
1

Release Notes for
Sun™ ONE Message Queue
Version 3.0
Updated June, 2002

These release notes contain important information available at the time of release of Version 3.0 of
Sun ONE Message Queue (MQ). New features and enhancements, known limitations and
problems, technical notes, and other information are addressed here. Read this document before
you begin using MQ 3.0.

The most up-to-date version of these release notes can be found at the Sun ONE documentation
web site: http://docs.iplanet.com/docs/manuals/. Check the web site after installing your
software, and then periodically thereafter, to view the most up-to-date version of these notes.

These release notes contain the following sections:

• Java Message Service (JMS) Compliance

• MQ Documentation Updates

• What’s New in MQ 3.0

• Compatibility Issues

• Known Limitations

• Known Bugs

• Known Bugs

• Functionality Marked as Optional in JMS

• Technical Notes

• How to Report Problems

• For More Information

Java Message Service (JMS) Compliance

2 Sun ONE Message Queue Release Notes • June, 2002

Java Message Service (JMS) Compliance

MQ 3.0 is designed to be compliant with the Java Message Service (JMS) 1.1 specification. Because
an official Compatibility Test Suite (CTS) for JMS has not yet been released, we are unable to
provide verification of JMS 1.1 compliance.

Known bugs related to JMS compliance, and their workarounds, are listed in the “Known Bugs”
section of this document.

MQ Documentation Updates

The following MQ 3.0 documents have been updated from Version 2.0 of the product—formerly
called iPlanet Message Queue (iMQ). These updated documents can be found at the Sun ONE
documentation web site: http://docs.iplanet.com/docs/manuals/.

Installation Guide
The MQ 3.0 product includes an updated MQ Installation Guide.

Administrator’s Guide
The MQ Administrator’s Guide has been updated to include new MQ 3.0 features (see “What’s New
in MQ 3.0” on page 3).

Developer’s Guide
The MQ Developer’s Guide has been updated to include new MQ 3.0 features (see “What’s New in
MQ 3.0” on page 3).

What’s New in MQ 3.0

Release Notes for Sun ONE Message Queue™ (MQ) 3

What’s New in MQ 3.0

The MQ 3.0 product includes a number of changes to Version 2.0 of the product—iMQ 2.0 (and
iMQ 2.0, Service Pack 1).

Notable among these changes is that the product is now available in two editions: a Platform
Edition and an Enterprise Edition.

Platform Edition. Provides basic JMS support, and is best suited to small-scare deployments and
development environments

Enterprise Edition. Provides HTTP/HTTPS support, enhanced scalability, and security features,
and is best suited to large-scale deployments.

(See the introduction to the MQ Administrator’s Guide or the MQ Developer’s Guide for more
information on these editions.)

The descriptions, below, of changes in the MQ 3.0 product are grouped according to whether they
apply to both editions or to the Enterprise Edition only.

Both Enterprise and Platform Editions
• Support for distributed transactions

MQ now supports the JTA XA Resource API, meaning that production and consumption of
messages can be part of a larger distributed transaction involving other resource managers,
such as database managers (see Chapter 1 of the MQ Developer’s Guide). This feature is also
supported with administrative tools for managing transactions (see Table 6-12 of the MQ
Administrator’s Guide). Programming information and examples are not yet available in the MQ
3.0 release product.

• Support for JMS 1.1

MQ now supports the added features of the JMS 1.1 specification, which provides a simplified
approach to JMS client programming as compared to JMS 1.0.2. In particular, a JMS client can
perform both point-to-point and publish/subscribe messaging over the same connection and
within the same session, and can include both queues and topics in the same transaction.

What’s New in MQ 3.0

4 Sun ONE Message Queue Release Notes • June, 2002

In short, a JMS client developer need not make a choice between the separate point-to-point
and publish/subscribe programming domains of JMS 1.0.2, opting instead for the simpler,
unified domain approach of JMS 1.1. This is the preferred approach, however the JMS 1.1
specification continues to support the separate JMS 1.0.2 programming domains. (In fact, the
example applications included with the MQ product as well as the code examples provided in
the MQ Developer’s Guide all use the separate JMS 1.0.2 programming domains.)

• Support for SOAP messaging using JAXM

Supports creation and delivery of messages that conform to the Simple Object Access Protocol
(SOAP) specification, using JAXM—the Java API for XML Messaging. SOAP allows for the
exchange of structured XML data between peers in a distributed environment. MQ also
supports the delivery of SOAP messages via JMS messaging. See the MQ Developer’s Guide for
more information.

• Improvements in persistent store

MQ now provides more flexibility in balancing disk space and performance when using the
built-in persistent store (see Table 2-5 of the MQ Administrator’s Guide). Also, administrators
now have the option of removing only messages or durable subscriptions from the persistent
store when restarting a broker (see reset option in Table 5-2 of the MQ Administrator’s Guide).

• Overriding JMS message header fields

MQ now allows an administrator to better control message server resources by overriding the
JMS message header fields that specify message persistence, priority, and expiration (see Table
4-4 of the MQ Developer’s Guide).

• Improved management of durable subscriptions

MQ now supports the purging of all messages for a specified durable subscription (see
Table 6-11 of the MQ Administrator’s Guide).

• New hostname configuration property

MQ now supports more than one network interface card on a computer by letting
administrators choose which hostname will be used by MQ connection services (see Table 2-3
of the MQ Administrator’s Guide).

NOTE Developers of applications that run in the Sun ONE Application Server environment
are limited to using the JMS 1.0.2 API. This is because the Sun ONE Application
Server complies with the J2EE 1.3 specification, which supports only JMS 1.0.2. This
means that any JMS messaging performed in servlets and EJBs (including
message-driven beans) must be based on the domain-specific JMS APIs.

What’s New in MQ 3.0

Release Notes for Sun ONE Message Queue™ (MQ) 5

• Updating the default queue delivery policy

MQ now allows an administrator to update the default delivery policy set for a queue
destination (see Table 6-10 of the MQ Administrator’s Guide).

• Support for Java 2 Platform, Standard Edition (J2SE) 1.4

The broker and MQ administration tools are now supported on the Java Runtime Environment
(JRE) 1.4, and JMS clients are now supported on the Java Software Development Kit (JDK) 1.4.

• New file system layout on Solaris

The installed directory structure of MQ 3.0 on Solaris has been changed to conform to general
file system standards for the platform. MQ 3.0 files are no longer installed under a single root
installation directory, but are dispersed to standard locations in the Solaris file system.

Enterprise Edition Only
• Support for secure HTTP (HTTPS)

MQ now supports secure messaging over HTTP (see Appendix B of the MQ Administrator’s
Guide). This new connection service provides for encryption of messages from message
producer through to message consumer (that is, from JMS client, through HTTPS tunnel
servlet, to broker, and visa versa).

• Increased client connection capacity

MQ now provides a threadpool sharing option that can increase the number of client
connections that can be made to an MQ broker (see Chapter 2 of the MQ Administrator’s Guide).

Compatibility Issues

6 Sun ONE Message Queue Release Notes • June, 2002

Compatibility Issues

Due to changes made to improve features, MQ 3.0 is generally not compatible with iMQ 2.0. In
particular, there are a number of issues that you might need to address when upgrading from
iMQ 2.0 to MQ 3.0:

• Broker Compatibility

• Administered Object Compatibility

• Administration Tool Compatibility

• Client Compatibility

Broker Compatibility
An MQ 3.0 broker will not inter-operate with an iMQ 2.0 broker due to changes in broker properties
and in the persistent store schema. However, some iMQ 2.0 data is compatible with MQ 3.0, as
shown in Table 1, and can be preserved when upgrading to MQ 3.0. When upgrading from iMQ 2.0
to MQ 3.0, you should consider the following:

• You can copy iMQ 2.0 config.properties files to another location and, in most cases, consult
the property settings they contain when you configure MQ 3.0 brokers.

• Any persistent iMQ 2.0 data—messages, destinations, durable subscriptions—cannot be
re-used. In particular, you will need to re-create iMQ 2.0 destinations in your MQ 3.0 brokers.

• You can continue to use iMQ 2.0 user repository and access control properties files after
installing MQ 3.0. The MQ 3.0 installer does not overwrite these files. However, you will have
to move them to the appropriate MQ 3.0 location (see Appendix D of MQ Administrator’s
Guide).

Table 1 Compatibility of MQ 3.0 with iMQ 2.0 Data

iMQ 2.0 Data Category Location of iMQ 2.0 Data Compatibility with MQ 3.0

Broker properties IMQ_VARHOME/stores/brokerName/
props/config.properties

Incompatible; do not use.

Persistent store (messages,
destinations, durable
subscriptions, transactions)

IMQ_VARHOME/stores/brokerName/
filestore/
or JDBC-accessible data store

Incompatible; do not use.

Administered objects local directory or LDAP server Compatible; can use and/or convert
to 3.0.

Compatibility Issues

Release Notes for Sun ONE Message Queue™ (MQ) 7

Administered Object Compatibility
MQ 3.0 administered objects have been enhanced with new attributes and iMQ 2.0 attributes have
been renamed. Therefore, when upgrading from iMQ 2.0 to MQ 3.0, you should consider the
following:

• You can use the same object store and administered objects that you created in iMQ 2.0;
however, it is best to upgrade your administered objects after installing MQ 3.0. The
Administration Console (imqadmin) and the ObjectManager command line utility (imqobjmgr),
when performing an update operation, will convert iMQ 2.0 administered objects into MQ 3.0
administered objects.

• The MQ 3.0 client runtime will look up and instantiate iMQ 2.0 administered objects by
converting them into local MQ 3.0 administered objects, but this will not convert iMQ 2.0
administered objects in the object store into MQ 3.0 administered objects.

• JMS clients (applications and/or components) that directly instantiate administered
objects—that is, that are JMS provider-dependent—need to be rewritten to accommodate new
administered object attribute names (see Chapter 4 and Appendix A of the MQ Developer’s
Guide for information on administered object attributes).

• Scripts that start JMS clients and which set administered object attribute values using command
line options need to be rewritten to accommodate the new administered object attribute names
(see Chapter 4 and Appendix A of the MQ Developer’s Guide for information on administered
object attributes).

Security: user repositories IMQ_VARHOME/security/passwd
or LDAP server

Compatible.
Move to following location:
IMQ_HOME/etc/passwd
(/etc/imq/passwd on Solaris)

Security: access control file IMQ_VARHOME/security/
accesscontrol.properties

Compatible.
Move to following location:
IMQ_HOME/etc/...
(/etc/imq/... on Solaris)

Table 1 Compatibility of MQ 3.0 with iMQ 2.0 Data (Continued)

iMQ 2.0 Data Category Location of iMQ 2.0 Data Compatibility with MQ 3.0

Compatibility Issues

8 Sun ONE Message Queue Release Notes • June, 2002

Administration Tool Compatibility
Because of the renaming of many files and directories (specifically to replace the string “jmq” with
“imq”), all MQ 3.0 command line utilities, broker properties, administered object attributes, and
internal file names have changed. Therefore, when upgrading from iMQ 2.0 to MQ 3.0, you should
consider the following:

• Any scripts that use command line utilities (imqbrokerd, imqcmd, imqobjmgr, and so forth)
need to be edited to replace the old commands with the newly-named commands. Note,
especially, that the jmqbroker command is now imqbrokerd.

• The Administration Console (imqadmin) allows you to manage several brokers and/or object
stores concurrently, and saves the list of managed entities that are displayed in the navigational
pane on the left side of the screen. Thus each time you launch the Console, the list of managed
entities is redisplayed. The name of the directory in which user settings for the iMQ 2.0
Administration Console were stored has changed for MQ 3.0. If you wish to preserve the old
Console settings when upgrading from iMQ 2.0 to MQ 3.0, you need to change the name of the
directory where the brokerlist.properties and objstorelist.properties files are stored
from $HOME/.jmq/admin to $HOME/.imq/admin, where $HOME is the Console user’s home
directory.

Client Compatibility
When upgrading from iMQ 2.0 to MQ 3.0, you should consider the following:

• An MQ 3.0 broker will support the iMQ 2.0 client runtime (but without additional MQ 3.0
capabilities), but an iMQ 2.0 broker will not support the MQ 3.0 client runtime.

• JMS clients built on JDK 1.2, 1.3, or 1.4 can inter-operate with a broker running JRE 1.4.
However, clients that use a secure (SSL-based) connection to a broker will require additional
JSSE and JNDI libraries if they are not built on JDK 1.4 (which includes these libraries).

• The JMS 1.1 API (supported by MQ 3.0) clarifies the behavior of the Message.acknowledge()
method, used to acknowledge message consumption in CLIENT_ACKNOWLEDGE sessions. This
might require you to modify existing JMS clients.

This Message.acknowledge() method now acknowledges all messages consumed in the
session at the time the method is called. This change in behavior from the 1.0.2 API (supported
by iMQ 2.0) is illustrated in the following example: suppose a client consumes four messages
from a queue in the same session, say A, B, C, and D in that order, and all were consumed
before the client calls the acknowledge method on message C.

❍ In 1.0.2, only messages A, B, and C, would get acknowledged since D was consumed after
message C.

❍ In 1.1, all the messages (including D) are acknowledged since they were all consumed.

Compatibility Issues

Release Notes for Sun ONE Message Queue™ (MQ) 9

The acknowledgement is independent of the order in which messages are consumed, so long as
they are consumed in the same session; or stated another way, the message on which the
acknowledge() method is called no longer determines which messages get acknowledged.

• The JMS 1.1 API (supported by MQ 3.0) clarifies the use of the client identification used to keep
track of durable subscriptions. This might require you to modify existing JMS clients.

In iMQ 2.0, the behavior was to automatically set the ClientID to the local IP address of the
client if a durable subscription was created without explicitly setting a ClientID value. In MQ
3.0, the behavior is to throw an exception if a durable subscription is created without explicitly
setting a ClientID value. In other words a ClientID value must always be set—either in client
code or using an attribute of the connection factory object—when durable subscriptions and
durable connection consumers are used.

• When using message selectors in iMQ 2.0, a workaround was necessary to accommodate a bug
that has been fixed in MQ 3.0. This might require you to modify existing JMS clients.

In iMQ 2.0, if a string literal contained multi-byte characters, you had to use a double escape on
Unicode characters (for example, selector = “property = ‘\\u033e\\u033f’”). In MQ 3.0,
the normal representation for Unicode characters can be used (for example, selector =
“property = ‘\u033e\u033f’”).

Known Limitations

10 Sun ONE Message Queue Release Notes • June, 2002

Known Limitations

Limitations shown in this section are grouped according to whether they apply to both Enterprise
and Platform Editions of MQ 3.0 or to the Enterprise Edition only.

Both Enterprise and Platform Editions
• Windows platforms set limits to the number of simultaneous connections to a broker, in

accordance with the maximum value of the backlog size. Backlog is the buffer for connections
in the TCP stack—the number of simultaneous connections cannot exceed the backlog size. For
example, Windows 2000 Professional limits the backlog to 5, and Windows 2000 Server limits
the backlog to 200.

• Automatic reconnection of JMS clients to brokers is limited to connections where the client-side
state can be fully restored on the broker upon reconnection. In all other cases, the connection
Exception handler will get called and the client has to manually restore state.

Clients using any of the following objects will have to explicitly restore state: temporary
destinations, transacted sessions, CLIENT_ACKNOWLEDGE sessions, or ConnectionConsumer
objects.

• Messages for different message consumers on a single connection are sent to the consuming
client without regard to the precedence of the message consumers and their sessions. This
means that a message consumer with a large number of pending messages in one session can
adversely affect the performance of other sessions on the same connection. Message consumers
that are expected to have very different message throughput levels should use different
connections.

• You cannot edit a broker’s instance configuration file without having started the broker
instance at least once. This is because the config.properties file does not exist until the
broker instance is first started. To configure a broker to use pluggable persistence or to set other
configuration properties, run the broker once (with the instance name that should be used to
create the broker) to create the config.properties file:

IMQ_VARHOME/instances/brokerName/props/config.properties
(/var/imq/instances/brokerName/props/config.properties on Solaris)

Once the config.properties file has been created, edit the file to add any configuration
property values and then restart the broker.

Known Limitations

Release Notes for Sun ONE Message Queue™ (MQ) 11

• Due to an error, the .class files were omitted from the example application directories in the
MQ product:

IMQ_HOME/demo/ (/usr/demo/imq/ on Solaris)

Should you need to compile these example applications, please follow the instructions in
Chapter 2 of the MQ Developer’s Guide.

Enterprise Edition Only
• The broker’s shared thread pool model does not work on Windows platforms (due to a bug in

JRE 1.4).

• Only fully-connected broker clusters are supported in this release. This means that every broker
in a cluster must communicate directly with every other broker in the cluster. If you are
connecting brokers using the imqbrokerd -cluster command line argument, be careful to
ensure that all brokers in the cluster are included.

• If a Master Broker is not used in a broker cluster, persistent information stored by a broker
being added to the cluster is not propagated to other brokers in the cluster.

• A connection service using SSL is currently limited to supporting only self-signed server
certificates, that is, host-trusted mode. The connection configuration property
imqSSLIsHostTrusted is set to true by default.

• MQ 3.0 is supported on Linux 7.1, but Sun ONE Web Server 6.0 SP2—a servlet provider of the
kind required for the HTTP tunneling feature—is not supported on Linux 7.1.

If you encounter problems running Web Server 6.0 SP2, on Linux 7.1, you can run the Web
Server on an officially supported platform; that is, on a host different from that running the
broker.

• When a JMS client using the HTTP transport terminates abruptly (for example, using Ctrl-C)
the broker takes approximately one minute before the client connection and all the associated
resources are released.

If another instance of the client is started within the one minute period and if it tries to use the
same ClientID, durable subscription, or queue, it might receive a “Resource in conflict”
exception. This is not a real problem; it’s just the side effect of the termination process described
above. If the client is started after a delay of approximately one minute, everything should
work fine.

Known Bugs

12 Sun ONE Message Queue Release Notes • June, 2002

Known Bugs

This section contains a listing of the more important bugs known at the time of the MQ 3.0 release.

For a list of current bugs, their status, and workarounds, Java Developer Connection (TM) members
should see the Bug Parade page on the Java Developer Connection web site. Please check that page
before you report a new bug. Although not all MQ bugs are listed here, it is a good starting place if
you want to know whether a problem has been reported.

The relevant page is:

http://developer.java.sun.com/developer/index.html

To report a new bug or submit a feature request, send mail to imq-feedback@sun.com.

NOTE Java Developer Connection membership is free but does require registration for
access. Details on how to become a Java Developer Connection member are
provided on Sun’s “For Developers” web page.

Table 2 Bug Descriptions

Bug Number Details

4428745 A client connecting to a broker over HTTP may not receive notification that the broker has
been shut down if that shutdown happens while the web server is down.

The HTTP servlet maintains connections to the broker across webserver restarts. This
prevents a client from realizing that the broker has shutdown until after both the webserver
and the broker have been restarted.

Workaround: You should make sure the broker is restarted promptly if there are HTTP
clients. You can also set the client’s ConnectionFactory property imqAckTimeout to a
non-zero value to limit the timeout when using HTTP tunneling; this will help in situations
where the HTTP client waits for replies from the broker.

4430941

Release Notes for Sun ONE Message Queue™ (MQ) 13

4430941 imqadmin/imqobjmgr: Will not list objects of unknown type

An object store is used to store MQ administered objects. It is accessed using the Java Naming
and Directory Interface (JNDI). This API or interface can be used to store any kind of objects
(not just MQ administered objects). Additionally, LDAP Directory Servers generally allow
you to store various types of objects.

It is then possible for an object store to contain a variety of objects—some of which are not
relevant to MQ. The MQ administration tools (imqobjmgr and imqadmin) currently only
list or display MQ administered objects. This may prevent administrators from realizing that
there are other objects located in the object store. This issue may be important when the
administrator attempts to add a new object to the object store. This is because it is possible
that the lookup name specified is already in use by an object (that is not listed or displayed by
the administration tools), causing an error.

The administration tools provided with the LDAP server should provide you with the means
to view all the objects in the object store.

This will be addressed in a future release.

Workaround: None.

4431924 imqadmin: modal dialogs can get into deadlock situation

The Administration Console uses dialogs that are application modal. Most of these dialogs
are brought up explicitly by interacting with the graphical user interface, for example, by
selecting the Add Brokers menu item.

On the other hand, some of these dialogs appear as a result of a lost broker connection.

It is possible for multiple modal dialogs to be visible at the same time. When this happens, the
Administration Console is locked. You will not be able to dismiss either modal dialog using
the Close button.

Workaround: Dismiss the top most dialog using the window manager controls i.e.

- the 'X' button at the upper right corner on Windows

- the 'Close' window manager menu item on Solaris

4449354 In extremely rare cases, calling the methods Connection.stop, Connection.start, and
Connection.close at the same time as calling the methods Session.recover and
Session.rollback (in separate threads) may result in an unexpected message redelivery
order.

Workaround: make sure your calls to the Connection… and Session… methods
specified above are serialized either by using the same thread or by using synchronization.

Table 2 Bug Descriptions (Continued)

Bug Number Details

4487650

14 Sun ONE Message Queue Release Notes • June, 2002

4487650 The wrong port number for a service may be seen after the port is updated on Linux.

The port number for a service can not be dynamically updated on Linux (because of a JDK
bug). When you attempt to update the service using imqcmd, the command will fail with the
following error: [B3109]: Cannot update service port number dynamically. The change will
take effect after a broker restart. However, any future queries of the service will show the
future port number (which will take affect after restart), not the actual port number of the
service.

Workaround: Restart the broker after changing the port number.

4487661 On Linux, changing the portmapper port will not immediately take affect

A JDK bug on Linux prevents the broker from receiving immediate notification that the old
socket used by the portmapper has been closed. Once a connection is attempted to the
original port, the broker will received notification that the old port is closed and correctly
configure the system. Until this notification is received, the new port will not respond to
requests.

Workaround: After changing the portmapper port, query the broker on the old port
number, for example:

imqcmd query bkr -b host:old broker port

After this query, the broker will respond on the new port.

4635816 The Print Dialog from the Help Viewer in the Administration Console does not work when
the Help Viewer is launched from a modal dialog on Solaris.

Workaround: Dismiss the modal dialog from which the Help Viewer was launched. This will
enable the Print Dialog and make it usable.

4679837 Client sometimes throws JMSException on connection.close() when TLS is used as
transport. This problem is related to an SSL problem in JDK1.4 and bug 4688051 in the client.

Workaround: Either ignore the Exception encountered when closing the connection or use
JRE 1.2 or 1.3 on the client if you encounter this problem.

4683326 Locking protocol times out under heavy load.

Heavy network traffic with large messages can occasionally clog the cluster connections. If
you are running queue receiver or durable subscription clients with broker clusters, the
increased latency can sometimes cause locking protocol timeout errors. As a result the client
may get a "Resource in conflict" exception while trying to create consumers.

Normally these problems can be avoided by using a higher speed connection. However if
that’s not possible you can also set the following broker configuration property to increase the
locking protocol timeout -

imq.cluster.locktimeout (value in seconds)

Table 2 Bug Descriptions (Continued)

Bug Number Details

4685101

Release Notes for Sun ONE Message Queue™ (MQ) 15

4685101 Broker shuts down itself under heavy load on Linux...

When the broker gets close to exhausting the JVM heap space used by Java objects it uses
various techniques such as flow control and message swapping to free the memory. Under
extreme circumstances it even closes client connections in order to free the memory and
reduce the message inflow.

However if the maximum Java heap space is configured incorrectly the broker can continue
to grow the Java heap space externally until the entire system runs out of memory. This can
result in unpredictable broker crashes/shutdown. It can also affect the behavior of other
applications and services running on the system.

This problem can be avoided by configuring a sensible Java heap size limit using the -Xmx
Java command line argument. In general it is a good idea to evaluate the normal and peak
system memory footprints and configure applications accordingly.

4685329 Two-broker durable test failures.

Running a broker cluster without a master broker (imq.cluster.masterbroker) can lead
to unpredictable failures especially with durable subscription clients. The master broker is
necessary to ensure the consistency of the persistent state information maintained by the
clustered brokers. Please see the MQ Administrator’s Guide for more details.

4687290 Broker shuts down itself in Windows

If the broker does not have sufficient memory to handle the incoming message flow, it can get
out of memory exceptions. Normally broker tries to recover from such errors. However if the
attempt to free memory fails, in some cases the broker has no choice but to bail out.

This situation can be avoided by allocating sufficiently large JVM heap using the -Xmx java
command line argument.

4688051 Client can get an EOFException when rapidly creating and closing connections to the
broker.

Workaround: None. The exception is printed to the console and can be ignored. No message
loss occurs.

4689962 The output of various admin utilities is neatly aligned in columns and in some cases,
bordered with dashes ("-").

However, in the Japanese locale, the alignment is sometimes off and the borders are too short.

Workaround: None

4694340 On Redhat Linux 7.1, the Java VM can sometimes crash with a SIGSEGV. This is JDK bug
Id 4629175. This may be more likely to happen when you terminate the broker or client using
a Ctrl-C.

Workaround: Broker: Use the next version of the JRE which fixes this problem when it
becomes available. Client: Use either the 1.2 or 1.3 JRE on Linux

Table 2 Bug Descriptions (Continued)

Bug Number Details

4694971

16 Sun ONE Message Queue Release Notes • June, 2002

4694971 Standalone JTS/XA transaction completion may fail ocassionally, even after a normal,
error-free XAConnection.close().

Workaround: In most cases, completing the transaction, by calling the commit() or
rollback() method on the TransactionManager before closing the connection using
XAConnection.close() avoids the problem.

4696361 When the print button in the Help Viewer of the Administration Console is selected, the print
dialog does not come up.

Workaround: None

4700851 Client does not clean up local transaction after ending an XA transaction

When an XA transaction is ended, a local transaction is started with the broker that isn’t
cleaned up until the connection is closed. This can cause broker memory to grow on
long-lived connections that use distributed transaction connections.

This will be fixed in a future release.

Workaround: None

4701982 The Administration Console cannot be launched on Solaris or Linux if the CLASSPATH
environment variable is set

A java.lang.NoClassDefFoundError will be seen when the imqadmin script is
invoked. This is due to a typo in the imqadmin script.

Workaround: Unset the CLASSPATH variable.

4702152 For messages acknowledged as part of a consumer-side transaction, broker holds on to some
unnecessary state information for each acknowledged message until the consumer is closed.

This may cause the broker to grow in size if a long running transacted consumer receives a
large number of messages.

Workaround: Use CLIENT_ACKNOWELDGE instead of transactions, or periodically close the
long-running consumer.

4704186 Corrections in the example applications README file (demo/jms/README)

1. On line 502: "AsyncTopicExample" should be "AsynchTopicExample"

2. On line 724: Should mention that the <systemid_url> command line option refers to the
URL that contains the DTD for the <xml_filename> command line option.

Workaround: As stated above.

Table 2 Bug Descriptions (Continued)

Bug Number Details

Bugs Fixed in 3.0

Release Notes for Sun ONE Message Queue™ (MQ) 17

Bugs Fixed in 3.0

Below is a short description of the most important bugs fixed in MQ 3.0. For more details about any
of these bugs you can view the complete report at the Java Developer Connection site:

http://developer.java.sun.com/developer/bugParade

Table 3 Bugs Fixed in MQ 3.0

Bug Number Description

4407510 The imqcmd and imqadmin utilities do not currently display temporary destinations in a
broker.

4407510 imqcmd: should display temporary destinations

4407729 Broker should be able to bind to particular address on multi-home hosts

4431383 Message selection does not work properly if the selector string contains string literals that
contain Japanese or other multi-byte characters.

4475983 Storing new destination with > 10,000k destinations is extremely slow

4477085 Service state not kept after restart

4478682 imqcmd, imqadmin: current # mesgs / bytes should be available when querying broker

4482742 imqcmd, imqadmin: should provide a way to set default flavor on autocreated queues

4487218 Broker needs a way to reset only messages and durable subscriptions, leaving destinations

4488580 imqcmd/imqobjmgr: -v does not show patch information on Windows

4495379 imqcmd: When you create a queue and topic with the same name, only one is listed

4513764 TCP services do not allow specific IP addresses to be specified

4523001 Destroying a temporary destination results in a null pointer exception

4554766 Temporary destination consumer creation fails in certain cases

4614357 Attempt to change ClientID doesn’t throw IllegalStateException

4620654 Two connections creating same destination at same time may fail w/ server error

4624078 Message.acknowledge() doesn’t acknowledge all consumed messages in session

4625363 MessageConsumer.close() discards acks in transacted sessions

4627901 NullPtrException seen when execute jmqcmd list dur

4630229 A client ID must not be set automatically, if it has not been set in the ConnectionFactory

4635583 imqcmd: need to add support for SSL as transport to broker

Functionality Marked as Optional in JMS

18 Sun ONE Message Queue Release Notes • June, 2002

Functionality Marked as Optional in JMS

The JMS specification indicates certain items that are optional-- each JMS provider (vendor) chooses
whether or not to implement them. The MQ product handling of each of these optional items is
indicated below:

Table 4 Optional JMS Functionality

Section in JMS Specification Description and MQ Handling

3.4.3
JMSMessageID

“Since message ID’s take some effort to create and increase a message’s size,
some JMS providers may be able to optimize message overhead if they are
given a hint that message ID is not used by an application. JMS Message
Producer provides a hint to disable message ID.”

MQ implementation: Product does not disable Message ID generation (any
setDisableMessageID() call in MessageProducer is ignored). All messages
will contain a valid MessageID value.

3.4.12
Overriding Message
Header Fields

“JMS does not define specifically how an administrator overrides these
header field values. A JMS provider is not required to support this
administrative option.”

MQ implementation: The MQ product supports administrative override of
the values in message header fields through configuration of connection
factory administered objects.

 3.5.9
JMS Defined Properties

“JMS Reserves the ’JMSX’ Property name prefix for JMS defined properties.”
“Unless noted otherwise, support for these properties is optional.”

MQ implementation: The JMSX properties defined by the JMS 1.0.2
specification are supported in the MQ product.

3.5.10
Provider-specific Properties

“JMS reserves the ’JMS_<vendor_name>’ property name prefix for
provider-specific properties.”

MQ implementation: The purpose of the provider-specific properties is to
provide special features needed to support JMS use with provider-native
clients. They should not be used for JMS to JMS messaging. MQ 3.0 does not
use provider-specific properties.

 4.4.8
Distributed Transactions

“JMS does not require that a provider support distributed transactions.”

MQ implementation: Distributed transactions are supported in this release
of the MQ product.

Functionality Marked as Optional in JMS

Release Notes for Sun ONE Message Queue™ (MQ) 19

4.4.9
Multiple Sessions

“For PTP <point-to-point distribution model>, JMS does not specify the
semantics of concurrent QueueReceivers for the same queue; however, JMS
does not prohibit a provider from supporting this.” See section 5.8 of the JMS
specification for more information.

MQ implementation: The MQ implementation supports three queue
delivery policies: Failover, Round Robin, and Single (default). For more
information, refer to the MQ Administrator’s Guide.

Table 4 Optional JMS Functionality (Continued)

Section in JMS Specification Description and MQ Handling

Technical Notes

20 Sun ONE Message Queue Release Notes • June, 2002

Technical Notes

This section contains short write-ups on the following topics:

• System Clock Settings

• OS-Defined Connection Limitations on Clients and Brokers

• Increasing File Descriptors to Improve File-based Persistence Performance

• Securing Persistent Data

• JAR Files for Client Applications

• Client Out of Memory Errors

System Clock Settings
When using an MQ system, you should be careful to synchronize system clocks and avoid setting
them backward.

Synchronization Recommended
It is recommended that you synchronize the clocks on all hosts interacting with the MQ system.
This is particularly important if you are using message expiration (TimeToLive). Failure to
synchronize the hosts’ clocks may result in TimeToLive not working as expected (messages may
not be delivered). You should synchronize clocks before starting any brokers.

Solaris. You can issue the rdate command on a local host to synchronize with remote host. (You
must be superuser--that is, root--to run this command.) For example, the following command
synchronizes the local host (call it Host 2) with remote host Host1:

rdate Host1

Linux. The command is similar to Solaris, but you must provide the -s option:

rdate -s Host1

Windows. you can issue the net command with the time subcommand to synchronize your local
host with a remote host. For example, the following command synchronizes the local host (call it
Host 2) with remote host Host1:

net time \\Host1 /set

Technical Notes

Release Notes for Sun ONE Message Queue™ (MQ) 21

Avoid Setting System Clocks Backwards
You should avoid setting the system clock backwards on systems running an MQ broker. MQ uses
timestamps to help identify internal objects such as transactions and durable subscriptions. If the
system clock is set backwards it is theoretically possible that a duplicate internal identifier can be
generated. The broker attempts to compensate for this by introducing some randomness to
identifiers and by detecting clock shift when running, but if the system clock is shifted backwards
by a significant amount when a broker is not running, then there is a slight risk of identifier
duplication.

If you need to set the system clock backwards on a system running a broker by more than a few
seconds, it is recommended that you either do it when there are no transactions or durable
subscriptions, or do it when the broker is not running, then wait the amount of time you have
shifted the clock before bringing the broker back up.

But the ideal approach is to synchronize clocks before starting up any brokers, and then use an
appropriate techinque to ensure that clocks don’t drift significantly after deployment.

OS-Defined Connection Limitations on Clients and
Brokers
On the Solaris and Linux platforms, the shell in which the client or broker is running places a soft
limit on the number of file descriptors that a client can use. In the MQ system, each connection a
client makes, or each connection a broker accepts, uses one of these file descriptors. As a result, you
cannot have a broker or client running with more than 256 connections on Solaris or 1024 on Linux
without changing this limit. (The number is actually slightly lower than that due to file descriptors
that are used for other purposes, such as for file-based persistence.)

To change this limit, see the ulimit man page or the instructions under “Increasing File Descriptors
to Improve File-based Persistence Performance,” below. The limit needs to be changed in each shell
in which a client or broker will be executing.

Increasing File Descriptors to Improve File-based
Persistence Performance
On the Solaris and Linux platforms, the speed of storing messages in the default file-based
persistence is affected by the number of file descriptors available for use by the file store. (Windows
does not have a file descriptor limit.) A large number of descriptors will allow the system to process
large numbers of persistent messages faster.

Technical Notes

22 Sun ONE Message Queue Release Notes • June, 2002

To improve performance for performance testing or deployment, administrators should increase
the maximum number of file descriptors available to an application (in this case, the broker process)
and then increase the size of the shared file descriptor pool used by the broker by updating the
value of the property:

imq.persist.file.message.fdpool.limit

The value of this property must be less than the maximum number of file descriptors available on
your system.

On Solaris, for example, you can increase the file descriptor limits using the ulimit command.
Processes inherit system limits from their parent (login) shell. On Solaris, there is a “hard” limit and
a “soft” limit. For a non-root user, the number of file descriptors for an application cannot exceed
the soft limit, which, in turn, cannot exceed the hard limit.

To check the current file descriptor limits:

Hard limit: $ ulimit -Hn

Soft limit: $ ulimit -n

To change the file descriptor limits for “root” user:

ulimit -Hn unlimited

ulimit -n unlimited

After this, any process created from this shell will be able to open unlimited file descriptors. So it is
safe to run the imqbroker command at this point.

To change the file descriptor limit for non-root user:

$ ulimit -Hn number1

$ ulimit -n number2

where number1 is less than 1024, and number2 is less than number1.

If 1024 is not enough, you have the following options:

• Run the broker as root.

• Write some “setuid” program to increase the ulimit value before running the broker. (Note -
such programs pose tremendous security risk. Highly discouraged.)

• Tune the rlim_fd_max parameter in the /etc/system file and reboot the system.

Technical Notes

Release Notes for Sun ONE Message Queue™ (MQ) 23

Securing Persistent Data
The broker uses a persistent store that can contain, among other information, message files that are
being temporarily stored. Since these messages might contain proprietary information, it is
recommended that the data store be secured against unauthorized access.

A broker can use either the built-in or plugged-in persistence.

Built-in Persistent Store
A broker using built-in persistence writes persistent data to a flat file data store located at:

IMQ_VARHOME/instances/brokerName/filestore/
(/var/imq/instances/brokerName/filestore/ on Solaris)

where brokerName is a name identifying the broker instance.

The brokerName/filestore/ directory is created when the broker instance is started for the first
time. The procedure for securing this directory depends on the operating system on which the
broker is running.

Solaris and Linux. The permissions on the IMQ_VARHOME/instances/brokerName/filestore/
directory depend on the umask of the user that started the broker instance. Hence, permission to
start a broker instance and to read its persistent files can be restricted by appropriately setting the
umask. Alternatively, an administrator (superuser) can secure persistent data by setting the
permissions on the IMQ_VARHOME/instances directory to 700.

Windows. The permissions on the IMQ_VARHOME/instances/brokerName/filestore/ directory
can be set using the mechanisms provided by the Windows operating system that you are using.
This generally involves opening a properties dialog for the directory.

Plugged-in Persistent Store
A broker using plugged-in persistence writes persistent data to a JDBC-compliant database.

For a database managed by a database server (for example, an Oracle database), it is recommended
that you create a user name and password to access the MQ database tables (tables whose names
start with “IMQ”). If the database does not allow individual tables to be protected, create a
dedicated database to be used only by MQ brokers. See the database vendor for documentation on
how to create user name/password access.

The user name and password required to open a database connection by a broker can be provided
as broker configuration properties. However it is more secure to provide them as command line
options when starting up the broker (see MQ Administrator’s Guide, Appendix A, “Setting Up
Plugged-in Persistence”).

Technical Notes

24 Sun ONE Message Queue Release Notes • June, 2002

For an embedded database that is accessed directly by the broker via the database’s JDBC driver
(for example, a Cloudscape database), security is usually provided by setting file permissions (as
described in “Built-in Persistent Store,” above) on the directory where the persistent data will be
stored. To ensure that the database is readable and writable by both the broker and the imqdbmgr
utility, however, both should be run by the same user.

JAR Files for Client Applications
Client applications need to be able to access JNDI JAR files (jndi.jar) even if the applications are
not directly using JNDI to look up MQ administered objects. This is because JNDI is referenced
through the Destination and ConnectionFactory classes.

JNDI JAR files are bundled with JDK 1.4, and therefore jndi.jar does not have to be in the classpath
if you are using this JDK version. However, if you are using a version of JDK earlier than 1.4, then
jndi.jar has to be in your classpath setting (along with imq.jar and jms.jar).

If you are using JNDI to look up MQ administered objects, you must also include
providerutil.jar plus either fscontext.jar (if you are using the file-system context) or
ldap.jar (if you are using the LDAP context) in your classpath. If you are using JDK 1.4, you do
not need to include ldap.jar, since it is bundled with JDK 1.4.

Client Out of Memory Errors
If you are running a client application that deals with large messages or many small messages, it
may encounter OutOfMemoryError errors. The client runtime does not have a memory leak--it just
has insufficient memory to copy the messages off the network and deliver them to your client.

To eliminate these OutofMemoryError errors, increase the maximum Java heap size. You can do
this by passing the appropriate command line option to the java or jre command.

On Java2 (formerly code-named “JDK 1.2”), use the -Xmx option. For example:

java -Xmx128m MyClass

Please note these limitations:

• The maximum limit of the VM’s memory allocation pool (heap size) depends on both the
operating system and the JDK release. Please check the JDK documentation for restrictions.

• The size of the VM’s memory allocation pool must be less than or equal to the amount of virtual
memory available on the system.

How to Report Problems

Release Notes for Sun ONE Message Queue™ (MQ) 25

How to Report Problems

To report a problem, send mail to imq-feedback@sun.com.

If you have a support contract and you have problems with MQ, contact Sun ONE customer
support using one of the following mechanisms:

• Sun ONE online support web site at http://www.iplanet.com/support/online/

From this location, the CaseTracker and CaseView tools are available for logging problems.

• The telephone dispatch number associated with your maintenance contract

So that we can best assist you in resolving problems, please have the following information
available when you contact support:

• Description of the problem, including the situation where the problem occurs and its impact on
your operation

• Machine type, operating system version, and product version, including any patches and other
software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

For More Information

Beyond the MQ 3.0 documentation, you can find additional information as indicated below.

Discussion Forums

jmq-interest List
A discussion forum is available for MQ customers. It provides a place for customers to exchange
ideas on MQ-related topics and share problem-solving tips and techniques.

To subscribe to the jmq-interest list, send email to listserv@java.sun.com and include a message
like the following in the message body. Please supply the appropriate data for the first and last
name.

For More Information

26 Sun ONE Message Queue Release Notes • June, 2002

subscribe jmq-interest firstname lastname

To unsubscribe to the list, send email to listserv@java.sun.com and include in the message body:

signoff jmq-interest

Java Technology Forums
There is a JMS forum in the Java Technology Forums that might be of interest.

http://forum.java.sun.com

Sun ONE Information
Useful Sun ONE information can be found at the following Internet locations:

• MQ website —
http://www.sun.com/software/products/message_queue/home_message_queue.html

• Release notes and other documentation —
http://docs.iplanet.com/docs/manuals/javamq.html

If this URL is discontinued you will be able to access MQ 3.0 documentation from:
http://www.sun.com/software/products/message_queue/home_message_queue.html

• Support Services —
http://www.sun.com/service/support/software/iplanet/index.html

• Professional Services information — http://www.sun.com/service/sunps/iplanet/

• Developer information — http://developer.iplanet.com/

• Learning solutions — http://www.sun.com/software/training/

• Product data sheets — http://www.sun.com/software/html

Use of Sun ONE Message Queue is subject to the terms described in the license agreement accompanying it.
Copyright © 2002 Sun Microsystems, Inc. All rights reserved.

NOTE The jmq-interest forum is meant for general MQ issues. For specific questions
about MQ 3.0, send your questions to imq-feedback@sun.com.

	Release Notes for Sun ONE Message Queue™ (MQ)
	Java Message Service (JMS) Compliance
	MQ Documentation Updates
	Installation Guide
	Administrator’s Guide
	Developer’s Guide

	What’s New in MQ 3.0
	Both Enterprise and Platform Editions
	Enterprise Edition Only

	Compatibility Issues
	Broker Compatibility
	Administered Object Compatibility
	Administration Tool Compatibility
	Client Compatibility

	Known Limitations
	Both Enterprise and Platform Editions
	Enterprise Edition Only

	Known Bugs
	Bugs Fixed in 3.0
	Functionality Marked as Optional in JMS
	Technical Notes
	System Clock Settings
	Synchronization Recommended
	Avoid Setting System Clocks Backwards

	OS-Defined Connection Limitations on Clients and Brokers
	Increasing File Descriptors to Improve File-based Persistence Performance
	Securing Persistent Data
	Built-in Persistent Store
	Plugged-in Persistent Store

	JAR Files for Client Applications
	Client Out of Memory Errors

	How to Report Problems
	For More Information
	Discussion Forums
	jmq-interest List
	Java Technology Forums

	Sun ONE Information

