancing

Chapter 16 • Directory Proxy Server Load Balancing and Client Affinity 263

After startup, the first request of a given type is distributed to the data source with the highest
weight for that type of request. Directory Proxy Server continues to distribute the requests in
proportion to the weight of each data source for that type of request.

If a data source becomes unavailable, Directory Proxy Server distributes the requests to
remaining data sources in proportion to their weight.

The following figure illustrates how Directory Proxy Server distributes the first eight search
requests to a pool of data sources with different weights. The data source with a weight of 2
processes twice as many requests as the data sources with a weight of 1.

For an example of how configure the proportional algorithm, see “To Configure the
Proportional Algorithm for Load Balancing” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

Saturation Algorithm for Load Balancing
In the saturation algorithm, requests are distributed to data sources according to a combination
of the weight of the data source and the number of available connections.

All requests of a certain type are distributed to the data source with the highest weight, until its
saturation level is reached. Once this level is reached, requests are distributed between this data
source and the data source with the next highest weight. The saturation level is obtained by
multiplying the weight of the data source by the total number of connections.

The following figure illustrates how Directory Proxy Server distributes requests to a pool of data
sources with 10 connections and different weights. The number of available connections
multiplied by the weight is shown in brackets.

Time after startup of the Directory Proxy Server

After startup the Directory Proxy Server
distributes search requests R1 — R10 in an
order that respects the weight of each server

R1 R2 R5 R6 R9 R10

R3 R7

R4 R8

Server 1

Server 2

Server 3

Weight 2

Weight 1

Weight 1

FIGURE 16–1 Distribution of Requests According to the Proportional Algorithm for Load Balancing

Load Balancing

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008264

If your deployment includes data sources with greatly different capacity, you can use the
saturation algorithm to distribute requests according to the capacity of the data source.

For an example of how configure the saturation algorithm, see “To Configure the Saturation
Algorithm for Load Balancing” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Operational Affinity Algorithm for Load Balancing
In the operational affinity algorithm for load balancing, all requests are allocated a hash value
according to the request type and request properties. Each hash value is allocated to an attached
data source. The number of hash values that are allocated to a data source is proportional to the
weight of the data source.

When a request is received, Directory Proxy Server examines the hash table to determine
whether a request with that hash value has already been distributed. If the hash value already
exists in the hash table, Directory Proxy Server sends the request to the data source with that
hash value. If the hash value does not exist in the hash table, the request is distributed by using
the proportional algorithm for load balancing.

Figure 16–3 shows an example with three attached data sources. Data source A has a weight of 3
for search operations, the other data sources have a weight of 1 for search operations. The hash
table allocates 3/5ths of the hash values to data source A, 1/5th to data source B, and 1/5th to data
source C.

Time after startup of the Directory Proxy Server

After startup the Directory Proxy Server distributes search
requests R1 — R16 in order of the number of remaining
connections multiplied by the weight

R1
*(30)

*The number of remaining connections multiplied by the weight

R2
*(27)

R3
*(24)

R4
*(21)

R7
*(18)

R9
*(15)

R12
*(12)

R16
*(9)

Server 1
Weight 3x
Connections 10

R5
*(20)

R6
*(18)

R10
*(14)

R11
*(12)

R8
*(16)

R13
*(10)

Server 2
Weight 2x
Connections 10

R14
*(10)

R15
*(9)

Server 3
Weight 1x
Connections 10

FIGURE 16–2 Distribution of Requests According to the Saturation Algorithm for Load Balancing

Load Balancing

Chapter 16 • Directory Proxy Server Load Balancing and Client Affinity 265

If requests have a normal range of diversity, data source A would receive three times more
requests than data source B or data source C. If there is a disproportionate number of requests
with identical properties, the ratio of requests between the three data sources is disturbed. For
example, if a client make repeated BIND requests on the same DN, the BIND must always be
serviced by the same data source.

The use of the operational affinity algorithm for load balancing is beneficial for the following
features:

■ Global account lockout
■ Cache optimization in Directory Server

Disadvantage of Using the Operational Affinity Algorithm for Load
Balancing
The operational affinity algorithm for load balancing does not ensure an evenly distributed
work load across data sources.

A hash value is allocated to a request according to the type of request and the properties of the
request. A range of hash values represents an arbitrary group of unrelated requests. It is possible
for one range of hash values to represent many more operations than another range of hash
values. A given range of hash values might represent requests that are made frequently, another
range of hash values might represents requests that are almost never made.

Operational Affinity Algorithm for Global Account Lockout
By using the operational affinity algorithm for load balancing, you can ensure that the same data
source always responds to bind requests from a given client. In this way, you can ensure that a
client is locked out after the maximum number of failed bind attempts. If the same data source
does not respond to bind requests from a given client, the client can exceed the maximum
number of failed bind attempts.

1 2 3 4 5

Client Requests for
Search Operations

Server A
search-weight:3

Hash Values

Server B
search-weight:1

Server C
search-weight:1

FIGURE 16–3 Distribution of Requests According to the Operational Affinity Algorithm for Load Balancing

Load Balancing

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008266

When a client binds, a hash value for the request is allocated according to the bind credentials.
Directory Proxy Server consults the hash table and distributes the request to the data source for
that hash value. No matter how many times the client binds, the hash value is always the same.
The request is always distributed to the same data source.

If a client requests a bind without the appropriate credentials, the data source rejects the bind
request. If the client makes a second or third bind request, the same data source rejects the bind
request. When the client exceeds the maximum number of allowed bind attempts, Directory
Server locks the client out.

For an example of how configure the operational affinity algorithm for global account lockout,
see “To Configure the Operational Affinity Algorithm for Global Account Lockout” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide.

Operational Affinity Algorithm for Cache Optimization
By using the operational affinity algorithm for load balancing, searches from the same client to
the same entry can always be distributed to the same data source. When a data source responds
to a request, the targeted entry is stored in the cache. If the same data source responds
repeatedly to the same request, the data source can benefit from using the cached data.

For an example of how configure the operational affinity algorithm for cache optimization, see
“To Configure Operational Affinity Algorithm for Cache Optimization” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

Failover Algorithm for Load Balancing
In the failover algorithm, requests of a given type are distributed exclusively to the attached data
source with the highest weight for that operation. If that attached data source fails, requests are
distributed exclusively to the attached data source with the next highest weight for that
operation. If the data source with the highest weight comes back on line, requests are
distributed to that data source.

For an example of how configure the failover algorithm, see “To Configure the Failover
Algorithm for Load Balancing” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Load Balancing

Chapter 16 • Directory Proxy Server Load Balancing and Client Affinity 267

Client Affinity
Client affinity is defined between a client connection and a data source. When client affinity is
defined, requests from a specified client connection are distributed to a specified data source in
a data source pool.

The client affinity feature reduces the risk of propagation delay in deployments that use load
balancing. Propagation delays can occur when a client makes consecutive requests that target
the same entry if those requests are not treated by the same data source. For example, a client
might make one request to change an entry and a second request to use the changed entry. If the
second request is treated by a data source that has not been updated by the first request, an error
occurs.

Client affinity can be configured in the following ways:

■ Enabled or disabled
■ Configured for all write requests after the first write request
■ Configured for all requests after the first write request
■ Configured for all requests after the first read request or write request
■ Configured for first read request after a write request
■ Configured to expire after a specified time

Client affinity takes precedence over the load balancing algorithm. Directory Proxy Server
distributes a request from the specified connection to the specified data source, irrespective of
the load balancing algorithm.

If client affinity is defined and enabled, the load balancing algorithm takes precedence in the
following circumstances:

■ The request that starts client affinity has not occurred
■ The request that ends client affinity has occurred
■ The client affinity time-out has expired
■ The specified data source cannot be used for a request, or an error has occurred on the

specified data source

A data source cannot be used for a request in the following circumstances:

■ It is offline.
■ It is not configured to perform the operation being requested. For example, a data source

that is configured for read requests cannot respond to write requests.

For information about how to configure client affinity, see “Configuring Client Affinity” in Sun
Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Client Affinity

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008268

The client affinity feature must be used to configure Directory Proxy Server as a simple,
connection based router. For information, see “Configuring Directory Proxy Server as a
Connection Based Router” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Client Affinity

Chapter 16 • Directory Proxy Server Load Balancing and Client Affinity 269

270

Directory Proxy Server Distribution

Directory Proxy Server enables distribution through the definition of data views. Data views are
defined with a view base, which determines the base DN of the entries in that data view. Based
on the distribution algorithms provided in Directory Proxy Server, you can specify how entries
are divided among the different data views.
■ “LDAP Data Views” on page 271
■ “Distributing Entries In a Subtree to Different Data Views” on page 274
■ “Use Cases for Data Views” on page 276

LDAP Data Views
An LDAP data view exposes data in an LDAP server to a client request and specifies the data
source pool that responds to the request. By defining LDAP data views, you can perform the
following tasks:
■ Expose a whole database in a single view
■ Provide different views for different subtrees in a database
■ Provide a unified view of different databases

There are additional types of data views but distribution can only be done with LDAP data
views. For more information about other types of data views, see Chapter 18, “Directory Proxy
Server Virtualization.”

LDAP Data View Features
A simple LDAP data view is defined primarily by the base DN of the data view. In a simple data
view all of the entries in the subtree are encompassed by the data view. Data views can exist in
hierarchy, with a superior data view and a subordinate data view. A subordinate data view is a
data view whose base DN is inferior to the base DN of a superior data view. The entries in a
subordinate data view are excluded from the superior data view.

17C H A P T E R 1 7

271

For information about the features of a data view, see the following sections.
■ “Excluding a Subtree From a Data View” on page 272
■ “Performing a Search Directed at a Superior Data View on an Excluded, Subordinate Data

View” on page 272
■ “Distributing Entries In a Subtree to Different Data Views” on page 274
■ “Attribute Renaming and DN Renaming” on page 272

Excluding a Subtree From a Data View
When a subordinate data view is created, Directory Proxy Server automatically excludes the
subordinate data view from the superior data view. When a request targets the subordinate data
view, the request is sent to the subordinate data view instead of the superior data view.

By default, Directory Proxy Server automatically configures the excluded-subtrees parameter
in the superior data view to exclude subordinate data views. For information about how to
disable the automatic configuration, see “To Manually Configure the excluded-subtrees and
alternate-search-base-dn Properties” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

The following subtrees are excluded by default from all data views: cn=config, cn=monitor, and
cn=proxy manager.

Performing a Search Directed at a Superior Data View on an Excluded,
Subordinate Data View
When an alternate search base is specified in a subordinate data view, search operations
targeted at the superior data view are also performed in the subordinate data view.

By default, Directory Proxy Server automatically configures the alternateSearchBase
parameter in the subordinate data view. For information about how to disable the automatic
configuration, see “To Manually Configure the excluded-subtrees and alternate-search-base-dn
Properties” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Attribute Renaming and DN Renaming
Each entry in a directory is identified by a DN and a set of attributes and their values. Often, the
DN and the attributes defined on the client side do not map to the DN and the attributes defined
on the server side.

Data views can be defined to rename DNs and attributes to values that match the server side.
When a client makes a request, the DNs and attributes are renamed to match the server side.
When the result is returned to a client, the DN and attributes are changed back to match the
client side.

Attribute Renaming
The following figure illustrates how attribute renaming is performed by Directory Proxy Server.

LDAP Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008272

In Figure 17–1, the email client expects the last names to be specified by the attribute surname
However, in the LDAP server, last names are specified by the attribute sn. When attributes are
renamed, only the name of the attribute is affected — the value of the attribute is not changed.
However, when attributes are renamed all entries with that name are renamed.

For information about how to configure attribute renaming, see “To Configure Attribute
Renaming” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

DN Renaming

The following figure illustrates how DN renaming is performed by Directory Proxy Server.

In Figure 17–2, the client contains the dc=example, dc=com database. The LDAP server
contains the dc=example, dc=org database. The Directory Proxy Server renames the DNs.

Attributes that contain DNs must also be renamed if those DNs are in the portion of the DIT
that is affected by the original DN renaming. In Figure 17–2, the group attribute contains a list
of the DNs of group members. When dc=example, dc=com is renamed to dc=example,

dc=org, the DNs in the group attribute must also be renamed.

For information about how to configure DN renaming, see “To Configure DN Renaming” in
Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

surname=Smith

surname Smith sn.Smith

sn=Smith

E-mail
Client

Directory
Proxy Server

Directory
Server

FIGURE 17–1 Attribute Renaming

ou:groups,dc=example,dc=com
member: uid=kvaughan, ou=People, dc=example, dc=com
member: uid=rdaugherty, ou=People, dc=example, dc=com
member: uid=hmiller, ou=People, dc=example, dc=com

dc=example, dc=com dc=example, dc=org

Directory
Server

Client
Applications

Directory
Proxy Server

FIGURE 17–2 DN Renaming

LDAP Data Views

Chapter 17 • Directory Proxy Server Distribution 273

Distributing Entries In a Subtree to Different Data Views
A distribution algorithm distributes operations across data views that have the same base DN.
The type of distribution algorithm is defined by the distribution-algorithm parameter.

To determine how to distribute operations, the distribution algorithm considers the value of the
attribute directly below the base DN of the data view. For example, consider a data view with a
base DN of ou=people,dc=example,dc=com. If a search operation contains the base DN
uid=23,ou=people,dc=example,dc=com, the distribution algorithm considers uid to be the
routing attribute, because uid is directly below the base DN of the data view. The algorithm
then attempts to match the value 23 to determine how to route the operation.

However, if the search operation contains the base DN
uid=23,ou=managers,ou=people,dc=example,dc=com, the distribution algorithm considers
ou to be the routing attribute, because ou is directly below the base DN of the data view. Because
ou does not match the uid specified in the search query, the distribution algorithm cannot
distribute the search correctly. For distribution to work in this case, the base DN of the data
view should be ou=managers,ou=people,dc=example,dc=com.

You must therefore ensure that the base DN of the data view is appropriate to the distribution
algorithm.

The following distribution algorithms are provided with Directory Proxy Server:

Pattern matching

Requests are distributed to data views based on the match between the parameters of the
requests and one or more patterns. Patterns are defined by the following parameters:
■ pattern-matching-base-object-search-filter

■ pattern-matching-dn-regular-expression

■ pattern-matching-one-level-search-filter

■ pattern-matching-subtree-search-filter

The syntax supported by the pattern matching algorithm is specified by the Java Pattern class
(documented at http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html)). This
syntax is not the same as the usual regex syntax.

Numeric

Requests are distributed to data views according to the numeric value of the RDN in the
request. The numeric value is taken from the value of the first RDN beneath the base DN of
the data view. Numeric bounds are defined by these parameters:
■ numeric-attrs

■ numeric-default-data-view

■ numeric-lower-bound

Distributing Entries In a Subtree to Different Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008274

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

■ numeric-upper-bound

Lexicographic

Requests are distributed to data views according to the lexicographic value of the RDN in the
request. Lexico bounds are taken from the value of the first RDN beneath the base DN of the
data view. Lexico bounds are defined by these parameters:
■ lexicographic-attrs

■ lexicographic-lower-bound

■ lexicographic-upper-bound

Replication
Requests are distributed to data views according to the role of the data view in replication.
The algorithm distributes write operations to all data sources in the data source pool and
read operations to a single data source. The replication role is defined by the
replication-role parameter. A data view can have a master role or a consumer role.

You can also configure Directory Proxy Server to support your custom distribution algorithms.
For more information about configuring custom distribution algorithms, see “To Configure
Custom Distribution Algorithm” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

For information about how to configure a distribution algorithm, see “Data Views With
Hierarchy and a Distribution Algorithm” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide. For information about the parameters used with the
distribution algorithms, see distribution-algorithm(5dpconf).

Limitations of Distribution Algorithms
The distribution algorithms provided with Directory Proxy Server have certain limitations in
specific request scenarios.

The following list outlines the situations in which requests do not respect the distribution
algorithm. The examples in this list assume that the routing attribute is uid and the view base of
the data view is dc=example,dc=com.

■ When the search base ends with the view base and the scope is base, requests are always
distributed to the first data view. For example:

$ ldapsearch -b "ou=people,dc=example,dc=com" -s base "uid=116352"

■ When the search base ends with the view base and the scope is one level or subtree, requests
are always distributed to the first data view. For example:

$ ldapsearch -b "ou=people,dc=example,dc=com" -s sub "uid=116352"

Distributing Entries In a Subtree to Different Data Views

Chapter 17 • Directory Proxy Server Distribution 275

■ When the search base ends with the view base and starts with the routing attribute, but the
search filter does not contain the routing attribute, requests are distributed to all data views.
For example:

$ ldapsearch -b "uid=116352",ou=people,dc=example,dc=com" -s base "objectclass=*"

In this example, requests are distributed correctly if the RDN value matches the data view
criteria.

■ When the search base ends with the view base and contains the routing attribute, but the
search filter does not contain the routing attribute, requests are distributed to all data views.
For example:

$ ldapsearch -b "cn=myAccount,uid=116352,ou=people,dc=example,dc=com" -s base "objectclass=*"

In this example, requests are distributed correctly if the RDN value matches the data view
criteria.

Use Cases for Data Views
This section describes use cases for LDAP data views. All of the examples assume that the
connection handler allows all client connections to be processed by Directory Proxy Server.

For examples of data views in different deployments, see the following sections:

■ “Data Views to Route All Requests, Irrespective of the Target DN of the Request” on page 276
■ “Data Views to Route Requests When a List of Subtrees Are Stored on Multiple,

Data-Equivalent Data Sources” on page 277
■ “Data Views to Provide a Single Point of Access When Different Subtrees Are Stored on

Different Data Sources” on page 278
■ “Data Views to Route Requests When Different Parts of a Subtree Are Stored in Different

Data Sources” on page 279
■ “Data Views to Route Requests When Superior and Subordinate Subtrees Are Stored in

Different Data Sources” on page 281
■ “Data Views With Hierarchy and a Distribution Algorithm” on page 283

Data Views to Route All Requests, Irrespective of the
Target DN of the Request
This section describes a data view that routes all requests to a data source pool, irrespective of
the target DN of the request. This data view is called the root data view. The root data view is
created by default when an instance of Directory Proxy Server is created.

Use Cases for Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008276

The example in this section has multiple data sources that contain the same set of subtrees. The
data sources are data-equivalent and pooled into one data source pool for load balancing. A
data view is configured with a base DN at the rootDSE, represented as “ ”. Figure 17–3 shows an
example deployment.

Because the base DN of the data view is the rootDSE, the data view encompasses the base DN of
all possible requests. All requests are forwarded to the data source pool, irrespective of the target
DN or whether the data source contains an entry for the request.

If Directory Proxy Server receives a request with a target DN that does not exist in the data
source, the request is forwarded to the data source pool. The data source that responds to the
request returns an error.

For information about how to configure the data view in Figure 17–3, see “Data Views That
Route All Requests, Irrespective of the Target DN of the Request” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

Data Views to Route Requests When a List of Subtrees
Are Stored on Multiple, Data-Equivalent Data Sources
This section describes data views that route requests targeted at a list of subtrees to a set of
data-equivalent data sources.

The example in this section has multiple data sources that each contain the same set of subtrees.
The data sources are data-equivalent and pooled into one data source pool for load balancing. A
data view is configured for each subtree to expose that subtree to client requests. Figure 17–3
shows the example deployment.

Data
Source 1

Server 1
dc=example1, dc=com
dc=example2, dc=com

Data
Source 2

Server 2
dc=example1, dc=com
dc=example2, dc=com

Directory Proxy Server LDAP Servers

Data View1
 data-source-pool: 1
 base DN:**

Data
Source
Pool 1

Client Applications

FIGURE 17–3 Example Deployment That Routes All Requests to a Data Source Pool, Irrespective of the
Target DN

Use Cases for Data Views

Chapter 17 • Directory Proxy Server Distribution 277

A request is exposed to a data view only if the target DN is subordinate to the base DN of the
data view. When a request is exposed to a data view, the request is forwarded to the data source
pool specified by the data view.

If the target DN of a request is not subordinate to the base DN of any data view, Directory Proxy
Server returns an error.

In Figure 17–4, requests that target dc=example1,dc=com or dc=example2,dc=com are
forwarded to the data source pool. Directory Proxy Server returns an error for requests that
target neither dc=example1,dc=com nor dc=example2,dc=com.

For information about how to configure the data views in this section, see “Data Views That
Route Requests When a List of Subtrees Is Stored on Multiple, Data-Equivalent Data Sources”
in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Data Views to Provide a Single Point of Access When
Different Subtrees Are Stored on Different Data
Sources
This section describes how Directory Proxy Server provides a single point of access to different
subtrees of data on multiple data sources. The example in this section contains a data view is for
each subtree, to expose that subtree to client requests. A data source pool is configured for each
set of data-equivalent data sources. Figure 17–5 shows the example deployment.

Data
Source 1

Server 1
dc=example1, dc=com
dc=example2, dc=com

Data View1
 data-source-pool: 1
 base DN: dc=example1, dc=com

Data View2
 data-source-pool: 1
 base DN: dc=example2, dc=com

Data
Source 2

Server 2
dc=example1, dc=com
dc=example2, dc=com

Directory Proxy Server LDAP Servers

Data
Source
Pool 1

Client Applications

FIGURE 17–4 Example Deployment That Routes Requests When a List of Subtrees Is Stored on Multiple,
Data-Equivalent Data Sources

Use Cases for Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008278

The Directory Proxy Server exposes a request to a data view if the DN targeted by the request is
subordinate to the base DN of the data view. When a request is exposed to a data view, the
request is forwarded to the data source pool specified by the data view.

If a request has a target DN that is not subordinate to the base DN of a data view, Directory
Proxy Server returns an error.

In Figure 17–5, client requests that target dc=example1,dc=com are forwarded to the data
source pool 1 and are treated by data source 1 or data source 1'. Client requests that target
dc=example2,dc=com are forwarded to the data source pool 2 and are treated by data source 2
or data source 2'. The Directory Proxy Server returns an error for client requests that target
neither dc=example1,dc=com nor dc=example2,dc=com.

For information about how to configure a data view to provide a single point of access to
different subtrees stored in multiple data sources, see “Data Views That Provide a Single Point
of Access When Different Subtrees Are Stored in Different Data Sources” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

Data Views to Route Requests When Different Parts of
a Subtree Are Stored in Different Data Sources
This section describes how Directory Proxy Server provides a single point of access to different
parts of a subtree stored in multiple data sources. To route requests for different parts of a
subtree, Directory Proxy Server uses a distribution algorithm. In the example in this section,

FIGURE 17–5 Example Deployment That Provides a Single Point of Access When Different Subtrees Are
Stored on Different Data Sources

Use Cases for Data Views

Chapter 17 • Directory Proxy Server Distribution 279

Directory Proxy Server uses the numeric distribution algorithm. For more information about
distribution algorithms, see “Distributing Entries In a Subtree to Different Data Views” on
page 274.

The example in this section contains two data views with the same base DN. A numeric
distribution algorithm is used to separate entries into different data views. A data source pool is
configured for each set of data-equivalent data sources. Figure 17–6 shows the example
deployment.

Directory Proxy Server exposes a request to the data view which satisfies the following
conditions:

■ The DN targeted by the request is subordinate to the base DN of the data view
■ The parameters of the requests match the pattern specified by the distribution algorithm in

the data view

When a request is exposed to a data view, the request is forwarded to the data source pool
specified by the data view.

If a request that does not match the conditions of any data view, Directory Proxy Server returns
an error.

Data
Source

2
Server 1’

Data
Source

1

Data
Source

4
Server 2’

Data
Source

3

Directory Proxy Server LDAP Servers

D
at

a
S

ou
rc

e
P

oo
l 1

Client Applications

D
at

a
S

ou
rc

e
P

oo
l 2

Data View 1
 data-source-pool:1
 base DN: ou=people, dc=example1, dc=com
 distribution-algorithm: numeric
 numeric-attributes:uid
 numeric-lower-bound:0
 numeric-upper-bound:99

Data View 2
 data-source-pool:2
 base DN: ou=people, dc=example1, dc=com
 distribution-algorithm: numeric
 numeric-attributes:uid
 numeric-lower-bound:100
 numeric-upper-bound:199

Server 1
ou=people, dc=example1,
dc=com

uid=0 to uid=99

Server 2
ou=people, dc=example1,
dc=com

uid=100 to uid=199

FIGURE 17–6 Example Deployment That Routes Requests When Different Parts of a Subtree Are Stored in
Different Data Sources

Use Cases for Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008280

For information about how to configure a data view to provide a single point of access to
different parts of subtree on multiple data sources, see “Data Views That Provide a Single Point
of Access When Different Parts of a Subtree Are Stored in Different Data Sources” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide.

Data Views to Route Requests When Superior and
Subordinate Subtrees Are Stored in Different Data
Sources
This section describes how Directory Proxy Server provides a single point of access when a
superior branch of a subtree is stored in a different data source to a subordinate branch.

By default, Directory Proxy Server automatically sets the excluded-subtrees property and the
alternate-search-base-dn property. However, the automatic management of the
excluded-subtrees property and the alternate-search-base-dn property can be disabled.
For information about how to manually configure the excluded-subtrees property and the
alternate-search-base-dn property, see “To Manually Configure the excluded-subtrees and
alternate-search-base-dn Properties” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

The example in Figure 17–7 contains three data views. The base DN of dataview–1 is superior
to the base DNs of dataview-2 and dataview-3.

The excluded-subtrees property on dataview-1 excludes dataview-2 and dataview-3 from
dataview-1. The alternate-search-base-dn properties on dataview-2 and dataview-3

include dataview-2 and dataview-3 in search operations targeted at dataview-1. Figure 17–7
shows the example deployment.

Use Cases for Data Views

Chapter 17 • Directory Proxy Server Distribution 281

Directory Proxy Server exposes a request to the data view which satisfies the following
conditions:

■ The DN targeted by the request is subordinate to the base DN of the data view
■ The DN targeted by the request is not excluded from the data view by the

excluded-subtrees parameter

When a request is exposed to a data view, the request is forwarded to the data source pool
specified by the data view.

If a request does not match the conditions of any data view, the request cannot be exposed to a
data view and Directory Proxy Server returns an error.

In Figure 17–7, client requests that target dc=example,dc=com but do not target ou=computer,
dc=example, dc=com or ou=people, dc=example, dc=com are forwarded to the data source
pool 1. Such requests are treated by data source 1 or data source 1'. Client requests that target
ou=computer, dc=example, dc=com or ou=people, dc=example, dc=com are forwarded to
data source pool 2 and data source 3, respectively. Directory Proxy Server returns an error for
client requests that do not target dc=example,dc=com.

All three data views are candidates for search operations that are targeted at
dc=example,dc=com.

FIGURE 17–7 Example Deployment to Route Requests When Superior and Subordinate Subtrees Are Stored
in Different Data Sources

Use Cases for Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008282

For information about how to configure a data view to provide a single point of access to
different parts of subtree in multiple data sources, see “Data Views That Provide a Single Point
of Access When Superior and Subordinate Subtrees Are Stored in Different Data Sources” in
Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Data Views With Hierarchy and a Distribution
Algorithm
Different data views can be used in the same topology to expose or hide parts of a subtree.
Figure 17–8 shows are an example with data views that combine the hierarchy shown in
Figure 17–7 with the distribution algorithms shown in Figure 17–6.

The example in Figure 17–8 contains four data views. The base DN of data view 1 is superior to
the base DNs of the other data views. Data view 3 and data view 4 have the same base DN, but a
numeric distribution algorithm separates entries into the different data views. Figure 17–8
shows the example deployment.

Use Cases for Data Views

Chapter 17 • Directory Proxy Server Distribution 283

The excluded-subtrees property on dataview-1 excludes the other data views from
dataview-1. The alternate-search-base-dn property on dataview-2, dataview-3, and
dataview-4 includes these data views in search operations targeted at dataview-1.

Directory Proxy Server exposes a request to the data view which satisfies the following
conditions:

■ The DN targeted by the request is subordinate to the base DN of the data view

Data
Source

2
Server 1’

Data
Source

1

Data
Source

4
Server 2’

Data
Source

3

Data
Source

6
Server 3’

Data
Source

5

Data
Source

8
Server 4’

Data
Source

7

Directory Proxy Server LDAP Servers

Data View 1
 data-source-pool:1
 base DN: dc=example, dc=com
 excluded-subtrees: ou=people, ou=computer

D
at

a
S

ou
rc

e
P

oo
l 1

Data View 3
 data-source-pool:3
 base DN: ou=people, dc=example, dc=com
 alternate-search-base-suffix: dc=example, dc=com
 distribution-algorithm: numeric
 numeric-attributes:uid
 numeric-lower-bound:0
 numeric-upper-bound:99

Client Applications

Server 1
dc=example, dc=com

Data View 2
 data-source-pool:2
 base DN: ou=computer, dc=example, dc=com
 alternate-search-base-suffix: dc=example, dc=com

D
at

a
S

ou
rc

e
P

oo
l 2

Server 2
ou=computer, dc=example,
dc=com

D
at

a
S

ou
rc

e
P

oo
l 3

Server 3
ou=people, dc=example,
dc=com

uid=0 to uid=99

Data View 4
 data-source-pool:4
 base DN: ou=people, dc=example, dc=com
 alternate-search-base-suffix: dc=example, dc=com
 distribution-algorithm: numeric
 numeric-attributes:uid
 numeric-lower-bound:100
 numeric-upper-bound:199

D
at

a
S

ou
rc

e
P

oo
l 4

Server 4
ou=people, dc=example,
dc=com

uid=100 to uid=199

FIGURE 17–8 Data View With Hierarchy and a Distribution Algorithm

Use Cases for Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008284

■ The DN targeted by the request is not excluded from the data view by the
excluded-subtrees parameter

■ The parameters of the requests match the pattern specified by the distribution algorithm

When a request is exposed to a data view, the request is forwarded to the data source pool
specified by the data view.

If a request does not match the conditions of any data view, Directory Proxy Server returns an
error.

For information about how to configure a complex data view, see “Data Views With Hierarchy
and a Distribution Algorithm” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Use Cases for Data Views

Chapter 17 • Directory Proxy Server Distribution 285

286

Directory Proxy Server Virtualization

Directory Proxy Server enables virtualization through the definition of virtual data views.
Virtual data views enable you to display physical data in a different way. This chapter describes
how virtual data views are created, and the kinds of virtual data views that are available in
Directory Proxy Server.

The chapter covers the following topics:

■ “Construction of Virtual Data Views” on page 287
■ “Virtual Data Transformations” on page 288
■ “Additional Virtual Data View Properties” on page 298
■ “Join Data Views” on page 299
■ “LDIF Data Views” on page 302
■ “JDBC Data Views” on page 302
■ “Access Control On Virtual Data Views” on page 306
■ “Virtual Schema Checking” on page 308
■ “Virtual Data Views and LDAP Groups” on page 309

Construction of Virtual Data Views
A virtual data view is essentially a physical data view on which certain transformation actions
have been defined. The transformation actions take place in real time, to create the virtual data
view. The following figure shows how transformation actions are defined on a physical data
view to create a virtual data view.

18C H A P T E R 1 8

287

In addition to the transformation actions, certain properties can be defined on a data view,
which restrict the way in which data can be managed through that data view. The additional
virtual data view properties are described in “Additional Virtual Data View Properties” on
page 298.

Caution – Virtual data views imply a performance impact. The significance of the performance
impact depends on several factors including the size of the physical data source, the complexity
of the transformation, and the complexity of any virtual ACIs you might use.

Virtual Data Transformations
Virtual data transformations create a virtual data view from a physical data view. Practically,
you never define a virtual data view. Instead, you specify the transformations that you require
and define these on an existing physical data view. A transformation performs a specific action
in a certain direction. The direction of a transformation determines the transformation model.
When you define a virtual data transformation, you create a virtual attribute that exists only in
the context of the virtual data view.

A transformation is defined on a data view, by using the dpconf command as follows:

$ dpconf add-virtual-transformation -h host -p port -D bindDN /

view-name model action attr-name [parameters...]

The view-name refers to the data view on which the transformation is defined. The attr-name
refers to the virtual attribute that is created. The model, action, and additional parameters are
described in the following sections.

The name of the virtual transformation can be set by using the following command:

$ dpconf set-virtual-transformation-prop -h host -p port -D bindDN /

view-name transformation-name property:value [property:value]

Physical
Data View

Transformation
Actions

Virtual
Data View

Data
Source

Client
Application

FIGURE 18–1 Virtual Data View

Virtual Data Transformations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008288

Transformation Models
The transformation model is determined by the direction of a transformation, in other words,
whether the transformation is applied during the request, during the response, or both.

In this sense, transformations can be categorized into the following types:
■ Mapping transformations (bidirectional transformations)
■ Write transformations (inbound transformations)
■ Read transformations (outbound transformations)

Mapping Transformations
The most common transformation is a bidirectional (mapping) transformation. A mapping
transformation is applied during the request, and its inverse is applied during the response.
These transformations are called mappings because in effect, an attribute or entry in the
physical data view maps to an attribute or entry in the virtual data view. Mapping
transformations enable you to process existing values before assigning them to a DN
component, an attribute type or value, or an object class.

The following diagram illustrates the principals of a mapping transformation.

A mapping transformation is defined on a data view, by running the dpconf command as
follows:

$ dpconf add-virtual-transformation -h host -p port -D bindDN /

view-name mapping action attr-name [parameters]

EXAMPLE 18–1 When Would You Use a Mapping Transformation?

Imagine, for example, an organization has a physical data source that contains entries with the
attributes surname and givename. The organization has a client application that requires entries
to have a cn (common name) attribute of the form givenname surname.

The client application sends a search request for an entry of the form cn=Carlos Fuentes. A
transformation is defined that extracts the name and surname during this request and
transforms the request to one of the form surname=Fuentes, givenname=Carlos. The
corresponding entry is located in the data source. Before returning this entry to the client
application, the inverse transformation is performed. The client application receives the entry
as cn=Carlos Fuentes, which it understands.

Original
Request

Transformed
Response

(Transformation
Actions)

Data View

Transformed
Request

Original
Response

Data
Source

Client
Application

FIGURE 18–2 Mapping Transformation

Virtual Data Transformations

Chapter 18 • Directory Proxy Server Virtualization 289

EXAMPLE 18–1 When Would You Use a Mapping Transformation? (Continued)

This request is transformed to be of the form surname=Fuentes, givenname=Carlos. Similarly,
the client application sends a modify request to change the cn attribute of an entry to Lisa

Davis. The request is transformed so that the givenname attribute of the physical entry is
modified to Lisa and the surname attribute is modified to Davis.

Write Transformations
A write transformation is applied during the request, but not during the response. A write
transformation changes the physical data in storage.

The following diagram illustrates the principals of a write transformation.

A write transformation is defined on a data view, by using the dpconf command as follows:

$ dpconf add-virtual-transformation -h host -p port -D bindDN /

view-name write action attr-name [parameters]

EXAMPLE 18–2 When Would You Use a Write Transformation

Imagine an organization has a legacy application whose function is to add person entries to a
data source. The application adds the entries without the telephoneNumber attribute. The
physical data source has been upgraded and the telephoneNumber is now a mandatory attribute
for person entries. The transformation required here is to add the telephoneNumber attribute
during the add request. This transformation changes the entry that is written to the database.
No reverse transformation is required.

Read Transformations
A read transformation is applied only during the response to a request. No transformation is
applied during the request and the physical data is not changed.

The following diagram illustrates the principals of a read transformation.

Original
Request

Transformed
Request

(Transformation
Actions)

Data View
Data

Source

Client
Application

FIGURE 18–3 Write Transformation

Virtual Data Transformations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008290

A read transformation is defined on a data view, by using the dpconf command as follows:

$ dpconf add-virtual-transformation -h host -p port -D bindDN /

view-name read action attr-name parameters

EXAMPLE 18–3 When Would You Use a Read Transformation

Imagine an organization has a legacy application whose function is to display person entries.
The application does not support entries that do not contain a mail attribute. The physical data
source has been upgraded and the email attribute no longer exists for person entries (e-mail
addresses are constructed using other attributes).

The transformation required here is to add the mail attribute during the search response. This
transformation changes the entry that is read from the database and adds a mail attribute whose
value is givenname.surname@example.com. No reverse transformation is required and the
physical data is not changed.

Note that with the above transformation, the mail attribute makes no sense in a search request
filter. Search request filters must contain physical attributes.

Transformation Actions
Transformation actions describe what a transformation does to its target entry or entries. The
following transformation actions are possible:
■ Construct an attribute. This action enables you to construct a virtual attribute that does not

actually exist in the physical data source but is required by a client application. The action
can also be used to alter an add or modify request to construct an attribute that is required
by the physical data source.
To construct the attribute, use the add-attr transformation action.

■ Remove an attribute. This action enables you to delete an attribute from a client request if
that attribute is not permitted by the schema on the physical data source. The action can also
be used to remove an attribute from the response sent to a client application if the client
application does not require that attribute.
To remove an attribute, use the remove-attr transformation action.

■ Construct an attribute value. This action enables you to create an attribute value from
other attribute values.

Request Request

Transformed
Response

Original
Response

Data
Source

Client
Application (Transformation

Actions)

Data View

FIGURE 18–4 Read Transformation

Virtual Data Transformations

Chapter 18 • Directory Proxy Server Virtualization 291

To create an attribute value, use the add-attr-value transformation action.
■ Delete an attribute value. This action enables you to remove the value from an attribute. It

is usually used to remove one or more values from a multi-valued attribute if either the
client application or the data source schema does not permit multi-valued attributes.

To remove an attribute value, use the remove-attr-value transformation action.
■ Add a default value to an attribute. This action enables you to add a default value to an

attribute, if no value exists.

To add a default value to an attribute, use the def-value transformation action.
■ Map one attribute value to another. This action enables you to have two different values

for an attribute, depending on whether the attribute is being written to a data source or
returned to a client application.

To map attribute values, use the attr-value-mapping transformation action, with the
internal-value and view-value parameters.

Note – Directory Proxy Server supports two ways of mapping attribute values — simple
attribute mapping and mapping through a virtual transformation. In general, attribute
mapping is simpler to configure and slightly better in terms of performance. For more
information, see “Renaming Attributes and DNs” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

The results of a transformation action depend on the transformation model.

Transformation Parameters
Transformation parameters provide the value of a virtual attribute. This value can either be a
default value, or rule that creates the value from other attribute values.

The following transformation parameters are accepted:

■ value. This parameter is applied to all transformation actions that add an attribute value,
other than the attr-value-mapping action.

■ internal-value:value. This parameter applies only to the attr-value-mapping action, and to
the remove-attr-value action when used with the mapping model. It describes the value of
the attribute that is written to or read from the physical data source.

■ view-value:value. This parameter applies only to the attr-value-mapping action, and to the
remove-attr-value action when used with the mapping model. It describes the value of the
attribute that is returned to or sent by the client application.

Virtual Data Transformations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008292

Transformation parameters take the following syntaxes:
■ Constant. Used to generate an attribute with a static default value.

For example, the parameter 0800–5994654 might be used to provide a default telephone
number.

■ Attribute value. Used to create a new attribute from an existing attribute in the entry that is
being processed.
For example, the parameter \${cn} specifies that the value of the new attribute must be
taken from the value of the cn attribute The escape character is required before the $.

■ Constant and attribute value. Used to create a new attribute by combining an existing
attribute and a static value.
For example, the parameter \${cn}@example.com specifies that the value of the new
attribute must be taken from the value of the cn attribute and a static domain name.

■ Macro. Used to create an attribute by manipulating the value of an existing attribute.
The macro is a Java regular expression. For more information about Java regular
expressions, see
http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html.

The following macros are supported:
■ Increase the value of an attribute by a consistent amount:

increment(source-attribute-value,increment)

For example, the macro increment(\$(uid),10) specifies that the value of the new
attribute is obtained by adding 10 to the value of the uid attribute present in the entry.

■ Decrease the value of an attribute by a consistent amount:

decrement(source-attribute-value,decrement)

For example, the macro decrement($(uid),10) specifies that the value of the new
attribute is obtained by subtracting 10 from the value of the uid attribute present in the
entry.

■ Use part of an existing attribute value.

substring(source-attribute-value,begin-index[,end-index])

The begin-index is inclusive and the end-index is exclusive. That is, the substring
begins on the character specified by the begin-index and ends on the character just
before the end-index.

For example, to create a new attribute whose value is the value of the cn attribute minus
the first two characters, you would define the following macro:

substring(\${cn},2)

Virtual Data Transformations

Chapter 18 • Directory Proxy Server Virtualization 293

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

To create a new attribute whose value contains only the first two characters of the value
of the cn attribute, you would define the following macro:

substring(\${cn},0,2)

■ Use part of an existing attribute value by splitting that value at a certain point.

split(source-attribute-value,token-index,regular-expression)

For example, the macro split\(\${mail},1,"@"\) returns the domain.

Note – The transformation parameter syntax is slightly different when used in the context of a
join data view. For more information, see “Virtual Data Transformations on Join Data Views”
on page 302.

Transformation Examples
The following sections provide use cases in which virtual data views are required, and the
combination of transformation models and actions required to implement the use cases.

EXAMPLE 18–4 Adapting an ADAM Object Class For LDAP Compliance

An organization, Example A, stores its users in an LDAP directory. Example A acquires another
company, Example B, which stores its users in an ADAM directory.

In Example A's LDAP directory, a user is stored as an inetOrgPerson. In Example B's directory,
a user is stored as a user. A transformation is required that maps the ADAM user object class to
the LDAP inetOrgPerson object class.

The following transformation is defined on the physical data view of Example A's directory:

$ dpconf add-virtual-transformation -h myHost -p 2389 -D "cn=Proxy Manager" \

exampleB-view-name mapping attr-value-mapping objectclass internal-value:user \

view-value:inetOrgPerson

EXAMPLE 18–5 Constructing an Attribute With a Write Transformation

Example A stores user entries in its directory. All user entries require a mail attribute. If user
entries without a mail attribute are added, a schema violation error is returned. Example A has a
client application that adds user entries to the directory. Some user entries do not contain a mail
attribute and the client application is incapable of generating one. To avoid schema violations
when a user entry is added, a transformation is defined that adds the mail attribute to an add
request. The value of the mail attribute is taken from the uid provided in the client add request,
with the addition of @example.com.

Virtual Data Transformations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008294

EXAMPLE 18–5 Constructing an Attribute With a Write Transformation (Continued)

The following diagram indicates the transformation that occurs on an add request.

This transformation is defined on the physical data view by using the following dpconf
command.

$ dpconf add-virtual-transformation -h myHost -p 2389 -d "cn=Proxy Manager" \

exampleA-view-name write add-attr mail \${uid}@example.com

In this command, \${uid} means the value of the uid attribute for that entry.

EXAMPLE 18–6 Constructing an Attribute With a Read Transformation

Example A does not store the mail addresses of its users in its directory. However, a new client
application requires that a user's mail address be returned with the user entry.

All mail addresses in the organization take the form firstname.lastname@example.com. The
organization defines a virtual view in which the mail attribute is added to each user entry for
reads only. The value of the mail attribute is generated by taking the value of the givenName and
sn attributes that already exist in the user entry.

The following diagram indicates the transformation that occurs on user entries when they are
returned in a search.

Original
Request

Transformed
Request

dn:uid=Carlos.Fuentes,
 ou=People, dc=example, dc=com
initals: CF
telephoneNumber: 080-584-9857
givenName: Carlos

dn:uid=Carlos.Fuentes,
 ou=People, dc=example, dc=com
initials: CF
sn: Fuentes
mail:Carlos.Fuentes@example.com
telephoneNumber: 080-584-9857
givenName: Carlos

Data
Source

Client
Application (Transformation

Actions)

Data View

Virtual Data Transformations

Chapter 18 • Directory Proxy Server Virtualization 295

EXAMPLE 18–6 Constructing an Attribute With a Read Transformation (Continued)

This transformation is defined on the physical data view by using the following dpconf
command.

$ dpconf add-virtual-transformation -h myHost -p 2389 -d "cn=Proxy Manager" \

exampleA-view-name read add-attr mail \${givenname}.\${sn}@example.com

EXAMPLE 18–7 Adding a Default Attribute Value

Example A stores a number of products in its directory. In the past, each product was associated
with a support person, an employee responsible for handling all support calls for that product.
In the physical data store, each product is therefore associated with a supportPerson attribute,
whose value is the DN of an employee in the organization.

Physical Data View

dn:uid=Carlos.Fuentes,ou=People,dc=example,dc=com
sn: Fuentes
telephoneNumber: 080-584-9857
givenName: Carlos
uid=Carlos.Fuentes
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top

Virtual Data View

dn:uid=Carlos.Fuentes,ou=People,dc=example,dc=com
sn: Fuentes
telephoneNumber: 080-584-9857
givenName: Carlos
mail: Carlos.Fuentes@example.com
uid=Carlos.Fuentes
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: top

Retrieve attribute value
sn: Fuentes
givenName: Carlos

Construct attribute value
mail: Carlos.Fuentes@example.com

Client
Application

Virtual Data Transformations

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008296

EXAMPLE 18–7 Adding a Default Attribute Value (Continued)

The organization has changed its business process for support queries and now sends all
product queries to a central hotline. To handle this change without changing the physical data,
the organization defines a virtual data view where all product entries do not have a
supportPerson attribute, but have a hotline attribute instead. The value of the hotline
attribute is an 0800 number that is the same for all products.

The following diagram indicates the transformation that occurs on product entries when they
are returned in a search.

This transformation is defined on the physical data view by using the following dpconf
commands:

$ dpconf add-virtual-transformation -h myHost -p 2389 -d "cn=Proxy Manager" \

exampleA-view-name read remove-attr supportPerson

$ dpconf add-virtual-transformation -h myHost -p 2389 -d "cn=Proxy Manager" \

exampleA-view-name read add-attr hotline "0800755 8625"

EXAMPLE 18–8 Using a Virtual Transformation to Rename a DN

Example A has a client application that needs to sort entries according to their object class.

To do this, Example A defines a virtual transformation that rewrites the RDN of entries to
include the object class of the entry along with its cn, whenever an entry is returned to that
specific client application.

Physical Data View

dn: productName=myProduct,ou=Products,dc=example,dc=com
productName: myProduct
supportPerson: Carlos Fuentes

Virtual Data View

dn: productName=myProduct,ou=Products,dc=example,dc=com
productName: myProduct
hotline: 0800 755 8625

Remove attribute
supportPerson: Carlos Fuentes

Add attribute
hotline: 0800 755 8625

Client
Application

Virtual Data Transformations

Chapter 18 • Directory Proxy Server Virtualization 297

EXAMPLE 18–8 Using a Virtual Transformation to Rename a DN (Continued)

The following transformation is defined on the physical data view of Example A's directory:

$ dpconf add-virtual-transformation -h myHost -p 2389 -d "cn=Proxy Manager" \

exampleB-view-name mapping attr-value-mapping dn internal-value:cn=\${cn} \

view-value:cn=\${cn},objectclass=\${objectclass}

Additional Virtual Data View Properties
In addition to the transformation actions described previously, certain properties can be
defined on a data view, which restrict the way in which data can be managed through that data
view. These properties essentially provide a list of the attributes that can be read or modified
through the virtual data view.

The following additional properties can be defined on a data view to present a restricted virtual
data view:

■ Non-viewable attributes. A list of the attributes that cannot be read through this data view.
This list is specified by adding the multi-valued property non-viewable-attr to the data
view. This property should be used if the number of attributes that cannot be read is small.

■ Non-writable attributes. A list of the attributes that cannot be added or modified through
this data view. This list is specified by adding the multi-valued property non-writable-attr
to the data view. This property should used if the number of attributes that cannot be added
or modified is small.

■ Viewable attributes. A list of the attributes that can be read through this data view. This list
is specified by adding the multi-valued property viewable-attr to the data view. This
property should used if the number of attributes that can be read is small.

■ Writable attributes. A list of the attributes that can be added or modified through this data
view. This list is specified by adding the multi-valued property writable-attr to the data
view. This property should used if the number of attributes that can be added or modified is
small.

Non-viewable attributes and viewable attributes are mutually exclusive. Similarly, non-writable
attributes and writable attributes are mutually exclusive.

Additional Virtual Data View Properties

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008298

Join Data Views
A join data view is an aggregation of multiple data views. The current release of Directory Proxy
Server supports the aggregation of two data views into one join data view.

A join data view is created by specifying its name and the two existing data views that will be
aggregated. One of these existing data views is considered the primary data view, and the other
the secondary data view. Before you create the join data view, you need to configure the rules on
the secondary data view that determine how the data is aggregated.

The following figure shows the aggregation of a primary and secondary data view to form one
join data view.

Primary and Secondary Data Views
The hierarchical organization of the sources for a join data view enables Directory Proxy Server
to make default decisions where the data from the primary and secondary data views do not
match.

The primary data view controls the existence of entries in the join data view. The secondary data
view provides supplementary data for this list of entries. In other words, if an entry exists in the
secondary data view but not in the primary data view, it does not appear in the join data view.

The primary data view is the authoritative source by default. When an attribute is present on
both source data views but has a different value on each, a multi-valued attribute is returned.
This behavior is configurable, however. For example, you can choose to accept only the value in
the primary data view, or only the value in the secondary data view.

Additional Secondary Data View Properties
In addition to the virtual data view properties described in “Additional Virtual Data View
Properties” on page 298, certain properties can be defined only on a secondary data view. These
properties determine how data from the two views is aggregated and how requests to the data
views are handled. The following sections describe these additional properties.

Join
Data View

Virtual Data
View Properties

Primary
Data View

Virtual Data
View Properties

Secondary
Data View

Client
Application

Join Data Views

Chapter 18 • Directory Proxy Server Virtualization 299

Join Rules
Join rules determine how an entry from a secondary data view relates to an entry from a
primary data view. Join rules are not mandatory on a secondary data view. However, if no join
rule is defined, the secondary data view is not queried during LDAP operations. Directory
Proxy Server provides two types of join rules, DN join rules and filter join rules.

DN Join Rules

A DN join rule determines the DN of entries in the secondary data view. A DN join rule is
configured on the secondary data view by using the dn-join-rule property. Only one DN join
rule can be configured on a secondary data view. If a DN join rule is configured on a data view, a
filter join rule cannot be configured on that data view.

A DN join rule has DN syntax and can take one of the following forms:
■ The DN of the secondary entry is constructed from an attribute in the primary entry.

For example, the following DN join rule stipulates that the DNs of entries in the secondary
data view should include the cn from the primary data view, plus the ou=people suffix.

cn=\${primary-data-view.cn},ou=people

The DN must not contain the base DN of the secondary data view. In this sense, it is a
relative DN.

■ The DN of the secondary entry is the same as the DN of the primary entry.
The syntax of such a join rule is as follows:

\${primary-data-view.dn}

In this case, the portion of the primary and the secondary DNs below the base DN are
identical, although the full DNs may differ. Imagine, for example, that the primary data view
has a base DN of o=primary and the secondary data views has a base DN of o=secondary. A
join rule of \${primary-data-view.dn} implies that the DITs below the base DN are
identical. So, the entry uid=1,o=secondary would be associated with uid=1,o=primary.

Filter Join Rules

A filter join rule defines the relationship between the primary and secondary data views. A filter
join rule is configured on the secondary data view by using the filter-join-rule property.
This rule indicates how an entry should be retrieved from the secondary data view based on
something in the primary data view.

Only one filter join rule can be configured on a secondary data view. If a filter join rule is
configured on a data view, a DN join rule cannot be configured on that data view. A filter join
rule takes the form of a filter that is used to construct an attribute from one or more attributes
from the primary data view.

Join Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008300

For example, the following filter join rule stipulates that an entry be retrieved if the entry uid in
the primary data view matches the entry uid in the secondary data view.

uid=\${primary.uid}

Handling of Shared Entries
The contains-shared-entries property determines what should be done if an entry in the
secondary data view is used by more than one entry in the primary data view.

Imagine for example, that the primary data view contains a list of user entries and the secondary
data view contains a list of department numbers. A single department number in the secondary
data view might apply to more than one user in the primary data view. If a user is deleted from
the primary data view, you do not necessarily want that user's department number to be deleted
from the secondary data view.

The contains-shared-entries property is set on the secondary data view only. This property
is set to TRUE by default. This means that deleting an entry in the primary data view will not
result in the deletion of the shared entry in the secondary data view. Adding an entry to the
primary data view will only add the entry to the secondary data view if it does not already exist.

Handling of Binds
The process-bind property specifies whether a bind can be performed on the secondary data
view.

By default, primary data views allow binds and secondary data views do not. The process-bind
property is not set by default. If this property is set to true on a secondary data view, binds are
permitted on that data view.

How Directory Proxy Server Handles Read and Write
Operations to Join Data Views
If an attribute exists on both the primary and secondary data view, the attribute values are
merged by the join data view. For read operations, this implies that a multi-valued attribute is
returned, with the values from both data views. For write operations, the proxy queries both
data views and determines where to write the value based on the content of the write operation.

If one backend data source fails during an add operation Directory Proxy Server performs an
automatic rollback. The roll back takes the form of a delete operation on the data source that did
not fail. This ensures the consistency of the data between the two data sources. If a roll back
cannot be performed, an error is logged and an optional administrative alert is raised.
Automatic roll back is on by default. You can configure automatic roll back by setting the
revertAddOnFailure attribute to off (directly in cn=config).

Join Data Views

Chapter 18 • Directory Proxy Server Virtualization 301

If one backend data source fails during a delete operation, no roll back is performed. An error is
logged and an optional administrative alert is raised.

Virtual Data Transformations on Join Data Views
Virtual data transformations are described in “Virtual Data Transformations” on page 288. The
syntax of a transformation parameter differs slightly if the data transformation is defined on a
join data view. Because an attribute can be obtained from more than one data view, variables
that define the attribute content must be fully qualified. That is, the source attribute value must
include the name of the data view from which the attribute is taken.

For example, the following parameter creates an attribute from existing attributes in both the
primary and secondary data views:

\${primaryDataView.firstName}.\${secondaryDataView.lastName}@\${primaryDataView.domainName}

The firstName and domainName attributes are taken from the primary data view, and the
lastName attribute is taken from the secondary data view.

LDIF Data Views
An LDIF data view is a simple virtual data view in which an LDIF file is made to look like an
LDAP data source. An LDIF data view is defined by using the dpconf command as follows:

dpconf create-ldif-data-view VIEW_NAME LDIF_FILE_NAME SUFFIX_DN

No additional transformations are required. Directory Proxy Server automatically performs the
transformations required to make the LDIF data look like LDAP data to client applications.

For information about creating and configuring LDIF data views, see “Creating and
Configuring LDIF Data Views” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

JDBC Data Views
A JDBC data view enables you to make a relational database accessible to LDAP client
applications. The following configuration objects are required to set up a JDBC data view:
■ JDBC data source. Defined for each relational database. Currently, only one JDBC data

source is supported per JDBC data view.
■ JDBC data source pool. Defined for each JDBC data source.
■ JDBC data view. Aggregates JDBC object classes into a single data view accessible by LDAP

client applications.

LDIF Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008302

■ JDBC object class. Maps one or more JDBC tables to an LDAP object class.
■ JDBC table. Defined for each relational database table.
■ JDBC attribute. Defines an LDAP attribute from a specified column in a JDBC table.

The following diagram shows how an LDAP client application is able to view an Oracle
database in the format of an LDAP DIT, through the configuration of the JDBC objects
described previously. These objects are discussed in more detail in the following sections.

An LDAP client application can also bind to a JDBC data view, or to a join data view that
includes a JDBC data view. In this case Directory Proxy Server obtains the password from the
JDBC database to do the password check. The password can be obtained in clear, SHA, or
SSHA.

JDBC Data Sources and Data Source Pools
A JDBC data source is defined for each relational database. The properties of a JDBC data
source include the name and location of the relational database, and the user name and
password required to access the database. For a complete list of the properties that can be set for
a JDBC data source, run the following command:

$ dpconf get-jdbc-data-source-prop -h myHost -p 2389 -d "cn=Proxy Manager"\
jdbc-data-source-name

Currently, only one JDBC data source is supported for each JDBC data view. In other words,
you cannot load balance across JDBC data sources.

Like LDAP data sources, JDBC data sources are organized into data source pools. The
properties of a JDBC data source pool are similar to those of an LDAP data source pool. For
more information about LDAP data source pools see “LDAP Data Source Pools” on page 261.

JDBC Data
Source Pool

JDBC Data
Source

JDBC Tables

JDBC Object
Classes

JDBC Object
Classes

Directory Proxy Server

JDBC
Data View

LDAP
Clients Oracle

Database

JDBC
API

JDBC Data Views

Chapter 18 • Directory Proxy Server Virtualization 303

Note – Directory Proxy Server relies on metadata retrieved from the relational database. This
metadata is read when Directory Proxy Server starts, or when a new JDBC data view is added.
The metadata is not reread each time Directory Proxy Server processes a request. If you change
the metadata in the relational database, you must restart Directory Proxy Server to take the
changes into account.

The metadata is changed when any of the following changes are made:

■ Changes to the structure of the database (adding or removing tables, rows, or columns)
■ Changes to the case sensitivity of any column in a table

JDBC Object Classes
A JDBC object class maps an LDAP object class to one or more relational database tables. A
JDBC object class works in a similar way to a join data view (see “Join Data Views” on page 299).
Just as a join data view has primary and secondary source data views, a JDBC object class can
obtain its information from more than one table. One table must be defined as the primary
table, and additional tables, if they exist, are defined as secondary tables. The primary table
controls the list of entries and additional information on these entries is extracted from the
secondary tables.

When you define a JDBC object class, you must specify the following operands:

■ The name of the JDBC data view to which this object class is attached.
■ The name of the JDBC object class.
■ The primary JDBC table from which the object class will obtain its list of entries.
■ A DN pattern that controls how DNs are constructed in the data view.
■ Optionally, one or more secondary JDBC tables.

JDBC Tables
A JDBC table must be created for each relational database table that will be used in the JDBC
data view. When you create a JDBC table you specify the name of the table in the relational
database, and the name you want to assign to this table in the JDBC data view.

JDBC Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008304

The following properties apply to JDBC tables:

■ SQL table. (sql-table) Specifies the name of the relational database table.
This value must be specified when you create the JDBC table but can be changed if the SQL
table name changes.

■ Single row table. (is-single-row-table) Specifies that an LDAP entry has only one
matching row in the relational database table.
Generally, performance is improved if this property is set to true because there is no
ordering in the SQL request.

■ Shared entries. (contains-shared-entries) This property determines what should be
done if a row in a secondary table is used by more than one entry in the primary table.
Imagine for example, that the primary table contains a list of user details and the secondary
table contains department numbers. A single department number in the secondary table
might apply to more than one user in the primary table. If a user is deleted, you do not
necessarily want that user's department number to be deleted from the secondary table.
The contains-shared-entries property is set on secondary tables only. If this property is
set to TRUE, deleting an LDAP entry will result in deletion of the user in the primary table but
not in the deletion of the corresponding row in the secondary table.

■ Filter join rule. (filter-join-rule) A filter join rule defines the relationship between
primary and secondary tables.
A filter join rule is mandatory on secondary tables, and indicates how an entry should be
retrieved from the secondary table based on something in the primary table.
Only one filter join rule can be configured on each secondary table. A filter join rule takes
the form of a filter that is used to construct an LDAP attribute.
For example, the following command creates a filter join on the secondary phone table. This
rule stipulates that an entry be retrieved from the phone table if the user_id field in that
table matches the id field in the employee table.

$ dpconf set-jdbc-table-prop -h myHost -p 2389 -d "cn=Proxy Manager" \

phone filter-join-rule:user_id=\${employee.id}

JDBC Attributes
JDBC attributes map LDAP attributes to entries in relational database tables. The definition of a
JDBC attribute includes the name of the LDAP attribute, and the table and column in which the
corresponding information is located.

For example, the following command maps the employeeNumber attribute to the ID field of the
EMPLOYEE table.

JDBC Data Views

Chapter 18 • Directory Proxy Server Virtualization 305

$ dpconf add-jdbc-attr -h myHost -p 2389 -d "cn=Proxy Manager" \

EMPLOYEE employeeNumber ID

The following properties apply to JDBC attributes:

■ LDAP syntax. (ldap-syntax) This property defines the syntax used to construct the LDAP
attribute from an entry in the relational database table.
Changes to JDBC attribute syntax require a server restart before they are taken into account.

■ SQL column. (sql-column) The column in the relational database table from which the
LDAP attribute is obtained.

■ SQL syntax. (sql-syntax) This property defines the syntax used to construct an entry in the
relational database table from an LDAP entry.

Case Sensitivity in JDBC Data Views
In some cases, the LDAP attribute might be case insensitive, while the corresponding column in
the relational database is case sensitive. Directory Proxy Server handles this by adding an UPPER

keyword to equality and substring indexes. This can have serious performance implications. If
the relational database requires case-sensitivity, you should therefore create specific indexes on
the upper case values.

Access Control On Virtual Data Views
In a virtual data view, Directory Proxy Server exposes virtual data. Directory Proxy Server is
therefore responsible for controlling who can access that data, and what parts of the data can be
accessed. To control access to virtual data, you can define virtual ACIs. When Directory Proxy
Server receives a request on a virtual data view, it uses the virtual ACIs, and any authentication
information provided by the user, to allow or deny access to the information that is requested.

This section describes the syntax and architecture of virtual ACIs. For information about
configuring virtual ACIs, see “Defining Access Control on Virtual Data Views” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide.

Virtual ACI Definition
Virtual ACIs are defined by using the dpsaci operational attribute. The dpsaci attribute is
multi-valued. This means that several ACIs can be defined for the same portion of a directory.

Directory Proxy Server is responsible for the management of the dpsaci attribute. This
attribute can be configured along with the physical data but it is not stored with the data. When
the dpsaci attribute is included in a request, Directory Proxy Server extracts it from the request
and manages it in a dedicated ACI repository, through its own ACI data view.

Access Control On Virtual Data Views

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008306

A modify request that targets a virtual data view and contains the dpsaci attribute is effectively
split into two requests by Directory Proxy Server. The first request handles only the virtual data,
and the second request handles the virtual ACI.

Note – By default, write operations are forbidden on non-LDAP data views.

Global ACIs
Global ACIs are defined in the entry cn=data-source-name,cn=virtual access controls.
These ACIs are evaluated by an ACI engine to deny or allow requests from a connection handler
using that ACI pool. Global ACIs are required to allow or deny application administrators to
access certain data. These application administrators can then provide more finely-grained
access control to users, by placing ACIs directly in the data.

Only the proxy manager can create a pool of ACIs and manage ACIs directly through the ACI
data view. Application administrators cannot manage ACIs directly through the ACI data view,
even if they have the right to add entries. Application managers can only manage ACIs directly
through the data.

ACIs that are defined in the data itself, are evaluated by Directory Proxy Server. These ACIs are
entries in the pool of ACIs defined by the proxy manager, that is they are child entries of the
entry cn=data-source-name,cn=virtual access controls.

ACIs have a performance impact. Therefore, if you use ACIs within the data itself, keep to a
minimum the number of rules in the global ACIs, because these ACIs are evaluated every time
the subtree is accessed.

Virtual ACI Syntax
The dpsaci attribute resembles the Directory Server aci attribute in syntax and behavior. For a
description of Directory Server ACI syntax, see “How Directory Server Provides Access
Control” on page 42.

The following list describes the differences between virtual ACIs and Directory Server ACIs.

■ Target keywords. Only the target, targetAttr and targetScope keywords are supported.
■ Permission keywords. The All access write does not permit selfwrite operations.
■ Bind rule subject. For performance reasons, virtual ACIs do not support the

ldap:///suffix??sub?(filter) as a value for the userdn keyword.
■ Bind rule context. Virtual ACIs do not support SASL authentication. In addition, the ip

keyword does not support subnet masks.

Access Control On Virtual Data Views

Chapter 18 • Directory Proxy Server Virtualization 307

Virtual ACI Storage and Access
Virtual ACIs are stored centrally, in an LDIF file or in an LDAP directory. When you create a
Directory Proxy Server instance, the virtual ACIs are stored in the LDIF file instance-path
/config/access_controls.ldif by default. You can change the location of the virtual ACIs,
particularly if you need to share ACIs across multiple proxy servers. For information about how
to change the location of virtual ACIs, see “To Define a New ACI Storage Repository” in Sun
Java System Directory Server Enterprise Edition 6.3 Administration Guide.

The ACI repository is accessed through an LDAP or LDIF data view, depending on the type of
repository. By default, the access control data view is an LDIF data view named virtual access

controls. The view base exposed by the access control data view must exist in the ACI
repository.

The ACI repository contains one or more pools of ACIs. An ACI pool is defined by an LDAP
entry of the type aciSource, directly below the view base of the data view. The ACI pool is a
subtree of entries. It can contain access controls, and can be the parent entry of other entries
containing ACIs.

Virtual ACI Application
Virtual ACIs are applied per connection handler. The name of the ACI pool to be used is
defined as the aci-source property of the connection handler. Virtual access controls are not
evaluated if you bind as the Proxy Manager.

Virtual Schema Checking
Directory Proxy Server exposes its own schema that is different to the schema of a physical data
source. The Directory Proxy Server schema can be stored locally in an LDIF file, or in a remote
Directory Server. You can configure where the schema is stored with the dpconf command. A
schema is defined per connection handler. The schema for a specific connection handler can be
retrieved or updated using ldapsearch or ldapmodify. When the schema is updated, Directory
Proxy Server must be restarted before the changes take effect.

Schema Checking
Generally, schema checking is performed by the server that exposes the schema. In a scenario
where Directory Proxy Server acts as a proxy to one or more Directory Servers, the Directory
Servers check that add and modify requests adhere to their LDAP schema. When Directory
Proxy Server exposes its own schema. Directory Proxy Server must check that add and modify
requests adhere to these schema.

Virtual Schema Checking

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008308

Because a schema is defined for a specific connection handler, schema checking is enabled per
connection handler. Schema checking is enabled by setting the schemaCheck attribute of a
connection handler to true.

Virtual Data Views and LDAP Groups
With virtual data views, you can define local virtual groups, and use them though ACIs. You can
also rely on existing groups defined on backend servers. You can transform the groups from an
LDAP directory to appear in the virtual namespace by using DN mapping. You can also
transform all member DNs by using attribute value renaming.

With a join data view, you can join two static groups from two different LDAP backends, as long
as there are no member naming conflicts. You can also create a read-only virtual group, by
using an ACI on the uniquemember attribute, for example.

Directory Proxy Server server uses groups in the area of ACIs only. The ACI engine can
reference both static and dynamic groups by using the groupdn keyword.

Virtual ACIs support both static and dynamic groups. However, the isMemberOf feature is not
supported. Due to the severe performance impact, nested groups are also not supported.

With dynamic groups, attribute value renaming does not apply to the value of the dynamic
group, because this value is an LDAP URL and is therefore not DN syntax. In other words, if a
dynamic group value contains a DN, the DN part is not renamed.

Virtual Data Views and LDAP Groups

Chapter 18 • Directory Proxy Server Virtualization 309

310

Connections Between Directory Proxy Server
and Backend LDAP Servers

This chapter describes the connections between Directory Proxy Server and backend LDAP
servers. The chapter covers the following topics:

■ “LDAP Data Sources” on page 311
■ “Connections Between Directory Proxy Server and Backend LDAP Servers” on page 312
■ “Forwarding Request From Directory Proxy Server to Backend LDAP Servers” on page 313

LDAP Data Sources
The connections between Directory Proxy Server and backend LDAP servers are configured
through LDAP data sources. An LDAP data source identifies the name and port numbers of an
LDAP server, and the authentication policy that is applied by Directory Proxy Server when
forwarding operations to the LDAP server. LDAP data sources also configures how the LDAP
server is monitored.

An LDAP data source can be any LDAP v3 server. Certain advanced functionality of Directory
Proxy Server might rely on features that are available only in Sun's Directory Server, but the
configuration of this functionality is optional. For example, the “Get Effective Rights” control in
Sun's Directory Server is used by Directory Proxy Server for proxied authorization.

The health of a backend LDAP server is monitored by testing the connections between
Directory Proxy Server and the backend LDAP server. For information about how Directory
Proxy Server monitors LDAP data sources, see “How Data Sources Are Monitored” on page 356.

For information about how to create and configure LDAP data sources, see “Creating and
Configuring LDAP Data Sources” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

19C H A P T E R 1 9

311

Connections Between Directory Proxy Server and Backend
LDAP Servers

This section describes how connections between Directory Proxy Server and backend LDAP
servers are opened and closed. It also describes the use of connection pools for multiple client
requests.

Opening and Closing Connections Between Directory
Proxy Server and Backend LDAP Servers
At startup, Directory Proxy Server opens a connection to each data source that is configured,
and enabled.

When an error is detected on a connection, Directory Proxy Server closes the connection and
tries to reestablish it immediately. If Directory Proxy Server cannot connect to a data source, the
data source is considered unavailable. For more information about how Directory Proxy Server
responds to failed connections, see “Responding to the Failure of a Data Source” on page 358.

Connection Pools Between Directory Proxy Server and
Backend LDAP Servers
Connections between Directory Proxy Server and backend LDAP servers are pooled for use
with multiple client requests. Each data source can have one pool of SSL connections and one
pool of non-SSL connections. The ssl-policy property of the data source and the
is-ssl-mandatory property of the connection handler determine whether SSL is used when
contacting the data source.

The number of connections that can be opened to a data source can be configured
independently for BIND, READ, and WRITE operations. The same limit applies to SSL
connections and to non-SSL connections.

The following properties can be configured for each data source and for each type of operation:
■ The initial number of connections made to the data source
■ If more than the initial number of connections are requested, the number of new

connections made
■ The maximum number of connections that can be made to the data source

When BIND replay is configured, Directory Proxy Server attempts to reuse connections that
have already been opened, to optimize performance. If a client opens an authenticated
connection, the connection is taken from the BIND pool. Therefore, when BIND replay is used,

Connections Between Directory Proxy Server and Backend LDAP Servers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008312

the connection pool for BIND operations is used more than the connection pools for READ or
WRITE operations. For more information about BIND replay, see “Directory Proxy Server
Configured for BIND Replay” on page 313.

When a connection to a data source is not used for 5 minutes, the connection is removed from
the pool.

Forwarding Request From Directory Proxy Server to Backend
LDAP Servers

Client requests can be forwarded from Directory Proxy Server to backend LDAP servers with
different levels of authorization and authentication, and with or without the identity of the
client. The configuration of the data source determines the way in which a request is forwarded.
For information about proxy authorization in client requests, see “Directory Proxy Server
Configured for Proxy Authorization” on page 315. For information about how to configure
proxy authorization in client requests, see “Proxy Authorization” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

When client requests contain a proxy authorization control, the control is always forwarded
with the request, irrespective of how Directory Proxy Server forwards the request. The use case
where Directory Proxy Server is configured for proxy authorization and the client request itself
contains a proxy authorization control is described in “Directory Proxy Server Configured for
Proxy Authorization and the Client Request Does Contain a Proxy Authorization” on page 317.

For information about how client requests are forwarded from Directory Proxy Server to
backend LDAP servers, see the following sections:
■ “Directory Proxy Server Configured for BIND Replay” on page 313
■ “Directory Proxy Server Configured for Proxy Authorization” on page 315
■ “Directory Proxy Server Configured to Forward Requests As an Alternate User” on page 319
■ “Directory Proxy Server Configured to Forward Requests Without the Client Identity” on

page 319

Directory Proxy Server Configured for BIND Replay
Directory Proxy Server forwards a BIND request from a client and the credentials of the client
to an LDAP server. If the BIND is successful, all subsequent requests from the client to that
LDAP server are processed with the authorization of the client.

In BIND replay, if the client makes a subsequent request that is forwarded to another LDAP
server, the Directory Proxy Server uses the credentials already provided by the client to BIND to
the other LDAP server before forwarding the request.

If a client request contains a proxy authorization control, Directory Proxy Server forwards the
control to the backend server.

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Chapter 19 • Connections Between Directory Proxy Server and Backend LDAP Servers 313

The following figure shows client identity and credentials being used for authorization by BIND
replay.

When Directory Proxy Server is initiated, it opens a connection to each LDAP server. When a
client connects to Directory Proxy Server it makes requests in the following stages:

1. The client requests a BIND, and provides a DN and a password.
2. Directory Proxy Server authenticates the client to LDAP server 1 by using the client's

credentials. An entry for the client exists in LDAP server 1 and the BIND request is granted.
3. The client issues a SEARCH request that is targeted at LDAP server 1.
4. Directory Proxy Server forwards the SEARCH request to LDAP server 1, reusing

connection 2.
The SEARCH request is performed with the authorization of the client. If the client request
contains a proxy authorization control, the request is processed with authorization of the
user specified in the proxy authorization control.
If the client sends more SEARCH requests that are targeted at LDAP server 1, the Directory
Proxy Server forwards the request without performing additional binds.

5. The client sends a SEARCH request targeted at LDAP server 2
6. The Directory Proxy Server authenticates the client to LDAP server 2 by using the client's

credentials obtained in Step 1. An entry for the client exists in LDAP server 2 and the BIND
request is granted.

7. The Directory Proxy Server forwards the SEARCH request to LDAP server 2, reusing
connection 3.

If the client is not authenticated to Directory Proxy Server, the BIND request is forwarded as
anonymous.

FIGURE 19–1 Authentication in BIND Replay

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008314

If the client identity is mapped onto another identity, Directory Proxy Server uses the mapped
identity to bind to the LDAP server. All requests on that connection are processed with the
authorization for the mapped identity. For information about user mapping, see “Directory
Proxy Server Configured to Forward Requests As an Alternate User” on page 319.

When Directory Proxy Server is configured for BIND replay, authentication by SASL external
bind cannot be used . In BIND replay, Directory Proxy Server authenticates the client to a
backend LDAP server by using the client DN and password. In SASL external bind, no
password is provided by the client. Furthermore, the password that is stored in the user entry
cannot be read in clear text.

For performance reasons, you should configure Directory Proxy Server to use BIND replay only
when the extra configuration required for proxy authorization is not feasible, or where proxy
authorization is not supported. For information about proxy authorization, see “Directory
Proxy Server Configured for Proxy Authorization” on page 315

Directory Proxy Server Configured for Proxy
Authorization
When Directory Proxy Server is configured for proxy authorization, Directory Proxy Server can
add a proxy authorization control to a client request. The client request is then forwarded with
the authorization of the specified in the proxy authorization control.

To simplify the configuration of ACIs, Directory Proxy Server can be configured to allow
anonymous reads and to apply proxy authorization for write operations.

If Directory Proxy Server is configured for proxy authorization and the client request contains
its own proxy authorization control, Directory Proxy Server does not add a proxy authorization
control. In this case, Directory Proxy Server checks with the backend LDAP server that the
client has the right to use its proxy authorization control. If the client has the right to use its
proxy authorization control, Directory Proxy Server forwards the request with the
authorization specified in the client's proxy authorization control.

For information about how to configure proxy authorization in Directory Proxy Server, see
“Forwarding Requests With Proxy Authorization” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide

Connections When Directory Proxy Server Is Configured for Proxy
Authorization
When Directory Proxy Server is configured for proxy authorization, a client is usually
authenticated to the Directory Proxy Server by a non-anonymous BIND or by a SASL external
BIND, however, clients can also be anonymous. Directory Proxy Server is usually bound to the
data sources by using an administrative identity.

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Chapter 19 • Connections Between Directory Proxy Server and Backend LDAP Servers 315

Figure 19–2 shows the connections between a client, Directory Proxy Server, and backend
LDAP servers, when Directory Proxy Server is configured for proxy authorization.

The connections for proxy authorization are made in the following stages:

1. When Directory Proxy Server is initiated, it opens a connection to each LDAP server.
Directory Proxy Server binds to LDAP server 1 and LDAP server 2 by providing its DN and
password, DPSbindDN and DPSbindPW.

An entry for DPSbindDN exists in both the LDAP servers and the BIND requests are granted.
Directory Proxy Server is bound to the LDAP servers, on connection 2 and connection 3.

2. When a client connects to Directory Proxy Server, the client binds by providing its DN and a
password, clientDN and clientPW.

3. The Directory Proxy Server authenticates the client to LDAP server 1 by using the client's
credentials and by reusing connection 2.

An entry for the client exists in LDAP server 1 and the BIND request is granted. The client is
bound to Directory Proxy Server on connection 1.

Directory Proxy Server Configured for Proxy Authorization and the
Client Request Does Not Contain a Proxy Authorization
Figure 19–3 shows the flow of information when Directory Proxy Server is configured for proxy
authorization. The client in Figure 19–2 makes, and Directory Proxy Server adds a proxy
authorization control.

FIGURE 19–2 Connections for Proxy Authorization

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008316

1. The client sends a SEARCH request SEARCH 1, that does not contain a proxy authorization
control. The request is targeted at LDAP server 1.

2. Directory Proxy Server adds a proxy authorization control to the request and forwards the
SEARCH operation to LDAP server 1, reusing connection 2.

The SEARCH operation is performed with the authorization of the user specified in the
proxy authorization control. That authorization is defined in the RW ACIs on the LDAP
server for the user specified in the proxy authorization control.

3. The client sends a second SEARCH request, SEARCH 2, that does not contain a proxy
authorization control. The request is targeted at LDAP server 2.

4. The Directory Proxy Server forwards the SEARCH operation to LDAP server 2, reusing
connection 3.

Notice that it is not necessary for the client to bind to LDAP server 2 before the request can
be processed, and it is not necessary for the LDAP server to contain an entry for the client.

Directory Proxy Server Configured for Proxy Authorization and the
Client Request Does Contain a Proxy Authorization
Figure 19–3 shows the flow of information when the client in Figure 19–2 makes a request that
does contain a proxy authorization control. Directory Proxy Server verifies that the client has
the right to use its proxy authorization control.

FIGURE 19–3 Information Flow When Proxy Authorization Control Is Added by Directory Proxy Server

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Chapter 19 • Connections Between Directory Proxy Server and Backend LDAP Servers 317

1. The client sends a SEARCH request SEARCH 1, that contains a proxy authorization control.
The request is targeted at LDAP server 1.

2. Directory Proxy Server verifies that the clientDN has the right to use a proxy authorization
control on LDAP server 1, by getting the effective rights of the client on LDAP server 1. For
information about how to get effective rights, see “Viewing Effective Rights” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide

3. Directory Proxy Server forwards the SEARCH operation to LDAP server 1, reusing
connection 2.

The SEARCH operation is performed with the authorization of the user specified in the
proxy authorization control. The authorization is defined in the RW ACIs on the LDAP
server.

4. The client sends a second SEARCH request, SEARCH 2, that contains a proxy authorization
control. The request is targeted at LDAP server 2.

5. Directory Proxy Server verifies that the clientDN has the right to use a proxy authorization
control on LDAP server 2, by getting the effective rights of the client on LDAP server 2.

6. The Directory Proxy Server forwards the SEARCH operation to LDAP server 2, reusing
connection 3.

Notice that it is not necessary for the client to bind to LDAP server 2 before the request is
processed, and it is not necessary for the LDAP server to contain an entry for the client.

Client
Application

Client Bound On
Connection 1

Search 1

pauth=<client DN>

1

Search 2

pauth=<client DN>

4

Directory
Proxy
Server

DPS Bound On
Connection 2

Search

getEffectiveRights

2

Search1

pauth=<client DN>

3

DPS Bound On
Connection 3

Search

getEffectiveRights

5

Search2

pauth=<client DN>

6

LDAP Server 1

Entry for DPS

Entry for Client

RW ACIs for Client DN

LDAP Server 2

Entry for DPS

RW ACIs for Client DN

FIGURE 19–4 Information Flow When Proxy Authorization Control Is Contained in the Client Request

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008318

Security Issues When Directory Proxy Server Is Configured for Proxy
Authorization
Consider the following security risks before configuring Directory Proxy Server for proxy
authorization:

■ When Directory Proxy Server is configured for proxy authorization, it assumes the rights of
any client for which it forwards a request. A Directory Proxy Server that is not authorized to
perform write operations on data, can perform those operations by using proxy
authorization.

■ An LDAP server must contain an entry with the appropriate R/W ACIs for the user specified
in the proxy authorization control. If the entry was accessed illegally by a third party, that
party might be able to impersonate.

■ The authorization identity configured in the proxy authorization control must be protected
from tampering.

Directory Proxy Server Configured to Forward
Requests Without the Client Identity
In some deployment scenarios, it is not necessary to maintain the identity of a client when the
client makes request. Directory Proxy Server can be configured to forward requests to LDAP
servers without the client identity. The LDAP servers process the requests with the identity and
authorization of the Directory Proxy Server.

Directory Proxy Server Configured to Forward
Requests As an Alternate User
Client requests can be performed with the identity of an alternate user by using the feature
called user mapping. In user mapping, the client identity is mapped to the identity of an
alternate user. After a BIND operation, the Directory Proxy Server submits subsequent
operations as the alternate user.

When a client identity is mapped to another identity, requests from that client can be forwarded
to the backend LDAP servers by using BIND replay or by using proxy authorization.

Client identities can be mapped to alternate identities either locally on the Directory Proxy
Server or remotely on an LDAP server. Figure 19–5 and Figure 19–6 illustrate local mapping
and remote mapping.

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Chapter 19 • Connections Between Directory Proxy Server and Backend LDAP Servers 319

In local mapping, the identity mapping is configured in the Directory Proxy Server. The
configuration cannot be changed without reconfiguring the Directory Proxy Server. Local
mapping can be configured for unauthenticated clients, authenticated clients, and for clients
authenticated by proxy.

In remote mapping, the identity mapping is configured in an entry in the remote LDAP server.
The mapping can be changed by modifying the entry in the remote LDAP server. It is not
necessary to reconfigure the Directory Proxy Server to change the mapping. Remote mapping
can be configured for unauthenticated clients and for clients authenticated by proxy.

Remote mapping must not be used for data sources configured for BIND replay. In BIND
replay, the Directory Proxy Server forwards a client request by using the authentication
provided in the BIND operation. However, in remote mapping the client DN and password
provided in the BIND operation are mapped to an alternate DN and password. The client's
password cannot be retrieved from the backend LDAP sever.

If the user mapping is enabled but the mapping fails, the client identity is mapped to a default
identity. A user mapping can fail when a client identity is mapped to a non-existent alternative
identity or when there has been a configuration error.

For information about how to configure user mapping, see “Forwarding Requests as an
Alternate User” in Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide

id1 idMLDAP
Client

LDAP
Server

Directory
Proxy Server

Mapping
id1 to idM

FIGURE 19–5 Local Mapping of a Client Identity to an Alternate Identity

id1 idMLDAP
Client

LDAP
Server

LDAP
Server

Mapping
id1 to idM

Directory
Proxy Server

FIGURE 19–6 Remote Mapping of Client Identity to an Alternate Identity

Forwarding Request From Directory Proxy Server to Backend LDAP Servers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008320

Connections Between Clients and Directory
Proxy Server

All the incoming connections to Directory Proxy Server are categorized into connection
handlers according to a set of criteria. A connection handler defines the resource limits and
request filters that apply to the connection, and the data views that are exposed to the
connection.

This chapter covers the following topics:

■ “Criteria for Allocating a Connection to a Connection Handler” on page 321
■ “Data Views for Connection Handlers” on page 324
■ “Resource Limits Policies for Connection Handlers” on page 326
■ “Request Filtering Policies for Connection Handlers” on page 327

Criteria for Allocating a Connection to a Connection Handler
An instance of Directory Proxy Server can have many connection handlers. When a client
connects to Directory Proxy Server, the proxy evaluates whether the attributes of the
connection match the criteria of one of the connection handlers. When a match is found, the
connection is classified into that connection handler. All of the policies defined for that
connection handler apply to the connection. Operations performed through that connection
are exposed to all of the data views or to a list of data views defined by the connection handler.

After being classified into a connection handler, a connection can be automatically reclassified
into another connection handler by Directory Proxy Server. For example, if a client connects
anonymously, the connection is allocated to the connection handler configured for anonymous
connections. If the client later provides a bind DN on the same connection, the connection can
be reallocated to another connection handler. Similarly, a non-secure LDAP connection is
initially classified into a connection handler for non-secure connections. If the client uses
startTLS to promote the connection to secure mode, the connection is automatically reclassified
into a connection handler for secure connections.

20C H A P T E R 2 0

321

A connection is evaluated against connection handlers in order of the priority of the connection
handler. Priority one is the highest priority connection handler. The connection is classified
into the first connection handler for which there is a match. Connection handlers with the most
specific criteria should have a higher priority than those with less specific or more general
criteria. For example, a connection handler that specifies a bind DN should have a higher
priority than a connection handler that specifies a simple bind.

If a connection does not match the criteria of any configured connection handler, the
connection is allocated to the default connection handler. The criteria of the default connection
handler cannot be modified. In addition, the default connection handler cannot be disabled or
deleted. However, the policies and data views of the default connection handler can be changed.

The default connection handler is the lowest priority connection handler. If a new connection
handler is created without a priority, the new connection handler is given a higher priority than
the default connection handler. If two connection handlers have the same priority, the order in
which the connection is evaluated against them is not specified.

The criteria expression of a connection handler is a logical AND between criteria of different
types and a logical OR between criteria of the same type. For example, if a criteria is specified for
client IP address and a criteria is set for client domain name, both of the criteria must be met.
However, if two criteria are set for client IP address, either, not both, of the criteria must be met.

The following list summarizes the criteria used to classify connections into connection
handlers. For information about how to configure the criteria, see “Creating, Configuring, and
Deleting Connection Handlers” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

■ Client IP address and mask. A set of IPv4 or IPv6 address masks. The IP address of a client
connection must match at least one of the masks in order for the connection to be accepted
by the connection handler.

The IP address can be in one of the following formats:
■ IP address in dotted decimal form. For example, 129.153.129.14.
■ IP address and bits, in the form of network number/mask bits. For example,

129.153.129.0/24.
■ IP address and quad, in the form of a pair of dotted-decimal quads. For example,

129.153.129.0/255.255.255.128.
■ All addresses:ALL, a catch-all for clients that are not placed into other, higher priority,

groups.
■ 0.0.0.0. This address is for groups for which initial membership is not considered. For

example, for groups that clients switch to after their initial bind.
■ IP address of the local host. IP address 127.0.0.1 is the IP address of a client that is

running on the same machine as Directory Proxy Server.

Criteria for Allocating a Connection to a Connection Handler

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008322

■ Client domain name. A set of domain names. A client network domain must match at least
one of the suffixes in order for the connection to be accepted by the connection handler.

In order to be able to filter the client's domain name, Directory Proxy Server must be able to
convert the incoming IP address into the fully qualified domain name. If the naming service
returns a hostname without the domain name, Directory Proxy Server cannot filter the
client's domain name.

Directory Proxy Server does not assume any domain suffix, therefore the fully qualified
domain name must be provided. A domain name suffix with a leading period, for example,
.sun.com, will cause all hosts with domain names that end in that suffix to match.

The domain name can be in one of the following formats:
■ Full name, for example, box.eng.sun.com.
■ Suffix name, for example, .eng.sun.com. If the suffix name is used to identify clients,

ensure that DNS is set up to return fully qualified names to the DNS queries.
■ Fully qualified name of the local host. This criteria is for a client that is running on the

same machine as Directory Proxy Server.
■ Bind DN. A regular expression that must be matched by the bind DN of a client.

For example, the following regular expression could be used as a bind DN criteria for a
connection handler: uid=(.*),dc=example,dc=com. A client that binds with a uid such as
uid=user1,dc=example,dc=com matches the criteria and can be allocated to the connection
handler. A client that binds with another DN such as ou=accounts,dc=example,dc=com
does not match the criteria and cannot be allocated to the connection handler.

■ LDAP search filter. A search filter that the entry of a bound client must match.

For example, the following filter could be used as a criteria for a connection handler:
uid>=1000. Bound clients with a uid that matches the filter can be allocated to the
connection handler.

■ Authentication method. An authentication method that must match the client entry in
order for the connection to be accepted by the connection handler.

The authentication method can be one of the following:
■ SIMPLE
■ SASL/EXTERNAL
■ Anonymous

■ IP port. A set of IP port numbers. A client connection must come through one of the
specified ports in order for the connection to be accepted by the connection handler.

■ SSL connection. A flag indicating whether or not client connections must use SSL in order
to be accepted by the connection handler.

Criteria for Allocating a Connection to a Connection Handler

Chapter 20 • Connections Between Clients and Directory Proxy Server 323

Data Views for Connection Handlers
When a connection is allocated to a connection handler, requests on the connection are
exposed to a list of data views configured for that connection handler. The list of data views for a
connection handler can contain zero, one, or multiple data views.

If the list of data views is empty, requests on the connection are not distributed to any data view.
Applications using the connection cannot access any data and a No such Object error is
returned.

If the list of data views contains multiple data views, requests on the connection are distributed
to the data view that most specifically corresponds to the target DN of the request. For example,
in Figure 20–1, requests on a connection in connection-handler-1 can be distributed to
data-view-2, data-view-3 or data-view-4. However, if a search request has a target DN of
ou=people,dc=example,dc=com, the request is distributed either to data-view-3 or to
data-view-4.

Data Views for Connection Handlers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008324

Affinity can be defined between a client connection and the data view selected to respond to
requests on that connection. This feature is called data view affinity. When data view affinity is
enabled, successive requests on a client connection are exposed exclusively to the data view used
for the first request on that connection.

When data view affinity is enabled it takes precedence over other types of routing. For example,
in Figure 20–1, a search request with a target DN of ou=computer,dc=example,dc=com is
exposed to data-view-2. All subsequent requests on that client connection are exposed
exclusively to data-view-2. If a subsequent request on that client connection has a target DN of
ou=people,dc=example,dc=com, the request is exposed to the data view for
ou=computer,dc=example,dc=com, not the data view for ou=people,dc=example,dc=com.

Data
Source

LDAP
Server

LDAP
Server

Data
Source

Data
Source

LDAP
Server

LDAP
Server

Data
Source

Data
Source

LDAP
Server

LDAP
Server

Data
Source

Data
Source

LDAP
Server

LDAP
Server

Data
Source

Directory Proxy Server

data-view-1
 base DN: dc=example, dc=com
 excluded-subtrees: ou=people, ou=computer,

connection-handler-1
 data-view-routing-policy:custom
 data-view-routing-custom-list : data-view-2
 data-view-routing-custom-list : data-view-3
 data-view-routing-custom-list : data-view-4

connection-handler-2
 data-view-routing-policy : custom
 data-view-routing-custom-list : data-view-1

Data
Source

Pool

data-view-2
 base DN: ou=computer, dc=example, dc=com Data

Source
Pool

data-view-3
 base DN: ou=people, dc=example, dc=com
 distribution-algorithm: numeric
 numeric-attributes:uid
 numeric-lower-bound:0
 numeric-upper-bound:99

Data
Source

Pool

data-view-4
 base DN: ou=people, dc=example, dc=com
 distribution-algorithm: numeric
 numeric-attributes:uid
 numeric-lower-bound:100
 numeric-upper-bound:199

Data
Source

Pool

Client Applications

FIGURE 20–1 List of Data Views in a Connection Handler

Data Views for Connection Handlers

Chapter 20 • Connections Between Clients and Directory Proxy Server 325

For information about how to configure data view affinity, see “To Configure Affinity for Data
Views” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Resource Limits Policies for Connection Handlers
A resource limits policy defines the maximum resources that Directory Proxy Server can
process for a given connection handler. By using this type of connection handler policy, you can
limit the resources allocated to connections, requests, and referrals.

A connection handler can have zero or one resource limits policy. If no resource limits policy is
defined, no limits are applied to connections, requests and referrals. For information about how
to configure resource limits policies and examples of resource limits policies, see “Creating and
Configuring a Resource Limits Policy” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

The following list summarizes the resource limits that can be configured:

■ Connections
■ Maximum number of connections.
■ Maximum number of simultaneous connections from a single client.
■ Maximum number of operations per connection. If a client exceeds the maximum

number of operations on one connection, the connection is closed by Directory Proxy
Server.

■ Maximum number of simultaneous operations per connection.
If the maximum number of simultaneous operations per connection is 1, clients must
perform synchronous operations. Additional requests for simultaneous operations,
except for requests to abandon an operation, will fail with a Server Busy error.

■ Searches
■ Maximum permitted size of a search operation result
■ Maximum permitted duration of a search operation
■ Minimum length of a substring allowed in a search filter
■ Customized search limits, described in “Customized Search Limits” on page 327

■ Referrals
■ Maximum number of hops when following referrals
■ Bind policy to be applied when referrals are followed:

■ Use password if supplied, else follow the referral as anonymous
■ Always follow the referral as anonymous

■ Policy applied when a referral is returned by the server:
■ Follow referrals
■ Forward referrals to the client

Resource Limits Policies for Connection Handlers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008326

■ Discard referrals

For information about how to configure a resource limits policy, see “Creating and Configuring
a Resource Limits Policy” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide

Customized Search Limits
Customized limits can be defined for search operations, based on the search base and search
scope. If the target DN of a search is specified in a list, and the scope of a search is one-level or
subtree, the maximum size of the search result can be configured.

Custom search limits are defined for a specific resource limits policy. If the resource limits
policy is deleted, the custom search limits defined for that policy are also deleted. If custom
search limits are not specified, standard search size limits are applied.

Request Filtering Policies for Connection Handlers
Request filtering policies control access of clients to data. A connection handler can reference
zero or one request filtering policy.

The following aspects of client access can be defined by using this type of connection handler
policy:
■ The types of operation that clients are allowed to perform or are prohibited from

performing.
Each of the following types of operation can be allowed or prohibited: add, bind, compare,
delete, extended operations, modify, modify DN, search, and search based on inequality
filters.

■ Attributes that are allowed or prohibited from being used in search filters and compare
operations.
All attributes can be permitted in search filters and compare operations, or a list of attributes
can be permitted or prohibited.

■ The scope of search operations.
The scope can be the base DN, one level below the base DN, or the entire subtree below the
base DN.

■ The subtrees that clients are allowed to access or are prohibited from accessing.
For information, see “Subtrees in the Request Filtering Policy” on page 328.

■ Entries that can be accessed in search operations and data that can be returned by search
operations.
For information, see “Search Data Hiding Rules in the Request Filtering Policy” on page 328.

Request Filtering Policies for Connection Handlers

Chapter 20 • Connections Between Clients and Directory Proxy Server 327

For information about how to configure a request filtering policy, see “Creating and
Configuring Request Filtering Policies and Search Data Hiding Rules” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

Subtrees in the Request Filtering Policy
The request filtering policy is configured with one or more allowed subtrees and zero, one, or
more prohibited subtrees. The subtrees identify the part of a data view that can be accessed by
clients.

Allowed Subtrees
An allowed subtree is specified by a minimum base DN. Clients are permitted to perform
operations on entries at the minimum base DN or below the minimum base DN. By default, the
minimum base DN is the root DN.

If a client requests a search operation that is targeted at a DN superior to the minimum base
DN, Directory Proxy Server rewrites the DN to target the minimum base DN. If a client
performs any other operation that is targeted at a DN superior to the minimum base DN, the
operation is denied.

Prohibited Subtrees
A prohibited subtree is a branch of the allowed subtree that cannot be accessed by the client.
The base DN of a prohibited subtree must be subordinate to the minimum base DN of an
allowed subtree. If a client performs an operation that is targeted at a prohibited subtree, the
operation is denied.

Search Data Hiding Rules in the Request Filtering
Policy
Rules that determine how to return the result of a search operation to a client are called search
data hiding rules. For information about creating search data hiding rules, see “To Create
Search Data Hiding Rules” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

The result of a search operation can be returned in one of the following ways:

■ The target entry is not returned
■ The target entry is returned but the specified attributes are filtered out
■ The target entry is returned but the unspecified attributes are filtered out

Request Filtering Policies for Connection Handlers

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008328

Search data hiding rules can be applied to the following entries:

■ Entries with the specified DN
■ Entries with the specified DN pattern
■ Entries with a specified attribute name/attribute value pair (attrName:attrValue)

Search data hiding rules are defined for a given request filtering policy and cannot be used by
another request filtering policy. If a request filtering policy is deleted, its associated search data
hiding rules are automatically deleted. Zero, one or multiple search data hiding rules can be
defined in one request filtering policy.

Request Filtering Policies for Connection Handlers

Chapter 20 • Connections Between Clients and Directory Proxy Server 329

330

Directory Proxy Server Client Authentication

This chapter describes how Directory Proxy Server identifies incoming client connections. The
chapter covers the following topics:

■ “Client Authentication Overview” on page 331
■ “Simple Bind Authentication” on page 332
■ “Certificate-Based Authentication” on page 333
■ “Anonymous Access” on page 336
■ “Directory Proxy Server Client Listeners” on page 336

Client Authentication Overview
Client authentication determines how a client identifies itself to Directory Proxy Server.

From a protocol perspective, client authentication can occur at two levels:

■ LDAP level. Authentication occurs in the LDAP bind operation.
■ Connection level. Authentication occurs in the network connection established between

the client and Directory Proxy Server.

Directory Proxy Server can also be configured to accept client requests without authentication.

21C H A P T E R 2 1

331

The following list summarizes the supported authentication options. These options are
discussed in more detail in the remainder of this chapter.
■ Simple bind authentication. Simple bind authentication occurs at the bind level. When the

client binds, it provides a unique name (bind DN) and password to Directory Proxy Server.
Directory Proxy Server forwards these credentials, along with the bind request, to a backend
LDAP server.
Simple bind authentication can also be made over a secure connection. However, the server
still identifies the client from its bind DN.

■ Certificate-based authentication Certificate-based authentication occurs at the connection
level when the connection is secure. When authentication occurs at the connection level, the
client connects over an encrypted (SSL) connection and provides a certificate. Directory
Proxy Server checks the validity of the client certificate and maps the certificate to an LDAP
DN.

■ No authentication. If the client does not provide a certificate, or a bind DN and password,
no authentication occurs. In this case, the client connects to Directory Proxy Server
anonymously. This is known as anonymous access.

Simple Bind Authentication
Simple bind authentication is the most common way to authenticate LDAP clients. In a simple
bind, the client either binds anonymously, that is, with an empty bind DN, or by providing a
DN and a password. Directory Proxy Server binds to a data source to validate the credentials
and to authenticate the client. An entry for the client must exist on the data source, otherwise
the client is considered to be anonymous. When a client is authenticated, Directory Proxy
Server records the identity of the client.

Directory Proxy Server is configured for simple bind authentication by default. No additional
configuration is required. Because the client provides a password to Directory Proxy Server,
simple bind authentication is also known as password-based authentication.

Password Encryption and Verification
The way in which passwords are encrypted and checked depends on the type of data view
through which the client accesses the data source. For information about data views, see
Chapter 17, “Directory Proxy Server Distribution,” and Chapter 18, “Directory Proxy Server
Virtualization.”

For LDAP data views, Directory Proxy Server relies on the backend LDAP server for password
encryption and verification. When a client modifies a password by using an ADD or MODIFY
operation, the backend LDAP server can apply a password encryption policy when it stores the
password. When the client issues a BIND request, the backend LDAP server is responsible for
verifying the password.

Simple Bind Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008332

For LDIF and JDBC data views, Directory Proxy Server is responsible for password encryption
and verification.

■ LDIF data views. When a client modifies a password, Directory Proxy Server applies the
encryption policy defined by the db-pwd-encryption property of the data view. The
encryption policy can be PLAIN, SHA, or SSHA. The password is still stored in the data source,
that is, in the LDIF file.

■ JDBC data views. When a client modifies a password, Directory Proxy Server applies the
3DES encryption mechanism to encrypt the JDBC data source password.

When encrypted passwords are stored, the encrypted value is prefixed by the encryption policy.
So for example, a stored, encrypted password might look like {SSHA}mcasopjebjakiue or
{SHA}askjdlaijfbnja. When the client issues a BIND request, Directory Proxy Server verifies
the password and expects the encryption policy tag.

Certificate-Based Authentication
Certificate-based authentication over an SSL connection is the most secure type of
authentication. Therefore, when authentication occurs at the connection layer, the client does
not need to provide an additional name (bind DN) and password to Directory Proxy Server
during the LDAP bind.

A client can only perform certificate-based authentication over an SSL connection. The basic
steps in establishing an SSL connection are as follows:

1. The client requests that a secure connection be established.
As part of this request, Directory Proxy Server provides a server certificate to the client. A
server certificate is a single certificate associated with one instance of Directory Proxy
Server. When a secure connection is used, the server certificate identifies the instance of
Directory Proxy Server to the client.
The establishment of the connection includes a negotiation phase. During this phase, the
client and Directory Proxy Server attempt to agree on the encryption policy that is used. The
server certificate contains the list of encryption policies (ciphers) that are supported by the
Directory Proxy Server.

2. Depending on the security configuration of the proxy server, the server might require the
client to provide a certificate.

3. The client provides a certificate to the server, either because the client is configured to do so,
or because the proxy server has requested it.

4. The client then sends an LDAP bind request to Directory Proxy Server to establish the
client's identity on that connection.

5. If the request is a simple bind, Directory Proxy Server uses the bind DN and password
provided by the client.

Certificate-Based Authentication

Chapter 21 • Directory Proxy Server Client Authentication 333

6. If the request is a SASL external bind, Directory Proxy Server does one of two things:
■ Considers the subject of the certificate as the bind DN of the client.
■ Maps the certificate by searching the backend server for an entry that matches the

received certificate. If the verify-certificates property is set, Directory Proxy Server
verifies that the received certificate is the one stored in the entry that is found.
The following configuration properties determine how Directory Proxy Server performs
that search:

cert-data-view-routing-policy

cert-data-view-routing-custom-list

cert-search-bind-dn

cert-search-bind-pwd-file

cert-search-base-dn

cert-search-attr-mappings

7. When the proxy server has the bind DN, it can verify the validity of the client.

For more information about SSL for Directory Proxy Server, see “Secure Sockets Layer for
Directory Proxy Server” on page 340.

For certificate-based authentication to occur, Directory Proxy Server must be configured to
accept client certificates and the client must be configured to use SASL external bind.

Configuring Certificates in Directory Proxy Server
When you create a Directory Proxy Server instance, the certificate database is automatically
populated with the CA certificates of certain trusted CAs. You can add trusted CA certificates to
the certificate database if necessary, by using the Directory Service Control Center (DSCC) or
by using the dpadm command. For more information, see “To Install a CA-Signed Server
Certificate for Directory Proxy Server” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

When a client provides a certificate to Directory Proxy Server, the server verifies that certificate
against the list of trusted CA certificates in its certificate database. The verification is successful
if the server's certificate database contains the client certificate itself, or the CA certificate with
which the client certificate was generated.

The server certificate can be one of the following:

■ Self-signed certificate. A public and private key pair, where the public key is signed by
Directory Proxy Server.

■ Trusted CA certificate. A single certificate that is automatically generated by the company’s
internal certificate server or by a known Certificate Authority (CA).

Certificate-Based Authentication

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008334

Directory Proxy Server also supports the use of a server certificate chain. A server certificate
chain is a collection of certificates that are automatically generated by the company’s internal
certificate server or by a known CA. The certificates in a chain trace back to the original CA,
providing proof of identity. This proof is required each time you obtain or install a new server
certificate.

When an instance of Directory Proxy Server is created, a default self-signed certificate is
created. By default, Directory Proxy Server manages the SSL certificate database password
internally.

You can install any number of certificates on a server. When you configure SSL for an instance
of Directory Proxy Server, you must install at least one server certificate and one trusted CA
certificate.

For an explanation of how certificate-based authentication works, see “Certificate-Based
Authentication” on page 333. For information about how to configure certificate-based
authentication for Directory Proxy Server, see “To Configure Certificate-based Authentication”
in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Using SASL External Bind
When a client binds to Directory Proxy Server with the Simple Authentication and Security
Layer (SASL) external bind, Directory Proxy Server obtains the credentials of the client from
the certificate, rather than from the bind DN.

The server obtains the credentials in one of two ways:

■ Considers the subject of the certificate as the bind DN of the client
■ Maps the certificate subject to data within its own database, to deduce the bind DN

SASL external bind cannot be used if Directory Proxy Server is configured for BIND replay. In
BIND replay, Directory Proxy Server authenticates the client to a backend LDAP server by
using the client DN and password. In SASL external bind, no password is provided by the client.
Furthermore, the password that is stored in the user entry cannot be read in clear text. For
information about bind replay, see “Directory Proxy Server Configured for BIND Replay” on
page 313.

SSL can be used to protect subsequent interactions between the client and Directory Proxy
Server.

For information about how to configure authentication by SASL external bind, see “To
Configure Directory Proxy Server for SASL External Bind” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

Certificate-Based Authentication

Chapter 21 • Directory Proxy Server Client Authentication 335

Anonymous Access
Anonymous access makes data available to any client, regardless of whether the user has
authenticated.

For information about how to configure Directory Proxy Server for anonymous connections
from clients, see “To Configure Anonymous Access” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

Directory Proxy Server Client Listeners
Directory Proxy Server enables you to configure certain aspects of a client connection through a
client listener. Two client listeners are provided, a secure listener (ldaps-listener) and a
non-secure listener (ldap-listener).

The secure listener specifies that the connection is made to a secure port, over SSL. The
non-secure listener specifies that the connection is made to a non-secure port, without SSL.
Clients use either the secure listener or the non-secure listener, depending on the type of
connection required by that client.

Note – A client can also establish a secure connection to a non-secure port if the client supports
Start TLS.

Both the secure and non-secure listener specify the following aspects of a client connection:

is-enabled Specifies whether clients are able to use that listener to connect
to Directory Proxy Server

listen-port The port number on which Directory Proxy Server listens for
client connections

listen-address The IP address of the listener

connection-idle-timeout The maximum time a client connection can remain idle before
being closed

connection-read-data-timeoutThe maximum time that a listener can wait for new data to be
available

connection-write-data-timeoutThe maximum time that a listener can wait to send results
back to clients

max-connection-queue-size The maximum size of a listener's connection queue

max-ldap-message-size The maximum size of an LDAP message.

Anonymous Access

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008336

number-of-threads The number of threads allocated to a listener to for
simultaneous client connections and requests

use-tcp-no-delay Whether or not TCP_NODELAY is enabled for connections
between a client and Directory Proxy Server

For information about how to configure listeners, see “Configuring Listeners Between Clients
and Directory Proxy Server” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Directory Proxy Server Client Listeners

Chapter 21 • Directory Proxy Server Client Authentication 337

338

Security in Directory Proxy Server

This chapter describes the mechanisms that can be used to secure data that passes through
Directory Proxy Server.

The chapter covers the following topics:

■ “How Directory Proxy Server Provides Security” on page 339
■ “Secure Sockets Layer for Directory Proxy Server” on page 340
■ “Ciphers and Protocols for Directory Proxy Server” on page 341

How Directory Proxy Server Provides Security
Directory Proxy Server provides security through a combination of the following methods:

■ Encryption
Encryption protects the privacy of information. When data is encrypted, the data is
scrambled in a way that only a legitimate recipient can decode. Directory Proxy Server
supports SSL encryption. For information about SSL, see “Secure Sockets Layer for
Directory Proxy Server” on page 340.

■ Authentication
Authentication is a means for one party to verify another’s identity. For example, a client
gives a password to Directory Proxy Server during an LDAP bind operation. Policies define
the criteria that a password must satisfy to be considered valid, for example, age, length, and
syntax. Directory Proxy Server supports anonymous authentication, password-based
authentication, and certificate-based authentication. For information about authentication,
see Chapter 21, “Directory Proxy Server Client Authentication.”

■ Access control instructions (ACIs)
ACIs govern the access rights granted to client applications, and provide a way of specifying
required credentials or bind attributes. Directory Proxy Server implements access control
through request filtering policies and through virtual ACIs. For information about request

22C H A P T E R 2 2

339

filtering policies , see “Request Filtering Policies for Connection Handlers” on page 327. For
information about virtual ACIs, see “Access Control On Virtual Data Views” on page 306.

■ Auditing and Logs
Auditing can be used to determine whether security has been compromised. The log files
maintained by Directory Proxy Server can be audited to track who has accessed the server,
and what operations they have performed. For information about log files, see Chapter 24,
“Directory Proxy Server Alerts and Monitoring,” and Chapter 23, “Directory Proxy Server
Logging.”

Secure Sockets Layer for Directory Proxy Server
The Secure Sockets Layer (SSL) provides encrypted communications between a client and
Directory Proxy Server. By using SSL with authentication, data sent to and from Directory
Proxy Server can be encrypted.

When an instance of Directory Proxy Server is created, SSL is enabled by default and the
following directories and files are created:

A randomly generated password to protect the certificate database
The password is stored in instance-path/etc/pass.txt

A key store database for certificates
The keystore database is located in instance-path/alias/cert.jks

A key store database for a symmetric encryption key
The keystore database is located in instance-path/alias/key.jceks

The key store databases are protected by the same password.

For more information about SSL, see “Secure Sockets Layer (SSL)” on page 88. For information
about how to configure SSL between clients and Directory Proxy Server, see “Configuring
Listeners Between Clients and Directory Proxy Server” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide

Directory Proxy Server supports the Start TLS extended operation. StartTLS can be used to
provide security over a regular LDAP connection. With StartTLS, clients can bind to a
non-secure port and then use the TLS protocol to initiate a secure connection.

Secure Sockets Layer for Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008340

Ciphers and Protocols for Directory Proxy Server
The ciphers and protocols that can be used by Directory Proxy Server depend on the JVM that is
used. By default, Directory Proxy Server uses the default ciphers and protocols for the JVM.

You can retrieve a list of ciphers and protocols by using the dpconf command:

Enabled ciphers The list of ciphers that are currently enabled for both the LDAP and
LDAPS listeners. Because the LDAP and LDAPS listeners are
synchronized, the properties are part of the global server
configuration, and not the listener configuration.

Supported ciphers The list of ciphers supported by the JVM for Directory Proxy Server.

Enabled protocols The list of protocols that are currently enabled for both the LDAP and
LDAPS listeners. Because the LDAP and LDAPS listeners are
synchronized, the properties are part of the global server
configuration, and not the listener configuration.

Supported protocols The list of protocols supported by the JVM for Directory Proxy Server.

For reference information about cipher suites, see “Cryptographic Algorithms Used With SSL”
on page 90. For information about how to choose ciphers, see “Choosing SSL Ciphers and SSL
Protocols for Directory Proxy Server” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Ciphers and Protocols for Directory Proxy Server

Chapter 22 • Security in Directory Proxy Server 341

342

Directory Proxy Server Logging

Directory Proxy Server logs information in access logs and error logs. Additionally, a plug-in
can be configured to log messages to a syslog daemon. Unlike Directory Server, Directory Proxy
Server does not provide an audit log.

Log files for Directory Proxy Server can be configured through Directory Service Control
Center or on the command line. For information about how to configure log files, see Chapter
28, “Directory Proxy Server Logging,” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

For information about access logs and error logs, see the following sections:

■ “Introduction to Directory Proxy Server Logs” on page 343
■ “Log File Rotation” on page 344
■ “Log File Deletion” on page 344
■ “Message Severity” on page 345
■ “Error Logs for Directory Proxy Server” on page 345
■ “Access Logs for Directory Proxy Server” on page 348
■ “Tracking Client Requests Through Directory Proxy Server and Directory Server Access

Logs” on page 351

Note that the log message format is still evolving in this release of Directory Proxy Server.

Introduction to Directory Proxy Server Logs
The Directory Proxy Server logging service provides access logs and error logs. The logs are flat
files that contain information about client operations and about the health of Directory Proxy
Server. By default, log files are stored under instance-path/logs with the permission of 600. If
an instance of Directory Proxy Server is started without valid log files, log files are created in the
default location and a warning is sent to DSCC.

23C H A P T E R 2 3

343

You can configure the following aspects of the logs:

■ Set the log level for each message category
■ Globally set the default log-level for all message categories
■ Globally enable all logs
■ Set the name, location and permissions of log files
■ Set the maximum number of log files
■ Define a rotation policy for each log file
■ Include or exclude search filters in access log messages for search operations

Log messages can also be sent to the syslog daemon. For information about how to log messages
to a syslog daemon, see “Logging Alerts to the syslogd Daemon” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

Log File Rotation
Log files can be rotated manually at any time, or can be rotated automatically when the
following events occur:

■ When the log reaches a specified size
■ At a specified start-time, start-day, and interval
■ At a specified start-time, start-day, and interval, if the log file is bigger than a specified size

The start-time, start-day, and interval can have the following combinations:

■ Time-of-day followed by an interval of days, hours, or minutes
■ Day-of-week and time-of-day, followed by an interval of weeks
■ Day-of-month and time-of-day, followed by an interval of months

The time-of-day takes precedence over the interval. For example, a log that is specified to be
rotated at 3am and then every 10 hours is rotated at the following times: 03:00, 13:00, 23:00, and
again at 03:00 (not 07:00).

If the log is configured for rotation on the 31st of the month but the month has fewer than 31
days, the log is rotated on the first day of the following month.

Log File Deletion
A log file deletion policy defines when backup log files are deleted. The log file currently in use is
never deleted by a deletion policy.

Log File Rotation

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008344

The following deletion policies can be enabled:

■ Deletion based on time. Log files are deleted when they reach a specified age.
■ Deletion based on size. Log files are deleted when the total size of all the log files reaches a

specified limit. The size of the current log file is taken into account, although this file is not
deleted.

■ Deletion based on free disk space. When the free disk space reaches a specified minimum,
the oldest backup log file is deleted. If the free disk space is still lower than the minimum, the
next oldest backup log file is deleted, and so forth.

By default, log file deletion is based on free disk space, with a default value of 1 Megabyte. When
all three deletion policies are activated simultaneously, they are processed in order of time, size,
and free disk space. For information about how to configure log file deletion, see “Deleting
Directory Proxy Server Logs” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Message Severity
Messages are included in log files or filtered out of log files according to the severity of the
message, the category of the message, and the log-level that has been configured for that
category. The categories and log-levels for the error logs and access logs are different, and are
discussed in the sections that follow.

Messages are ranked according to their severity. Messages can have one of the following
severities, where error is highest severity and debug is the lowest severity:

1. error

2. warning

3. info

4. debug

Messages with a severity that is lower than the log-level configured for its message category are
not included in the log file. Messages with a severity that is equal to or higher than the log-level
configured for its associated message category are included in the log file.

Error Logs for Directory Proxy Server
Error logs contain information about the health of the Directory Proxy Server. Error messages
are categorized according to the cause of the message. The following table lists the categories of
messages that can be included in an error log.

Error Logs for Directory Proxy Server

Chapter 23 • Directory Proxy Server Logging 345

TABLE 23–1 Message Categories for Error Logs

Category Name Category Description

CONFIG Information about configuration

DECODE Information about operation decoding

PLUGIN Information about plug-in processing

PROCESSING Information about a significant event that occurred during client processing

BACKEND Information about an operation with a data source

INTERNAL Information about an internal error in the core server

SHUTDOWN Information about an event at server shutdown

STARTUP Information about an event at server startup

Error Log Levels
Each message category can be configured with one of the following log-levels:

1. none No messages are included in the log file.
2. error Only error messages are included in the log file.
3. warning Error messages and warning messages are included in the log file.
4. info Errors, warnings and informational messages are included in the log file.
5. all All messages are included in the log file. In most cases, this setting produces the same

results as the info setting. In certain situations, this setting enables additional debugging
messages to be logged.

6. inherited The log level is inherited from the value of the default-log-level property.

By default, the log level for each message category is info.

The log-level of a message category works in conjunction with the severity level of a message to
determine which messages are included in the log file. For more information, see “Message
Severity” on page 345.

Format of an Error Message
An error log message has this format:

timestamp - message category - message severity - message text

Example 23–1 shows an extract from an error log.

Error Logs for Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008346

EXAMPLE 23–1 Extract of an Error Log

[07/26/2005:10:41:38 +0200] - STARTUP - INFO - Sun Java(TM)

System Directory Proxy Server/6.1 (Build 0719051656 DEBUG) starting up

[07/26/2005:10:41:43 +0200] - STARTUP - INFO - Global log level INFO

[07/26/2005:10:41:43 +0200] - STARTUP - INFO - Logging Service conf

[07/26/2005:10:41:43 +0200] - STARTUP - INFO - Java Version: 1.5.0_03

(Java Home: /usr/lang/JAVA/jdk1.5.0_03/solaris-sparc/jre)

[07/26/2005:10:41:43 +0200] - STARTUP - INFO - Operating System:

[07/26/2005:10:41:43 +0200] - STARTUP - INFO - Init LDAP server

cn=Server-1, cn=LDAP servers,cn=config

[07/26/2005:10:41:43 +0200] - STARTUP - INFO - Init LDAP server

cn=Server-2,cn=LDAP servers,cn=config

[07/26/2005:10:41:43 +0200] - STARTUP - INFO - Init LDAP server

cn=Server-3, cn=LDAP servers,cn=config

[07/26/2005:10:41:44 +0200] - STARTUP - INFO - Performing SSL init

[07/26/2005:10:41:44 +0200] - STARTUP - INFO - Creating 20 worker

threads

[07/26/2005:10:41:44 +0200] - PLUGIN - WARN - Unable to load

plugin class

com.sun.directory.proxy.plugin.StartTLSExtendedOpPlugin specified in

plugin

entry cn=1.3.6.1.4.1.1466.20037,cn=Plugins,cn=config -- not loading

plugin.

[07/26/2005:10:41:45 +0200] - STARTUP - INFO - Starting client

listeners

[07/26/2005:10:41:45 +0200] - STARTUP - INFO - Sun Java(TM)

System Directory Proxy Server/6.1 (Build 0719051656 DEBUG) started

on host a

[07/26/2005:10:41:45 +0200] - STARTUP - INFO - Listening for secure

client connections on 0.0.0.0:9636

[07/26/2005:10:41:45 +0200] - STARTUP - INFO - Listening for client

connections on 0.0.0.0:9389

[07/26/2005:10:42:13 +0200] - BACKEND - WARN - Proactive Monitor

thread determined that directory server ldap://nautilus:6389/ avail

[07/26/2005:10:42:13 +0200] - BACKEND - WARN - Proactive Monitor

thread determined directory server ldap://nautilus:7389/ is available.

[07/26/2005:10:42:13 +0200] - BACKEND - WARN - Proactive Monitor

thread determined directory server ldap://nautilus:5389/ is available.

Error Logs for Directory Proxy Server

Chapter 23 • Directory Proxy Server Logging 347

Access Logs for Directory Proxy Server
Access logs contain information about the requests being processed by Directory Proxy Server.
Access logs contain information about two types of connection:

■ Connections between clients and Directory Proxy Server
■ Connections between Directory Proxy Server and data sources

Access log messages are categorized according to the cause of the message. The following table
lists the categories of messages that can be included in the access log.

TABLE 23–2 Message Categories for Access Logs

Category Name Category Description

CONNECT Information about a client connection

DISCONNECT Information about a client disconnection

OPERATION Information about operations requested by a client

PROFILE Information about the profiles of a connection handler

SERVER_OP Information about operations that are forwarded to data sources

SERVER_OP_DETAIL Detailed information about operations that are forwarded to data sources

Access Log Levels
Each message category can be configured with one of the following log-levels:

1. none No access messages are included in the log file.
2. info Informational messages are included in the log file.
3. all All messages are included in the log file. In most cases, this setting produces the same

results as the info setting. In certain situations, this setting enables additional debugging
messages to be logged.

4. inherited The log level is inherited from the value of the default-log-level property.

By default, the log level for each message category is info.

The log-level of a message category works in conjunction with the severity level of a message to
determine which messages are included in the log file. For more information, see “Message
Severity” on page 345.

Format of an Access Log Message
An access log message has this format:

Access Logs for Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008348

timestamp - category - severity - connectionNumber operationNumber
messageID operationType messageText

Example 23–2 shows an extract of an access log. The log shows a client request that starts with a
message in the CONNECT category and ends with a message in the DISCONNECT category. The
operation requested by the client is shown by the message in the OPERATION category, and
results in several messages in the SERVER_OP category. The logged messages have the INFO and
DEBUG severity.

EXAMPLE 23–2 Extract of an Access Log

[07/17/2005:17:29:45 +0200] - CONNECT - INFO - conn=1591031

client=129.157.192.132:49216 server=0.0.0.0:9389 protocol=LDAP

[07/17/2005:17:29:45 +0200] - OPERATION - INFO - conn=1591031 op=0

msgid=1 SEARCH base="o=movie" scope=2 filter="(objectClass=*)"
[07/17/2005:17:29:45 +0200] - SERVER_OP - INFO - conn=1591031 op=0

SEARCH base="o=movie" scope=2 filter="(objectClass=*)"
s_msgid=318022 s_authzid="" s_conn=39

[07/17/2005:17:29:45 +0200] - SERVER_OP - INFO - conn=1591031 op=0

SEARCH base="o=movie" scope=2 filter="(objectClass=*)" s_msgid=316902

s_authzid="" s_conn=76

[07/17/2005:17:29:45 +0200] - SERVER_OP - INFO - conn=1591031 op=0

SEARCH RESPONSE err=0 msg="" nentries=4 s_conn=76

[07/17/2005:17:29:45 +0200] - SERVER_OP - DEBUG - Global status code = 0

[07/17/2005:17:29:45 +0200] - SERVER_OP - INFO - conn=1591031 op=0

SEARCH RESPONSE err=0 msg="" nentries=11 s_conn=39

[07/17/2005:17:29:45 +0200] - SERVER_OP - DEBUG - Global status code = 0

[07/17/2005:17:29:45 +0200] - OPERATION - INFO - conn=1591031 op=0

SEARCH RESPONSE err=0 msg="" nentries=22

[07/17/2005:17:29:45 +0200] - OPERATION - INFO - conn=1591031 op=1

UNBIND

[07/17/2005:17:29:45 +0200] - DISCONNECT - INFO - conn=1591031

reason=unbind"

Message Parts in an Access Log
Messages for the connections between a client and the Directory Proxy Server are labeled in the
same way as in Directory Server. Table 23–4 describes parts of the messages between the client
and the Directory Proxy Server in Example 23–2. For an explanation of all of the possible
message parts, see “Content of Access, Error, and Audit Logs” on page 164.

Access Logs for Directory Proxy Server

Chapter 23 • Directory Proxy Server Logging 349

TABLE 23–3 Message Parts for Connections Between a Client and a Directory Proxy Server

Log Message Part Description

conn Identifier for the connection between the client and the Directory Proxy Server.

op The number of an operation on a given connection. The first operation on a connection
has the value op=0. Subsequent requests on the connection have increasing numbers,
op=1, op=2, etc.

msgid The number of a message to be sent to a client application. The LDAP protocol is mainly
asynchronous. If a client request requires a response from a server, the response is given
in the following steps:
■ The directory server acknowledges the request and assigns a msgid
■ The directory server responds to the request by using the msgid identifier

A response can be sent in multiple packets, where each packet is identified by the same
msgid.

nentries The number of entries returned by a search request.

err The result code returned from the LDAP operation. The error number 0 means that the
operation was successful. For a list of LDAP result codes, see “Result Codes in Log Files”
on page 170.

msg A human readable error diagnostic.

Messages for the connections between Directory Proxy Server and a data source are prefixed
with s_. Table 23–4 describes parts of the messages between the Directory Proxy Server and the
data source in Example 23–2.

TABLE 23–4 Message Parts for Connections Between a Directory Proxy Server and a Data Source

Log Message Part Description

s_msgid Identifier for the message between the Directory Proxy Server and a data source.

s_authzid Authorization identity for an operation to be processed under when the Directory Proxy
Server forwards the request to a data source by using proxy authorization.

s_conn Identifier for the connection between the Directory Proxy Server and the data source.

Access Log Buffer
Access log messages are stored in a buffer. The buffer is flushed to the access log at the following
times:

■ When the buffer is full
■ When the access log is rotated
■ When Directory Proxy Server is stopped

Access Logs for Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008350

If a buffer is flushed because it is full, the last message in the access log file might not be
complete. The remainder of the message is then delivered in the next flush. By default, the size
of the buffer is 10 KBytes. However, the size of the buffer can be configured to control the
frequency with which it is flushed. For performance reasons, the buffer size should not be
reduced to less than 5 KBytes.

You can configure the size of the access log buffer by setting the log-buffer-size property. For
information about how to configure access log properties, see “Configuring Directory Proxy
Server Logs” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Tracking Client Requests Through Directory Proxy Server and
Directory Server Access Logs

Access logs show client accesses to the server and corresponding server responses. Directory
Proxy Server access logs further show information about the connections set up against data
sources, in this case Directory Server instances.

Tracking client requests can be broken down into the following steps:

■ Tracking the operations performed within a single client connection
■ Identifying the client that performed a certain operation

Tracking Operations by Connection
Directory Proxy Server typically sets up connections with backend servers before it handles
client connections. This means that the proxy can pool operations, binding and rebinding only
when necessary and avoiding connection setup overhead. Directory Proxy Server identifies
these backend connections in its access log with tags of the form s_conn=data-source:number,
where data-source is a data source name from the configuration and number is a server
connection number assigned by the proxy. Such s_conn server connections can then be
matched to connection numbers in Directory Server access logs using the port number from
which the proxy connected to the directory as a client when establishing the connection.
Therefore, s_conn in proxy access log messages be translated into conn in directory access log
messages.

Tracking Operations in Directory Proxy Server
In the Directory Proxy Server access log, each client operation is contained within a CONNECT
and a DISCONNECT message. Between these two messages, several OPERATION messages can
appear. Each OPERATION message can contain several SERVER_OP messages.

The OPERATION messages refer to operations performed by the client. The SERVER_OP messages
refer to operations performed by Directory Proxy Server.

Tracking Client Requests Through Directory Proxy Server and Directory Server Access Logs

Chapter 23 • Directory Proxy Server Logging 351

The following extract of a Directory Proxy Server access log file shows the start (CONNECT) and
end (DISCONNECT) of a connection, conn=0. The log shows all the OPERATION requests
performed by a client this connection and the related SERVER_OP requests sent to the backend
server by Directory Proxy Server on behalf of the client.

[timestamp] - CONNECT - INFO - conn=0 client=129.157.192.132:59112 server=0.0.0.0:9389 protocol=LDAP

[timestamp] - OPERATION - INFO - conn=0 op=0 BIND dn="uid=u1,ou=users,o=movie" method="SIMPLE"
[timestamp] - SERVER_OP - INFO - conn=0 op=0 BIND dn="uid=u1,ou=users,o=movie" method="SIMPLE" s_msgid=2

s_conn=server-1:1

[timestamp] - SERVER_OP - INFO - conn=0 op=0 BIND RESPONSE err=0 msg="" s_conn=server-1:1

[timestamp] - OPERATION - INFO - conn=0 op=0 BIND RESPONSE err=0 msg="" etime=0

[timestamp] - OPERATION - INFO - conn=0 op=1 msgid=2 SEARCH base="o=movie" scope=2 filter="(objectclass=*)"
[timestamp] - SERVER_OP - INFO - conn=0 op=1 SEARCH base="o=movie" scope=2 filter="(objectclass=*)" s_msgid=3

s_conn=server-1:1

[timestamp] - SERVER_OP - INFO - conn=0 op=1 SEARCH RESPONSE err=0 msg="" nentries=12 s_conn=server-1:1

[timestamp] - OPERATION - INFO - conn=0 op=1 SEARCH RESPONSE err=0 msg="" nentries=12 etime=0

[timestamp] - OPERATION - INFO - conn=0 op=2 UNBIND

[timestamp] - SERVER_OP - INFO - conn=0 op=-1 BIND dn="" method="SIMPLE" s_msgid=4 s_conn=server-1:1

[timestamp] - SERVER_OP - INFO - conn=0 op=-1 BIND RESPONSE err=0 msg="" s_conn=server-1:1

[timestamp] - DISCONNECT - INFO - conn=0 reason="unbind"

Following this log, it is possible to track all operations that were performed by or on behalf of a
particular client.

Tracking Operations Between Directory Proxy Server and Directory
Server
When Directory Proxy Server starts up, it establishes connections with all the remote servers
identified in its configuration. These connections are logged in the Directory Proxy Server
access log, and are identified by the field s_conn=server-name:number. The server-name is
defined in the Directory Proxy Server configuration and refers to a specific backend server. The
number indicates how many connections there have been to this backend server, through the
same port.

For example, in the following extract from the Directory Proxy Servers_conn=server-1:1 is
the first connection to remote server server-1 through port 59100.

SERVER_OP - INFO - Created connection for BIND s_conn=server-1:1 client=129.157.192.132:59100

When this connection is established, the corresponding line in the Directory Server access log
shows that the connection from Directory Proxy Server through port 59100 is identified with
the connection ID conn=244.

conn=244 op=-1 msgId=-1 - fd=19 slot=19 LDAP connection from 129.157.192.132:59100 to 129.157.192.132

For the remainder of the life of this connection, server-1:1 in the Directory Proxy Server can
be mapped to conn=24 in the Directory Server access log.

Tracking Client Requests Through Directory Proxy Server and Directory Server Access Logs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008352

This kind of mapping between connections also requires that Directory Proxy Server and the
backend Directory Server are synchronized.

Note that a connection from Directory Proxy Server to a backend Directory Server can remain
alive for several days. If you rotate logs, either manually or automatically, it might therefore be
necessary to access archived log files to trace the operations performed during a connection.

Client Identification
A client is identified in the access logs by its IP address and, optionally, by its bind DN. When a
client establishes a connection to Directory Proxy Server, the following kind of message is
logged in the Directory Proxy Server access log:

[timestamp] - CONNECT - INFO - conn=0 client=IP1:port1 server=IP2:port2 protocol=LDAP

Directory Proxy Server identifies this client connection as conn=0.

When Directory Proxy Server establishes a connection with a remote Directory Server, the
following kind of message is logged in the Directory Proxy Server access log:

[timestamp] - SERVER_OP - INFO - Created connection for READ s_conn=server-1:1 client=IP2:port3
server=IP4:port4 protocol=LDAP main

Directory Proxy Server identifies this connection to the remote server as s_conn=server-1:1.

At the same time, the following kind of message is logged in the Directory Server access log:

[timestamp] conn=13 op=-1 msgId=-1 - fd=23 slot=23 LDAP connection from IP2:port3 to IP4

So, Directory Server identifies the connection as conn=13.

Tracking the connection in this way enables you to identify the full connection path from the
client to Directory Server.

Directory Proxy Server does not wait for a client connection before it establishes a connection
to a remote server. The Directory Proxy Server configuration specifies that certain connections
are dedicated to bind operations, others to read operations, and others to write operations.
When Directory Proxy Server starts up, it establishes all connections to the remote servers,
according to this configuration.

When a connection has been established completely (from the client to Directory Server) the
client can be identified by its DN.

Tracking Client Requests Through Directory Proxy Server and Directory Server Access Logs

Chapter 23 • Directory Proxy Server Logging 353

Directory Server recognizes the client DN as one of the following:

■ True client bind DN. The bind DN is the client's own bind DN if Directory Proxy Server is
configured in Use Bind mode.

■ Modified client bind DN. The bind DN is modified if Directory Proxy Server is configured
in User Proxy Auth Control mode. The DN is modified as a result of DN renaming or user
mapping.

A single connection can be used by multiple clients (though not simultaneously). To identify a
client connection correctly in the access logs, Directory Proxy Server and Directory Server must
be synchronized, that is, the server clock must be as close as possible. This will ensure that the
timestamps in the access logs correspond. If the servers are not synchronized, you should
synchronize them by using a time server, or evaluate the difference between the server clocks
and search the access logs taking this difference into account.

Tracking Client Requests Through Directory Proxy Server and Directory Server Access Logs

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008354

Directory Proxy Server Alerts and Monitoring

The Directory Proxy Server provides monitoring information about its own status. Directory
Proxy Server also monitors data sources to determine whether they are alive and to detect failed
connections. If a data source fails, Directory Proxy Server can switch new requests over to a
working data source in a data source pool and can replay failed requests to this new data source.

This chapter describes how monitoring is implemented in Directory Proxy Server. The chapter
covers the following topics:

■ “Administrative Alerts for Directory Proxy Server” on page 355
■ “Monitoring Data Sources” on page 356
■ “Monitoring Directory Proxy Server” on page 359

Administrative Alerts for Directory Proxy Server
Directory Proxy Server generates a set of predefined administrative alerts. You can select one or
more of the predefined administrative alerts and configure Directory Proxy Server to take a
specific action when the alert events occur:

The actions that can be taken include the following:

■ Create a syslog entry. Alerts are sent to the syslog with the facility of USER.
■ Send an e-mail message.
■ Run a script command.

Table 24–1 lists the predefined administrative alerts for Directory Proxy Server.

TABLE 24–1 Administrative Alerts for Directory Proxy Server

Alert event Alert code Configuration Parameter

Server startup 1000 info-server-startup

24C H A P T E R 2 4

355

TABLE 24–1 Administrative Alerts for Directory Proxy Server (Continued)
Alert event Alert code Configuration Parameter

Clean server shutdown 1001 info-server-shutdown-clean

Abrupt server shutdown 1002 error-server-shutdown-abrupt

Configuration reloaded 1003 info-configuration-reload

Configuration reload failure due to bad
configuration. Run-time configuration not
impacted.

1004 warning-configuration-reload-failure-no-impact

Configuration reload failure due to bad
configuration. Run-time configuration
possibly impacted.

1005 error-configuration-reload-failure-with-impact

Data source not available 2000 warning-data-source-unavailable

Data source available 2001 info-data-source-available

Listener not available 3000 warning-listener-unavailable

Data inconsistency on data sources 4000 warning-data-sources-inconsistent

For information about how to configure administrative alerts for Directory Proxy Server, see
“Configuring Administrative Alerts for Directory Proxy Server” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

Monitoring Data Sources
Directory Proxy Server continuously monitors data sources to determine whether they are alive
and to detect failed connections. This section describes how Directory Proxy Server monitors
data sources, and what action is taken when data sources fail.

How Data Sources Are Monitored
Directory Proxy Server performs the following tests to monitor the health of a data source:

■ Listens for errors on the traffic between Directory Proxy Server and the data source
■ Periodically establishes a dedicated connection to the data source if there is no traffic from

that data source for a specified time interval
■ Periodically pings each existing connection to each data source to prevent that connection

from being closed and to detect closed connections

These tests are described in the following sections.

Monitoring Data Sources

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008356

Monitoring a Data Source by Listening for Errors
When this type of monitoring is configured, Directory Proxy Server listens for errors on the
traffic between itself and the data source. If Directory Proxy Server detects that a client
operation fails, the proxy tests the data source related to the failure.

This type of monitoring is called reactive monitoring because Directory Proxy Server reacts to
an error, but otherwise performs no active testing of the data sources.

Directory Proxy Server can be configured to perform this type of reactive monitoring only,
without performing the monitoring described in “Monitoring Data Sources by Periodically
Establishing Dedicated Connections” on page 357 and “Monitoring Data Sources by Testing
Established Connections” on page 357. When only reactive monitoring is configured, the
monitoring less complete but does not cause additional traffic.

Monitoring Data Sources by Periodically Establishing Dedicated
Connections
When this type of monitoring is configured, Directory Proxy Server establishes a dedicated
connection to a data source when no requests made to the data source or responses given by the
data source for a specified time period. By periodically establishing a dedicated connection to a
data source, Directory Proxy Server monitors whether the data source is working.

This type of monitoring is more complete than “Monitoring a Data Source by Listening for
Errors” on page 357 because Directory Proxy Server does not wait to detect a failure before it
tests the data source. However, this type of monitoring is less complete than “Monitoring Data
Sources by Testing Established Connections” on page 357, because the proxy does not test
whether the existing connections to a data source are working.

This type of monitoring can be used in addition to “Monitoring Data Sources by Testing
Established Connections” on page 357.

Monitoring Data Sources by Testing Established Connections
When this type of monitoring is configured, Directory Proxy Server tests each connection to
each data source at regular intervals. In this way, the proxy prevents connections from being
dropped because of inactivity, and detects closed connections.

This type of monitoring can be used in addition to “Monitoring Data Sources by Periodically
Establishing Dedicated Connections” on page 357.

Directory Proxy Server can be configured to test connections in the following scenarios:

■ Pooled connections that are not used for a period of time
■ Connections for persistent searches that are not active for a period of time
■ Connections between a client and Directory Proxy Server operating in tunneling mode

Monitoring Data Sources

Chapter 24 • Directory Proxy Server Alerts and Monitoring 357

Testing established connections consumes system resources, but it provides good security for
connections. If you are using the Active Directory product, you must use this method of
monitoring because the Active Directory product closes inactive connections.

To test an established connection, Directory Proxy Server issues a search request with the
following parameters:
■ Search base DN
■ Connection time out
■ Search time out
■ Search filter

If a connection is found to be down, Directory Proxy Server polls the connection at a specified
interval to detect its recovery. You can configure this interval by setting the
monitoring-interval property. For more information, see “To Monitor a Data Source by
Testing Established Connections” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Directory Proxy Server monitors data sources by using a search filter. Data sources that return a
result that satisfies the filter are considered to be working.

Responding to the Failure of a Data Source
When Directory Proxy Server detects an error on a connection, the proxy closes the connection
and tries to reestablish the connection immediately. If the proxy can reestablish the connection,
it considers the data source to be up and running. If the proxy cannot reestablish the
connection, it flags the data source as unavailable. Directory Proxy Server stops distributing
requests to the data source and closes all other connections to the data source.

If a request fails because of a failed connection or a failed data source, Directory Proxy Server
replays the request over another connection to the same data source or replays the request to
another data source. If the request is replayed to another data source, the load balancing
algorithm determines which data source is used.

If there are no data sources to which Directory Proxy Server can replay the request, the proxy
returns an error to the client.

Replaying the request enables the failure to be transparent to the client. Requests are replayed
for the following operations:

■ Search
■ Bind
■ Compare

Requests are not replayed for write operations because Directory Proxy Server cannot be sure
whether the operation was performed before the connection failure occurred.

Monitoring Data Sources

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008358

When a data source recovers after a being unavailable, Directory Proxy Server returns the data
source to the list of candidate data sources. The work that was being carried out by the other
candidate data sources is redistributed to include this data source, according to the load
balancing algorithm.

When the failed data source recovers, Directory Proxy Server recommences monitoring the
traffic between the data sources and their clients.

Monitoring Directory Proxy Server
Directory Proxy Server runs inside a Java Virtual Machine (JVM) and depends on the memory
of the JVM. To ensure that Directory Proxy Server is running correctly, its memory
consumption must be monitored. For information about how to monitor Directory Proxy
Server memory consumption, see “Retrieving Monitored Data About Directory Proxy Server by
Using the JVM” in Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide.

Monitoring information for Directory Proxy Server is provided under the cn=monitor entry.
The cn=monitor entry is managed by Directory Proxy Server in a local, in-memory database.

For information about monitoring Directory Proxy Server, see the following sections:

■ “Monitoring Framework for Directory Proxy Server” on page 359
■ “Simplified Layout of the cn=monitor Entry” on page 360
■ “Status of Monitored Information” on page 362
■ “Description of Each Entry Under the cn=monitor Entry” on page 362
■ “Detailed Layout of the cn=monitor Entry” on page 373

Monitoring Framework for Directory Proxy Server
Directory Proxy Server monitoring relies on the Java Enterprise System (ES) Monitoring
Framework. The Java ES monitoring framework has been extended to provide a monitoring
framework for Directory Proxy Server. The following UML diagram illustrates the Directory
Proxy Server monitoring framework.

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 359

Simplified Layout of the cn=monitor Entry
This section provides a simplified layout of the cn=monitor entry. For the detailed layout of the
cn=monitor entry and a description of all of the entries and attributes under cn=monitor, see
“Detailed Layout of the cn=monitor Entry” on page 373.

cn=monitor

|

Installed Product Operating System

Application System

Remote SAP

LDAP RSAP JDBC RSAPLDAPS RSAP

SAPService Logical
Component

Data Source
Pool

Proportional
Load Balancing

LDAP
Operation

System
Resource

JVM

1
1

1

* * * * *

Instances

Worker
Thread

Connection
Handler Thread

Monitor
Thread

Search
Thread

LDAP SAP LDAPS SAP Distribution
Thread

Work Queue

JESMF CMM Model

Extensions for Directory Proxy Server

Java Virtual Machine• JVM -

Service Access Point• SAP -

Remote Service Access Point• RSAP -

FIGURE 24–1 Monitoring Framework for Directory Proxy Server

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008360

+-- cn=Product (Installed Product)

|

+-- cn=ProductName

|

+-- cn=Operating System

+-- cn=Instance (Application System)

|

+-- cn=InstanceId

|

+-- cn=Service

+-- cn=Add

+-- cn=Delete

+-- cn=Modify

+-- cn=ModifyDN

+-- cn=Search

+-- cn=Compare

+-- cn=Bind

+-- cn=Resource (System Resource)

+-- cn=Work Queue

+-- cn=Worker Thread

+-- cn=worker_thread_name

+-- cn=Search Thread

+-- cn=search_thread_name

+-- cn=Monitor Thread

+-- cn=monitor_thread_name

+-- cn=Connection Handler Thread

+-- cn=connection_handler_thread_name

+-- cn=SAP (Service Access Point)

+-- cn=LDAP

+-- cn=LDAPS

+-- cn=RSAP (Remote SAP)

+-- cn=LDAP Server servername

+-- cn=LDAPS Server servername

+-- cn=RDBM Server servername

+-- cn=Component (Logical Component)

+-- cn=DataSource Pool

+-- cn=poolname

+-- cn=Proportional Load Balancing

+-- cn=Add

+-- cn=Search

+-- cn=Delete

+-- cn=Compare

+-- cn=Modify

+-- cn=ModifyDN

+-- cn=Bind

+-- cn=JVM

+-- cn=DB System

+-- cn=DB Service

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 361

Status of Monitored Information
Every element that is monitored has an operational status. Table 24–2 gives the status of
monitored information.

TABLE 24–2 Status of Monitored Information

Value Name Description

0 UNKNOWN No information available for this
element

2 OK Element is fully operational

3 DEGRADED Element is working but not
optimally

4 STRESSED Element is working under stressed
environment (for example,
overload)

5 PREDICTIVE_FAILURE Element is working but may fail in
the near future

6 ERROR Severe error has been raised

8 STARTING Element is starting

9 STOPPING Element is stopping

10 STOPPED Element is stopped

12 NO_CONTACT Element has never been reached

13 LOST_COMMUNICATION Element has been reached once, but
it is currently unreachable

Description of Each Entry Under the cn=monitor Entry
For information about each entry in the cn=monitor subtree, see the following sections:

■ “cn=Product” on page 363
■ “cn=Operating System” on page 363
■ “cn=Instance” on page 363
■ “cn=Service” on page 364
■ “cn=SAP” on page 364
■ “cn=RSAP” on page 365
■ “cn=Component” on page 367
■ “cn=JVM” on page 369
■ “cn=Resource” on page 369

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008362

cn=Product

The cn=Product entry identifies the set of files being installed. An installed product is identified
by the entry cn=ProductName.

cn=Product contains the following groups of attributes:

Settings
■ version identifies the full release number containing major release, minor

release and optionally micro release (for example, 6.1).
■ buildNumber identifies the syntax of the build number.
■ patchId identifies the patch of the product. This attribute can be empty.

State Provides operational status and availability status.

Statistics Provides a set of statistics metrics such as performance and usage.

cn=Operating System

The cn=Operating System entry identifies which operating system the product package is
installed under. This entry has the following monitoring DN:

cn=Operating System, cn=ProductName, cn=Product, cn=monitor

cn=Operating System contains the following groups of attributes:

Settings
■ operatingSystemName identifies the name of the operating system such as

SunOS.
■ operatingSystemVersion identifies the release of the operating system such

as 5.10.

State Provides operational status and availability status.

Statistics Provides a set of statistics metrics such as performance and usage.

cn=Instance

The cn=Instance entry identifies an instance of the installed product. More than one instance
of a product can exist on a single data source. Each instance is identified by an instance ID,
where instanceId=host:instance-path.

The cn=Instance entry has the following monitoring DN:

cn=InstanceId, cn=Instance, cn=Operating System, cn=ProductName,

cn=Product, cn=monitor

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 363

cn=Operating System contains the following groups of attributes:

Settings Provides configuration attribute values.

State operationalStatus identifies the status of the element, with the following values:
0, 2, 8, 9, and 10. For information about the values, see Table 24–2.

Statistics Provides a set of statistics metrics such as performance and usage.

cn=Service

The cn=Service entry identifies information about LDAP operations, or services, for an
instance of Directory Proxy Server.

LDAP operations are add, delete, modify, modifyDN, search, compare, and bind. Each LDAP
operation has a specific monitoring entry below cn=Service. For example, the add operation
has the following DN:

cn=add, cn=Service, cn=InstanceId, cn=Instance, cn=Operating System,

cn=ProductName, cn=Product, cn=monitor

Entries below cn=Service can contain the following groups of attributes:

Settings Provides configuration attribute values.

State Provides operational status and availability status.

Statistics
■ total identifies the number of operations received by this instance of

Directory Proxy Server.
■ succeeded identifies the number of successful operations in this instance of

Directory Proxy Server.
■ failed identifies the number of failed operations in this instance of Directory

Proxy Server.
■ abandonned identifies the number of operations abandoned by this instance of

Directory Proxy Server.

cn=SAP

A Service Access Point (SAP) provides information on how to access a service. The cn=SAP
entry has the following monitoring DN:

cn=listenerThread, cn=SAP, cn=instanceId, cn=Instance,

cn=OperatingSystem, cn=Product, cn=monitor

Entries below cn=SAP can contain the following groups of attributes:

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008364

Settings
■ name identifies the SAP name, either LDAP or LDAPS.
■ isSecure identifies whether LDAPS is used. If the value is TRUE, LDAPS is used.
■ host identifies the hostname of the current data source.
■ port identifies the port number to access this instance of Directory Proxy

Server.

State
■ enabled identifies if the SAP is enabled.
■ operationalStatus identifies the status of the SAP. If the value is 2 or OK, the

SAP is fully operational.
■ statusDescription provides a detailed status description.
■ startTime identifies the date and time at which the SAP was started.
■ stopTime identifies the date and time at which the SAP was stopped.
■ stopException provides a description of the error if a stop operation fails. If

this attribute is empty, no error has occurred.

Statistics
■ acceptedConnections identifies the number of accepted TCP connections.

One counter exists for all LDAP operations. The counter is service agnostic.
■ refusedConnections identifies the number of refused TCP connections.

cn=RSAP

The cn=RSAP entry identifies the type of remote service. The remote SAP can be one of the
following types:

■ LDAP(S) to access directory servers such as Sun Directory Server or Microsoft ADAM.
■ ODBC to access RDBM systems such as the Oracle Database.

LDAP Remote SAP

The cn=RSAP entry for an LDAP remote SAP can have one of the following monitoring DNs:

cn=LDAP servername, cn=RSAP, cn=instanceId, cn=Instance,

cn=OperatingSystem, cn=Product, cn=monitor

cn=LDAPS servername, cn=RSAP, cn=instanceId, cn=Instance,

cn=OperatingSystem, cn=Product, cn=monitor

Entries below cn=RSAP can contain the following groups of attributes:

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 365

Settings
■ name identifies the SAP name, either LDAP or LDAPS.
■ isSecure identifies whether LDAPS is used. If the value is TRUE, LDAPS is used.
■ host identifies the hostname of the host server.
■ port identifies the port number to access this instance of Directory Proxy

Server.

State
■ operationalStatus identifies the status of the element, with the following

values: 2, 4, 12, and 13. For information about these values, see Table 24–2.
■ statusDescription provides the detailed description of the status.
■ started identifies if RSAP is started.
■ readOnly identifies if it is in read only mode.

Statistics
■ totalConnections identifies the total number of connections including the

established connections.
■ totalAvailableConnections identifies the total number of available

connections for bind, read and write operations. The value 0 means that access
to that data source is congested.

■ The following attributes are given for bind operations but also exist for read
operations and write operations:
■ totalBindConnections identifies the number of established connections

for bind operations. All of the connections are kept in a pool of bind
connections.

■ availableBindConnections identifies the number of free bind
connections in the pool.

■ bindConnectionsRequested identifies the number of requests to get a free
bind connection from the pool.

■ bindConnectionsProvided identifies the number of bind connections
provided upon request.

■ bindConnectionsRefused identifies the number of requests being refused
because the pool is empty (even after a wait) or because the remote data
source is down.

■ bindConnectionsWaitsRequired identifies the number of requests being
blocked in a wait state, waiting for a bind connection to be freed.

■ bindConnectionsReturnedValid identifies the number of connections
being released.

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008366

■ bindConnectionsReturnedInvalid identifies the number of connections
being released as invalid. A connection is said to be invalid when errors
have occurred.

cn=Component

The cn=Component entry identifies the part of the software being accessed through a service.
The following parts of the software are identified by the cn=Component entry:

■ Load balancing algorithm
■ Connection class
■ Data view

Proportional Load Balancing Algorithm For All Data Sources

The cn=Component entry for the proportional load balancing algorithm for all data sources has
the following monitoring DN:

cn=ProportionalLB, cn=DataSourcePool poolname, cn=Component,

cn=instanceId, cn=Instance, cn=OperatingSystem, cn=Product, cn=monitor

Entries below the cn=Component entry for the proportional load balancing algorithm contain
the following groups of attributes for all data sources:

Settings
■ className provides the name of the class.

State
■ enabled identifies the status of the remote SAP. If the value is TRUE, the load

balancing algorithm is active.

Statistics
■ totalBindConnectionsProvided identifies the total number of connections

provided for bind operations.
■ totalBindConnectionsRefused identifies the number of refused connections

for bind operations.

Connections can be refused for one of the following reasons:
■ The pool of data sources is empty.
■ All the data sources in the pool are down.
■ The data source selected by the load balancing algorithm has no free

connection to reach the remote service.
■ totalAddConnectionsProvided see totalBindConnectionsProvided

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 367

■ totalAddConnectionsRefused see totalBindConnectionsRefused
■ totalCompareConnectionsProvided see totalBindConnectionsProvided
■ totalCompareConnectionsRefused see totalBindConnectionsRefused
■ totalDeleteConnectionsProvided see totalBindConnectionsProvided
■ totalDeleteConnectionsRefused see totalBindConnectionsRefused
■ totalModifyConnectionsProvided see totalBindConnectionsProvided
■ totalModifyConnectionsRefused see totalBindConnectionsRefused
■ totalModifyDNConnectionsProvided see totalBindConnectionsProvided
■ totalModifyDNConnectionsRefused see totalBindConnectionsRefused
■ totalCompareConnectionsProvided see totalBindConnectionsProvided
■ totalCompareConnectionsRefused see totalBindConnectionsRefused

Proportional Load Balancing Algorithm For Individual Data Sources

The cn=Component entry for the proportional load balancing algorithm for individual data
sources has the following monitoring DN:

cn=Add, cn=servername, cn=Proportional LB, cn=DataSource Pool poolname,

cn=Component, cn=instanceId, cn=Instance, cn=OperatingSystem,

cn=Product, cn=monitor

Similar monitoring DNs exist for the delete, modify, modifyDN, search, compare, and bind
operations.

Entries below the cn=Component entry for the proportional load balancing algorithm contain
the following groups of attributes for individual data sources:

Settings
■ Provides configuration attribute values.

State
■ operationalStatus identifies the status of the element, with the following

values: 2, and 5. For information about these values, see Table 24–2.
■ statusDescription provides the detailed status description.

Statistics
■ providedConnections the number of connections provided to reach the data

source for the operation.
■ providedPercentage the percentage of connections provided to reach the

data source for the operation.

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008368

■ refusedConnections the number of refused requests to get a connection to
that data source.

■ refusedPercentage the percentage of refused requests.

cn=JVM

The cn=JVM entry identifies the JVM that is being used to run the instance of Directory Proxy
Server. The cn=JVM entry has the following monitoring DN:

cn=JVM, cn=instanceId, cn=Instance, cn=DPS60, cn=Product, cn=monitor

Entries below cn=JVM can contain the following groups of attributes:

Settings
■ version identifies the version of the JVM used to run the instance of Directory

Proxy Server.
■ JVMInstallation identifies the location of the JVM installation.

State
■ operationalStatus identifies the status of the element, with the following

values: 2, and 5. For information about these values, see Table 24–2.
■ statusDescription provides the detailed status description.

Statistics
■ totalJVMMemory identifies the total amount of memory allocated for the JVM

to run.
■ maxJVMMemory identifies the maximum amount of JVM memory.
■ freeJVMMemory identifies the amount of free memory.
■ realFreeJVMMemory identifies the free JVM memory which can be used.
■ JVMMemoryLowLevelCount provides the number of times JVM memory

changes its state from green to orange.
■ JVMMemoryVeryLowLevelCount provides the number of times JVM memory

changes its state from orange to red.
■ availableCPU identifies the CPU capacity available.

cn=Resource

The cn=Resource entry identifies the set of resources being used by the software. Resources
include buffers, file descriptors, and hard disks.

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 369

The following elements are identified by the cn=Resource entry:

■ “Connection Handler Thread” on page 370
■ “Work Queue” on page 371
■ “Worker Thread” on page 372
■ “Search Thread” on page 372
■ “Monitor Thread” on page 373

Connection Handler Thread

The connection handler thread decodes incoming requests. The connection handler is oriented
to the LDAP or LDAPS protocol. When a request has been fully decoded, the request is put in
the work queue.

The cn=Resource entry for the connection handler thread has the following monitoring DN:

cn=connection_handler_thread_name, cn=Connection Handler Thread,

cn=Resource, cn=instanceId, cn=Instance, cn=DPS60, cn=Product,

cn=monitor

Entries below the cn=Resource entry for the connection handler thread contain the following
groups of attributes:

Settings
■ threadID provides the unique thread identification number.
■ threadStack provides the information on threads stack.

State
■ operationalStatus identifies the status of the element. The value 2 indicates

that the element is fully operational.
■ startTime identifies the date and time at which the thread was started.
■ started identifies if the thread has started.
■ running identifies if the thread is in running state.
■ statusDescription provides the detailed status description.

Statistics

The following statistics can be gathered:
■ Byte buffer pool statistics under cn=ByteBufferPool:

■ numTries

■ numHits

■ numMissesEmpty

■ numMissesSize

■ numReleases

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008370

■ availableStandardBuffers

■ availableOversizedBuffers

■ String buffer pool statistics under cn=StringBufferPool:
■ numTries

■ numHits

■ numMisses

■ numReleases

■ availableBuffers

■ Vector pool statistics under cn=VectorPool:
■ numTries

■ numHits

■ numMisses

■ numReleases

■ availableBuffers

Work Queue

Incoming requests from clients are stored by connection handler threads in the work queue.
The requests are then processed by the worker thread. The cn=Resource entry for the work
queue has the following monitoring DN:

cn=Work Queue, cn=Resource, cn=instanceId, cn=Instance, cn=DPS60,

cn=Product, cn=monitor

Entries below the cn=Resource entry for the work queue contain the following groups of
attributes:

Settings
■ maxNormalPriorityPeak identifies the maximum number of requests of

normal priority that can be put in the queue. When this threshold is reached,
the connection handler is suspended.

■ maxHighPriorityPeak. identifies the maximum number of requests of high
priority that can be put in the queue. When this threshold is reached, the
connection handler is suspended.

State
■ curNormalPriorityInQueue provides the current normal priority requests in

queue.
■ curHighPriorityInQueue provides the current high priority requests in

queue.
■ operationalStatus identifies the status of the element, with the following

values: 2, and 4. For information about these values, see Table 24–2.

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 371

■ statusDescription provides the detailed status description.

Statistics
■ numNormalPriorityPuts identifies the number of requests of normal priority

that are put in the queue by the connection handler threads.
■ numNormalPriorityGets identifies the number of request of normal priority

retrieved from the queue by worker threads.
■ numHighPriorityPuts identifies the number of requests of high priority that

are put in the queue by the connection handler threads.
■ numHighPriorityGets identifies the number of request of high priority

retrieved from the queue by worker threads.
■ numAbandonRequests identifies the number of requests that are abandoned.
■ numAbandonSuccesses identifies the number of requests that are abandoned

while in the queue.

Worker Thread

The worker thread processes requests from the work queue.

The cn=Resource entry for the worker thread has the following monitoring DN:

cn=worker_thread_name, cn=Worker Thread, cn=Resource,

cn=instanceId, cn=Instance, cn=DPS60, cn=Product, cn=monitor

Entries below the cn=Resource entry for the search thread contain the same groups of attributes
as described in “Connection Handler Thread” on page 370, and the following attributes:

Statistics
■ operationsProcessed identifies the number of operations processed by the

worker thread.
■ exceptionsCaught identifies the number of exceptions raised during the

processing of operations.

Search Thread

When a search is performed on several data views, parallel search threads can be used. The
cn=Resource entry for the search thread has the following monitoring DN:

cn=search_thread_name, cn=Search Thread, cn=Resource, cn=instanceId,

cn=Instance, cn=DPS60, cn=Product, cn=monitor

Entries below the cn=Resource entry for the search thread contain the same groups of attributes
as described in “Connection Handler Thread” on page 370.

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008372

Monitor Thread

The monitor thread checks the availability of remote data sources. A remote data source is
considered to be available when the monitor thread can create one connection to the remote
data source. The cn=Resource entry for the monitor thread has the following monitoring DN:

cn=monitor_thread_name, cn=Monitor Thread, cn=Resource, cn=instanceId,

cn=Instance, cn=DPS60, cn=Product, cn=monitor

Entries below the cn=Resource entry for the search thread contain the same groups of attributes
as described in “Connection Handler Thread” on page 370, and the following groups of
attributes:

Settings
■ backendServer identifies the name of the monitored remote data source.
■ checkInterval identifies the interval of time (in seconds) between two checks.
■ additionalCheckType identifies additional checking. The following values

can be used:
■ 1 (no additional checks)
■ 2 (create a bind connection to the data source)
■ 3 (create a read connection to the data source)

State
■ serverAvailable identifies the status of the remote data source. The value is

true if the remote data source is up and running.

Statistics
■ totalChecks identifies the total number of checks.
■ availabilityChecksFailed identifies the number of failed availability

checks. An availability check is successful when a remote data source is up and
running.

■ additionalChecksFailed identifies the number of failed additional checks.

Detailed Layout of the cn=monitor Entry
This section provides a detailed layout of the cn=monitor subtree.

cn=monitor

|

+-- cn=Product (Installed Product)

|

+-- cn=ProductName

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 373

|| setting:

|| - version

|| - buildNumber

|| - patchId

+-- cn=Operating System

|| setting:

|| - operatingSystemName

|| - operatingSystemVersion

|| state:

|| - (empty)

|| statisitics:

|| - (empty)

+-- cn=Instance (Application System)

|

+-- cn=InstanceId (= host:port:instanceDir)

|

+-- cn=Service

+-- cn=Add

|| statistics:

|| - total

|| - succeeded

|| - failed

|| - abandonned (?)

+-- cn=Search

|| (same as Add operation above)

+-- cn=Delete

+-- cn=Compare

+-- cn=Modify

+-- cn=ModifyDN

+-- cn=Bind

+-- cn=SAP (Service Access Point)

+-- cn=listenerThread

|| settings:

|| - name

|| - isSecure

|| - host (?)

|| - port (?)

|| state:

|| - enabled

|| - operationalStatus

|| - statusDescription

|| - startTime

|| - stopTime

|| - stopException

|| statistics:

|| - acceptedConnections

|| - refusedConnections

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008374

+-- cn=listenerThread

|| (same as above)

+-- cn=RSAP (Remote SAP)

+-- cn=LDAP Server servername

|| settings:

|| - name

|| - isSecure

|| - host (?)

|| - port (?)

|| state:

|| - operationalStatus

|| - statusDescription

|| - started

|| - readOnly

|| statistics:

|| - totalConnections

|| - totalAvailableConnections

|| - totalBindConnections

|| - availableBindConnections

|| - bindConnectionsRequested

|| - bindConnectionsProvided

|| - bindConnectionsRefused

|| - bindConnectionsWaitsRequired

|| - bindConnectionsReturnedValid

|| - bindConnectionsReturnedInvalid

|| - (idem for readConnections)

|| - (idem for writeConnections)

+-- cn=LDAPS Server servername

|| (same as LDAP Server above)

+-- cn=RDBM Server servername

|| settings:

|| - TBC

|| state:

|| - TBC

|| statistics:

|| - TBC

+-- cn=Component (Logical Component)

+-- cn=DataSource Pool poolname

+-- cn=Proportional LB

|| settings:

|| - classname

|| state:

|| - enabled

|| statistics:

|| - totalBindConnectionsProvided

|| - totalBindConnectionsRefused

|| - totalAddConnectionsProvided

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 375

|| - totalAddConnectionsRefused

|| - totalCompareConnectionsProvided

|| - totalCompareConnectionsRefused

|| - totalDeleteConnectionsProvided

|| - totalDeleteConnectionsRefused

|| - totalModifyConnectionsProvided

|| - totalModifyConnectionsRefused

|| - totalModifyDNConnectionsProvided

|| - totalModifyDNConnectionsRefused

|| - totalCompareConnectionsProvided

|| - totalCompareConnectionsRefused

+-- cn=Add

|| settings:

|| - (empty)

|| status:

|| - operationalStatus

|| - statusDescription

|| statistics:

|| - providedConnections

|| - providedPercentage

|| - refusedConnections

|| - refusedPercentage

+-- cn=Search

|| (same as Add operation above)

+-- cn=Delete

+-- cn=Compare

+-- cn=Modify

+-- cn=ModifyDN

+-- cn=Bind

+-- cn=JVM

|| settings:

|| - version

|| - jvmInstallation

|| state:

|| - operationalStatus

|| - statusDescription

|| statistics:

|| - totalJVMMemory

|| - maxJVMMemory

|| - freeJVMMemory

|| - realFreeJVMMemory

|| - JVMMemoryLowLevelCount

|| - JVMMemoryVeryLowLevelCount

|| - availableCPU

+-- cn=Resource (System Resource)

+-- cn=Worker Thread

+-- cn=worker_thread_name

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008376

|| settings:

|| - threadID

|| - threadStack

|| state:

|| - operationalStatus

|| - statusDescription

|| - startTime

|| - started

|| - running

|| statistics:

|| - operationsProcessed

|| - exceptionsCaught

+-- cn=Byte Buffer Pool

|| statistics:

|| - numTries

|| - numHits

|| - numMissesEmptyPool

|| - numMissesBufferSize

|| - numReleases

|| - availableStandardBuffers

|| - availableOversizedBuffers

+-- cn=String Buffer Pool

|| statistics:

|| - numTries

|| - numHits

|| - numMisses

|| - numReleases

|| - availableBuffers

+-- cn=Vector Pool

|| statistics:

|| - numTries

|| - numHits

|| - numMisses

|| - numReleases

|| - availableVectors

+-- cn=Search Thread

+-- cn=search_thread_name

|| settings:

||

|| state:

|| - operationalStatus

|| - startTime

|| - stopTime

|| statistics:

||

+-- cn=Byte Buffer Pool

|| (see Worker Thread)

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 377

+-- cn=String Buffer Pool

|| (see Worker Thread)

+-- cn=vector Pool

|| (see Worker Thread)

+-- cn=Monitor Thread

+-- cn=monitor_thread_name

|| settings:

|| - started

|| - running

|| - startTime

|| - threadID

|| - threadStack

|| - backendServer

|| - checkInterval

|| - additionalCheckType

|| state:

|| - operationalStatus

|| - statusDescription

|| - serverAvailable

|| statistics:

|| - totalChecks

|| - availabilityChecksFailed

|| - additionalChecksFailed

+-- cn=Byte Buffer Pool

|| (see Worker Thread)

+-- cn=String Buffer Pool

|| (see Worker Thread)

+-- cn=vector Pool

|| (see Worker Thread)

+-- cn=Connection Handler Thread

+-- cn=connection_handler_thread_name

|| settings:

|| - threadID

|| - threadStack

|| state:

|| - operationalStatus

|| - startTime

|| - started

|| - running

|| - statusDescription

|| statistics:

|| - (empty)

+-- cn=Byte Buffer Pool

|| (see Worker Thread)

+-- cn=String Buffer Pool

|| (see Worker Thread)

+-- cn=Vector Pool

Monitoring Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008378

|| (see Worker Thread)

+-- cn=Work Queue

|| settings:

|| - maxNormalPriorityPeak

|| - maxHighPriorityPeak

|| - operationalStatus

|| - statusDescription

|| state:

|| - curNormalPriorityInQueue

|| - curHighPriorityInQueue

|| statistics:

|| - numNormalPriorityPuts

|| - numNormalPriorityGets

|| - numHighPriorityPuts

|| - numHighPriorityGets

|| - numAbandonRequests

|| - numAbandonSuccesses

+-- cn=DB System

+-- cn=DB Service

Monitoring Directory Proxy Server

Chapter 24 • Directory Proxy Server Alerts and Monitoring 379

380

Directory Proxy Server File Reference

This chapter describes the files found after you install Directory Proxy Server, and after you
create server instances.

The examples shown in this chapter are for Solaris systems. File extensions and path separators
may differ for your operating system. This chapter includes the following sections.

■ “Software Layout for Directory Proxy Server” on page 381
■ “Directory Proxy Server Instance Default Layout” on page 384

If you installed software from native packages, you may also use the packaging commands on
your system to list the files installed. For example, after installing from native packages on
Solaris systems, you can obtain a full list for a particular package using the pkgchk -v
package-name command.

If you installed software from a zip distribution, find lists of installed files in the
install-path/dsee6/data/ directory.

Software Layout for Directory Proxy Server
This section describes the file layout you find after installing Directory Proxy Server from the
zip distribution. All files locations are relative to the path where you installed the product. For
information on default native package installation locations, see “Default Paths and Command
Locations” on page 24.

install-path/dps6/
Directory Proxy Server files shared by server instances. This directory houses the following
files of interest.

install-path/dps6/bin/dpadm
Directory Proxy Server command for local administration. See dpadm(1M).

install-path/dps6/bin/dpconf
Directory Proxy Server command for configuration over LDAP. See dpconf(1M).

25C H A P T E R 2 5

381

install-path/dps6/etc/
Directory Proxy Server configuration templates, not intended to be used directly.

install-path/dps6/examples/
Sample Directory Proxy Server plug-ins (currently empty).

install-path/dps6/lib/
Shared Directory Proxy Server libraries, not intended for use directly.

install-path/dps6/resources/
Directory Proxy Server resource files, not intended to be used directly.

install-path/dscc6/
Directory Service Control Center agent files shared by multiple Directory Server Enterprise
Edition component products. This directory houses the following files of interest.

install-path/dscc6/bin/dsccmon
Command to monitor servers managed through Directory Service Control Center. See
dsccmon(1M).

install-path/dscc6/bin/dsccreg
Command to manage the Directory Service Control Center registry. See dsccreg(1M).

install-path/dscc6/bin/dsccsetup
Command to set up Directory Service Control Center. See dsccsetup(1M).

install-path/dscc6/etc/
Directory Service Control Center agent configuration information, not intended to be
used directly.

install-path/dscc6/lib/
Shared libraries, not intended to be used directly.

install-path/dsee6/
Files shared by multiple Directory Server Enterprise Edition component products. This
directory houses the following files of interest.

install-path/dsee6/bin/certutil
NSS certificate manipulation command used by other tools, not intended to be used
directly.

install-path/dsee6/bin/dsee_deploy
Command to install and remove software. See dsee_deploy(1M).

install-path/dsee6/bin/ldif
Command to base64 encode LDIF attribute values. See ldif(1)

install-path/dsee6/cacao_2.0/
Common agent container files shared by Directory Server Enterprise Edition component
products, not intended to be used directly.

Software Layout for Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008382

install-path/dsee6/data/
Lists of installed files used by the dsee_deploy command, not intended to be used
directly.

install-path/dsee6/lib/
Libraries shared by Directory Server Enterprise Edition component products, not
intended to be used directly.

install-path/dsee6/man/
Directory Server Enterprise Edition online reference manual pages. See also Sun Java
System Directory Server Enterprise Edition 6.3 Man Page Reference.

install-path/dsee6/private/include/
Directory SDK for C header files used by Directory Server Enterprise Edition component
products.

install-path/dsee6/private/lib/
Directory SDK for C shared libraries used by Directory Server Enterprise Edition
component products.

install-path/dsrk6/bin/ldapcmp
Directory Server Resource Kit command to compare LDAP entries from two directories. See
ldapcmp(1).

install-path/dsrk6/bin/ldapcompare
Directory Server Resource Kit command to perform LDAP compare operations. See
ldapcompare(1).

install-path/dsrk6/bin/ldapdelete
Directory Server Resource Kit command to delete directory entries. See ldapdelete(1).

install-path/dsrk6/bin/ldapmodify
Directory Server Resource Kit command to update entries over LDAP. See ldapmodify(1).

install-path/dsrk6/bin/ldappasswd
Directory Server Resource Kit command to change user passwords. See ldappasswd(1).

install-path/dsrk6/bin/ldapsearch
Directory Server Resource Kit command to search a directory. See ldapsearch(1).

install-path/dsrk6/lib/
Libraries used by Directory Server Resource Kit commands, not intended to be used directly.

install-path/jre/
Java Runtime Environment, not intended to be used directly.

install-path/var/
Container for runtime files, not intended to be used directly.

Software Layout for Directory Proxy Server

Chapter 25 • Directory Proxy Server File Reference 383

Directory Proxy Server Instance Default Layout
This section describes the file layout you find after creating a Directory Proxy Server instance.
The instance-path is the file system path where you created the instance.

instance-path/alias/
Certificate database files, not intended to be used directly.

instance-path/config/
Server configuration files, not intended to be used directly.

instance-path/etc/
Additional instance configuration, not intended to be used directly.

instance-path/logs/
Default server logs directory. The following files are stored here.

access logs This file records information about the requests processed
by Directory Proxy Server. For detail about access logs, see
“Access Logs for Directory Proxy Server” on page 348.

errors logs This file records errors, warnings, and informational
messages logged during Directory Proxy Server operation.
For detail about errors logs, see “Error Logs for Directory
Proxy Server” on page 345.

instance-path/tmp/
Server runtime files directory, not intended to be used directly.

Directory Proxy Server Instance Default Layout

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008384

Directory Server Resource Kit File Reference

This appendix describes the files found after you install Directory Server Resource Kit. You can
also find lists of installed files in the install-path/dsee6/data/ directory.

The examples shown in this appendix are for Solaris systems. File extensions and path
separators may differ for your operating system.

Software Layout for Directory Server Resource Kit
This section describes the file layout you find after installing Directory Server Resource Kit from
the zip distribution. All files locations are relative to the path where you installed the product.
For information on default native package installation locations, see “Default Paths and
Command Locations” on page 24.

install-path/dsee6/
Files shared by multiple Directory Server Enterprise Edition component products. This
directory houses the following files of interest.

install-path/dsee6/bin/certutil
NSS certificate manipulation command used by other tools, not intended to be used
directly.

install-path/dsee6/bin/dsee_deploy
Command to install and remove software. See dsee_deploy(1M).

install-path/dsee6/bin/ldif
Command to base64 encode LDIF attribute values. See ldif(1)

install-path/dsee6/cacao_2.0/
Common agent container files shared by Directory Server Enterprise Edition component
products, not intended to be used directly.

AA P P E N D I X A

385

install-path/dsee6/data/
Lists of installed files used by the dsee_deploy command, not intended to be used
directly.

install-path/dsee6/lib/
Libraries shared by Directory Server Enterprise Edition component products, not
intended to be used directly.

install-path/dsee6/man/
Directory Server Enterprise Edition online reference manual pages. See also Sun Java
System Directory Server Enterprise Edition 6.3 Man Page Reference.

install-path/dsrk6/bin/authrate
Directory Server Resource Kit command to measure authentication rate. See authrate(1).

install-path/dsrk6/bin/dsmlmodify
Directory Server Resource Kit command to update entries using DSML v2. See
dsmlmodify(1).

install-path/dsrk6/bin/dsmlsearch
Directory Server Resource Kit command to search a directory using DSML v2. See
dsmlsearch(1).

install-path/dsrk6/bin/example_files/
Sample template files for use with the makeldif.

install-path/dsrk6/bin/ldapcmp
Directory Server Resource Kit command to compare LDAP entries from two directories. See
ldapcmp(1).

install-path/dsrk6/bin/ldapcompare
Directory Server Resource Kit command to perform LDAP compare operations. See
ldapcompare(1).

install-path/dsrk6/bin/ldapdelete
Directory Server Resource Kit command to delete directory entries. See ldapdelete(1).

install-path/dsrk6/bin/ldapmodify
Directory Server Resource Kit command to update entries over LDAP. See ldapmodify(1).

install-path/dsrk6/bin/ldappasswd
Directory Server Resource Kit command to change user passwords. See ldappasswd(1).

install-path/dsrk6/bin/ldapsearch
Directory Server Resource Kit command to search a directory. See ldapsearch(1).

install-path/dsrk6/bin/ldapsubtdel
Directory Server Resource Kit command to delete a directory subtree recursively. See
ldapsubtdel(1).

install-path/dsrk6/bin/ldifxform
Directory Server Resource Kit command to transform LDIF content. See ldifxform(1).

Software Layout for Directory Server Resource Kit

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008386

install-path/dsrk6/bin/logconv
Directory Server Resource Kit command to analyze Directory Server access logs. See
logconv(1).

install-path/dsrk6/bin/makeldif
Directory Server Resource Kit command to generate LDIF content for testing and
benchmarking purposes. See makeldif(1).

install-path/dsrk6/bin/modrate
Directory Server Resource Kit command to measure rates of modifications to directory
entries. See modrate(1).

install-path/dsrk6/bin/searchrate
Directory Server Resource Kit command to measure search rates. See searchrate(1).

install-path/dsrk6/class/
Libraries used by Directory Server Resource Kit commands, not intended to be used directly.

install-path/dsrk6/lib/
Libraries used by Directory Server Resource Kit commands, not intended to be used directly.

Software Layout for Directory Server Resource Kit

Appendix A • Directory Server Resource Kit File Reference 387

388

Index

A
access, anonymous, 67
access control, 339

and replication, 44
bind rules, 54-66

access at specific time or day, 64-65
Boolean bind rules, 66
from specific IP address, 65
permissions, 51-53
placement of ACIs, 42, 306
targeting, 46-50
virtual, 306

ACI, 339
attribute, 42, 306
authmethod keyword, 65-66
bind rules, 54-66
from specific IP address, 65
groupdn keyword, 58
inheritance, 61
ip keyword, 65
permissions, 51-53
replication, 44
roledn keyword, 58-59
target overview, 46-50
userattr and parent, 61
userattr keyword, 59

ACI placement, 42, 306
ACIs, global, 307
administrative alerts, 355
approximate index, see indexing, 158-159
approximate searches, 241

attribute
ACI, 42, 306

attribute renaming properties, 272
attribute type field (LDIF), 220
attribute value field (LDIF), 220
attributes, searching for, 240
authentication, 331, 339

See also client authentication
See also server authentication
access control and, 65-66
anonymous, 332
certificate-based, 70-71, 332
client and server, 67-88
preventing, 87
SASL, 85
simple bind, 332

authmethod keyword, 65-66

B
-b option, 234
backendMonitorDN attribute, 111
backup files, Directory Server, 251
base DN, ldapsearch and, 237
bind replay, 313
bind rules

access at specific time or day, 64-65
access based on authentication method, 65-66
authmethod keyword, 65-66
Boolean, 66
group access, 58

389

bind rules (Continued)
groupdn keyword, 58
ip keyword, 65
overview, 54-66
role access, 58-59
roledn keyword, 58-59
timeofday keyword, 64-65
userattr keyword, 59

Boolean bind rules, overview, 66
Boolean operators, in search filters, 242
browsing indexes, 157-158
bytesSent attribute, 112

C
CA, hierarchies and root, 73-74
cache

database, 136-137
entry, 137
file system, 137-138
import, 137
total size, 138
use in searches, 138-140
use in suffix initialization, 142-144
use in updates, 140-142

cache-avail-bytes attribute, 112
cache optimization, 267
cache types, 135-138
central log directories, 25
certificate database, default path, 25
certificate database files

Directory Proxy Server, 384
Directory Server, 251

certificates
and LDAP Directory, 83-84
authentication using, 70-71
chains, 74
contents of, 80-82
issuing of, 83
overview of renewal, 84-85
revoking, 84-85
self-signed, 74
verifying a certificate chain, 76

ciphers, 341

class of service (CoS)
access control, 184
cache, 185
filtered role limitation, 184
limitations, 184-185
template entry, 179

classic CoS, 182
classichashavgclashlistlength attribute, 114
classichashavgclashpercentageperhash attribute, 114
classichashmemusage attribute, 115
classichashvaluesmemusage attribute, 115
client affinity, 261, 268
client requests, tracking, 351
cn=monitor

object classes, 111-113
read-only monitoring configuration

entries, 111-113
collation order, see indexing with matching rule, 159
command-line utilities, ldapsearch, 239-243
commas, in DNs, 231
commas in DNs, 243
compound search filters, 241-242
configuration attributes, monitoring configuration

attributes, 111-113
configuration files

Directory Proxy Server, 384
Directory Server, 251

configuring, attribute renaming properties, 272
connection attribute, 112
connection handler

request filtering policy, 327
resource limits policy, 326

connection handlers, 321
connectionPeak attribute, 112
contains-shared-entries property, 301
core server configuration attributes

backendMonitorDN, 111
bytesSent, 112
cache-avail-bytes, 112
classichashavgclashlistlength, 114
classichashavgclashpercentageperhash, 114
classichashmemusage, 115
classichashvaluesmemusage, 115
connection, 112

Index

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008390

core server configuration attributes (Continued)
connectionPeak, 112
currentconnections, 112
currenttime, 112
disk-dir, 114
disk-free, 114
disk-state, 114
dtablesize, 112
entriessent, 112
nbackends, 112
numclassicdefinitions, 115
numclassichashtables, 115
numclassictemplates, 115
numcosattributetypes, 115
numindirectdefinitions, 115
numpointerdefinitions, 115
numpointertemplates, 115
opscompleted, 112
opsinitiated, 113
readWaiters, 113
startTime, 113
threads, 113
totalConnections, 113
version, 113

CoS template entry, 179
creating the directory, 227-229
currentconnections attribute, 112
currenttime attribute, 112

D
-D option, 234
data source, LDAP, 311
data source pools, 261
data views, 324

JDBC, 302
join, 299
LDAP, 271
LDIF, 302
primary, 299
secondary, 299
virtual, 287

database, creating using LDIF, 227-229
database files, Directory Server, 252

default locations, 24-27
defining, attribute renaming properties, 272
directory creation, 227-229
Directory Proxy Server

architecture, 258
features, 260

directory server, searching, 233
disk-dir attribute, 114
disk-free attribute, 114
disk-state attribute, 114
distribution algorithm, 274
DN field (LDIF), 220
DN join rules, 300
DSMLv2, implementation, 189
dtablesize attribute, 112
dynamic groups, 174

E
encryption, 339

public-key, 102
end of file marker in LDIF input, 230
entries

creating using LDIF, 223-226
finding, 233
ordering in LDIF files, 232

entriessent attribute, 112
EOF marker in LDIF input, 230
equality index, see indexing, 154-156
equality search, 240
equality searches, example, 244
escaping characters, 243
excluding subtrees, 272

F
failover algorithm, 267
filter join rules, 300
filtering, 239
format, LDIF, 219-223
fractional replication, 129-130

Index

391

G
global account lockout, 266
global ACIs, 307
greater than or equal to searches, 240
groupdn keyword, 58
groups

access to directory, 58
dynamic, 174
static, 173

H
-h option, 235
HTTP header, 192

I
indexes

overview, 149-151
tuning, 150-151
types, 153-159

indexing
approximate index, 158-159
browsing, 157-158
equality index, 154-156
international, 159
matching rule index, 159
presence index, 153-154
substring index, 156-157
viewing the default indexes, 152
VLV, 157-158

install-path, 25
instance-path, 25
international index, see indexing, 159
internationalization

object identifiers and, 202-208
of LDIF files, 229-230
supported locales, 202-208

ip keyword, 65
isw-hostname directory, 25

J
Java Naming and Directory Interface, 23
JDBC attribute, 305
JDBC data source, 303
JDBC data source pool, 303
JDBC data views, 302
JDBC object class, 304
JDBC table, 304
join data views, 299
join rules, 300

K
keys

defined, 101
management and recovery, 84

keyword
ip, 65

L
-l option, 235
language subtypes, 208-211
language support, specifying using locales, 202-208
layout

Directory Proxy Server instance, 384
Directory Proxy Server software, 381-383
Directory Server instance, 251-253
Directory Server Resource Kit software, 385-387
Directory Server software, 247-250

LDAP_BASEDN, 237
LDAP data source, 311
LDAP search filters, DNs with commas and, 243
LDAP URLs

components of, 213-214
examples, 215-217

ldapdelete utility, DNs with commas, 231
ldapmodify utility, DNs with commas, 231
ldapsearch utility, 233

base DN and, 237
command-line syntax, 233
DNs with commas and, 243
examples, 236

Index

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008392

ldapsearch utility (Continued)
filters, 239
limiting attributes returned, 237-238
options, 234
search filters, 239-243
special characters, 234
specifying files, 237-238

LDIF
entry format, 219-223

organization, 223-224
organizational person, 225-226
organizational unit, 224-225

internationalization and, 229-230
ordering of entries, 232
using to create directory, 227-229

LDIF data views, 302
LDIF entries

creating, 223-226
organizational person, 225-226
organizational units, 224-225
organizations, 223-224

internationalization and, 229-230
LDIF files

creating directory using, 227-229
internationalization and, 229-230

LDIF format, 219-223
less than or equal to searches, syntax, 240
listeners, 336
load balancing, 262

failover, 267
operational affinity, 265
proportional, 263
saturation, 264

local log directory, 25
locales, supported, 202-208
lock files, Directory Server, 252
log files

Directory Proxy Server, 384
Directory Server, 252

logs
access, 348
deletion of, 344
Directory Proxy Server, 343
error, 345

logs (Continued)
message severity, 345
rotation of, 344

M
mapping transformation, 289
matching rule index, see indexing, 159
Message Queue, 24
metaphone phonetic algorithm in approximate

indexing, 158
monitoring

data sources, 356
Directory Proxy Server, 359
framework, 359

multi-master replication, 122-127
multiple search filters, 241-242

N
nbackends attribute, 112
non-viewable attribute, 298
non-writable attributes, 298
numclassicdefinitions attribute, 115
numclassichashtables attribute, 115
numclassictemplates attribute, 115
numcosattributetypes attribute, 115
numindirectdefinitions attribute, 115
numpointerdefinitions attribute, 115
numpointertemplates attribute, 115

O
object identifier (OID), 202-208
objectClass field (LDIF), 220
operational affinity algorithm, 265
operators

Boolean, 242
search filters and, 240-241

opscompleted attribute, 112
opsinitiated attribute, 113
organization, specifying entries for, 223-224

Index

393

organizational person, specifying entries for, 225-226
organizational unit, specifying entries for, 224-225
ou=monitor, 360

P
-p option, 235
partial replication, See fractional replication
password policy, design, 69-70
permissions, overview, 51-53
presence index, see indexing, 153-154
presence searches

example, 244
syntax, 240

prioritized replication, 128-129
private key, defined, 102
process-bind property, 301
properties, attribute renaming, 272
proportional algorithm, 263
proxy authorization, 315
public key

defined, 102
infrastructure, 83
management, 84

R
RA, See Registration Authority
read-only monitoring configuration attributes

backendMonitorDN, 111
bytesSent, 112
cache-avail-bytes, 112
connection, 112
connectionPeak, 112
currentconnections, 112
currenttime, 112
disk-dir, 114
disk-free, 114
disk-state, 114
dtablesize, 112
entriessent, 112
nbackends, 112
opscompleted, 112

read-only monitoring configuration attributes
(Continued)

opsinitiated, 113
readWaiters, 113
startTime, 113
threads, 113
totalConnections, 113
version, 113

read-only monitoring configuration entries,
cn=monitor, 111-113

read transformation, 290
readWaiters attribute, 113
Registration Authority, defined, 85
replication

and access control, 44
of ACIs, 44

request filtering policy, 327
request-que-backlog, 113
resource limits policy, 326
roledn keyword, 58-59
roles

access to directory, 58-59
limitations, 175-176

root DSE, 236

S
-s option, 235
SASL, 335
saturation algorithm, 264
schema, searching, 237
schema checking, virtual, 308
search data hiding rule, 328
search filters, 236, 239-243

Boolean operators, 242
compound, 241
contained in file, 237-238
examples, 239, 244-245
operators in, 240-241
specifying attributes, 240
specifying using a file, 242
syntax, 239
using attributes in, 240
using compound, 241-242

Index

Sun Java System Directory Server Enterprise Edition 6.3 Reference • April 2008394

search filters (Continued)
using multiple, 241-242
using operators in, 240

search types, list of, 241
searches

approximate, 241
equality, 240, 244
greater than or equal to, 240
less than or equal to, 240
presence, 240, 244
specifying scope, 235
substring, 240

searching, 233
secondary data views, 299
self-signed certificate, 74
serverroot directory, 25
sizing, total cache, 138
SLAMD Distributed Load Generation Engine, 23
special characters, 234, 243
SSL, 340
startTime attribute, 113
static groups, 173
subsets, 237
substring index, see indexing, 156-157
substring searches, 240
syntax, search filter, 239

T
target, overview, 46-50
template entry., See CoS template entry.
threads attribute, 113
timeofday keyword, 64-65
totalConnections attribute, 113
tracking client requests, 351
tuning

access control, 66-67
cache, 135-138
indexes, 150-151

U
user mapping, 319

userattr keyword, 59
restriction on add, 62

V
version attribute, 113
viewable attributes, 298
virtual access control, 306
virtual data views, 287

construction of, 287
virtual list view indexes, 157-158
virtual schema, 308
virtual transformation, 288

actions, 291
examples, 294
models, 289
parameters, 292

VLV, 157-158

W
-w option, 235
writable attributes, 298
write transformation, 290

X
-x option, 235

Z
-z option, 235

Index

395

396

	Sun Java System Directory Server Enterprise Edition 6.3 Reference
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Directory Server Enterprise Edition Documentation Set
	Related Reading
	Redistributable Files
	Default Paths and Command Locations
	Default Paths
	Command Locations

	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions
	Documentation, Support, and Training
	Third-Party Web Site References
	Searching Sun Product Documentation
	Sun Welcomes Your Comments

	Directory Server Reference
	Directory Server Overview
	Introduction to Directory Server
	Directory Server Architecture
	Comparison of Software Installation and Server Instances
	Communication With Client Applications
	Directory Server Configuration
	Data Storage in Directory Server
	Data Replication Between Server Instances
	Access Control in Directory Server

	Directory Server Security
	How Directory Server Provides Security
	How Directory Server Provides Access Control
	Introduction to ACIs
	Scope and Hierarchy in ACIs
	ACI Limitations
	Default ACIs
	ACIs and Replication
	Effective Rights

	ACI Syntax
	ACI Targets
	Target Syntax
	Target Keywords
	target Keyword
	targetattr Keyword
	targetfilter Keyword
	targattrfilters Keyword
	targetScope Keyword

	ACI Permissions
	Permission Syntax
	Permission Rights
	Permissions for Typical LDAP Operations

	ACI Bind Rules
	Introduction to Bind Rules
	Bind Rule Syntax
	Bind Rule Keywords
	userdn Keyword
	Syntax of the userdn Keyword
	LDAP URLs in the userdn Keyword
	groupdn Keyword
	roledn Keyword
	userattr Keyword
	Examples of userattr Keyword With Various Bind Types
	Use of the userattr Keyword With the parent Keyword for Inheritance
	Use of the userattr Keyword to Grant Add Permissions
	ip Keyword
	dns Keyword
	timeofday Keyword
	dayofweek Keyword
	authmethod Keyword

	Boolean Bind Rules

	Tuning and Access Control

	How Directory Server Provides Authentication
	Anonymous Access
	Password-Based Authentication
	Steps in Password-Based Authentication
	Password Policy
	Types of Password Policy
	Configuration of Password Policy

	Certificate-based Authentication
	Introduction to Certificate-based Authentication
	Steps for Configuring Certificate-based Authentication
	Certificates and Certificate Authorities (CA)
	CA Hierarchies
	Certificate Chains
	Verifying a Certificate Chain

	Types of Certificates
	Contents of a Certificate
	Certificate Management
	Issuing Certificates
	Certificates and the LDAP Directory
	Key Management
	Renewal and Revocation of Certificates
	Registration Authorities

	SASL-based Authentication
	Proxy Authorization
	Account Inactivation
	Global Account Lockout

	How Directory Server Provides Encryption
	Secure Sockets Layer (SSL)
	Overview of SSL
	Cryptographic Algorithms Used With SSL
	SSL Handshake
	Messages Exchanged During SSL Handshake
	Server Authentication During SSL Handshake
	Man-In-the-Middle Attack
	Client Authentication During SSL Handshake

	Digital Signatures
	Key Encryption
	Symmetric-Key Encryption
	Public-Key Encryption
	Key Length and Encryption Strength

	Attribute Encryption

	Directory Server Monitoring
	Ways to Monitor Directory Server
	Directory Server and SNMP
	Directory Server and CMM/JMX
	Directory ServerMonitoring Attributes
	cn=monitor
	backendMonitorDN
	bytesSent
	cache-avail-bytes
	connection
	connectionPeak
	currentConnections
	currentTime
	dTableSize
	entriesSent
	nbackEnds
	opsCompleted
	opsInitiated
	request-que-backlog
	readWaiters
	currentpsearches
	startTime
	threads
	totalConnections
	version

	cn=disk,cn=monitor
	disk-dir
	disk-free
	disk-state

	cn=counters,cn=monitor
	cn=monitor,cn=Class of Service,cn=plugins, cn=config
	classicHashAvgClashListLength
	classicHashAvgClashPercentagePerHash
	classicHashMemUsage
	classicHashValuesMemUsage
	numClassicDefinitions
	numClassicHashTables
	numClassicTemplates
	numCoSAttributeTypes
	numIndirectDefinitions
	numPointerDefinitions
	numPointerTemplates

	Directory Server Replication
	Introduction to Replication
	Types of Replica
	Unit of Replication
	Replica Identity
	Replication Agreements
	Replication Authentication
	Replication Change Log
	Change Sequence Number
	Replica Update Vector
	Deleted Entries: Tombstones
	Consumer Initialization and Incremental Updates
	Referrals and Replication

	Replication Configurations
	Multi-Master Replication
	Concepts of Multi-Master Replication
	Multi-Master Replication Over Wide Area Networks
	Group Mechanism and Window Mechanism
	Replication Compression Mechanisms

	Fully Meshed Multi-Master Topology

	Cascading Replication
	Prioritized Replication
	Fractional Replication

	Replication and the Retro Change Log Plug-In
	Retro Change Log and Multi-Master Replication
	Failover of the Retro Change Log
	Replication Conflicts and the Retro Change Log
	Restrictions on Using the Retro Change Log

	Directory Server Data Caching
	Caches and How Directory Server Uses Them
	Types of Cache
	Database Cache
	Entry Cache
	Import Cache
	File System Cache
	Total Aggregate Cache Size

	How Directory Server Performs Searches by Using Cache
	How Directory Server Performs Base Searches
	How Directory Server Performs Subtree and One-Level Searches

	How Directory Server Performs Updates by Using the Cache
	How Directory Server Initializes a Suffix by Using the Cache

	Tuning Cache Settings
	Basic Tuning Recommendations
	For Maximum Search Rate (Searches Only)
	For Maximum Modification Rate (Modifications Only)

	Small, Medium, and Large Data Sets
	Optimum Search Performance (Searches Only)
	Optimum Modify Performance (Modifications Only)

	Directory Server Indexing
	Overview of Indexes
	Tuning Indexes for Performance

	System Indexes and Default Indexes
	System Indexes
	Default Indexes

	Types of Index
	Presence Index
	Equality Index
	Substring Index
	Browsing Index
	Approximate Index
	International Index

	Directory Server Logging
	Introduction to Logs
	Retro Changelog
	Transaction Log
	Access, Error, and Audit Logs
	Access Logs
	Error Logs
	Audit Logs
	Content of Access, Error, and Audit Logs
	Time Stamp
	Connection Number
	File Descriptor
	Slot Number
	Operation Number
	Method Type
	LDAP Version
	Error Number
	Tag Number
	Number of Entries
	Elapsed Time
	LDAP Request Type
	LDAP Response Type
	Unindexed Search Indicator
	Extended Operation OID
	Change Sequence Number in Log Files
	Abandon Message
	Message ID
	SASL Multi-Stage Bind Logging
	Options Description

	Connection Codes in Log Files
	Result Codes in Log Files

	Directory Server Groups and Roles
	Directory Server Groups
	Static Groups
	Dynamic Groups
	Nested Groups

	Directory Server Roles
	Managed Roles
	Filtered Roles
	Nested Roles
	Limitations on Using Roles

	Directory Server Class of Service
	About CoS
	CoS Definition Entries and CoS Template Entries
	CoS Definition Entry
	CoS Template Entry

	Pointer CoS, Indirect CoS, and Classic CoS
	Pointer CoS
	Indirect CoS
	Classic CoS

	CoS Priorities
	CoS Limitations

	Directory Server DSMLv2
	Introduction to DSML
	Implementation of the DSMLv2 Standard
	DSML Security
	DSML Identity Mapping
	Content of the HTTP Header
	Accessing the Directory Using DSMLv2
	An Empty Anonymous DSML Ping Request
	Issuing a DSML Request to Bind as a Particular User
	A DSML Search Request

	Directory Server Internationalization Support
	About Locales
	Identifying Supported Locales
	Supported Language Subtypes

	Directory Server LDAP URLs
	Components of an LDAP URL
	Escaping Unsafe Characters
	Examples of LDAP URLs

	Directory Server LDIF and Search Filters
	LDIF File Format
	Continuing Lines in LDIF
	Binary Data in LDIF
	Representing Binary Data by Using Standard LDIF Notation
	Representing Binary Data by Using the ldapmodify -b Command
	Representing Binary Data by Using Base 64 Encoding

	Directory Entries in LDIF
	Organization Entries in LDIF
	Organizational Unit Entries in LDIF
	Organizational Person Entries in LDIF

	Guidelines for Defining Directories by Using LDIF
	Storing Information in Multiple Languages
	Guidelines for Providing LDIF Input
	Terminating LDIF Input on the Command Line
	Using Special Characters
	Using Attribute OIDs
	Schema Checking
	Ordering of LDIF Entries
	Managing Large Entries
	To Modify the Size Limit Enforced by the Server on Data Sent by Clients

	Error Handling

	Searching the Directory
	Searching the Directory With ldapsearch
	ldapsearch Command-Line Format
	Using Special Characters
	Commonly Used ldapsearch options

	ldapsearch Examples
	Returning All Entries
	Specifying Search Filters on the Command Line
	Searching the Root DSE Entry
	Searching the Schema Entry
	Using LDAP_BASEDN
	Displaying Subsets of Attributes
	Searching Multi-Valued Attributes
	Using Client Authentication When Searching

	LDAP Search Filters
	Search Filter Syntax
	Using Attributes in Search Filters
	Using Operators in Search Filters
	Using OIDs in Search Filters
	Using Compound Search Filters
	Specifying Search Filters Using a File
	Specifying Non 7-Bit ASCII Characters in Search Filters
	Escaped Characters in Distinguished Names within Search Filters

	Search Filter Examples
	Searching for Operational Attributes

	Directory Server File Reference
	Software Layout for Directory Server
	Directory Server Instance Default Layout

	Directory Proxy Server Reference
	Directory Proxy Server Overview
	Introduction to Directory Proxy Server
	Directory Proxy Server Architecture
	Overview of Directory Proxy Server Features

	Directory Proxy Server Load Balancing and Client Affinity
	LDAP Data Source Pools
	Load Balancing
	Introduction to Load Balancing
	Proportional Algorithm for Load Balancing
	Saturation Algorithm for Load Balancing
	Operational Affinity Algorithm for Load Balancing
	Disadvantage of Using the Operational Affinity Algorithm for Load Balancing
	Operational Affinity Algorithm for Global Account Lockout
	Operational Affinity Algorithm for Cache Optimization

	Failover Algorithm for Load Balancing

	Client Affinity

	Directory Proxy Server Distribution
	LDAP Data Views
	LDAP Data View Features
	Excluding a Subtree From a Data View
	Performing a Search Directed at a Superior Data View on an Excluded, Subordinate Data View
	Attribute Renaming and DN Renaming
	Attribute Renaming
	DN Renaming

	Distributing Entries In a Subtree to Different Data Views
	Limitations of Distribution Algorithms

	Use Cases for Data Views
	Data Views to Route All Requests, Irrespective of the Target DN of the Request
	Data Views to Route Requests When a List of Subtrees Are Stored on Multiple, Data-Equivalent Data Sources
	Data Views to Provide a Single Point of Access When Different Subtrees Are Stored on Different Data Sources
	Data Views to Route Requests When Different Parts of a Subtree Are Stored in Different Data Sources
	Data Views to Route Requests When Superior and Subordinate Subtrees Are Stored in Different Data Sources
	Data Views With Hierarchy and a Distribution Algorithm

	Directory Proxy Server Virtualization
	Construction of Virtual Data Views
	Virtual Data Transformations
	Transformation Models
	Mapping Transformations
	Write Transformations
	Read Transformations

	Transformation Actions
	Transformation Parameters
	Transformation Examples

	Additional Virtual Data View Properties
	Join Data Views
	Primary and Secondary Data Views
	Additional Secondary Data View Properties
	Join Rules
	DN Join Rules
	Filter Join Rules

	Handling of Shared Entries
	Handling of Binds

	How Directory Proxy Server Handles Read and Write Operations to Join Data Views
	Virtual Data Transformations on Join Data Views

	LDIF Data Views
	JDBC Data Views
	JDBC Data Sources and Data Source Pools
	JDBC Object Classes
	JDBC Tables
	JDBC Attributes
	Case Sensitivity in JDBC Data Views

	Access Control On Virtual Data Views
	Virtual ACI Definition
	Global ACIs
	Virtual ACI Syntax
	Virtual ACI Storage and Access
	Virtual ACI Application

	Virtual Schema Checking
	Schema Checking

	Virtual Data Views and LDAP Groups

	Connections Between Directory Proxy Server and Backend LDAP Servers
	LDAP Data Sources
	Connections Between Directory Proxy Server and Backend LDAP Servers
	Opening and Closing Connections Between Directory Proxy Server and Backend LDAP Servers
	Connection Pools Between Directory Proxy Server and Backend LDAP Servers

	Forwarding Request From Directory Proxy Server to Backend LDAP Servers
	Directory Proxy Server Configured for BIND Replay
	Directory Proxy Server Configured for Proxy Authorization
	Connections When Directory Proxy Server Is Configured for Proxy Authorization
	Directory Proxy Server Configured for Proxy Authorization and the Client Request Does Not Contain a Proxy Authorization
	Directory Proxy Server Configured for Proxy Authorization and the Client Request Does Contain a Proxy Authorization
	Security Issues When Directory Proxy Server Is Configured for Proxy Authorization

	Directory Proxy Server Configured to Forward Requests Without the Client Identity
	Directory Proxy Server Configured to Forward Requests As an Alternate User

	Connections Between Clients and Directory Proxy Server
	Criteria for Allocating a Connection to a Connection Handler
	Data Views for Connection Handlers
	Resource Limits Policies for Connection Handlers
	Customized Search Limits

	Request Filtering Policies for Connection Handlers
	Subtrees in the Request Filtering Policy
	Allowed Subtrees
	Prohibited Subtrees

	Search Data Hiding Rules in the Request Filtering Policy

	Directory Proxy Server Client Authentication
	Client Authentication Overview
	Simple Bind Authentication
	Password Encryption and Verification

	Certificate-Based Authentication
	Configuring Certificates in Directory Proxy Server
	Using SASL External Bind

	Anonymous Access
	Directory Proxy Server Client Listeners

	Security in Directory Proxy Server
	How Directory Proxy Server Provides Security
	Secure Sockets Layer for Directory Proxy Server
	Ciphers and Protocols for Directory Proxy Server

	Directory Proxy Server Logging
	Introduction to Directory Proxy Server Logs
	Log File Rotation
	Log File Deletion
	Message Severity
	Error Logs for Directory Proxy Server
	Error Log Levels
	Format of an Error Message

	Access Logs for Directory Proxy Server
	Access Log Levels
	Format of an Access Log Message
	Message Parts in an Access Log
	Access Log Buffer

	Tracking Client Requests Through Directory Proxy Server and Directory Server Access Logs
	Tracking Operations by Connection
	Tracking Operations in Directory Proxy Server
	Tracking Operations Between Directory Proxy Server and Directory Server

	Client Identification

	Directory Proxy Server Alerts and Monitoring
	Administrative Alerts for Directory Proxy Server
	Monitoring Data Sources
	How Data Sources Are Monitored
	Monitoring a Data Source by Listening for Errors
	Monitoring Data Sources by Periodically Establishing Dedicated Connections
	Monitoring Data Sources by Testing Established Connections

	Responding to the Failure of a Data Source

	Monitoring Directory Proxy Server
	Monitoring Framework for Directory Proxy Server
	Simplified Layout of the cn=monitor Entry
	Status of Monitored Information
	Description of Each Entry Under the cn=monitor Entry
	cn=Product
	cn=Operating System
	cn=Instance
	cn=Service
	cn=SAP
	cn=RSAP
	LDAP Remote SAP

	cn=Component
	Proportional Load Balancing Algorithm For All Data Sources
	Proportional Load Balancing Algorithm For Individual Data Sources

	cn=JVM
	cn=Resource
	Connection Handler Thread
	Work Queue
	Worker Thread
	Search Thread
	Monitor Thread

	Detailed Layout of the cn=monitor Entry

	Directory Proxy Server File Reference
	Software Layout for Directory Proxy Server
	Directory Proxy Server Instance Default Layout

	Directory Server Resource Kit File Reference
	Software Layout for Directory Server Resource Kit

	Index

