
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Building Web Components

Sun™ ONE Studio 5 Programming Series

Part No. 817-2334-10
June 2003, Revision A

Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent l’utilisation, la copie, la distribution et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Read This Book 10

How This Book Is Organized 11

What Is Not in This Book 12

Useful References 12

Valuable Web Sites 12

Typographic Conventions 13

Related Documentation 14

Documentation Available Online 14

Online Help 15

Examples 16

Javadoc Documentation 16

Documentation in Accessible Formats 16

Contacting Sun Technical Support 16

Sun Welcomes Your Comments 17

1. Addressing the Challenges of Web Application Development 19

What Is a Web Application? 19

Challenges in Developing Web Applications 20

How Web Application Development is Different 21

Implications of Server-Centered Execution 21
3

How the IDE Helps 22

Full Web Component Support 22

Execution Support 23

Debugging and Monitoring Tools 23

Deployment Support 24

Open Runtime Environment Integration 25

Common Errors in Web Applications 25

Facing the Challenges of Web Application Debugging 26

Viewing Requests With the HTTP Monitor 26

Summary of IDE Features 27

2. The Structure of Web Modules 31

Web Servers 32

Servlet Containers and Web Components 32

Servlet Context 33

Web Modules 34

JSP Pages 34

JSP Page Life Cycle 34

Code Constructs in JSP Pages 36

HTTP Sessions 39

Scopes and Implicit Objects 40

Servlets 42

Servlet Life Cycle 42

Tag Libraries 44

JSP Standard Tag Library 45

Servlet Filters 46

Filter Life Cycle 47

Listeners 48
4 Building Web Components • June 2003

3. Design Patterns and Frameworks 51

Design Patterns 51

Front Controllers 52

Composite Views 56

View Creation Helpers 57

Model Objects 58

Frameworks 59

Struts 59

JavaServer Faces 60

4. Developing Your Own Web Application 61

Development Work Flow 61

Web Modules in the IDE 62

Creating a Web Module 63

Importing an Existing Web Module 64

Creating JSP Pages 65

Using page Directives 66

Creating and Invalidating Sessions 66

Modifying the JSP File 66

Working With JSP Includes 67

Creating a Composite View Template 69

Using Additional Classes or Beans 70

Creating Servlets 71

Declaring the Servlet in the Deployment Descriptor 72

Modifying the Servlet 73

Servlet-Generated HTTP Responses 74

Using the Servlet as a Front Controller 74

Using Additional Classes or Beans 75

Creating Filters 76
Contents 5

Declaring the Filter in the Deployment Descriptor 76

Processing HTTP Requests and Responses 77

Using Tag Libraries 77

Using Existing Tag Libraries 78

Tag Library Descriptors 79

Inserting Custom Actions From a Tag Library Into a JSP Page 79

Developing Your Own Tag Libraries 81

Testing Tag Libraries 87

Working With Databases 87

5. Running, Debugging, and Deploying Your Web Application 91

Running and Debugging Tasks 91

Configuring the Web Module Deployment Descriptor 92

Using Property Sheets to Edit the web.xml File 93

Registering Servlets and Filters 94

Registering Tag Libraries 94

Specifying the Default URI Within the Taglib Element 95

Using the IDE to Edit the web.xml File in the Source Editor 96

Using the Integrated Servers 96

Test Running Web Modules 96

Configuring the Server 97

Setting Up the Web Server Environment for Database Access 97

Executing a Single Web Module 98

Creating and Executing a Web Module Group 99

Executing on External Servers 100

Debugging Web Applications 101

Using the HTTP Monitor to Debug a Web Application 101

Source-Level Debugging 106

Packaging Your Web Applications 109
6 Building Web Components • June 2003

Building a WAR File From a Web Module 109

Specifying Options 109

Viewing Contents 110

Packaging and Deploying a Custom Tag Library 110

Packaging a Tag Library as a JAR File 111

Deploying a Tag Library Using the Tag Library Repository 111

Deploying a Tag Library by Adding a JAR File From the Filesystem 111

Deploying a Tag Library by Copying and Pasting a JAR File From Another
Module or Filesystem 112

Including a Web Module Within a J2EE Application 112

Glossary 113

Index 121
Contents 7

8 Building Web Components • June 2003

Before You Begin

Building Web Components provides essential information for anyone involved in the
creation of web applications with Java™ 2 Platform, Enterprise Edition (J2EE™) web
components. It is part of the Sun™ ONE Studio 5 Programming series. This book
focuses on web application development in the context of the J2EE and its
supporting technologies. These technologies include Java servlets and JavaServer
Pages™ (JSP™).

This book introduces web applications and provides suggestions for their structure.
It describes the work flow of developing a web application. The book proposes
design practices and provides pointers to suggested structures and frameworks for
scalable, maintainable web applications. It places these concepts within the context
of the Sun ONE Studio 5 integrated development environment (IDE) with
discussions of the creation of JSP pages and servlets, coding, testing, debugging, and
deployment.

In particular, this book describes how web applications typically use JSP pages, Java
servlets, JSP tag libraries, and supporting classes and files. Web applications might
use persistent data, for example, a database. They could be independent applications
with features managed by a web container. Or, they might provide a user interface
while depending on components in a J2EE Enterprise JavaBeans (EJB™) container for
other services. Such services might include execution of business logic and access to
persistent data.

See the release notes for a list of environments in which you can create the examples
in this book. The release notes are available on this web page:

http://forte.sun.com/ffj/documentation/index.html
9

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. Although almost all
procedures use the interface of the IDE, occasionally you might be instructed to
enter a command at the command line. Here too, there are slight differences from
one platform to another. For example, a Microsoft Windows command might look
like this:

To translate for UNIX® platforms or Linux platforms, change the prompt and use
forward slashes:

Before You Read This Book
This book assumes you are a web application developer or a web application
designer. A web application developer writes the application code. A web
application designer specifies how users interact with an application, chooses
interface components, and arranges them in a set of views. Unless otherwise stated,
this book uses the term web application to refer to a J2EE web application. The web
application developer might or might not be the same person as the web application
designer. In either case, it is assumed you have a general knowledge of Java
programming, JSP page programming, and HTML coding. Information in this book
might also prove useful for any professionals who participate in the creation of
applications based on web components. Such professionals might include technical
writers, graphic artists, production and marketing specialists, and testers. This book
presents the ways in which web application development work flow is facilitated by
the use of the IDE. It provides a context in which to use this productivity tool.

The development of web applications differs markedly from that of traditional Java
applications. It requires an understanding of several different technologies. Before
starting, you should be familiar with the following subjects:

■ HTML syntax
■ XML syntax
■ Java™ programming language
■ Java Servlet syntax
■ JavaServer Pages™ syntax
■ HTTP protocol
■ Web server concepts
■ Security issues

c:>cd MyWorkDir\MyPackage

% cd MyWorkDir/MyPackage
10 Building Web Components • June 2003

This book enables you to use your current skills. It also provides you with references
to help you become productive in the building of web applications with the IDE.

This book requires a knowledge of J2EE concepts, as described in the following
resources:

■ Java 2 Platform, Enterprise Edition Blueprints
http://java.sun.com/j2ee/blueprints

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/tutorial

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs

■ JavaServer Pages™ Standard Tag Library 1.0 Specification
http://www.jcp.org/aboutJava/communityprocess/review/jsr052/
index.html

Familiarity with the Java API for XML-Based RPC (JAX-RPC) is helpful. For more
information, see this web page:

http://java.sun.com/xml/jaxrpc

The Sun ONE Studio 5 Web Application Tutorial can be downloaded from the
Developer Resources web site. To gain access to the tutorial, choose Help, then
Learning, then Examples, then Tutorials/Examples from the IDE’s main menu.

The J2EE Tutorial describes the process of developing web applications. Visit the web
site at:

http://java.sun.com/j2ee/tutorial

The Java Web Services Tutorial provides helpful background. It could prove useful as
a reference while reading this book. Available at:

http://java.sun.com/webservices/docs/1.0/tutorial/

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.
Before You Begin 11

http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs
http://www.jcp.org/aboutJava/communityprocess/review/jsr052 /index.html
http://java.sun.com/xml/jaxrpc

How This Book Is Organized
Building Web Components contains the following information:

Chapter 1 provides an introduction to web applications and the challenges they
present to developers. It describes the ways that the IDE helps the developer face
those challenges.

Chapter 2 discusses the structure of web applications. It includes an overview of the
core J2EE technologies used in building the components of web applications.

Chapter 3 gives an overview of useful design patterns and frameworks for web
applications.

Chapter 4 describes the process of developing your own web application using the
IDE.

Chapter 5 provides details on the process of executing, debugging, and deploying
your web application using the IDE.

The Glossary defines important words and phrases found in the book. Glossary
terms appear in italics throughout the book.

What Is Not in This Book
This book is intended to provide sufficient information to get you started using the
IDE as a productivity tool. However, it is not designed as a tutorial. The book is
neither a comprehensive reference, nor does it supply all possible designs for a web
application. It is not a visual design guide. Nor is the focus on developing the J2EE
web tier. The book does not delve into how to develop EJB components. See “Useful
References” on page 12 for suggested readings. See “Before You Read This Book” on
page 10 for references to tutorials regarding the development of web applications.

Useful References
This section provides the names of references you might find helpful when reading
this book.
12 Building Web Components • June 2003

This volume covers topics related to web application design and implementation:

Alur, Deepak, Crupi, John, and Malks, Dan, Core J2EE Patterns, Sun Microsystems
Press, Prentice Hall, 2001. This excellent book on web application architecture and
models provides solutions, including J2EE-based answers, to problems in context.
It reflects the collective experience of Java architects and the Sun Java Center.

Valuable Web Sites
Here is a selection of web sites dealing with web application technologies:

■ The Source for Java Technology provides a wealth of information on web
component technologies. Topics include products and APIs, access to the
Developer Connection, documentation and training, and online support. It also
supplies community discussion, industry news, marketplace solutions, and case
studies. Available at http://java.sun.com

■ JSP Insider is a JavaServer Page web site offering design information, articles,
code, links to other web site, news stories, and book reviews. Available at
http://www.jspinsider.com

■ The JSP Resource Index is a place to find tutorials, scripts, and even job listings.
Available at http://www.JSPin.com

■ The Jakarta Project supplies commercial-quality server solutions based on the
Java platform that are developed in an open and cooperative fashion. Jakarta is
the overall project name for many subprojects, including the Jakarta tag libraries
and the Tomcat server. Available at http://jakarta.apache.org

■ TheServerSide.com is a J2EE news source and developer community. Available at
http://www.theserverside.com.
Before You Begin 13

http://java.sun.com
http://www.jspinsider.com
http://www.JSPin.com
http://jakarta.apache.org
http://www.theserverside.com

Typographic Conventions

Related Documentation
Sun ONE Studio 5 documentation includes books delivered in Acrobat Reader (PDF)
format, release notes, online help, readme files for example applications, and
Javadoc™ documentation.

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM

web site and from the documentation page of the Sun ONE Studio Developer
Resources portal at http://forte.sun.com/ffj/documentation.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the product on your local
system or network.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
14 Building Web Components • June 2003

http://forte.sun.com/ffj/documentation/
http://docs.sun.com

■ Release notes (HTML format)

Available for each Sun ONE Studio 5 edition. Describe last-minute release
changes and technical notes.

■ Sun ONE Studio 5, Standard Edition Release Notes - part no. 817-2337-10

■ Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 5 integrated development
environment (IDE) on each supported platform and include other pertinent
information, such as system requirements, upgrade instructions, application
server information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Sun ONE Studio 5, Standard Edition Getting Started Guide - part no. 817-2318-10
■ Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 817-1145-10

■ Sun ONE Studio 5 Programming series (PDF format)

This series provides in-depth information on how to use various Sun ONE Studio
5 features to develop well-formed J2EE applications.

■ Building Web Components - part no. 817-2334-10

Describes how to build a web application as a J2EE web module using JSP
pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications - part no. 817-2327-10

Describes how to assemble EJB modules and web modules into a J2EE
application and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 817-2330-10

Describes how to build EJB components (session beans, message-driven beans,
and entity beans with container-managed persistence or bean-managed
persistence) using the Sun ONE Studio 5 EJB Builder wizard and other
components of the IDE.

■ Building Web Services - part no. 817-2324-10

Describes how to use the Sun ONE Studio 5 IDE to build web services, to make
web services available to others through a UDDI registry, and to generate web
service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 817-2332-10

Describes how to use the JDBC productivity enhancement tools of the Sun
ONE Studio 5 IDE, including how to use them to create a JDBC application.

■ Sun ONE Studio 5 tutorials (PDF format)

These tutorials demonstrate how to use the major features of Sun ONE Studio 5,
Standard Edition:

■ Sun ONE Studio 5 Web Application Tutorial - part no. 817-2320-10

Provides step-by-step instructions for building a simple J2EE web application.
Before You Begin 15

■ Sun ONE Studio 5 J2EE Application Tutorial - part no. 817-2322-10

Provides step-by-step instructions for building an application using EJB
components and web services technology.

■ Sun ONE Studio 4, Mobile Edition Tutorial - part no. 816-7873-10

Provides step-by-step instructions for building a simple application for a
wireless device, such as a cellular phone or personal digital assistant (PDA).
The application you build is compliant with the Java 2 Platform, Micro Edition
(J2ME™ platform) and conforms to the Mobile Information Device Profile
(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at:
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Online Help
Online help is available in the Sun ONE Studio 5 IDE. You can open the help by
pressing the help key (F1 in Microsoft Windows and Linux environments, Help key
in the Solaris environment), or by choosing Help → Contents. Either action displays
a list of help topics and a search facility. In particular, you should explore the
JSP/Servlet help set and the help sets for the supported server software.

Examples
You can download examples that illustrate a particular Sun ONE Studio 5 feature, as
well as completed tutorial applications, from the Sun ONE Studio Developer
Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Javadoc Documentation
Javadoc documentation is available within the IDE for many Sun ONE Studio 5
modules. Refer to the release notes for instructions on installing this documentation.
16 Building Web Components • June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (817-2334-10) of your document in the subject line of
your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Mini-tutorials HTML at
http://forte.sun.com/ffj/tutorialsandexamples.html

Integrated example
readmes

HTML in the example subdirectories of
s1studio-install-directory/examples

Release notes HTML at http://docs.sun.com
Before You Begin 17

http://docs.sun.com
http://forte.sun.com/ffj/tutorialsandexamples.html
http://docs.sun.com

18 Building Web Components • June 2003

CHAPTER 1

Addressing the Challenges of Web
Application Development

This chapter introduces web applications and discusses how they differ from
standalone desktop applications you might have developed previously. It then
explores the ways the Sun ONE Studio 5 IDE helps you to build these applications.

What Is a Web Application?
A web application is a collection of web components. It provides features to end users
through an interface typically presented in a web browser. Examples of web
applications might include an electronic shopping mall or auction site. A web
application is based on a client-server model. In this model, the client is the web
browser, and the web server is the feature set that runs remotely.

In the simplest form of a web application, the browser is the client. The browser
sends requests to a web server. When the web server receives the request, it passes
the request to a web application that is running inside a servlet container. The JSPs
and servlets that are in the web application process the request and generate a
response. The server sends the response back to the browser.

FIGURE 1-1 shows the relationship of the requests and responses to filters, servlets,
and JSP pages and of session data to servlets and JSP pages in a sample web
application. This sample application uses a front controller. Front controllers are
explained in Chapter 3.
19

FIGURE 1-1 Requests and Responses in a Web Application

Web applications consist of a varied set of interrelated web components. This set
includes JSP pages, servlets, and tag libraries that work together. Resources utilized
within the web application must be coordinated using a deployment descriptor file.
This file contains the meta-information that describes the web application. The
servlet container translates JSP files into servlets in order to run them in the web
server. Chapter 2 provides more detailed explanations of the components in this
illustration.

Challenges in Developing Web
Applications
Two key characteristics distinguish web applications from standalone applications:

■ Web components do not interact directly with one another. The servlet container
and the client browser mediate the links between components.
20 Building Web Components • June 2003

■ Data representation, data flow, and data processing are distributed among the
client browser, servlet container, and individual web components. The
mechanisms enabling web components to maintain links to one another and to
share data are described throughout this book

As shown in FIGURE 1-1, the web server is the center of the action. Information
storage and database access all take place in the server.

When you implement a project as a web application, it is easy to deploy and
maintain. Since the application resides on a server, users do not need to install any
software on their own computers. Moreover, upgrades are performed in one place
by the server administrator instead of having to perform upgrades on all the clients.

In addition, the architecture of a web application can make the creation of reusable
components easier. They are more loosely coupled than components in a standalone
desktop application.

How Web Application Development is Different
In a stand-alone application, the components can interact directly with one another.
For instance, data objects can each have a specific type and are passed from method
to method. In addition, data representation, data flow, and data processing are all
managed by the application itself. For example, in a wizard, each pane is part of the
application with direct access to application data. Developers focus on the data and
features within their applications. Hence, they do not need to understand the
runtime environment, that is, the virtual machine.

On the other hand, in a web application, web components are more encapsulated
than their standalone counterparts. Web components communicate with one another
through the servlet container. Data is passed as strings. Hence, information can
travel safely among the cooperative processes of the client browser, web server, and
servlet container. When creating a web application, developers need to understand
variations among execution environments. Testing must take place on multiple
browsers and, sometimes, on multiple web servers. Actual file locations and
structures vary, as do steps to deploy the web application. Deployment onto servers
and execution are typically time-consuming tasks.

Implications of Server-Centered Execution
Everything in a web application executes in the server rather than in the client
browser. Therefore, web applications face associated challenges and rely on the
HTTP protocol for support.
Chapter 1 Addressing the Challenges of Web Application Development 21

As shown in FIGURE 1-1, data representation, data flow, and data processing are
distributed among the browser, servlet container, and individual web components.
See “Common Errors in Web Applications” on page 25 for how this situation affects
compile time, runtime, and debugging tasks.

In distributed web server situations, the servlet container must be dispersed among
the web servers running on multiple machines. Furthermore, session information
must be shared to process requests from a single client browser encountering
different server instances.

How the IDE Helps
To improve productivity and deliver the benefits of web application implementation,
the IDE addresses the web application developer’s unique challenges. The full web
component support, execution support, debugging and monitoring tools,
deployment support, and open runtime environment integration provided by the
IDE are discussed in this section.

Full Web Component Support
The IDE provides the following features to support the full set of web components:

■ Editors for JSP pages, servlets, tag libraries, and tag library handlers. Support
includes source editors with syntax coloring and checking, code completion, and
compilation. See “Modifying the JSP File” on page 66, “Modifying the Servlet” on
page 73, and “Inserting Custom Actions From a Tag Library Into a JSP Page” on
page 79 for details.

■ Automated and manual editing of the deployment descriptor file. The
deployment descriptor is also referred to as the web.xml file. See “Using
Property Sheets to Edit the web.xml File” on page 93 and “Using the IDE to Edit
the web.xml File in the Source Editor” on page 96 for more information.

■ Development within a web module structure. Every task you perform is done
within a context delineated by the Servlet 2.3 Specification. See “Web Modules in
the IDE” on page 62 for details.

■ Views of generated servlet code for a JSP page. While debugging the servlet, you
can view the current location in the JSP page code and servlet code
simultaneously. See “Viewing Both JSP and Servlet Files During Debugging” on
page 108 for more information.

■ Easy creation of tag libraries. See “Creating a Tag Library and Tags” on page 81
for details.
22 Building Web Components • June 2003

■ Support for incorporating existing tag libraries in your web application. See
“Using Existing Tag Libraries” on page 78 for more information.

Execution Support
The IDE supports web application execution in the following ways:

■ One-click actions for building, deploying, and running a web application
■ Test interaction using different client browsers
■ Test execution on different servers

For details, see “Test Running Web Modules” on page 96 and “Executing on External
Servers” on page 100.

Debugging and Monitoring Tools
A web application’s data management is distributed among its components. Many
of the bugs captured at compile time in standalone applications must be tracked at
runtime in web applications. This situation leads to an increased focus on runtime
testing during the debugging of web applications. The IDE provides source-level
debugging for JSP pages, servlets, and helper classes. HTTP requests received and
generated by the web server are captured. These features aid in the debugging and
monitoring of data flow in your web application. For more information, see
“Debugging Web Applications” on page 101.

The way that a web application shares data among its components differs from a
traditional application. A web application’s components (JSPs, servlets, and so forth)
cannot communicate directly with each other. Instead, a component shares data with
other components through attributes (name/value pairs) that are stored with the
ServletContext, ServletRequest, HTTPSession, and PageContext objects.

As shown in FIGURE 1-1, data moves as an HTTP request from the client browser to
the web application. Information then moves back through an HTTP response. When
the request enters the servlet container from the client, a response is created. Then
both the request and the response are available until the request processing is
complete.

An HTTP request is a message created in the client browser. Headers with user
settings, including locale information, and cookies from the client browser are
contained in the request. The web server routes the request to the servlet container.
In the case of the sample web application shown in FIGURE 1-1, the request passes
through the filter, a front controller servlet, the JSP file, and the filter again.
Additional information can be obtained and possibly modified in all these locations.
The HTTP request finishes when the JSP file and filter processing is complete. For
more information on front controllers, see “Front Controllers” on page 52.
Chapter 1 Addressing the Challenges of Web Application Development 23

An HTTP response is a message created in the servlet container. The message contains
attributes, including cookies, headers, and output, which eventually go to the client
browser. Response processing also occurs in a front controller servlet, in a JSP file,
and in a filter. Information from the request can be accessed and possibly modified,
and information can be added to the response. When the request is finished, the web
server routes the response from the servlet container through the web server. Its final
destination is the client browser. For details, see “Servlet-Generated HTTP
Responses” on page 74.

Requests from a particular client can be associated with one another. This connection
is achieved using an HTTP session. An HTTP session is a conversation spanning
multiple requests between a client browser and a web server. Each session has its
own set of session data. The JSP file and the servlet have access to the session data as
well as information in the request and response. The session data resides in the
session scope. That is, a component can access a session’s data only if the component
is processing a request that is associated with the session. For details, see “HTTP
Sessions” on page 39.

Servlet filters are web components that can be used to inspect or modify the
HTTPRequest and HTTPResponse objects before and after the requested servlet or
JSP file has been processed. For more on this use of filters, see “Processing HTTP
Requests and Responses” on page 77.

In traditional applications, source-level debugging can be used to follow interfaces
among objects. This technique is also helpful in web application development.
However, a need for a debugging tool that can operate at the component interface
level is indicated as well. Here HTTP messages are passed between the client and
the web server to isolate the component with an error. At this point, you can
typically find the error through code inspection. For details, see “Common Errors in
Web Applications” on page 25. For details on the IDE’s tool for tracking HTTP
requests, see “Starting the HTTP Monitor” on page 103.

Deployment Support
Because web applications consist of multiple resources, the various web components
must be associated and registered in a deployment descriptor. As described
previously, much of the process of coordinating web application resources is
automated in the IDE.

The IDE provides deployment support with the following features:

■ Deployment descriptor editing. Web application resources need to be associated
and registered using a property-based editor or through direct editing of the XML
file. For details, see “Configuring the Web Module Deployment Descriptor” on
page 92.
24 Building Web Components • June 2003

■ WAR file packaging creation. Resources can be packaged for deployment on any
J2EE-compliant server. For more information, see “Packaging Your Web
Applications” on page 109.

Open Runtime Environment Integration
The IDE provides support for executing your web application on multiple servers. It
offers deployment direct from the source within the IDE using an API-based
mechanism to integrate with third-party servers. For details, see “Test Running Web
Modules” on page 96 and “Executing on External Servers” on page 100.

Common Errors in Web Applications
With web applications, problems arise from web components not receiving the
proper data. Difficulties also occur when a request does not get the server into a
particular state. Common sources of bugs in web applications include coding errors
and deployment errors.

The following are common coding errors:

■ Misspelled names of links
■ Misspelled or missing parameter names or values
■ Incorrect cookie values or domains
■ Misspelling of session attributes that have not been initialized
■ Expected errors not sent by the client
■ Forgotten or misspelled initialization parameters

The following are common deployment errors:

■ Components that have not been deployed
■ Libraries that have not been deployed
■ Servlet URL mappings that have been misspelled or omitted from the deployment

descriptor

Web application data must be set through attributes (name/value pairs) that are
stored with the ServletContext, ServletRequest, HTTPSession, and PageContext
objects. Hence, errors are frequently introduced during the flow of data from one
component to another. Source-level debugging is useful for following programming
logic within a component of a web application. However, it does not provide a way
to view data passing among components. For example, one component might set the
value for a “title” attribute and another component might try to get the value for a
“Title” attribute. This type of error is not exposed at compile time.
Chapter 1 Addressing the Challenges of Web Application Development 25

If a bug causes a runtime exception, then you can easily determine where you need
to set a breakpoint to see what is going wrong. However, if your problem is a blank
page or missing data, identifying which component is causing the problem is not
always easy. The problem might be that the front controller did not receive the data
or the problem might be that the front controller is not passing the data correctly.
Another reason might be that the session is not supplying some necessary data.
Unless you can determine which component is the source of the problem, source-
level debugging becomes a hit and miss approach. Tracking requests and looking at
session attributes can help pinpoint the origin of the bug.

To determine error sources in web applications, you can use the IDE’s debugging
tools to do the following actions:

■ Track data flow among components
■ Get the server or session into a particular state
■ Step through generated output of a web resource, line by line

Facing the Challenges of Web Application
Debugging
Debugging web applications involves identifying the components sharing the data,
debugging the code, and working with the deployment process. The IDE provides
the following features to facilitate your efforts:

■ The HTTP Monitor. Records information regarding requests to your web
application and the data flow among its components. For details, see “Starting the
HTTP Monitor” on page 103.

■ The Source-Code Debugger. Enables you to debug the components. If the
specified component is a JSP page, you can view the JSP file and its generated
servlet code side by side. This perspective provides improved visibility into the
processing that is taking place in the server. For more, see “Source-Level
Debugging” on page 106.

■ A Common Interface for Controlling and Deploying the Application to
Different Web Servers. Facilitates the identification of deployment issues from
within the IDE. See “Executing on External Servers” on page 100.

Viewing Requests With the HTTP Monitor
The built-in HTTP Monitor provides a way to view current requests and to record
these requests for later playback. Current requests persist until the current IDE
session ends. Saved requests persist across sessions of the IDE until you explicitly
delete them.
26 Building Web Components • June 2003

You can use the HTTP Monitor tool to identify where in the sequence of data flow an
error has recurred. Often the problem is not in processing of a JSP file but in
specifying an input parameter.

The Monitor displays all messages sent between the client browser and the web
server, along with relevant context information. This feature helps identify
inconsistencies. It also enables you to find information that has been incorrectly
passed from one component to another. For details, see “Viewing Monitor Data
Records” on page 103.

The Monitor records both incoming and outgoing cookies on a request making it
easier for you to view that information.

Summary of IDE Features
Table 1-1 summarizes the features that distinguish the IDE’s support for key web
development needs, as described earlier in this chapter.

TABLE 1-1 How the IDE Addresses Developer Needs

Developer Need Feature and Description For more information, see

Quick start Creation Wizards.
Providing templates for
creation of JSP pages,
servlets, filters, listeners,
web modules, web
module groups, tag
libraries, and HTML files.

“Creating a Web Module” on page 63
“Creating JSP Pages” on page 65,
“Creating Servlets” on page 71,
“Creating Filters” on page 76
“Developing Your Own Tag Libraries” on
page 81

Full web
component
support

JSP Editor. Editing JSP
source code is similar to
editing HTML. The IDE
provides support for both
HTML and JSP tags.

“Modifying the JSP File” on page 66

Efficient web
application
development

Code Completion.
Accessing available
completion for JSP files,
servlets, and tag libraries.

“Modifying the JSP File” on page 66 and
“Modifying the Servlet” on page 73.

Code reuse
and separation
of developer
and page
designer

Tag Library Editing.
Providing tag library
descriptors and
customizers as efficient
ways to develop tags.

“Using Existing Tag Libraries” on page 78
“Developing Your Own Tag Libraries” on
page 81.
Chapter 1 Addressing the Challenges of Web Application Development 27

Mechanism for
viewing data
flow

HTTP Monitor.
Collecting information
about the execution of JSP
files and servlets in the
servlet engine.
Streamlining the work
involved in debugging
JSP files and servlets.

“Starting the HTTP Monitor” on page 103

Comparing a
JSP file to its
generated
servlet

JSP and Servlet
Debugging. Displaying
JSP files and their
generated servlets side by
side

“Viewing Both JSP and Servlet Files During
Debugging” on page 108

Support for
newest servers
and most
current
specifications

J2EE 1.3 Compliance.
Accessing the J2EE service
and communication APIs,
which provide for
security, concurrence,
transaction, and
deployment

“Servlet Containers and Web Components”
on page 32

TABLE 1-1 How the IDE Addresses Developer Needs (Continued)

Developer Need Feature and Description For more information, see
28 Building Web Components • June 2003

Common
interface for
deploying to
and testing on
different
servers

Deployment Descriptor
Editing. Browsing and
configuring the elements
of the deployment
descriptor in property
sheets for the web.xml
file. Or, opening the
web.xml file in the Source
Editor and editing it
manually.

“Configuring the Web Module Deployment
Descriptor” on page 92

Extensibility Integration with
Enterprise Edition.
Creating a J2EE
application from an
existing EJB module or
web module. Or, creating
the application from an
Explorer filesystem or
package node

“Including a Web Module Within a J2EE
Application” on page 112

Easy access to
web servers

Web server plug-ins.
Configuring the Sun ONE
Application Server 7
plugin and the Tomcat
plugin to integrate with
web servers that are
installed on your
computer

“Using the Integrated Servers” on page 96

TABLE 1-1 How the IDE Addresses Developer Needs (Continued)

Developer Need Feature and Description For more information, see
Chapter 1 Addressing the Challenges of Web Application Development 29

30 Building Web Components • June 2003

CHAPTER 2

The Structure of Web Modules

The chapter describes the structure of web modules, including:

■ Servlet containers
■ JSP pages
■ Servlets
■ Servlet filters
■ Tag libraries
■ Listeners

This chapter discusses concepts that are fundamental only to the servlet container
and its web components. It also describes supporting classes and files not directly
managed by the servlet container. These classes and files are logically part of the
web module and are deployed together with the web components.

A web module runs inside a servlet container. A servlet container, in turn, is
contained within a web server. A web module contains presentation, controller, and
model elements. The presentation element, sometimes called the view element, is the
physical page that users see and interact with. It can consist of either a JSP page or
an HTML file. The controller element, for example, a servlet, controls what users see
and how they interact. The model element contains data that is used by the
presentation and controller elements. The data might be included in Java libraries or
other resources. These resources might include GIF images, HTML files, and so
forth.
31

Web Servers
A web server provides the mechanisms for clients on the Internet, intranet, or extranet
to access a repository of web resources. These resources might consist of HTML
pages, CGI (Common Gateway Interface) scripts, images, and so forth. The web
server mechanisms include:

■ Support for HTTP and other protocols

■ Execution of server-side programs, such as servlets or CGI scripts, which perform
certain functions

■ Support for servlet containers, which characteristically depend on web servers for
HTTP message handling

■ Hosting of one or more servlet containers from the same vendor

An HTTP request is a message created in the client browser that includes attributes
and cookies from the client browser. The web server routes the request to the servlet
container. Request processing can occur in a servlet, in a JSP file, and in a servlet
filter. The HTTP request ends when this processing is complete.

An HTTP response is a message that is generated in the servlet container and
includes cookies, headers, and output that eventually go to the client browser.
Response processing can also occur in a servlet, in a JSP file, and in a servlet filter.
The web server routes the response from the servlet container to the client browser.

Servlet Containers and Web
Components
Web servers can provide servlet containers. Servlet containers offer runtime services
to support the execution of the web components of a web module. These services
include:

■ Life-cycle management

■ Network service, by which requests and responses are sent

■ Decoding of requests and formatting of responses

■ Interpretation and processing of JSP pages into servlets

■ Deployment

■ Access to the J2EE service and communication APIs, which provide for security,
concurrence, transaction, and deployment
32 Building Web Components • June 2003

Servlet containers forward client requests from a web server to web components in
the module. They also forward the client-bound responses from the web components
back to the web server. Servlet containers typically run in a web server process as a
web server plug-in or in a J2EE application server process.

Servlet containers also provide the network services over which requests and
responses are sent, requests decoded, and responses formatted. All servlet containers
support HTTP (Hypertext Transfer Protocol) as a protocol for requests and responses.
They also might provide for additional request-response protocols such as HTTPS
(Hypertext Transfer Protocol Secure Sockets).

A distributed servlet container can run a web module that is tagged as distributable.
The server might execute the web module across multiple Java virtual machines that
are running on the same host or on different hosts, and the module must gracefully
deal with being run in such a distributed manner. In this situation, the scope of the
objects in the web module is extended. A certain amount of overhead is involved in
maintaining the synchronization of the common session information among multiple
servers. This overhead includes performance penalties and storage considerations.
For more information, see “HTTP Sessions” on page 39.

Web components are server-side J2EE components. They are managed by and
communicate directly with a servlet container. They are capable of receiving HTTP
requests through the servlet container, processing them, and returning HTTP
responses. The J2EE platform defines two web component types: servlets and JSP
pages.

Servlet Context
The servlet context for a web module is an object containing the servlet’s view of the
web module in which it is running. It defines a set of methods that a servlet uses to
communicate with its servlet container, for instance to:
■ Dispatch results
■ Log events
■ Obtain URL references to resources
■ Set and store attributes other servlets in the context can use

A web module is represented at runtime by an object implementing the
ServletContext interface. The servlet context provides web components with
access to resources available within the web module. There is one servlet context per
web module per Java virtual machine.

A ServletContext instance is unique within a nondistributed web module. The
instance is also shared by all web components within the web module. This object is
implicitly available in JSP pages as the application instance variable. This
variable is always available. It does not need to be declared.
Chapter 2 The Structure of Web Modules 33

A ServletContext instance (as well as the web module it represents) is rooted at a
specific path within a web server. It could, for example, be rooted at
http://www.myStore.com/productList. In this case, all requests starting with
the context path of /productList would be routed to the ServletContext
instance.

Web Modules
A web module is unit that consists of one or more web resources and that is
deployable as a J2EE web application, where a web resource can be a web
component or a static web content file, such as an image. A web module might be
used to implement a web-based product catalog application. Such a program might
contain:

■ JSP pages for displaying products to the user
■ Servlets for controlling navigation through the catalog
■ Beans for getting information from a database

Web modules are self contained. Only the contents of a single root directory are
typically required to deploy a web module to a web server.

For more information, see “Web Modules in the IDE” on page 62.

JSP Pages
A JSP page describes the client presentation, for example, a page displayed in a web
browser, that enables your web module to interact with end users. A JSP page is
translated to a servlet class within the servlet container. The JSP page describes how
to process an HTTP request, and it generates an HTTP response. The JSP page’s
HTML-like syntax lets it focus on presentation and document issues rather than
features provided by Java code. For more information on servlets, see “Servlets” on
page 42. For details on support for JSP pages in the IDE, see “Creating JSP Pages” on
page 65.

JSP Page Life Cycle
A JSP page is processed by its runtime environment, that is, the servlet container.
The servlet container manages the creation, routing, and removal of requests and
responses. Furthermore, it orchestrates the processing of requests and responses by
34 Building Web Components • June 2003

activating the appropriate web components. The JSP page performs processing on an
HTTP request and generates an HTTP response. The processes involved in this
phase are JSP page translation, instantiation, request processing, and destruction.

Translation and Instantiation

JSP page translation refers to the process by which the servlet container converts a
JSP file into a servlet class. The details of this process are specific to the servlet
container. In the web server or servlet container, the JSP file is converted to a Java
servlet source file. It is then compiled to a class file.

The servlet container translates a JSP file the first time it receives a request for it. On
subsequent requests for the same JSP page, the servlet container typically bypasses
this phase. Translation could occur if the date on the JSP implementation class is
older than the date on the JSP file. Hence, JSP pages can be redeployed without
restarting the web server. The translation process is managed by the servlet
container.

After a JSP page has been translated to a servlet, it is instantiated by a call to its
jspInit method. The jspInit method is typically used to prepare resources
required by the JSP page.

Request Processing

In the simplest case, the JSP page receives a client request from the servlet container.
It then processes the request according to its programmed logic and sends a
response to the container. By default, each request executes in its own thread.
Request processing can involve other components such as servlets, filters, or other
JSP files that forward requests from the client.

Destruction

Servlet containers typically provide a way to limit how long a JSP instance can
persist without receiving a request. After the user-specified limit, the servlet
container can reclaim resources by destroying a JSP instance. Before doing so, it calls
the instance’s jspDestroy method, which corresponds to the jspDestroy method
of the JSP file. The jspDestroy method is used to close resources that are no longer
needed.
Chapter 2 The Structure of Web Modules 35

Code Constructs in JSP Pages
A JSP page can contain template data and elements. Template data consists of non-JSP
constructs, such as HTML and XML code, passed through to the HTTP response
word for word. Template data is generally used to provide static content and to
format dynamic data. Because HTML is passed through literally, coding presentation
content is very natural for a web page designer. Elements are constructs, recognized
by the servlet container, that provide dynamic capabilities.

JSP elements are grouped into three categories: directive elements, action elements,
and scripting elements.

Directive Elements

Directive elements provide global declarative information about a JSP page that is
unrelated to any particular request. Directives are processed at translation time.

Directives are placed between <%@ and %> symbols. For example, the following page
directive imports the java.util package and associates the JSP page with the
current error page.

TABLE 2-1 describes the directives defined in the JSP specification:

Action Elements

Action elements are XML-style tags that provide a means of working with Java objects
without writing Java code. For example, you can use actions to locate and instantiate
objects, and to get and set an object’s properties. Actions are processed at request
time, that is, when the request is received by the servlet container. Some actions write
output to the HTTP response.

Standard actions are implemented by the servlet container.

<%@ page import="java.util.*" errorPage="showError.jsp" %>

TABLE 2-1 JSP Directives

JSP Directive Description

page Imports classes, sets session participation, and selects an error page

taglib Identifies a tag library so that its tags can be used within a JSP file

include Includes another file within a JSP file
36 Building Web Components • June 2003

TABLE 2-2 describes JSP standard actions defined by the JSP specification.

The JSP specification also supports the development of custom actions to provide
features not available through standard actions. Custom actions are implemented by
creating or importing tag libraries. See “Tag Libraries” on page 44 for more
information.

Because actions use XML syntax, they provide web page designers with a familiar
paradigm for working with dynamic data. Web page designers might not code
actions themselves. However, they need to understand enough to work in a file
containing actions. Web page designers might have to provide HTML template data
for actions that produce output to a web page.

Scripting Elements

Scripting elements enable you to embed Java code within a JSP file. These elements
can then be used for programming logic and for writing output to the HTTP
response. Scripting elements are executed on the web server. The response page sent
to the client displays only the result of the scripting element code. By contrast,
JavaScript is routed through the server and returned to the client for processing.

Three syntactically distinct types of scripting elements are described in this section:
declarations, expressions, and scriptlets.

TABLE 2-2 JSP Standard Actions

Standard Action Description

forward Immediately sends the processing of the request to another resource,
including JSP pages, servlets, HTML pages, and so forth

include Subsumes another file within this JSP file. The name of the included
file can be computed at request time.

useBean Identifies a bean that can be accessed from the JSP file

getProperty Gets the value of a property from a bean associated with the JSP file
through the useBean action

setProperty Sets the value of a property in a bean associated with the JSP file
through the useBean action

plugin Enables the Java plug-in to be loaded in the client browser. If
necessary, it executes an embedded applet or JavaBeans component.
Chapter 2 The Structure of Web Modules 37

Declarations help you declare and initialize variables, instantiate objects, and declare
methods. Declarations are processed at translation time and do not write output to
the HTTP response. Declarations are placed between <%! and %> symbols. The
following example declares and initializes two String variables:

Expression elements enable you to enter any valid and complete Java expression. The
servlet container converts an expression element to a String at request time. The
resulting String is then written to the HTTP response. Expressions are placed
between <%= and %> symbols.

The following example inserts a piece of dynamic data into an HTML string.

Scriptlets are useful to manipulate data for viewing purposes. They enable you to
enter any piece of valid Java code. However, they are not recommended for
performing business logic because they can be difficult to maintain. It is better to
encapsulate business logic within reusable Java classes like beans or tag handlers.

You might start out with scriptlets for creating prototypes or for the testing of new
code. After confirming that the feature set meets your requirements, move the code
into a bean or tag library. For complicated view logic, see “View Creation Helpers”
on page 57. For details about creating a tag library, see “Developing Your Own Tag
Libraries” on page 81.

You should not use scriptlets in production web modules. This recommendation is
especially important if a developer is maintaining the code and a web page designer
is in charge of the visual aspects of a web module.

Variables and methods declared in a declaration element are available to scriptlets in
the same JSP page. A Java statement can begin in one scriptlet and end in another,
interspersed, for example, with HTML code. Scriptlets are processed at request time
and write output to the HTTP response, if you code them to do so.

<%!
String name = null;
String title = null;

%>

<p>Hail the <%= title %>!
38 Building Web Components • June 2003

The following scriptlet example shows a Java if statement that spans two scriptlets.
The HTML code is included in the HTTP response only if the if statement evaluates
to true. Note that scriptlets are placed between <% and %> symbols.

HTTP Sessions
An HTTP session is a Servlet API mechanism that associates the many requests
representing a conversation between a client browser and a server.

When a user requests a JSP page, a new session is automatically created if it does not
already exist. Subsequent requests to pages within the web module are usually
associated with the session. Requests are not associated with the session when the
page directive session attribute is set to false.

The session ends when a time-out occurs or when the web module explicitly
invalidates it. The session timeout value is set in the web module’s deployment
descriptor file. A JSP page or servlet class can invalidate a session using the
invalidate method. For details on setting the session time-out value, see
“Configuring the Web Module Deployment Descriptor” on page 92. For more
information on the using the invalidate method, see “Creating and Invalidating
Sessions” on page 66.

The typical JSP page is associated with a session. However, you might also include
dynamic pages that are not specific to a particular client. Such pages can be
generated once and shared among many sessions. The use of JSP pages not
associated with a session can reduce your web module’s requirements for system
resources.

<% if (name.equals("Elvis Presley")){
%>
<p>Let's hear it for Elvis!
<% title = "King";
}
%>

<%@page contentType="text/html" session="false" %>
Chapter 2 The Structure of Web Modules 39

In a distributed environment, information for a particular session might only exist in
the web server that initiated the session. If requests are routed to different web
servers depending on overall load, the session information must be replicated. In
this situation, the web servers need to access the shared session information and
must keep in sync. The web server can manage the shared session information.
However, this practice adds to the total load on the system, consuming time and
resources.

The HTTP Monitor indicates whether a page is associated with a session or not. It
also provides other useful information about HTTP requests. For details on the IDE’s
HTTP Monitor, see “Viewing Monitor Data Records” on page 103.

Scopes and Implicit Objects
When instantiating an object in a JSP file, you most likely want to make it available
to other objects in your application. You might want to ensure that all objects in your
application can access the object. On the other hand, you might want to restrict its
availability to some subset of these objects. For example, you might want to make
the object available only to other objects associated with the current user’s HTTP
session. The JSP specification defines a number of scopes in which you can place a
reference to an object.

Scopes enable you to control the availability of an object. You can place a reference to
the object in any of these scopes. You typically only put an object in a single scope.
The object is then available to all subsets of the chosen scope. In other words, page
scope objects are available to objects in the request, session, and application
scopes.

The concept of a scope in a web module is different from its use in traditional,
standalone applications. In a web module, scope refers to an object’s availability to a
module’s various components. These are the page, request, session, and
application scopes. In standalone applications, scope refers to a variable or
object’s availability within blocks of code.
40 Building Web Components • June 2003

At runtime, these scopes are implemented as Java objects, as described in TABLE 2-3.

You can locate or make a bean available within one of these scopes with a useBean
action. In this action, you supply a scope attribute in order to specify the
availability of the bean instance, for example:

TABLE 2-3 Scopes in JSP Pages

Scope Description Object Type

page Represents the current JSP
page. This object is available
only to JSP elements in the
current page or in pages
included by an include
directive. This object is not
available to pages included
by an include action. The
directive is executed at page
translation time, and the
included pages are
concatenated into the same
JSP implementation class.

javax.servlet.jsp.PageContext

request Represents the current HTTP
request. This object is
available only to JSP pages
and servlets executing in the
current HTTP request. For
example, if one JSP forwards
to another using a forward
action, both pages access the
same ServletRequest
object.

javax.servlet.ServletRequest

session Represents the current user’s
HTTP session. This object is
available only to JSP pages
and servlets executing in
requests associated with the
current user’s HTTP session.

javax.servlet.http.HttpSession

application Represents the runtime web
module. This object is
available to all JSP pages and
servlets in the web module.

javax.servlet.ServletContext

<jsp:useBean id="myCart" scope="session" class="Cart">
Chapter 2 The Structure of Web Modules 41

Scopes and the objects they represent are implicitly available to the scripting
elements of a page. They use the scripting variables that the page automatically
instantiates. By default, JSP pages have access to the session scope. However, if a
page is not participating in a session, it cannot use the session scope. Furthermore, it
cannot reference the session implicit variable. When a page is not participating in
a session, the page directive session attribute is set to false. Some parts of a web
module do not require session data. An example of such data is background
information about a site that does not require a user to log in. If the user remains
only in those sections, then the overhead of creating a user session can be avoided.

You can use the IDE’s code completion feature to show the methods available to
objects of different scopes. For details, see “Modifying the JSP File” on page 66.

You can set and use scope objects from within servlets, tag handlers, and scriptlets.
To set objects in scopes, use the addAttribute method on the relevant scope object.
To retrieve objects in scopes, use the getAttribute method on the relevant scope
object. See TABLE 2-3 regarding the available scopes.

Servlets
Servlets are Java classes that execute within a servlet container. They are used to:

■ Extend the capabilities of web servers and web-enabled application servers
■ Generate dynamic content
■ Interact with web clients using a request-response paradigm

For details on support for developing servlets in the IDE, see “Creating Servlets” on
page 71.

Servlets are typically used as front controllers and dispatchers to control navigation
through a web module. They are also used to control application flow. Servlets
enable and disable access to certain web resources, depending on the particular state
being tracked.

For more information on the use of the Front Controller design pattern, see “Front
Controllers” on page 52.

Servlet Life Cycle
The servlet life cycle defines how the servlet is loaded, instantiated, and initialized.
It also describes how it handles requests from clients, and how it is taken out of
service.
42 Building Web Components • June 2003

Loading and Instantiation

Servlets execute within containers that provide the network services. These services
include sending requests and responses, decoding requests, and formatting
responses. All servlet containers support HTTP as a protocol for requests and
responses. They might also provide for additional request-response protocols such
as HTTPS.

The servlet container loads and instantiates servlets. An option enables loading and
instantiation to occur once the servlet container is started. Servlets designated “load
on startup” are loaded when the servlet container starts up. For more information,
see “Load on Startup” on page 72. When the loading is complete, the container
instantiates the Servlet class for use.

Initialization

Before the servlet can handle requests from clients, the servlet container initializes it.
Initialization enables the servlet to:

■ Read persistent configuration data

■ Initialize two kinds of resources:

■ Those you only want one instance of
■ Those that are time-consuming to initialize, for instance, database connections

■ Perform any application-specific start-up activities

Request Handling

Once the servlet has been initialized, the servlet container can route requests to it.
The servlet processes the requests and builds appropriate responses. The servlet
passes these objects as parameters of the service method of the HTTPServlet
interface. The service method is called by the servlet container. It enables the
servlet to respond to a request only after the servlet’s init method has been
initialized.

Servlets typically run inside multi-threaded servlet containers that can handle
multiple requests concurrently. As a developer, make sure to synchronize access to
any shared resource such as files and network connections. Also make sure to
synchronize access to the servlet’s class and instance variables. If necessary, the
servlet container can also serialize requests to a servlet.

A new servlet instance is created for each concurrent request. Therefore, if many
requests arrive simultaneously, many new threads are created. To avoid overloading
the server, the servlet container can limit the maximum number of servlets. For
information about setting this limit see one of the following:
Chapter 2 The Structure of Web Modules 43

■ For Sun ONE Application Server 7, see the Sun ONE Application Server
Administrator’s Configuration File Reference at http://docs.sun.com.

■ For Tomcat, see the Configuration reference at
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config

Destruction

When a servlet container decides to remove a servlet from service, it calls the
destroy method of the Servlet interface. This method enables the servlet to
release its resources and save any persistent states.

Once the destroy method is called, the container cannot route other requests to that
servlet instance. Furthermore, any currently running threads of the service
method are permitted to complete their execution. Upon the completion of the
destroy method, the container releases the servlet instance for garbage collection.

Unlike other Java classes, the servlet’s life span might be hours, days or even weeks.
Hence, you need to manage the use and creation of resources, such as database
connections, so that they are available only when needed.

Tag Libraries
A tag library is a collection of custom actions. As shown in FIGURE 2-1, a tag library
consists of a set of tag handlers and a tag library descriptor file. Each custom action,
or tag, is implemented as a tag handler bean that contains its features. The tag
library descriptor (TLD) is an XML document that maps each tag in the library to its
associated tag handler. The TLD describes parameters and scripting variables
associated with the tags in the tag library.
44 Building Web Components • June 2003

http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config

FIGURE 2-1 The Structure of a Tag Library

A tag library is typically packaged as a JAR file. It is made available to a JSP file
through a taglib directive. The IDE supports the use of existing tag libraries such
as JSTL (Java Server Pages™ Standard Tag Library) and other third-party libraries. It
also provides for the creation of your own tag libraries. For details on tag library
support in the IDE, see “Using Tag Libraries” on page 77.

JSP Standard Tag Library
You can use tags from the JSP Standard Tag Library (JSTL) to extend the set of
actions available for use in your web module. The use of tags based on a standard
helps to increase the portability of components within a web module. It also reduces
the need for Java code in scriptlets, which can create maintenance difficulties in JSP
files.

For example, instead of iterating over lists using different iteration tags from
numerous vendors, you can use JSTL tags. They work the same way in all web
environments. This standardization means you learn a single tag and use it on
multiple JSP containers. Furthermore, the specification enables containers to
recognize standard tags and optimize their implementations.

The JSTL introduces the concept of an expression language to simplify page
development. It includes an experimental version of a language for testing purposes.
JSTL also provides a framework for integrating existing custom tags with JSTL tags.
Chapter 2 The Structure of Web Modules 45

For a tutorial and description of JSTL tags, see Java Server Pages Standard Tag Library
at the following web site:
http://java.sun.com/webservices/docs/1.1/tutorial/doc/JSTL.html

To download the JSTL and the associated specification, visit the following web site:
http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

You can use the tag library editing and management features of the IDE to facilitate
the usage of JSTL tags. For details, see “Using Existing Tag Libraries” on page 78.

Servlet Filters
Servlet filters, also called filters in this book, are Java classes that modify requests to
and responses from servlets. Filters can be used to perform many functions, such as:

■ Authentication. Assurance that a user can only access certain web resources

■ Logging and auditing web application users. Keeping track of each time a user
accesses a web resource and recording the access in a log file

■ Localization. Choice of the appropriate resource for the user’s locale

■ Data compression. Compression or decompression of data on its way to or from
a servlet

■ Style translations of XML content. Translation of XML content before viewing a
web resource

Filters are defined by version 2.3 of the Java Servlet Specification. When a servlet
context receives a request, it calls all the filters that are associated with the request
before passing the request to the processing resource. Filters are not called if the
request is redispatched internally, for example, because the request is forwarded.
This behavior makes filters useful in some gate-keeping roles. For instance, you
could use a filter for:

■ Logging. If a property of incoming requests interests you, the filter can extract the
requests and write them to a file.

■ Changing or adding to data associated with the request. You can replace the
original request and response with wrappers. They enable you to change the
incoming request before it is processed by a JSP page or a servlet.

■ Handling preprocessing required by a group of resources. For example, you
could ensure that a user profile is loaded into a session.

By contrast, you might require logging or preprocessing in case a request is
forwarded from a servlet or JSP page using the RequestDispatcher API. In this
situation, you need to implement the action as a servlet instead.
46 Building Web Components • June 2003

http://java.sun.com/webservices/docs/ea2/tutorial/doc/JSTL.html
http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

When the servlet context receives a request, it determines whether any filters match
the path to the resource. If one or more filters are found, the servlet context
constructs a FilterChain object. The chain consists of all matching filters in the
order they are declared in the deployment descriptor. The servlet context calls the
doFilter() method on the first filter. Each filter must call the next filter in the
chain. Each filter gives control to the next filter and so forth. When the last filter in
the chain calls the doFilter method, the request is processed by a JSP page or a
servlet. The request could also be processed in a static content file such as an image
being served. Once this process is complete, control is returned to the last filter.
When the last filter’s doFilter method is completed, control is returned to the
next-to-the-last filter and so forth.

An example of a filter in action is the HTTP Monitor in the IDE. It uses a filter to
gather data about the request and the servlet context before and after the other web
module resources process the request. The filter is also responsible for handling
replay requests. The filter accomplishes this task by replacing the incoming request
with a wrapper. Then the filter populates the wrapper with data from the original
request. Hence, the HTTP Monitor filter needs to be the first one in the chain, so that
it is called before any application-defined filters. Filters are usually declared in the
deployment descriptor of individual web modules.

For information on the support for servlet filters in the IDE, see “Creating Filters” on
page 76.

Filter Life Cycle
The filter life cycle delineates how the filter is loaded, instantiated, and initialized. It
also describes how the filter handles requests from clients and how it is taken out of
service.

Loading and Instantiation

Before a servlet container accesses a web resource, it locates the list of filters to be
applied to the web resource. The servlet container ensures that it has instantiated a
filter of the appropriate class for each filter on the list. It also calls the
FilterConfig method for each filter.

Initialization

When the container receives a request, it calls the doFilter method for the first
filter in the list of filters in the chain. The container then passes in the servlet’s
requests and responses and a reference to the filter chain it is to use. The filter chain
is defined in the deployment descriptor.
Chapter 2 The Structure of Web Modules 47

The doFilter method for a filter might examine the headers of the request. In
addition, the method could modify request or response headers or alter data by
wrapping the request or response object.

The filter then calls the next entity in the filter chain. The entity could be a filter. A
request works its way through the filter chain to the last filter. The last filter then
calls the associated web resource, for instance, a servlet or a JSP page.

Destruction

Before a filter can be removed from service by the container, the container calls the
destroy method on the filter. It also releases any other resources and performs
cleanup operations.

Listeners
Application event listeners are new with the Servlet 2.3 Specification. They are classes
that implement one or more of the servlet event listener interfaces. Application event
listeners are instantiated and registered in the web module at the time the web
module is deployed.

Listener classes provide a way to track sessions within a web module. It is often
useful to determine why a session has become invalid. Either the container timed
out the session or the module called the invalidate method. You can make this
distinction using listeners and HTTPSession API methods.

Servlet event listeners support event notifications for state changes in:

■ Servlet context objects. Useful for managing resources at the virtual machine
level for the module

■ HTTP session objects. Useful for managing state. Also helpful for handling
resources associated with a series of requests from the same client related to the
module.

Use multiple listeners to monitor changes occurring within the life cycle. They are
also useful to track attributes of servlet contexts and HTTP session objects.

■ Servlet context events include:

■ Life cycle. Servlet context has just been created and can service its first request,
or it is about to be shut down.

■ Changes to attributes. Servlet context attributes have been added, removed, or
replaced.
48 Building Web Components • June 2003

■ HTTP Session events include:

■ Life cycle. An HTTP session has been created or invalidated, or has timed out.

■ Changes to attributes. Attributes have been added, removed, or replaced on
an HTTP session.
Chapter 2 The Structure of Web Modules 49

50 Building Web Components • June 2003

CHAPTER 3

Design Patterns and Frameworks

This chapter presents some terminology and general concepts surrounding design
patterns that are useful in the architecture of web applications. It outlines several
commonly used patterns and introduces some frameworks that simplify the process
of developing web applications.

Design Patterns
Design patterns provide architectural solutions to common software design problems.
These patterns have emerged over time through the experience and insights of
developers. This section introduces some basic patterns that might prove helpful in
the context of developing web applications.

You can also find information on these patterns by visiting the following web site,
which is part of the Java Developer Connection:

http://developer.java.sun.com/developer/restricted/patterns/
J2EEPatternsAtAGlance.html

The patterns listed below are of particular relevance to the building of web
applications. More details are provided in the sections that follow:

■ Front Controller. Coordinates handling of incoming requests. See “Front
Controllers” on page 52 for more information.

■ Dispatcher. A subpattern of the Front Controller pattern, describing how to
control which view the user sees. See “Dispatchers” on page 53 for details.

■ View Helper. A subpattern, in this case, to the Front Controller pattern,
encapsulating the processing functions, or business rules, such as data access
or business logic. See “Helpers” on page 55 for more.

■ Composite View. (also called a template) Creates an aggregate view from
subcomponents. See “Composite Views” on page 56 for additional information.
51

http://developer.java.sun.com/developer/restricted/patterns/ J2EEPatternsAtAGlance.html

A full treatment of the use of design patterns in web applications can be found in
Core J2EE Patterns by Deepak, Crupi, and Malks. See “Useful References” on page 12
for more on this book.

Front Controllers
Front controllers are responsible for routing incoming user requests. In addition,
they can enforce navigation in web applications. When users are in sections of a web
application where they can browse freely, the front controller simply relays the
request to the appropriate page. For example, in an e-commerce application, the
customer browses through a product catalog. In controlled sections in which users
must follow a specific path through the application, the front controller can validate
the incoming requests and route them accordingly. For example, a customer wants to
buy the items in a shopping cart. That customer is required to follow a particular
route to complete the purchase successfully.

A front controller provides a single entry point through which requests for several
resources in a web application pass. One front controller might handle all requests to
the application. Several front controllers might handle requests for portions of the
application. Typically implemented as servlets, front controllers are frequently used
for the following tasks:

■ Controlling page flow and navigation
■ Accessing and managing model data
■ Handling business processing
■ Accessing data that is relevant to GUI presentation, for example a user profile

Front controllers can reduce duplication of code in JSP pages, especially in cases
where several resources require the same processing. Examples might include
ensuring that the user’s profile has been found, obtaining the data corresponding to
a product ID, and so forth.

You can maintain and control a web application more effectively if you funnel all
client requests through a front controller. Functions such as view selection, security,
and template creation can be centralized in this design pattern. The front controller
applies these functions consistently across all pages or views. Consequently, when
the behavior of these functions needs to change, only the front controller and its
helper classes need to be changed. They constitute a relatively small portion of the
application.

In the two-tier form of a web application, shown in FIGURE 3-1, the recommended
approach is for the front controller to deal with user requests. The front controller
also determines which presentation element is to be shown to users and which data
is to be used for the chosen presentation. This strategy contrasts to the traditional
approach in which each user request must be mapped to a separate view.
52 Building Web Components • June 2003

Note that front controllers do not have to route requests directly to views. You can
chain them so that, for instance, one front controller accesses user profile
information. Then it could forward that profile to another front controller.

FIGURE 3-1 Determining the User View With a Front Controller

For information on creating a servlet as a front controller using the IDE, see “Using
the Servlet as a Front Controller” on page 74.

Dispatchers

Typically, the front controller coordinates user navigation, using the Dispatcher
subpattern for this purpose. As shown in FIGURE 3-2, the front controller processes a
request. Perhaps the user might want to check out items in a shopping cart of an e-
commerce application.
Chapter 3 Design Patterns and Frameworks 53

FIGURE 3-2 Dispatching as a Function of a Front Controller

Dispatcher code could be contained within the front controller servlet, or in a
separate class. In practice, the dispatcher instructs the front controller where to
forward the request. In the Front Controller design pattern, the dispatcher
encapsulates the behavior that controls which views the user sees.

View Mappers

When web resources differ based on the type of client, you can use a View Mapper to
assist the dispatcher mechanism. Such clients could include a web browser, personal
desktop assistant, or cell phone. For instance, you might be developing a web
application that retrieves information about waves and tides. In this situation, your
users might want to view this data from desktop personal computers or cell phones.
Instead of dispatching to a single JSP page, your web application might use the View
Mapper to send a different JSP page, depending on the type of client.

1. For example, when your web application receives incoming requests, it routes
them to a front controller servlet.

2. The front controller retrieves the appropriate data using a Helper bean.

3. It then determines the appropriate view type based on the client within the View
Mapper.

4. Based on input from the View Mapper, the dispatcher returns the view
information to the front controller.

5. The application subsequently forwards the request to the specific view intended
for the user’s client, as shown in FIGURE 3-3.
54 Building Web Components • June 2003

FIGURE 3-3 Using View Mappers

In your wave and tide application, you might not initially know whether you
wanted to display the information on a PDA or on a phone. In this case, the View
Mapper would enable you to create alternative objects or families of objects.

Use View Mappers not only to redirect information to different devices, but to
different locales or different views.

Helpers

The front controller servlet can easily become quite large and unwieldy. Therefore,
use Helper classes to break out specific features and make the application easier to
build and maintain. Here are some tasks that can be encapsulated as Helper classes:

■ Retrieval of content from a file, another web site, or even a web service

■ Validation of user-entered information

■ If the front controller needs to delegate processing of business logic, it can use
Helpers for this purpose, as shown in FIGURE 3-4.

■ Data processing
Chapter 3 Design Patterns and Frameworks 55

FIGURE 3-4 Delegating Processing of Business Logic With Helpers

Helpers that do the processing and retrieval of data for the presentation layer are
called View Helpers. These types of helpers make the maintenance of applications
easier because the helpers separate business logic from presentation logic.

You can implement Helpers as regular Java classes. See “Using Additional Classes or
Beans” on page 70 for details.

Composite Views
A Composite View is a design pattern that creates an aggregate view from component
views. Component views might include dynamic, modular portions of the page. This
design pattern pertains to web application design when you are creating a view
from numerous subviews. Complex web pages frequently consist of content derived
from various resources.The layout of the page is managed independently of the
content of its subviews. For instance, a view might have subviews like Navigation,
Search, Feature Story, and Headline. An included view is a subview that is one
portion of a greater whole. The included view might, in turn, consist of subviews, as
shown in FIGURE 3-5.
56 Building Web Components • June 2003

FIGURE 3-5 Managing Content Independently From Layout With a Composite View

When creating a composite view, you can include static content and dynamic
content. Static content might consist of an HTML file. Dynamic content might be
something like a JSP page. You can also include content at JSP translation time and
runtime.

For information on using the IDE to implement a Composite View pattern, see
“Creating a Composite View Template” on page 69.

View Creation Helpers
Typically, web pages need to be reused and maintained over time. Use View Creation
Helper beans when you need to display data as it is received. Examples of such
information might be tables or sets of links. A View Creation Helper can be any bean
or Java class. However, since they are specifically geared toward presentation in JSP
pages, View Creation Helpers are typically tag handler classes.

The View Creation Helper class provides a way to avoid placing Java code related to
specific presentation features directly in the JSP file or front controller servlet. For
instance, your web application might contain a catalog search that results in certain
display results. In this situation, encapsulate the behavior into JSP tags, as shown in
FIGURE 3-6:
Chapter 3 Design Patterns and Frameworks 57

FIGURE 3-6 Using View Creation Helpers

Similarly, your web application might require that logic to format data within its
views. View Creation Helper beans can be obtained and used in the same manner as
any other beans from within a JSP file. See “Using Additional Classes or Beans” on
page 70 for more information on using the IDE with beans.

Model Objects
Model objects are Java objects that encapsulate application data inside a web
application. For instance, in a shop cart e-commerce application, a model object
might be an abstraction for a user profile. Examples of the data would include the
user’s name, e-mail address, phone number, and so forth.

Typically, you store this type of information in a database, and the application
retrieves the data by issuing a network request. Because network requests are
expensive, the application should minimize the number of requests for the same
data. Hence, you must design session data carefully. For additional information on
accessing databases with JDBC, see Using Java DataBase Connectivity, a volume in the
Sun ONE Studio 5 Programming series.

You can pass the model object to the JSP file from a front controller servlet in two
ways:

■ Through a request attribute

■ By placement in the web application’s session data

If it makes sense for the application to store product data for a term longer than a
single request, then this information can be placed in the application’s session.
58 Building Web Components • June 2003

Typically, all requests from a single user go to a single server where the session
information is stored. In a load-balancing system, a single user’s requests might
be routed to different servers. Hence, session information for a particular user
must be shared among servers. This situation can result in slower performance if
the web application must synchronize access to the session data.

If the application is to be deployed on a load-balancing system, distributing
session data is inefficient. In this case, you might want to store the data as hidden
parameters in the page that is sent back to the user. The data is then sent back to
the server with any subsequent requests that are sent from that page.

Frameworks
Frameworks are sets of design patterns, APIs, and runtime implementations intended
to simplify the design and coding process for building new applications. Examples
of frameworks are Struts, the Sun ONE Application Framework, and JavaServer
Faces, described in the subsequent sections.

Framework designers factor out common functions from existing applications and
implement them using appropriate design patterns. A framework enables
application developers to concentrate on the unique feature set required by their
applications.

Web application frameworks typically provide support for functions such as:

■ Navigating among the application’s pages

■ Building forms that accept input from the end user

■ Creating views to display information to the end user

■ Providing access to processing and data with JavaBeans and Enterprise JavaBeans

■ Supplying database access to incorporate information directly from database
systems

■ Using directory services such as JNDI (Java Naming and Directory Interface) and
LDAP (Lightweight Directory Access Protocol)

■ Providing secure and non-secure access through authentication mechanisms

Struts
Struts is an open-source framework from the Jakarta Project. It is designed for
building web applications with the Java Servlet API and JSP technology. The Struts
package provides an integrated set of reusable components. The set includes a
controller servlet, JSP custom tag libraries, and utility classes. The components are
Chapter 3 Design Patterns and Frameworks 59

for creating user interfaces that can be applied to any web-based connection. Struts
facilitates the standardization of workflow and the achievement of simplicity and
reusability. For more on the Struts framework, see
http://jakarta.apache.org/struts/

JavaServer Faces
JavaServer Faces proposes to define a standard set of JSP tags and Java classes. This
set aims to simplify the building of Java web application graphical user interfaces
(GUIs). JavaServer Faces defines complex HTML forms and other common GUI
elements. Furthermore, it enables tools and third-party component vendors to focus
on a single component framework for JSP pages and servlets. It intends to bridge the
gap between conventional GUI toolkit developers and web-based GUI developers. It
hopes to provide familiar APIs for GUI components, component states, and for
rendering and input processing. Comprehensive support for internationalization
and basic input validation is proposed. This support should ensure that developers
include internationalization and input validation in their first releases. For more
information on JavaServer Faces, see
http://www.jcp.org/jsr/detail/127.jsp
60 Building Web Components • June 2003

http://jakarta.apache.org/struts
http://www.jcp.org/jsr/detail/127.jsp

CHAPTER 4

Developing Your Own Web
Application

This chapter provides an overview of how to program web modules using the IDE.
This high-level view ties together the tasks involved in creating your application. It
then provides some details on individual programming tasks.

See Chapter 5 for a description of the process of configuring, executing, debugging,
and deploying a web application.

It is recommended that you work through the Sun ONE Studio 5 Web Application
Tutorial before building your own web application with the IDE.

Development Work Flow
This section provides an overview of the work flow typically involved in developing
a web module using the IDE. When developing a new web application, it often
makes sense to proceed in an iterative fashion. The list below describes the major
development tasks. Each task refers to a section later in the chapter that provides
more detailed information. The IDE’s online help for the JSP/Servlet module also
provides information on these tasks.

To develop a web module using the IDE:

1. Create the web module’s document root node in the Explorer window. For
details, see “Creating a Web Module” on page 63.

2. Create the web components you plan to use. This process might include:

■ Creating JSP pages for forms and other dynamic web pages presented to end
users. For more information, see “Creating JSP Pages” on page 65.

■ Creating the servlets, beans, filters, and utility classes required for your web
module. You can use servlets to control the flow of your web module or to gain
access to external resources. You can use filters to authenticate users
61

attempting to access servlets or JSP pages within your web application. See
“Creating Servlets” on page 71 and “Creating Filters” on page 76 for more
information.

The servlets, filters, beans, and utility classes go in the WEB-INF/classes
directory of the web module. However, if the classes are packaged as JAR files,
they go in the WEB-INF/lib directory.

The IDE supplies templates for all these objects in the New wizard. Templates
are also provided for simple and advanced filters and four kinds of listeners.
Each other object has a single template. See “Creating a New File” in the Core
IDE online help for details.

■ Importing the servlets, beans, and other classes required for your web module.
See “Importing an Existing Web Module” on page 64 for details.

■ Importing existing tag libraries, such as JSTL. See “Using Existing Tag
Libraries” on page 78 for more information.

■ Developing your own custom tag libraries for any other encapsulated features
your JSP pages require

The recommended process is to develop your tag library in place within the
web module in which you want to use it. Then when you are finished
developing the tags, move the tag library source files to a separate filesystem
for maintenance. At this point, package the library as a JAR file and place it in
the WEB-INF/ib directory of the web module that contains the dependent JSP
pages. See “Developing Your Own Tag Libraries” on page 81 for details.

3. Configure the web module and its components by editing the deployment
descriptor file. See “Configuring the Web Module Deployment Descriptor” on
page 92 for details.

Web Modules in the IDE
A web module is a J2EE deployment construct. The Java Servlet 2.3 Specification and
JSP 1.2 Specification require that JSP pages be executed inside a web module. When
you develop web applications using the IDE, it creates the necessary web module
structure for you. By enforcing the web module structure, the IDE ensures that web
modules can be packaged for delivery. The IDE also ensures that the web module
contains the deployment descriptor information (the web.xml file) that is required
for deployment on servlet containers.
62 Building Web Components • June 2003

Note – To execute or debug JSP pages and servlets in the IDE, you need to put them
into a web module. Both JSP pages and servlets must be executed from within a web
module. This behavior differs from some earlier versions of the IDE.

A J2EE web module corresponds to a “web application” as defined in the Java Servlet
Specification version 2.3. In the IDE, a construct called a web module group can be used
to deploy several web modules together. See “Creating a Web Module Group” and
“Executing Web Modules” in the JSP/Servlet online help for more information.

A web module is the smallest deployable and usable unit of web resources in a J2EE
application. It corresponds to the servlet context, as defined in the J2EE specification.
Web modules are typically packaged and deployed as web archive (WAR) files.
However, depending on the web server you use, web modules might not have to be
packaged in order to be deployed. The format of a WAR file is identical to that of a
JAR file. However, the contents and use of WAR files differ from JAR files, so WAR
file names use a .war extension.

Web modules use a hierarchical structure for storing their resources. This structure is
represented at development time as a filesystem mounted at the web module’s root
directory with the following files and folders:

■ JSP pages, HTML files, image files, such as GIF, and so forth that are directly
accessible by end users

■ The WEB-INF folder and its contents as follows:

■ The classes folder containing Java class files, including servlets, filters, and
listeners

■ The lib folder containing JAR files, including tag libraries, JDBC (Java
Database Connectivity) drivers, and other Java class libraries. These files
provide many of the features for the web application.

■ JSP pages not directly accessible by end users, but that can be displayed using
a servlet or filter class

■ The web.xml file, which is the web module’s deployment descriptor

■ Tag library descriptor files

Creating a Web Module
The first step in creating a web module from the IDE is to create a document root
node for the module. Use the New wizard to create a web module in the designated
filesystem. Upon completion of the wizard steps, the web module’s document root
directory appears as a node in the Explorer. When you expand the node, the web
module structure is reflected in the node contents:

■ The WEB-INF node, which contains:
Chapter 4 Developing Your Own Web Application 63

■ The classes directory
■ The lib directory
■ The web.xml file, called the deployment descriptor file in this book

The web module directory structure is treated as an object within the IDE’s Explorer
window. It is displayed within a filesystem mounted at the web module’s document
root directory. For instance, a web module object type has attributes you can set in
its Properties window and a set of pertinent commands available in its contextual
menu. The web module object is represented by the icon for the WEB-INF
node: Like any other object type in the Explorer, a web module document root
node can be created from a template.

Note – You mount a web module in the Explorer exactly as you would mount any
other filesystem. See “Mounting a Filesystem” in the Core IDE Help Set for
information on mounting filesystems. However, you must mount the web module at
its root directory, which is the directory containing the WEB-INF directory. If you
mount a directory containing a web module, rather than the web module itself, the
web module is not properly recognized. In this situation, when the web module’s
document root is a subdirectory of a mounted filesystem, you cannot perform some
operations usually associated with a web module. These operations might include
the execution or deployment of your web module or its components.

Importing an Existing Web Module
The IDE enables you to continue development on web modules that have been
created externally. To import an existing web module, you can use one of two
methods, depending on how the web module is delivered:

■ For a web module in a root directory, mount the root directory of the web module
in the Filesystem Explorer.

■ For a web module in a WAR file, mount the directory containing the WAR file.
Then use the Unpack as Web Module action on the desired WAR file node to
create a web module directory.

Indicate the location of the desired web module in the Mount Filesystem dialog box.
It is also possible for you to mount a CVS filesystem containing a web module.

For details, see “Mounting an Existing Web Module” in the JSP/Servlet online help.

To be mounted in the IDE, your web module must conform to the structured
directory format or the web archive format (WAR). The formats are described in the
Java Servlet 2.3 specification.
64 Building Web Components • June 2003

Before executing an imported WAR file, you must first unpack and mount it as a
web module. Unpack and mount a WAR file from the Filesystems tab of the
Explorer. Mount the directory containing the relevant WAR file, if you haven’t
already done so. Right-click the icon for the desired WAR file. Then choose Unpack
as Web Module from the contextual menu. In the Unpack WAR Folder dialog box,
specify the directory where you want the unpacked files to be stored. Click Unpack
Here. The WAR file is unpacked in the specified directory. The directory is mounted
and appears as a web module in the Filesystems tab of the Explorer. If the WAR file
contains no Java source files, then any servlets and JavaBeans components are not
editable once the WAR file is unpacked.

For details, see “Unpacking and Mounting a WAR File” in the JSP/Servlet online
help.

Creating JSP Pages
JSP pages are used in web applications to present information to end users and to
enable data from end users to flow back to the server. An example would be data
presentation and modification through the use of forms.

JSP files are created and managed in the IDE in a similar way to other file types. To
execute a JSP page, you must place it within a properly mounted web module.

You can create a JSP page in one of two ways:

■ Use the New wizard. For details, see “Creating a JSP or Servlet Source File” in the
JSP/Servlet online help.

■ Generate it based upon a Dreamweaver template. For more information on this
technique, see “Working With Dreamweaver Files” in the JSP/Servlet online help.

You can create JSP pages in the root directory of your web module or within a
subdirectory of this root directory.

JSP pages that are placed in the WEB-INF directory or any of its subdirectories are
not directly accessible from a client browser. However, they are accessible as
resources from a servlet. This feature is often used in conjunction with a Front
Controller design pattern. It is used to control access to JSP pages that need to be
displayed in a specific order. It is also used to control access based on security
constraints. An example of JSP pages requiring controlled access might be pages in
the middle of a checkout procedure. For more on the Front Controller design
pattern, see “Front Controllers” on page 52 and “Using the Servlet as a Front
Controller” on page 74.
Chapter 4 Developing Your Own Web Application 65

You can work with .dwt files, Dreamweaver version 3.0 and earlier. In addition to
generating a JSP page from a .dwt template, the IDE enables you to open and edit
.dwt files in the Source Editor. You can also configure the IDE to open .dwt
templates in an editor of your choice

Using page Directives
You can use page directives to specify global declarative information about a JSP
page that is unrelated to any particular request. For example, use directives to:

■ Set participation of a page in a session
■ Import classes, for instance, packages, into a page
■ Select an error page

For details on page directive syntax, see “Directive Elements” on page 36.

Creating and Invalidating Sessions
If a session does not already exist, executing the JSP page creates one. Any
additional session-related pages continue to use that session until it is invalidated.
Invalidation can occur either through a time-out or an explicit call. You can use the
call below within a JSP scriptlet:

You can also invalidate the session from within a servlet using the following code:

For more information on HTTP sessions, see “HTTP Sessions” on page 39.

Modifying the JSP File
The IDE offers support for JSP syntax, including code completion for JSP tags. For
example, you can press Ctrl-Spacebar to show the code completion box. For details
on code completion, see “Completing an HTML Tag” in the Core IDE online help.

Editing JSP source code is similar to editing HTML. Hence, the IDE provides
support for both HTML and JSP tags. For details, see “Editing a JSP or Servlet
Source File” in the JSP/Servlet online help.

session.invalidate();

request.getSession().invalidate();
66 Building Web Components • June 2003

When executing a web module with modified JSP pages, the IDE saves and
recompiles the JSP files as they are accessed. See “Executing JSP and Servlet Source
Files” in the online help for additional information.

What Is a Scriptlet?

A scriptlet is a scripting element that enables you to enter valid Java code into a JSP
page. Variables and methods declared in a declaration element are available to other
scriptlets in the same JSP page. For more information on scripting elements, see
“Scripting Elements” on page 37.

When to Use Scriptlets

In the past, many JSP development guides have focused on using scriptlets. It is now
recommended that you avoid using scriptlets. They make JSP pages more difficult to
understand and maintain. Typically, the content developers who might be creating
and modifying the JSP pages are unaccustomed to Java code. Hence, they might use
tools that would ruin the scriptlet code. Sometimes Java code is necessary to perform
processing within the JSP file. An example would be the formatting of a table or the
presentation of a large amount of information in chunks. In these circumstances,
consider using custom tag library features. See “Using Existing Tag Libraries” on
page 78. You can also create View Creation Helper beans with properties accessible
with JSP tags. See “View Creation Helpers” on page 57 and “Using Additional
Classes or Beans” on page 70 for more information.

The use of scriptlets can be beneficial in limited circumstances and is fully supported
by the IDE. An example is creating early prototypes of new features you later plan to
encapsulate in a bean or tag handler.

Working With JSP Includes
To make it easier to create complex pages from modular components, JSP pages can
include other pages. These pages could include JSP pages and HTML or XML files.
You can use either the <jsp:include> action or the <%@include%> directive to
subsume these pages. For details on the JSP life cycle, including translation and
runtime, see “JSP Page Life Cycle” on page 34. For an example of how to include a
composite view in your JSP page, see “Creating a Composite View Template” on
page 69.
Chapter 4 Developing Your Own Web Application 67

Using the <jsp:include> Action

When you use JSP include actions in your code, the complete page using the
included files is built at request time. A JSP page using included actions has its own
implementation class. It cannot affect the processing of the remainder of the page or
alter the HTTP headers of the response. Use the <jsp:include> action for pages
whose dynamic content is likely to change after the translation of the containing JSP
file. You should also use the <jsp:include> action when you do not know which
page to include until request time. This usage is recommended because the page
attribute can be set by an expression, for example:

Here is an example of including a file with the action:

Using the <%@include%> Directive

When you provide JSP includes using a directive, they are included at translation
time in the implementation class of the containing JSP file. They can affect the
remainder of the page and alter the HTTP headers of the response. Use the
<%@include%> directive to include pages that are static and unlikely to change.

Here is an example of including a file with the directive:

<jsp:include page="<%= dynamicPageName %>" flush="true">

<jsp:include page="/foo.jsp"/>

<%@include file="bar.html"%>
68 Building Web Components • June 2003

Creating a Composite View Template
The following code sample creates a template JSP page using the include action
within embedded HTML tables. The header, footer, and navigation bar cells always
include the same JSP files (that is, header.jsp, footer.jsp, and navbar.jsp).
The main cell includes the content JSP file, which is passed to the template using the
usePage attribute.

Typically, a template declares the start and the end of two items:

■ The HTML document
■ The table that defines the overall grid layout

It’s a good practice to design included files to describe a complete HTML element,
with both a start tag and an end tag (if an end tag is required).

<table width="100%" border="0" cellspacing="0" cellpadding="0">
<colgroup span="2">
<col width="140">
<col>
</colgroup>
 <tr>
 <td colspan="2">
 <jsp:include page="header.jsp" flush="true"/>
 </td>
 </tr>
 <tr>
 <td align="left" valign="top" bgcolor="#dddddd">
 <jsp:include page="navbar.jsp" flush="true"/>
 </td>
 <td align="left" valign="top">
 <table width="100%" cellpadding="10px" border="0">
 <tr><td>
 <jsp:include page="<%= usePage%>" flush="true"/>
 </td></tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 <jsp:include page="footer.jsp" flush="true"/>
 </td>
 </tr>
</table>
Chapter 4 Developing Your Own Web Application 69

Another approach is to use specially designed template tags. You can find an
example of template tags in the Struts framework. For details, see the Template Tags
section of the Struts User Guide at:
http://jakarta.apache.org/struts/userGuide/struts-template.html

Using Additional Classes or Beans
Use beans in your web module to gain access to external resources such as a
database or flat files, that is, plain text files that might contain data. Additional
utility classes can perform Java functions through methods accessible from servlets,
beans, or JSP scriptlets. Note that a Java class must be in a package in order to use it
from a JSP page.

The IDE provides a template for the creation of beans within your web application.
In the New wizard, click the Beans category and select the Java Bean item. See
“Creating a File” in the Core IDE online help for more information.

To specify beans used by your JSP page, you can use the <jsp:useBean> action. To
get and set properties, respectively, on your beans, you can use the
<jsp:getProperty> and <jsp:setProperty> actions.

To populate all the values of the bean from values in the JSP file, use the
setProperty action with an * in the property attribute and remove the value
attribute. The names of the properties in the bean must match the names of the
request parameters. Each of the request parameters typically corresponds to an
element of an HTML form.

Beware that if a property value is empty, the attribute is left unchanged in the bean.
An example is when the user left a field blank, or cleared out the value. If this
situation is a possibility, explicitly set each value by name, as shown in the example
below. Do not use the *.

Here is an example of using a bean in your JSP page:

Here is an example of using a bean and setting a property.

<jsp:useBean id="myFoo" scope="session" class="com.sun.FooBean"/>

<jsp:useBean id="myBar" scope="page" class="com.sun.BarBean">
<jsp:setProperty id="myBar" property="blah" value="0"/>
</jsp:useBean>
70 Building Web Components • June 2003

http://jakarta.apache.org/struts/userGuide/struts-template.html
http://jakarta.apache.org/struts/userGuide/struts-template.html

Here is an example of getting a property:

Creating Servlets
Servlets must be created within the WEB-INF/classes directory of your web
module or in a package that you create in that directory. Putting the servlet in a
package is recommended because, as of J2SE 1.4.0, a Java class must be in a package
if you reference the class from another class or from a JSP page.

Note that the WEB-INF/classes directory is included in the IDE’s internal class
path when you mount the web module in the Explorer.

When you create a servlet with the New wizard, the IDE enables you to configure
deployment entries for the new servlet. Use the Deployment Configuration panel of
the wizard to perform this task. A servlet created outside the IDE can be added to
your web application. However, the servlet does not just execute on its own. You
must add the servlet to the deployment descriptor file to coordinate it with other
web resources within the web module. For additional information, see “Creating a
JSP or Servlet Source File” in the JSP/Servlet online help.

As provided in the IDE for other Java classes and for JSP pages, code completion is
available for servlets. Use code completion to remind yourself of available methods
and values. See “Editing a JSP or Servlet Source File” in the online help for details.

You can compile the servlet from contextual menus in the Source Editor or from its
node in the Explorer. With the servlet open in the Source Editor, press the F9 button
to compile. If you create a servlet outside the IDE, it is treated as an ordinary Java
class. For servlet features to be available, you must instruct the IDE to treat this class
as a servlet. For details, see “Adding an Existing Servlet to a Web Module” in the
online help.

<jsp:getProperty id="myFoo" property="fooProp"/>
Chapter 4 Developing Your Own Web Application 71

Declaring the Servlet in the Deployment
Descriptor
When you are creating reusable servlets, the deployment descriptor entry is helpful.
It contains data that can be changed at deployment time without recompiling the
servlet code. You can define initialization parameters to adapt the functioning of
your servlet to a particular deployment situation. For example, you could specify
currency, date, and time formats in init parameters for your servlet.

Servlets are not available to the application unless you declare them. As described
above, this declaration is part of the process when you create servlets with the New
wizard. However, you must add declarations to the deployment descriptor for
servlets brought into your web module any other way.

Servlet Entries

A servlet entry contains either the name of the class that implements the servlet, or a
path to the JSP page. It also contains a unique name that identifies it within the web
application.

Servlet Mappings

For the servlet to be accessible and to receive requests, one or more servlet mappings
must accompany the servlet entry. You can also map JSP pages. However, unlike
servlets, JSP pages can process requests even if you do not map them. Servlet
mappings match a named servlet or a JSP page to a URL pattern. The servlet or JSP
page is activated if a specific condition is met. The portion of the request URI
following the server identifier and the context path must match the URL pattern
string. The context path is the path associated with the web module when it was
deployed to the server. The URL pattern can be a definite string, or it can contain
wildcard characters. A URL mapping of /catalog/* matches any request path
beginning with /catalog/.

Load on Startup

The servlet container can initialize resources at any time unless a servlet or JSP page
is specified as “loaded on startup.”

When a servlet is loaded at startup, the servlet is instantiated and its init()
method is called when the container starts the web application. Similarly, when a JSP
page is loaded on startup, it is compiled and initialized during startup. The JSP page
is also compiled and initialized any time later, if it is changed.
72 Building Web Components • June 2003

When a servlet is loaded on startup, it can set up resources that are used by multiple
resources. For example, a servlet could add a parameter to the servlet context.
Configuring the servlet to be loaded on startup guarantees the parameter is available
when other resources try to access it. If the value of load on startup is negative or
not set, then the container is free to load the servlet at will. If the value is a positive
integer, then the container initializes the servlet on startup. The container also loads
servlets with lower values before servlets with higher values.

Adding a Servlet Entry

To add a servlet to your deployment descriptor, right-click your web.xml file, and
choose Properties. In the Deployment pane of the Properties window, select Servlets.
In the Servlet Property Editor, you can add, edit, or delete servlet entries. See
“Servlets Property Editor” in the JSP/Servlet online help for details.

Displaying and Changing Servlet Entries

To display or alter deployment descriptor entries for a selected servlet, choose
Properties from the servlet’s contextual menu. Then click the Deployment Entries
field to edit servlet properties.

Modifying the Servlet
Modify your servlet in the IDE the same way you would proceed with any other
Java class. When you make changes to a servlet or a deployment descriptor, you
must redeploy the whole web module. If you are using Sun ONE Application Server
7 and if the server instance is already running, the instance will dynamically reload
all the module’s components. If you are using the internal Tomcat server or a
Tomcat 4.0 server you can choose Execute (Force Reload) from the contextual menu
of your web module to save, recompile, and deploy the web module and to restart
the server before executing the module. Note that only the servlets are recompiled.
JSP files are not recompiled until you execute or debug the web module.
Chapter 4 Developing Your Own Web Application 73

Servlet-Generated HTTP Responses
A servlet can write to an HTTP response. This simple example of outputting HTML
from a servlet is taken from the processRequest method of the IDE’s servlet
template in the New wizard.

It is not required that a servlet output HTML. Instead, a servlet can be used to
modify the HTTPRequest and HTTPResponse objects. For example, the Front
Controller servlet forwards the request to another servlet or JSP file, which then
writes to the response object.

Using the Servlet as a Front Controller
To construct a Front Controller:

1. Create a new servlet using the IDE’s servlet template. From the main menu bar’s
File menu, choose New, then JSP & Servlets, then Servlet.

2. On the Deployment Configuration panel of the New Servlet wizard, specify a
URL pattern that matches the request URLs you want to capture. For example,
specify /ShowProducts/*.

The servlet container attempts to match request paths to servlets in two cases. The
match is attempted when the container first receives the request. It is attempted
again if the request is redispatched internally through a forward or an include.
You cannot map a servlet that forwards to another resource using the path /*.
This mapping would cause a recursive call to your servlet.

3. Once the servlet is created, insert processing code into the processRequest
method to forward the request to the appropriate page. For instance, the
following code sample shows how the request below might be handled:

CODE EXAMPLE 4-1 Outputting HTML From a Servlet

response.setContentType("text/html");

java.io.PrintWriter out = response.getWriter();

out.println("<html>");

out.println("<head>");

out.println("<title>Hello World Servlet</title>");

out.println("</head>");

out.println("<body>");

out.println("Hello, World!");

out.println("</body>");

out.println("</html>");

out.close();
74 Building Web Components • June 2003

http://my.company.com/ShowProducts?product=stuffedbear

In this case, the Front Controller servlet ShowProducts would use the query string
product=stuffedbear to select the appropriate view. The view might consist of a
product description page for the stuffed bear. The Front Controller servlet would
then forward the request to that JSP page.

Use the Front Controller servlet to direct page flow when the application, rather than
the user, controls the order in which pages are accessed. An example of this situation
would be a set of pages that implements the checkout process. While purchasing
products in a shopping cart, the user shouldn’t be able to bookmark or return to any
of the checkout pages without going through each step in the sequence. To
implement this scenario, you would place the checkout JSP pages inside the
WEB-INF directory of the web module. This location is not directly accessible by
requests from a browser. It is only accessible though another resource that uses the
RequestDispatcher API to serve those pages. This situation is shown in the
previous example code. In this example, you can control how the pages are obtained
and used by creating a Front Controller servlet. The Front Controller processes the
input during the checkout process, and then determines what page to show the user
next.

See “Front Controllers” on page 52 for more information on the Front Controller
design pattern.

Using Additional Classes or Beans
Servlets can obtain and use additional classes and beans in the same manner as any
other Java class. Note that the class or bean must be in a package in order to be used
by the servlet. The IDE facilitates the creation of beans using the New wizard. For
more information, see “Creating a New File” in the Core IDE online help.

protected void processRequest(HttpServletRequest request,
HttpServletResponse response) throws ServletException,
java.io.IOException {

String sendTo;
if (request.getQueryString().equals("product=stuffedbear"))

sendTo = "/WEB-INF/showStuffedBearInfo.jsp";
else sendTo = "/WEB-INF/noProductSpecified.jsp";

RequestDispatcher sendPage =
getServletContext().getRequestDispatcher(sendTo);

sendPage.forward(request, response);
}

Chapter 4 Developing Your Own Web Application 75

Creating Filters
You can create and add a filter to your web application using the New wizard. This
method is the same one used to create a JSP file or a servlet. As with servlets, you
use a checkbox in the New wizard to generate deployment descriptor elements with
default settings. See “Creating a Filter” in the JSP/Servlet online help for more
information.

Declaring the Filter in the Deployment Descriptor
To declare your filter, use the Filters element in the deployment descriptor to define:

■ A filter name, used to map the filter to a servlet or URL
■ A filter class, used by the container to identify the filter type
■ Initialization parameters for the filter, which are called init-params

You can also define:

■ Large and small icons
■ A textual description
■ A display name for tool manipulation

For details see, “Adding a Filter to the Deployment Descriptor” and “Filters
Property Editor” in the JSP/Servlet online help.

In order for use a filter from a web module, you must declare it in the deployment
descriptor using a <filter> tag. A filter entry contains the name of the class
(filter-class) that implements the filter and a unique name for the filter. You can
also specify initialization parameters for the filter.

Similar to mapping a servlet, you must add one or more mappings to the
deployment descriptor in the form of <filter-mapping> tags in order for a filter
to receive requests. You can map a filter to a specific servlet by the servlet’s logical
name. You can also map a filter to a group of servlets and static content by using a
URL pattern

The Filter Mappings element shows the number of filter mappings defined for the
web module. Filter mappings specify the URL patterns that should be processed by
a particular filter. To specify additional filter mappings, use the Filter Mappings
Property Editor. See “Editing Web Module Deployment Properties” and “Filter
Mappings Property Editor” in the JSP/Servlet online help for details.

When the servlet container receives a request for the web application, it constructs a
filter chain. The chain consists of all filters whose URL mappings match the request
URI and the context path in the order the filters appear in the deployment
76 Building Web Components • June 2003

descriptor. The context path is the path associated with the web module when it was
deployed to the server. The filters in the chain are activated when the request enters
the container. Unlike servlets, no filter chain is constructed for internal dispatches.
Hence, you can map a filter to /* to have it called for every request coming into the
container.

Processing HTTP Requests and Responses
You can use filters to modify an HTTP request or an HTTP response. Filters can be
used for authentication. For instance, when a JSP file or servlet is requested, the filter
can determine whether an end user is permitted to view the desired web component.
The end user’s name can be located in the session information. If the name is blank,
the filter routes the request to a login page. If the name is not blank, but has no
authorization to view a page, a different outcome transpires. The filter routes the
request to a page explaining the required authorization. You can also use a filter to
create log entries each time a response is sent to a particular client. The entries are
based on information from the request and the session.

For an example, see the SignOnFilter class, which is part of the Java Pet Store, at:

http://java.sun.com/blueprints/code/jps13/src/

Using Tag Libraries
As previously described, a tag library consists of a set of tag handler classes that
implements the tag library’s feature set and a Tag Library Descriptor (TLD) file that
describes the tags in the library and maps each tag to a tag handler. You can extend
the standard set of actions by creating your own custom actions and tags. By doing
so, you can make the code more reusable by separating the code into modules and
encapsulating the functional units of the code within your application. With proper
design, you can cleanly separate logic from formatting. This separation should
enable you to eliminate the use of Java code embedded in your JSP pages.

The IDE supports:

■ The use of existing tag libraries in your web applications. The JSP Tag Library
Repository provides the JSTL (JavaServer Pages Standard Tag Library). See
“Using Existing Tag Libraries” on page 78 and “Inserting Custom Actions From a
Tag Library Into a JSP Page” on page 79 for details.

■ The development of new tag libraries. The Tag Library Editor facilitates the
creation and modification of your own tag libraries. See “Developing Your Own
Tag Libraries” on page 81 for more information.
Chapter 4 Developing Your Own Web Application 77

http://java.sun.com/blueprints/code/jps13/src/

■ The packaging and deployment of tag libraries. You can package your custom
tag library as a JAR and then add it your web module for deployment. For details,
see “Packaging and Deploying a Custom Tag Library” on page 110.

Using Existing Tag Libraries
The IDE provides the JSP Tag Library Repository to facilitate the management of
existing custom tag libraries. Initially, the JSP Tag Library Repository includes the
JSTL (JavaServer Pages Standard Tag Library) 1.0 from the Apache Jakarta group.

You can add tag libraries that you have created or downloaded from external
sources to the JSP Tag Library Repository. Choose the JSP Tag Library Repository
from the Tools menu. Use the JSP Tag Library dialog box that is displayed to add tag
libraries to the repository.

Adding a Tag Library to a Web Module

In order to use a tag library in your application, you must first add it to your web
module.

From the contextual menu of the WEB-INF node of your web module, choose Add
JSP Tag Library. You can find the tag library either in the Tag Library Repository or
in the filesystem. Some tag libraries are delivered as a single JAR file. Other tag
libraries might contain additional dependent JAR files.

If you choose standard from the JSP Tag Library Repository, then all tag libraries
that are part of the JSTL are added to the WEB-INF/lib directory. For more
information about the JSTL, see “Tag Libraries” on page 44.

Using Tag Libraries From External Sources

To add and use a tag library from external sources in a JSP file, add its associated
JAR file to the JSP Tag Library Repository. The repository enables you to store tag
libraries so you can add them to web modules. The placement of other custom tag
libraries in the repository makes them readily available for addition to web modules.

From the main menu bar’s Tools menu, choose Add Tag Library to Repository. In the
JSP Tag Library Repository dialog box, click Add to locate the desired library.

For more information, see “Adding a Custom Tag Library to the Repository” in the
online help.
78 Building Web Components • June 2003

Tag Library Descriptors
A TLD (tag library descriptor) is an XML document that defines a tag library. The
servlet container uses the TLD for a tag library to interpret custom actions on certain
JSP pages. The JSP pages reference that tag library through a taglib directive. At
the highest level, the TLD defines attributes of the tag library as a whole. These
properties might include its version number and the version number of its intended
servlet container. At a lower level, the TLD defines each tag in the library.

The IDE enables you to create and edit TLDs without writing XML code. You create
a TLD from the tag library template provided by the IDE. After you have created a
TLD, you can edit it from the Explorer through menu commands. You can also edit
the TLD through its customizer windows and its elements.

Inserting Custom Actions From a Tag Library Into
a JSP Page
Custom actions are also commonly referred to as custom tags. However, the term
custom action generally refers to the code construct used in a JSP page. The term
custom tag generally refers to the code that implements the functions of a custom
action.

Use the features of a tag library by coding custom actions in your JSP pages. For
custom actions to use the tag library, the JSP page must declare the tag library with
a taglib directive.

For example:

The uri attribute of a taglib directive references either the TLD or a packaged tag
library JAR file. The JAR file contains both the TLD and the tag handler beans. You
must place the taglib directive before any custom actions that use the tag library.
As an alternative, the uri attribute can be specified in the web module’s
deployment descriptor.

The previous example’s uri attribute specifies a path relative to the root of the web
module. The leading slash denotes the web module root.

Code completion works for the standard tag library in the <%@taglib> directive.
For instance, in the example above, you need only type in the " (quotes) after the
uri attribute name.

<%@taglib prefix="mt" uri="/WEB-INF/lib/myTagLib.jar" %>
Chapter 4 Developing Your Own Web Application 79

When you get to uri, then type =" and press Ctrl-Spacebar. The list of URIs
available in this web context is displayed.

New with the JSP 1.2 specification, some tag libraries can contain more than one
TLD in the JAR file. To obtain and use these tag libraries, place the JAR file in the
WEB-INF/lib directory, and use the URI for the desired TLD in the uri attribute of
the taglib directive.

To find the URIs for the TLD files in a JAR file, place the JAR in the WEB-INF/lib
directory. The JAR file is then mounted in the Filesystems tab below the web
module. Open the mounted JAR file in the Explorer, and select the META-INF
directory, which contains the TLD files. If you double-click any of the TLD files, a
customizer appears with the URI.

For example, the taglib directive for the core TLD from JSTL’s standard.jar file
would be:

You must place the taglib directive somewhere in the JSP page before the first
custom action that uses the tag library.

During tag library development, your taglib directive should reference a TLD file
rather than a tag library JAR file. The IDE inserts the class names of your tag
handlers into the TLD. The tag handlers must also be in your web module’s class
path. Place the tag handlers in the WEB-INF/classes directory.

Use the prefix attribute of the taglib directive to specify an identifier. Then use
this identifier to refer to the tag library from custom actions coded in the JSP page.
In the example, the taglib directive and the custom action (defined in the specified
tag library) must be in the same JSP page. The action uses the prefix mt to refer to
the tag library. The string table is the name of the tag.

The mapping between the tag name (in this case, table) and the tag handler bean is
specified in the TLD. Edit this mapping in the Tag Customizer window, accessible in
the Explorer from the tag’s contextual menu.

<%@taglib uri="http://java.sun.com/jstl/core" prefix="c" %>

<mt:table results="productDS"/>
80 Building Web Components • June 2003

Developing Your Own Tag Libraries
Many useful tag libraries, in addition to the JSTL and the tag libraries included in
the Struts framework, are available. For more information on the Struts framework,
see “Struts” on page 59. In addition, you might visit the following web site, which is
devoted to custom tag libraries, as a source: http://jsptags.com/

In many cases, you might want to encapsulate your business logic in your own
custom tags. This way JSP pages in your web module can obtain and use the
business logic easily. The tag format is familiar to web designers. Hence, the creation
of custom tag libraries facilitates the insertion of these features into their JSP pages.

This section describes the support provided by the IDE for the process of developing
custom tag libraries, including:

■ Creation and specification of tag libraries
■ Creation and specification of tags
■ Creation and specification of tag attributes
■ Creation and specification of scripting variables
■ Generation of tag handlers

Creating a Tag Library and Tags

As previously described, a tag library consists of a set of tag handler classes that
implement the tag library’s feature set and a TLD that describes the tags in the
library and maps each tag to a tag handler. When you create a new custom tag
library, you are actually generating a new TLD file.

You can create a tag library in either a new or an existing web module or filesystem.
Right-click the root directory of the web module or filesystem in which you want to
create a tag library. From the contextual menu, choose New, then choose JSP &
Servlet, then choose Tag Library. This operation creates a TLD file. Use the Tag
Library Customizer to define the properties of your custom tag library.

In the Tag Library Customizer, specify a short name, a display name, a Tag Library
version, and a URI for your tag library. Set the Tag Handler Generation Root to the
WEB-INF/classes directory in your web module. The tag handler classes that you
generate are placed in this directory. You can also set code generation options and
provide descriptive information about the tag library’s features. For more
information about the properties in the Tag Library Customizer, see the
“Customizing Tag Libraries” in the JSP/Servlet online help.

The contents of the Tag Library Customizer reflect the properties of the selected tag
library. Once the properties for your tag library are specified, you can add and
customize tags.

For more information about creating and using custom tag libraries, see JavaServer
Pages Specification, Version 1.2 available at http://java.sun.com/products/jsp
Chapter 4 Developing Your Own Web Application 81

http://jsptags.com/
http://java.sun.com/products/jsp

It is recommended that you add a tag library directly to the web module when you
create it using the IDE. Make sure to create the Tag Library TLD within the web
module’s WEB-INF directory. Moreover, the tag handlers should be generated into a
package within the classes directory. When you are ready to deploy the web
module, package the tag library. Then replace the tag handler package in the
classes directory with the JAR file. The JAR file is then placed in the lib directory.
See “Packaging and Deploying a Custom Tag Library” on page 110 for details on
packaging.

Adding and Customizing Tags

A custom tag consists of a tag signature plus a tag handler, which is a body of Java
code. The IDE generates skeleton code for tag handlers based on specifications you
supply in the Tag Customizer dialog box. You then edit the tag handler code directly
to insert the logic that implements the features of the tag.

You can create a tag in the Explorer. Right-click the node representing the TLD to
which you want to add a tag. From the contextual menu, choose Add New Tag. In
the Add New Tag dialog box, edit the tag. See the “Tag Customizer Fields” section in
“Customizing Tags” in the JSP/Servlet online help for more information.

You can also edit an existing tag in the Explorer. Right-click the tag you want to
customize. From the contextual menu, choose Customize. In the Tag Customizer
dialog box, edit the tag. See the “Tag Customizer Fields” section in “Customizing
Tags” in the JSP/Servlet online help for details.

The Tag Customizer dialog box has several tabs. The General tab contains values
that are to be inserted in the TLD. The Code Generation tab provides options
pertaining to the tag handler class generated for the tag.

You must choose the type of content that occurs in the body of the tag. See
“Specifying How the Body of a Custom Action Is Handled” on page 83 for
descriptions of possible options.

Additionally, you must specify the name of the Java package for the generated tag
handler classes. The default value is the tag library’s Short Name.

If the generated tag handler is to contain code to find the parent, that is, the
enclosing tag, click the Find Parent checkbox. The type is determined by the Of Type
property. The parent’s tag handler instance, if found, is placed in the variable
specified by the As Variable property. If checked, Find Parent enables the Of Type
and As Variable properties. The default value is unchecked. If Find Parent is
checked, Of Type and As Variable must have values entered. See the “Tag
Customizer Fields” section in “Customizing Tags” in the online help for more
information.
82 Building Web Components • June 2003

Custom Actions With Bodies

Custom actions, in principle, can contain bodies. They have begin and end tags that
enclose other actions, scripting elements, or plain text. For example, this sample
custom action contains a body composed of plain text:

Specifying How the Body of a Custom Action Is Handled

Use the Body Content field in the Tag Customizer dialog box to specify how the
body is handled. Display this window from the contextual menu of the custom
action’s tag handler. Then choose one of these values: JSP, empty, or
tagdependent.

TABLE 4-1 explains the meaning of each choice.

All tag handlers implement javax.servlet.jsp.tagext.Tag. Tag handlers that
do not accept or process a body need only implement this interface. If there is a
body, it is simply passed through to the output with the usual JSP processing. Tag
handlers that process a body must also implement
javax.servlet.jsp.tagext.BodyTag. This interface provides additional
methods for handling this processing.

<mt:convertToTable>
type distance / a 30,000 / g 5,500 / z 200
</mt:convertToTable>

TABLE 4-1 Meaning of Body Content Field in Tag Customizer Dialog Box

Body Content Field Meaning

JSP Body content is optional. The servlet container evaluates JSP elements
and then passes the body to the tag handler. The tag handler processes
the body and writes output to the out object according to your
programming logic.

empty Body content is not permitted.

tagdependent Body content is optional. The servlet container does not evaluate JSP
elements, but does pass the body to the tag handler. The tag handler
processes the body and writes output to the out object according to
your programming logic.
Chapter 4 Developing Your Own Web Application 83

Adding and Customizing Tag Attributes

Tag attributes are parameters associated with tags. These parameters denote or
provide values used during tag processing.

Use the Add New Tag Attribute dialog box to create tag attributes. The Tag Attribute
Customizer dialog box enables you to edit existing tag attributes.

In the Add New Tag Attribute dialog, specify various properties for your new tag
attribute. For details about the New Tag Attribute and the Tag Attribute customizers,
see “Customizing Tag Attributes” in the online help.

Once the new tag attribute is added to the tag, the Tag Attribute Customizer is
displayed. Then you can edit the attribute in the customizer.

Three fields are important to consider when creating an attribute:

■ Required Attribute checkbox. Select to indicate that the attribute must be given
an argument whenever the tag is called. By default, the box is set to False.

■ Value evaluated at request time radio button. Select to specify that the value of
the attribute can be dynamically calculated at request time. The button is set to
True by default. This value is mutually exclusive with the Value evaluated at JSP
translation time attribute, described below.

■ Value evaluated at JSP translation time radio button. Select to specify that the
value of the attribute is static and determined at translation time. The button is
set to False by default. This value is mutually exclusive with the Value
evaluated request time attribute, described above.

For details on the kinds of attribute properties you can provide, see the “Tag
Attribute Information” section in “Customizing Tag Attributes” in the online help.

Adding and Customizing Scripting Variables

A scripting variable is a value that a tag exports to a JSP page. This value can then be
used in an expression or scriptlet.

Use the Add New Tag Scripting Variable dialog box to create new scripting
variables. In the Add New Tag Scripting Variable dialog box, specify various
properties for your new scripting variable. When creating a scripting variable, the
Variable Type field is particularly important. You can either choose a standard type
from the list in the combo box, or you can enter a Java class name.

The Tag Scripting Variable Customizer enables you to edit the properties of existing
scripting variables. To edit a scripting variable, right-click the variable’s node in the
Explorer window and choose Customize from the contextual menu.
84 Building Web Components • June 2003

For more on the Add New Scripting Variable dialog and the Tag Scripting Variable
Customizer, see “Customizing Scripting Variables” in the online help. For details on
scripting variable properties, see the “Tag Scripting Variable Information” section of
“Customizing Scripting Variables” in the online help.

Generating Tag Handlers

As you develop your tag library, you add code to the tag handler classes to
implement the features your custom actions require. The IDE generates the tag
handler classes for you. Generation includes any properties set in the Tag
Customizer and the tag attributes and scripting variables you have added to the tag.
You customize your tag library by adding tags as well as adding or modifying
attributes and scripting variables. During this process, you can regenerate the tag
handlers. This task accounts for the changes without losing your edits to the tag
handler code. For additional information, see “Generating Tag Handlers” in the
online help.

Generated Tag Handlers
Generated code appears in a package directory determined by the tag library’s Tag
Handler Generation Root. This attribute is a code generation property you set in the
Tag Customizer. If the value is blank, the Generation Root defaults to the directory
that contains the tag library.

As described previously, you generate tag handlers from a TLD. These generated tag
handlers implement the interfaces appropriate for their corresponding custom
actions. Additionally, all the tag handlers’ required class members, including fields,
methods, and properties, are generated. The exact list of class members depends on
your TLD. Nevertheless, it always includes the methods required by the interfaces
that your tag handler implements.

The specific class members generated depend on the attributes and scripting
variables you have declared in your TLD. For example, if you declare an attribute
called myAttribute, a property called myAttribute is generated in the tag
handler.

Methods Generated

TABLE 4-2 lists the methods the IDE creates when you generate tag handlers. Methods
used to get and set properties are not listed. The methods marked with an asterisk
(*) denote that they are part of the Tag and BodyTag interfaces. These methods call
the others, which are helper methods.
Chapter 4 Developing Your Own Web Application 85

Not all methods in the Tag and BodyTag interfaces are generated. The tag handler
class can be generated as extending the TagSupport or BodyTagSupport helper
classes. These helper classes implement all the methods in their respective interfaces.
Only the methods that need to be overridden are generated. If you need to override
any other methods for the Tag or BodyTag interfaces, include them in the
TagHandler file.

Regenerating Tag Handlers

To develop your tag library, add programming logic to the tag handler class files to
provide features required by your custom actions. During development, you might
need to add additional attributes or scripting variables to your TLD. If so, regenerate
your tag handlers so the corresponding class members are created. In this case, some
of the tag handler’s methods are regenerated, and some are left untouched.

The IDE regenerates the methods doStartTag, doEndTag, and doAfterBody. The
Source Editor does not permit you to edit these methods. This restriction is because
your changes would be overwritten when you regenerated tag handlers.

Instead of editing the methods that get regenerated, place your custom code in
methods that these regenerated methods call. For example, the doStartTag method
calls the otherDoStartTagOperations and theBodyShouldBeEvaluated
methods.

The doStartTag method also returns an int code value to indicate whether the
body should be evaluated. In the IDE, use the otherDoStartTagOperations
method for the processing that needs to be performed at the beginning of the tag.
Use the theBodyShouldBeEvaluated method to return a boolean value that is
translated into the correct code value. Code placed in these two methods is not
affected by regeneration.

TABLE 4-2 Generated Methods in Tag Handlers

Interface Method

Tag *doEndTag
*doStartTag
otherDoEndTagOperations
otherDoStartTagOperations
shouldEvaluateRestOfPageAfterEndTag
theBodyShouldBeEvaluated
theBodyShouldBeEvaluatedAgain

BodyTag All the methods generated for the Tag interface plus the following:
*doAfterBody
writeTagBodyContent
86 Building Web Components • June 2003

TABLE 4-3 indicates which methods are regenerated and which methods you can edit.

Testing Tag Libraries
You can create tag libraries in their own IDE filesystem, or within an existing web
module’s filesystem. If you want to test a tag library that isn’t already in a web
module, you can test the tag library by performing the following steps:

1. Right-click the root of the tag library filesystem, and select Convert Filesystem
into Web Module from the Tools menu. Leave the .tld file and the generated and
compiled Java tag handler classes in place.

2. Add the Tag Libraries element in the deployment descriptor for your-tag-lib.tld.

3. Create a JSP page, and add references to your new tags.

4. Deploy and execute the web module.

After testing your tag library, you can include it in other web modules by packaging
it as a JAR file. For more information, see “Packaging and Deploying a Custom Tag
Library” in the JSP/Servlet online help.

To facilitate the use of this tag library in other web modules, you should add your
new tag library JAR file to the Tag Library Repository in the IDE. For details, see
“Adding a Custom Tag Library to the Repository” in the JSP/Servlet online help.

Working With Databases
Database interaction is a significant aspect of web application development. The
information contained within a database is used to drive the dynamic nature of JSP
files and servlets within a web module. Hence, access to this data can be crucial.

TABLE 4-3 Editable Methods in Tag Handlers

Do Not Edit These Methods Put Your Custom Code in These Methods Instead

doEndTag otherDoEndTagOperations
shouldEvaluateRestOfPageAfterEndTag

doStartTag otherDoStartTagOperations
theBodyShouldBeEvaluated

doAfterBody writeTagBodyContent
theBodyShouldBeEvaluatedAgain
Chapter 4 Developing Your Own Web Application 87

When you want to work with a database in your application, create beans to access
the database. Then use tag handlers to access the beans.

The IDE provides several tools that enable you to view and modify databases that
supply JDBC drivers. See Using Java Database Connectivity for more detailed
information.

When using JDBC to gain access to a database from within your web application,
perform the following steps:

1. Create data access beans with methods to initialize connections to the database,
including the management of connection pools and caches.

2. Gain access to specific information using queries.

3. View and update the information in row sets.

For an example of creating a data access bean, see: “Duke’s Bakery, Part II, A JDBC
Order Entry Prototype - Continued” by visiting the following web site:

http://developer.java.sun.com/developer/technicalArticles/
Database/dukesbakery2/

These data access beans can then be used directly by servlet or filter classes. You can
also refer to them from within a JSP file using the jsp:useBean tag. For more
information, see “Using Additional Classes or Beans” on page 70.

The PointBase database and the internal Sun ONE Application Server 7 are
configured by default to work together in the IDE. For information on starting the
PointBase database, see “Using Databases With the IDE” in the Sun ONE Studio 5,
Standard Edition Getting Started Guide. For information on setting up database
connectivity with a Tomcat server, see “Setting Up the Web Server Environment for
Database Access” on page 97.

When using other databases or deploying to other web servers, you have two
options. Add the database driver files to one of two locations:

■ The web module’s WEB-INF/lib directory

■ The web server’s common lib directory.

Even though the IDE’s DB Explorer can be configured to use a particular database,
you are still required to place the appropriate driver in the web module or the web
server. Use the IDE’s Database Explorer to confirm your connection to a database
and your access to an appropriate driver for it.

To utilize tags that simplify query and presentation tasks, you can add custom tag
libraries to the web module. For details, see “Developing Your Own Tag Libraries”
on page 81.
88 Building Web Components • June 2003

http://developer.java.sun.com/developer/technicalArticles/ Database/dukesbakery2/

It is recommended that you create custom tags to:

■ Display data to the user
■ Query data
■ Update data in the database

Adding these tags to your web module simplifies the addition of query and
presentation tasks within the JSP page. It also provides the clean separation of
business logic code from its presentation to the end user. See the J2EE Tutorial for an
example of an IDE-developed web application that accesses a database.

The tag handler classes for these tags can directly gain access to the methods in the
data access bean. In order to use a tag library, you import it into the JSP file. See
“Using Tag Libraries” on page 77 for details.

For information on the Database access tags within the JSTL, visit this web site:

http://jakarta.apache.org/taglibs/doc/standard-doc/Overview.html
Chapter 4 Developing Your Own Web Application 89

http://jakarta.apache.org/taglibs/doc/standard-doc/Overview.html

90 Building Web Components • June 2003

CHAPTER 5

Running, Debugging, and
Deploying Your Web Application

This chapter assumes you have considered how to develop your application. It also
assumes you are ready to run, debug, and deploy your application using the IDE.
The chapter provides a high-level view that ties together the tasks you perform in
test running and modifying your application. Then it offers some details on
individual programming tasks.

See Chapter 4 for a description of developing your web application from standard
components. Such components might include JSP pages, servlets, filters, and beans.

It is recommended that you work through the Sun ONE Studio 5 Web Application
Tutorial before building your own web application with IDE. The tutorial contains
more information on many aspects of the web module development process.

Running and Debugging Tasks
This section provides an overview of the tasks involved in running a web module
using the IDE. When working on a web application, it often makes sense to proceed
in an iterative fashion. You redeploy and check that the application works each time
a component or set of components is modified. You repeat this process each time
you add a new component or set of components to your application. Each task refers
to a section later in the chapter that provides more details. The IDE’s online help for
the JSP/Servlet module also provides information on these tasks.

To run a web module using the IDE:

1. Make modifications to the component (JSP page, servlet, and so forth). This
process is covered for each component type in Chapter 4.
91

2. Configure the web module. The IDE takes care of much of the deployment
configuration with default settings. Then it provides editors, called property
sheets, for you to edit the deployment descriptor file. See “Configuring the Web
Module Deployment Descriptor” on page 92.

3. Deploy the web module by right-clicking the WEB-INF node and choosing
Deploy from the contextual menu.

4. Test run your application in the IDE. See “Test Running Web Modules” on
page 96.

5. Track data flow within HTTP transactions using the HTTP Monitor window. Use
the monitor to examine data sent by JSP pages and servlets, and the data within
the web application. The monitor can also be used during the debugging process
to replay previous requests. For additional information on using the HTTP
monitor, see “Using the HTTP Monitor to Debug a Web Application” on page 101.

6. If necessary, debug your JSP pages, servlets, and web modules using source-level
debugging. For more, see “Source-Level Debugging” on page 106.

7. Package the web module as a WAR file and deploy it. A web application archive
is a single file that contains all of the components of a web application. For
details, see “Packaging Your Web Applications” on page 109.

Configuring the Web Module
Deployment Descriptor
The deployment descriptor file is located in the web module’s WEB-INF directory. It
provides the necessary configuration information to the web module’s deployment
environment, that is, the servlet container. The deployment descriptor can contain
descriptions of servlets, filters, or tag libraries that are used by the web application.
It can also include requirements for external resources and security, environment
parameters, and other component-specific and application-specific parameters.

In the IDE, you can modify the deployment descriptor file in two ways:

■ Browse the elements of the deployment descriptor in the property sheets for the
web.xml file.

■ Open the web.xml file in the Source Editor, and edit it manually.
92 Building Web Components • June 2003

Some web modules are simple, containing only JSP files and servlets. To deploy
simple web modules on an internal server, you might not need to change the
deployment descriptor. Many changes are taken care of by the IDE, sparing you the
effort. In some cases, however, you need to modify the following deployment
descriptor elements:

■ Welcome file list. Resources the servlet container looks for if the web application
receives a request with a path name ending in a slash. The initial settings for the
Welcome files are: index.jsp, index.html and index.htm

■ Context parameters. Shared, usually immutable, resources used by many
resources in the application. These parameters enable you to change certain
values in your application without modifying any code. Context parameters often
provide database access information, which can vary among deployment
platforms.

■ MIME types. The application can associate file extensions with MIME types.

■ Session time-out. Defines the default session time-out interval for all sessions
created by the web context in a whole number of minutes. If session time-out is
set to less than zero, the container never times out a session. This setting is
usually not a good idea in a deployed application.

■ Error page. Creates an Error Page entry in response to something going amiss
within the application. The entry instructs the application to dispatch to a specific
resource (that is, a JSP page or servlet). The resource is mapped either to an
Exception type or to an HTTP error code. An example might be Error type
404, object not found.

■ Security and authentication properties. Enables you to set a login configuration
and view the number of security constraints or security roles defined for the web
module. For details, see “Editing Web Module Security Properties” in the
JSP/Servlet online help.

Many other web application properties can be specified in the deployment
descriptor. Refer to the Java Servlet Specification, v2.3 for details.

Note – In order for changes to the deployment descriptor to take effect, you must
redeploy the web module.

Using Property Sheets to Edit the web.xml File
Use the web.xml property sheet to edit the various elements that make up the
web.xml file. This property sheet is also referred to as the deployment descriptor
editor. These properties appear on tabbed panes:
Chapter 5 Running, Debugging, and Deploying Your Web Application 93

■ Deployment. Specify context parameters, description information, a display
name, error pages, filters, JSP files, and whether the web module is distributable.
You also designate large and small icons, listeners, servlets, session time-out,
version information, and welcome files for the web module.

■ Security. Specify login configuration, security constraints, and security role
properties for the web module.

■ References. Specify EJB local references, EJB references, environment entries,
resource environment references, and resource references for the web module.
These values are used with web modules that are deployed as part of a larger
J2EE application on a J2EE application server.

■ Server-Specific Tabs. Specify server-specific parameters, mappings, and settings.

You can modify the values in the deployment descriptor for each deployment
situation. You do not have to recompile or change the code in your application. This
feature is useful when you need to provide external server data. Examples might
include the name of an SMTP (Simple Mail Transfer Protocol) mail server or a
database server, user name and password information, or paths to locations for
external resources such as HTML templates.

Registering Servlets and Filters
When you create a servlet or filter, the New wizard immediately asks for the
important information and inserts the information in the deployment descriptor. You
might want to update the deployment descriptor entry to specify special features,
such as:

■ Additional mappings for the servlet or filter
■ Initialization parameters for the servlet or filter
■ Large and small icons for use by external deployment tools

For more information about declaring servlets and filters, see “Declaring the Servlet
in the Deployment Descriptor” on page 72 and “Declaring the Filter in the
Deployment Descriptor” on page 76. For details on updating deployment descriptor
entries for servlets and filters, see “Servlets Property Editor” and “Filters Property
Editor” in the JSP/Servlet online help.

Registering Tag Libraries
Whether you need to register your tag library in the deployment descriptor depends
on how it is packaged. You can use the Tag Libraries Property Editor for the
deployment descriptor to view any entries for the tag libraries in the web module
94 Building Web Components • June 2003

Automatic Registration

If your tag library JAR file has a default TLD (that is, META-INF/taglib.tld), an
entry for the tag library is made in the deployment descriptor file when the JAR file
is added to the WEB-INF/lib directory.

If a tag library JAR file contains multiple TLD files, then it does not require a default
TLD. The standard tag library (JSTL) is an example of this situation. In this case, an
explicit tag library entry is not required in the deployment descriptor. The JSP
translation extracts the URI fields from the TLD files in any JAR file in the
WEB-INF/lib directory to create an implicit tag library mapping.

Explicit Registration

Not all tag libraries have a default TLD specified. You can use the Tag Libraries
Property Editor to explicitly create a tag library entry in the deployment descriptor.

■ The tag library has subelements for URI and for location. The URI should be
relative to the web.xml file that points to the library.

■ The location of the TLD file should be relative to the library.

For example, the following taglib directive makes the TLD located at
/WEB-INF/tlds/myTagLib.tld accessible through the URI myTags:

For details, see “Packaging and Deploying a Custom Tag Library” on page 110

If you remove a tag library declaration, it does not automatically remove the
corresponding JAR file from the WEB-INF/lib directory.

Specifying the Default URI Within the Taglib
Element
The Tag Libraries Property Editor is primarily used to indicate which tag libraries
have been added. It also enables you to change the URI mappings of the tag
libraries. Each entry corresponds to a taglib element in the deployment descriptor.
Refer to the URI mapping at the top of your JSP file to use the specified tag library.
The URI reference also ensures that custom tag library code completion works. For
more information, see “Using Tag Libraries” on page 77.

<taglib>
<taglib-uri>/myTags</taglib-uri>
<taglib-location>/WEB-INF/tlds/myTagLib.tld</taglib-location>

</taglib>
Chapter 5 Running, Debugging, and Deploying Your Web Application 95

Use the Tag Libraries Property Editor to add, edit, or remove references to the tag
library JAR file from the selected web module. The addition or removal of items
using this property editor does not affect the tag library JAR file in the
WEB-INF/lib directory.

If you choose Add JSP Tag Library from the selected web module’s contextual menu,
an entry for each tag library is created in the deployment descriptor.

Using the IDE to Edit the web.xml File in the
Source Editor
If you know the deployment descriptor XML syntax, you can edit the web.xml file
directly by double-clicking the web.xml icon. When you save your changes, the IDE
automatically parses the file. It then displays any errors in the Output window on
the XML Parser tab. You can also edit the file using an external text editor.

Using the Integrated Servers
The IDE is installed with two integrated servers, Sun ONE Application Server 7 and
Tomcat. Both servers appear under the Installed Servers node in the Server Registry
on the Explorer’s Runtime tab. By default, the IDE uses Sun ONE Application Server
7 to compile and execute web components such as JSP pages and servlets.

You can use the IDE to perform the following actions:

■ Deploy and delete web modules and web module groups
■ Set general properties for installations of the server
■ Start, restart, and stop the server
■ Edit the configuration file for the server

For more information about the integrated servers, see the Sun ONE Application
Server Integration Module help set and the Tomcat Plugin help set in the online
help.

Test Running Web Modules
Before you can run a web module, you must first deploy it by right-clicking the
WEB-INF node and choosing Deploy from the contextual menu. The IDE deploys
the web module to the context that is designated by the Context Root value on the
WEB-INF node’s property sheet. The context root must have a leading forward slash,
96 Building Web Components • June 2003

for example, /test. This context root is used to form the web module’s document
root. For example, if a web module’s context root is /test, the document root might be
http://host:8080/test.

When you initiate the Deploy action the IDE saves the files, recompiles any servlets,
and then deploys the web module. Note that the JSP files are not compiled until they
are actually loaded at run time.

Once you have deployed a web module, you can test run the module within the IDE
by using the Execute action. This action executes the application from a client web
browser using the specified default browser.

You can set a web module’s execution properties on the Execution tab of the
WEB-INF node’s property sheet.

If you want to execute several web modules as a group, you must first create a web
module group. For details, see “Creating and Executing a Web Module Group” on
page 99. A web module group is an IDE-specific construct. It enables you to specify
a set of web modules to deploy together on a web server with a single action. Each
module in the group must have a unique context root. The context root ensures that
requests are properly sent to the correct module by the web server.

As you execute web modules and web module groups, you can use the HTTP
Monitor. It enables you to examine the flow of record data. See “Using the HTTP
Monitor to Debug a Web Application” on page 101 for more information.

Configuring the Server
When you deploy or execute a web module, the IDE automatically updates the
server’s configuration file. For more information about server configuration, see
“Administration Server” in the Sun ONE Application Server Integration Module
online help and “Editing the Tomcat Server Configuration File” in the Tomcat Plugin
online help.

Setting Up the Web Server Environment for
Database Access
PointBase is installed with the Sun ONE Studio 5 software in the subdirectory that
contains the Sun ONE Application Server 7 software. If the IDE and Sun ONE
Application Server 7 were installed separately, the server may or may not include
PointBase software. If it does not, you must download and install PointBase software
manually. See “Using Databases With the IDE” in the Sun ONE Studio 5, Standard
Chapter 5 Running, Debugging, and Deploying Your Web Application 97

Edition Getting Started Guide for information about starting the PointBase Server and
setting up database connectivity. The same chapter also contains information about
using other JDBC enabled databases with Sun ONE Application Server 7.

If you are using Tomcat, you must do one of the following to make a database driver
available to the Tomcat servlet container:

■ Copy the driver to the web module’s WEB-INF/lib directory.

■ To add a driver as a shared resource to the internal Tomcat server, copy it into the
s1studio-install-directory/jwsdp/common/lib directory. Note that files in this
directory are shared among all users of this IDE installation.

■ To add the driver as a shared resource to an external Tomcat installation, copy the
driver into the tomcat-install-directory/common/lib directory.

See the External Execution Process property description in the “Setting Tomcat
Installation Properties” section of the Tomcat 4.0 Plugin online help for details.

Note – If you installed Sun ONE Application Server 7 with the IDE, the PointBase
driver is in the pbclient42RE.jar file in the
s1studio-install-directory/appserver7/pointbase/client_tools/lib directory.

Note that adding a database driver to your system class path does not necessarily
make it accessible to your web server.

You can test communications using your database driver with the Database Explorer
in the IDE. This practice ensures that the driver you are using works properly with
both the Java language and the IDE.

Executing a Single Web Module
To execute a single web module, right-click the module and choose Execute from the
contextual menu. The web module executes and is displayed in your selected default
browser. The execute action instructs the browser to request the root of the web
module. This action causes the server to attempt to serve a welcome file within the
root directory. You can set the welcome files by editing the Welcome Files property
in the property sheet for the web.xml file. If the server cannot find a welcome file, it
simply lists the contents of the directory.

Note that if you have not yet deployed the module or if you have made changes to
the module, you must first deploy the module by right-clicking the WEB-INF node
and choosing Deploy from the contextual menu. This deploy action causes the IDE
to take the following actions:

■ Save all the modified files in your web module.

■ Recompile the class files (JSP pages are recompiled when they are obtained and
used by the web server).
98 Building Web Components • June 2003

■ If the web server is not running, start the server for the deployment. Note that the
Admin Server must be running if you are using Sun ONE Application Server 7.
Otherwise, the IDE cannot start the web server and you will receive an error
message, such as “connection refused.” If the IDE needs to start the web server
for deployment, it will stop the server upon completion of the deployment
process.

■ Deploy the module to the server directory that is specified by the Context Root
value on the WEB-INF node’s property sheet. For example, if the Context Root
value is /catalog, then the URL for the web module is
http://host:port/catalog.

Note – If you are deploying to the internal Tomcat server, then you do not need to
do the deploy action. The execute action both deploys and executes.

You can use the HTTP Monitor to track the requests to the web module and the data
flow inside the web application. See “Using the HTTP Monitor to Debug a Web
Application” on page 101 for more information. If problems occur, check the Output
window that appears upon execution.

Class Path Construction

When a web module is executed in the server, a class path is constructed. The class
path ensures that all necessary classes and libraries in the web module can be
located. By default, the order of web module elements in the class path for servlet
execution is:

1. WEB-INF/classes

2. Any JAR files in WEB-INF/lib

3. Other classes or libraries, depending on your server’s implementation of class
loading

Creating and Executing a Web Module Group
The IDE provides a mechanism to deploy several web modules together so they can
be run at the same time. You create a web module group node in the IDE and add
web modules to it. Then you use the deploy and execute actions.

To create and execute a web module group, you perform four main tasks:
Chapter 5 Running, Debugging, and Deploying Your Web Application 99

1. Create a web module group object by right-clicking a mounted filesystem,
choosing New from the contextual menu, and choosing All Templates. In the New
wizard that appears, expand JSPs & Servlets and select Web Module Group. Click
Next and complete the steps in the wizard. A web module group node appears in
the root directory of the mounted filesystem.

The web module group node should be placed outside a web module. This
placement ensures that the web group is not inadvertently included when being
packaged for deployment.

2. Set a URL mapping for each of the web modules to be loaded as part of the web
module group by right-clicking on the web module group node and choosing
Add Web Module from the contextual menu.

3. (Optional) Open the property sheet for the web module group node and specify a
Target Server for the web module group. If no target server is specified, the
default web server is used.

4. Right-click the web module group node and choose Deploy. After the IDE
completes the deploy action, right-click the web module group node and choose
Execute.

See “Creating a Web Module Group” in the JSP/Servlet online help for details on
these tasks.

You can set a target server for an individual web module. You perform this task by
editing the Target Server property for that web module. However, a component of
that web module might be executed while the web module is running as part of a
web module group. In this case, the web module runs within the server specified by
the Target Server property for the web module group. For more information, see
“Setting WEB-INF Properties” in the JSP/Servlet online help.

Executing on External Servers
You might have your own installation of Sun ONE Application Server 7 or the
Tomcat 4.0 web server on your system. You can set your own installation as the
default web server. Alternatively, you can specify that your installed server be used
for a designated web module. For more information, see the section on setting the
Target Server property in “Creating a Web Module Group” in the JSP/Servlet online
help.

See the Sun ONE Studio 5, Standard Edition Getting Started Guide for information
about using an external Sun ONE Application Server 7. For an external Tomcat 4.0
web server, configure the IDE’s Tomcat plugin module to use that instance rather
than the internal server. See “Adding a Tomcat 4.0 Installation” in the Tomcat Plugin
online help for details.

The integration with the Tomcat web server has two modes of operation:
100 Building Web Components • June 2003

■ Full mode. HTTP monitoring and JSP and servlet debugging features are enabled.
The IDE adds some elements to the server’s server.xml configuration file.

■ Minimum mode. HTTP monitoring and JSP and servlet debugging are not
available. The server’s configuration file is modified only to add the deployed
module’s context path.

Debugging Web Applications
The IDE provides two tools for debugging web applications:

■ The HTTP Monitor
■ Source-level debugging for both JSP files and servlets

Using the HTTP Monitor to Debug a Web
Application
The HTTP Monitor is a lightweight tool that can be used as an alternative or a
complement to source-level debugging. It is provided by the IDE for collecting data
related to the execution of JSP files and servlets in the servlet container. The data
records generated by the HTTP Monitor streamline the work involved in debugging
JSP files and servlets. The HTTP Monitor records information about each request
that comes into the server. This data includes incoming and outgoing cookies,
session information maintained on the server, the servlet environment information,
and HTTP headers.

The HTTP Monitor provides a view into the data flow among web application
components of the web application. You can use the monitor to examine the
properties of the HTTP requests. You can also use it to inspect any data maintained
on the server whenever a request is processed by a JSP page or a servlet. For
example, you can find out if:

■ The JSP page or servlet received any form data with the request. If so, you can
determine what the values were.

■ An HTTP session was associated with the request. If so, you can determine what
attributes were set before or after the JSP page or servlet was activated.

■ The JSP page or servlet received or created any cookies.

If you discover a bug while test running, use the HTTP Monitor to view data records
associated with requests leading up to it. You can quickly find out if the problem
was caused by a JSP page or servlet not receiving the data it expected. In this case,
you can determine which resource started the problem. By using the Edit and Replay
Chapter 5 Running, Debugging, and Deploying Your Web Application 101

feature, you can tweak requests before resending them. This technique enables you
to determine if sending different data fixes the bug. Often this knowledge is enough
to identify the lines of code causing the problem. If not, you might narrow down an
individual JSP page or servlet to step through with the source-level debugger. For
details, see “Source-Level Debugging” on page 106.

Once you have fixed the bug, use the HTTP Monitor again to replay the request or
requests that exposed the problem. This technique can save time if reproducing the
steps involves entering data through a browser, for example.

The HTTP Monitor enables you to save recorded request data. If you find a problem
you do not have time to fix immediately, save the relevant records and go through
the process described above later. You can also, for example, save a sequence of
requests representing an application sanity test. You can then run it every time you
change something.

In summary, use the monitor to:

■ View data, store information for future sessions, and replay and edit previous
requests

■ Determine which component is sending or receiving incorrect data before you
begin source-level debugging

For details on error sources in web applications, see “Common Errors in Web
Applications” on page 25. For details on source-level debugging, see “Source-Level
Debugging” on page 106.

Deploying the HTTP Monitor

Before you can use the HTTP Monitor on a web application, you must perform the
following steps to make the monitor available to the server:

1. Copy IDE-install-directory/modules/schema2beans.jar and IDE-install-
directory/modules/ext/httpmonitor.jar to the web module’s WEB-INF/lib
directory.

1. In the Deployment tab of the property sheet, display the property sheet for the
Deployment Descriptor node (WEB-INF/web.xml), click the Filters value field,
click the ellipses (...) button to display the Filters dialog box, and click Add.

2. In the Add Filter dialog box, set the Filter Logical Name to HTTPMonitorFilter or
a similar descriptive name.

3. In the Filter Class text field, type the following:

org.netbeans.modules.web.monitor.server.MonitorFilter

4. Click Add under the Filter Mapping table to display the Add Filter Mapping
dialog box and click OK to accept the default of /*.
102 Building Web Components • June 2003

5. Click Add under the Init Parameters table to display the Add Init Parameter
dialog box.

6. In the Init Param Name text field, type netbeans.monitor.ide.

7. In the Init Param Value text field, type the following (replace the variables with
the actual values):

name-of-host-that-runs-IDE:port-of-internal-HTTP-server

If you are unsure of the port number, open the property sheet for the HTTP
Server node in the Runtime tab of the Explorer window. The Port property shows
the port number.

8. Click OK to dismiss the Add Init Parameter dialog box and click OK to dismiss
the Add Filter dialog box.

Remember to remove the JAR files, the filter, and the filter mappings before you
deploy to a production server.

Note – If you are using a Tomcat server that is managed by the IDE’s Tomcat server
plugin, and if the integration mode is set to Full, you do not need to perform these
steps. By default, the internal Tomcat server is set to full integration mode.

Starting the HTTP Monitor

The HTTP Monitor consists of a top level window within the IDE, and a server-side
component that runs on the execution server. To open the HTTP Monitor, choose
HTTP Monitor from either the IDE’s View menu or Debug menu. For more
information, see “Monitoring Data Flow on the Web Server” in the HTTP Monitor
module online help.

Viewing Monitor Data Records

The HTTP Monitor consists of two panels. On the left, the HTTP Monitor records
panel contains a tree view of known records. On the right, the HTTP Monitor
records display panel presents the data associated with the selected monitor record.

In the tree view, the All Records category contains two subcategories: Current
Records and Saved Records. Individual monitor data records reside in either of these
subcategories. Entries in Current Records are available only during the current IDE
session. Current monitor data records persist across restarts of the web server. They
are only cleared on a restart of the IDE or when deleted. Entries in Saved Records
persist until deleted.
Chapter 5 Running, Debugging, and Deploying Your Web Application 103

Sometimes, a data record is created as the result of one resource dispatching the
request to another resource. An example of this situation is a JSP forwarding to a
servlet. In this case, the record is shown as an expandable node in the tree. To see
how the request was processed by any other resources activated by the forward or
include actions, expand the node.

Monitor data records in all categories can be sorted according to various criteria
using the buttons above the tree view. For details on sorting criteria, see “Using the
HTTP Monitor Toolbar” in the HTTP Monitor online help.

For each selected monitor data record, corresponding information appears in the
HTTP Monitor records display panel. The records display panel consists of these
panes:

■ Request. Shows the request URI, method, query string, parameters or posted
data, protocol, client IP address, scheme, exit status, and list of request attributes
before and after the request.

■ Cookies. Shows a list of incoming and outgoing cookies. For incoming cookies,
information includes the cookie name and the cookie value. For outgoing cookies,
information includes the name, the value, the expiration time, which domain the
cookie should be sent to. Outgoing cookie information also includes which path
the cookie should be sent to and whether it requires a secure protocol.

■ Session. Shows status of any HTTP session associated with the request before and
after the request’s processing. The pane describes whether the session was created
as a result of the request’s processing. Session properties such as ID, creation
time, last accessed time, and the maximum inactive interval are displayed. It also
shows session attributes set before and after the request’s processing.

■ Servlet. Shows the name of the servlet as configured, class name, package name,
and optional servlet information. It also displays relative and translated paths.

■ Context. Shows the name of the servlet context created from the web module and
the absolute path to the context. This pane displays all the context attributes set
when the request started processing. It also shows any initialization parameters
given to the request.

■ Client and Server. Shows data about the application that generated the HTTP
request. The data includes which protocol it used, its IP address, and if the
information is provided, which application was used. The pane displays what
locales, encodings, character sets, and file formats the application supports. It also
shows data about the servlet engine that processed the request. This data includes
the Java version, platform, host name, and port number of the HTTP service.

■ Headers. Shows the HTTP headers that came in with the request. The headers are
constructed by the HTTP client, for instance, a browser. The exact nature of
headers varies from client to client. They usually include information such as the
nature of the client, for instance, software and operating system. They also
contain language preferences and the file formats the browser accepts.
104 Building Web Components • June 2003

Replaying Requests

You can replay HTTP requests associated with the Current Records and Saved
Records subcategories of the All records tree view. Replaying a request makes the
server process a request identical to the request that was recorded. The response is
shown in the IDE’s default web browser, just as it is when you execute a web
module.

This feature can simplify the process of testing the correction to a bug. For example,
you might have found a bug and modified some code in a resource that processes
form data. To verify the correction, you would usually load the form into the
browser, enter data, and submit it. Using the Replay action on the original request
record, you could bypass the need to reenter the data. Another example would be if
you needed to step through several requests before you could reproduce a bug. The
bug might be in a resource that is part of the implementation of a checkout.
Moreover, users cannot enter the checkout unless they have placed something in the
shopping cart. In that case, you could replay several recorded requests. This action
would place the web application in a state where the bug correction could be
confirmed.

See “Editing and Replaying Requests in the HTTP Monitor” in the HTTP Monitor
online help for details.

Editing and Replaying a Specified Request

The Edit and Replay dialog box enables you to edit a number of properties prior to
resending the request information. These properties include the request parameters
and/or the query string, the cookies, and the headers. An option is also provided to
send the request to a different server, if it fully supports the HTTP Monitor.

You can use the Edit and Replay dialog box to send requests to a different server.

Use the Edit and Replay feature to:

■ Check if a web component that is not functioning works with different input

■ Change items such as the locale setting of the client without having to modify
your browser’s settings

Specifying Session Cookies for Replay Requests

If you replay a request, the HTTP Monitor, by default, uses the session cookie that
the browser is sending, if it sends a cookie. The monitor does not use the session
cookie recorded with the request. You can control this behavior so the recorded
cookie, or a cookie you specify, is used instead. See “Editing and Replaying Requests
in the HTTP Monitor” in HTTP Monitor online help for details.
Chapter 5 Running, Debugging, and Deploying Your Web Application 105

Source-Level Debugging
When a JSP page is executed as part of a web application, a servlet is actually what
is executed. The JSP page is translated into a servlet, called the generated servlet. The
generated servlet is then compiled and run. When using Sun ONE Application
Server 7 or the Tomcat server, the IDE maintains a mapping between lines in the
original JSP source and lines in the generated servlet. This feature enables you to
debug JSP pages from either:

■ The perspective of the JSP file itself
■ The source of the servlet into which the JSP file was translated

Source-level debugging consists of several enhancements to the standard IDE
debugging environment. These enhancements enable JSP and generated servlet files
to be viewed simultaneously. Breakpoints set in one are automatically reflected in
the other. However, breakpoints removed from the generated servlet are not
removed from the corresponding JSP source file.

A JSP file, with all its statically included files, maps to a single servlet file. (See
“Using the <%@include%> Directive” on page 68 for details.) Specifically, one line in
the JSP file maps to one or more lines in the servlet file. The servlet also contains
code generated for all JSP pages, with no explicit representation in the JSP source.

Using the Debugger

To debug your application using the IDE’s source-level debugging features, you set
breakpoints, view the generated servlet, and start the debugger, as described in the
following sections.

Setting Breakpoints

Setting breakpoints in a regular servlet or class file is no different from debugging
other Java classes. For JSP pages, you can set breakpoints in either the JSP source file
or in the generated servlet.

If you set a breakpoint in a JSP source file, it is automatically reflected in the
generated servlet. (Remember that no one-to-one-line correspondence exists between
the two files). If you set a breakpoint in a generated servlet, it is reflected in the JSP
page with one exception. If the breakpoint is in part of the servlet derived from a
statically included JSP page, it is not reflected. Removing a breakpoint from the JSP
file removes the corresponding breakpoint in the generated servlet. However, the
reverse is not the case.
106 Building Web Components • June 2003

Viewing the Generated Servlet

From the Explorer, click the Filesystems tab. Select the JSP source file. Right-click to
display the contextual menu. If the JSP file has not yet been compiled, that is, the
View Servlet action is not enabled, choose Compile from the contextual menu. Once
the JSP file has been compiled, choose View Servlet from the contextual menu.

The Source Editor opens with a view of the generated servlet code. If the JSP file is
already opened in the editor, you can also view its generated servlet from the
editor’s contextual menu. Right-click inside the editor window, and select the Show
code in servlet action.

By default, the generated servlet file appears in a new tabbed pane of the Source
Editor.

Note that the generated servlet is not automatically updated if you make changes to
the JSP source. After you make changes, run the View Servlet or the Show code in
servlet action again to see the new version.

Note – Sometimes you encounter a compilation error while compiling a JSP page,
and the problem is not obvious when you are looking at the JSP source code. In this
situation, it often helps to look at the generated servlet. This practice can help in
finding mistakes such as missing quotes.

Starting the Debugger

Start the debugger by selecting the resource you would like to debug in the Explorer.
Then choose the Start item from the IDE’s Debug menu. It is not necessary to stop
and restart the debugger to debug a different resource. With the web module
running, either follow a link in the browser window, or type the URL directly into
the browser’s location field.

When debugging a helper class that cannot be run on its own, you must start the
debugger on a different resource, for example, on the web module’s WEB-INF node.

To debug a web module group, select the WEB-INF node from any web module
within the web module group. Then choose Start from the Debug menu.

For more information about standard debugging in the IDE, see “Debugging a
Program” in the Core IDE online help.

When you start the debugger, the HTTP Monitor window appears. See “Using the
HTTP Monitor to Debug a Web Application” on page 101 for more information on
using the HTTP Monitor to aid in debugging.
Chapter 5 Running, Debugging, and Deploying Your Web Application 107

Setting JSP Debugger Options

You can customize your JSP debugging sessions through the IDE’s global options as
follows:

■ Specify the class of files in which errors are to be shown with the JSP source file
and generated servlet file open. From the Options window, expand the Building
node. Select the JSP & Servlets node. Then in the Properties pane, choose Show in
Servlet Source or Show in JSP Source from the combo box for the JSP Compiler
Errors option.

■ Designate whether to skip static HTML lines between JSP tags in the JSP source,
as well as the corresponding lines in the generated servlet source when
debugging. Static HTML lines are lines that do not contain any JSP element or
scripting language. From the Tools menu in the IDE’s menu bar, choose Options.
Then expand the Debugging and Executing node. Then choose JSP & Servlets
Settings. In the Properties pane, set Skip Static Lines to True.

For details, see “JSP Debugger Options” in the JSP/Servlet online help.

Viewing Both JSP and Servlet Files During Debugging
You can view the JSP source file and its generated servlet file side by side during
debugging. This features helps you detect JSP errors during the debugging cycle.
You can set breakpoints and step through code with both files in sync.

Open the generated servlet in the Source Editor. (See “Viewing the Generated
Servlet” on page 107 for details.) With the JSP file still selected in the Explorer,
choose Open from the contextual menu. By default, the JSP source file code appears
in a new tabbed pane of the Source Editor. At this point, you can see the servlet code
or the JSP code, but not both at the same time. Right-click the current view in the
editor, and choose Clone View from the contextual menu. This action opens a new
Source Editor window with a view on the same JSP code.

Now two editor windows are displayed side by side. One window provides a view
of the JSP code. Another window offers a view of the servlet code. You must compile
the JSP file in order to show the changes in the generated servlet. For details, see
“Viewing JSP and Servlet Files During Debugging” in the JSP/Servlet online help.

Note – Debug commands apply to the view, that is, file, with focus at the time the
command is issued. To issue a command on the alternate view, click that window to
set focus. Then proceed with your command.
108 Building Web Components • June 2003

Packaging Your Web Applications
During development, a web module is typically executed in its unpacked form. This
practice makes it easy to update frequently. However, when you are ready to deploy
to a production environment, you can package the web module into a Web ARchive
(WAR) file. This practice facilitates the transfer process. When you create a WAR file
from the IDE, the IDE, by default, includes all files in the web module’s filesystem
except those files with the .java extension. For directions on using the IDE to
package a web module directory into a WAR file, see “Packaging a Web Module” in
the JSP/Servlet online help.

In the IDE, you can:

■ Create a WAR file from a web module
■ Specify WAR packaging options
■ View the contents of WAR files generated from web modules
■ Mount WAR files as web modules

Building a WAR File From a Web Module
You can build a WAR file from a web module in one of two ways:

■ Select the root of the web module in the Filesystems Explorer. Then choose Export
WAR File from the Tools menu

■ Right-click the web module’s WEB-INF node. Then choose Export WAR File from
the contextual menu.

Then you must specify a name for the WAR file. All files under the web module
filesystem are included in your WAR file by default.

For additional information, see “Packaging a Web Module” in the JSP/Servlet online
help.

Specifying Options
Packaging options for web modules appear on Archive tab of the WEB-INF node
property sheet. You can add files that are external to the web module to the WAR
package. Files can be added from any filesystem mounted in the Explorer. Possible
choices include all files, all files except .java (the default option), and all files
except .java, .jar, and .form. Alternatively, you can specify a regular expression
such as .*txt or Pro.*. You can choose either the predefined filter or a regular
Chapter 5 Running, Debugging, and Deploying Your Web Application 109

expression, but not both the filter and the expression. Note that the regular
expressions used for filters are not the same as UNIX regular expressions. For
details, see “Editing Web Module Archive Properties” in the JSP/Servlet online help.

Viewing Contents
You can view the contents of a WAR package using the WAR Contents window. Files
included in a WAR package are determined by properties set using the Archive tab
of the WEB-INF node’s property sheet.

The WAR Contents window lists the files to be included when the web module is
exported as a WAR file. It also provides path and extension information for each file.

By default, the list is sorted alphabetically by path name. Sort the list alphabetically
for another column by clicking the header for that column. For more information,
see “Viewing the Contents of a WAR File” in the JSP/Servlet online help.

Packaging and Deploying a Custom Tag
Library
For a JSP page to reference a custom tag library, the tag library must exist within the
web module containing the JSP page. When you are using a tag library within a
production web module, it is a good idea to package it as a JAR file. This practice
makes it easier to use your tag library in other web modules. The tag library can be
added to a web module in any of the following ways:

■ Using the Add JSP Tag Library menu action to add a JAR file from the Tag Library
Repository

■ Using the Add JSP Tag Library menu action to add a JAR file from the filesystem

■ Copying and pasting a JAR file from another web module or filesystem.

When you use one of these methods to add a tab library JAR file to a web module,
the IDE also mounts the tag library in the Filesystems pane of the Explorer.
110 Building Web Components • June 2003

Packaging a Tag Library as a JAR File
You package a tag library into a JAR file to make it easier to deploy. To create the tag
library JAR, choose Create Tag Library JAR from the tag library’s contextual menu.
When you create a tag library JAR, the IDE creates a file with a .jar extension. It
also creates an associated jarContent file, which adds additional classes or
packages to the library. The jarContent file is also referred to as the recipe file.

For information on the properties of the newly created JAR file, see “JAR Recipe
Nodes in the Explorer” in the JSP/Servlet online help.

Note – Be sure that your tag handlers are generated and compiled before creating
the tag library JAR file.

Deploying a Tag Library Using the Tag Library
Repository
You can deploy a tag library using the Tag Library Repository.

To add a tag library from the Tag Library Repository to a web module, choose Add
JSP Tag Library from the WEB-INF node’s contextual menu. Then choose the Find in
Tag Library Repository item, which displays the Tag Library Repository Browser
dialog box. Select one or more items from the list, and click the OK button. The
appropriate JAR files for the selected tag libraries are added to the WEB-INF/lib
directory along with any necessary entries in the deployment descriptor.

When the tag library JAR files are added to the web module, they are also mounted
in the Filesystems tab of the Explorer

Deploying a Tag Library by Adding a JAR File
From the Filesystem
If a tag library JAR is in another web module or mounted filesystem in the IDE, you
can use the Add JSP Tag Library > Find in Filesystem action. This action locates the
JAR and copies it into the WEB-INF/lib directory of your web module. You can add
a tag library JAR file from any mounted filesystem to a web module. Right-click the
WEB-INF node. Choose Add JSP Tag Library, then Find in Filesystem. If necessary,
the deployment descriptor is automatically updated to include an entry for the tag
library. This entry is used to map the tag library to a URI for your JSP pages to use
in accessing the tags
Chapter 5 Running, Debugging, and Deploying Your Web Application 111

Deploying a Tag Library by Copying and Pasting
a JAR File From Another Module or Filesystem
If there is a tag library JAR in another web module or mounted filesystem in the
IDE, you can choose the Copy action from the contextual menu on the Explorer’s
WEB-INF node. Then paste the JAR file into the WEB-INF/lib directory of your
web module. When copying and pasting a tag library JAR file into a web module’s
WEB-INF/lib directory, a taglib element in the deployment descriptor might be
created. In most cases, the IDE adds the Taglib element automatically. You can
verify that the correct information is present. To perform this task, follow the
instructions in “Packaging and Deploying a Custom Tag Library” in the JSP/Servlet
online help.

Including a Web Module Within a J2EE
Application
When using the IDE, you can create a J2EE application from an existing EJB module
or web module. Alternatively, you can create the application from an Explorer
filesystem or package node. In both cases, after instructing the IDE to create the new
application, the new J2EE application’s node appears in the Explorer. Then you can
begin adding modules to the application.

Note – You must assemble a web module with an EJB module in order to build an
enterprise (J2EE) application.

A J2EE application is composed of EJB modules, or web modules, or both. You create
J2EE applications in the IDE, either from an existing EJB module or from a filesystem
in the Explorer. After creating an J2EE application, you can add web modules to it.

For details on adding a web module to a J2EE application, see “Adding an EJB or
Web Module to a J2EE Application” in the J2EE Application Assembler online help.

For more information on assembling web modules into a web application, see
Building J2EE Applications.
112 Building Web Components • June 2003

Glossary

Application event
listener A class that implements one or more of the servlet event listener interfaces. It is

instantiated and registered in the web application at deployment time. See also
servlet event listener.

bean A reusable software component written to the JavaBeans specification. See also
JavaBeans.

browser See web browser.

client In the client-server model of communications, a process that requests the
resources of a remote server. For instance, computation and storage space.

Composite View A design pattern that creates an aggregate view from component views.
Component views might include dynamic, modular portions of the page.
Sometimes called a template. See also design pattern.

cookie A mechanism used by servers to keep track of individual clients. It sends small
amounts of data in the headers of HTTP requests and responses. The web
resource sets an outgoing cookie in the header of the response. The client
receiving the response stores the cookie until it expires. The client then sends it
as part of any HTTP request to the server that the cookie comes from. The
client can also send the cookie to the server specified in the cookie domain. The
client also sends the cookie to requests to that server that matches the cookie’s
path, if a path was specified. Web sites remember a user ID between browser
sessions using this technique, for example. See also HTTP session.

context root A name that gets mapped to the document root of a web client. For example, if
the web module’s context root is /catalog, then the request URL might be
http://host:8081/catalog/index.html.

custom tag A tag created by a web application developer to provide additional Java
features within a JSP page. See also JSP tag.

deployment The process of installing software into an operational environment.
113

deployment
descriptor A file that describes deployment configuration information. In this book,

deployment descriptor refers to a file, named web.xml, located in the web
module’s WEB-INF directory. The deployment descriptor provides the
necessary configuration information to the web module’s deployment
environment, that is, the servlet container. This information includes
requirements for external resources and security and environment parameters.
It also includes other component-specific and application-specific parameters.

design pattern An architectural solution to a recurring software design problem. Design
patterns also consist of considered best practices for attending to the context
and pressures surrounding the issue, and the outcomes and effects of the
solution.

Dispatcher A design subpattern describing the control over which view the user sees. See
also design pattern, Front Controller, View Mapper.

document root The root URL of a web module. For example, if a web module’s context root is
/catalog, the document root might be http://host:8080/catalog.

EJB (Enterprise JavaBeans) A component architecture for development and
deployment of object-oriented, distributed, enterprise-level applications.
Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, multi-user, and secure. See also JavaBeans and bean.

filter See servlet filter.

framework APIs that are intended to simplify the design and coding process. See also
Struts and JSF.

Front Controller A design pattern centralizing business logic for part of a web application in a
single object handling incoming client requests. The client requests are for
several different resources. The Front Controller might be responsible for
activating Helpers and Delegates that perform business logic. Front Controllers
can be used for managing model data, controlling page flow, and dispatching
the request to the appropriate view. See also Helper, Dispatcher.

Helper A design subpattern that encapsulates processing functions (or business rules)
or data retrieval behavior. See also design pattern, Front Controller.

HTTP (Hypertext Transfer Protocol) An application protocol governing the exchange
of files, on the World Wide Web. Examples of files would include text, images,
sound, and video.

HTTP Monitor An IDE module for the collection of information concerning the execution of
JSP files and servlets in the servlet engine. For each request associated with a
JSP file or servlet, the monitor records data. The data includes the incoming
request, incoming and outgoing cookies, session information maintained by
the server, and more.
114 Building Web Components • June 2003

HTTP response A message generated in the servlet container that includes cookies, headers,
and output that eventually go to the client browser. It is a response as specified
by an HTTP method. Often referred to as response in this book. The response is
encapsulated in an HTTPResponse object in the servlet container.

HTTP request A message created in the client browser that includes attributes and cookies
from the client browser. It is a request as specified by a GET or a POST method.
Often referred to as a request in this book. The request is encapsulated in an
HTTPRequest object in the servlet container.

HTTP session A Servlet API construct representing a conversation spanning multiple
requests between a client browser and a web server.

HTTPS (Hypertext Transfer Protocol Secure Sockets) A secure HTTP protocol used
widely in Internet and intranet environments. HTTPS is for exchanging secure
information between clients and servers. It provides a secure connection
through which applets or beans can be downloaded into the web browser. In
addition, HTTPS enables these applets or beans to make secure connections to
the server.

J2EE (Java 2 Platform, Enterprise Edition) The edition of the Java 2 platform that
combines a number of technologies in one architecture. Examples of
technologies are enterprise beans, JSP pages, and XML. J2EE provides a
comprehensive application programming model and compatibility test suite
for building enterprise-class server-side applications. See also EJB, JSP
technology, servlet.

J2EE application An application that consists of J2EE components that run on the J2EE platform.
Examples of J2EE components are application clients, applets, HTML pages,
servlets, and enterprise beans. J2EE applications are typically designed for
distribution across multiple computing tiers. For deployment, a J2EE
application is packaged in an .ear (Enterprise Archive) file. See also J2EE,
J2EE web tier.

J2EE web tier One of three tiers in the J2EE architecture. The web tier creates presentation
logic. It accepts responses from presentation clients such as HTML and web
clients. Then it provides the appropriate response. This tier is to be
differentiated from the client and business tiers.

JAR (Java Archive file) A platform-independent file format that bundles classes,
images, and other files into one compressed file, speeding up download time.

JavaBeans An architecture that defines a portable, platform-independent reusable
component model. Beans are the basic unit in this model. See also EJB.

JSF (JavaServer Faces) A proposal to define an architecture and APIs that simplify
the process of building J2EE web tier applications. See also J2EE web tier.
Glossary 115

JSTL (JavaServer Pages™ Standard Tag Library). A standard tag library that
encapsulates core features common to many JSP pages as simple tags. JSTL
contains support for common, structural tasks. Support includes iteration
and conditionals, tags for manipulating XML documents,
internationalization tags, and SQL tags.

JDBC (Java Database Connectivity) An industry standard for database-independent
connectivity between the Java platform and a wide range of databases. The
JDBC interface provides a call-level API for SQL-based database access.

JSP action A JSP object that can act on implicit objects and other server-side objects. It also
can define new scripting variables. Actions follow the XML syntax for elements
with a start tag, a body, and an end tag. If the body is empty, it can also use the
empty tag syntax. The tag must use a prefix. An action is the abstract term that
is implemented by a tag.

A standard action is defined in the JSP specification. It is always available to a
JSP file without being imported.

A custom action is described in a portable manner by a TLD. It is a collection of
Java classes imported into a JSP page by a taglib directive.

JSP element A part of the JSP page recognized by the JSP translator. An element can be a
JSP action, a directive, or a JSP scripting element.

JSP expression A scripting element containing a valid scripting language expression. It is
evaluated, converted to a String, and placed into the implicit out object.

JSP page A text-based web component that is dynamically translated into a servlet by
the servlet container before execution. See also JSP file, servlet.

JSP file The physical representation of JSP page code. See JSP page.

JSP scripting element A JSP declaration, scriptlet, or expression whose tag syntax is defined by the
JSP specification. Its content is written according to the scripting language used
in the JSP page.

JSP tag A tag defined by the JSP Specification. It is a text element within a document.
The document represents format information or processing logic contained in
an external library. It is distinguishable as markup, instead of as data, because
it is delineated in XML format. By using tags, you can avoid including Java
code in the JSP page. See also JSP tag library.

JSP tag library A collection of tag handlers (Java classes) that encapsulates dynamic content or
processes. They can then called through a tag in a JSP page. JSP tag libraries
are part of the JSP specification and can be translated by any JSP engine. See
also JSP tag, custom tag.
116 Building Web Components • June 2003

JSP technology (JavaServer Pages™) Extensible web technology that uses template data,
custom elements, scripting languages, and server-side Java objects to return
dynamic content to a client. Typically, the content consists of HTML or XML
elements. In many cases, the client is a web browser. JSP technology is an
extension of servlet technology. See also JSP pages, servlets.

listener See application event listener and servlet event listener.

model object Java objects that encapsulate application data inside a web application.

MIME (Multipurpose Internet Mail Extensions) An Internet standard for sending and
receiving non-ASCII email attachments, (including video, audio, and graphics.
Web browsers also use MIME types to determine how to display or interpret
files that are not formatted in HTML.

scope Definition of an object’s availability in relationship to other objects in the web
application. The Servlet and JSP specifications define four scopes:
ServletContext (application), Session, Page (JSP page only), and
Request.

scripting element See JSP scripting element.

scripting variable A value that a tag exports to a JSP page. This value can then be used in an
expression or scriptlet.

scriptlet A scripting element that enables you to enter any piece of valid Java code into
a JSP page. Variables and methods declared in a declaration element are
available to other scriptlets in the same JSP page. The use of scriptlets in JSP
pages is not recommended. Instead, encapsulate the code in a tag or a bean.

server A network device that manages resources and supplies services to a client. A
J2EE server provides a web or EJB container. See also client, web server.

server plugin A module of the IDE sometimes provided by a web server vendor. The plugin
facilitates the use of the IDE in the configuration of applications and their
deployment to the server.

servlet Any class that implements javax.servlet, typically subclasses of
javax.servlet.http.HttpServlet. Servlets extend the features of web
servers and web-enabled application servers. They execute within a servlet
container. Servlets are typically used as Front Controllers and to generate
simple HTTP responses that are not complex. See also Front Controller and
HTTP response.
Glossary 117

servlet container A container providing network services. Here requests and responses are sent,
requests decoded, and responses formatted. All servlet containers support
HTTP as a protocol for requests and responses. They might also support
additional request-response protocols such as HTTPS. In this case, requests are
handled by servlets.

A distributed servlet container can run a web application that is tagged as
distributable. It executes across multiple Java virtual machines running on the
same or on different hosts. In this situation, the scope of objects in the web
application is extended. Synchronization overhead occurs because the session
data must be shared among the different servers.

servlet context An object containing a servlet’s view of the web application within which the
servlet is running. The servlet context can be used to manage the resources of a
web module. Using the context, a servlet can perform a number of tasks. It can
log events and obtain URL references to resources, and set and store attributes
other servlets in the context can use.

servlet event listener A class that supports event notifications for state changes in the servlet context
and HTTP session objects. See also application event listener.

servlet filter Reusable code that inspects and modifies HTTPRequest and HTTPResponse
objects as the servlet receives the HTTP request. (Often called a filter in this
book)

servlet mapping The definition of an association between a URL pattern and a servlet. It is used
to map requests to servlets through examining the URI of the incoming
request. See servlet, URI, HTTP request.

session See HTTP session.

Struts An open-source framework from the Jakarta Project. Struts is designed for
building web applications with the Java Servlet API and JSP technology. The
Struts package supplies an integrated set of reusable components. They include
a controller servlet, JSP custom tag libraries, and utility classes. These
components for building user interfaces can be applied to any web-based
connection. See frameworks.

Sun ONE Application
Framework A J2EE web application framework from Sun Microsystems that is geared

towards enterprise web application development. The framework combines
concepts such as display fields, application events, component hierarchies, and
a page-centric development approach. Also known as JATO.

tag See JSP tag.

tag attribute A parameter associated with a tag that denotes or provides a value used
during tag processing.

TLD (tag library descriptor). An XML file that describes a tag library. A JSP
container uses the TLD file to interpret pages that include taglib directives
referring to that tag library. The TLD file contains documentation on the library
118 Building Web Components • June 2003

as a whole. It also contains documentation on its individual tags, version
information on the JSP container and on the tag library. The TLD has
information about each of the actions defined in the tag library. In the IDE, the
TLD file is generated when a custom tag library is created.

URI (Uniform Resource Identifier) The property used when a servlet is executed (or
debugged) to build the URL to be displayed in browser. URIs to web
applications typically have the following syntax:
http://server:port/context path/
local resource identifier ? query string

value object An intermediate representation of the model used, for example by a a Helper.
See also model object, Helper.

View Creation Helper A tag handler class used to display data in JSP pages in different design
patterns.

View Mapper An object that can determine the processing of the request when resources
differ based on the type of client.

WAR (Web Application Archive) A JAR file format similar to the package used for
Java class libraries. A WAR file format is installed or deployed into a servlet
container. In addition to web components, a WAR usually contains other files,
called web resources. They include server-side utility classes (database beans,
shopping carts, and so forth). Web resources include static web content
(HTML, image, and sound files), and client-side classes (applets and utility
classes). A web application can run from a WAR file or from an unpacked
directory organized in the same format as a WAR. See also JAR.

web application A term sometimes used interchangeably in this book with web module.At other
times, it is used to denote everything on a set of servers. Web application
generally signifies a program combining all the features users need to perform
a specific group of tasks on a dynamic web page with a web browser.
Examples of web applications might include an electronic shopping mall or an
auction site. A web application is based on a client-server model. In this model,
the client is the web browser and the server is the feature set that runs
remotely. A web application’s set of components can include servlets, JSP
pages, and utility classes. In addition, it includes static documents, client-side
applets, Java classes, and some meta information tying all the elements
together. See also web module, web server.

web browser An application that enables users to view, navigate through, and interact with
HTML documents and applets. A web browser is also called a browser, which is
sometimes referred to as the client. See also client, web server.

web container See servlet container.

web component Components defined by the Servlet and JSP specifications. Web components
can only be executed if part of a web module directory or archive deployed
onto a web server. See also JSP page, servlet.
Glossary 119

web context The identified path to a web application’s components. The path permits
access to multiple web modules on a single server. See also servlet context.

web client Typically the web browser (for instance, Netscape). However, it could be a
specialized application that sends HTTP requests and interprets HTTP
responses. See also web browser.

web module The smallest deployable and usable unit of web resources in a J2EE
application. Web modules can be packaged and deployed as web archive
(WAR) files. See also web module group, WAR files, and web application.

web module group In the Sun ONE Studio 4 IDE, several web modules deployed together. See also
web module, web application, WAR files and web application.

web server Software that supplies services to access the Internet, an intranet, or an
extranet. A web server hosts web sites and provides support for HTTP and
other protocols. It executes server-side programs such as CGI scripts or servlets
that perform specified functions. In the J2EE architecture, a web server
provides services to a web container. For instance, a web container usually
depends on a web server for HTTP message handling. The J2EE architecture
assumes that a web container is hosted by a web server from the same vendor.
Hence, it does not specify the contract between these two entities. A web
server can host one or more web containers.

XML (Extensible Markup Language) A markup language that enables the definition
of the necessary tags to identify the data and text in XML documents. J2EE
deployment descriptors are expressed in XML.
120 Building Web Components • June 2003

Index
A
action elements, JSP, 36 to 37
Add New Tag Attribute dialog box, 84
Add New Tag dialog box, 82
Add New Tag Scripting Variable dialog box, 84
addAttribute method, 42
application event listeners, 48
application instance variable, 33
application scope, 41
audience for this book, 10
authentication properties, defining, 93
authentication, servlet filters and, 46

B
beans

accessing from servlets, 75
accessing with tag handlers, 88
data access, creation of, 88
implementing Helpers as, 56
setting properties for, 70
specifying in servlets, 75
specifying use in JSP pages, 70
using in web modules, 70 to 71
View Creation Helpers, 57

Body Content field, meaning in Tag Customizer
dialog box, 83

BodyTag interface, 83
breakpoints, setting, 106
browsers. See web browsers

C
classpaths

adding tag handlers to, 80
IDE’s internal, 71
order of web module elements in, 99

Client and Server pane of records display
panel, 104

clients. See web browsers
code completion

for available servlet methods and values, 71
for JSP tags, 66
for standard tag library, 79

coding errors, 25
HTTP Monitor and, 101
JSP debugger options and, 108

compiling
JSP pages, 72
servlets, 71

Composite Views, 56 to 57
creating a template JSP page for, 69

Context pane of records display panel, 104
context parameters, in deployment descriptor

file, 93
context roots

property sheet, specified in WEB-INF, 96
server directory, mapping to, 99

controller element, in web modules, 31
121

cookies
HTTP request headers, in, 23
HTTP responses, in, 32
incoming and outgoing, list of, 104
incorrect values in, 25
replay requests, specifying for, 105

Cookies pane in records display panel, 104
custom actions

and custom tags, 79
inserting using tags, 77 to 83
specifying how body is handled, 83
tag handlers and, 83

custom tags, adding and customizing, 82

D
data compression, servlet filters and, 46
Database Explorer, 98
databases

access to, 21
accessing with beans, 34, 70
accessing with Helpers, 56
drivers, 98
frameworks and, 59
initializing connections, 43
managing connections to, 44
model objects and, 58
setting up web server environment for access, 97
updating data with custom tags, 89
working with, 87 to 89

debugger
options, setting for JSP, 108
setting breakpoints, 106
starting, 106
viewing generated servlets, 107

debugging web applications
HTTP Monitor, using to debug, 101 to 106
monitoring data flow on the web server, 101 to

105
setting JSP debugger options, 108
source-level debugging, 106 to 108
tools for, 23 to 24
viewing both JSP and servlet files during, 108
viewing monitor data records, 103

declarations, JSP, 38
deploying

custom tag libraries, 110 to 112

HTTP Monitor, 102
production environment, to, 109
web modules, 73, 92, 96, 99

deployment descriptor files
adding servlet entries in, 73
configuring, 92 to 95
displaying and changing servlet entries in, 73
editing, 24, 29
editing in Source Editor, 96
editing with property editors, 93
errors in, 25
introduced, 20
load on startup specification, 72
registering servlets and filters in, 94
registering tag libraries in, 94
servlet entries in, 72
servlet mappings in, 72

deployment errors, 25
design patterns

Composite Views, 56 to 58
Dispatchers, 53
frameworks for, 59
Front Controllers, 52 to 56
Helpers, 55
introduced, 51
View Creation Helpers, 57
View Helpers, 56
View Mappers, 54

destruction of
JSP pages, 35
servlet filters, 48
servlets, 44

directive elements
in JSP pages, 36
in tag libraries, 79

Dispatchers, 53 to 54
distributed servlet containers, 33
document root, 97
doFilter method, 47
Dreamweaver templates, creating JSP pages

from, 65

E
Edit and Replay dialog box, 105
error page entries, creating, 93
122 Building Web Components • June 2003

error sources in web applications, determining, 26
example applications

where to download, 16
executing

on external servers, 100
single web modules, 98 to 99
web module groups, 99 to 101

execution properties, setting web module, 97
Explorer window

mounting root directory of web module in, 64
opening mounted JAR files in, 80
Server Registry on Runtime tab, 96
unpacking and mounting a WAR file from, 65
web module structure in, 63

expression elements, JSP, 38
external servers

executing web modules on, 100

F
filter chains, 48, 76
FilterChain object, 47
FilterConfig method, 47
filters. See servlet filters
forward action, 36, 37
frameworks

defined, 59
JavaServer Faces, 60
Struts, 59

Front Controllers
constructing, 74 to 75
defined, 52 to 56
directing page flow with, 75
Dispatchers in, 53
Helpers and, 55 to 56
response processing in, 23
servlets as, 42
View Creation Helpers in, 57 to 58
View Mappers and, 54

G
generated servlets, viewing, 107
getAttribute method, 42
getProperty action, 37, 71

H
headers

altering HTTP response, 68
displayed in HTTP Monitor, 104
in HTTP requests, 23
in HTTP responses, 24

Headers pane of records display panel, 104
Helpers, 55 to 56
HTTP Monitor

enabling, 101
introduced, 26
records display panel, 104
replaying requests, 105
starting, 103
viewing data records, 103 to 105

HTTP requests
defined, 23, 32
monitoring, 23
Request pane in HTTP monitor records display

panel, 104
scope in JSP pages, 41
web components and, 33

HTTP responses
action elements and, 36
defined, 24, 32
expression elements and, 38
generating with servlets, 74
scripting elements and, 37
scriptlets and, 38
servlet filters and, 77
template data and, 36
web components and, 33

HTTP sessions, 39 to 40
creating, 66
data, 19, 22, 24
defined, 24
displaying properties of, 104
invalidating, 66
misspelled attributes as coding errors, 25
servlet filters and, 77
showing status of, 104
storing data for future, 102

HTTPRequest objects
modifying, 74
servlet filters and, 24
Index 123

HTTPResponse objects
modifying, 74
servlet filters and, 24

HTTPServlet interface, 43
HTTPSession API methods, 48

I
implicit objects in JSP pages, 40
include action, 37
include directive, 36, 68
included views, in Composite View design

pattern, 56
initialization of

filters, 47 to 48
servlets, 43

instantiation of
filters, 47
JSP pages, 35
servlets, 43

interfaces
BodyTag, 83
HTTPServlet, 43
Servlet, 44
ServletContext, 33
Tag, 83

invalidate method, 48

J
J2EE (Java 2 Platform, Enterprise Edition)

1.3 specification compliance, 28
architecture, 32 to 34
compliant servers, 25
web applications, 10, 112
web modules and, 62

JAR (Java Archive) files, 63
in classpath construction, 99
servlets, classes, and beans packaged as, 62
Tag Libraries Property Editor and, 96

Javadoc technology
using in the IDE, 16

JavaServer Faces framework, 60
JDBC (Java Database Connectivity)

driver, location in web module, 63

PointBase driver for, 98
Tomcat, setting up access for, 98
using Helpers to access information in a database

with, 56
using to access database from a web

application, 88
jServletContext instance, 33
JSP include actions, 68
JSP pages

action elements, 36
beans, using, 70
code constructs, 36
Composite View template, 69
creating, 65
destruction of, 35
directive elements, 36
element types, 36
expression elements, 38
importing packages, 36
includes, working with, 67
instantiation of, 35
joining a session, 36
life cycle of, 34 to 35
modifying, 66
page directive, 66
root directory for, 65
scripting elements in, 37 to 38
scriptlets and, 67
session scope and, 42
sessions, creating and invalidating, 66
setting debugger options, 108
specifying beans for, 70
template data, 36
translation of, 35

JSP source code
editing, 66
viewing next to servlet source code, 108

JSP Tag Library dialog box, 78
JSP Tag Library Repository

adding existing tag libraries with, 78
adding tag libraries from external sources

with, 78
JSP Tag Library Repository dialog box, 78
jspDestroy method, 35
jspInit method, 35
124 Building Web Components • June 2003

JSTL (JSP Standard Tag Library)
adding using JSP Tag Library Repository, 78
defined, 45 to 46
multiple TLD files in JAR file, 95

L
life cycle

JSP pages, 34 to 35
servlet filters, 47 to 48
servlets, 42 to 44

listeners, 48 to 49
load-balancing systems, 59
loading of

filters, 47
servlets, 43

localization, servlet filters and, 46
logging and auditing web application users, servlet

filters and, 46

M
MIME type of file, deployment descriptor field

for, 93
model element, in web modules, 31
model objects, 58 to 59
monitoring data flow on the web server, 101 to 105
Mount Filesystem dialog box, 64
mounted filesystems, web modules and, 64

N
New wizard, 62, 63, 65, 71

P
packaging custom tag libraries, 110 to 112
packaging web applications, 109 to 110
page directive, 36, 66
page scope, 41
plugin action, 37
PointBase database, 97
prefix attribute of taglib directive, 80

presentation element, in web modules, 31
processRequest method, 74

R
recommended reading, 12 to 13
records display panel in HTTP Monitor, 104
request processing

filters and, 77
in JSP pages, 35
in servlets, 43

request scope, 41
request time, 36
RequestDispatcher API, 46

S
scopes in JSP pages, 40
scripting elements

declarations, 38
defined, 37
expressions, 38
scriptlets, 38

scripting variables
adding new, 84
customizing existing, 84

scriptlets
defined, 38
disadvantages of, 67

security properties, defining, 93
server configuration file, 97
servers. See web servers
service method, 43
Servlet class, 43
servlet containers

database systems and, 98
defined, 32 to 34
deploying web modules on, 62
distributed web servers and, 22
introduced, 19, 20
matching request paths to servlets, 74
mediating links between components, 20
Welcome file list and, 93
Index 125

servlet context
defined, 33 to 34
events, 48
methods defined by, 33
name on HTTP Monitor pane, 104
objects, 48
servlet filters and, 46
showing name created from web module, 104
web module and, 63

servlet event listeners, 48
servlet filters, 46 to 48, 76 to 77

data compression and, 46
declaring, 76 to 77
destroy method, 48
destruction of, 48
introduced, 24
life cycle, 47 to 48
processing requests and responses with, 77
registering in deployment descriptor files, 94

Servlet interface, 44
Servlet pane of records display panel, 104
ServletContext interface, 33
servlets

creating, 71 to 75
declaring, 72 to 73
defined, 42
destroy method, 44
destruction of, 44
dispatchers and, 42
execution, 99
front controllers and, 42
generated, viewing, 107
init method, 43
initialization of, 43
instantiation of, 43
life cycle, 42 to 44
loading of, 43
modifying, 73
outputting HTML from, 74
registering in deployment descriptor files, 94
service method, 44
showing name information for, 104

session scope, 41
sessions

creating and invalidating, 66
distributing data, 59
time-out interval, 93
tracking with listeners, 48

setProperty action, 37, 70
source-level debugging, 106 to 108
Struts framework, 59
style translations of XML content by servlet

filters, 46
Sun ONE Application Server

Admin Server, required by web server, 99
integration with the IDE, 96
PointBase software in, 97

Sun ONE Studio IDE
debugging tools, 23 to 24
deployment support, 24
execution support in, 23
full web component support, 22 to 23
monitoring tools, 23 to 24
open runtime environment integration, 25
summary of features, 27 to 29

T
Tag Attribute Customizer dialog box, 84
tag attributes

adding, 84
customizing, 84

Tag Customizer dialog box
body content field in, 83
edit a tag, using to, 82
generating skeleton code, using to, 82
generating tag handlers and, 85

tag handlers, 85 to 87
Tag interface, 83
tag libraries

adding existing, 78
creating, 81
database access and, 89
defined, 44 to 46
deploying, 111
developing custom, 81 to 87
generating tag handler classes, 85 to 87
inserting custom actions into a JSP page, 79
JSP Tag Library Repository and, 78
packaging and deploying custom tag

libraries, 110 to 112
packaging as JAR files, 111
recommended development procedure, 62
registering in deployment descriptor, 94
126 Building Web Components • June 2003

scripting variables, 84 to 85
tag attributes, 84
testing in place, 87
TLD and, 79
URI mappings for, 95
using, 77 to 87
using from external sources, 78

Tag Libraries Property Editor, 95
Tag Library Customizer dialog box

defining properties of custom tag libraries, 81
Tag Handler Generation Root field in, 81

Tag Library Repository
adding new tag library JAR file to, 87
deploying a tag library with, 111
using, 78
using tag libraries from external sources with, 78

Tag Library Repository Browser dialog box, 111
Tag Scripting Variable Customizer, 84
taglib directive, 36, 45, 79
TLD (tag library descriptor)

adding tag attributes and scripting variables
to, 86

code completion, using for, 79, 95
creating, 81
declaring tag attributes and scripting variables

in, 85
defined, 44, 79
generating tag handlers from, 85
IDE support for, 80, 81, 82
location in web module, 82
mapping tag name and tag handler in, 80
placement of, 82
referencing from JSP page, 79
regenerating tag handlers for, 86
URI, finding, 80, 95

Tomcat web server
integration with the IDE, 96
JDBC drivers and, 97
PointBase database and, 88

translation of JSP pages, 35

U
Unpack WAR Folder dialog box, 65

URL
references to resources, obtaining, 33
specifying web application’s, 99

useBean action, 37, 70

V
View Creation Helpers, 57 to 58
View Helpers, 56
View Mappers, 54 to 55

W
WAR (Web Archive) files

building from a web module, 109
format of, 63
packaging options for, 109
viewing contents of package, 110

web applications
advantages of developing, 21
challenges in developing, 20 to 22
compared to standalone applications, 20 to 21
complexity of tasks, 21
data representation, flow, and processing in, 21
debugging, 101 to 108
defined, 10
design patterns for, 51 to 59
developing, 61 to 89
error sources in, 25 to 26
frameworks for, 59 to 60
introduced, 19 to 20
running and debugging tasks, 91 to 92
structure of, 31 to 49
test running, 96

web browsers
accessibility of JSP pages and, 65
creation of HTTP requests in, 23
destination for HTTP responses, 24
executing web applications from, 96
HTTP Monitor and, 27
introduced, 19
languages and file format accepted by, 104
replaying requests and, 105
requests and responses in, 20
test interaction using different, 23
web components and, 20
Index 127

web components
defined, 34
indirect action among, 20
introduced, 20, 33
JSP pages, 34 to 42
servlets, 42 to 44
types, 33

web containers. See servlet containers
web module groups, 99
web modules

classpath construction for servlet execution, 99
configuring, 92 to 98
creating, 62
debugging flow in, 91 to 92
defined, 34
deployment descriptors, 92
executing single, 98 to 99
execution properties, setting, 97
hierarchy, 63
importing existing, 64 to 65
introduced, 63
mounting, 64
programming flow in, 61 to 62
root of, 34
setting a target server, 100
structure of, 31
test running, 96
URL and context root for, 99
WEB-INF/classes directory of, 71

web servers
defined, 32
deploying simple web modules on, 93
environment for database access, 97
executing a single web module on, 98
executing group of web modules on, 99
executing on external, 100
implications of server-centered execution, 21
integrated servers, using, 96
introduced, 19
monitoring data flow on, 101 to 105
open runtime environment integration, 25
server configuration file for, 97
test running web modules on, 96

web.xml files See deployment descriptor files
welcome files

designating, 94
in deployment descriptor file, 93
128 Building Web Components • June 2003

	Building Web Components
	Contents
	Before You Begin
	Before You Read This Book
	How This Book Is Organized
	What Is Not in This Book
	Useful References
	Valuable Web Sites

	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation
	Documentation in Accessible Formats

	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Addressing the Challenges of Web Application Development
	What Is a Web Application?
	Challenges in Developing Web Applications
	How Web Application Development is Different
	Implications of Server-Centered Execution

	How the IDE Helps
	Full Web Component Support
	Execution Support
	Debugging and Monitoring Tools
	Deployment Support
	Open Runtime Environment Integration
	Common Errors in Web Applications
	Facing the Challenges of Web Application Debugging
	Viewing Requests With the HTTP Monitor
	Summary of IDE Features

	The Structure of Web Modules
	Web Servers
	Servlet Containers and Web Components
	Servlet Context

	Web Modules
	JSP Pages
	JSP Page Life Cycle
	Code Constructs in JSP Pages
	HTTP Sessions
	Scopes and Implicit Objects

	Servlets
	Servlet Life Cycle

	Tag Libraries
	JSP Standard Tag Library

	Servlet Filters
	Filter Life Cycle

	Listeners

	Design Patterns and Frameworks
	Design Patterns
	Front Controllers
	Composite Views
	View Creation Helpers
	Model Objects

	Frameworks
	Struts
	JavaServer Faces

	Developing Your Own Web Application
	Development Work Flow
	Web Modules in the IDE
	Creating a Web Module
	Importing an Existing Web Module

	Creating JSP Pages
	Using page Directives
	Creating and Invalidating Sessions
	Modifying the JSP File
	Working With JSP Includes
	Creating a Composite View Template
	Using Additional Classes or Beans

	Creating Servlets
	Declaring the Servlet in the Deployment Descriptor
	Modifying the Servlet
	Servlet-Generated HTTP Responses
	Using the Servlet as a Front Controller
	Using Additional Classes or Beans

	Creating Filters
	Declaring the Filter in the Deployment Descriptor
	Processing HTTP Requests and Responses

	Using Tag Libraries
	Using Existing Tag Libraries
	Tag Library Descriptors
	Inserting Custom Actions From a Tag Library Into a JSP Page
	Developing Your Own Tag Libraries
	Testing Tag Libraries

	Working With Databases

	Running, Debugging, and Deploying Your Web Application
	Running and Debugging Tasks
	Configuring the Web Module Deployment Descriptor
	Using Property Sheets to Edit the web.xml File
	Registering Servlets and Filters
	Registering Tag Libraries
	Specifying the Default URI Within the Taglib Element
	Using the IDE to Edit the web.xml File in the Source Editor

	Using the Integrated Servers
	Test Running Web Modules
	Configuring the Server
	Setting Up the Web Server Environment for Database Access
	Executing a Single Web Module
	Creating and Executing a Web Module Group
	Executing on External Servers

	Debugging Web Applications
	Using the HTTP Monitor to Debug a Web Application
	Source-Level Debugging

	Packaging Your Web Applications
	Building a WAR File From a Web Module
	Specifying Options
	Viewing Contents

	Packaging and Deploying a Custom Tag Library
	Packaging a Tag Library as a JAR File
	Deploying a Tag Library Using the Tag Library Repository
	Deploying a Tag Library by Adding a JAR File From the Filesystem
	Deploying a Tag Library by Copying and Pasting a JAR File From Another Module or Filesystem

	Including a Web Module Within a J2EE Application

	Glossary
	Index

