
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Using Java™ DataBase
Connectivity

Sun™ ONE Studio 5 Programming Series

Part No. 817-2332-10
June 2003, Revision A



Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent l’utilisation, la copie, la distribution et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.



3

Contents

Before You Begin 9

1. Using Java DataBase Connectivity 15

Programming JDBC 15

General Programming Steps 15

JDBC Reference Materials 16

Using the Database Explorer 17

Using JDBC Components 18

The JDBC Tab 19

Programming With JDBC Components 24

Using the JDBC Form Wizard 28

Establishing a Connection 29

Selecting Columns to Display 33

Selecting a Secondary RowSet 35

Previewing and Generating an Application 36

Running Your JDBC Application 37

Index 39



4 Using Java DataBase Connectivity • June 2003



5

Figures

FIGURE 1 JDBC Form Wizard, Opening 29

FIGURE 2 JDBC Form Wizard, Database Connection 30

FIGURE 3 JDBC Form Wizard, Select a Table 32

FIGURE 4 JDBC Form Wizard, Select Columns 34

FIGURE 5 JDBC Form Wizard, Select Secondary RowSet 36

FIGURE 6 JDBC Form Wizard, Finish the Wizard 37



6 Using Java DataBase Connectivity • June 2003



7

Tables

TABLE 1 RowSet Properties 21

TABLE 2 RowSet Other Properties Tab Properties 21

TABLE 3 RowSet Event Tab Properties 22

TABLE 4 Code Generation Tab Properties 22

TABLE 5 Data Navigator Properties 23

TABLE 6 Stored Procedure Properties 24

TABLE 7 Transaction Isolation Levels 33



8 Using Java DataBase Connectivity • June 2003



9

Before You Begin

Welcome to the Using Java DataBase Connectivity book of the Sun ONE Studio 5
Programming Series. This book focuses on programming with persistent
data—data stored in a database or other data store that is external to your
applications. The book discusses the different persistence programming models
supported by Sun ONE Studio 5. It focuses on the Transparent Persistence
technology provided by the Sun ONE Studio 5 integrated development environment
(IDE).

This book is written for programmers who want to learn how to use the persistence
programming models supported by Sun ONE Studio 5. The book assumes a general
knowledge of Java and database access technology. Before reading it, you should be
familiar with the following subjects:

■ Java programming language
■ Relational database concepts (such as tables and keys)
■ How to use the chosen database

You can create the examples in this book in the environments listed in the release
notes on the following web site:

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. You should have no trouble
translating the slight differences to your platform. Although almost all procedures
use the Sun™ ONE Studio 5 user interface, occasionally you might be instructed to
enter a command at the command line. Here too, there are slight differences from
one platform to another. For example, a Microsoft Windows command might look
like this:

c:\>cd MyWorkDir\MyPackage

http://forte.sun.com/ffj/documentation/index.html


10 Using Java DataBase Connectivity • June 2003

A UNIX command might look like this:

Before You Read This Book
This book is written for programmers who want to learn how to use the persistence
programming models supported by Sun ONE Studio 5. The book assumes a general
knowledge of Java and database access technology. Before reading it, you should be
familiar with the following subjects:

■ Java programming language
■ Relational database concepts (such as tables and keys)
■ How to use the chosen database

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.

How This Book Is Organized
This book describes JDBC™ productivity enhancement tools provided by Sun ONE
Studio 5. These automate many JDBC programming tasks in building client
components or applications that interact with a database.

% cd MyWorkDir/MyPackage



Before You Begin 11

Typographic Conventions

Related Documentation
Sun ONE Studio 5 documentation includes books delivered in Acrobat Reader (PDF)
format, release notes, online help, readme files for example applications, and
Javadoc™ documentation.

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM

web site and from the documentation page of the Sun ONE Studio Developer
Resources portal (http://forte.sun.com/ffj/documentation).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index installed with the product on your local
system or network.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type rm filename.

http://forte.sun.com/ffj/documentation/
http://docs.sun.com


12 Using Java DataBase Connectivity • June 2003

■ Release notes (HTML format)

Available for each Sun ONE Studio 5 edition. Describe last-minute release
changes and technical notes.

■ Sun ONE Studio 5, Standard Edition Release Notes - part no. 817-2337-10

■ Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 5 integrated development
environment (IDE) on each supported platform and include other pertinent
information, such as system requirements, upgrade instructions, application
server information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Sun ONE Studio 5, Standard Edition Getting Started Guide - part no. 817-2318-10

■ Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 817-1145-10

■ Sun ONE Studio 5 Programming series (PDF format)

This series provides in-depth information on how to use various Sun ONE Studio
5 features to develop well-formed J2EE applications.

■ Building Web Components - part no. 817-2334-10

Describes how to build a web application as a J2EE web module using JSP
pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications - part no. 817-2327-10

Describes how to assemble EJB modules and web modules into a J2EE
application, and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 817-2330-10

Describes how to build EJB components (session beans, message-driven beans,
and entity beans with container-managed or bean-managed persistence) using
the Sun ONE Studio 5 EJB Builder wizard and other components of the IDE.

■ Building Web Services - part no. 817-2334-10

Describes how to use the Sun ONE Studio 5 IDE to build web services, to make
web services available to others through a UDDI registry, and to generate web
service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 817-2332-10

Describes how to use the JDBC productivity enhancement tools of the Sun
ONE Studio 5 IDE, including how to use them to create a JDBC application.

■ Sun ONE Studio 5 tutorials (PDF format)

These tutorials demonstrate how to use the major features of each Sun ONE
Studio 4 edition.

■ Sun ONE Studio 5 Web Application Tutorial - part no. 817-2320-10

Provides step-by-step instructions for building a simple J2EE web application.



Before You Begin 13

■ Sun ONE Studio 5 J2EE Application Tutorial - part no. 817-2322-10

Provides step-by-step instructions for building an application using EJB
components and Web Services technology.

■ Sun ONE Studio 4, Mobile Edition Tutorial - part no. 816-7873-10

Provides step-by-step instructions for building a simple application for a
wireless device, such as a cellular phone or personal digital assistant (PDA).
The application will be compliant with the Java 2 Platform, Micro Edition
(J2ME™ platform) and conform to the Mobile Information Device Profile
(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at:
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Online Help
Online help is available in the Sun ONE Studio 5 IDE. You can open help by pressing
the help key (F1 in Microsoft Windows and Linux environments, Help key in the
Solaris environment), or by choosing Help → Contents. Either action displays a list
of help topics and a search facility.

Examples
You can download examples that illustrate a particular Sun ONE Studio 5 feature, as
well as completed tutorial applications, from the Sun ONE Studio Developer
Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The site includes the applications that are used in this document.

Javadoc Documentation
Javadoc documentation is available within the IDE for many Sun ONE Studio 5
modules. Refer to the release notes for instructions on installing this documentation.
When you start the IDE, you can access this Javadoc documentation within the
Javadoc pane of the Explorer.

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html


14 Using Java DataBase Connectivity • June 2003

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (817-2332-10) of your document in the subject line of
your email.



15

Using Java DataBase Connectivity

Sun ONE Studio 5 provides a JDBC (Java Database Connectivity) module that
automates many programming tasks that you use when building client components
or applications that interact with a database.

The goal of the Sun ONE Studio 5 JDBC module is to increase your productivity
when programming visual forms that contain Swing (Java Foundation Class)
components that use JDBC to retrieve and update database tables. You can use this
module to assist you in generating simple, two-tiered application architectures.

This chapter describes the following JDBC productivity enhancement tools provided
by Sun ONE Studio 5, and begins with a brief description of the steps you follow in
creating a JDBC application. The tools include:

■ Database Explorer
■ JDBC JavaBeans components
■ JDBC Form Wizard

Programming JDBC
This section provides a brief introduction to JDBC programming tasks.

General Programming Steps
When you perform JDBC programming, you follow these general programming
steps:

1. Import relevant classes within your code.

2. Load a JDBC driver.



16 Using Java DataBase Connectivity • June 2003

3. Establish a connection with a database.

4. Create a Main method.

5. Create try and catch blocks and retrieve exceptions and warnings.

6. Set up and use database tables.

a. Create a table.

b. Create JDBC statements.

c. Execute Statements to perform persistence operations.

i. Enter data into a table.

ii. Obtain data from a table.

iii. Create an updatable result set (RowSet).

iv. Insert and delete rows programmatically.

d. View changes in a ResultSet by managing the Transaction Isolation Level.

Sun ONE Studio 5 simplifies most of these tasks, generating JDBC code either
through your editing of the Sun ONE Studio 5 JDBC JavaBeans component
properties or through your use of the JDBC Form Wizard.

JDBC Reference Materials
While this chapter provides a discussion of JDBC programming in the context of the
Sun ONE Studio 5 IDE, it assumes familiarity with the basics of the JDBC
programming model. For additional information about JDBC, you can review the
following reference materials, grouped by function.

Learning JDBC Programming

The Java Developer Connection provides an excellent tutorial on JDBC:

http://developer.java.sun.com/developer/onlineTraining/new2java/
programming/learn/jdbc.html

In addition, the Java Developer Connection supplies a JDBC Short Course:

http://developer.java.sun.com/developer/onlineTraining/Database/
JDBCShortCourse/index.html

http://developer.java.sun.com/developer/onlineTraining/new2java/programming/learn/jdbc.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html
http://developer.java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html


17

Technical Articles

Sun has produced a document entitled:

“Duke’s Bakery – A JDBC Order Entry Prototype – Part I”:

http://developer.java.sun.com/developer/technicalArticles/
Database/dukesbakery/

Getting Started With JDBC

The following index is a reference when starting to program using JDBC:

http://developer.java.sun.com/developer/technicalArticles/
Interviews/StartJDBC/index.html

Another document is “Of Java, Databases, and Really Cool Dead Guys”:

http://developer.java.sun.com/developer/technicalArticles/
Interviews/Databases/index.html

JDBC Basics

You can find additional information on JDBC within the Sun tutorial:

http://java.sun.com/docs/books/tutorial/index.html

This tutorial also provides some references:

http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html

Using the Database Explorer
Before you begin the process of writing JDBC code, you need to understand the
database that your application will use. To obtain database information, you can use
the Sun ONE Studio 5 Database Explorer.

Using the Sun ONE Studio 5 Database Explorer, you can perform the following
tasks:

■ Browse database structures

■ Examine all tables present in the database, including column and index
information

http://developer.java.sun.com/developer/technicalArticles/Database/dukesbakery/
http://developer.java.sun.com/developer/technicalArticles/Interviews/StartJDBC/index.html
http://developer.java.sun.com/developer/technicalArticles/Interviews/Databases/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html


18 Using Java DataBase Connectivity • June 2003

■ Examine SQL views related to the database

■ Examine all stored procedures defined in the database

■ View database data

■ Create tables

■ Create views

■ Take “snapshots” of database structures

■ Monitor SQL commands sent to the database

■ Connect to a database

To learn how to perform these tasks, refer to the Database Explorer Help within the
Sun ONE Studio 5 IDE.

Using JDBC Components
Sun ONE Studio 5 provides database connectivity and JDBC code generation tools
for visual forms and components, specifically providing two basic types of
components that you can use with your JDBC application:

■ Visual Components—Swing components let you display tabular database
information. Within Sun ONE Studio 5, use Swing visual components to create
forms that relay database data to the user; swing components provide the means
to let you manipulate row data and display columns. Sun ONE Studio 5 generates
the appropriate Swing code for you. Another type of visual component is a Data
Navigator–a JDBC component that you add to a form to manipulate the display
of data to the user.

■ Non-visual components—JavaBeans components that do not have visual
representation, but can be used to manipulate data from a database. One type of
non-visual component is a RowSet, which is a type of row group that contains
information from the database. To understand how to use JDBC JavaBean
components, you need to:

■ Understand the JDBC tab

■ Understand how to program applications with JDBC components by:

■ Creating a Visual Form with Sun ONE Studio 5

■ Using the Sun ONE Studio 5 Component Inspector with JDBC JavaBeans
components



19

The JDBC Tab
The JDBC tab in the component palette contains icons for a number of JDBC
JavaBeans components that you can use to facilitate the interaction of Java Swing
components with a database. These components have properties that you customize
using the Sun ONE Studio 5 Component Inspector.

The components include:

■ Connection Source
■ Pooled Connection Source
■ NB Cached RowSet
■ NB JDBC RowSet
■ NB Web RowSet
■ Stored Procedure
■ Data Navigator

Connection Source

A Connection source is a non-visual component that provides a connection to a
JDBC compliant database. When you configure the Connection Source, you set:

■ database URL
■ JDBC driver name
■ user name
■ password

Pooled Connection Source

A Pooled Connection Source component is similar to a Connection Source.
However, when you specify the use of a Pooled Connection Source with your
application, database connections that are established during application runtime
are not closed when the application ceases to use the connection.

Instead, Sun ONE Studio 5 retains the connection in a pool for subsequent use
within the runtime application. You can use a Pooled Connection Source when
your application performs frequent open and close requests against a database to
which it is connected.

Understanding RowSets

A RowSet component represents rows fetched from the database. You can use these
components to configure data models for several Swing components.



20 Using Java DataBase Connectivity • June 2003

RowSet Background

A RowSet object contains a set of rows from a JDBC result set or another source of
tabular data, such as a file or spreadsheet.

Depending on how you implement them in your code, RowSets can be serializable
or extensible to non-tabular sources of data.

Because a RowSet object follows the JavaBeans model for properties and event
notification, it is a JavaBeans component that can be combined with other
components in an application.

RowSets can be either connected or disconnected, depending on their
implementation. A disconnected RowSet obtains a connection to a data source to fill
itself with data or to propagate changes in data back to the data source, but most of
the time it does not have a connection open.

Even when it is disconnected, a RowSet does not require the use of a JDBC driver or
the full JDBC API, so its size is small. A disconnected RowSet is an ideal format for
sending data over a network to a thin client.

Types of RowSets:

The JDBC Tab makes three different types of row sets available:

■ NB Cached RowSet

The NBCachedRowSet is a disconnected RowSet that caches its data in memory.
This special type of RowSet is suitable for smaller sets of data. You can use it to
create JDBC applications that provide code to operate on thin Java clients, such as
Personal Digital Assistants (or PDAs).

When a RowSet is disconnected from its data source, any updates that
application writes on the RowSet are propagated to the underlying database.

■ NB JDBC RowSet

The NBJDBCRowSet represents a JavaBeans™ wrapping of a connected ResultSet
object to be used in models of Swing components. It can be used to read
extremely long tables more efficiently than a cached RowSet, which stores all data
in an internal cache.

■ NB Web RowSet

The NBWebRowSet represents a set of fetched rows in a cache to be used in
models of Swing components. It provides all cached RowSet functionality, and
enables the rows to be imported and exported in XML format. The file can then be
sent over the internet using HTTP/XML protocols.



21

You can customize a JDBC RowSet by setting the following properties under the
properties tab in the Properties Editor:

Other Properties, Event, and Code Generation Tabs for a
RowSet

The Other Properties Tab for a RowSet enables you to inspect and modify additional
properties.

TABLE 1 RowSet Properties

Property Definition

Command SQL query to populate this RowSet. The query can be any
syntactically-correct SQL Select Query.

Connection provider The configured connection source; a drop-down list provides
choices.

Read-only If True, this RowSet is read-only. Data from the RowSet cannot
be written out to the database.

Rowcount The number of rows.

Status Status of a read against a RowSet

Transaction isolation determines how the RowSet handles data under transactions.
For detail, see Java documentation for java.sql.Connection.

XML output directory
(WebRowSet only)

Identifies the directory where data from the WebRowSet will be
sent.

XML Output File
(WebRowSet only)

Determines the name of the file that will contain the XML output
from a WebRowSet.

TABLE 2 RowSet Other Properties Tab Properties

Property Definition

Database URL The location of the database where records will be updated. In most
cases, it is the same URL as listed in the Database URL property of
Connection Source.

Default Column
Values

The values to be inserted into a new row. You can press Fetch
Columns to retrieve a list of columns in the RowSet.

Execute on load If true, the NB RowSet can be executed on load. You can specify a
parameter with the Execute on Load from a Form Connection, and
you can generate initialization code.



22 Using Java DataBase Connectivity • June 2003

The Event Tab for a RowSet enables you to inspect and modify events associated
with RowSets.

The Code Generation Tab enables you to specify pre- and post-processing code
related to a rowset.

Password A password the user must supply to gain access to the table that
contains this NB RowSet.

Table Name The name of a database table where records will be updated.

User Name The name of a user updating records.

TABLE 3 RowSet Event Tab Properties

Property Definition

cursorMoved Specifies event handlers for the cursorMoved event. This method is
called when an NBCachedRowSet’s cursor is moved.

rowChanged Specifies event handlers for the rowChanged event. This method is
called when a row in a RowSet is changed.

rowInserted Specifies event handlers for the rowInserted event. This method is
called when a row in a RowSet is inserted.

rowSetChanged Specifies event handlers for the rowSetChanged event. This
method is called when an RowSet is changed.

rowCompleted Specifies event handlers for the rowCompleted event. This method
is called after an inserted row is committed to the database.

TABLE 4 Code Generation Tab Properties

Property Definition

Code Generation Choose between generating standard or serialization code for the
component.

Custom Creation
Code

Enter your own creation code for the component, not including the
variable name and equal sign (=). This creation code is called in the
initComponents() method. If this property is left blank, the IDE
generates a default creation code for the component.

Post-Creation Code,
Post-Init Code, Pre-
Creation Code, and
Pre-Init Code

Write custom code that you want the IDE to place before and after a
component’s creation code and before and after its initialization
code. The IDE always places creation code before initialization code
in initComponents().

TABLE 2 RowSet Other Properties Tab Properties (Continued)

Property Definition



23

Data Navigator

The JDBC module provides a visual component that provides direct navigation of a
RowSet with a pre-built GUI. This component is useful when you need to create
prototypical applications and when you want to create data entry applications.

You can customize a Data Navigator by setting the following properties under the
properties tab in the Properties Editor of a Data Navigator.

Stored Procedures

Stored procedures are a group of SQL statements that form a logical unit and
perform a specific task. Stored procedures encapsulate operations or queries that
execute on a database server. Such procedures, of course, vary in their nature
according to the database management system (DBMS) on whose server they
execute.

Serialize To Set the name of the file for the component to be serialized to, if it is
serialized.

Use Default
Modifiers

Set to True if you want the component’s variable modifiers (public,
private, and so on) to be generated using the default modifiers. The
default modifiers are specified in the Variables Modifier property of
the Form Objects node in the Options window. (Choose Tools →
Options to view the window.) Set to False if you want the Variables
Modifier property to appear on the component’s property sheet,
enabling you to override the default modifiers.

Variable Name Modify the component’s variable name.

TABLE 5 Data Navigator Properties

Property Definition

AutoAccept Automatically accept changes in the database. When you specify
this property, changes you make through the Navigator are either
immediately propagated to the database, or added to the RowSet
and propagated to the database when you request it.

Bound RowSet The RowSet to be controlled by the Data Navigator.

Layout of buttons Determines whether buttons are displayed in one or two rows.

Modification buttons Enables or disables the display of buttons for modification.

TABLE 4 Code Generation Tab Properties (Continued)

Property Definition



24 Using Java DataBase Connectivity • June 2003

Within the Sun ONE Studio 5 IDE, a stored procedure is a non-visual component
that represents a database stored procedure in your JDBC application. You can call a
stored procedure in response to an event initiated by a user within an application
GUI (such as a button click).

The syntax for a stored procedure is different for each database management system
that Sun ONE Studio 5 supports. For example, one database management system
might use begin, end, or additional keywords to indicate the beginning and ending
of the procedure definition, while a second DBMS might use other keywords to
indicate the same parts of the procedure definition.

The JDBC Tutorial provides information on some of the stored procedures you can
create for different databases, in addition to information on calling a stored
procedure from your JDBC application.

You can customize a stored procedure by setting the following properties under the
properties tab in the Properties Editor of a stored procedure. Once you have
specified these properties in the property sheet, you can connect stored procedures
to any user action.

Programming With JDBC Components
Use the visual and non-visual components provided in the JDBC module in
conjunction with Swing components to create forms that you use to retrieve and
manipulate database data.

For example, a number of Swing components (JList, JTable, JComboBox,
JButton, JToggleButton, JRadioButton, and JCheckbox) are associated with
data models for the data they display. Within the IDE, you use Property Editors and
the Component Inspector to customize the data model for these Swing components

TABLE 6 Stored Procedure Properties

Property Definition

Arguments Represents database data that you want used by the stored
procedure when called from the application.

Bound RowSet Enables you to select a RowSet from a drop-down list that is
refreshed from the database after the stored procedure is called.

Call format Format in which your stored procedure is called. For example, it
might include Name and Arguments that are substitution codes for
the properties with those names on this property sheet.

Connection provider A configured connection source in whose context the stored
procedure is to be called from the application.

Name The name of your called stored procedure.



25

by specifying the JDBC components with which they interact to access a database.
After you have completed specifying the JDBC components, Sun ONE Studio 5
generates the corresponding JDBC code.

Setting Data Models for Components

The following Swing components have associated data models.:

■ JList
■ JTable
■ JComboBox
■ JButton
■ JToggleButton
■ JRadioButton
■ JCheckbox

You can configure these data models to use data from the database.

The most common component to display database tables is JTable. The model can
be configured in the property sheet of each Swing component (under the model
property).

Selecting Database Columns

Components that can display multiple rows, such as JTable or JList, also have
the selectionModel property.

JList and JComboBox also have a special kind of model. This model consists of
using one column from one RowSet to work with another column from another
RowSet to display data, using a SQL join. See below for details.

Text components which have the document property (such as JTextField,
JTextArea, JPasswordField, JTextPane, and JEditorPane) can set up this
property to use data from the database.

▼ To Configure the Data Model for JTable

1. For the model property in the JTable’s property sheet, open the custom property
editor by clicking on the value of the property and then clicking the ellipsis (…)
button that appears.

2. Choose the TableEditor mode.

3. In the RowSet field, choose the RowSet to be displayed in the table.

4. Use Fetch columns to load column names into the list.



26 Using Java DataBase Connectivity • June 2003

5. Use the Add, Remove, Edit, Move Up, and Move Down buttons to set the names
and order of the columns in the table.

6. Click OK to preserve the changes and close the custom property editor.

▼ To Configure the Selection Model for JTable and JList

1. For the selectionModel property in the component’s property sheet, open the
custom property editor by clicking on the value of the property and then clicking
the ellipsis button (…) that appears.

2. In the RowSet field, choose the RowSet to be displayed in the table or list.

3. Click OK to preserve the changes and close the custom property editor.

▼ To Configure the Data Model for JList and JComboBox

1. For the model property in the component’s property sheet, open the custom
property editor (by clicking on the value of the property and then clicking the
ellipsis button (…) that appears).

2. For the Primary RowSet fields, choose the RowSet for the data model to retrieve
rows from, and then select one column from the Column drop-down list.

3. If you want, in the Secondary RowSet field, choose the RowSet to display data
from (according to a SQL join). Corresponding columns from the primary and
secondary RowSet must have the same data type.

4. If the Join check box is checked, a corresponding component displays the result of
a database join. If it is unchecked, a corresponding component is used as a code
map to set values in the primary rowset.

5. Choose a Data column (join column) and Display column (visible data). Click OK
to preserve the changes and close the custom property editor.

▼ To Configure the Data Model for JCheckbox,
JRadioButton, and JToggleButton

1. For the model property in the component’s property sheet, open the custom
property editor (by clicking on the value of the property and then clicking the
ellipsis (…) button that appears).

2. Choose the RowSet from which the data is to be fetched.

3. Choose a column; data from this column will be used to decide if the component
should be selected.

4. Enter the database value corresponding to a selected component into the Select
field and the value of an unselected component into the Unselect field.



27

5. Click OK to preserve the changes and close the custom property editor.

▼ To Configure the Document Model for Text Components

1. For the document property in the component’s property sheet, open the custom
property editor by clicking on the value of the property and then clicking the
ellipsis button (…) that appears.

2. Choose the RowSet from which the data is to be fetched.

3. Choose a column in which to display the text component.

4. Click OK to preserve the changes and close the custom property editor.

Creating a Visual Form

After you have used the Property Editor to customize Swing components in your
application, Sun ONE Studio 5 enables you to create a visual form associated with
the Swing components that interacts with the database.

▼ To Create a Visual Form With Swing Components That
Interact With a Database

1. Create a Swing component form using a template provided in the Sun ONE
Studio 5 IDE.

2. Add any needed Connection Source (or Pooled Connection Source),
RowSet, or Stored Procedure nonvisual components to your form from the
Component Palettes.

3. Using the corresponding Property Editor, customize these components for the
database entities they represent.

4. Add any visual components you need, including the Data Navigator.

5. Use the corresponding Property Editor to customize the visual components
appropriately, referencing the RowSet components you need.

As you specify the Swing components to use with your JDBC application, Sun ONE
Studio 5 automatically creates the correct Swing classes to use in your application.

6. Use the Properties Editor for the specified form to indicate exceptions that should
be caught during runtime and run the form.



28 Using Java DataBase Connectivity • June 2003

Using the Component Inspector With JDBC Components

You can use the Sun ONE Studio 5 Component Inspector to modify properties for
components you use in your JDBC application. The following components can be
found under Non-visual Components in the Component Inspector:

■ NB Cached RowSet
■ NB JDBC RowSet
■ NB Web RowSet
■ Connection Source
■ Pooled Connection Source
■ Stored Procedure

The Data Navigator component and other Swing components are shown
according to their position in the container hierarchy.

Using the JDBC Form Wizard
The JDBC Form Wizard guides you through the creation of a form that can interact
with database tables. It provides a substitute for the explicit editing of properties
that you would otherwise perform if you used the approach outlined in “Using
JDBC Components” on page 18. When you finish running the wizard, you will have
a generated application, a file name for the application, and a package.

The following sections illustrate the JDBC Form Wizard, using the sample PointBase
Server Database that comes included with the Sun ONE Studio 5 IDE.

▼ To Open the JDBC Wizard
● Select Tools → JDBC Form Wizard



29

FIGURE 1 JDBC Form Wizard, Opening

Establishing a Connection
When you use the JDBC Form Wizard or when you use the JDBC tab to create a
JDBC client application, one of the first tasks you must perform is to establish a
connection with the database management system that you want to use.

Typically, the JDBC Form Wizard or Sun ONE Studio 5 connection generates the
code that you can use in your JDBC application when you use the Visual Form
Editor or the JDBC Form Wizard to create a form. The application uses the form to
populate information that it obtains from a database management system.



30 Using Java DataBase Connectivity • June 2003

FIGURE 2 JDBC Form Wizard, Database Connection

The second panel of the JDBC Form Wizard lets you establish a connection with a
database. You can specify the use of a pooled connection for a DataSource in this
panel.

When you need a new connection, you must supply:

■ The name of your database. For example, PointBase Network Server.

■ The JDBC driver name for the database. For example,
com.pointbase.jdbc.jdbcUniversalDriver.

■ The Database URL where the database is located. For example,
jdbc.pointbase://localhost:9092/sample.

■ User Name

■ Password

■ Select the Use Pooled Connection Source check box to specify an optional pooled
connection.

■ Optionally select the Advanced tab to specify a schema to get tables.

Sun ONE Studio 5 provides these parameters to the JDBC application code that it
generates.



31

You can select an existing connection by clicking the Use Existing Connection radio
button, and selecting the connection from the drop-down list.

When you select the Next button, Sun ONE Studio 5 calls a method that creates a
database connection based on parameters you enter. You use this connection to the
database in the same way that you use the wizard to write JDBC application code.

Selecting Database Tables or Views

The third panel of the JDBC Form Wizard lets you:

■ Select a table or view in the database to which you are connected.

■ Specify that you want only read access to a specific table for your generated JDBC
application. This means that the application cannot alter data in the database.

■ Add a rowInserted event handler to a table. This event handler handles the
listening for events associated with the application’s insertion of rows into the
tables you select.

■ Set the Transaction Isolation level for a table. See “Transaction Isolation Levels”
on page 32.

■ Provide a SQL command to run against the tables you specify.

The JDBC Form Wizard lets you execute SQL statements against tables you specify
in the Wizard. You use the data from the SQL output to populate visual forms. You
can specify SQL statements which, when applied to a specific form, generate the
appropriate SQL code. In FIGURE 3, Sun ONE Studio 5 provides a default SQL
command to use with the table you have selected.



32 Using Java DataBase Connectivity • June 2003

FIGURE 3 JDBC Form Wizard, Select a Table

Transaction Isolation Levels

To avoid conflicts during a transaction, a database management system uses locks.
Locks are operative until the application commits the transaction or rolls it back
from the database.

Locks are set according to a transaction isolation level. Locks apply to the entire
ResultSet that is returned to the application or committed from the application to
the database.

Each database management system provides its own default transaction isolation
level. Sun ONE Studio 5 lets you choose between the transaction isolation levels
within the second panel of the JDBC Form Wizard.



33

Note – The driver and the data base management system must support the
transaction isolation level you use.

Selecting Columns to Display
The fourth panel of the JDBC Form Wizard lets you select columns from the
database tables to include in the form that is displayed. In this panel, you can
specify:

■ Columns you want displayed in the application you generate
■ The order of the columns you want displayed
■ Column parameters:

■ Column title
■ Column editability
■ Default column value
■ A Swing component to display the table in the application

TABLE 7 Transaction Isolation Levels

Property Definition

TRANSACTION_READ_COMMITTED Prohibits a transaction from reading a row that has
uncommitted changes in it.

SERIALIZABLE Includes the prohibitions in
TRANSACTION_REPEATABLE_READ. It prohibits the
situation where one transaction reads all rows that
satisfy a WHERE condition, a second transaction
inserts a row that satisfies that WHERE condition, and
the first transaction rereads for the same condition,
retrieving the additional “phantom” row in the
second read.

TRANSACTION_NONE Transactions are not supported.

TRANSACTION_REPEATABLE_READ Prohibits a transaction from reading a row with
uncommitted changes in it. It also prohibits the
situation where one transaction reads a row, a
second transaction alters the row, and the first
transaction rereads the row, getting different values
the second time (that is, a non-repeatable read).

TRANSACTION_READ_UNCOMMITTED A row changed by one transaction can be read by
another transaction before changes in that row are
committed to the database. If changes are
subsequently rolled back, the second transaction
retrieves an invalid row.



34 Using Java DataBase Connectivity • June 2003

In the example provided, JTable (the most common Swing form) is used. The
JTable form displays more than one column of data in the application.

Other Swing component choices include:

■ Jlist: displays a column in a list
■ JComboBox: displays one column in a combo box
■ JTextField: displays one or more columns in a text field

In FIGURE 4, the first Column is selected. It can be removed or moved in position.

FIGURE 4 JDBC Form Wizard, Select Columns

If you choose JList or JComboBox, only one column can be displayed, and you can
choose a column to display from the Name property:

1. Select a value in the Name column.

2. Select a column name from the built-in combo box.

▼ To Edit Column Titles

1. Click on the Title field you want to edit. An edit window appears with two tabs.

2. Select the String Value tab to enter the new name as a simple string value.



35

3. Select Resource Bundle to enter the name using a resource bundle. Enter the name
of the bundle into Bundle Field, and select any related keys from the Keys combo
box.

4. Select OK to close the edit window.

Selecting a Secondary RowSet

This panel displays a list of all available tables according to the database connection
created on the Connection panel and is enabled only if a view supporting two
RowSets (JList of JCheckbox) is selected.

You can use this panel to populate the secondary RowSet of the generated
application.

▼ To Select a Secondary RowSet

1. Check Use Secondary Rowset.

If you check this rowset, the secondary rowset is used in the generated application.

2. Select either the Tables or Views radio button.

3. Select a type of rowset from the RowSet type combo box.

4. Select a table or view from the list.

5. Check Read-only if you want the corresponding rowset to be read-only.

6. Check Add rowInserted event handler to add a rowInserted event handler to the
source code of the generated application.

The handler is called when a new row is inserted and enables the creation of default
column values dynamically.

7. Choose a transaction isolation level for the rowset using one of the values in the
Transaction isolation combo box.

The default transaction level is READ_COMMITTED.

8. Use the SQL_command text field to prepare SQL to populate the rowset.

By default, Sun ONE Studio 5 generates the text select * from table-name.

9. Select a data column to use with a database join.

Selecting this column will display a different field other than the primary column
retrieved; however, it must be of the same data type as the primary column.



36 Using Java DataBase Connectivity • June 2003

FIGURE 5 JDBC Form Wizard, Select Secondary RowSet

Previewing and Generating an Application
The last panel shows a preview of a generated application. Use this panel to
complete your generated application. In addition, you can select a package and a file
name to create a completed application.

Provide the name of the package under Package and the target file under Target.

You can view the component layout and the layout from the view of the Data
Navigator. What you view depends on the Swing form you have chosen to contain
the data that is manipulated in your application.



37

FIGURE 6 JDBC Form Wizard, Finish the Wizard

Running Your JDBC Application
You can compile, run, and debug JDBC applications as if they were any other form.
If you need special JDBC drivers, ensure they are in the Sun ONE Studio 5
CLASSPATH, so they will, by default, be available for external compiling, executing,
and debugging of JDBC-based forms.

You can run your application external to the IDE by adding paths to these packages
into your CLASSPATH:

■ modules/ext/sql.jar
■ modules/ext/rowset.jar
■ lib/ext/jdbc20x.zip
■ A corresponding JDBC driver. JDBC drivers are typically stored in lib/ext.

If a WebRowSet is used in your JDBC application, two more JAR files are required:
■ lib/ext/parser.jar
■ lib/ext/xerces.jar



38 Using Java DataBase Connectivity • June 2003



39

Index

C
CLASSPATH, 37
Component Inspector, using, 28
Connection source, 19, 28

database URL, 19
JDBC driver name, 19
user name, 19

D
Data models, 24

setting for components, 25
Data Navigator, 19, 23, 28
Database Explorer, using with JDBC, 17

E
establishing connections, 29
establishing new connections

Advanced tab, 30
database name, 30
database URL, 30
driver name, 30
password, 30
Pooled Connection Source, 30
User Name, 30

example applications
where to download, 13

J
JAR files, 37
Java Database Connectivity, 15
Javadoc, using in the IDE, 13
JDBC

JButton, 24
JCheckbox, 24
JComboBox, 24, 34
JList, 24
Jlist, 34
JRadioButton, 24
JTable, 24
JTextField, 34
JToggleButton, 24
programming, 15
reference materials, 16
Selecting Database Columns, 25
visual and non-visual components, 24

JDBC Form Wizard
previewing and generating an application, 36
selecting database tables, 31

JDBC tab in component palette, 19
JDBC visual form, creating, 27

N
NBCachedRowSet, 19, 28

as a type of RowSet, 20
NBJDBCRowSet, 19, 28

as a type of RowSet, 20



40 Using Java DataBase Connectivity • June 2003

NBWebRowSet, 19, 28
as a type of RowSet, 20

Non-visual components, 18

P
Password, 19
Pooled Connection Source, 19, 28
Previewing and generating an application, 36
Properties Editor, 23

R
RowSet object, 20
RowSet, Other Properties and Event tabs, 21
Running Your JDBC Application, 37

S
Selecting a secondary rowset, 35
Selecting columns to display, 33
Selecting database tables, 31
Stored Procedure, 19, 28
Stored procedure, 24

T
Transaction isolation levels, 32

V
Visual Components, 18


	Using Java™ DataBase Connectivity
	Contents
	Figures
	Tables
	Before You Begin
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation

	Sun Welcomes Your Comments

	Using Java DataBase Connectivity
	Programming JDBC
	General Programming Steps
	JDBC Reference Materials
	Learning JDBC Programming
	Technical Articles
	Getting Started With JDBC
	JDBC Basics


	Using the Database Explorer
	Using JDBC Components
	The JDBC Tab
	Connection Source
	Pooled Connection Source
	Understanding RowSets
	Other Properties, Event, and Code Generation Tabs for a RowSet
	Data Navigator
	Stored Procedures

	Programming With JDBC Components
	Setting Data Models for Components
	Creating a Visual Form
	Using the Component Inspector With JDBC Components


	Using the JDBC Form Wizard
	Establishing a Connection
	Selecting Database Tables or Views

	Selecting Columns to Display
	Selecting a Secondary RowSet
	Previewing and Generating an Application

	Running Your JDBC Application

	Index

