
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Building Enterprise JavaBeans™
Components

Sun™ ONE Studio 5 Programming Series

Part No. 817–2330–10
June 2003, Revision A

Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent l’utilisation, la copie, la distribution et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin 17

Before You Read This Book 18

How This Book Is Organized 19

Typographic Conventions 20

Related Documentation 20

Contacting Sun Technical Support 23

Sun Welcomes Your Comments 23

1. Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 25

The J2EE Architecture 26

The Roles of EJB Components 28

The Roles of Application Builders 29

Inside an EJB Application 30

The Elements of an Enterprise Bean 31

Bean Methods 32

Types of Interfaces 34

The Bean Class 36

EJB QL 37

The Deployment Descriptor 37

The Work Flow of an EJB Application at Runtime 37
3

An Enterprise Bean’s Development Life Cycle 39

The IDE’s Support for Enterprise Beans 40

Developing Enterprise Beans in the IDE 40

Creating Sets of Related CMP Entity Beans 41

Providing Transactions 41

Providing Persistence 42

Providing Security 42

Creating Application Clients 42

Providing for Deployment 43

Further Reading 43

2. Design and Programming Issues 45

Deciding Which Type of Bean You Need 45

Understanding Session Beans 46

Deciding When to Use a Stateless Session Bean 47

Deciding When to Use a Stateful Session Bean 48

Selecting a Transaction Mode 49

Understanding the Life Cycle of a Session Bean 50

Understanding Entity Beans 53

Taking Advantage of the EJB Container’s Services 54

Understanding the Life Cycle of an Entity Bean 55

Understanding Sets of Related CMP Entity Beans and Container-Managed
Relationships 60

Understanding Message-Driven Beans 61

Using Message Sources (Destinations) 61

Deciding When to Use a Message-Driven Bean 62

Deciding When Another Bean Type Is Better 62

Understanding the Life Cycle of a Message-Driven Bean 63

Using Enterprise Beans in Applications 65
4 Building Enterprise JavaBeans Components • June 2003

Using Exceptions to Handle Problems 66

Working With Deployment Descriptors 66

Enforcing Security Policies 67

Declaring Security in Enterprise Beans 68

Programming Security Into Enterprise Beans 68

Understanding the Application Servers and Databases 69

Further Reading 69

3. Developing Session Beans 71

Using the EJB Builder With Session Beans 72

Selecting a Session Bean Type 73

Stateless or Stateful Session Beans 73

Container-Managed or Bean-Managed Transactions 75

Defining a Session Bean 76

Creating a Package 76

Starting the EJB Builder Wizard 76

Generating the Default Session Bean 77

Looking at a Session Bean’s Classes 79

Expanding the Nodes 80

Reviewing the Generated Classes 80

Default Create Method 81

Life-Cycle Methods 81

Completing Your Session Bean 83

Using Recommended Approaches When Working With Enterprise Beans 83

Completing Create Methods 84

Completing a Stateless Bean’s Create Method 84

Completing a Stateful Bean’s Create Methods 84

Adding a Create Method to a Stateful Bean 85

Completing Life-Cycle Methods 85
Contents 5

Completing the ejbPassivate Method 86

Completing the ejbActivate Method 86

Adding Business Methods 87

Coding Transactions 87

Understanding Transaction Spans 88

Specifying Transaction Boundaries and Rollbacks 88

After Creating Your Session Bean 91

Further Reading 91

4. Developing CMP Entity Beans 93

Using the EJB Builder With CMP Entity Beans 93

Comparing CMP and BMP Entity Beans 95

Creating Sets of Related CMP Entity Beans 96

Defining a CMP Entity Bean 96

Creating a Package 97

Having a Data Source Ready 97

Starting the EJB Builder Wizard 98

Generating a CMP Entity Bean’s Infrastructure 99

Specifying Persistent Fields From a Database Table 100

Creating Your Bean’s Persistent Fields From Scratch 106

Looking at a CMP Entity Bean’s Classes 108

Expanding the Nodes 109

Reviewing the Generated Classes 112

Default Finder Method 112

Persistent Fields and Accessor Methods 112

Primary-Key Class and Required Methods 114

A CMP Entity Bean’s Life-Cycle Methods 115

Completing Your CMP Entity Bean 116
6 Building Enterprise JavaBeans Components • June 2003

Using Recommended Approaches When Working With Enterprise
Beans 117

Defining Create Methods 117

Adding or Replacing a Primary Key 119

Creating a New Primary Key 119

Handling Foreign Keys 121

Defining Business Methods 121

Adding Finder Methods 122

Defining Home Methods 123

Defining Select Methods 124

Defining Private Methods 125

Defining Additional Fields 125

After Creating Your CMP Entity Bean 126

Further Reading 126

5. Developing Sets of Related CMP Entity Beans 127

Using the EJB Builder With Sets of Related CMP Entity Beans 128

Creating All Related CMP Entity Beans at Once 128

Creating a Set of Related CMP Entity Beans One at a Time 129

Defining a Set of Related CMP Entity Beans 129

Creating a Package 130

Preparing to Use a Database or Schema 130

Starting the EJB Builder Wizard 131

Generating the Bean Set’s Infrastructure 132

Using a Database Connection 133

Using a Database Schema Object 138

Looking at the Components of a CMP Entity Bean Set 139

Expanding the EJB Module’s Node 140

Reviewing the Generated Classes 141
Contents 7

Completing Your Set of Related CMP Entity Beans 141

Using Recommended Approaches When Working With Enterprise
Beans 142

Adding a Bean to the Set 142

After Creating Your Set of Related CMP Beans 145

6. Developing BMP Entity Beans 147

Deciding on an Approach 147

Building a BMP Entity Bean 148

Creating a Package 148

Starting the EJB Builder Wizard 149

Generating a BMP Entity Bean’s Infrastructure 149

Looking at a BMP Entity Bean’s Classes 150

Expanding the Nodes 150

Reviewing the Generated Classes 151

findByPrimaryKey Method 151

A BMP Entity Bean’s Life-Cycle Methods 151

Completing Your BMP Entity Bean 153

Using Recommended Approaches When Working With Enterprise
Beans 154

Adding Persistence Logic 154

Adding a Primary-Key Class 154

Adding Methods 155

Defining Create Methods 155

Adding Finder Methods 156

Defining Business and Home Methods 156

After Creating Your BMP Entity Bean 157

Further Reading 157

7. Developing Message-Driven Beans 159
8 Building Enterprise JavaBeans Components • June 2003

Using the EJB Builder With Message-Driven Beans 160

Deciding on Transaction Management 161

Defining a Message-Driven Bean 161

Creating a Package 162

Starting the EJB Builder Wizard 162

Generating the Basic Message-Driven Bean 162

Looking at a Message-Driven Bean’s Components 163

Expanding the Nodes 163

Reviewing the Generated Class 164

Completing Your Message-Driven Bean 165

Using Recommended Approaches When Working With Enterprise
Beans 165

Completing the onMessage Method 166

Completing the setMessageDrivenContext Method 166

After Creating Your Message-Driven Bean 167

Specifying a Message-Driven Destination 168

Specifying a Message Selector 168

Specifying Resources for Client Message-Driven Beans 169

Specifying Resource Factories 169

Specifying Resources 170

Avoiding Pitfalls of Message-Driven Beans 171

Further Reading 171

8. Preparing Enterprise Beans for Deployment 173

Understanding Deployment Information 174

Looking at a Generated Deployment Descriptor 175

Changing a Deployment Descriptor 175

Editing an EJB Module’s Deployment Descriptor Directly 175

Reverting to the EJB Module’s Last Generated Descriptor 176
Contents 9

Using Properties to Edit a Deployment Descriptor 176

Specifying Bean Properties 176

Using the Properties Tab 177

Properties of Entity Beans 178

Properties of Session Beans 178

Properties of Message-Driven Beans 178

Using the References Tab 179

Specifying EJB Local References 180

Specifying EJB References 181

Specifying Environment Entries 182

Specifying Resource Environment References 182

Specifying Resource References 183

Specifying Security-Role References 185

Using the Sun ONE AS Tab 185

Setting Server Properties for Individual Session and Entity Beans 186

Setting Sun ONE AS Properties for Message-Driven Beans 189

Creating and Configuring an EJB Module 190

Deciding What Should Go Into an EJB Module 190

Considering When to Create an EJB Module 191

Putting Enterprise Beans in an EJB Module 191

Setting Database-related Properties for CMP Entity Beans 192

Understanding the Application Server’s Generated SQL 194

Adding Transaction Attributes to an EJB Module 194

Changing EJB References Within the EJB Module or Application 196

Overriding a Reference at the Module Level 196

Overriding a Reference at the Application Level 198

Adding Extra Files to an EJB Module 198

Creating an EJB JAR 199
10 Building Enterprise JavaBeans Components • June 2003

Creating a J2EE Application 199

9. Testing Enterprise Beans 201

Fulfilling the Prerequisites for Testing 201

Preparing to Deploy to the Application Server 202

Preparing to Test Beans Against the PointBase Database 203

Starting PointBase and a Web Browser 204

Generating Test Objects 205

Deploying the Test Application to a Server 207

Deploying and Executing the Test Application in One Step 208

Executing the Test Application 208

Using the Test Client to Test Your Beans 209

Understanding the Test Client Page 209

Testing the Sample Bean’s Home Interface 211

Testing the Sample Bean’s Business Method 212

Creating New Testing Classes 213

Making Changes After Deployment 213

Preparing to Test: Some Variations 214

If You Want to Test a CMP or BMP Bean 214

If You Want to Test a Bean With EJB References 216

Adding Remote Interfaces to a Bean 216

Using the Customizer to Add Remote Interfaces 217

Using Property Sheets to Add Remote Interfaces 219

A. Working With Enterprise Beans 221

Using Recommended Approaches When Editing Beans 221

Working Through the Logical Node 221

Using the Customizer or Property Sheet 222

Using the Source Editor to Edit Beans 223
Contents 11

Understanding the IDE’s Error Information 225

Compiling and Validating Enterprise Beans 225

Saving Your Changes 227

Renaming an Enterprise Bean 227

Modifying a Bean Based on Another Bean 228

Copying and Pasting an Enterprise Bean 228

Exchanging Bean Classes or Interfaces 229

Editing a Bean’s Methods 229

Viewing a Method 230

Changing an Entity Bean’s Fields 230

Renaming a Field 230

Changing the Type of a Field 231

Deleting an Enterprise Bean 231

B. Migrating and Upgrading EJB 1.1 Enterprise Beans 233

Understanding Updates in Recent Releases 233

Making Specific Changes 234

Converting a CMP 1.x Entity Bean 234

Avoiding the Use of New Features in an Old Bean 235

Don’t Add Local Interfaces to a CMP 1.x Entity Bean 235

Don’t Add Local EJB References, Either 235

Index 237
12 Building Enterprise JavaBeans Components • June 2003

Figures

FIGURE 1-1 Model J2EE Application as Supported by the Sun ONE Studio 5 IDE 27

FIGURE 1-2 Typical Basic Configuration for an EJB Application 28

FIGURE 1-3 Example of an Application With All Three Kinds of Enterprise Beans 31

FIGURE 1-4 Work Flow Inside the Application at Runtime 38

FIGURE 1-5 Development, Assembly, and Deployment of an Enterprise Bean 39

FIGURE 1-6 Generated Elements of an Enterprise Bean Shown in the Explorer Window 41

FIGURE 2-1 Basic Choices About Enterprise Beans in the Sun ONE Studio 5 IDE 46

FIGURE 3-1 Possible Wizard Selections for a Session Bean 77

FIGURE 3-2 Default Classes of a Typical Session Bean With Remote Interfaces 79

FIGURE 3-3 Explorer’s Detailed View of a Typical Session Bean With Remote Interfaces 80

FIGURE 4-1 Selections in the EJB Builder Wizard for CMP Entity Beans 99

FIGURE 4-2 Default Classes of a Typical CMP Entity Bean 108

FIGURE 4-3 Explorer’s Detailed View of a Typical CMP Entity Bean With Local Interfaces 110

FIGURE 4-4 Explorer’s Detailed View of a Typical CMP Entity Bean With a Composite Primary Key 111

FIGURE 5-1 Selections in the EJB Builder Wizard for a CMP Entity Bean Set 132

FIGURE 5-2 Default Classes of a Typical Set of Related CMP Entity Beans 140

FIGURE 5-3 Expanded Nodes of an EJB Module Containing Related CMP Entity Beans 141

FIGURE 6-1 Explorer’s Detailed View of a BMP Entity Bean 150

FIGURE 7-1 Default Class and Methods of a Typical Message-Driven Bean 163

FIGURE 7-2 Explorer’s Detailed View of a Typical Message-Driven Bean 164
13

FIGURE 8-1 References Tab of the Properties Dialog Box for a CMP Entity Bean 179

FIGURE 8-2 Standard Tab of the Resource Reference Property Editor for an Entity Bean 187

FIGURE 8-3 Sun ONE App Server Tab of the Resource Reference Property Editor for an Entity Bean 188

FIGURE 8-4 Sun ONE AS Tab’s Properties for an EJB Module Containing CMP Beans 193

FIGURE 8-5 How to Specify a CMP Bean’s Data-Source Properties to Sun ONE Application Server 7 193

FIGURE 8-6 EJB Local References Property Editor, Showing an Example of Override Selections for an
Enterprise Bean’s Local References 197

FIGURE 9-1 Example of Sun ONE Application Server 7 Nodes as Displayed in IDE Explorer’s Runtime
Tab 202

FIGURE 9-2 Example of Test Objects Generated for Enterprise Beans 206

FIGURE 9-3 Client JSP Page Generated to Test Example Session Bean Converter 210

FIGURE 9-4 How to Specify a Database Connection for a CMP Entity Bean 215

FIGURE 9-5 Customizer for Adding an Interface Class to a Bean 218
14 Building Enterprise JavaBeans Components • June 2003

Tables

TABLE 3-1 Deciding Between Stateless and Stateful Session Beans 74

TABLE 3-2 Deciding Between Container-Managed and Bean-Managed Transactions 75

TABLE 3-3 Purpose of Life-Cycle Methods In a Session Bean Class 82

TABLE 3-4 Purpose of Session-Synchronization Methods in a Session Bean Class 83

TABLE 3-5 Relationship Between Transactions and Methods 88

TABLE 4-1 Deciding Between CMP and BMP Entity Beans 95

TABLE 4-2 Purpose of Default Life-Cycle Methods in a CMP Entity Bean
Class 115

TABLE 6-1 Purpose of Default Life-Cycle Methods in a BMP Entity Bean
Class 152

TABLE 7-1 Deciding Between Container-Managed and Bean-Managed Transactions 161

TABLE 7-2 Purpose of ejbCreate and onMessage Methods in a Message-Driven Bean’s Bean
Class 164

TABLE 7-3 Purpose of Default Life-Cycle Methods in a Message-Driven Bean’s Bean Class 165

TABLE 7-4 Example of a setMessageDrivenContext Method 167
15

16 Building Enterprise JavaBeans Components • June 2003

Before You Begin

This book describes how to build Enterprise JavaBeans™ components (enterprise
beans) using the Sun™ ONE Studio 5, Standard Edition, integrated development
environment (IDE).

Enterprise beans come in several varieties. A session bean can be stateful or
stateless, and can manage its own transactions or have them managed by the EJB™

container. An entity bean can manage its own persistence or let the container
manage its relationship with the underlying database. You can use the Sun ONE
Studio 5 IDE to build those enterprise beans as well as message-driven beans and
sets of entity beans whose relationships are managed by the EJB container. Flexible
support is available to the developer in building all of these types of enterprise
beans. The IDE streamlines the task of coding and helps ensure that the results are
consistent with the Java Blueprints for the Enterprise (the J2EE™ Blueprints).

Another book in this series, Building J2EE Applications, suggests designs for
industrial-strength applications that use enterprise beans and other J2EE
components. It offers various application scenarios, and explains how to assemble
finished enterprise beans and other components into modules, how to deploy them
in applications, and how to run those applications. This book, Building Enterprise
JavaBeans Components, concentrates on the design and creation of enterprise beans,
and on basic issues of assembly, configuration, deployment, and testing. If you are
responsible for providing enterprise beans, assembling them into applications, and
deploying them on application servers, you should refer to both books.

You can use the Sun ONE Studio 5 IDE to create the examples in this book on the
systems listed in the Release Notes. Find the Release Notes on the following website:

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. You should have no trouble
translating the slight differences to your platform. Although almost all procedures
use the IDE’s user interface, you might occasionally be instructed to enter a
17

http://forte.sun.com/ffj/documentation/index.html

command at the command line. Here too, there are slight differences from one
platform to another. For example, a Microsoft Windows command might look like
this:

To translate for UNIX® or Linux environments, simply change the prompt and use
forward slashes:

Before You Read This Book
If you want to use the Sun ONE Studio 5 IDE to build enterprise beans, you will
benefit from reading this document. Before you start, you should be familiar with
the following subjects:

■ The Java programming language
■ The EJB component model
■ The JDBC™ API and JDBC-enabled driver syntax
■ Relational database concepts (such as tables, columns, and keys)
■ How to use the chosen database
■ J2EE application assembly and deployment concepts
■ The Java Message Service (JMS) API
■ XML syntax

To develop enterprise beans, you need to know J2EE concepts and generally to
understand enterprise beans. When you need to know more than this book covers,
refer to the following list of resources:

■ Enterprise JavaBeans Specification, version 2.0
http://java.sun.com/products/ejb/docs.html

■ Java Blueprints for the Enterprise
http://java.sun.com/blueprints/enterprise/

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/tutorial

■ Java Message Service Tutorial
http://java.sun.com/products/jms/tutorial/

c:\>cd MyWorkDir\MyPackage

% cd MyWorkDir/MyPackage
18 Building Enterprise JavaBeans Components • June 2003

http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/products/jms/tutorial/index.html

■ Java Transaction API (JTA) Specification
http://java.sun.com/products/jta

At some stages of enterprise bean development, you also need to know about
specific application servers. Refer to a server’s documentation for details.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.

How This Book Is Organized
Chapter 1 introduces J2EE and Enterprise JavaBeans concepts, and gives an
overview of the Sun ONE Studio 5 IDE’s support for creating enterprise beans and
assembling them into EJB modules.

Chapter 2 discusses design and programming issues for those who use the IDE to
build enterprise beans, assemble EJB modules, and create J2EE applications.

Chapter 3 tells how to use the IDE to create stateless or stateful session beans that
manage their own transactions or delegate their transaction management to the EJB
container.

Chapter 4 tells how to use the IDE to create single entity beans with container-
managed persistence (CMP entity beans).

Chapter 5 tells how to use the IDE to create sets of CMP entity beans with their
relationships automatically included.

Chapter 6 tells how to use the IDE to create entity beans with bean-managed
persistence (BMP entity beans).

Chapter 7 tells how to use the IDE to create message-driven beans.

Chapter 8 shows how to configure EJB components for deployment by setting
properties on the bean, the EJB module, and the J2EE application.

Chapter 9 explains how to use the IDE’s testing feature to test enterprise beans on
Sun ONE Application Server 7.

Appendix A contains a reference for working with enterprise beans in the IDE.
Before You Begin 19

http://java.sun.com/products/jta

Appendix B provides tips on updating and converting EJB 1.1 enterprise beans so
that they can be used successfully in EJB 2.0 applications.

Typographic Conventions

Related Documentation
Sun ONE Studio 5 documentation includes books delivered in Acrobat Reader (PDF)
format, online help, release notes, readme files for example applications, and
Javadoc™ documentation.

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM

web site and from the documentation page of the Sun ONE Studio Developer
Resources portal (http://forte.sun.com/ffj/documentation/index.html).

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
20 Building Enterprise JavaBeans Components • June 2003

http://forte.sun.com/ffj/documentation/

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the product on your local
system or network.

■ Release Notes (HTML format)

Available for each Sun ONE Studio 5 edition. Describe last-minute release
changes and provide technical notes.

■ Sun ONE Studio 5, Standard Edition Release Notes - part no. 817-2337-10

■ Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 5 integrated development
environment (IDE) on each supported platform and include other pertinent
information, such as system requirements, upgrade instructions, application
server information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Sun ONE Studio 5, Standard Edition Getting Started Guide - part no. 817-2318-10
■ Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 817-1145-10

■ The Sun ONE Studio 5 Programming series (PDF format)

This series provides in-depth information on how to use various Sun ONE Studio
5 features to develop well-formed J2EE applications.

■ Building Web Components - part no. 817-2334-10

Describes how to build a web application as a J2EE web module using JSP
pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications - part no. 817-2327-10

Describes how to assemble EJB modules and web modules into a J2EE
application, and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 817-2330-10 (this book)

■ Building Web Services - part no. 817-2324-10

Describes how to use the Sun ONE Studio 5 IDE to build web services, to make
web services available to others through a UDDI registry, and to generate web
service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 817-2332-10

Describes how to use the JDBC productivity enhancement tools of the Sun
ONE Studio 5 IDE, including how to use them to create a JDBC application.

■ Sun ONE Studio 5 tutorials (PDF format)

These tutorials demonstrate how to use the major features of Sun ONE Studio 5,
Standard Edition.

■ Sun ONE Studio 5 Web Application Tutorial - part no. 817-2320-10

Provides step-by-step instructions for building a simple J2EE web application.
Before You Begin 21

http://docs.sun.com

■ Sun ONE Studio 5 J2EE Application Tutorial - part no. 817-2322-10

Provides step-by-step instructions for building an application using EJB
components and web services technology.

■ Sun ONE Studio 4, Mobile Edition Tutorial - part no. 817-7873-10

Provides step-by-step instructions for building a simple application for a
wireless device, such as a cellular phone or personal digital assistant (PDA).
The application you build is compliant with the Java 2 Platform, Micro Edition
(J2ME™ platform) and conforms to the Mobile Information Device Profile
(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at:
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Online Help
Online help is available in the Sun ONE Studio 5 IDE. You can open help by pressing
the help key (F1 in Microsoft Windows and Linux environments, Help key in the
Solaris environment), or by choosing Help → Contents. Either action displays a list
of help topics and a search facility.

Examples
You can download examples that illustrate a particular Sun ONE Studio 5 feature, as
well as completed tutorial applications, from the Sun ONE Studio Developer
Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Javadoc Documentation
Javadoc documentation is available within the IDE for many Sun ONE Studio 5
modules. Refer to the release notes for instructions on installing this documentation.
22 Building Enterprise JavaBeans Components • June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can email your comments to Sun at:

docfeedback@sun.com

Please include the part number (817–2330–10) of this document in the subject line of
your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Mini-tutorials HTML at
http://forte.sun.com/ffj/documentation/tutorialsa
ndexamples.html

Integrated example
readmes

HTML in the example subdirectories of
s1studio-install-directory/examples

Release notes HTML at http://docs.sun.com
Before You Begin 23

http://docs.sun.com
http://forte.sun.com/ffj/tutorialsandexamples.html
http://docs.sun.com

24 Building Enterprise JavaBeans Components • June 2003

CHAPTER 1

Enterprise JavaBeans Concepts and
the Sun ONE Studio 5 IDE

Enterprise JavaBeans™ components (enterprise beans) are key building blocks in the
the Java™ 2 Platform, Enterprise Edition (J2EE™) architecture. This chapter
introduces:

■ The main ideas behind the J2EE architecture

■ The roles of enterprise beans and other elements of the J2EE model’s EJB™ tier

■ The components and work flow of an EJB application

■ The EJB Builder, which is a collection of wizards and other GUI support in the
Sun™ ONE Studio 5, Standard Edition software (Sun ONE Studio 5 IDE, the
integrated development environment)

If you are already conversant with J2EE and developing enterprise beans, and you
want to know specifically how to use the IDE to create and work with your
enterprise beans and EJB modules, see Chapters 3 through 7 and the appendixes. For
deployment-related information, see Chapter 8. For information on using the IDE’s
testing feature on individual beans, see Chapter 9.

In general, an enterprise bean is useful only when it has been placed with any
related beans in an EJB module, assembled into an application, and deployed on an
application server. The tasks of development, assembly, and deployment can be
distributed among developers or working units according to their expertise. Much of
this document focuses on the work that the EJB developer does on an enterprise
bean or related group of beans before they are assembled into an EJB module and an
application and are deployed on a server. Chapter 8 discusses the configuration of
individual beans and their EJB modules. Another document in this series, Building
J2EE Applications, discusses J2EE application design, assembly, configuration, and
deployment in more detail.

Note – The Sun ONE Studio 5 IDE supports Enterprise JavaBeans Specification,
version 2.0. For the supported versions of the IDE’s underlying platform and
associated software, refer to the Sun ONE Studio 5, Standard Edition Getting Started
Guide.
25

The J2EE Architecture
The Java 2 Platform, Enterprise Edition (J2EE) documents describe a services-based
application architecture within which transactional, scalable, secure, portable Java
components can be deployed and redeployed. Combining tiers of databases, servers,
and client-access mechanisms on the J2EE model, your organization can develop
applications that support your entire enterprise.

A J2EE application architecture typically has the following major features:

■ A client tier. According to the J2EE specification, this tier can contain HTML or
Java applets running in a browser, Extensible Markup Language (XML)
documents transmitted through HTTP, and Java clients running in a client
container.

The Sun ONE Studio 5 IDE supports the execution and deployment of
applications that use Java clients, JSP pages, servlets, and other enterprise beans
as clients.

■ One or more EJB or server tiers. These tiers can contain:

■ Presentation logic. Servlets or JavaServer Pages™ (JSP™ pages) running in web
servers.

■ Application logic. Enterprise JavaBeans components (enterprise beans)
running in application servers.

■ A database tier.

The server tiers of a typical J2EE application can contain any or all of the elements
shown in FIGURE 1-1.
26 Building Enterprise JavaBeans Components • June 2003

FIGURE 1-1 Model J2EE Application as Supported by the Sun ONE Studio 5 IDE

An enterprise bean is a Java component, a set of Java interfaces and classes that
make up a business entity. These interfaces and classes contain methods that
implement business logic on an application server. One type of enterprise bean also
contains fields that can be mapped to database columns. Another type of enterprise
bean can manage interactions between other enterprise beans in the same
application. Enterprise beans can be combined with any of the different types of
components shown in FIGURE 1-1 to create applications.

Although both enterprise beans and JavaBeans™ components are written in the Java
programming language, they are not the same. You can use JavaBeans components
with design tools to customize instances of Java classes, and you can link the
customized objects through events. Enterprise beans, on the other hand, implement
distributed, container-managed transactional services for multiple users.

The design of the EJB tier carries the modularity and portability of Java components
several steps farther. For that reason, your job as an EJB developer is more modular:
You can focus more on the business data of an application than on distributed
computing. When you build an application using JavaBeans components, you must
also build the server framework. However, when you build an application on the
J2EE model using enterprise beans, the server-side infrastructure is already built into
the application server. You don’t need to provide generic services such as support
for transactions, security, or remote access.

Browser

HTML

Applet

Servlet

JSP

Enterprise
Bean

Enterprise
Bean

Web Server and
Servlet Container

Database

Java

Client Enterprise
Bean

Application Server
and EJB Container

The EJB Tier

Client
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 27

The Roles of EJB Components
The most basic configuration for a typical EJB application is shown in FIGURE 1-2: an
application client, an application server, the EJB container, at least one enterprise
bean, and a data store of some kind. In this figure, a database is used.

FIGURE 1-2 Typical Basic Configuration for an EJB Application

The contracts (that is, the interaction and implied agreements) between an enterprise
bean, its EJB container, and the application server lend flexibility and power to the
J2EE application, while simplifying the task of creating enterprise beans.

The EJB container is more a concept than an object. It’s the environment that
surrounds the enterprise beans on the application server to provide life-cycle
management, security, distributed transaction support, and other services.

One or more enterprise beans can be deployed in a single container, which uses the
standard Java Naming and Directory Interface™ (JNDI) API to locate an individual
bean and make it available to a client.

The container intercedes between its beans and their clients. When a client needs
work done by an enterprise bean, the container intercepts the method call. Working
on behalf of many enterprise beans and their clients, the container can manage
services (such as security and transactions) across calls, components, and even other
containers running on other servers. This design feature allows the container to
apply its services flexibly and transparently.

For individual enterprise beans, the container is designed to manage database
persistence and transactions. This ensures a standard approach to state-management
events. It also means that your beans can perform database-access operations
without you, the EJB developer, having to write the SQL code or use the JDBC™ API
directly (unless you need to override the container’s default behaviors).

The container’s services ensure that persistent data in an enterprise bean is saved if
a client terminates or if the server shuts down.

EJB container

Application server

Enterprise
bean Database

Client
28 Building Enterprise JavaBeans Components • June 2003

The application server provides lower-level support such as naming, directory, and
email services.

Enterprise beans are of three main types: session beans, entity beans, and message-
driven beans. These types are discussed in more detail starting in Chapter 2, but to
briefly describe the role of each type:

■ A session bean manages the conversation between a client and the application
server, and can direct complex interactions with entity beans. For example, a
session bean can pass in requests for data to entity beans, package the resulting
data, and pass it back out to a client.

■ An entity bean usually represents an entity, or a table of data, in a database. Many
entity beans can work cooperatively inside a Java virtual machine (JVM™) on an
application server.

■ A message-driven bean forms a functional layer between client and server. This
type of bean receives client message notifications and starts asynchronous
interactions among other enterprise beans that are deployed to the server.

Finished enterprise beans are packaged into an EJB module (which is a logical
construct for an EJB JAR file) for assembly into an application and deployment on a
server. An application server can house one or more J2EE applications, a J2EE
application can house one or more EJB modules, and an EJB module can house one
or more enterprise beans.

The Roles of Application Builders
The J2EE architecture implies a methodology and supports the division of
responsibilities in the application-building process into different roles. In a typical
development organization, some team members have more knowledge of the
business, while others are more adept at systems-level development. If the J2EE
model is applied to an organization where not everyone is responsible for the same
kind of work, the business or domain experts might take the role of bean provider or
EJB developer, while the more systems-minded developers might do the assembly
and deployment work.

At least three roles are common in development environments:

■ EJB development. The EJB developers (who are application developers and,
often, domain experts) builds enterprise beans without having to focus on the
surrounding framework. For testing purposes and for convenience, these people
might also package finished beans into EJB modules.
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 29

■ EJB module assembly. The assembler or assemblers can make final groupings of
finished enterprise beans into EJB modules, and combine those and other J2EE
building blocks into applications. The modularity of J2EE design enables
container-neutral decisions at this stage.

■ Deployment. One or more deployers can deploy J2EE applications in a specific
environment, making container-specific and server-specific decisions.

The IDE, with its built-in support for enterprise beans, is designed to serve the J2EE
approach to building applications. When you use this IDE to build your enterprise
beans, you can concentrate on writing the business logic your application needs. In
the EJB development role, you need to make only minimal gestures toward the
assembly and deployment steps.

However, when necessary, one person can assume all three roles. The IDE provides
seamless support for all stages of enterprise bean development, assembly, and
deployment.

Inside an EJB Application
In the typical EJB application shown in FIGURE 1-3, many client programs can get
access simultaneously to the heart of the application, which resides on the
application server and is managed by the EJB container. Within the EJB tier,
instances of two different session beans (one prompted by a message-driven bean)
manage interactions with instances of four different entity beans to let clients look
up calendar appointments and schedule meeting spaces. Data from the database is
read into instances of the entity beans, and clients’ updates to the entity-bean
instances are posted to the database.
30 Building Enterprise JavaBeans Components • June 2003

FIGURE 1-3 Example of an Application With All Three Kinds of Enterprise Beans

The Elements of an Enterprise Bean
Every enterprise bean has at least one class.

■ A message-driven bean needs only its bean class, with no interfaces.

■ A session bean typically is composed of three elements: its bean class and two
remote-type interfaces (the home interface and the remote interface). However, a
session bean can have local-type interfaces as well.

■ An entity bean typically has three elements: its bean class and two local-type
interfaces (the local home interface and the local interface). An entity bean can
also have remote-type interfaces, and it might have a primary-key class.

For more information about enterprise bean interfaces, see “Types of Interfaces” on
page 34.

Responsibilities in regard to the elements of an EJB application are as follows:

■ As the EJB developer, you use the IDE to generate the bean class and the
interfaces for each enterprise bean. For an entity bean, you also define a primary-
key class, if needed. You complete the code that the IDE generates, and you
declare deployment information.

Database

EJB Container

Session Beans Entity Beans

CalendarMgr

MtgScheduler

Room

Activity

User

ToDoItem

Application
Clients

Application Server

Message Queue

RequestRoom

Message-Driven Bean

msg
msg

Client

Client

Client

Client
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 31

■ The container in which the bean is deployed implements the bean’s interfaces and
manages interactions between components and the data storage.

■ The client using the bean creates its own stubs to call the bean’s interfaces, which
interact with the bean class to get the application’s work done. Or, the client sends
messages to a destination, and a message-driven bean listens for those messages
and interacts as requested with a session bean.

Bean Methods

A J2EE application gets its work done through methods that the client calls on the
bean. The kinds of methods that an enterprise bean includes are briefly discussed
next (and are discussed in detail in Chapters 3 through 7). All method declarations
are added either automatically by the IDE or explicitly by the developer. To add all
necessary parts of a method declaration, you follow a single, short sequence of
actions in dialog boxes. The IDE generates the corresponding parts of the method
and places them in the appropriate classes.

■ Finder Methods. The client goes through the home interface to find an entity
bean instance by its primary key. The developer can also add other finder
methods.

The IDE automatically generates a findByPrimaryKey method declaration in
the local home interface of every entity bean (and in the bean’s home interface, if
it has one). The IDE also places a corresponding ejbFindByPrimaryKey method
declaration in the bean class of every entity bean that manages its own
persistence (that is, a bean-managed persistent entity bean, or BMP entity bean).
If the developer adds another finder method, the IDE automatically places the
corresponding method declarations in the local home (and home) interface and,
for BMP entity beans, in the bean class.

An entity bean that delegates its persistence to the container is called a container-
managed persistent entity bean, or a CMP entity bean. Finder methods that are
added to CMP entity beans include EJB Query Language (EJB QL) statements,
which the bean’s application server plugin converts automatically to the kind of
SQL code the server needs.

■ Create Methods. The container initializes the enterprise bean instance, using the
create method’s arguments.

The IDE automatically generates a create method declaration in the home
interface of every session bean (and in the bean’s local home interface, if it has
one). The IDE places a corresponding ejbCreate method declaration in the bean
class.

The IDE also generates an ejbCreate method declaration in the bean class of
every message-driven bean.
32 Building Enterprise JavaBeans Components • June 2003

Since an entity bean doesn’t have to contain a create method, the IDE doesn’t
automatically generate a declaration for an entity bean. However, if the developer
adds a create method to an entity bean, the IDE generates the corresponding
create, ejbCreate, and ejbPostCreate method declarations in the
appropriate classes. An entity bean or a session bean that maintains state (a
stateful session bean) can have more than one create method.

■ Business Methods. A client calls business methods on a bean through the bean’s
remote interface (or local interface, as applicable).

The developer explicitly adds business methods to the bean; the IDE doesn’t
generate any default business method declarations. However, when the developer
does specify a business method, the IDE places matching method declarations in
the bean class and in the remote, local, or remote and local interfaces.

■ Home Methods. An entity bean can use a home method for a lightweight
operation that doesn’t require access to any particular instance of the bean. (By
contrast, a business method does require access to a particular instance.) The
developer explicitly adds a home method, and the IDE generates the
corresponding method declaration in the bean class and the bean’s local home or
home interface. An entity bean can have any number of home methods.

■ Select Methods. A CMP entity bean can use a select method. Like a finder
method, a select method can query the database and return a local or remote
interface or a collection. In addition, a select method can query a related entity
bean within the same EJB module and return values from its persistent fields.
Select methods aren’t exposed in remote-type interfaces and can’t be invoked by a
client.

The developer explicitly adds one or more select methods to the bean class. Select
methods include EJB Query Language (EJB QL) statements, which the bean’s
application server plugin converts automatically to the kind of SQL code the
server needs.

■ OnMessage Methods. A client sends a message through a Java Message Service
(JMS) destination to call an onMessage method on a message-driven bean.

The IDE automatically generates the onMessage method declaration in the bean’s
class. The developer completes the method body.

■ Life-cycle Methods. The container calls several methods to manage the life cycle
of an enterprise bean. Depending on the type of bean, the container works
through the methods in slightly different ways. The developer has the option of
specifying parameters for some of these methods.

The IDE automatically generates the appropriate life-cycle method declarations
for each type of bean and places them in the bean class.
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 33

Types of Interfaces

Since session beans are often called by application clients, which live outside the
enterprise beans’ application server, the IDE offers remote-type interfaces (that is, a
remote interface and a home interface) as a default for each session bean. However,
depending on how a particular session bean will be called, the developer can choose
either or both types of interfaces when creating the bean.

Entity beans are normally called by session beans and by other entity beans inside
the same application server. Such entity beans need only local-type interfaces (that
is, a local interface and a local home interface). Local-type interfaces save processing
time because they pass parameters by reference instead of serializing the parameter
values. However, again, depending on the situation, the developer can apply either
or both kinds of interfaces to an entity bean.

Note – Any bean that will be tested using the IDE’s testing feature must have
remote interfaces.

All four of these interface types are discussed next.

The Remote Interface

A client views and gets access to the enterprise bean through the bean’s remote
interface. Signatures for the business methods that the client can call on the bean are
in the remote interface, but the complete code for the business methods is in the
bean class. The container creates a class that implements the remote interface.

The remote interface extends javax.ejb.EJBObject. A client uses this interface to
locate the home interface through a JNDI lookup call, calls a method on the home
interface to retrieve a specific instance of the bean (with the remote interface as the
return type), and then calls business methods on that instance.

When you use the Sun ONE Studio 5 IDE to create an enterprise bean with the
remote-type interfaces (through which the bean can be called from outside the
server), the EJB Builder’s GUI support and validation help ensure that the remote
interface’s methods follow the rules defined in the J2EE documents. Those rules
include the following:

■ The method signatures in the remote interface have corresponding methods in the
bean class.

■ The arguments and return values are valid RMI types.

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the IDE’s Explorer window:
The default label is the name of the enterprise bean.
34 Building Enterprise JavaBeans Components • June 2003

The Home Interface

The enterprise bean’s home interface extends javax.ejb.EJBHome and defines the
create, finder, and home methods that the client can call on the enterprise bean. A
client uses JNDI to locate the home interface, and the container provides a class that
implements the home interface.

When you use the IDE to create an enterprise bean with remote-type interfaces, the
EJB Builder’s GUI support and validation help ensure that the home interface’s
methods follow the basic rules for enterprise beans. Those rules include the
following:

■ The method signatures in the home interface have corresponding methods in the
bean class (except in the case of finder methods in an enterprise bean that relies
on the container to manage its persistence).

■ The arguments and return values are valid RMI types.

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the IDE’s Explorer window:
The default label is bean_nameHome.

The Local Interface

The local interface is similar to the remote interface in some respects. This type of
interface contains signatures for the business methods that can be called on the bean.
The methods’ complete code is in the bean class. The container creates a class that
implements the local interface. However, a call to a bean’s local interface must come
from another bean or a web component inside the same server.

The local interface extends javax.ejb.EJBOLocalObject. A client uses this
interface to locate the local home interface through a JNDI lookup call, calls a
method on the local home interface to retrieve a specific instance of the bean (with
the remote interface as the return type), and then calls business methods on that
instance.

When you use the Sun ONE Studio 5 IDE to create an enterprise bean with local-
type interfaces, the EJB Builder’s GUI support and validation help ensure that the
local interface’s methods follow the rules defined in the J2EE documents. Those
rules include the following:

■ The method signatures in the local interface have corresponding methods in the
bean class.

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the IDE’s Explorer window:
The default label is Localbean_name.
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 35

The Local Home Interface

Similar in some ways to the home interface, the enterprise bean’s local home
interface extends javax.ejb.EJBLocalHome and defines the create, finder, and
home methods that can be called on the enterprise bean by another bean within the
same server. The container provides a class that implements the local home interface.

When you use the IDE to create an enterprise bean with local-type interfaces, the EJB
Builder’s GUI support and validation help ensure that the local home interface’s
methods follow the basic rules for enterprise beans. Those rules include the
following:

■ The method signatures in the local home interface have corresponding methods
in the bean class (except in the case of finder methods in an enterprise bean that
relies on the container to manage its persistence).

■ The methods’ throws clauses include the appropriate exception classes.

The interface node looks like this in the Explorer window:
The default label is Localbean_nameHome.

The Bean Class

The bean class is the heart of the enterprise bean, containing the implementation
defined in the other two classes. The bean class of an entity bean extends the
javax.ejb.EntityBean interface, the bean class of a session bean extends
javax.ejb.SessionBean, and the bean class of a message-driven bean extends
javax.ejb.MessageDrivenBean.

The bean class implements the enterprise bean’s finder, create, business, and home
methods. The class also implements life-cycle methods that the container calls.

Method implementation varies by bean type. In the bean class of a CMP entity bean,
select and finder methods are defined as abstract, not implemented. Instead, EJB QL
statements are stored in the bean’s deployment descriptor. (Both EJB QL and
deployment descriptors are described in the following sections.)

When you use the Sun ONE Studio 5 IDE to create an enterprise bean, the EJB
Builder’s GUI support and validation help ensure that the bean class follows these
and other basic rules for enterprise beans:

■ The class is defined as public and abstract.

■ The class contains a public constructor with no parameters.

■ The class implements an ejbCreate method to match each create method
defined in the home or local home interface.

■ The class, if it is an entity bean that manages its own persistence, contains an
ejbFind method to match each finder method in the home or local home
interface.
36 Building Enterprise JavaBeans Components • June 2003

A bean class node looks like this in the IDE’s Explorer window:
The default label is the name of the enterprise bean plus Bean.

EJB QL

When you add a finder method or a select method to a CMP entity bean, you embed
a statement in the EJB Query Language to define the method’s query. In a query
written in EJB QL, your bean can navigate over the relationships defined in its
abstract schema, that is, the part of your bean’s deployment descriptor that defines
the bean’s persistent fields and relationships. An EJB QL query can span the abstract
schemas of all related entity beans that are packaged in the same EJB JAR file.

When your bean is deployed to an application server, your EJB QL queries are
translated into the target language of the underlying data store. Thus, an entity bean
that uses EJB QL is portable across different data stores.

The Deployment Descriptor

The enterprise bean’s deployment descriptor states how the bean is to be deployed
in the server. The deployment descriptor, which is an XML file, lists and describes
the classes that compose the enterprise bean, the bean’s references to other beans,
settings for the environment in which the bean will operate, and how the bean
should be managed at runtime. This file also lists the persistent fields of an entity
bean that delegates its persistence management to the container.

When you use the Sun ONE Studio 5 IDE to create an enterprise bean, the EJB
Builder automatically creates a deployment descriptor and ensures that it follows
the J2EE standard. (Because you normally work through the enterprise bean’s
property sheets rather than manipulating the deployment descriptor directly, the
descriptor file does not appear in the IDE’s Explorer window. However, you can
open the descriptor file through the Explorer.)

The Work Flow of an EJB Application at Runtime
At runtime, the application client communicates first with the enterprise bean’s
home interface and then with the remote interface, but never directly with the
enterprise bean object. All work is done for the client through the EJB container.

At runtime, these application elements interact as shown in FIGURE 1-4. The figure’s
numbered steps are explained next. (Notice that this is a generic view of the work
flow. The example uses only one enterprise bean with remote-type interfaces. Some
steps, for example, instance pooling, do not apply to certain types of enterprise
beans.)
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 37

FIGURE 1-4 Work Flow Inside the Application at Runtime

1. The client finds the enterprise bean in the application server and container. (That
is, the client uses a JNDI lookup method to get a remote reference to the
enterprise bean’s home interface.) A corresponding home stub is created in the
client.

2. A home object is created on the server side to implement the bean’s home
interface. The home stub asks the bean’s home object (which acts as a factory) to
have an instance of the enterprise bean created for the use of this client in this
session.

3. The container takes a bean instance from the pool.

4. A remote object is created on the server side to implement the bean’s remote
interface. The client works through its remote stub and the remote object to call
business methods on the bean instance.

5. Data is read from the database into the bean instance and transmitted to the
client. Any updates are written to the database in transactions.

Application Server

EJB Container

Client

CalendarMgr
home stub

CalendarMgr
remote stub

CalendarMgr
home object

CalendarMgr
remote object

CalendarMgr
bean class

CalendarMgr
instance

Pooled
bean

instances

Database

2 4

3

4
5

6

1 4

App
38 Building Enterprise JavaBeans Components • June 2003

6. The client has received the results it asked for, and the container returns the
instance to the pool.

Notice how this architecture supports multiple concurrent users without
multithreaded programming. Because enterprise bean users get their own instances
of the bean from the pool, the developer can write simple, single-threaded code.

An Enterprise Bean’s Development Life Cycle
As depicted in FIGURE 1-5, an enterprise bean goes through several steps after you
create it, but before it is ready for use.

FIGURE 1-5 Development, Assembly, and Deployment of an Enterprise Bean

As an EJB developer using the Sun ONE Studio 5 IDE, you follow these basic steps
to create an enterprise bean and prepare it for assembly and deployment:

1. Use the EJB Builder wizard and other GUI support (as described in Chapters 3
through 7) to generate the enterprise bean’s classes.

2. Use the IDE’s Source Editor and GUI support to code the enterprise bean. If you
can let the EJB container manage your session bean’s transactions and your entity
bean’s persistence, you have much less code to write.

3. Use the IDE to package the enterprise bean, along with any other related
enterprise beans, in an EJB module. Use the EJB’s property sheets to add your
beans’ external dependencies to the deployment descriptor.

4. Use the IDE’s EJB test application as described in Chapter 9 to create an EJB web
test client for the bean and to run tests. To prepare for this step, you perform
some assembly and deployment steps. Notice that the bean can be deployed later
in a production environment to a different server.

An enterprise
bean is
created.

One or more modules
are assembled into a
J2EE application.

The J2EE application
is deployed to a
server for testing, and
is later redeployed for
production.

One or more
enterprise beans
are assembled
into an EJB
module.
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 39

The IDE’s Support for Enterprise Beans
The Sun ONE Studio 5 IDE invisibly takes care of, or automates, many tasks that
you would be obliged to do if you developed your enterprise beans by hand. Here
are a few of the tasks you do not have to do when you use the IDE:

■ Write method declarations for the basic classes. The IDE generates the necessary
classes for each bean and the method declarations within those classes.

■ Provide code to manage persistence. The application server takes care of those
tasks for you when you create CMP beans.

■ Provide code to manage transactions. The application server takes care of those
tasks for you when you create CMP beans or when you choose to let the container
manage transactions for your session beans and message-driven beans.

■ Keep your bean classes, interfaces, and methods in synch. The IDE maintains
consistency for you.

■ Write XML code for the deployment descriptor. The IDE generates this file.

■ Manually create a test client to test the enterprise bean. The IDE provides
comprehensive, GUI-based support for testing session and entity beans.

■ Search the J2EE documentation. The enterprise bean source code generated by the
IDE conforms to J2EE standards. The code automatically includes comments and
references to related documentation. The IDE also provides the following:

■ Code completion for the application programming interface (API)
encompassed by the J2EE standard. (Press Ctrl–Space when you’re editing
code.)

■ Convenient access to the pertinent Javadoc™ documentation. (Press Shift–F1 on
the selected class or interface name.)

Developing Enterprise Beans in the IDE
You use the EJB Builder Wizard to generate the infrastructure of your enterprise
bean. The wizard is tailored to the type of bean you’ve chosen: a session, entity, or
message-driven bean, with options for the source of the bean’s persistent data and
for management of the bean’s transactions and persistence. The wizard leads you
through the steps of creating all the basic components.

FIGURE 1-6 shows the elements of a typical enterprise bean that the IDE generates for
you, and how the elements appear in the IDE’s Explorer window. This figure uses
the example of a session bean with remote-type interfaces.
40 Building Enterprise JavaBeans Components • June 2003

FIGURE 1-6 Generated Elements of an Enterprise Bean Shown in the Explorer Window

After using the wizard to generate these basic elements, you use the EJB Builder’s
other GUI features to add methods to your bean, and you use the Source Editor to
finish coding the bean.

Creating Sets of Related CMP Entity Beans
The EJB Builder Wizard allows you, in one process, to generate the infrastructure of
an entire set of CMP entity beans along with an EJB module to house them. This
feature is particularly useful if the database tables that your beans represent are
related by foreign keys. In the entity bean set, these foreign keys are preserved as
container-managed relationships.

Providing Transactions
In the enterprise bean model, transactional behavior is designed to be handled both
implicitly and declaratively. When a method is invoked on a bean instance, the EJB
container intervenes and manages the transaction for you. You don’t have to be
expert in writing transactions; you don’t have to write or debug code that controls
transaction boundaries. By making a simple selection in the EJB Builder wizard, you
can declare your bean’s transactional attributes, and you can fine-tune those
attributes later using the property sheets of the bean’s EJB module.

Sometimes, however, you might need to program transactions explicitly in a session
bean. The IDE lets you declaratively override the container and supports the use of
the JDBC API and the Java Transaction API (JTA) to manage your beans’
transactional behavior.

CalendarMgr
home interface

CalendarMgr
bean class

CalendarMgr
remote interface

A logical node generated
by the IDE for you to use
in working with your bean
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 41

Providing Persistence
As with transactions, the IDE allows you to delegate your beans’ persistence
handling entirely to the EJB container, or to code persistence yourself. If you handle
it yourself, you can write JDBC code. If you want container-managed persistence,
you start by making a few selections in the EJB Builder wizard, and finish by making
a few declarations in a property sheet to enable the container to find your
underlying data store.

The IDE comes packaged with the database server PointBase Server 4.2 Restricted
Edition. With the standard installation of the IDE, the PointBase JDBC driver is
installed automatically, and some associated services are automatically set up for
you, for example, JDBC connection pools, persistence managers, and connections to
the database itself. The examples in this manual use PointBase as the database.

Providing Security
If you want only users in certain roles to call certain methods in your enterprise
bean, you can add programmatic security to your bean. However, you don’t have to
write full security routines in your bean’s source code. A security reference in your
bean code matches a security role that you declare for a method. To make that
match, you simply change a field in the bean’s property sheet, and the security
information is added to the bean’s deployment descriptor.

When a client tries to call a secured method on your bean, the EJB container
compares the user’s role with your access control list (the user roles that you have
authorized to execute the bean’s methods). The container then allows or refuses
execution.

Creating Application Clients
In addition to developing the enterprise beans that make up the EJB tier of your
application, you can use the IDE to create an application client. In this context, an
application client is a stand-alone Java program that starts with its own main
method, runs in a J2EE client container, and interacts with other J2EE application
components including EJB modules. For details on the design and development of
clients, refer to Building J2EE Applications.
42 Building Enterprise JavaBeans Components • June 2003

Providing for Deployment
The IDE comes packaged with Sun ONE Application Server 7, Standard Edition
application services, on which you can deploy your J2EE applications for testing
purposes or for production. The examples in this book, especially in Chapter 8 and
Chapter 9, uses these application services, in general referring to them as the
application server.

The application server software is automatically installed at the same time as the
IDE, and some associated services are automatically set up for you. For details, refer
to the documentation for the application server.

Further Reading
For details on the design of enterprise beans and the EJB tier, refer to Enterprise
JavaBeans Specification, version 2.0 at:
http://java.sun.com/products/ejb/docs.html

Other information sources are listed in “Before You Read This Book” on page 18.
Chapter 1 Enterprise JavaBeans Concepts and the Sun ONE Studio 5 IDE 43

http://java.sun.com/products/ejb/docs.html

44 Building Enterprise JavaBeans Components • June 2003

CHAPTER 2

Design and Programming Issues

If you’re not already familiar with the design and programming issues associated
with enterprise beans, you need to consider the differences between various kinds of
beans and what they are meant to do. You should be aware of the life cycle of each
kind of bean, how methods and exceptions are applied, and how beans are set up for
reuse in different application environments. You need to understand how
persistence, transactions, and security are handled. This chapter discusses those
topics, and ends with a list of recommended readings for further details.

Deciding Which Type of Bean You Need
The Enterprise JavaBeans Specification, version 2.0, defines three types of enterprise
beans: session beans, entity beans, and message-driven beans. There are also several
types of session and entity beans, each with built-in functionality for different
purposes. The EJB Builder in the Sun ONE Studio 5 IDE guides you and streamlines
the process of creating all these types of enterprise beans.

To help you make design decisions before you start, this chapter describes the
enterprise bean types.

FIGURE 2-1 shows the basic choices before you when you use the IDE’s template to
create enterprise beans.
45

FIGURE 2-1 Basic Choices About Enterprise Beans in the Sun ONE Studio 5 IDE

Understanding Session Beans
A session bean acts as the traffic director for an application, controlling the work
flow of the application and encapsulating its business processes. If you think of a
model-view-controller architecture, a session bean is like the controller tier, but in an
EJB application. On behalf of a client, a session bean can do work such as accessing
a database or calculating balances. A session bean doesn’t represent database data
directly, but it can access the database or manipulate entity beans that access the
database.

In the context of an application that uses enterprise beans, a session bean manages
the conversation between a single client and the parts of the application that reside
on the application server and are managed by the EJB container. These other
application parts often include entity beans and (in its own separate tier) the
database with which any persistence-capable beans interact.

New > J2EE

BMP Entity EJB

Session EJB

Remote Interface Only

Stateless
Stateful
Container-Managed Transactions
Bean-Managed Transactions
Remote Interface Only (Default)

Message-Driven EJB

CMP Entity EJB

Related CMP Entity EJBs

Container-Managed Transactions
Bean-Managed Transactions

Both Remote and Local Interfaces

Remote Interface Only
Local Interface Only (Default)
Both Remote and Local Interfaces

Table From Database Connection
Table From Database Schema Object
Create From Scratch

Local Interface Only
Both Remote and Local Interfaces

Tables From Database Connection
Tables From Database Schema Object

Container-Managed Relationships

Local Interface Only (Default)

Local Interface Only
Both Remote and Local Interfaces
46 Building Enterprise JavaBeans Components • June 2003

A session bean can manipulate one or more entity beans, control interactions
between them, and bridge gaps between the data represented by the entity beans
and the business logic that acts on the data. A single session bean can direct
transactional work by several entity beans in the same application.

The conversation (or session) that the session bean manages is transient and so is
any data in the session bean. When the client-server session is over, or when the
client or the server shuts down, the instance of the session bean that the client
created for that session is destroyed. However, the client can store a handle to the
session, shut down, and then resume the session later.

A session bean has no primary key. Unlike an entity bean, a session bean is intended
for use by only one client at a time. Therefore the session bean can appear
anonymous to the client; the bean doesn’t need the unique identity that a primary
key provides.

Occasionally, a session bean represents an entity, as does the ShoppingCart object
in an application for ordering merchandise online. However, most session beans are
not intended to save entity state to a database. For example, while a user is
shopping, the ShoppingCart bean instance temporarily holds items that the user
intends to buy. If the server goes down before the user has actually committed to
buying the items, it would be inappropriate to save those items to the database in a
transaction. A common design approach is to let that data go and have the user start
a new shopping cart with the next session.

Deciding When to Use a Stateless Session Bean

The conversation carried on between the client and the session bean can be short
and simple, involving only work that can be accomplished by loading the
parameters of one method. Or a session bean can manage a long, complicated
conversation that involves many methods and database transactions. Such a
conversation requires the session bean to retain information between method
invocations.

In the first situation, a session that consists of a request and a response, a stateless
session bean is best. A stateless bean retains no state between method calls. Such a
lightweight bean costs the application few resources, is easy for the container to
manage, and promotes faster processing. A stateless bean can provide better
scalability to an application that has many clients.

Of course, the tradeoff is that this bean can do less with data. A stateless bean
operates only on the arguments that the client passes to it. Every call to a method of
a stateless bean is independent of previous calls.
Chapter 2 Design and Programming Issues 47

For example, a stateless bean can get the ZIP code for an address. Each retrieval can
be completed in one method call, getZip, because all the information needed to
process the retrieval is in the method parameters. Any transactions are completed
within the method call and within the container. (Transactions are discussed a little
later in this chapter and in Chapter 3.)

The instance variables of a stateless bean can contain state only while the method
executes. All instances of a stateless bean are the same when they are pooled. As a
result, the EJB container can pool and assign bean instances very flexibly, swapping
instances in and out between the client’s method calls. In effect, clients can share
stateless beans. These beans seem anonymous to their clients.

A session bean can be stateless if it is designed to be used sequentially by many
different clients and needs no tailoring to suit a specific client. A stateless bean holds
no state information for a specific client. However, the bean can have state that isn’t
specific to a client, for example, an open database connection.

Deciding When to Use a Stateful Session Bean

The conversation between the client and the session bean can be complicated. The
bean might need more than one method to encapsulate business logic and the
application might need the session bean to remember state between and across
method calls. By definition, such a bean is stateful. If your client is an interactive
application, or if the session bean’s state must be initialized when it is created, use a
stateful bean.

The bean’s state can be written to a database if necessary. The state is specific to the
client and is held in memory during the session, but is not persistent. If a stateful
session bean must be removed from memory, the EJB container manages the state.
The state of the bean instance can survive a session, but not the client’s termination
or a server crash.

Notice that the ejbRemove method is not called after a container crash, a timeout
while the instance is passivated, or a system exception thrown by a method. You
might need to provide a clean-up program for such an event.

A stateful bean is not shared by more than one client. By servicing only one client,
the bean can maintain conversational state throughout the session. Stateful bean
instances are not pooled.

The online shopping cart mentioned earlier in this chapter is an example of how
stateful session beans can be used. Just as the logical business transaction of
shopping includes multiple individual decisions by the user, so the stateful bean in
this application includes multiple method calls. The ShoppingCart bean must
accumulate items that the user has chosen until the user is ready to review the list of
items, approve or reject each one, and place the order.
48 Building Enterprise JavaBeans Components • June 2003

Selecting a Transaction Mode

Whether you’re programming a stateless or a stateful session bean, you must make
one of these selections in the EJB Builder wizard:

■ Container-Managed Transactions. The bean’s transactions are managed by the
EJB container, and you don’t intend to provide code to manage transactions. The
result is referred to as a CMT session bean.

■ Bean-Managed Transactions. The bean manages its own transactions, and you
intend to explicitly demarcate each transaction as you code the bean’s methods.
The result is referred to as a BMT session bean.

For a CMT session bean, you have less coding to do and all the transactions are
handled in a predictable, consistent way. Also, the transaction policy that you select
for your bean can be changed declaratively. The tradeoff is that each method can be
associated with no more than one transaction. The container typically has a
transaction begin just before a method starts, and commits the transaction just before
the method exits. Nested and multiple transactions are not allowed in a single
method.

Assigning Transaction Attributes

If you decide to let the EJB container manage your bean’s transactions, the container
looks for transaction attributes on your bean or on specific methods within your
bean. A transaction attribute specifies the scope of a transaction: which methods it
includes and how the results of those methods are treated in relation to the
transaction. These attributes are assigned as follows.

■ CMT session beans. The IDE automatically assigns the Required transaction
attribute to every CMT session bean, and that transaction attribute applies to
every business method in your bean. However, you can manually assign a
transaction attribute to a particular method or set an overriding transaction
attribute for the bean. (You set transaction attributes for a CMT bean at the EJB
module level.)

■ Entity beans. The same is true for entity beans, all of which have container-
managed transactions.

You don’t set transaction attributes for a BMT session bean. All of its transaction
boundaries must be explicitly demarcated in the bean class.

Using JTA or JDBC

To code bean-managed transactions explicitly, you can use the Java Transaction API
(the javax.transaction.UserTransaction interface, or JTA) or the JDBC API.
Chapter 2 Design and Programming Issues 49

■ JTA. If you’re using the Sun ONE Studio 5 IDE to create new BMT session beans,
consider using JTA. It can be more powerful and flexible than the JDBC API.

■ The JDBC API. On the other hand, if you’re wrapping legacy code inside a
session bean, and that code uses JDBC technology or encapsulates SQL code, it’s
a good idea to use the JDBC API.

JTA can include transactions for other resources such as the JDBC API. When you
use JTA to code transactions in an enterprise bean, you’re using the JDBC API for
database connections and JTA for transactions.

In handling transactions, your bean’s method calls the JTA methods, which then call
the lower-level routines of the Java Transaction Service (JTS), the transaction
manager used by the Java 2 Platform, Enterprise Edition (J2EE). Because of that level
of indirection, JTA lets you demarcate transactions independently of the transaction-
manager implementation. A JTA transaction can also span updates to multiple
databases from different vendors.

A JDBC transaction is controlled by the transaction manager of the database you’re
using.

A disadvantage of using JTA is that it doesn’t support nested transactions. One
transaction must end before another starts.

For more information on transactions, refer to Building J2EE Applications.

Understanding the Life Cycle of a Session Bean

At runtime, the application server creates bean instances as requested by EJB clients.
A bean instance passes through several stages of activity managed by the EJB
container. When the instance is no longer needed, it is destroyed.

The individual stages in a session bean’s life, the methods that cause the bean to
transition between stages, and the programmer’s responsibilities are described next.

Creating and Initializing a Bean Instance

A session bean’s runtime life cycle starts when an EJB client requests some work
from the bean. This stage of the life cycle goes as follows:

The client calls a create method on the bean’s home (or local home) interface. In
response, the container calls these three methods in sequence:

1. newInstance to create a new instance of the session bean

2. setSessionContext to associate the instance with a session-context object

3. ejbCreate to initialize the instance
50 Building Enterprise JavaBeans Components • June 2003

Note – The IDE generates method signatures for the setSessionContext and
ejbCreate methods. It’s up to the programmer to complete the body of the
methods.

The client receives a reference to the bean instance’s remote object.

Executing Business Logic

Now that a bean instance has been created and initialized, the EJB client asks the
instance to do some work. This stage of the life cycle goes as follows:

The client calls a business method on the bean’s remote object. In response, the
container does the following:

■ Checks security permissions to make sure that the requestor is entitled to execute
that business method

■ Applies the transaction control specified by the method’s transaction attribute

■ Calls a business method on the instance

The client receives the result of the business method.

Note – The programmer can specify security control either programmatically,
within the bean code, or declaratively, using the property inspector of the EJB
module. The programmer uses the EJB module’s property sheet to set transaction
attributes for a bean’s methods.

Removing the Bean Instance

The client is finished with the session and can let go of the bean instance. This stage
of the life cycle goes as follows:

The client calls the remove method on either the home (or local home) interface or
the remote (or local) interface. In response, the container calls the ejbRemove
method to close any open resources that the instance has used. The container
removes the instance from memory.

Note – The IDE generates the method signature for the ejbRemove method. It’s up
to the programmer to complete the method’s code.
Chapter 2 Design and Programming Issues 51

Pooling Stateless Instances

Ordinarily, in a production environment, many clients concurrently request work
from an enterprise bean. To support this need, the container can concurrently create
many instances of a stateless session bean and can pool them for use. The container
can populate the instance pool at its own discretion.

An instance of a stateless session bean maintains no client-related state information
between method calls. Therefore, stateless session bean instances in a pool are
interchangeable. The container can call different session beans from the pool to
handle requests from a single client.

So that the container always has an adequate supply of stateless session bean
instances to serve the volume and frequency of client requests, it keeps adjusting the
volume of pooled instances. For example, the container creates new instances of a
stateless session bean when the number of client requests increases, and removes
instances when memory becomes scarce. To maintain its pool, the container calls the
stateless session bean’s ejbCreate and ejbRemove methods at its own discretion.

Passivating Stateful Instances

A stateful session bean must maintain its conversational state with the client
throughout the client’s session. Therefore, the EJB container does not pool instances
of stateful session beans. Instead, the container only creates and removes stateful
bean instances upon explicit instructions from the client.

However, to control the use of resources, the container might still need to control the
number of active stateful session bean instances at a given time. When memory
becomes scarce, the container can passivate an instance, writing the instance’s
conversational state to secondary storage so that it can be used to handle another
client’s session. On passivation, the container first calls the instance’s
ejbPassivate method, which the programmer codes to release resources and put
all fields in a serializable state. The container then writes the instance’s non-transient
fields to secondary storage.

When a client calls a business method on a stateful bean instance that has been
passivated, the container restores the instance’s state from secondary storage and
calls the ejbActivate method on the instance. The programmer codes this method
to acquire resources that were released by the ejbPassivate method, and to
restore the values of fields that were not serializable.

Note – The IDE generates the method signatures for the ejbPassivate and
ejbActivate methods in both stateless and stateful session beans. It’s up to the
programmer to complete the code for these methods.
52 Building Enterprise JavaBeans Components • June 2003

Synchronizing State in a Session

A programmer can choose to implement the session-synchronization interface in a
stateful CMT session bean. During the stateful bean’s life cycle and at certain points
in a transaction, the container uses the interface to notify the instance that it is about
to enter or complete a transaction. The programmer can program the methods on
this interface to synchronize the bean’s instance variables with the data store’s most
current data, or to abort the transaction. The interface includes three methods:
afterBegin, beforeCompletion, and afterCompletion.

Note – The IDE generates the method signatures for the session-synchronization
methods. It’s up to the programmer to complete the code for these methods.

Understanding Entity Beans
An entity bean represents persistent data in an underlying data store. This type of
bean provides an object view of a set of data such as rows in a database table. Each
entity bean instance contains one entity of that data and can also contain business
logic that is intrinsic to the entity. A client, or a session bean working on behalf of a
client, can use an entity bean to find or insert data in a database.

An entity bean’s state isn’t dependent on its environment. With its primary key and
its remote reference, the bean can survive a crash of the server, the EJB container, or
the client. The entity’s state automatically reverts to the way it was after the last
committed transaction.

Because each client gets its own instance of the entity bean, many different users can
share access to one set of data. If two clients execute the same finder method on an
entity bean, they both reference the same remote object. Each find is independent,
which eliminates contention problems. Multithreaded code is not needed in an
enterprise bean. (However, there might be a situation in which you need to run
concurrent processes. With message-driven beans, you can approximate
multithreading in a J2EE application. That discussion can be found in
“Understanding Message-Driven Beans” on page 61.)

A client finds a particular entity bean by its unique object identifier, which is the
bean’s primary key.
Chapter 2 Design and Programming Issues 53

Taking Advantage of the EJB Container’s Services

The container (application server) that you use for deployment can simplify much of
your work with entity beans. Whenever feasible, you should let the container
manage your enterprise beans’ transactions, persistence, and relationships. You can
also implement your entity beans’ queries most flexibly by using EJB QL.

Letting the Container Manage Transactions

All transactions that are part of an entity bean are automatically managed by the EJB
container. When you have finished coding a bean and have created an EJB module
for it, you use the module’s property sheets to declare the bean’s transaction
attributes. The container demarcates the bean’s transaction boundaries accordingly.
The IDE automatically assigns the default transaction attribute to all business, create,
remove, finder, select, and home methods in your entity bean.

Letting the Container Manage Persistence

You can choose to have your entity bean’s persistence managed by the container, or
you can code the bean yourself to manage its relationship with the data store.

When you use the IDE to create an entity bean with container-managed persistence,
that is, a CMP entity bean, you complete the bean class without writing JDBC calls
to the data store. The container provides the code to synchronize your bean’s
instance variables with the data store. You provide information to the container on
how to map the instance variables to columns in database tables.

Implementing Queries

You use the EJB query language (EJB QL) to define how servers will implement your
bean’s query methods.

An EJB QL query in a finder method can be used by a client to select an existing
entity object. Or, without exposing the result to the client, an EJB QL query in a
select method can select objects or values related to the state of an entity bean. To
find this kind of information, the EJB QL query can use the bean’s abstract
persistence schema, which defines the bean’s persistent fields and relationships and
is part of the bean’s deployment descriptor.

When you deploy a J2EE application to an application server, the server looks at
your bean’s methods and the EJB QL queries you have supplied, and generates its
own server-specific SQL statements to do this mapping.
54 Building Enterprise JavaBeans Components • June 2003

In some cases, you might need to edit the SQL that a given server plugin generates
for its own use, assuming that the server allows access to its generated SQL. For
example, if your application includes CMP entity beans that were created in the EJB
1.1 environment, and your application is deployed to Sun ONE Application Server 7,
you might need to go into the beans’ finder methods and complete the server’s
sparsely generated SQL.

Letting the Container Manage Relationships Between Beans

Relationships between entity beans can be managed by the EJB container. If you
generate a set of related CMP entity beans from a database in which tables use
foreign keys, the IDE automatically preserves these relationships.

Put simply, the advantages of using container-managed persistence are that you
have less coding to do and that the resulting entity bean is not dependent on any
particular data store.

Using Legacy Code in Your J2EE Applications

At some point, you might need to create an EJB application in which you wrap
legacy code that isn’t supported by mapping tools. Or, you might need to implement
complex joins between tables, or even between different databases (for example,
non-relational databases). In these situations, depending on the capabilities of the
application server you use to deploy your EJB application, you might need to choose
bean-managed persistence and code all database calls yourself in the entity bean
class. If the server supports the persistence style you need, then container-managed
persistence is the best approach. However, as a general rule, bean-managed
persistence affords more flexibility in how an entity’s state is managed.

Understanding the Life Cycle of an Entity Bean

The application server creates a pool of entity bean instances to be used by EJB
clients. At runtime, a bean instance passes through several stages of activity as
requested by the bean’s client and as managed by the EJB container. When the
instance is no longer needed, it is destroyed.

The individual stages in an entity bean’s life, the methods that cause the bean to
transition between stages, and the programmer’s responsibilities are described next.

Creating and Managing a Pool of Bean Instances

An entity bean’s runtime life cycle starts when the container creates and pools
instances of the bean.
Chapter 2 Design and Programming Issues 55

Many EJB clients might concurrently need many entity beans to do work for them.
At its own discretion, the container creates and pools multiple, anonymous instances
of a bean before they are needed. These instances can be used to run queries with
finder methods, or they can be assigned identities. When a particular instance is
needed to hold data from the data store, the container transitions a pooled instance
into the ready state. (A ready instance has a primary key that uniquely identifies it.)
Finally, the container can adjust the size of the pool by constructing new instances or
deleting unneeded ones.

To create a new instance for the pool, the container calls:

1. The newInstance method to create a new instance of the entity bean

2. The setEntityContext method to associate the instance with an entity-context
object

The instance is now in the pooled state.

The container cycles instances between the ready state and the pooled state. When
the client requests an entity using its identity, but the corresponding instance is not
in the ready pool, the container transitions an instance from the pooled state to the
ready state. As part of this process, the container calls the ejbActivate method on
the instance. The programmer can code this method to acquire resources that are
needed by instances with identity, but not by instances in the pooled state. The
container then loads the values of the entity’s instance variables and associates the
instance with its remote object.

The instance is now ready.

Notice that the ejbActivate method does not load the values of the entity’s
instance variables. For BMP entity beans, this is handled by the ejbLoad method;
for CMP entity beans, it’s handled by the container.

When the container has too many instances in the ready state, it can passivate one or
more instances, moving them into the pooled state. As part of this process, the
container calls the ejbPassivate method on the instance. The programmer can
code this method to release resources that are not needed by instances in the pooled
state. The container also dissociates the instance from its remote object, and stores
the current values of the entity’s instance variables in the database.

Again, the ejbPassivate method does not store the values of the entity’s instance
variables in the database. For BMP entity beans, this is handled by the ejbStore
method; for CMP entity beans, it’s handled by the container.

To remove an inactivated instance from the pool, the container calls the
unsetEntityContext method on the instance and dissociates the instance from its
entity-context object. The container then destroys the instance.
56 Building Enterprise JavaBeans Components • June 2003

Note – The IDE generates method signatures for the setEntityContext,
unsetEntityContext, ejbActivate, and ejbPassivate methods. It’s up to the
programmer to complete the methods when specific entity contexts or resources are
needed.

Using a Bean Instance to Create a New Entity

Whenever an EJB client wants to create a new entity (to insert data into the data
store), the client calls a create method on the bean’s home interface. In response, the
container:

1. Does the appropriate security checking and applies the transaction control
specified by the method’s transaction attribute.

2. Calls the ejbCreate method on an instance in the pool. In a CMP entity bean,
this method initializes the persistent field values to prepare for the container to
populate the data store. In a BMP entity bean, this method initializes field values
and inserts the record into the database.

3. Creates a remote object for the bean, and associates it with the new bean instance.

4. Calls the ejbPostCreate method on the instance to complete initialization.
Because the container has already assigned an identity to the bean instance, the
ejbPostCreate method can forward identity information, such as the associated
remote (or local) interface or primary key, to another enterprise bean.

The client receives a reference to the instance’s remote object. The instance is now in
the ready state and can run business methods for the client. See “Executing Business
Logic” on page 58.

Note – The IDE generates method signatures for ejbCreate and ejbPostCreate.
It’s up to the programmer to complete those methods. The programmer must also
specify the security control and transaction attributes to be applied by the container.

Locating an Existing Bean Instance

An EJB client can locate one or more existing entities by calling a finder method on
the bean instance’s home object. A finder method returns one or more entities that
meet specific search criteria. Besides the findByPrimaryKey method, an entity
bean can have any number of other finder methods.

When a client calls a finder method on an instance’s home object, the following steps
happen:
Chapter 2 Design and Programming Issues 57

1. The container does the appropriate security checking and applies the transaction
control specified by the method’s transaction attribute.

2. The container calls a finder method on an anonymous instance in the pool.

3. The finder method returns the primary key of the instance (or multiple keys of
multiple instances, if appropriate). Notice that only the primary key is returned.

4. The container locates or creates a remote object with each primary key and
returns a reference to the object to the client.

Note – The IDE generates a method signature for the findByPrimaryKey method.
It’s up to the programmer to furnish any other finder methods that a particular bean
might need.

The client can go on to call business methods on the located instance, using the
methods named in the remote object. See “Executing Business Logic” on page 58.

Executing Business Logic

When an EJB client needs an entity-bean instance to do some work, the client calls a
business method on the instance’s remote object. In response, the container:

1. Does the appropriate security checking and applies the transaction control
specified by the method’s transaction attribute.

2. Calls a business method on the instance.

The business method finishes and the client receives the result. When appropriate,
the container passivates the instance as discussed in “Creating and Managing a Pool
of Bean Instances” on page 55.

Note – The IDE provides support for creating business-method signatures on both
the remote (or local) interface and the bean class. It’s up to the programmer to finish
coding the business method in the bean class.
58 Building Enterprise JavaBeans Components • June 2003

Using a Bean Instance to Remove an Existing Entity

Whenever an EJB client wants to remove an existing entity (to delete data from the
data store), the client calls a remove method on the instance’s home or remote object.
In response, the container:

1. Does the appropriate security checking and applies the transaction control
specified by the method’s transaction attribute.

2. Calls the ejbRemove method on the instance. A CMP entity bean instance
responds by readying the data for the container to delete. A BMP entity bean
instance responds by deleting the data.

3. Commits the transaction as appropriate.

Note – The IDE generates a method signature for the ejbRemove method. It’s up to
the programmer to complete the method.

Synchronizing an Instance With the Data Store

At certain points during a transaction, the container must make sure that the data in
the bean instance is synchronized with the data in the data store. To do this, the
container:

■ Calls the ejbLoad method on the instance when the entity enters an active
transaction.

■ In a CMP entity bean, this method is called after the container has read the
entity object’s state from the data store into the bean’s container-managed
fields. The programmer can use this method to perform some computation on
the values of the fields that were read by the container.

■ In a BMP entity bean, this method usually reads the data from the underlying
data store and assigns the values to the bean’s instance variables.

■ Calls the ejbStore method on the instance when the transaction is committed or
when the instance is passivated.

■ In a CMP entity bean, the container calls this method first, before writing the
container-managed fields to the data store. The programmer can use this
method to prepare the container-managed fields before they are written to the
data store.

■ In a BMP entity bean, this method writes the values in its instance variables to
the underlying data store.
Chapter 2 Design and Programming Issues 59

Note – The IDE generates method signatures for the ejbLoad and ejbStore
methods. In a BMP entity bean, it’s up to the programmer to complete those
methods. In a CMP entity bean, those methods typically require no further coding,
because the container manages synchronization with the data store.

Understanding Sets of Related CMP Entity Beans
and Container-Managed Relationships
If you wish, you can use the EJB Builder wizard that generates the infrastructure of
one CMP entity bean at a time. However, if you want to base several CMP entity
beans on database tables that have foreign keys or table-to-table joins, it’s easier and
more reliable to generate the infrastructure for the whole group of beans at one time.
A special EJB Builder wizard displays the tables in a database or schema, and, from
the tables you select, generates a corresponding set of CMP entity beans. Along with
the beans, the wizard creates logical entities to model foreign keys and joins between
database tables, and generates an EJB module to store and track the set of beans and
relationships.

A CMP entity bean that you created as part of a set is no different from a CMP entity
bean that you created individually. Its function, capacities, properties, and life cycle
are the same. However, if you use the wizard to generate a set of related CMP entity
beans, you don’t have to hand-code information about the enterprise-bean
equivalent of joins and foreign keys. The IDE presents these links as logical fields
called container-managed relationship (CMR) fields. A CMR field is like a foreign
key. In an EJB QL query, you can perform the equivalent of a table-to-table join using
a CMR field instead of a CMP field.

In accordance with the Enterprise JavaBeans Specification, the EJB container manages
CMRs to ensure referential integrity between associated CMP entity beans. The IDE
uses the Collections API to let you manipulate your beans’ CMRs. Information about
CMRs is stored at the level of the EJB module in which a set of related beans resides.

In the bean class are abstract accessor methods that specify a CMR’s directionality
and cardinality. For example, in a relationship between the beans Order and
LineItems:

■ The Order bean has the methods getLineItems and setLineItems. These
methods give the Order bean access to the collection that represents an order’s
line items.

■ The LineItems bean has the methods getOrder and setOrder. These methods
give the Order bean access to the order to which the line items belong.

A CMR allows for cascade-delete functionality, which is specified declaratively and
stored in the deployment descriptor.
60 Building Enterprise JavaBeans Components • June 2003

A CMR field provides access to local instances of a CMP entity bean; thus, only a
bean with local-type interfaces can have CMR fields.

Understanding Message-Driven Beans
A special kind of enterprise bean acts as a go-between for application components,
taking messages from the client and acting on the messages to start processes
asynchronously. This is the message-driven bean, which combines many features of
enterprise beans with the ability to be a listener for the Java Message Service (JMS)
message-oriented middleware (MOM). With message-driven beans, you can
approximate threading or parallel processing in an EJB environment.

Whereas in another J2EE application an enterprise bean might respond to RMI calls,
a message-driven bean listens to certain resources for messages arriving from other
application components, usually the client. When such a message arrives, regardless
of what processes or servers are running at the time, the message-driven bean is
notified of the message receipt by the invocation of the onMessage method. The
message-driven bean then acts on the message, calling a stateless session bean to
start a process.

Using Message Sources (Destinations)

A destination is a resource to which a client sends messages and to which a
message-driven bean listens. A destination can be a queue or a topic.

■ Queue. A message queue uses the point-to-point or “pull” model (analogous to
email from a sender to a receiver). The client sends messages to a queue object. A
message-driven bean polls the queue periodically and consumes messages meant
for that bean. One message is sent to one consumer.

■ Topic. A message topic uses the publish-and-subscribe or “push” model
(analogous to an online news subscription). The client sends a message to a topic
object. All consumers who subscribe to that topic receive a copy of the message.
One message can be broadcast to many consumers.

A topic subscription can be durable or non-durable.

■ Durable. Messages are saved for the consumer, which can retrieve them the
next time it connects to the system.

■ Non-durable. Messages are available to the consumer only when it is
connected, and old messages aren’t saved.
Chapter 2 Design and Programming Issues 61

Deciding When to Use a Message-Driven Bean

An application using message-driven beans has minimal dependence on the state of
other application components. A message-driven bean is designed for one-way
operation.

As long as a destination is available, an application client can reliably send a
message to it, whether or not the message-driven bean’s server or the target
application are currently deployed. The container doesn’t have to wait for a client-
invoked process to complete. The client can even be decoupled from the server while
the message-driven bean and its called bean do their work. One or many clients can
send messages to one or many servers, invoking multiple processes.

If an application needs to start a process that might go on a long time, if a server
might go down, or if, for any other reason, resources might become unavailable
before the message arrives, you can use a middle layer of message-driven beans to
keep processing going. A message-driven bean is ideal if your client needs to start a
process and then continue to be available to the user. For example, in a shopping
application, you could use a message-driven bean to check the customer’s credit
card number for validity while the customer continues to browse the product list.
The client component of the application sends a message to the message-driven bean
and then continues processing.

The use of message-driven beans can help your application with load balancing and
scheduling. For example, you can start processes at your database’s off-peak times.
Asynchronous processing is particularly advantageous for communications and
processing over different time zones and geographically dispersed systems.

If your application needs to interface with another application it doesn’t know much
about, you can use message-driven beans to loosely couple the applications. Many
legacy systems use messaging and can be interfaced in this way with J2EE
applications.

A message-driven bean interacts with the JMS environment only when the bean’s
onMessage method is called. The message-driven beans that you generate using
IDE’s EJB Builder wizard incorporate JMS transparently, so that you don’t have to
write JMS code. Because you specify the JMS connections and the message channels
(destinations) as properties on the bean, you can easily change a single message-
driven bean to point toward a different destination if needed.

Deciding When Another Bean Type Is Better

In certain situations, message-driven beans are not appropriate. For example:

■ When you need to return data. A message-driven bean must be hand-coded to
return anything other than VOID, and a specific client must be targeted. If you
need to return a result, a session bean is more efficient.
62 Building Enterprise JavaBeans Components • June 2003

■ When you need confirmation that an operation has succeeded. A message-driven
bean can’t throw exceptions as other enterprise beans can.

■ When the bean’s operation is part of a transaction that must complete within a
given time.

■ When the server needs to know the client’s security identity. Messaging doesn’t
propagate this identity to the message-driven bean. With this kind of bean, all
instances are the same.

■ When performance is an issue. Messaging becomes a middle layer between the
client and the server. Even though message-driven beans are relatively
lightweight, an extra layer can add time to your system response.

■ When you want your application to stay small and uncomplicated. An
application that doesn’t need asynchronous processing can be easier to code and
debug.

Understanding the Life Cycle of a Message-Driven Bean

At runtime, an application client sends messages to a destination to which a message
bean is listening. When these messages arrive, the application server creates
instances of the bean to service the client’s requests.

This type of bean has a very simple life cycle. As with a stateless session bean, its
instances pass through several stages of activity managed by the EJB container, and
when an instance is no longer needed, it is destroyed.

The individual stages in a message-driven bean’s life, the methods that cause the
bean to transition between stages, and the EJB programmer’s responsibilities are
described next.

Creating and Initializing a Bean Instance

A message-driven bean’s runtime life cycle starts when a client sends a message to a
queue or a topic, to be consumed (read and processed) by a message-driven bean. In
response, the EJB container calls these three methods in sequence:

1. newInstance to create new instances of the message-driven bean

2. setMessageDrivenContext to associate each instance with a message-driven-
context object

3. ejbCreate to initialize the instances
Chapter 2 Design and Programming Issues 63

Note – The IDE generates method signatures for the setMessageDrivenContext
and ejbCreate methods. It’s up to the programmer to complete the body of the
methods as needed.

After sending the message, the client doesn’t need to be involved again unless
results are returned.

Invoking Another Bean to Execute Business Logic

Now that instances of the message-driven bean have been created and initialized,
the instance and the container collaborate as follows:

■ A bean instance consumes the message and finds out what work the client has
requested

■ The bean instance asks the container to create instances of the appropriate
stateless session bean

■ The container creates the session-bean instances and applies the transaction
control specified by the transaction attribute of the message-driven bean’s
onMessage method

■ The message-driven bean instance calls a business method on an instance of the
stateless session bean

Eventually, if appropriate, the client can make a separate call to the session bean or
another enterprise bean in the server and receive the result of the business method.

Note – The IDE generates the method signature for the onMessage method. It’s up
to the programmer to complete the body of the method. Also, the programmer uses
the EJB module’s property sheet to set transaction attributes for a bean’s methods.

Removing the Bean Instance

When the message-driven bean has handed off its assigned task to another bean in
the application, its job is done. The container calls the ejbRemove method on the
message-driven bean instance to close any open resources that the instance has used.
The container removes the instance from memory.

Note – The IDE generates the method signature for the ejbRemove method. It’s up
to the programmer to complete the method’s code, if needed.
64 Building Enterprise JavaBeans Components • June 2003

Pooling Message-Driven Bean Instances

As is true for stateless session beans, the container can concurrently create and pool
many instances of a message-driven bean. The container populates the instance pool
at its own discretion, creating new instances when the number of arriving messages
increases and removing instances when memory becomes scarce.

An instance of a message-driven bean maintains no state information, and so
message-driven bean instances in a pool are identical and interchangeable.

The J2EE specification does not guarantee that messages to multiple instances of a
message-driven bean will be delivered in any particular order; therefore, the
application must be able to handle out-of-order messages.

Using Enterprise Beans in Applications
The needs of your application dictate whether and how to combine message-driven,
session, and entity beans. In some cases, you might get the best results by using only
one kind of bean. In the case of a very simple application (for example, an
application that performs only one CRUD operation), you might place a single
session bean or entity bean in the EJB module. In other cases, you will want to
exercise the full power and capability of several types of enterprise beans.

You can continue to increase the scope and power of an application by adding
enterprise beans to an EJB module. EJB applications are highly extensible.

Here are a few possible combinations of enterprise beans and other components in
applications:

■ An EJB module containing one stateful session bean and several CMP entity
beans. The session bean models user sessions. In each session, an instance of the
session bean directs instances of the entity beans to retrieve and write data from
and to a database. The EJB container handles persistence and transactions for the
entity beans.

■ An EJB module containing several CMP entity beans. This module interacts with
a web module within the same application. The web module acts as the
application client, and one or more of its components call methods on individual
entity beans within in the EJB module. The entity beans interact with the database
and return results through the web module components to the end user.

■ An EJB module containing a message-driven bean, a session bean, and one or
more entity beans. This module interacts with a web module in which a client
component sends messages to a queue. The message-driven bean listens to the
queue, consumes messages, and starts asynchronous processes in the session
bean, which causes database work to be done by the entity beans.
Chapter 2 Design and Programming Issues 65

These scenarios and more are discussed in detail in Building J2EE Applications.

Using Exceptions to Handle Problems
In the bean class, you define how your bean is to handle problems it encounters at
runtime. A system-level problem (such as an unavailable database connection, a
database so full that an SQL insert fails, or an object that can’t be found) is expressed
in a system exception that uses the javax.ejb.EJBException interface. The
container sees an exception of this kind, wraps it in a remote exception, and passes it
back to the client to be handled by a system administrator.

An application-level problem (such as an error in the business logic of an enterprise
bean, or an input error), can be addressed with a predefined exception such as the
javax.ejb package offers, or with a customized exception that the programmer
writes. The container sees an exception of this kind and passes it back to the client
for handling.

When you use the Sun ONE Studio 5 IDE wizards to create an enterprise bean or its
methods, the IDE includes the required exceptions in the method signatures. For
example, java.rmi.RemoteException is included in the signature of all methods
on the home and remote interfaces. As another example,
javax.ejb.CreateException is included in the signature of all create methods.

When you create a method using the GUI support available from the IDE’s Explorer
window, you are also given the option of specifying application-level exceptions that
should be thrown by the method. These application exceptions are automatically
added to both the remote (or local) interface and the bean class.

Working With Deployment Descriptors
The basic design of enterprise beans makes them reusable in different applications
and deployable in different servers. Toward that end, all the information that a
particular server needs to know at runtime is captured in an XML meta-file called
the deployment descriptor. This descriptor file includes information about the bean’s
structure, its relationships to other beans, where its data store is, what is needed for
the user to gain access to the data store, and all other external dependencies.

Whenever you create an enterprise bean, the IDE generates a starter deployment
descriptor for the bean. You use the bean’s property sheets to declare whatever you
know of the bean’s external dependencies. When you assemble beans into an EJB
66 Building Enterprise JavaBeans Components • June 2003

module, the IDE gives you the opportunity to override the default values of bean
properties, and to set properties for the EJB module as a whole. These properties can
also be set through the EJB module’s property sheets. At deployment time, the IDE
generates the EJB module’s deployment descriptor, incorporating all specified
properties.

Enforcing Security Policies
The EJB container offers you mechanisms for securing your application, that is, for
restricting the set of users who can call methods on an enterprise bean. You can
specify the security policies for your application either declaratively or
programmatically. Declarative security is specified within the deployment
descriptor, and therefore it can be changed at any point up through deployment.
Programmatic security is defined within the code of the enterprise bean, and
therefore it is supplied by the programmer.

In most cases, declarative security is preferable. It’s easier to provide, and it’s
configurable throughout the development, assembly, and deployment process.

Programmatic security is more complicated. However, it provides a more granular
control of security, and therefore it’s sometimes the only option to meet the security
requirements of an application. For example, if you want to perform different logic
within the body of a method depending on the identity of the caller, you must use
programmatic security.

To specify security policies for your enterprise beans, you define a set of security
roles for your application. A security role is a set of users who share common
permissions for executing the methods of your enterprise beans.

With declarative security, each security role is assigned a set of bean methods that
callers in that role are permitted to execute. At runtime, the container checks the
security role of each caller, and decides whether the caller is permitted to execute the
requested method.

In providing programmatic security, you can use methods supplied by the container
(getCallerPrincipal and isCallerInRole) to determine the identity or role of
the caller, and then you can use conditional logic as appropriate.
Chapter 2 Design and Programming Issues 67

Declaring Security in Enterprise Beans
You declare security roles and method permissions after you have assembled the
enterprise beans into an EJB module. On the module’s property sheet, you define
security roles for the EJB module. On the property sheet of the assembled EJB
component, you define, for each security role, the list of methods that a caller in that
role is permitted to execute.

When you take the declarative approach, you can modify the security permissions at
any time during development and testing. Also, you can use different security roles
and method permissions for each different EJB module that includes your bean.

Programming Security Into Enterprise Beans
Programmatic security allows you to determine:

■ The individual identity of the caller
■ Whether the caller has a particular security role

With this information, you can branch your logic conditionally, depending on the
identity or role of the caller.

To programmatically determine the identity of the caller, you use the
getCallerPrincipal method on the javax.ejb.EJBContext object. This
returns a java.security.Principal object, which allows you to get the caller’s
name. You might use this to query a database for more information about the caller.

To programmatically determine whether the caller has a particular logical role, use
the isCallerInRole(String roleName) method on the javax.ejbEJBContext
object. This returns a Boolean value indicating whether the caller has the specified
logical role. If you use the isCallerInRole method, you must also declare the
roleName used in your code as a security-role reference on the bean’s property sheet.

At assembly time, when the bean is included in an EJB module, the assembler can
map the bean’s security-role reference to one of the security roles defined in the EJB
module. Therefore, the programmer does not need to know the actual security role
names before they are determined at assembly time.

For more information on implementing security features in enterprise beans and
J2EE applications, refer to Building J2EE Applications.
68 Building Enterprise JavaBeans Components • June 2003

Understanding the Application Servers
and Databases
The enterprise beans that you create using the Sun ONE Studio 5 IDE are typically
deployed on Sun ONE Application Server 7, the commercial application server that
comes with the IDE. You can test your enterprise beans on this server to see how
they will behave under different application conditions, and you can also deploy
your applications to this server for production purposes. The examples in this
manual that illustrate use of an application server use Sun ONE Application
Server 7.

Refer to the Sun ONE Studio 5 Release Notes for information on any other
application servers and server plugins that are available for the IDE.

The entity beans you create using the IDE can be tested using the database that is
included: PointBase Server 4.2 Restricted Edition. The examples in this manual use
PointBase as the database.

Further Reading
In addition to the specifications and blueprints mentioned earlier in this book, there
are many information resources for EJB programmers. For example, the following
documents suggest ways that you can improve the design and programming of your
enterprise beans:

■ Sun ONE Studio 5 tutorials and example applications
http://forte.sun.com/ffj/documentation/
tutorialsandexamples.html

■ Java Blueprints for the Enterprise
http://java.sun.com/blueprints/enterprise

■ Designing Enterprise Applications with the J2EE Platform, Second Edition, at:
http://java.sun.com/blueprints/guidelines/
designing_enterprise_applications_2e/index.html

■ “Seven Rules for Optimizing Entity Beans” by Akara Sucharitakul, at:
http://developer.java.sun.com/developer/technicalArticles/ebeans/
sevenrules/

■ “Designing Entity Beans for Improved Performance” by Beth Stearns, at:
http://developer.java.sun.com/developer/technicalArticles/ebeans/
ejbperformance/
Chapter 2 Design and Programming Issues 69

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://java.sun.com/blueprints/enterprise
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/index.html
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://developer.java.sun.com/developer/technicalArticles/ebeans/ejbperformance/

70 Building Enterprise JavaBeans Components • June 2003

CHAPTER 3

Developing Session Beans

You can use the EJB Builder in the Sun ONE Studio 5 IDE to program the session
beans that perform server-side business logic on behalf of clients in your Enterprise
JavaBeans application. This chapter discusses the process of creating and working
with stateless and stateful session beans.

A session bean of either type can use the EJB container to manage transactions, or
you can code a session bean to manage its own transactions. Session beans access
persistent data using the JDBC API and the Java Transaction API (JTA). A session
bean can manage one or more entity beans.

The IDE provides wizards that help you create the parts of an enterprise bean: a
bean class and its two (or four) interfaces. The default is a remote interface and a
home interface, but you can substitute or add a local interface and a local home
interface. The task of creating the session bean’s infrastructure is automated for you.

When you’re programming session beans, you have many options in addition to
those described in this chapter. Although the Sun ONE Studio 5 IDE is designed to
take care of much of your coding work, the IDE also supports those options flexibly
and leaves many decisions up to you. For detailed instructions in coding session
beans, refer to the resources listed in “Before You Read This Book” on page 18, or to
one of the many excellent texts on programming enterprise beans.
71

Using the EJB Builder With Session
Beans
The EJB Builder is a collection of wizards, property sheets, and editors with which
you can build enterprise beans consistently and easily. The EJB Builder is installed
automatically with the IDE and becomes visible when you choose File → New from
the main window or New → All Templates from the contextual menu in the
Explorer’s Filesystems tab.

You can take several approaches to creating your session beans in the IDE. However,
you get the most comprehensive support and, in general, the fastest path to bean
completion, if you use the approach recommended in this chapter. You can also use
the example applications and tutorials, available from the main window’s Help →
Learning menu, to explore different ways of creating enterprise beans. The
methodology described in these documents takes full advantage of the IDE’s ability
to ensure consistency and its adherence to the J2EE standard.

For best results, use the EJB Builder to program session beans by:

■ Creating a session bean and its required classes. When you finish the EJB
Builder wizard’s short sequence, you have the framework of your session bean.
The bean’s three (or five) classes and a logical node are shown in the Explorer’s
Filesystems tab. The wizard generates declarations for all classes, and you supply
the methods’ implementations.

The logical node is the best place from which to work with a session bean. All
logical nodes appear in the Explorer with this icon:

■ Adding methods, parameters, and exceptions. Use the IDE’s GUI support as
described later in this chapter. You can add a method to a bean by using a dialog
box available from the contextual menu or by directly editing the set of required
classes.

■ Setting values in a bean’s deployment descriptor. Use the session bean’s
property sheet, available at the logical node, to edit properties.

From a session bean’s logical node, you can add a business method that is
automatically placed in the bean class and the appropriate interfaces, validate the
entire bean, build a test application for the bean, and create an EJB module around
the bean for production purposes.
72 Building Enterprise JavaBeans Components • June 2003

Selecting a Session Bean Type
A session bean handles interaction between a client and an application service; the
duration of this interaction is the session. Should your session bean be stateful or
stateless? Should it manage its own transactions or have its container manage them?
All of these choices are discussed next.

The EJB Builder is designed to support all of these choices, and you use the same
wizard to generate the session bean’s infrastructure. Later, you finish specifying each
type of session bean.

Details follow in these sections:

■ “Stateless or Stateful Session Beans” on page 73
■ “Container-Managed or Bean-Managed Transactions” on page 75

Stateless or Stateful Session Beans
The main purpose of a session bean is to perform work on behalf of a client
application, that is, to help a client carry on a conversation with one or more entity
beans on the server side. When such a conversation consists of more than a simple
question and a simple answer, the conversation’s manager (that is, the session bean)
must remember certain information until the conversation is finished. In that case,
the session bean must have state. A stateless session bean might manage a less
complex conversation.
Chapter 3 Developing Session Beans 73

A more detailed discussion of this choice is in Chapter 2. TABLE 3-1 highlights the
design considerations.

TABLE 3-1 Deciding Between Stateless and Stateful Session Beans

Issue Stateless Stateful

Scope A stateless session bean manages a
simple interaction between a client
and an entity, and calls only one
method per session.

A stateful session bean manages a
more complex interaction between a
client and an entity, and calls more
than one method per session.

Initialization A stateless bean carries no data
that must be initialized.

A stateful bean’s state must be
initialized. For example, if the bean is
designed to set up access to remote
resources, it acquires a reference to a
resource factory.

Information
saved

During its session, a stateless bean
saves no state information
between method invocations.

During its session, a stateful bean
maintains a conversational state
between the client and server. It saves
state information between method
invocations but discards the
information when the session ends.

Relationship
with clients

A stateless bean instance performs
one operation on behalf of one
client at a time. Once it has
completed a method call, the
instance can be pooled and
reassigned to a different client,
even during the same session.

A stateful bean instance performs a
series of operations on behalf of one
client at a time. Once that client’s
session is complete, the bean instance
is destroyed, not pooled.

Application
examples

A stateless bean could represent a
catalog viewer. The bean’s one
method lets the end user look up
an item in an online catalog.

A stateful bean could represent an
online shopping cart that invokes
several methods to accumulate items
until the end user is ready to start
processing the entire order.
74 Building Enterprise JavaBeans Components • June 2003

Container-Managed or Bean-Managed
Transactions
As is discussed in more detail in Chapter 2, you must specify whether your bean’s
container or the bean itself will manage the bean’s transactions. TABLE 3-2
summarizes the differences between these choices.

In a typical enterprise bean using container-managed transactions (CMT), the
container begins the transaction just before a method starts and commits the
transaction just before the method exits. With CMT, you can let the client control the
transaction. For example, a client might string together a logical business transaction
by using different methods called by a stateful CMT session bean.

In a session bean with bean-managed transactions (BMT), you must specify in the
code where a transaction begins and ends.

TABLE 3-2 Deciding Between Container-Managed and Bean-Managed Transactions

Issue Container-Managed Transactions Bean-Managed Transactions

How transaction
boundaries are set

The EJB container decides
when to begin and commit a
transaction according to the
Java 2 Platform, Enterprise
Edition Specification.

The programmer explicitly
codes the transaction’s
boundaries to obtain finer-
grained control over
transactions.

Transaction manager The container itself is the
transaction manager.

To manage transactions, use
JTA, which can include
transactions for other resources
such as JDBC.

Transactions and
methods

One transaction is allowed
per method. However, a
method does not have to be
associated with a transaction.

This case is more complex, but
you can code more than one
transaction per method.
Chapter 3 Developing Session Beans 75

Defining a Session Bean
The EJB Builder wizard automates much of the task of creating the default classes
that your session bean requires: a bean class, and the interfaces you choose (remote,
local, or both remote and local). To define a session bean, you take the following
steps:

1. Select or create a package to contain the session bean.

2. Use the EJB Builder wizard to generate the infrastructure of your session bean.

3. Add one or more business methods to the session bean.

4. Complete the bodies of the create and business methods.

These basic steps are explained in detail next.

Creating a Package
If you need to create a package to house your session bean, do as follows:

1. In the IDE’s main window, if the Explorer is not already open, choose View →
Filesystems to open the Explorer window to the Filesystems tab.

2. In the Filesystems tab of the Explorer, select a filesystem, right-click, and choose
New → All Templates.

The New wizard opens the Choose Template page.

3. Select Java Package and click Next.

The wizard displays the New Object Name page.

4. Type a name for the package and click Finish.

The new Java package appears under your filesystem node.

Starting the EJB Builder Wizard
When you’re ready to create a session bean, do as follows:

1. In the Filesystems tab of the Explorer, select the package where you want your
session bean to reside.
76 Building Enterprise JavaBeans Components • June 2003

2. Right-click and choose New → All Templates.

The New wizard opens the Choose Template page.

3. Expand the J2EE node, choose Session EJB, and click Next.

The New wizard opens the Session EJB Builder to the Session Bean Name and
Properties page. Notice that the panel on the left shows the current step and the
steps you still must complete before your entity bean is created.

Generating the Default Session Bean
In the wizard’s Session Bean Name and Properties page, you must make choices
about state, transaction type, and type of interfaces. Do as follows:

1. Type a name for your session bean, and select the type of session bean you need.

Click the appropriate buttons to specify your bean’s state, transaction mode, and
which type of interfaces to implement. FIGURE 3-1 shows your choices. Notice the
defaults: Stateless, Container-Managed, and Remote Interface Only.

FIGURE 3-1 Possible Wizard Selections for a Session Bean

Note – The selections you make in this first page of the wizard determine the code
that the wizard generates. If you later want to change any of these most basic
selections, you can use the bean’s property sheets as described in Chapter 8.
Chapter 3 Developing Session Beans 77

2. Click Next.

The Session Bean Class Files page appears as shown next. This example illustrates a
stateless session bean.

For a stateful session bean, you have an additional selection to make: Session
Synchronization.

This selection is explained in TABLE 3-4 and in “Using Session Synchronization” on
page 89.

3. Check the bean class and interfaces, and change them if necessary.

The classes that make up your session bean are shown with their paths in this page.

■ You can change the package location of the bean.

■ You can use a Modify button to change any of the class names, specifying either a
class that already exists or creating a new one. For example, you might be
implementing a bean whose home and remote interfaces have already been
specified, and now you want to generate a new bean class.

If you specify any classes outside the named package, the resulting bean classes
appear differently than shown in FIGURE 3-2.

■ Don’t change the superclass of your bean’s interfaces. (The IDE’s code generator
delegates to the superclass implementation, if one exists. However, as a general
principle, you should inspect the code.)

Before you change these fields, also consider the following points:
78 Building Enterprise JavaBeans Components • June 2003

■ Server requirements. The EJB Builder wizard lets you move parts of the session
bean to other locations. For example, you can change the package name on one or
more of the related objects so that the bean class is in one directory and the home
and remote interfaces are in another. First, however, you should find out whether
the application server you plan to use supports this distribution of files.

■ Reuse of classes. At this point, you can, if you want, substitute a bean class or
home and remote interfaces from another session bean. The wizard prompts you
if the class you substitute is missing any required methods or exceptions.

■ Package and directory names. Use valid Java identifiers.

4. Click Finish when you’re done.

The wizard automatically generates the various parts of your session bean’s
infrastructure. These parts are discussed next.

Looking at a Session Bean’s Classes
The EJB Builder wizard generates the default session bean classes for you and sets
up the relationships between all the classes. FIGURE 3-2 shows how a typical session
bean (all of whose classes are in the same package) appears in the Explorer’s
Filesystems tab.

FIGURE 3-2 Default Classes of a Typical Session Bean With Remote Interfaces

The nodes marked with the class icon represent classes of the session bean. The
node marked with the bean icon is a logical node for the session bean. Do all
your editing in the logical node. The example bean’s primary nodes are described
next.

■ The remote interface extends the javax.ejb.EJBObject interface and provides
signatures for the session bean’s business methods that are called from outside
the bean’s EJB module.

■ The bean class implements the javax.ejb.SessionBean interface and
implements the session bean’s methods.

■ The home interface extends the javax.ejb.EJBHome interface and provides
signatures for the session bean’s create methods that are called from outside the
bean’s EJB module.

Remote interface

Bean class
Home interface

Logical node
Chapter 3 Developing Session Beans 79

■ If you chose a local interface, you see a node labeled Localbean_name. This
interface extends the javax.ejb.EJBLocalObject interface and provides
signatures for the session bean’s business methods that are called from within the
bean’s EJB module.

■ If you chose a local home interface, you see a node labeled Localbean_nameHome.
This interface extends the javax.ejb.EJBLocalHome interface and provides
signatures for the session bean’s create methods that are called from within the
bean’s EJB module.

■ The logical node is created in the Explorer to group all the elements of your
enterprise bean and let you work with them more conveniently.

Expanding the Nodes
When you expand the four nodes under your session bean’s package node, you see
something like the tree view in FIGURE 3-3.

FIGURE 3-3 Explorer’s Detailed View of a Typical Session Bean With Remote Interfaces

Reviewing the Generated Classes
The EJB Builder has automatically placed the signatures for a create method and
several life-cycle methods in your session bean class. These methods are discussed
next.

The three main parts
of this session bean

Default create method

No business methods
yet

Remote interface
Logical node

Bean class
Home interface
80 Building Enterprise JavaBeans Components • June 2003

Default Create Method

The wizard places the following ejbCreate method signature in every session bean
class:

The corresponding create method is placed in the session bean’s home interface:

See “Completing Create Methods” on page 84 for more information.

Life-Cycle Methods

The wizard adds to the bean class of any session bean signatures for the life-cycle
methods shown next.

public void ejbCreate() {
}

public interface AcctBalHome extends javax.ejb.EJBHome {
public session.AcctBal create()

throws javax.ejb.CreateException,
java.rmi.RemoteException;

}

public void setSessionContext(javax.ejb.SessionContext aContext) {
context = aContext;

}
public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbRemove() {
}

Chapter 3 Developing Session Beans 81

TABLE 3-3 shows the purposes of these methods in the session bean class.

If you have opted to have your session bean use the session-synchronization
interface, the wizard generates three more methods in the bean class:

TABLE 3-3 Purpose of Life-Cycle Methods In a Session Bean Class

Method Purpose

setSessionContext This method lets you store the SessionContext reference in a
field and populate instance variables. You can use it to allocate
resources that last for the session bean’s lifetime, resources such
as a database-connection factory. By default, the EJB Builder
wizard generates code that assigns the SessionContext to a
field named context.

ejbActivate This method initializes the bean, prepares it for use, and acquires
the resources needed by the instance.

ejbPassivate Before the bean instance is passivated, this method releases the
resources the bean was using.

ejbRemove This method releases resources that were acquired within the
ejbCreate and business methods.

public void afterBegin() {
}
public void afterCompletion(boolean committed) {
}
public void beforeCompletion() {
}

82 Building Enterprise JavaBeans Components • June 2003

The session-synchronization methods are explained in TABLE 3-4.

Completing Your Session Bean
The steps to completion of your session bean vary according to the type of bean you
have chosen. Guidelines follow for:

■ Completing Create Methods
■ Completing Life-Cycle Methods
■ Adding Business Methods
■ Coding Transactions

Using Recommended Approaches When Working
With Enterprise Beans
Appendix A discusses the best ways to make changes in your enterprise beans, and
the errors and anomalies that you might see if you use other approaches. As a
general rule, you should work through the logical node rather than the individual
class nodes, use the bean’s property sheets or the Customizer dialog box to edit
methods, and use the IDE’s Source Editor to complete or edit any bean code that
isn’t available to you through one of the dialog boxes.

TABLE 3-4 Purpose of Session-Synchronization Methods in a Session Bean Class

Method Purpose and Use

afterBegin This method tells the instance that a new transaction has begun.
The EJB container calls the method right before it calls the
business method. In afterBegin, you can load instance variables
from the database.

beforeCompletion This method tells the instance that a business method has
completed, but the transaction has not been committed yet. This is
the session bean’s last chance to roll back the transaction. If the
database hasn’t yet been updated with the instance variables, you
can code that update in the method body.

afterCompletion This method tells the instance that the transaction has completed.
In its one parameter, the Boolean value true means the
transaction was committed, and false means the transaction was
rolled back. If the transaction failed and was rolled back, this
method can make the session bean refresh its instance variables
from the database.
Chapter 3 Developing Session Beans 83

Completing Create Methods
If your bean is stateless, it takes only one create method, which can have no
parameters. A stateless session bean can contain no user-specific or client-specific
data.

If your bean is stateful, it can have one or more create methods, each of which can
have parameters.

In any case, work under the logical node. Open the create method in the Source
Editor by selecting the node labeled create(), right-clicking, and choosing Open.
Finish coding the body of the create method in the Source Editor.

Completing a Stateless Bean’s Create Method

In a stateless session bean, the create method is often used to connect to resources.
For example, this method can look up a resource-factory reference and store it as a
field, so that JDBC connections can be acquired in later method calls.

Completing a Stateful Bean’s Create Methods

In a stateful session bean, you can use a create method’s parameters to look up a
resource-factory reference or to send client-specific information (such as a user name
and password), as shown in CODE EXAMPLE 3-1. The method can store the
information for later use. Notice that this create method uses a helper class,
IdVerifier.

CODE EXAMPLE 3-1 Create Method in a Stateful Session Bean

public void ejbCreate(String userid, String pwd)

throws CreateException {

if (userid == null) {

throw new CreateException("Please enter a user
ID.");

}

else {

this.userid = userid;

}

IdVerifier idChecker = new IdVerifier();

if (idChecker.validate(pwd)) {

this.pwd = pwd;

}

84 Building Enterprise JavaBeans Components • June 2003

Adding a Create Method to a Stateful Bean

To add one or more create methods to your stateful session bean, do as follows:

1. Select the bean’s logical node, right-click, and choose Add Create Method.

The Add Create Method dialog box appears.

2. Type a method name starting with create, add parameters and exceptions as
necessary, and click OK.

The create method signature is generated in your bean’s home interface and the
corresponding ejbCreate method is generated in the bean class.

3. Finish any coding needed in the Source Editor.

Under the bean’s logical node, expand the Classes node, select Bean Class, right-
click, and choose Open.

Completing Life-Cycle Methods
The EJB Builder has generated four life-cycle methods for you. For a stateless session
bean, the generated methods are sufficient. In a stateful session bean, you might
need to add code to two of these methods: ejbPassivate and ejbActivate.

For example, your stateful bean might contain nonserializable fields that became
serializable by replacing references. Or, your bean’s conversational state might
contain open resources, which the container can’t retain when the bean’s instance is
passivated. In each case, you must complete the ejbPassivate method to release
the nonserializable fields. Then complete the corresponding ejbActivate method
to restore those fields.

else {

throw new CreateException("Invalid password: " +
pwd);

}

contents = new Vector();

}

CODE EXAMPLE 3-1 Create Method in a Stateful Session Bean (Continued)
Chapter 3 Developing Session Beans 85

Completing the ejbPassivate Method

This method must leave the instance fields ready to be serialized by the container.
For example, as shown in CODE EXAMPLE 3-2, you must close all JDBC connections in
this method and assign the instance’s fields that store the connections to null.

Completing the ejbActivate Method

This method must make the instance fields available again, as demonstrated in
CODE EXAMPLE 3-3.

CODE EXAMPLE 3-2 ejbPassivate Method

public void ejbPassivate() {

 try {

 con.close();

 } catch (Exception ex) {

 throw new EJBException("ejbPassivate Exception: " +

ex.getMessage());

} finally {

con = null;

 }

 }

CODE EXAMPLE 3-3 ejbActivate Method

public void ejbActivate() {

 try {

 InitialContext ic = new InitialContext();

 DataSource ds = (DataSource) ic.lookup(dbName);

 con = ds.getConnection();

 } catch (Exception ex) {

 throw new EJBException("ejbActivate Exception: " +

ex.getMessage());

 }

 }
86 Building Enterprise JavaBeans Components • June 2003

Adding Business Methods
In a session bean, you add business methods to run business tasks for the client.
Such a method in a session bean might access a database, or it might manage one or
more entity beans that use their persistent fields to manipulate database entities.

To add a business method to your stateful session bean, do as follows:

1. Select the bean’s logical node, right-click, and choose Add Business Method.

The Add Business Method dialog box appears.

2. Name the method, check to be sure the return type is appropriate, add parameters
and exceptions as necessary, and click OK.

The business method signature is generated in your bean’s remote interface and the
corresponding method in the bean class.

3. Finish any coding needed in the Source Editor.

Under the bean’s logical node, expand the Classes node, select Bean Class, right-
click, and choose Open.

If your session bean needs access to the database, you might be able to reduce JDBC
calls in the bean (and save system resources and network bandwidth) by
encapsulating database access in a data access object (a DAO). A DAO can do the
actual work of fetching data for the session bean. Using a DAO might make your
session bean’s code more simple and straightforward, and it might free your bean
from dependence on a particular vendor tool or database.

Coding Transactions
The way you code transactions differs depending on whether your session bean is
stateful or stateless, and whether it uses BMT or CMT. Guidelines follow for
specifying transaction boundaries, dealing with rollbacks, and using the
session-synchronization interface.
Chapter 3 Developing Session Beans 87

Understanding Transaction Spans

The allowable span of a transaction differs according to the type of session bean.
TABLE 3-5 summarizes those differences. Notice that CMT and statefulness give a
bean more flexibility.

Specifying Transaction Boundaries and Rollbacks

This section discusses guidelines for coding the starting and ending points of
transactions in both CMT and BMT beans. Keep these two general rules in mind:

■ Nested transactions are not allowed in session beans or in JTA code.

■ Code is easier to maintain when JDBC and JTA transactions are not mixed. JTA is
generally preferable because it can include transactions for other resources,
including JDBC.

In CMT Beans

In a CMT bean, all transactions’ boundaries are set by the EJB container, which
means that you don’t specify where a transaction begins or ends. Usually, the EJB
container begins a transaction just before a method starts and commits the
transaction just before the method ends.

Don’t call any method that could interfere with the container’s transaction
boundaries. Problematic methods are:

■ commit, setAutoCommit, and rollback methods of java.sql.Connection
■ getUserTransaction method of javax.ejb.EJBContext
■ Any method of javax.transaction.UserTransaction

A session bean can roll back a container-managed transaction in two ways:

■ If a system exception is thrown, the container automatically rolls back the
transaction.

■ Calling the setRollBackOnly method of javax.ejb.EJBContext tells the
container to roll back the transaction even if an application exception is thrown.

TABLE 3-5 Relationship Between Transactions and Methods

In a stateless BMT bean (that manages its
own transactions), a transaction can span
only one method.

In a stateful BMT bean, a transaction can
span one or more methods on the same
session bean.

In a stateless CMT bean (whose transactions
are managed by the container), a transaction
can span more than one method, but each
method must be on a different session bean.

In a stateful CMT bean, a transaction can
span one or more methods on the same
session bean.
88 Building Enterprise JavaBeans Components • June 2003

In BMT Beans

In a BMT bean, you must explicitly code the beginning and ending of each
transaction. Demarcate transaction boundaries explicitly, using the interface
javax.transaction.UserTransaction. In the following code sample, the JTA
interface is used:

When the updates specified by a transaction are saved, the transaction ends with a
commit. When the transaction fails, it is rolled back, which means that the effects of
all statements in the transaction are undone. When you provide for rollbacks in a
session bean with BMT, don’t use the methods getRollbackOnly or
setRollbackOnly. Those two methods are for use only with an EJB container.

Using Session Synchronization

A stateful CMT session bean can use the session-synchronization interface, which
gives the bean more control over database data cached within transactions.

This interface provides callback methods that the EJB container calls before starting,
committing, or rolling back a transaction. Using this interface, a session bean’s
instance variables are automatically synchronized with their corresponding values in
the database at specific stages in the transaction. If the transaction doesn’t complete,
the session bean can roll back the values of the bean’s instance variables.

■ afterBegin. The container calls this method on the session bean before the first
business method within a transaction. Youcan code this method to do any
database work required by the instance within the scope of the transaction.

■ beforeCompletion. The container calls this method when the session bean’s
client has completed work on its current transaction but before committing the
resource managers used by the instance. You can code this method to write out
any database updates the bean has cached. In this method, you can also cause the
transaction to roll back by invoking the setReadbackOnly method on its session
context.

■ afterCompletion. The container calls this method to signal that the current
transaction has completed. The status True is sent if the transaction committed,
and False if the transaction was rolled back. You can code this method to
manually reset the instance’s state if the transaction was rolled back.

To add the session-synchronization interface to your session bean, make the
following choices in the wizard:

UserTransaction ut = ejbContext.getUserTransaction();
ut.begin();
// perform transactional work here
ut.commit();
Chapter 3 Developing Session Beans 89

1. In the first page of the session bean wizard, in the State section, choose Stateful.

2. In the second page of the wizard, choose Implement Session Synchronization
Interface.

As a result, code like that shown in CODE EXAMPLE 3-4 is inserted into your session
bean class. In the example, checkingBalance and savingBalance variables have
been loaded into the afterBegin method.

The sample afterCompletion method shown in CODE EXAMPLE 3-5 allows the
account-balance fields in the session bean to be refreshed from the database if the
transaction fails and is rolled back.

CODE EXAMPLE 3-4 Example of an afterBegin Method

public void afterBegin() {

System.out.println("afterBegin()");

try {

checkingBalance = selectChecking();

savingBalance = selectSaving();

} catch (SQLException ex) {

throw new EJBException("afterBegin Exception: " +

ex.getMessage());

}

}

CODE EXAMPLE 3-5 Example of an afterCompletion Method

public void afterCompletion(boolean committed) {

System.out.println("afterCompletion: " + committed);

if (committed == false) {

try {

checkingBalance = selectChecking();

savingBalance = selectSaving();

} catch (SQLException ex) {

throw new EJBException("afterCompletion
SQLException: " +

ex.getMessage());

}

}

}

90 Building Enterprise JavaBeans Components • June 2003

After Creating Your Session Bean
Your session bean still needs to be prepared to work in its eventual environment. For
information on the deployment descriptor, how to use property sheets, and other
considerations of module assembly and application deployment, see Chapter 8.

Recommendations for working with finished enterprise beans are given in
Appendix A.

Further Reading
Enterprise beans can be a very powerful and flexible part of your application.
Creating the basic parts of an enterprise bean can be very simple, especially with a
tool like the Sun ONE Studio 5 IDE. However, completing the bean so that it fulfills
the needs of your application can be very complex. For details, refer to Enterprise
JavaBeans Specification, version 2.0 at:
http://java.sun.com/products/ejb/docs.html
Chapter 3 Developing Session Beans 91

http://java.sun.com/products/ejb/docs.html

92 Building Enterprise JavaBeans Components • June 2003

CHAPTER 4

Developing CMP Entity Beans

The EJB Builder in the Sun ONE Studio 5 IDE enables you to program the entity
beans you need to represent data in your J2EE application. This chapter focuses on
how you develop individual entity beans whose persistence is managed by the EJB
container, or CMP entity beans.

The IDE provides wizards that let you create the classes required for an Enterprise
JavaBeans component (enterprise bean): a bean class, interfaces (local, remote, or
both), and sometimes a primary-key class. Much of the task of creating these classes
is automated for you.

When programming entity beans, you have many options in addition to those
described in this chapter. Although the IDE is designed to take care of much of your
coding work, it also supports those options flexibly and leaves many decisions up to
you. For more information, refer to the resources listed in “Before You Read This
Book” on page 18, or to one of the many excellent texts on programming enterprise
beans.

Using the EJB Builder With CMP Entity
Beans
The EJB Builder is a collection of wizards, property sheets, and editors with which
you can build enterprise beans consistently and easily. This tool is installed
automatically with the IDE, and it becomes visible when you choose File → New
from the main window or New → All Templates from the contextual menu in the
Explorer’s Filesystems tab.

You can take several approaches to creating entity beans in the IDE. However, you
get the most comprehensive support and, in general, the fastest path to bean
completion, if you use the approach recommended in this chapter. You can also use
93

the example applications and tutorials, available from the main window’s Help →
Learning menu, to explore different ways of creating enterprise beans. The
methodology described in these documents takes full advantage of the IDE’s ability
to ensure consistency and its adherence to the J2EE standard.

For best results, use the EJB Builder to program entity beans by:

■ Creating an entity bean and its required classes. After using the EJB Builder
wizard, you have the framework of your entity bean. The bean’s three or four
necessary classes and a logical node are shown in the Explorer’s Filesystems tab.
The wizard generates declarations for two of these classes: the home and remote
interfaces. The generated bean class contains declarations of required methods, as
well as any persistent fields you specified. You then supply the implementations
of the required methods.

The logical node is the best place from which to work with an entity bean. All
logical nodes appear in the Explorer with this icon:

■ Adding methods, parameters, and exceptions. Use the IDE’s GUI support as
described later in this chapter. You can add a method to a bean by using a dialog
box available from the contextual menu or by directly editing the set of required
classes.

■ Setting values in a bean’s deployment descriptor. Use the entity bean’s property
sheet, available at the logical node, to edit properties.

From an entity bean’s logical node, you can add methods that are automatically
placed in the appropriate classes, add fields, validate the entire bean, specify
deployment-related properties for the bean, build a test application for the bean, and
create an EJB module to facilitate the bean’s deployment in a production application.
94 Building Enterprise JavaBeans Components • June 2003

Comparing CMP and BMP Entity Beans
Before you begin creating an entity bean, first consider whether to use CMP or BMP.
The IDE’s EJB Builder supports either type of entity bean, but you use different
processes to create each of the two types. A more detailed discussion of this choice is
in Chapter 2. Here, TABLE 4-1 highlights the design considerations.

The rest of this chapter addresses how to create CMP entity beans and issues to
consider during development. For the process of creating BMP entity beans, see
Chapter 6.

TABLE 4-1 Deciding Between CMP and BMP Entity Beans

Issue CMP BMP

Relationship
with the
database

A CMP entity bean depends on
its container to manage its
relationship with a database, and
is not dependent on any
particular data store.

A BMP entity bean handles its own
relationship with a specified database.

Persistence The container manages database
access for this and every other
CMP entity bean in the
application. The bean code does
not include calls to the database.
The bean’s persistent state is
represented by virtual persistent
fields.

A BMP entity bean contains all the code
connecting it to a specified database. A
BMP entity bean with persistent data
(coded as instance variables) also must
contain all necessary calls to the
database. All SQL code must be added
by hand. If your EJB container doesn’t
provide adequate persistence mapping
to the data store, you must create a BMP
entity bean.

Process The basic structure of a CMP
entity bean (the default classes)
is simpler and quicker to create.
Less coding is needed.

A BMP entity bean requires more
coding, which might be an attractive
option for experienced JDBC
programmers.

Design scope A single CMP entity bean
normally represents only one
table, but a bean can be mapped
to two or more tables.

A BMP entity bean can be hand-coded
to represent one or more tables.

Power and
flexibility

A CMP entity bean depends on
its container for access to a
database, but this bean can be
deployed in many different
database environments.

An individual BMP entity bean is
manually programmed for database
access. A BMP entity bean works only in
the environment for which it was
written.
Chapter 4 Developing CMP Entity Beans 95

Creating Sets of Related CMP Entity
Beans
Many J2EE applications contain related CMP entity beans. That is, two CMP entity
beans can have a relationship that is represented by a container-managed
relationship (CMR) field. This relationship is analogous to the situation in a database
or database schema when two entities or tables contain a related column. For
example, a schema might include the tables Customer, Order, LineItem, and
Part. The Order table has a foreign key to the Customer table, LineItem has a
foreign key to Order, and LineItem also has a foreign key to Part.

The IDE makes it easy to create a whole set of related CMP entity beans at once.
When you use the EJB Builder wizard to generate a set of CMP entity beans to
manipulate related database entities, the wizard recreates the entities’ relationships
in your CMP entity beans, and lets you specify additional relationships between
beans. These relationships are represented in a CMP entity bean as CMR fields, and
they can be edited for cardinality, type, and cascade-delete capability.

If you want to create a set of related CMP entity beans, or if you want to preserve
foreign-key relationships between two entity beans, see Chapter 5.

Defining a CMP Entity Bean
The EJB Builder wizard automates much of the task of creating the minimum classes
that your CMP entity bean requires: a bean class, and the interfaces you choose
(local, remote, or both local and remote). If you specify a composite primary key, or
if a table you chose requires a composite primary key, the wizard also creates a
primary-key class for you. To define a CMP entity bean, you take the following
steps:

1. Select or create a package to contain the bean.

2. Use the EJB Builder wizard to generate the infrastructure of your CMP entity
bean.

3. As appropriate, add create, finder, home, select, and business methods to the
bean.

4. Complete the bodies of the methods you added.

5. If necessary, add a primary-key class.
96 Building Enterprise JavaBeans Components • June 2003

These basic steps are explained in detail next.

Creating a Package
If you need to create a package to house your session bean, do as follows:

1. In the IDE’s main window, if the Explorer is not already open, choose View →
Filesystems to open the Explorer window to the Filesystems tab.

2. In the Filesystems tab of the Explorer, select a filesystem, right-click, and choose
New → All Templates.

The New wizard opens the Choose Template page.

3. Select Java Package and click Next.

The wizard displays the New Object Name page.

4. Type a name for the package and click Finish.

The new Java package appears under your filesystem node.

Having a Data Source Ready
A CMP entity bean is modeled on an actual table from a database, and the bean’s
persistent fields echo the table’s columns. Using the EJB Builder Wizard, you can
obtain the table from a live database connection or a database schema object (a
snapshot of one or more tables of a database). Or, in one of the wizard’s pages, you
can manually specify a database table’s columns as your bean’s persistent fields, and
then at deployment the fields can be mapped to the actual database columns.

Notice that EJB containers vary in how they treat column-to-field mappings. The
PointBase database server is included with the IDE, automatically loaded during the
IDE’s installation, and represented in the following examples. If you’re using
another database server with the IDE, refer to its documentation for details.

Consider the following when deciding which form of data source to use:

■ Live database connection. If you plan to build your CMP entity bean from a table
in a live database, the database server must be running and the IDE must be
connected to it. You can do this either before or after you start the EJB Builder
Wizard. The following instructions pertain to starting the server before starting
the wizard. Instructions for starting the server during the wizard sequence are in
“Selecting a Table From a Database Connection” on page 101.
Chapter 4 Developing CMP Entity Beans 97

Note – Before you start the IDE, make sure that the s1studio-install-directory/
lib/ext directory contains the driver files for any database that was not
automatically loaded when the IDE was installed. This is the only way to ensure that
you can select the right database driver when creating your new schema. You can’t
mount the driver files in the Explorer or place the driver files in the
CLASSPATH env variable. Refer to the Sun ONE Studio 5, Standard Edition Getting
Started Guide for details.

Starting: To start the PointBase database, choose Tools → PointBase Network
Server → Start Server from the main window.

Connecting: To connect to the running PointBase database, go to the Runtime tab
of the Explorer. Expand the Databases node. Select the node whose label begins
with jdbc:pointbase:server and whose icon appears broken in two. Right-
click the node and choose Connect. The PointBase icon becomes whole, and you
can expand the node to see the database tables, views, and procedures.

This is the best way to connect to the database, especially if you’re going to be
creating more than one entity bean. Alternatively, you can start the database
before you start the EJB Builder Wizard, and then you can connect to the database
from within the wizard. However, if you do that, you must reconnect for every
entity bean you create.

If you’re using a database that is installed but not yet connected, the EJB Builder
wizard lets you connect during the process of creating a new CMP entity bean.
See “Selecting a Table From a Database Connection” on page 101.

■ Database schema. If you plan to build your bean from a table in a database
schema, you must have the schema available in the Filesystems tab of the IDE’s
Explorer window.

Starting the EJB Builder Wizard
When you’re ready to create a single CMP entity bean, do as follows:

1. In the IDE’s main window, if the Explorer is not already open, choose View →
Filesystems to open the Explorer window to the Filesystems tab.

2. In the Filesystems tab, select the Java package where you want your new CMP
entity bean to reside.

3. Right-click the package and choose New → All Templates.

The New wizard displays the Choose Template page.
98 Building Enterprise JavaBeans Components • June 2003

4. Expand the J2EE node, choose CMP Entity EJB, and click Next.

The New wizard displays the CMP Entity Bean Name and Properties page. Notice
that the panel on the left shows the current step and the steps you still must
complete to generate the infrastructure of your CMP entity bean.

Generating a CMP Entity Bean’s Infrastructure
In the EJB Builder‘s CMP Entity Bean Name and Properties page, as shown in
FIGURE 4-1, you name your CMP entity bean. Here, you also make choices about
where your bean will get its persistent fields and which kinds of interfaces your
bean will have. You can also change the bean’s package location, if you like.

FIGURE 4-1 Selections in the EJB Builder Wizard for CMP Entity Beans

The following tables describe these selections and point to your next instructions in
this chapter.
Chapter 4 Developing CMP Entity Beans 99

In the radio-button box labeled Source for Entities and Fields, consider the following
selections.

In the radio-button box labeled Component Interfaces, consider the following
selections.

When you have made your selection and clicked Next, the wizard presents
appropriate follow-up tasks, which are described next.

Specifying Persistent Fields From a Database Table

If you have chosen to specify persistent fields from a database, you must already be
connected to a live database or have an existing database schema object available.
For more information, see “Having a Data Source Ready” on page 97 and

Table From
Database
Connection

Select this if your CMP entity bean will
represent a table from an existing
database. If you leave the EJB Name field
blank (<default>), the wizard assigns
the bean the the same name as the
database table.

See “Selecting a Table From
a Database Connection” on
page 101.

Table From
Database
Schema Object

Select this if you have a database schema
available, and you don’t want to connect
to a live database. Again, you can use the
default EJB name if you want to make the
table-to-bean correlation obvious.

See “Selecting a Table From
a Database Schema Object”
on page 103.

CMP 2.x Bean
Class

Select this if your CMP entity bean will be
based on an existing bean class that
follows the EJB 2.0 specification.

See “Using a CMP 2.x Bean
Class” on page 104.

CMP 1.x Bean
Class

Select this if your CMP entity bean will be
based on an existing bean class that
follows the EJB 1.x specification.

See “Using a CMP 1.x Bean
Class” on page 105.

Create From
Scratch

Select this if you will specify all the CMP
fields yourself.

See “Creating Your Bean’s
Persistent Fields From
Scratch” on page 106.

Remote Interface Only Select this if an external client calls methods on your CMP entity
bean, and your bean is never called by local clients.

Local Interface Only
(Default)

Leave this selection active if your bean is called only through its
local interfaces, never directly by an external client.

Both Remote and Local
Interfaces

Select this if your bean is called by both external and local
clients (which can also be other beans).
100 Building Enterprise JavaBeans Components • June 2003

“Capturing a Database Schema” on page 103. The EJB Builder wizard maps columns
from a table of the database (Table from Database Connection) or from a schema
(Table from Database Schema Object) to create your entity bean’s persistent fields.
Both choices provide the same result in your finished entity bean.

Most application servers let you map a bean’s CMP fields to database columns at
deployment time. The server then dynamically generates SQL statements for that
mapping within the server process.

Selecting a Table From a Database Connection

If you have direct access to the database itself, and if contention among database
users is not a problem, you might want to use the direct database connection. (If you
need to start and connect to a database, see “Having a Data Source Ready” on
page 97.)

You should now be in the wizard’s Table from Database Connection page. The
databases to which you can connect your entity bean appear in the wizard page’s
tree view. Do as follows:

1. Select a database.

Depending on the status of the database, use one of the following approaches.

■ The database is installed but no connection is available yet. If you have a
database installed but no connection is defined, click Add Connection. In the New
Database Connection dialog box, do as follows:

a. Select the database from the Name combination box.

b. Check the Driver field to make sure the path is correct.

c. Specify the required information in the Database URL field.

d. Supply a user name and password if any are needed for your database.

e. Check the Remember Password During This Session box if appropriate.

f. Click OK. In the wizard’s Table from Database Connection page, click Next.

The connection becomes available.

■ The database is installed and the connection is available but not active. If you
have a database installed and a connection is defined but not active, the database
node is shown as a broken icon. Do as follows:

a. Select the database and click Connect to Database.

The broken halves become a whole icon.

b. Expand the database node and the Tables sub-node.
Chapter 4 Developing CMP Entity Beans 101

If you get an Unable to connect error message, make sure that the database
is up and running.

■ The database is installed and the connection is active. If your connection to the
database is already defined and active, the icon appears whole already. All you
need to do is expand the database node and the Tables sub-node.

2. Descend through the selected database’s hierarchy until you see a node for the
table that you want to map to your bean. Select a table and click Next.

You see the CMP Fields page, displaying side by side the columns in your database
table and the corresponding fields that the EJB Builder Wizard will create in your
new CMP entity bean. The wizard will map those database columns to your bean’s
persistent fields.

3. Check the Java field names and types, and make any necessary changes.

The IDE has assigned default names and types to your Java fields. You can change
the names and types if necessary, selecting a field and clicking the Edit button to see
other permissible data types.

For more information, refer to Chapter 8, “Mapping SQL and Java Types” of Getting
Started with the JDBC API. You can find the document at:

http://java.sun.com/j2se/1.4.1/docs/guide/jdbc/getstart/
GettingStartedTOC.fm.html

4. Click Next. (Or, if you don’t want to examine or change the default classes that the
wizard assigns, skip this step and click Finish.)

The CMP Entity Bean Class Files page of the wizard appears, listing the parts of
your entity bean’s infrastructure: the bean class, the interfaces you chose (local,
remote, or both), and the type of the primary-key class.

In this page, you can accept or change your bean’s classes. The wizard lets you
specify another bean class, interface, or primary-key class if you wish. As you see if
you click one of the Modify buttons, you can specify another package for the class or
interface to reside in or to come from.

■ For example, you can change the package name on one or more of the related
objects so that the bean class is in one directory and the home and remote
interfaces are in another.

However, first you should find out whether the application server you plan to use
supports this distribution of files.

■ If you specify an existing class or interface that is missing any required methods
or exceptions, you get an error message.

■ You must use valid Java identifiers in package and directory names.

5. Click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder.
See “Looking at a CMP Entity Bean’s Classes” on page 108 for more discussion.
102 Building Enterprise JavaBeans Components • June 2003

http://java.sun.com/j2se/1.3/docs/guide/jdbc/getstart/GettingStartedTOC.fm.html

Capturing a Database Schema

You might need to build your CMP entity bean on a table from a database schema
rather than connecting directly to the database. If you don’t already have a schema,
you can use the IDE’s Database Schema wizard to create one. First, if you need to
start and connect to a database, see “Having a Data Source Ready” on page 97. Then
do as follows:

1. In the IDE, open the Database Schema wizard in one of the following ways:

■ Select the package node in the Explorer. Right-click and choose New → All
Templates. Expand the Databases node, select Database Schema, and click Next.
The New wizard displays the New Object Name page.

■ From the main window, choose Tools → Capture Database Schema. The New
wizard displays the Database Schema: Target Location page.

Both of these wizard pages give you the same end result.

2. As directed by the wizard, specify the database to be used and select the tables to
be included in your schema.

You can give your database schema a name, or the wizard automatically names it
DatabaseSchema.

The IDE reads table definitions from the database to create the schema. A progress
bar shows the number of tables and views captured. The resulting schema object
appears under the package node you specified.

Selecting a Table From a Database Schema Object

If database access is restricted but schema objects have been made available, you
might want to build your CMP entity bean using a table from a schema. (If you
don’t have a schema available and need to create one, see the foregoing section.)

Having selected Table from Database Schema Object on the first page of the wizard,
you should now be in the Table from Database Schema Object page. The directories
that have been mounted in the Explorer’s Filesystems tab appear in the wizard page.
Do as follows:

1. Locate the database schema that contains the table on which you will build your
bean.

Descend through the selected schema’s hierarchy until you see a node for the table
that you want to map to your bean.

2. Expand the schema’s nodes until you find the table you want to use. Select the
table.

The Next and Finish buttons become active.
Chapter 4 Developing CMP Entity Beans 103

3. Click Next to review the database columns that will be mapped to your bean’s
persistent fields. (Or, click Finish to skip this step and the next, and have the
wizard generate your bean’s infrastructure.)

The CMP Fields page appears, displaying side by side the columns in your database
table and the corresponding fields that the EJB Builder will create in your entity
bean. You can change field names and types if necessary, selecting a field and
clicking the Edit button to see other permissible data types.

4. Click Next to examine or change the default classes that the wizard assigns. (Or,
click Finish to skip this step and have the wizard generate your bean’s
infrastructure.)

The CMP Entity Bean Class Files page of the wizard appears, listing the parts of
your entity bean’s infrastructure: the bean class, the interfaces you chose (local,
remote, or both), and the type of the primary-key class.

In this page, you can accept or change your bean’s classes. The wizard lets you
specify another bean class, interface, or primary-key class if you wish. As you see if
you click one of the Modify buttons, you can specify another package for the class or
interface to reside in or to come from.

■ For example, you can change the package name on one or more of the related
objects so that the bean class is in one directory and the home and remote
interfaces are in another.

However, first you should find out whether the application server you plan to use
supports this distribution of files.

■ If you specify an existing class or interface that is missing any required methods
or exceptions, you get an error message.

■ You must use valid Java identifiers in package and directory names.

5. Click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder
See “Looking at a CMP Entity Bean’s Classes” on page 108 for more discussion. .

Using a CMP 2.x Bean Class

You might want to base your new CMP entity bean on an existing CMP entity bean
that was created in the EJB 2.0 environment. In the wizard’s CMP Entity Bean Name
and Properties page, you select CMP 2.x Bean Class and click Next. The wizard then
presents a navigation list from which you pick a bean class.

You should now be in the Select a CMP 2.x Bean Class page. Do as follows:

1. Navigate to the bean class you want to use, and select the class.

Notice that the IDE presents only the bean class for selection, not the other elements
of the bean. When you have selected the class, the Next button is enabled.
104 Building Enterprise JavaBeans Components • June 2003

2. Click Next.

The IDE presents the fields of the bean class you selected. Even if the original CMP
entity bean had a primary key, in this page you must designate one or more fields as
the primary key.

3. Select the field that should be the primary key and click Edit.

The Edit Persistent Field dialog box appears.

4. Make any necessary changes, including checking the Primary Key checkbox, and
click OK.

The CMP Fields page shows the field you edited as the primary key.

Repeat Step 3 and Step 4 as needed for another field, if your bean needs a composite
primary key.

In this page, you can’t remove a field or add a new field, but you can edit an existing
one.

5. Click Next.

The CMP Entity Bean Class Files page lists the elements of the CMP entity bean you
are about to create.

If your bean needs to use another interface, use the Modify Interface button to
specify it.

If your bean needs a different primary key class, either a new one or an existing one,
use the Modify Class button to specify it.

6. When you are done, click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder.
See “Looking at a CMP Entity Bean’s Classes” on page 108 for more discussion.

Using a CMP 1.x Bean Class

You might want to base your new CMP entity bean on an existing CMP entity bean
that was created in the EJB 1.0 environment. If you choose this option, your bean
will be a version 2.0 Enterprise JavaBean with a CMP version of 1.x, and the bean
will not support EJB 2.0 features like local and local home interfaces.

In the wizard’s CMP Entity Bean Name and Properties page, you select CMP 1.x
Bean Class. (Notice that, when you’ve made this selection, only remote interfaces are
available.) Click Next. The wizard then presents a navigation list from which you
pick a bean class.

You should now be in the Select a CMP 1.x Bean Class page. Do as follows:
Chapter 4 Developing CMP Entity Beans 105

1. Navigate to the bean class you want to use, and select the class.

Notice that the IDE presents only the bean class for selection, not the other elements
of the bean. When you have selected the class, the Next and Finish buttons are
enabled.

2. Click Next.

The IDE presents the fields of the bean class you selected. Even if the original CMP
entity bean had a primary key, in this page you must designate one or more fields as
the primary key.

3. Select the field that should be the primary key and click Edit.

The Edit Persistent Field dialog box appears.

4. Make any necessary changes, including checking the Primary Key checkbox, and
click OK.

The CMP Fields page shows the field you edited as the primary key.

Repeat Step 3 and Step 4 as needed for another field, if your bean needs a composite
primary key.

In this page, you can’t remove a field or add a new field, but you can edit an existing
one.

5. Click Next.

The CMP Entity Bean Class Files page lists the elements of the CMP entity bean you
are about to create.

If your bean needs to use another interface, use the Modify Interface button to
specify it.

If your bean needs a different primary key class, either a new one or an existing one,
use the Modify Class button to specify it.

6. When you are done, click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder.
See “Looking at a CMP Entity Bean’s Classes” on page 108 for more discussion.

Creating Your Bean’s Persistent Fields From Scratch

In the EJB Builder’s Entity EJB Type page, you might have selected Create From
Scratch because your database hasn’t yet been created, you don’t yet have access to
it, or you don’t know its location. Or, you might want the application server to create
the database when the application that contains the enterprise bean is deployed.

Your CMP entity bean’s container might require that your bean be mapped to a
database, but not until the assembly and deployment stage. When you select the
Create From Scratch option, the fields you specify are marked as persistent in the
106 Building Enterprise JavaBeans Components • June 2003

deployment descriptor, which is later used to notify the container which fields it
should map into the database schema. This mapping is done just before the J2EE
application is deployed.

The IDE gives you the option of setting up your entity bean’s connection by stating
your bean’s Java field names. Later, during preparation for deployment, you can
specify the rest of the database connection information.

In the wizard’s CMP Entity Bean Name and Properties page, do as follows:

1. In the EJB Name field, type a name for your bean.

2. If you want your bean to reside in a different location than shown, use the Browse
button to select an existing Java package.

3. Select Create From Scratch and click Next.

The CMP Fields page appears. The wizard has automatically supplied your bean one
default CMP field named defaultField.

4. If you want to name your CMP fields at this time, select the default field and click
Edit.

Name and define your field, following these guidelines:

■ Ordinarily, you would specify at least one primary-key field. However, a CMP
entity bean is not strictly required to have a primary key.

■ If your field needs a type not supplied in the combo box, you can specify another
type. Type the fully qualified pathname, for example, java.lang.Integer.

5. Click Add to define each additional persistent field individually.

6. Click Next to examine or change the default classes that the wizard assigns. (Or,
click Finish to skip this step and have the wizard generate your bean’s
infrastructure.)

The wizard’s CMP Entity Bean Class Files page appears, listing the parts of your
entity bean’s infrastructure: the bean class, the interfaces you chose (local, remote, or
both), and the type of the primary-key class.

In this page, you can accept or change your bean’s classes. The wizard lets you
specify another bean class, interface, or primary-key class if you wish. As you see if
you click one of the Modify buttons, you can specify another package for the class or
interface to reside in or to come from.

■ For example, you can change the package name on one or more of the related
objects so that the bean class is in one directory and the home and remote
interfaces are in another.

However, first you should find out whether the application server you plan to use
supports this distribution of files.

■ If you specify an existing class or interface that is missing any required methods
or exceptions, you get an error message.
Chapter 4 Developing CMP Entity Beans 107

■ You must use valid Java identifiers in package and directory names.

7. Click Finish.

Your CMP entity bean’s infrastructure is generated automatically by the EJB Builder
Wizard. Now let’s look at the generated classes.

Looking at a CMP Entity Bean’s Classes
The EJB Builder wizard generates the default CMP entity bean classes for you and
sets up the relationships between all the classes. FIGURE 4-2 shows how a typical
CMP entity bean appears in the Explorer’s Filesystems page. In this example, the
default, Local Interface Only, is in effect. This bean is called only by other
application components running in the same JVM.

FIGURE 4-2 Default Classes of a Typical CMP Entity Bean

Of the four nodes shown in FIGURE 4-2, three represent actual classes (marked with
class icons) and one is a logical node (marked with a bean icon). Do all your editing
in the logical node. The example bean’s primary nodes are described next.

■ The Explorer provides the logical node to group all the elements of your
enterprise bean and let you work with them more conveniently.

■ The bean class implements the javax.ejb.EntityBean interface and
implements the entity bean’s methods.

■ The local interface extends javax.ejb.EJBLocalObject and provides a way
for beans in the same container to communicate.

■ The local home interface extends javax.ejb.EJBLocalHome and provides
signatures for your create and finder methods.

If you created a primary-key class (for example, if your bean has a composite
primary key), the Explorer shows an additional node for your bean.

Bean’s logical node
Bean class
Local interface
Local home interface
108 Building Enterprise JavaBeans Components • June 2003

If you chose Both Remote and Local Interfaces (if your bean might be used
both by beans in their own application’s JVM and by beans in another JVM), the
resulting CMP entity bean has all four interfaces.

■ The remote interface extends javax.ejb.EJBObject and declares the CMP
entity bean’s business methods.

■ The home interface extends javax.ejb.EJBHome and declares the create and
finder methods that the client can call on the CMP entity bean.

Expanding the Nodes
When you expand the nodes under your entity bean’s package node, you see
something like the tree view in FIGURE 4-3. (In this case, the default,
Local Interface Only, has been used.)

Primary-key class

Remote interface

Home interface

Local interface

Local home interface
Chapter 4 Developing CMP Entity Beans 109

FIGURE 4-3 Explorer’s Detailed View of a Typical CMP Entity Bean With Local Interfaces

If you generated a new primary-key class, it appears in the Explorer as shown in
FIGURE 4-4.

Logical node

Local interface

The main parts of
the CMP entity
bean

No create
methods yet

Default finder
method

The bean’s
persistent fields

No home, select,
or business
methods yet

Local home
interface

Bean class
110 Building Enterprise JavaBeans Components • June 2003

FIGURE 4-4 Explorer’s Detailed View of a Typical CMP Entity Bean With a Composite
Primary Key

Logical node

Primary-key
class

Primary-key
class node

Primary key’s
two fields

Methods for
primary-key
class
Chapter 4 Developing CMP Entity Beans 111

Reviewing the Generated Classes
Any fields that were mapped from database columns appear in your CMP entity
bean. In addition, certain default methods are automatically placed in all entity
beans.

Default Finder Method

Because the Enterprise JavaBeans Specification requires every entity bean to be
locatable by its primary key, the method signature findByPrimaryKey is added
automatically to your entity bean’s home interface. In a CMP entity bean, the
method signature is enough because your bean’s container will implement the
findByPrimaryKey method.

Persistent Fields and Accessor Methods

The IDE generates and places in the bean class a get method and a set method for
every persistent field that you specified for your CMP entity bean. To see these
accessor methods, right-click the logical node and choose Open. The Source Editor
opens to display the generated bean class source code. Near the end of the code, you
see something like the following example:

public CustomerLocal findByPrimaryKey(java.lang.Integer aKey)
throws javax.ejb.FinderException;

public abstract java.lang.Integer getCustomerNum();

public abstract void setCustomerNum(java.lang.Integer

customerNum);

public abstract java.lang.String getDiscountCode();

public abstract void setDiscountCode(java.lang.String

discountCode);

public abstract java.lang.String getName();

public abstract void setName(java.lang.String name);
112 Building Enterprise JavaBeans Components • June 2003

The CMP fields themselves are declared in the deployment descriptor. To see them,
select the logical node’s bean class, right-click, and choose View Deployment
Descriptor. Here is a partial example of a deployment descriptor’s XML code that
declares the CMP fields customerNum, discountCode, and name for a CMP entity
bean whose persistence plan, or abstract schema, is known by the name Customer:

If you have not specified any persistent fields, your CMP entity bean contains one
CMP field, called defaultField, and the accessor methods on that field. This field
is automatically made the primary key.

After you use the wizard to define the CMP entity bean, you can always add CMP
fields. Add a field by selecting the bean’s logical node, right-clicking, and choosing
Add CMP Field. You can also designate a new CMP field as a primary key.

After creating your bean, you can still change the name of a CMP field. Make the
change only by selecting the CMP field under the logical node, right-clicking, and
choosing Rename. The EJB Builder prompts you for the extent of the change.

The rest of your CMP entity bean’s persistence (the actual SQL statements your bean
needs for assembly and deployment within the server) is handled later. You make
your bean portable across application and database servers by adding select or
finder methods with EJB QL statements. These EJB QL statements are kept in the
deployment descriptor for the EJB container and application server that you select.
During deployment, this EJB QL code is converted to server-specific database-access
code. Since most persistence is implemented using relational databases, SQL is the
usual target language. For more information, refer to your server’s documentation
or online help.

For details on preparing enterprise beans for deployment, see Chapter 8. For details
on writing EJB QL code, see the IDE’s online help.

<abstract-schema-name>Customer</abstract-schema-name>

<cmp-field>

<field-name>customerNum</field-name>

</cmp-field>

<cmp-field>

<field-name>discountCode</field-name>

</cmp-field>

<cmp-field>

<field-name>name</field-name>

</cmp-field>

...

<primkey-field>customerNum</primkey-field>
Chapter 4 Developing CMP Entity Beans 113

Primary-Key Class and Required Methods

The EJB Builder wizard either mapped the database table’s primary key to a
primary-key field in your CMP entity bean or let you define one or more primary-
key fields. If your bean had a composite primary key, the wizard generated a
primary-key class. (If not, your bean doesn’t contain a primary-key class. Later,
when you need to create the primary-key field that maps to the database table’s
primary key, you must first create the primary-key class. See “Creating a New
Primary Key” on page 119.)

The primary-key class contains the set of data needed to uniquely identify an
instance of the bean. If the bean has a single primary-key field, the wizard uses the
field’s class as the bean’s primary-key class. If the bean has a composite primary key
(one made up of more than one persistent field), the wizard generates a primary-key
class with fields of the same name and type.

In addition, if a new primary-key class was generated, the EJB Builder inserted two
methods required for the container, as follows:

The equals method compares objects with the same id value, that is, keys that
evaluate to the same hash code. Call this method with a key value as its parameter.
The method must ascertain whether the passed key value matches the current key
value.

The hashCode method converts a key to an integer value so that the key can be
looked up quickly in a hash table. Make sure this method returns a hash-code key
for the current instance. The value doesn’t need to be unique, but your entity bean
will have better performance when there is little chance of a duplicate hash value.

The primary-key class must implement the java.io.Serializable interface, not
the java.rmi.Remote interface.

If you plan to use the IDE’s testing feature to exercise your CMP entity bean’s
methods, here are a couple of tips:

■ Include either an all-fields constructor in the bean’s primary-key class or set
methods for the class members.

■ Define an appropriate toString method to make the test application’s display
easier to interpret.

For more information on using the testing feature, see Chapter 9.

public boolean equals(java.lang.Object otherOb) {
...

}
public int hashCode() {

...
}

114 Building Enterprise JavaBeans Components • June 2003

A CMP Entity Bean’s Life-Cycle Methods

The wizard adds the following default life-cycle methods to the bean class of any
entity bean:

Table 4-2 describes the purposes of these methods in a CMP entity bean.

public void setEntityContext(javax.ejb.EntityContext aContext) {
context=aContext;

}
public void unsetEntityContext() {

context=null;
}
public void ejbActivate() {
}
public void ejbPassivate() {
}
public void ejbLoad() {
}
public void ejbStore() {
}
public void ejbRemove() {
}

TABLE 4-2 Purpose of Default Life-Cycle Methods in a CMP Entity Bean
Class

Method Purpose

setEntityContext This method lets you store the EntityContext reference in a
field and populate nonpersistent fields. You can use it to allocate
resources that are independent of the EJB object and last for the
entity bean’s lifetime (resources such as a database-connection
factory). By default, the EJB Builder wizard generates code that
assigns the EntityContext to a nonpersistent field named
context.

unsetEntityContext This method lets you deallocate resources and release memory
used by the entity bean instance, before the container destroys
the instance. By default, the EJB Builder wizard sets the value of
the context field to null.

ejbActivate This method initializes the bean, prepares it for use, and acquires
the resources needed by the instance.

ejbPassivate Before the bean instance is returned to the generic instance pool,
this method releases the resources the bean was using.
Chapter 4 Developing CMP Entity Beans 115

Completing Your CMP Entity Bean
To complete your CMP entity bean, do the following:

■ Define a create method if you want to let the bean’s client insert data into the
database. An entity bean can have more than one create method.

■ If necessary, add or replace a primary key.

■ Define all business methods that your bean needs.

■ Define any finder methods that your bean needs in addition to
findByPrimaryKey.

■ Define one or more home methods if a bean needs to perform an operation that
does not depend on any given bean instance.

■ Define one or more select methods, if you want your CMP entity bean to query
other beans within the same EJB module or to query the database and return a
local or remote interface.

■ Add code, if necessary, to complete your CMP entity bean’s setEntityContext,
unsetEntityContext, ejbActivate, ejbPassivate, and ejbRemove
methods.

You might need to add one or more CMP fields if, while using the wizard, you
didn’t specify all the fields that your bean needs.

Make the basic parts of your additions in the Explorer by using the GUI tools that
the IDE provides under the logical bean node. You provide the content of these
methods as follows:

ejbLoad In a CMP entity bean, this method needs no further coding. The
container calls ejbLoad on a bean instance in the ready state
and synchronizes the bean instance’s state with the state of the
entity in the underlying database.

ejbStore In a CMP entity bean, this method needs no further coding. The
container calls ejbStore on a bean instance in the ready state.
The container synchronizes the state of the entity in the
underlying database with the bean’s state.

ejbRemove In a CMP entity bean, this method does some cleaning up to
prepare for the container’s data deletions.

TABLE 4-2 Purpose of Default Life-Cycle Methods in a CMP Entity Bean
Class (Continued)

Method Purpose
116 Building Enterprise JavaBeans Components • June 2003

1. Name the method and completely define the method signature within the
appropriate dialog box. Select the logical node, right-click, and choose Add Create
Method, Add Business Method, Add Finder Method, Add Home Method, or Add
Select Method. The EJB Builder propagates your method to the right classes of the
CMP entity bean.

2. Finish coding the method body within the Source Editor.

Using Recommended Approaches When Working
With Enterprise Beans
Appendix A discusses the best ways to make changes in your enterprise beans, and
the errors and anomalies that you might see if you use other approaches. As a
general rule, you should work through the logical node rather than the individual
class nodes, use the bean’s property sheets or the Customizer dialog box to edit
methods, and use the IDE’s Source Editor to complete or edit any bean code that
isn’t available to you through one of the dialog boxes.

Defining Create Methods
Your entity bean can have more than one create method. In each bean, the home
interface must have a create method, and the bean class must have corresponding
ejbCreateXxx and ejbPostCreateXxx methods. When you use the
recommended process, the IDE ensures that these methods are generated and
propagated correctly.

In a CMP entity bean, the ejbCreateXxx method typically does the following:

■ Validates client-supplied arguments.

■ Initializes the instance’s variables (in a CMP entity bean, the CMP fields). The
container calls ejbCreate just before writing the bean’s CMP fields to the
database.

The ejbPostCreateXxx method, which the IDE adds automatically, gives the
programmer the opportunity to forward information about the EJB object (such as
the home or remote interface) to any other enterprise beans that need to reference it.
The method can access the remote interface through EntityContext, which the
method receives from the container as a parameter. This method is typically used to
create dependent beans. For example, the Order bean’s ejbCreateLineItem
method might create the given line items in the ejbPostCreateXxx method.

Define a new create method as follows:
Chapter 4 Developing CMP Entity Beans 117

1. Select the CMP entity bean’s logical node, right-click, and choose Add Create
Method.

The Add New Create Method dialog box appears.

2. Name your create method, using (if you like) an extension after create.

Now you need to add parameters to your method.

3. In the dialog box, click Add.

4. In the Enter Method Parameter dialog box, specify the parameter’s type and name.

In a CMP entity bean, the create method must return a primary-key type or the same
type as the primary key. As shown in the code example that follows, the method
signature in the bean class specifies the primary-key type. However, the method
body should return null, because the container manages the primary key of a CMP
entity bean.

5. Click OK.

The method you added now appears in the bean class code as ejbCreateXxx and
in the home interface as create. The method ejbPostCreateXxx also appears in
the bean class. If you happen to have the Source Editor open while you are adding
the method, notice that the code is immediately updated.

An example follows of ejbCreate and ejbPostCreate methods generated in the
bean class:

6. Use the Source Editor to add the return statement and all other necessary code to
your new create method.

public PrimaryKeyType ejbCreate(param1...) throws exc1

public String ejbCreate(java.lang.String custname)
throws CreateException {

}
public void ejbPostCreate(java.lang.String custname)

throws CreateException {
}

118 Building Enterprise JavaBeans Components • June 2003

The create method in CODE EXAMPLE 4-1 is designed for a web application that lets a
bank’s staff look up customer responses to a survey on service quality in the bank’s
branch offices. In the code example, an instance of a CMP entity bean is created with
the fields custname, branchno, and response.

Adding or Replacing a Primary Key
If you have deleted your entity bean’s primary-key class or if you need to add a
primary key to the class, use the property sheet as follows:

1. Select the logical node, right-click, and choose Properties.

The property sheet for your entity bean appears.

2. Select the Primary-Key Class field. Click the ellipsis (…) button.

The Property Editor dialog box appears.

3. Select an existing field or a class you have defined. Click OK.

The Primary-Key Class field now displays the return type of the new field or class.

Creating a New Primary Key
If you need to add a new primary key to an entity bean that has no primary-key
class, you must first add the new primary-key field or fields to the bean. Then, you
use the EJB Builder wizard to create a new entity bean with a primary-key class, for
temporary use. (We’ll call this the temporary bean.) Finally, you specify that the
original bean is to use the new primary-key class.

CODE EXAMPLE 4-1 Example of a Create Method in a CMP Entity Bean Class

public CustomerSurveyKey ejbCreateResponse(java.lang.String custName,
java.lang.String branchNo,java.lang.String response)
throws CreateException {

if ((branchNo == null) || (custName == null)){
throw new CreateException("Both the branch number and

the customer name are required.");
}
setCustName(custName);
setBranchNo(branchNo);
setResponse(response);

return null;
}

Chapter 4 Developing CMP Entity Beans 119

Follow these steps:

1. In the Explorer, find the package of the entity bean that needs a primary-key class.

2. Right-click the package and choose New → All Templates.

3. Expand the J2EE node, select CMP Entity EJB, and click Next.

4. In the wizard, do the following:

a. Specify only the field or fields that your existing entity bean needs for its
primary key.

b. In the next-to-last panel, if you like, you can rename the primary-key class to
correspond to the original bean that will be using the class.

For example, if your bean is named Account, you might rename the class
AccountKey.

5. Click Finish.

Your temporary bean has now been created. Continue as follows:

6. In the Explorer window, if you like, you can delete the temporary bean’s classes
and logical nodes except for the primary-key class.

7. Right-click the original bean’s logical node and choose Properties.

8. In the property sheet’s Properties tab, click the Primary Key Class field and then
the ellipsis (…) button.

The Primary Key Class dialog box opens.

9. Click this option: Select an existing user-defined class.

A file chooser opens.

10. Navigate to the new primary-key class, select it, and click OK.

In the property sheet, the Primary Key Class field changes to show the name of the
new primary-key class.

A warning or error badge might appear on your bean’s logical node. Disregard it for
the moment. Dismiss the property sheet when you are done.

11. Right-click the original bean’s logical node and choose Validate EJB or Error
Information.

The IDE points out any errors you must resolve.
120 Building Enterprise JavaBeans Components • June 2003

12. Fix all errors and revalidate or compile your bean.

The two methods required by the primary-key class, equals and hashcode, are not
regenerated during this process. Typically, therefore, you must change the class
names in the equals method. You might need to specify a different parameter type
in the findByPrimaryKey method and a different return type for any ejbCreate
methods in the bean class.

13. Save your work.

Handling Foreign Keys
If you need to maintain a relationship between CMP entity beans that is
implemented as a foreign key, or if your bean needs multiple access to the data store,
you should consider creating a set of related CMP entity beans instead of creating
the beans separately. The EJB Builder wizard lets you create an entire related set at
once, with the source tables’ foreign keys intact and represented as container-
managed relationships (CMRs) between beans. See Chapter 5 for details.

Defining Business Methods
You add a business method to your CMP entity bean to perform the business logic
that needs to be encapsulated within the entity bean. Usually, a business method
manipulates one or more persistent fields, but it doesn’t access the database directly.
The task of the business method is to update the instance variables. The methods
ejbLoad and ejbStore are called by the EJB container as required by the semantics
of the transaction, and the variables are thus written to the database.

Note – It is best to keep business logic separate from database access code.

Define a business method as follows:

1. Select the logical node, right-click, and choose Add Business Method.

The Add New Business Method dialog box appears.

2. Type a name for the method, and specify a return type, parameters, and
exceptions. Click OK to dismiss the dialog box.

3. Finish the method’s coding in the Source Editor.

Or, in the Add New Business Method dialog box, you can simply type a name for
your new business method, click OK to dismiss the dialog box, and finish the coding
in the Source Editor.
Chapter 4 Developing CMP Entity Beans 121

The business method in CODE EXAMPLE 4-2 is designed for the same application
mentioned in CODE EXAMPLE 4-1. In this example, the bank customer’s phoned-in
comments are retrieved from the database.

To see any method you have created for an enterprise bean, expand the bean’s
logical node and navigate to the sub-node for the kind of method you want to view.
Right-click the method’s node and choose Open. The Source Editor opens the class
directly to the method code.

Adding Finder Methods
The EJB Builder wizard generates a default findByPrimaryKey method for you.
However, if you want your CMP entity bean to run additional queries, you must
define additional finder methods.

Alternatively, if you want a query to return the value of a related entity bean’s
persistent field, or if you don’t need the method to be invocable by a client, you can
use a select method. See “Defining Select Methods” on page 124 for more
information.

Add a finder method as follows.

1. Select the bean’s logical node, right-click, and choose Add Finder Method.

The Add New Finder Method dialog box appears.

2. Type a name for the method, starting with find.

3. Select one of the following return types:

■ A single object, which is shown with a default name
■ A collection
■ An enumeration

4. Specify parameters and exceptions.

CODE EXAMPLE 4-2 Example of a Business Method in a CMP Entity Bean

public java.lang.String retrieveComments() {
return phoneResponse();

}

122 Building Enterprise JavaBeans Components • June 2003

5. Type EJB QL statements into the Select, From, and Where fields.

For detailed EJB QL syntax and examples, see the IDE’s online help. Also see
“Understanding the Application Server’s Generated SQL” on page 194 if you’re
working with a CMP entity bean of an earlier version.

If you’re not ready to input EJB QL statements at this point in the process, you can
turn off the compiler’s requirement for EJB QL code. See “Compiling and Validating
Enterprise Beans” on page 225. However, you must supply the correct EJB QL
statements before you deploy the bean to the application server.

A method’s EJB QL code goes into the deployment descriptor. You can edit or add
EJB QL statements using the Customizer or the method’s property sheets. However,
normally, you shouldn’t edit the bean’s deployment descriptor directly.

6. Click OK when you are finished.

Open the Source Editor directly to a finder method as follows: Go to the CMP entity
bean’s logical node and navigate to Finder Methods. Select the finder method you
want, right-click, and choose Open. In the Source Editor, the home interface class
opens to the finder method. (Finder methods are not declared in the bean class.)

Here are two tasks a finder method in the Account example might do:

■ Find an AccountEJB instance that holds data for a specific account and returns a
remote object for that instance. For that purpose, you select the account by
account number.

■ Find an AccountEJB instance for every overdrawn account and return a
collection of their remote objects. For that purpose, you select for accounts with
negative balances.

You can edit the finder method either using the Customizer (right-click the method’s
node and choose Customize) or using the method’s property sheet (right-click the
method’s node and choose Properties).

Defining Home Methods
You can use a home method to perform an operation that does not depend on any
given instance of the entity bean. A home method, similar to a static method,
contains business logic that applies to all beans of a given class. (A business method,
on the other hand, has an identity and logic unique to one instance of the entity
bean.) A home method does not access the bean’s persistence state (instance
variables) or container-managed relationships.

For example, assume that your CMP entity bean Invoices reflects customer
invoices, and each invoice shows the amount the customer has paid. If you want to
see the total of all outstanding invoices, you can add a home method called
getAmountDue that iterates through the collection of bean instances and invokes a
business method to sum the balance due for all active invoices.
Chapter 4 Developing CMP Entity Beans 123

Define a home method as follows:

1. Select the logical node, right-click, and choose Add Home Method.

The Add New Home Method dialog box appears.

2. Type a name for the method.

3. Specify the return type, parameters, and exceptions.

4. Click OK when you are finished.

Alternatively, you can simply type a name for your new home method, click OK,
and finish the coding in the Source Editor.

If the CMP entity bean has two client views (both kinds of interfaces), the EJB
Builder asks you whether to include the home method on the local home interface,
the (remote) home interface, or both.

The IDE adds the home method to the home interface or interfaces, and it adds the
corresponding ejbHome method to the bean class.

Defining Select Methods
You can add one or more select methods if you want your CMP entity bean to query
the database and return a local or remote interface (or a collection of interfaces), or if
you want the method to return the value of a related entity bean’s persistent field (or
a collection of those values). A select method is related directly to the get method
that is created when a relationship between CMP entity beans is defined, and the
select method can be invoked only by a method (usually a business method) within
the entity bean class. A select method is not exposed in any remote-type interface,
and so it can’t be invoked by a client.

Add a select method as follows:

1. Select the bean’s logical node, right-click, and select Add Select Method.

2. Type a name for the method starting with ejbSelect.

3. Select one of the following return types:

■ A single object, which is shown with a default name
■ Any other type on the combination box list

4. Specify parameters and exceptions.

5. Type EJB QL statements into the Select, From, and Where fields.

For detailed EJB QL syntax and examples, see the IDE’s online help.

6. Click OK when you’re finished.
124 Building Enterprise JavaBeans Components • June 2003

You can edit the select method either using the Customizer (right-click the
method’s node and choose Customize) or using the method’s property sheet (right-
click the method’s node and choose Properties).

The EJB QL code that you supply goes into the deployment descriptor. You can edit
or add EJB QL statements using the Customizer or the method’s property sheets.
However, you can’t edit the bean’s deployment descriptor directly.

Defining Private Methods
If you want to make sure a business method can’t be overridden by a subclass, you
can define the method as private. This ensures that the method is treated as final. To
create a private business method, do as follows:

1. Expand the entity bean’s logical node.

2. Right-click the Bean Class node and choose Add → Method.

The Add New Method dialog box appears.

Notice that this dialog box lets you define the method’s level of access (public,
private, or protected) and select other modifiers (abstract, static, transient, native,
final, synchronized, and volatile).

As with other business methods, you can use this dialog box to define parameters
and exceptions, or you can finish all the method’s code in the Source Editor.

Defining Additional Fields
After creating your CMP entity bean, you can add CMP fields as follows:

● Select the logical node, right-click, and choose Add CMP Field.

Note – Don’t use the Source Editor to code the field directly in your bean class. The
IDE has no way to identify the field as persistent in the deployment descriptor.
Chapter 4 Developing CMP Entity Beans 125

After Creating Your CMP Entity Bean
Your CMP entity bean is now finished except for a few steps that prepare the bean to
work in its eventual environment. These final steps are described in Chapter 8.

Recommendations for working with finished enterprise beans are given in
Appendix A.

Further Reading
Enterprise beans can be a very powerful and flexible part of your application.
Creating the basic parts of an enterprise bean can be very simple, especially with a
tool like the Sun ONE Studio 5 IDE. However, completing the bean so that it fulfills
the needs of your application can be very complex. For details, refer to the following
documents:

■ Enterprise JavaBeans Specification, version 2.0 at:
http://java.sun.com/products/ejb/docs.html

■ The J2EE Tutorial at:
http://java.sun.com/j2ee/tutorial/
126 Building Enterprise JavaBeans Components • June 2003

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/CMP3.html

CHAPTER 5

Developing Sets of Related CMP
Entity Beans

Many J2EE applications contain related entity beans that use container-managed
persistence (CMP entity beans). That is, two CMP entity beans in an application
might contain a bean-to-bean relationship field, representing the way different
entities or tables in a database or a database schema might contain a related column.
For example, a schema might include the tables Customer, Order, LineItem, and
Part. The Order table has a foreign key to the Customer table, LineItem has a
foreign key to Order, and LineItem also has a foreign key to Part.

This chapter describes how to use the EJB Builder in the Sun ONE Studio 5 IDE to
create a set of related CMP entity beans all at once, along with the necessary
interfaces. You can generate CMP entity beans from all entities in a database or
schema model, or you can select a subset of the entities. The wizard automatically
places the generated beans in an EJB module (see Chapter 8 for more information on
modules).

The wizard also considers any relationships between the entities in the data source
and preserves the relationships in the resulting CMP entity beans as logical entities
called CMR fields. In fact, the IDE does not allow you to accidentally overlook a
relationship between two database tables.

The wizard automates or prompts you for all the tasks involved in creating the
infrastructure of a set of related CMP entity beans.

When programming a set of related CMP entity beans, you have many options in
addition to those described in this chapter. For more information, refer to the
resources listed in “Before You Read This Book” on page 18, or to one of the many
excellent texts on programming enterprise beans.
127

Using the EJB Builder With Sets of
Related CMP Entity Beans
The EJB Builder is a collection of wizards, property sheets, and editors with which
you can build enterprise beans consistently and easily. You get the most
comprehensive support and, in general, the fastest path to bean completion, if you
use the EJB Builder’s wizards and the approach recommended in this chapter. The
methodology described here takes full advantage of the IDE’s ability to ensure
consistency and its adherence to the J2EE standard.

Creating All Related CMP Entity Beans at Once
For best results, use the EJB Builder to program CMP entity beans by:

■ Creating a set of CMP entity beans and their required classes. After using the
EJB Builder wizard, you have the framework of your set of related CMP entity
beans. Each bean, with its necessary class, interfaces, and a logical node, is shown
in the Explorer’s Filesystems tab. The wizard generates declarations for the
interfaces. Each CMP entity bean’s generated bean class contains declarations of
required methods, as well as persistent fields matching the columns in the data
source.

The wizard prompts you to either include or explicitly exclude related beans. This
way, you can’t miss seeing a bean-to-bean relationship.

The logical node is the best place from which to work with an entity bean. All
logical nodes appear in the Explorer with this icon:

■ Adding methods, parameters, and exceptions. Use the IDE’s GUI support as
described later in this chapter. You can work partly in the GUI and partly in the
Source Editor to complete each CMP entity bean’s method implementations. For
example, you can add a method to a bean by using a dialog box available from
the contextual menu or by directly editing the set of required classes.

■ Setting values in a bean’s deployment descriptor. Use the entity bean’s property
sheet, available at the logical node, to edit properties for deployment purposes.
128 Building Enterprise JavaBeans Components • June 2003

Creating a Set of Related CMP Entity Beans One
at a Time
If you wanted to, you could build a set of related CMP entity beans by hand,
generating the beans individually, adding them to an EJB module, and using the
module’s property sheets to declare the relationships (CMRs) between beans.
However, the EJB Builder wizard does this work for you automatically, and any
relationships between beans are more likely to be complete and accurate if you use
the wizard.

If you can’t take advantage of the EJB container’s persistence management, and you
must create a set of entity beans that manage their own persistence (BMP entity
beans), then you must manually code all relationships between the beans. See
TABLE 4-1 for the differences between CMP and BMP entity beans; see Chapter 6 for
details on creating BMP entity beans.

The rest of this chapter addresses how to create a set of related CMP entity beans all
at once, using the wizard, and issues to consider during development.

Defining a Set of Related CMP Entity
Beans
The EJB Builder wizard automates much of the task of creating the components of
your set of related CMP entity beans. For each CMP entity bean, the wizard does the
following:

■ Creates the minimum required classes, which consist of a bean class and the
interfaces you choose: local only, or both local and remote

■ Creates a primary-key class in the CMP entity bean, if a table you selected
requires a composite primary key or uses a simple Java type for the primary key

■ Creates relationships between CMP entity beans. These relationships appear as
accessor methods that return collections

■ Generates an EJB module to hold your set of related CMP entity beans

To define a set of related CMP entity beans, you take the following steps:

1. Select or create a package to contain the beans and the EJB module.

2. Use the EJB Builder wizard to generate an EJB module and the infrastructure of
the individual, related CMP entity beans.
Chapter 5 Developing Sets of Related CMP Entity Beans 129

3. As appropriate, add create, business, finder, select, and home methods to each
CMP entity bean’s code.

4. Complete the bodies of the methods you added.

These basic steps are explained in detail next.

Creating a Package
If you need to create a package to house your set of related CMP entity beans, select
a filesystem, do as follows:

1. In the IDE’s main window, if the Explorer is not already open, choose View →
Filesystems to open the Explorer window to the Filesystems tab.

2. In the Filesystems tab of the Explorer, select a filesystem, right-click, and choose
New → All Templates.

The New wizard opens the Choose Template page.

3. Select Java Package and click Next.

The wizard displays the New Object Name page.

4. Type a name for the package and click Finish.

The new Java package appears under your filesystem node.

Preparing to Use a Database or Schema
You need to decide whether to model your set of related CMP entity beans on a
database or on a database schema (a snapshot of a database). The EJB Builder wizard
maps columns from a table of the database or schema to create the persistent fields
in your related CMP entity beans. Both choices provide the same result in your
finished entity bean.

When you build a set of related CMP entity beans, the EJB Builder also preserves
any relationships between the database tables and carries them over into the CMP
entity beans in the set.

Consider the following when deciding which form of data source to use:

■ Generating a set of related CMP entity beans from a live database. Assuming
that you have direct access to the database itself, and that contention among
database users is not a problem, you might want to use the direct database
connection to create your set of related CMP entity beans. If so, you must already
have the database up and running before you start the EJB Builder wizard.
130 Building Enterprise JavaBeans Components • June 2003

■ Generating a set of related CMP entity beans from a database schema. If
database access is restricted but schema objects have been made available, you
might want to take a table from a schema. If so, the schema must be available to
you from the IDE’s Explorer window. If you don’t already have a schema, you
must capture one from a database.

For details on starting and stopping the PointBase database server that is
automatically installed with the IDE, and for details on capturing a database schema,
see “Having a Data Source Ready” on page 97.

While you’re creating a set of related CMP entity beans, you need access to the
database, so the server must be running at least until you finish with the EJB Builder
wizard. (Later, when the application that uses the CMP entity beans is being
deployed and is executing, the database and application servers must also be
running, if you want the plugin to create tables.)

The EJB Builder wizard provides information to the application server plugin about
how the original database mapping was derived. If appropriate, the plugin
incorporates this information into its default mapping. EJB containers vary in how
they treat column-to-field mappings. For details, refer to the documentation for your
container and server plugin.

Starting the EJB Builder Wizard
When you’re ready to create a set of related CMP entity beans, do as follows:

1. In the IDE’s main window, if the Explorer is not already open, choose View →
Filesystems to open the Explorer window to the Filesystems tab.

2. In the Filesystems tab, select the Java package where you want your related CMP
entity beans to reside.

3. Right-click the package and choose New → All Templates.

The New wizard displays the Choose Template page.

4. Expand the J2EE node, select Related CMP Entity EJBs, and click Next.

The New wizard displays the Related CMP Entity EJBs page. Notice that the panel
on the left shows the current step and the steps you still must complete before your
set of related CMP entity beans is created.
Chapter 5 Developing Sets of Related CMP Entity Beans 131

Generating the Bean Set’s Infrastructure
Before generating the individual beans’ infrastructure, the wizard asks you to name
a new EJB module that will hold the related CMP entity beans. In the same page, as
shown in FIGURE 5-1, the wizard asks where your CMP entity beans will get their
persistent fields and relationships.

FIGURE 5-1 Selections in the EJB Builder Wizard for a CMP Entity Bean Set

To make these basic decisions about your bean set, do as follows in the Specify EJB
Module Name and Data Source page:

1. Type a name for the module.

If you have used an EJB Builder wizard to create an individual bean, as described in
Chapter 4, you remember that the input field was for the bean’s name. However,
individual beans in a set of related CMP entity beans are named by the wizard a
little later in the generation process. Here, type a name for the module that will
enclose your set of related CMP entity beans.

2. Select a database source:

■ Select Tables from Database Connection if the CMP entity beans you are creating
will represent tables from an existing database. (The database must already be up
and running.) See the next section.

■ Select Tables from Database Schema Object if you want to use an existing schema.
(The schema must have already been created, and it must be in a filesystem to
which you have access through the IDE’s Explorer.) See “Using a Database
Schema Object” on page 138.

3. Click Next.
132 Building Enterprise JavaBeans Components • June 2003

Using a Database Connection

You should now be in the wizard’s Specify the Database Connection page, having
selected Tables From Database Connection in the first wizard page.

Make sure the database you’re using is running. If you’re using a database that is
not supplied with the IDE, make sure that the database driver files are in the
s1studio-install-directory/lib/ext directory, and start the database server.

In the Specify the Database Connection page, do as follows:

1. Click either Existing Connection or New Connection:

■ Select Existing Connection if you want to use an installed or supplied database
and the connection is defined but not active. Select a database from the combo
box. A login dialog box appears. Type the information required by your database
and click OK.

■ Select New Connection if you have a database installed but no connection has
been defined. Select a database driver from the combo box. A login dialog box
appears. Type the information required to connect to your database and click OK.

The tables that you can use to build your set of related CMP entity beans appear in
the next wizard page, Select Database Tables.

2. From the Available Tables list on the left, select the tables you want and add them
to the Selected Tables list on the right.

If you like, the EJB Builder can preserve all relationships between tables and
replicate them in your set of related CMP entity beans.

Or, you can exclude any tables you don’t need, which means that any relationships
between those tables and the ones you have selected are gone. In the latter case, the
EJB Builder treats foreign-key columns and non-foreign-key columns in the same
way.

3. Click Next.

A table that you did select might have a foreign key that references a table you
didn’t select. If this is the case, a warning dialog box appears, listing all the related
tables you didn’t select. Consider whether any CMP entity bean in your set will ever
need access to data in any of those unselected tables.

For example, part of this dialog box is shown next. It contains a list of tables that you
did not select in the previous dialog box. Notice that by default all the tables are
checked for inclusion.
Chapter 5 Developing Sets of Related CMP Entity Beans 133

(The tables shown in this dialog box are those that are left over from the initial
selection list, shown in the previous dialog box, and that are accessible using foreign
keys. The set of tables you selected plus the set of tables in this dialog box constitute
the entire set of tables that would allow all foreign keys to be included in CMRs.)

If you don’t add a particular table to your set of related CMP entity beans now, you
can always do it later. However, at that point, you will also have to specify its
relationships with other CMP entity beans. If you think you might need the table
and your application’s performance isn’t likely to be affected, the least complicated
way is to add it now by leaving its checkbox selected.

4. In the warning dialog box, deselect the checkbox corresponding to any table you
do not want represented in your set of related CMP entity beans.

Don’t forget to use the scrollbar, if one appears.

When you click OK, all tables that you left selected become CMP entity beans in
your set, in addition to any tables you selected explicitly in Step 2.

The Edit CMP Entity EJB Data page appears, showing the EJB module that is about
to be created, the CMP entity beans within that module, the EJB module name, and
the package name. The interesting part of this page is shown next.

In this page, if needed, you can select and edit a CMP entity bean, a field, or a
container-managed relationship (CMR) between two CMP entity beans. The IDE has
assigned default names and types to your beans and their fields, but you can make
changes if necessary.
134 Building Enterprise JavaBeans Components • June 2003

Note – This page is here for your convenience. If you want, after finishing with the
wizard, you can make the same types of changes using the logical nodes of the set of
related CMP entity beans and the EJB module.

5. Edit one or more CMP entity beans, if necessary.

Select one of the included bean nodes and notice how the window changes. An
example is shown next.

Notice the icons that identify CMP fields () and container-managed relationships
().

You can make changes in the following places:

■ (Optional) In the EJB Name field, rename the selected CMP entity bean.

The EJB Builder wizard propagates the change to the bean class, the appropriate
interfaces, and the relationships between the beans.

■ (Optional) In the Abstract Schema Name field, rename the selected bean’s abstract
schema.

As you have been specifying your set of related CMP entity beans, you have also
been automatically creating part of the set’s deployment descriptor, namely, some
declarative instructions to the container for handling your beans’ persistence.
These particular instructions are called the abstract persistence schema or abstract
schema. When you add a finder or select method later (see “Adding Finder
Methods” on page 122), the EJB QL queries in the method use the abstract schema
name.

If you want, you can assign the schema a different name, but the default, which is
the bean name, is recommended.
Chapter 5 Developing Sets of Related CMP Entity Beans 135

■ (Optional) Use the Component Interfaces radio buttons to specify different
interfaces for the selected bean.

Unless you select Both Local and Remote Interfaces, each of the CMP entity beans
in your module is automatically given only a local interface and a local home
interface. If a CMP entity bean will be used by beans in another container (or, to
be more specific, in another JVM), then the bean needs both local and remote
interfaces.

6. Edit one or more CMP fields, if necessary.

Select a CMP field and notice how the window changes. An example is shown next.

If necessary, make changes in the following places:

■ (Optional) In the CMP Field Name field, overwrite the default name with another
name.

The EJB Builder wizard propagates the change to the bean class and the
appropriate interfaces, maintaining any relationship between this and another
field.

■ (Optional) In the CMP Field Type field, select another type for the field.

7. Edit a relationship between two CMP entity beans, if necessary.

The EJB Builder wizard shows any relationship between two beans as a separate
node. This node does not represent an actual object. It’s just a logical node, labeled
to show that a container-managed relationship (CMR) exists between the bean
you’ve selected and the bean named in the label. This relationship between CMP
entity beans is like the relationship between tables with a foreign key.

In the example shown next, the ProductCodeTbl bean has a CMR with the
ProductTbl bean, since the corresponding tables have a foreign key in common.

Select a CMR and notice how the window changes. An example is shown next.
136 Building Enterprise JavaBeans Components • June 2003

Make any necessary changes in the following places:

■ (Optional) In the EJB Relation Name field, change the name that the wizard has
assigned to the relationship between the two beans.

■ (Optional) In the Role Name field, change the role name.

Notice the two CMP entity beans described in the right side of the page. The role
name describes the role of the bean shown in the top of the page as it relates to
the bean in the bottom of the page.

■ (Optional) In the CMR Field Name field, change the field name.

The wizard has given each bean’s CMR field a name that enables the beans to
navigate their relationship. A foreign key, for example, might be mapped to this
CMR field. A relationship can be unidirectional (that is, the two related CMP
Chapter 5 Developing Sets of Related CMP Entity Beans 137

entity beans have only one CMR field between them) or bidirectional (the pair
have two CMR fields). In the example shown here, the relationship is
bidirectional, and so each bean has a differently named CMR field.

A CMR field name becomes an abstract method in the bean class. This abstract
method doesn’t do any work directly on an entity.

If two CMP entity beans have multiple relationships between them, it’s a good
idea to add semantic meaning to the CMR field names. Do that here.

■ (Optional) Select the Cascade Delete checkbox if, when one bean’s relationship
record is deleted, you also want the other bean’s corresponding record to be
deleted.

This decision depends on the semantic meaning of the two beans’ relationships.
For example, an order might have several related line items. The relationship
between an order and a line item should always use Cascade Delete because if the
order doesn’t exist, neither should any of the line items. However, in peer
relationships, deleting the referenced side should not cause the referencing bean
to be deleted.

The EJB container handles referential integrity when it uses CMR fields to operate
on the relationship between two CMP entity beans.

8. When you are done, click Finish.

The infrastructure of your set of related CMP entity beans (the bean classes, the
types of interfaces you specified, and the interbean relationships) is generated
automatically by the EJB Builder. See “Looking at the Components of a CMP Entity
Bean Set” on page 139 for the next step.

Using a Database Schema Object

You should now be in the wizard’s Select Database Schema Object page, having
selected Tables From Database Schema Object in the first wizard page (see
FIGURE 5-1).

If you don’t already have a schema, you can use the IDE’s Database Schema wizard
to create one, as discussed in “Capturing a Database Schema” on page 103. Make
sure you can get to the schema through the IDE’s Explorer.

In the Select Database Schema Object page, you see the filesystems to which you
have access through the Explorer. Your schema should be there. Do as follows:

1. Select the database schema that contains the tables you want represented in your
set of related CMP entity beans, and click Next.

You see a side-by-side display that consists of the list of available tables in your
database schema and a blank page labeled Selected Tables.
138 Building Enterprise JavaBeans Components • June 2003

2. From the Available Tables list on the left, select the tables you want and add them
to the Selected Tables list on the right.

From this point on, the process and the GUI are just as described in “Using a
Database Connection” on page 133:

a. When you have selected all your tables, click Next.

b. In the next dialog, deselect the checkbox of any table you don’t want in your set
of related CMP entity beans. Click OK.

c. In the Edit CMP Entity EJB Data page, edit beans, fields, or relationships as
needed.

3. When you are done, click Finish.

The infrastructure of your set of related CMP entity beans is generated automatically
by the EJB Builder.

Looking at the Components of a CMP
Entity Bean Set
The EJB Builder wizard generates the basic CMP entity bean classes for you and sets
up the relationships between all the beans and their classes. FIGURE 5-2 shows how a
typical set of related CMP entity beans and their EJB module appear in the
Explorer’s Filesystems tab. In this example, the default, Local Interfaces Only, has
been selected for a CMP entity bean whose references are to objects in the same
container, while Both Local and Remote Interfaces has been selected for another
CMP entity bean.
Chapter 5 Developing Sets of Related CMP Entity Beans 139

FIGURE 5-2 Default Classes of a Typical Set of Related CMP Entity Beans

With the exception of the EJB module node, the nodes in represent the same
components as are described in “Looking at a CMP Entity Bean’s Classes” on
page 108. Again, notice each bean’s logical node marked with a bean icon. Do all
your editing in the logical node.

Expanding the EJB Module’s Node
The interesting difference lies in the bean-to-bean relationships in a set of related
CMP entity beans. Those relationships are stored and displayed at the level of the
EJB module, as shown in FIGURE 5-3.

Bean class
Logical node of the OrderTbl bean

Local interface
Local home interface

EJB module enclosing the entire set
of related CMP entity beans

Remote interface of the
SalesTaxCode CMP bean

Logical node
Bean class
Home interface
Local interface
Local home interface
140 Building Enterprise JavaBeans Components • June 2003

FIGURE 5-3 Expanded Nodes of an EJB Module Containing Related CMP Entity Beans

Notice the module’s component bean nodes and relationship nodes. Notice also that
the beans displayed in the EJB module are only logical links, not copies of the actual
beans.

Reviewing the Generated Classes
Certain default methods, described in Chapter 4, are automatically placed in all
CMP entity beans. For details, see the discussion in “Reviewing the Generated
Classes” on page 112.

Completing Your Set of Related CMP
Entity Beans
To complete your set of related CMP entity beans, do the following:

■ Add any other CMP entity beans that your set needs, along with relationships to
beans already in the set.

■ Edit CMRs as needed.

■ Define a create method if you want to let a bean’s client insert data into the
database. An entity bean can have more than one create method, and adding
create methods is the same regardless of whether the CMP entity bean is on its
own or in a set of related beans. Follow the instructions in “Defining Create
Methods” on page 117.

■ If necessary, add or replace a primary key. Again, you do this in the same way for
all CMP entity beans. See the instructions in “Adding or Replacing a Primary
Key” on page 119.

EJB module node
CMP entity bean node

CMR node
Chapter 5 Developing Sets of Related CMP Entity Beans 141

■ Define all business methods that each of your beans needs, as explained in
“Defining Business Methods” on page 121.

■ Define any finder methods that your beans need in addition to
findByPrimaryKey. Instructions are in “Adding Finder Methods” on page 122.

■ Define one or more home methods if a bean needs to perform an operation that
does not depend on any given bean instance. See “Defining Home Methods” on
page 123.

■ Define one or more select methods, if you want a CMP entity bean to query other
beans within the same EJB module or to query the database and return a local or
remote interface. Details are in “Defining Select Methods” on page 124.

■ Add code, if necessary, to complete a bean’s setEntityContext,
unsetEntityContext, ejbActivate, ejbPassivate, and ejbRemove
methods.

You might need to add one or more CMP fields to a bean if all the needed fields
were not generated for you.

Make the basic parts of your additions in the Explorer by using the GUI tools that
the IDE provides under the logical bean node. Provide the content of a method as
follows:

■ Name the method and completely define the method signature within the
appropriate dialog box. Select the logical node, right-click, and choose Add Create
Method, Add Business Method, Add Finder Method, Add Home Method, or Add
Select Method. The EJB Builder propagates your method to the right classes of the
CMP entity bean.

■ Finish coding the method body within the Source Editor.

Using Recommended Approaches When Working
With Enterprise Beans
Appendix A discusses the best ways to make changes in your enterprise beans, and
the errors and anomalies that you might see if you use other approaches. As a
general rule, you should work through the logical node rather than the individual
class nodes, use the bean’s property sheets or the Customizer dialog box to edit
methods, and use the IDE’s Source Editor to complete or edit any bean code that
isn’t available to you through one of the dialog boxes.

Adding a Bean to the Set
After generating your set of related CMP entity beans, you might find that you need
another bean to represent a database table you didn’t select. If so, follow these steps:
142 Building Enterprise JavaBeans Components • June 2003

1. Decide which CMP entity bean you will add to the set.

Since the wizard has already generated the CMP entity beans in your existing set,
the CMP entity bean you add to the set must already be generated, either as a single
bean or as part of another set of related CMP entity beans.

2. Select the EJB Module node of your set of related CMP entity beans, right-click,
and choose Add EJB.

The Add EJB to EJB Module dialog box appears. The tree view shows all filesystems
mounted in the IDE’s Explorer window.

3. Find the CMP entity bean you want to add to your set, select it, and click OK.

The bean is added to your set of related CMP entity beans.

4. Expand the EJB module node to see the set of related CMP entity beans, including
the CMP entity bean you just added.

The bean you added appears without any relationships defined to other beans. In
the following example, the new bean is Customer.

Now you need to add any relationships needed by your new CMP entity bean or by
other beans in the set.

5. Under the EJB Module node, select the two CMP entity beans between which you
want to add a relationship.

In this example, the Customer and OrderTbl bean nodes are selected.

6. Right-click and choose Add EJB Relation.

The Add EJB Relation dialog box appears, as shown next. The dialog box has three
main sections: a field that names the relationship between the two CMP entity beans,
a section describing the first entity bean, and a section describing the second entity
bean.
Chapter 5 Developing Sets of Related CMP Entity Beans 143

7. Define the relationship between the two CMP entity beans.

The wizard has populated the fields with default information based on existing
information for the two selected beans. If necessary, you can make changes in the
following places:

■ (Optional) In the EJB Relation Name field, rename the relationship between the
two beans.

■ (Optional) In the Relationship Role Name field for either entity bean, give another
name to the role that the bean plays in the relationship.
144 Building Enterprise JavaBeans Components • June 2003

■ (Optional) In the CMR Field Name field for either entity bean, specify by another
name the field that relates the two beans.

■ (Optional) In the CMR Type field for either entity bean, choose another type.
However, if you don’t change the CMR Field Name, you probably should leave
the CMR Type as it is.

■ (Optional) In the Multiplicity of BeanName section for either entity bean, change
the cardinality of that bean in the relationship. However, if you don’t change the
CMR Field Name or the CMR Type field, you probably should leave the
Multiplicity section as it is. Notice that if the radio button labeled Many is
selected, the Cascade Delete BeanName checkbox becomes available.

8. Click OK when you’re done.

Under the EJB Module node, the bean to which you added a relationship now shows
a relationship badge added to its main icon:

After Creating Your Set of Related CMP
Beans
Your set of related CMP entity beans is now finished except for a few steps that
prepare the set to work in its eventual application environment. These final steps are
described in Chapter 8.

Recommendations for working with finished enterprise beans are given in
Appendix A.
Chapter 5 Developing Sets of Related CMP Entity Beans 145

146 Building Enterprise JavaBeans Components • June 2003

CHAPTER 6

Developing BMP Entity Beans

The previous two chapters covered the development of entity beans that delegate
their persistence management to the EJB container. This chapter discusses how to
create and work with entity beans that contain all the code needed to manage their
own persistence, that is, bean-managed persistent (BMP) beans. There are many
similarities between the development of CMP beans and BMP entity beans; this
chapter focuses mainly on the differences.

The Sun ONE Studio 5 IDE provides wizards that let you create the classes required
for any BMP entity bean: a bean class, remote or local interfaces or both, and
sometimes a primary-key class. To start with, the EJB Builder wizard automates the
task of creating a BMP entity bean’s infrastructure.

When programming entity beans, you have many options in addition to those
described in this chapter. Although this IDE is designed to take care of generating
your beans’ required classes and method declarations, it flexibly supports many
options and leaves many decisions up to you. For more information, refer to the
resources listed in “Before You Read This Book” on page 18, or to one of the many
excellent texts on programming enterprise beans.

Deciding on an Approach
You can take several approaches to creating entity beans in the IDE. However, you
get the most comprehensive support and, in general, the fastest path to bean
completion, if you use the approach recommended in “Using the EJB Builder With
CMP Entity Beans” on page 93. This methodology takes full advantage of the IDE’s
ability to ensure consistency and its adherence to the J2EE standard.

If you’re not sure whether your entity bean needs to manage its own persistence,
look at TABLE 4-1.
147

Building a BMP Entity Bean
The EJB Builder wizard generates your BMP entity bean’s default classes. However,
the wizard makes no assumptions about how you want your BMP entity bean to
interact with a database. The initial process of setting up the default classes can,
therefore, be very brief. To create a BMP entity bean, you take the following steps:

1. Select or create a package to contain the BMP entity bean.

2. Use the EJB Builder wizard to generate the infrastructure of your BMP entity
bean.

3. As appropriate, add a primary-key class to the bean.

4. As appropriate, add create, business, home, and finder methods to the bean’s
code.

5. Complete the bodies of the methods you added.

6. Write all persistence code. Complete any methods that affect data in the database.

The basic steps are discussed next.

Creating a Package
If you need to create a package to house your session bean, do as follows:

1. In the IDE’s main window, if the Explorer is not already open, choose View →
Filesystems to open the Explorer window to the Filesystems tab.

2. In the Filesystems tab of the Explorer, select a filesystem, right-click, and choose
New → All Templates.

The New wizard opens the Choose Template page.

3. Select Java Package and click Next.

The wizard displays the New Object Name page.

4. Type a name for the package and click Finish.

The new Java package appears under your filesystem node.
148 Building Enterprise JavaBeans Components • June 2003

Starting the EJB Builder Wizard
When you’re ready to create a BMP entity bean, do as follows:

1. In the IDE’s main window, if the Explorer is not already open, choose View →
Filesystems to open the Explorer window to the Filesystems tab.

2. In the Filesystems tab, select the Java package where you want your BMP entity
bean to reside.

3. Right-click the package and choose New → All Templates.

The New wizard displays the Choose Template page.

4. Expand the J2EE node, choose BMP Entity EJB, and click Next.

The New wizard displays the BMP Entity Bean Name and Properties page. Notice
that the panel on the left shows the current step and the steps you still must
complete.

Generating a BMP Entity Bean’s Infrastructure
In the BMP Entity EJB page of the wizard, do as follows:

1. Type a name for your BMP entity bean.

2. Decide whether to give your BMP entity bean only a local interface (the default),
only a remote interface, or both.

If necessary, you can change the package location of the bean.

3. Click Next. (Or, if you like, skip to the next step.)

The BMP Entity Bean Class Files page shows the class files that will be generated for
your BMP entity bean. If necessary:

■ You can use the Modify button to change any of the class names, specifying a
class that already exists or creation of a new class. For example, you might be
implementing a bean whose home and remote interfaces have already been
specified, and now you want to generate a new bean class.

■ You can click the Modify button for any of the classes shown and change the
superclass. If you do, select a class that extends the appropriate interface.

4. Click Finish when you’re done.

The wizard generates the default classes of your BMP entity bean. These classes are
discussed next.
Chapter 6 Developing BMP Entity Beans 149

Looking at a BMP Entity Bean’s Classes
For a BMP entity bean, the EJB Builder wizard generates all the required entity bean
classes and sets up communications between them. However, you must code all the
persistence logic yourself.

In the Explorer’s Filesystems tab, a BMP entity bean has the same appearance as a
CMP entity bean, except that when you pause the cursor over the bean’s logical
node, the tool tip says BMP entity bean logical node.

The nodes marked with the class icon represent actual classes, while the one
marked with the coffee-bean icon is a logical node. Do all your editing in the
logical node.

A BMP entity bean’s classes implement the same interfaces as a CMP entity bean’s
classes. However, a BMP entity bean’s class is defined as public and not abstract.

Expanding the Nodes
When you expand the nodes under your BMP entity bean’s package node, you see
something like the tree view in FIGURE 6-1. In this case, the bean has been assigned
local-type interfaces. Notice that a BMP entity bean can have no select methods.

FIGURE 6-1 Explorer’s Detailed View of a BMP Entity Bean

If you generated a primary-key class, it shows up in the Explorer as another major
node.

No create methods yet

Required finder
method

Local interface

Logical node

Bean class

Local home
interface

No business or home
methods yet
150 Building Enterprise JavaBeans Components • June 2003

Reviewing the Generated Classes
The EJB Builder wizard adds several default methods to every entity bean.

findByPrimaryKey Method

The method signature findByPrimaryKey is added automatically to your BMP
entity bean’s home interface, as shown in the following example:

Because this is a BMP entity bean, the wizard adds that method’s counterpart,
ejbFindByPrimaryKey, to the bean class:

A BMP Entity Bean’s Life-Cycle Methods

The wizard adds default life-cycle methods to the bean class of your BMP entity
bean, as shown in CODE EXAMPLE 6-1.

public Account.customer findByPrimaryKey(java.lang.String aKey)
throws javax.ejb.FinderException,
java.rmi.RemoteException;

public java.lang.String ejbFindByPrimaryKey(java.lang.String
aKey) {

}

CODE EXAMPLE 6-1 Default Life-Cycle Methods of a BMP Entity Bean

public void setEntityContext(javax.ejb.EntityContext aContext) {

context=aContext;

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbRemove() {

}

public void unsetEntityContext() {

context=null;

}

public void ejbLoad() {
Chapter 6 Developing BMP Entity Beans 151

The purposes of these methods in a BMP entity bean are described in TABLE 6-1. (For
comparison, see TABLE 4-2.)

}

public void ejbStore() {

}

TABLE 6-1 Purpose of Default Life-Cycle Methods in a BMP Entity Bean
Class

Method Purpose

setEntityContext This method lets you store the EntityContext reference in a
field and populate nonpersistent fields. You can use it to allocate
resources that are independent of the EJB object and last for the
entity bean’s lifetime, resources such as a database-connection
factory. By default, the EJB Builder wizard generates code that
assigns the EntityContext to a field named context.

ejbActivate This method initializes the bean, prepares it for use, and acquires
the resources needed by the instance.

ejbPassivate Before the bean instance is returned to the generic instance pool,
this method releases the resources the bean was using.

CODE EXAMPLE 6-1 Default Life-Cycle Methods of a BMP Entity Bean
152 Building Enterprise JavaBeans Components • June 2003

Completing Your BMP Entity Bean
To complete your BMP entity bean, do as follows:

■ Add all persistence logic.

■ Add a primary key class if your BMP entity bean has a composite primary key.

■ Define a create method if you want clients of your bean to be able to insert data
into the database. An entity bean can have more than one create method.

■ Define any finder methods that your BMP entity bean needs besides
findByPrimaryKey, and code the bodies of all the finder methods.

■ Code the ejbRemove method to remove the appropriate record from the
database.

■ Define and code all business and home methods that your BMP entity bean
needs.

■ Add private fields to maintain your entity’s state in memory and populate the
values of these fields.

ejbRemove In a BMP, this method executes SQL Delete statements and
removes data from the underlying data storage. Or, you can call
another object, such as a DAO, to remove data.

unsetEntityContext This method lets you deallocate resources and release memory
used by the entity bean instance, before the container destroys
the instance.

ejbLoad In a BMP, this method executes SQL Select statements and
loads data into the bean instance from the underlying data
source. This happens when the bean is activated or when the
entity is referenced within the context of a new transaction. Or,
you can call another object, such as a data access object (DAO), to
load data.

ejbStore In a BMP, this method executes SQL Update statements and
saves the bean’s state (the current values in the persistent fields)
to the underlying data storage. This happens when the bean is
passivated or when the transaction is committed. Or, you can call
another object, such as a DAO, to store data.

TABLE 6-1 Purpose of Default Life-Cycle Methods in a BMP Entity Bean
Class (Continued)

Method Purpose
Chapter 6 Developing BMP Entity Beans 153

Using Recommended Approaches When Working
With Enterprise Beans
Appendix A discusses the best ways to make changes in your enterprise beans, and
the errors and anomalies that you might see if you use other approaches. As a
general rule, you should work through the logical node rather than the individual
class nodes, use the bean’s property sheets or the Customizer dialog box to edit
methods, and use the IDE’s Source Editor to complete or edit any bean code that
isn’t available to you through one of the dialog boxes.

Adding Persistence Logic
To make your BMP entity bean interact with the entity data store, you must write
code to access the data, manipulate persistent fields, and transfer data between your
bean instance’s variables and the data store. Use the Source Editor to write your
code. Use resource references (as discussed in Chapter 8) to specify the data source
that your bean will use.

Adding a Primary-Key Class
Use the Source Editor to add a primary-key class if:

■ You didn’t create a primary-key class when you created the BMP entity bean, and
your bean needs one.

■ You need to specify a primary key that can’t be represented by any existing class.

■ Your primary key has a type other than java.lang.String or an existing
primary-key class.

■ You must customize the definition of the equals and hashcode methods.

■ You want to wrap the primary key with some extra functionality, such as testing
the key for valid values before it is used with the database.

Make sure your primary-key class meets the following requirements:

■ The class has the access-control modifier public.
■ All fields are declared as public.
■ The class has a public default constructor.
■ The class implements the hashCode and equals methods.
■ The class is serializable: It implements the java.io.Serializable interface.
■ The class does not implement the java.rmi.Remote interface.

For more information, see the discussion in “Adding or Replacing a Primary Key”
on page 119.
154 Building Enterprise JavaBeans Components • June 2003

Adding Methods
To start defining a new methods, go to the Explorer, right-click the logical bean
node, and take advantage of the GUI tools that are available from the contextual
menu. Use the dialog boxes to name a method and define its signature. The IDE
propagates your method automatically to the correct classes. Then finish coding
your method within the Source Editor.

Defining Create Methods
The home interface of your BMP entity bean can have a create method, and, if so, the
bean class must have corresponding ejbCreate and ejbPostCreate methods.
When you use the recommended process, the IDE ensures that these methods are
generated and propagated correctly.

The ejbCreate method in a BMP entity bean typically does the following:

1. Validates client-supplied arguments

2. Initializes the instance’s variables

3. Executes SQL Insert statements (or you can call another class, such as a DAO,
to insert data into the underlying data store)

4. Returns a primary key

In a BMP entity bean, you must provide the code that generates and executes the
necessary SQL Insert statement.

The ejbPostCreate method, which the IDE adds automatically, gives the
programmer the opportunity to forward information about the EJB object (such as
the home or remote interface) to any other enterprise beans that need to reference it.
The method can access the remote interface through EntityContext, which it
receives from the container as a parameter. This method is typically used to create
dependent beans. For example, the Order bean’s ejbCreateLineItem method
might create the given line items in the ejbPostCreate method.

Your entity bean can have more than one create method. Define a new create method
as follows:

1. Select the logical node, right-click, and choose Add Create Method.

The Add New Create Method dialog box appears.

2. Name your create method, using any extension after create.

Now you need to add parameters to your method.

3. In the dialog box, click Add.
Chapter 6 Developing BMP Entity Beans 155

4. In the Enter Method Parameter dialog box, specify the parameter’s name and type.

Both the method signature in a BMP entity bean class and the method body return
the primary-key type.

5. Click OK to dismiss the Enter Method Parameter dialog box.

6. In the Add New Create Method dialog box, specify any additional exceptions.

7. Click OK to dismiss the Add New Create Method dialog box.

The method you added now appears in the bean class code as ejbCreate and in
the home interface as create. The method ejbPostCreate also appears in the
bean class.

8. Use the Source Editor to add the return statement and all other necessary code to
your new create method.

Adding Finder Methods
The EJB Builder has already generated a default finder method for you. In a BMP
entity bean, this method shows up in both the home interface (findByPrimaryKey)
and the bean class (ejbFindByPrimaryKey). However, if you want your entity
bean to execute additional queries, you must define additional finder methods.

If you follow these steps, your new finder method is automatically propagated to
your home interface and bean class:

1. Select the logical node, right-click, and choose Add Finder Method.

2. Type a name for the method starting with find. Specify parameters, exception,
and a return type. Click OK when you’re finished.

Finish coding your finder method or methods using the Source Editor. To fetch
primary keys from the data source, you must write JDBC code or use other means of
database access.

Defining Business and Home Methods
To add a business method to your BMP entity bean, do as follows:

● Under the logical node, select Business Methods, right-click, and choose Add
Business Method.

The Add New Business Method dialog box appears. At this point you can finish
coding the method’s parameters and exceptions in this dialog box, or you can
simply type a name for your new business method, click OK, and finish the coding
in the Source Editor.
156 Building Enterprise JavaBeans Components • June 2003

A business method typically accesses and modifies the values of persistent fields,
but it doesn’t directly access the database. The EJB container calls the ejbLoad and
ejbStore methods as required by the semantics of the transaction.

Alternatively, you can add a home method to perform an operation that does not
depend on any given instance of the entity bean. See “Defining Home Methods” on
page 123 for a discussion of home methods.

After Creating Your BMP Entity Bean
Your BMP entity bean is now finished except for a few steps by which you prepare
the bean to work in its eventual environment. These final steps are described in
Chapter 8.

Recommendations for working with finished enterprise beans are given in
Appendix A.

Further Reading
Enterprise beans can be a very powerful and flexible part of your application.
Creating the basic parts of an enterprise bean can be very simple, especially with a
tool like the Sun ONE Studio 5 IDE. However, completing the bean so that it fulfills
the needs of your application can be very complex. For details, refer to Enterprise
JavaBeans Specification, version 2.0 at:
http://java.sun.com/products/ejb/docs.html

The J2EE Tutorial contains useful advice for developing BMP entity beans. Go to
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/BMP.html for examples
and instructions.

You might also refer to Advanced Programming for the Java 2 Platform by Calvin Austin
and Monica Pawlan at:
http://developer.java.sun.com/developer/onlineTraining/Programmi
ng/JDCBook/bmp3.html
Chapter 6 Developing BMP Entity Beans 157

http://java.sun.com/products/ejb/docs.html

158 Building Enterprise JavaBeans Components • June 2003

CHAPTER 7

Developing Message-Driven Beans

The EJB Builder in the Sun ONE Studio 5 IDE enables you to develop the message-
driven beans that you need to support an application client’s requests for
asynchronous processes. This chapter discusses the process of creating and working
with message-driven beans. These beans’ transactions are normally managed by the
EJB container, but you can provide the transaction-management code yourself, if you
prefer.

There are several reasons to use a message-driven bean:

■ Performance and support for multitasking. The application client can send a
message and go on to other tasks without having to wait for a response to the
message. That is, the client invokes your message-driven bean asynchronously.

■ Reliability. If the application uses Java Message Services (JMS), no client requests
are lost unless tiers of the application go down at once.

However, message-driven beans aren’t always the right answer. For example, an
alternative would probably work better in the following cases:

■ When the client needs confirmation that a request was received or needs results to
be returned

■ When the operation is part of a time-sensitive transaction and can’t be done
during off-peak hours

■ When the application is small and uncomplicated, and adding another layer
would slow down building, debugging, and execution

For more pros and cons, see “Understanding Message-Driven Beans” on page 61.

The IDE provides a wizard that lets you create the single bean class required for a
message-driven bean. Because a message-driven bean merely takes messages from a
client and uses them to start other bean processes, no interface classes are needed.
The wizard automates much of the task of creating a message-driven bean, and you
finish the task using the IDE’s Source Editor and property sheets.
159

When programming message-driven beans, you have options besides those
described in this chapter. Although the Sun ONE Studio 5 IDE is designed to take
care of much of your coding work, the IDE also supports those options flexibly and
leaves many decisions up to you. For more information, refer to the resources listed
in “Before You Read This Book” on page 18, or to one of the many excellent texts on
programming enterprise beans.

Using the EJB Builder With Message-
Driven Beans
The EJB Builder is a collection of wizards, property sheets, and editors with which
you can build enterprise beans consistently and easily. To see if the EJB Builder is
installed, go to the main window and choose Tools → Options →
IDE Configuration → System → Modules → J2EE Support. If you see EJB 2.0 Builder
in the list of modules, and the Enabled field in the property sheet is set to True, the
EJB Builder is ready for use.

You can take several approaches to creating message-driven beans in the IDE.
However, you get the most comprehensive support and, in general, the fastest path
to bean completion, if you use the approach recommended in this chapter. The
methodology described here takes full advantage of the IDE’s ability to ensure
consistency and its adherence to the J2EE standard.

For best results, use the EJB Builder to program message-driven beans by:

■ Creating a bean’s one required class. After using the EJB Builder wizard, you
have the framework of your message-driven bean, which is made up of the bean
class and a logical grouping of the bean’s parts. Nodes for both the class and
logical grouping are shown in the Explorer’s Filesystems tab, along with their
subnodes. The wizard generates declarations of the two required methods,
ejbCreate and onMessage, for the bean class. You then supply the method
implementations.

The logical node is the best place to do work on a message-driven bean. All
logical nodes appear in the Explorer with this icon:

■ Completing the bean class code as necessary. Use the IDE’s support as described
later in this chapter.

■ Setting values in a bean’s deployment descriptor. Use the message-driven bean’s
property sheet from the logical node to edit properties.

From a message-driven bean’s logical node, you can validate the bean’s code.
160 Building Enterprise JavaBeans Components • June 2003

Deciding on Transaction Management
Before you begin creating a message-driven bean, first consider whether to have the
EJB container manage any transactions that your bean will do, or whether to write
that code yourself. You use different processes in the IDE’s EJB Builder to create the
two kinds of bean. TABLE 7-1 highlights the design considerations.

For more information on these selections, refer to the chapter on transactions in the
book Building J2EE Applications.

The rest of this chapter addresses how to create message-driven beans of each kind
and the issues to consider during development.

Defining a Message-Driven Bean
The EJB Builder wizard automates much of the task of creating the one bean class
that your message-driven bean requires. To define a message-driven bean, you take
the following steps:

TABLE 7-1 Deciding Between Container-Managed and Bean-Managed Transactions

Issue Container-Managed Transactions Bean-Managed Transactions

Transaction
manager

The container itself is the
transaction manager.

You write code to manage
transactions by using JTA. This can
include transactions for other
resources such as JDBC.

Setting of
transaction
boundaries

The EJB container decides when
to begin and commit a
transaction according to the
Java 2 Platform, Enterprise Edition
Specification.

The programmer explicitly codes
the transaction’s boundaries to
obtain more granular control over
transactions.

Transaction
timing

The message-driven bean
receives a message and performs
its business logic in the same
transaction.

The transaction doesn’t start until
after the message-driven bean
receives the message.

Problem
handling

The container rolls back the
transaction and has the bean
acknowledge the message.

The message-driven bean responds
according to the acknowledgment
mode you specified after you
generated the bean.
Chapter 7 Developing Message-Driven Beans 161

1. Select or create a package to contain the bean.

2. Use the EJB Builder wizard to generate the infrastructure of your message-driven
bean.

3. Complete the body of the onMessage method and, if necessary, the
setMessageDrivenContext and ejbCreate methods.

These basic steps are explained in detail next.

After you finish the steps covered in this chapter, you must add information to your
finished bean’s property sheet so that it can interact with other beans, find its
resources, and listen for the appropriate messages. These steps, which prepare your
finished bean to work in an application, are discussed in Chapter 8.

Creating a Package
If you need to create a package to house your message-driven bean, select a
filesystem, right-click, and choose New Java Package.

Starting the EJB Builder Wizard
When you’re ready to create a message-driven bean, do as follows:

1. In the IDE’s main window, choose View → Explorer to open the Explorer window.

2. In the Filesystems tab of the Explorer, select the package or filesystem where you
want your message-driven bean to reside.

3. Right-click and choose New → J2EE → Message-Driven EJB.

The EJB Builder wizard appears, displaying New Wizard–Message-Driven EJB in the
window’s title bar.

Generating the Basic Message-Driven Bean
In the EJB Builder‘s Message-Driven Bean Name and Properties page, name your
message-driven bean and decide how to manage any transactions the bean
performs. The default is Container-Managed Transactions, but you can decide to
provide all transaction management code in the bean class if you wish.

When you have made your selection, you can click Finish. (Or, you can click Next to
go to the page in which you can specify an existing bean class for your message-
driven bean. After that, you click Finish.)
162 Building Enterprise JavaBeans Components • June 2003

Your newly created message-driven bean appears in the Filesystems tab of the IDE’s
Explorer. The bean’s infrastructure (its basic bean class and its two component
methods) has been generated automatically by the EJB Builder.

Looking at a Message-Driven Bean’s
Components
FIGURE 7-1 shows how a typical message-driven bean appears in the Explorer’s
Filesystems tab.

FIGURE 7-1 Default Class and Methods of a Typical Message-Driven Bean

Of the two primary nodes shown, one is a logical node (marked with a bean icon)
and one represents the actual class (marked with a class icon). Do all your editing in
the logical node. The bean’s two primary nodes are described next.

■ The logical node is created in the Explorer to group all the elements of your
message-driven bean and let you work with them more conveniently.

■ The bean class implements the javax.ejb.MessageDrivenBean and
javax.jms.MessageListener interfaces, and exposes the message-driven
bean’s methods.

The Classes node contains the bean class code, which includes both methods. The
Create Method node points to the code that initializes your message-driven bean.
The OnMessage Method node points to the method that is invoked when a message
is received.

Expanding the Nodes
When you expand the two nodes under your message-driven bean’s package node,
you see something like the tree view in FIGURE 7-2.

Logical node

Bean class node
Chapter 7 Developing Message-Driven Beans 163

FIGURE 7-2 Explorer’s Detailed View of a Typical Message-Driven Bean

Reviewing the Generated Class
The wizard automatically places certain default methods in each message-driven
bean: a create method, an onMessage method, and two life-cycle methods. As
shown in TABLE 7-2, the create method, ejbCreate, behaves much like create
methods in other types of enterprise beans, but onMessage is a new and different
kind of method.

TABLE 7-2 Purpose of ejbCreate and onMessage Methods in a Message-Driven
Bean’s Bean Class

Method Purpose

ejbCreate This method initializes the message-driven bean, if necessary.

onMessage This method opens the message the message-driven bean has
received, decides what to do with it, and processes it.

Bean class

Message-driven
bean’s only class

Default create method

Default onMessage
method

Logical node
164 Building Enterprise JavaBeans Components • June 2003

The wizard also adds the default life-cycle methods described in TABLE 7-3.

Completing Your Message-Driven Bean
To complete your message-driven bean, do the following:

■ Add code to complete the body of your bean’s onMessage method.

■ Add any code that is necessary to complete your bean’s
setMessageDrivenContext method.

The ejbCreate and ejbRemove methods are not needed in simple message-
driven beans. However, if necessary, ejbCreate can be used to allocate resources
and ejbRemove to let the resources go.

■ Use the property sheets (the tabbed interface for the application server to which
your bean will be deployed) to specify the type of resource, the resource factory,
and the server that the message-driven bean will use. Details are supplied in
“Specifying Resources for Client Message-Driven Beans” on page 169 and also in
Chapter 8.

Make your additions in the Explorer by clicking bean components under the logical
bean node to open the Source Editor.

Using Recommended Approaches When Working
With Enterprise Beans
Appendix A discusses the best ways to make changes in your enterprise beans, and
the errors and anomalies that you might see if you use other approaches. As a
general rule, you should work through the logical node rather than the individual

TABLE 7-3 Purpose of Default Life-Cycle Methods in a Message-Driven Bean’s
Bean Class

Method Purpose

setMessageDrivenContext This method is called before ejbCreate, and it
associates the message-driven bean with a context
object.

ejbRemove This method is called just before the message-driven
bean instance is removed, to free up resources that are
no longer needed. In a simple message-driven bean,
this method might not even be used.
Chapter 7 Developing Message-Driven Beans 165

class nodes, use the bean’s property sheets or the Customizer dialog box to edit
methods, and use the IDE’s Source Editor to complete or edit any bean code that
isn’t available to you through one of the dialog boxes.

Completing the onMessage Method
A single instance of your message-driven bean can handle only one message at a
time, and the bean can have only one onMessage method. An example of a
completed method follows.

Completing the setMessageDrivenContext
Method
The setMessageDrivenContext method stores the message-driven context
reference in a field and populates non-persistent fields. You can, if necessary, use this
method to allocate resources that are independent of the bean object and last as long
as the bean exists. These resources might include a queue-connection or topic-
connection factory.

public void onMessage(Message inMessage) {
TextMessage msg = null;

try {
if (inMessage instanceof TextMessage) {

msg = (TextMessage) inMessage;
System.out.println("MESSAGE BEAN: Message " +
"received: " + msg.getText());

} else {
System.out.println("Message of wrong type: " +
inMessage.getClass().getName());

}
} catch (JMSException e) {

System.err.println("MessageBean.onMessage: " +
"JMSException: " + e.toString());
context.setRollbackOnly();

} catch (Throwable te) {
System.err.println("MessageBean.onMessage: " +
"Exception: " + te.toString());

}
}

166 Building Enterprise JavaBeans Components • June 2003

By default, the EJB Builder wizard generates code that assigns the message-driven
context to a non-persistent field named context. Ordinarily, you don’t need to add
anything to the generated method. However, if you need to complete it, copy the
generated context into the instance variable. For example:

After Creating Your Message-Driven
Bean
Your message-driven bean is now finished, except for a few steps that prepare the
bean to work in its eventual environment. You must specify the following in the
bean’s property sheet:

■ The bean’s message-driven destination, that is, whether the bean gets its
messages from a queue or a topic

■ If the bean listens to a topic, whether its subscription is durable or non-durable

■ Whether a message selector (filter) has been applied to the bean to narrow down
the messages it gets

If your message-driven bean will receive messages from a client, and you plan to
deploy your bean to Sun ONE Application Server 7, you must specify the
destination in the Sun ONE AS tab of the bean’s property sheet.

If your message-driven bean will act as a client itself, sending messages to a
destination, you must specify the following in the References tabbed interface of the
bean’s property sheet:

■ The bean’s resource references (the connection factories it uses to access its
message-driven destinations)

■ The bean’s resource environment references (the actual destinations: queues or
topics)

These property settings are discussed next.

TABLE 7-4 Example of a setMessageDrivenContext Method

public void setMessageDrivenContext(javax.ejb.MessageDrivenContext aContext) {
this.context=context;

}

Chapter 7 Developing Message-Driven Beans 167

Specifying a Message-Driven Destination
To specify whether the message-driven bean will be a queue listener or a topic
listener, do as follows:

1. In the IDE’s Explorer window, right-click the message-driven bean’s logical node
and choose Properties.

The property sheet for the bean appears.

2. In the Properties tabbed interface, click the Message-Driven Destination field and
then the ellipsis (…) button.

The property editor appears.

3. Select Queue, Topic, or (Not Set).

■ Select Queue if clients will send messages only to this particular bean and you
need to use the point-to-point model.

■ Select Topic if you need to allow multiple clients to send messages to this bean,
using the publish-subscribe model. If you choose Topic, you must also specify
whether the bean’s subscription is durable or non-durable.

■ Select Durable if messages should be persisted until the bean consumes them.
This way, even if the bean’s application server crashes, the messages are
available when the bean is next available.

■ Select Non-durable if the bean should get only messages published while the
bean is available. All other messages are deleted.

■ Leave the Destination field blank (using the Not Set value) if you will set this
property later.

4. Click OK to dismiss the property editor.

Specifying a Message Selector
If you want to filter your bean’s incoming messages, do as follows:

1. Click the Message Selector field and then the ellipsis (…) button.

A property editor appears.

2. Specify a filter if you wish to reduce the number of messages for which your bean
must listen.

3. Click OK to dismiss the property editor.
168 Building Enterprise JavaBeans Components • June 2003

Specifying Resources for Client Message-Driven
Beans
The References tabbed interface of a message-driven bean’s property sheet contains
the Resource Reference and Resource Environment Reference fields. These fields are
completed on behalf of the client that sends messages. For example, your message-
driven bean might be part of an application in which a web module sends messages
to a queue for consumption by your bean. In that case, this Resource Reference and
this Resource Environment Reference should be specified by the provider of the web
module.

Or, if your message-driven bean is meant to act as a client within its own module,
sending messages to a queue or topic, you specify the resource factory and the
resource here.

Specifying Resource Factories

To associate the message-driven bean with a factory object that will create the
destination object, do as follows:

1. In the References tabbed interface, click the Resource References field and then
the ellipsis (…) button.

In the property editor are fields for specifying the connection factory that the client
(or message-driven bean as client) will use to gain access to its messaging resource.

2. Click the Add button.

The Add Resource Reference dialog box appears with two tabbed interfaces,
Standard and Sun ONE App Server.

■ In the Standard tabbed interface:

■ Type the reference name of the object that will create your bean’s connection to
its queue or topic. Notice that this name has only to match what you wrote in
your bean’s lookup code.

■ In the Type combo box, select the type of resource factory your bean will use.
This type should correspond to the choice you made in the Message-driven
Destination field of the Properties tabbed interface. See “Specifying Resource
Environment References” on page 182 for an explanation of the various types
of resource factories.

■ In the Authorization field, specify whether the EJB container or the application
client will authorize the bean to use the resource.
Chapter 7 Developing Message-Driven Beans 169

■ In the Sharing Scope field, specify whether the connection to this resource can
be shared by another enterprise bean in the same application. If two or more
beans can use the same resource in the same transaction context, the container
can carry out transactions locally and save time.

If you are deploying your message-driven bean to Sun ONE Application Server 7,
also complete the following fields.

■ In the Sun ONE App Server tab:

■ In the JNDI Name field, type the actual JNDI name by which the server can
locate the resource factory. Notice that this name must match the JMS resource
set in the Runtime tab of the IDE’s Explorer window.

■ In the User Information fields, provide any information needed to gain access
to the resource.

3. When you’re finished, click OK to dismiss the dialog box.

Specifying Resources

To associate the message-driven bean with a particular destination object, do as
follows:

1. In the References tabbed interface, click the Resource Environment References
field and then the ellipsis (…) button.

In the property editor are fields for specifying the actual resources to which the
client (or message-driven bean as client) will send messages.

2. Click the Add button.

The Add Resource Environment Reference dialog box appears with two tabbed
interfaces.

■ In the Standard tab:

■ Type the reference name of the queue or topic to which your client or bean will
send messages. Notice that this name has only to match what you wrote in the
bean’s lookup code.

■ In the combo box, select a resource type.

If you plan to deploy your message-driven bean to Sun ONE Application Server 7,
also complete the following field.

■ In the Sun ONE App Server tab, type the actual JNDI name by which the server
can locate the message resource (the queue or topic). Notice that this name must
match the JMS resource set in the Runtime tab of the IDE’s Explorer window.

3. When you’re finished, click OK to dismiss the dialog box.

Read more about message-driven destinations in Chapter 2 and more about setting
properties in Chapter 8.
170 Building Enterprise JavaBeans Components • June 2003

Recommendations for working with finished enterprise beans are given in
Appendix A.

Avoiding Pitfalls of Message-Driven
Beans
The messaging tier of your application will run into fewer problems if you
understand the following possible complications.

■ Order of Messages. Your message-driven beans should be prepared to handle
messages that arrive out of sequence. A JMS server might deliver messages in any
order to a pool of message-driven beans.

■ Dropped ejbRemove Invocations. A simple message-driven bean doesn’t need to
use an ejbCreate or ejbRemove method. However, if your bean is more
complex and does use those methods, be aware that under certain circumstances
(such as a system or container crash), ejbRemove might not be called. In this
case, you should provide for the bean to do its own clean-up. This depends on the
behavior of your application server; for details, see your server’s documentation.

■ Poison messages. When you’re using the EJB Builder wizard to generate the
infrastructure of a message-driven bean that manages its own transactions, you
can set the bean property Acknowledge Mode to Auto. This setting makes the
bean automatically acknowledge each message it gets. This way, you avoid the
situation in which a transaction fails, the message destination never hears that the
message was received, and the destination keeps sending the message over and
over.

For detailed design considerations, refer to Enterprise JavaBeans Specification, version
2.0 and to texts on programming enterprise beans.

Further Reading
Enterprise beans can be a very powerful and flexible part of your application.
Creating the basic parts of an enterprise bean can be very simple, especially with a
tool like the Sun ONE Studio 5 IDE. However, completing the bean so that it satisfies
the needs of your application can be somewhat more complex. For details, refer to
Enterprise JavaBeans Specification, version 2.0 at:
http://java.sun.com/products/ejb/docs.html and to
The J2EE Tutorial Addendum at:
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JMSJ2EEex.html
Chapter 7 Developing Message-Driven Beans 171

http://java.sun.com/products/ejb/docs.html

172 Building Enterprise JavaBeans Components • June 2003

CHAPTER 8

Preparing Enterprise Beans for
Deployment

The foregoing chapters have focused on creating individual enterprise beans.
However, before one or more finished beans can be assembled into an application
and deployed on a J2EE-compliant application server in a production environment,
the following tasks remain to be done:

1. Configure individual beans. Furnish information about each bean’s external
dependencies and operating requirements. This information becomes part of the
bean’s deployment descriptor, which is described in the next section.

2. Form an EJB module around a bean or group of beans that need to work
cooperatively in an application, and configure the module. By packaging the
beans into an EJB module, you generate a deployment descriptor. This
deployment descriptor identifies the runtime services that the module’s
components need from the application server, such as container-managed
persistence.

3. Add one or more EJB modules to a J2EE application (and, if necessary, add other
components such as web modules).

4. Configure the J2EE application and its included modules to work with each
other and with other resources such as a database.

This book focuses on the deployment considerations for enterprise beans and EJB
modules. It also touches briefly on creating and configuring a J2EE application
around one or more EJB modules. For complete scenarios and details on application
design, assembly, and configuration, refer to these three books: Building Web Services,
Building Web Components, and Building J2EE Applications. Also, you’ll find the Sun
ONE Studio 5 applications and tutorials helpful (go to
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html).

You can test-run an individual enterprise bean, using the automated testing feature
of the Sun ONE Studio 5 IDE. The IDE generates an EJB module and an application
strictly for the purpose of testing your bean, but you can easily substitute your
production components and test them. The testing feature is described in Chapter 9.
173

Ordinarily, enterprise beans are assembled into an EJB module, one or more EJB
modules are assembled into an application, and the application is deployed to an
application server. However, an individual EJB module can also be deployed.

Understanding Deployment Information
The deployment information you specify in the property sheets for an enterprise
bean or EJB module becomes part of the deployment descriptor. This is an XML-
based text file that captures information about a J2EE component’s structure and its
internal and external dependencies, that is, its relationships to other components
inside and outside its immediate environment. The deployment descriptors for an
enterprise bean and its EJB module contain all the instructions an application server
needs when the bean’s application is deployed. Any change in this descriptor can
change the bean’s behavior in the application.

You automatically generate a deployment descriptor for an enterprise bean when
you use the EJB Builder wizard to create the bean, as described in the foregoing
chapters. The wizard generates the bean’s basic descriptor.

When you place enterprise beans in an EJB module (as explained in “Creating and
Configuring an EJB Module” on page 190), the IDE automatically generates a
deployment descriptor for the module as well. This descriptor file captures:

■ Each bean’s declarative meta-information from the bean’s deployment descriptor;
that is, information about the bean that is not written into the bean’s source code

■ Declarations of external resources (such as enterprise beans) that are required for
the beans within this module to operate properly

■ Security and transaction information that allows the EJB module to override any
such information that had been specified at the bean level

When you deploy an application to an application server, the server adds its own
deployment descriptor with information about the datasource on which the
application’s entity beans are based.

By changing the EJB module’s descriptor, you can change the application’s behavior
without touching the source code or even the deployment descriptor of the
component beans.

The contents of a deployment descriptor are accessible through the property sheets
of the corresponding bean or module. If necessary, you can also edit an EJB module’s
descriptor directly. The following three sections describe how you can see and affect
the deployment descriptor.
174 Building Enterprise JavaBeans Components • June 2003

Looking at a Generated Deployment Descriptor
To see the XML-based file that constitute the deployment descriptor of an enterprise
bean:

● In the Explorer window, select a bean’s logical node, right-click, and choose View
Deployment Descriptor. (Or, select an EJB module’s logical node, right-click, and
choose Deployment Descriptor → View.)

The Source Editor displays the file as read-only.

Changing a Deployment Descriptor
The recommended way to change a bean’s or EJB module’s deployment descriptor is
to use property sheets. (Those instructions start in “Using Properties to Edit a
Deployment Descriptor” on page 176.) When you use Properties, all you have to do
is specify file or object names and values. You don’t see the actual descriptor file,
and you don’t have to write any XML. You make your selections using a dialog box,
and the IDE automatically applies the changes across all the appropriate
components of the EJB module.

It’s also possible to edit the deployment descriptor directly. After a direct edit, you
can no longer add or delete beans from the module or use the property sheets to
change the descriptor. However, you can revert to the generated descriptor.

Editing an EJB Module’s Deployment Descriptor Directly

If you need to make a direct edit in the deployment descriptor file of an EJB module,
do it as follows:

● Right-click the EJB module’s node and choose Deployment Descriptor → Final
Edit.

After directly editing an EJB module’s deployment descriptor, you can still use the
property sheets to make changes that don’t affect the deployment descriptor. For
example, you can still go to the Sun ONE AS tab of the EJB module’s property sheet
and specify or change the connection with the data source used by an entity bean in
the module. However, fields that represent items in the deployment descriptor are
closed to edits in the property sheets.
Chapter 8 Preparing Enterprise Beans for Deployment 175

Reverting to the EJB Module’s Last Generated Descriptor

If you have used the Final Edit feature, but now want to go back to the last
generated version of the deployment descriptor and continue from there to make
changes in the property sheets, do as follows:

● Right-click the EJB module’s node and choose Deployment Descriptor → Revert
to Generated.

Note – If you choose Revert to Generated, any edits you made directly in the
deployment descriptor file are lost.

Using Properties to Edit a Deployment Descriptor

To use property sheets to add to, edit, or complete an enterprise bean’s or an EJB
module’s descriptor, do as follows:

● Select the bean’s or EJB module’s logical node, right-click, and choose Properties.

In the case of an enterprise bean, the Properties dialog box appears, showing at least
three tabs:

■ Properties
■ References
■ Sun ONE AS (the Sun ONE Application Server)

You also see a tab for any other application server’s plugin module that has been
installed with the IDE.

For an EJB module node or a J2EE application node, there are two default tabs:

■ Properties, which includes reference fields
■ Sun ONE AS

The default tabs for enterprise beans are described next.

Specifying Bean Properties
Before you create an EJB module around cooperating enterprise beans, you might
need to configure individual beans by specifying one or more properties on the
beans. These properties are discussed tab by tab in the following sections: “Using the
Properties Tab” on page 177, “Using the References Tab” on page 179, and “Using
the Sun ONE AS Tab” on page 185.
176 Building Enterprise JavaBeans Components • June 2003

Notice that any properties that are dimmed or read-only have been set automatically
by the EJB Builder and can’t be changed. If, for example, you decide your CMP
entity bean should manage its own persistence, you must go to the EJB Builder
wizard and recreate it as a BMP entity bean.

Using the Properties Tab
Since you’re familiar with your bean’s code, you’ll probably recognize most of the
fields in the Properties tab. Also notice the following:

■ In the Properties tab for any kind of enterprise bean, certain fields are read-only.
These fields were automatically completed by the EJB Builder wizard when you
created the bean. The properties named in these fields are so intrinsic to the bean
type that you shouldn’t need to change them. The only practical way to change
them would be to go back to the wizard and recreate the bean.

■ The Name field and the fields naming the bean’s interfaces were completed by the
EJB Builder wizard when you created the bean (or you overrode the names in
those fields in the wizard, at creation time).

If you want your bean to use another existing class, you can override one of the
classes shown in these Properties fields.

If you want to change the name of a class but retain the same class content, you
must either make the change in the property editor for that class (not the property
editor for the logical bean node) or directly edit the class code in the Source
Editor.

■ The Large Icon and Small Icon fields are for any icons that you want to
accompany the enterprise bean and be available to tools like application servers.
For a large icon, the file must be a JPEG or GIF image 32x32 pixels in size, or
16x16 pixels for a small icon. The file must have the suffix .jpg or .gif.

■ The Security Identity field lets you specify the identity the enterprise bean will
use when it makes calls.

■ If you select Run As Specific Security Role and name a role, for example, a role
found in a related bean, your bean executes under that security role, and all
methods called by the bean carry that security role. In this way, the bean can
access data ordinarily reserved for the other bean. Or, you can specify the
bean’s default security role here.

■ If you select Use Caller’s Security Identity, the executing bean assumes the
security identity of the caller.

■ If you leave the Not Set value in this field, the bean executes under the security
identity defined at the application-server level or under the caller’s security
identity.

Some property types in this tab are unique to specific bean types, and these
properties are discussed next.
Chapter 8 Preparing Enterprise Beans for Deployment 177

Properties of Entity Beans

In the Properties tab for any entity bean, you also see the following fields:

■ Primary Key Class. This is the Java class associated with the primary key of the
table that the CMP entity bean is modeling. When the bean was created, the EJB
Builder based this class on information retrieved from the database about the
table’s primary-key field.

■ Reentrant. If you want to avoid unintentional multithreading problems, leave this
field marked False. This way, if an instance of your bean executes a client request
in a given transaction context, and a second request for the same context arrives
for the same entity object, the container throws an exception to the second
request. However, if you really need to let your bean use another bean to make a
call to itself, mark this field True.

In the Properties tab for a CMP entity bean, you also see the following fields:

■ Abstract Schema Name. The abstract schema defines the bean’s persistent fields
and relationships. Your CMP entity bean’s EJB QL queries are modeled on the
bean’s abstract persistence schema and its dependent object classes, and EJB QL
queries use the bean’s abstract schema name.

■ CMP Version. This read-only field reflects whether the CMP bean has a version
1.x bean class or a a version 2.x bean class.

Properties of Session Beans

In the Properties tab for a session bean, you also see the following fields:

■ Bean Type. If you want, you can change this value from Stateless to Stateful (or
the opposite).

■ Transaction Type. This field reflects whether the container or the bean manages
its transactions.

Properties of Message-Driven Beans

In the Properties tab for a message-driven bean, you also see the following fields:

■ Transaction Type. This field reflects whether the container or the bean manages
its transactions. The EJB Wizard populated this field, but you can change it if
necessary.

■ Acknowledge Mode. If the message-driven bean’s transaction type is Bean, you
see the Acknowledge Mode property in this tab. To make sure all messages
consumed by the bean are acknowledged, set this property to Auto. Or, if you
want the bean to acknowledge duplicate messages at its convenience, set this
property to Duplicates Allowed.
178 Building Enterprise JavaBeans Components • June 2003

■ Message Selector. Use this field if you want to apply one or more filters to reduce
the number of incoming messages your message-driven bean must listen for. For
example, the following string causes the bean to receive only messages whose
AccountStatus property is set to Late or Delinquent.

AccountStatus = ‘Late’ OR AccountStatus = ‘Delinquent’

The syntax for message selectors, which is based on a subset of the SQL92
conditional expression syntax, is described in the JMS specification and the JMS
tutorial.

■ Message-Driven Destination. In this field, specify whether your message-driven
bean listens to a message queue, or whether it subscribes to a topic (and, in that
case, whether the subscription is durable or non-durable). The data in this field is
related to the data in certain fields on the property sheet’s tabbed interfaces for
application servers. For details, see “Setting Sun ONE AS Properties for Message-
Driven Beans” on page 189.

Using the References Tab
To prepare your enterprise bean for assembly and deployment, you complete this
tab’s fields, which represent many of the enterprise bean’s external dependencies.
Some of the information can be stated at the bean level and then overridden at the
module or application level.

One example of a References tab is shown next.

FIGURE 8-1 References Tab of the Properties Dialog Box for a CMP Entity Bean

Each field in this tab is described next, with instructions for completing the field.
Chapter 8 Preparing Enterprise Beans for Deployment 179

Specifying EJB Local References

This field and the following one contain information about any other enterprise
beans whose methods your bean calls. You use the EJB Local References field to
specify references to beans that reside within the same JVM. An EJB local reference
accesses the local interface of a bean running in the same JVM, although the two
beans might be in different EJB modules. (For contrast, see “Specifying EJB
References” on page 181.)

You can specify the name of the implementing enterprise bean at development time,
and, if necessary, that setting can be overridden when your bean is assembled into
an EJB module.

In the bean’s code, you use the JNDI interface to look up the local home interface of
another bean. Before enclosing the bean in an EJB module, you also link the beans by
specifying those same references in the bean’s property sheet. The person who
assembles the application looks at the EJB References field to see which other beans
your bean must have access to in order to work as designed. The references specified
here at the bean level can be used or overridden at the module level, as needed in
the target environment.

Note – Before enclosing multiple beans in an EJB module, be sure the bean-to-bean
references are coded in the bean class and the EJB references are specified in the
property sheet.

To specify EJB local references in the property sheet, do as follows:

1. Click the EJB Local References field, then the ellipsis (…) button.

The EJB Local References property editor appears.

2. Click Add.

The Add EJB Local Reference dialog box appears.

3. Complete the fields.

The following fields are mandatory.

Note – The easiest way to fill in these fields is to start with the Referenced EJB
Name field, selecting a local enterprise bean from the Browse list. The IDE then
automatically fills in the type field and the two interface fields. However, you can
change the interface fields if you need to.

■ Reference Name. The referenced bean’s name, which is mapped to the same
name in the context.lookup method call in your bean class code and used by
the assembler to locate the correct object.
180 Building Enterprise JavaBeans Components • June 2003

Notice that in this property sheet, the field already contains ejb/. The name is
relative to the java:comp/env context under the ejb/ subcontext. After the
slash, type the reference name of the bean to which your bean refers.

The reference name does not have to be the actual JNDI name of the object. This
name provides a level of indirection for the sake of flexibility. It is not a reference
to the bean itself, but to the way the object is named in the lookup code.

For example, the bean Account might look up a reference to the home interface
for the bean DiscountCodeTbl. The full reference name in this case would be
ejb/DiscountCodeTblHome, or you can supply another reference name that is
consistent with the name used in the lookup code.

In the case of local references, Sun ONE Application Server 7 might not need the
full JNDI name, that is, the name preceded by ejb/, to find the object.

■ Referenced EJB Name. The actual JNDI name of the enterprise bean that
implements the local home and local interfaces specified in those fields. You can
do any of the following, depending on your situation:

■ Click Browse and select a bean. This might be the most convenient approach,
as it causes the IDE to complete the interface and type fields for you.

■ Type over data in this field to specify another bean that implements those same
interfaces, and change the reference to another bean.

■ Leave this field blank until the bean has been assembled into an EJB module or
an application.

■ Type. Whether the referenced bean is a session or entity bean.

■ Local Home Interface. The referenced bean’s local home interface.

■ Local Interface. The referenced bean’s local interface.

The description field is optional. That information might be helpful to the person
who assembles your EJB module into an application.

■ Description. The purpose of the referenced bean, or why your bean needs to
reference it.

Specifying EJB References

In the EJB References field, you specify links to any enterprise beans that reside
outside your bean’s JVM but whose methods your bean calls. You use the field as
you would the EJB Local References field, except that the reference you name here
points to the remote interface of a bean running in the another JVM.
Chapter 8 Preparing Enterprise Beans for Deployment 181

Specifying Environment Entries

An environment entry, stored in your bean’s runtime environment, is a named data
value that depends on policy or procedure at the deployment site. Environment
entries can alter the behavior of an enterprise bean at deployment time without
modifying the source bean’s code. Any values that you set here in the property sheet
can be overridden at deployment time in the deployment descriptor of an EJB
module or an application.

For example, the Account bean can use the environment entry overdraftAllowed
(of type boolean). This variable might indicate whether or not a particular bank
that uses the Account bean allows customers to overdraw their account balances.
The Account bean looks up the value of overdraftAllowed to decide what
should happen if a customer’s request causes an overdraft.

To add an environment entry, do as follows for each environment:

1. Click the Environment Entry field and then the ellipsis (…) button.

The Environment Entry property editor appears.

2. Click Add.

The Add Environment Entry dialog box appears.

3. Complete the fields.

The following two fields are mandatory.

■ Name. The name of the environment variable.

■ Type. The data type of the variable.

You can also complete the other two fields.

■ Description. The purpose of the variable, and any other information that the
assembler or deployer should know when using your bean in that environment.

■ Value. An initial value.

Specifying Resource Environment References

Use this field to specify any administered object your bean needs to use, such as a
JMS destination (a queue or topic). The resource environment reference is the
queue’s or topic’s logical name.

This logical name must map to the name that appears in your bean class’s
InitialContext.lookup method. (Notice that this logical name can be either the
actual JNDI name or merely a reference name such as myQueue, just as long as it
matches what is in the lookup code.)

When your bean needs the resource that you specify in this field, an instance of the
resource is created by the factory mentioned in the next section.
182 Building Enterprise JavaBeans Components • June 2003

To add a resource environment reference, do as follows for each object that you want
your bean to use:

1. Click the Resource Environment Reference field and then the ellipsis (…) button.

The Resource Environment References property editor appears.

2. Click Add.

The Add Resource Environment Reference dialog box appears.

3. Complete the fields.

The following fields are mandatory.

■ Name. The name that appears in the InitialContext.lookup method of your
bean class code.

■ Type. The type of resource factory. Specify your own type, or select one of the
following:

■ javax.jms.Queue, a Java Message Service queue.
■ javax.jms.Topic, a Java Message Service topic.

Specifying Resource References

This field contains the name of the factory that creates a connection to a resource
that your been needs. This resource might be a datasource (such as a relational
database), an administered object (such as a queue or topic), a JavaMail session, a
URL, or a J2EE connector (which lets you connect your bean to another application
system or EIS). The information in the Resource Reference field must correspond to
a JNDI lookup method call in your bean class code. However, in this field you don’t
have to specify the resource by its actual JNDI name. It’s a reference name, and it
must simply match what you’ve written into your bean class code.

To add a resource factory reference, do as follows for each resource that your bean
needs:

1. Click the Resource Factory Reference field and then the ellipsis (…) button.

The Resource Factory References property editor appears.

2. Click Add.

The Add Resource Reference dialog box appears.

3. Complete the fields.

The following fields are mandatory.
Chapter 8 Preparing Enterprise Beans for Deployment 183

■ Name. The name that appears in the InitialContext.lookup method of your
bean class code. For example, for a JDBC resource factory that you refer to as
myPointbase, your lookup method might be coded as follows:

The corresponding name for the resource reference in this case would be
jdbc/myPointbase. Notice that the environment’s subcontext is represented by
jdbc/.

■ Type. The type of resource factory. Specify your own type, or select one of the
following:

■ javax.sql.DataSource, a JDBC connection factory.

■ javax.jms.QueueConnectionFactory, a Java Message Service connection
factory.

■ javax.jms.TopicConnectionFactory, a Java Message Service connection
factory.

■ javax.mail.Session, a JavaMail session factory.

■ javax.resource.cci.ConnectionFactory, a connection factory that you
declare if you want your bean to connect to another application system or EIS.
An enterprise bean can use the Connector architecture Common Client
Interface (CCI) API and a resource adapter to get access to outside data. For
more information on implementing the CCI API in your application, refer to
the Java 2 Platform, Enterprise Edition Tutorial.

■ java.net.URL, a URL connection factory.

■ Authorization. How the user is authenticated and authorized to use the resource.

■ Container: The EJB container signs on to the resource manager, using
information supplied by the application deployer at deployment time.

■ Application: The enterprise bean code causes the resource manager sign-on to
happen programmatically.

The following field is optional.

■ Sharing Scope. Whether the connection to this resource can be shared by another
enterprise bean in the same application. If two or more beans can use the same
resource in the same transaction context, the container can carry out transactions
locally and save time.

javax.naming.InitialContext myContext =
new javax.naming.InitialContext();

javax.sql.DataSource mySource = (javax.sql.DataSource)
myContext.lookup(“java:comp/env/jdbc/myPointbase”);
184 Building Enterprise JavaBeans Components • June 2003

Specifying Security-Role References

If your enterprise bean does its own security checking, that is, if it checks to see if
the user has the authority to use your bean to perform a task, you must provide
security-role references in this field. (A message-driven bean needs no security role;
it merely propagates whatever security information came from a client in a message.
Any needed security checking is done later by either the container or the enterprise
bean from which the message-driven bean requests work.)

To use this field, you must also have provided corresponding code (programmatic
security) in your bean class. For example, your code might include the following
method from the javax.ejb.EJBContext interface:

isCallerInRole(rolename)

In that case, you also need to add all applicable role names as security-role
references in this property sheet.

Security roles can also be defined at the module level. For more information, refer to
Building J2EE Applications.

To add a security role at the bean level, do as follows:

1. Click the Security Role Reference field and then the ellipsis (…) button.

The Security Role References property editor appears.

2. Click Add.

The Add Security Role Reference dialog box appears.

3. Complete the fields.

■ Name. The name of the security role, as it appears in your bean class code. This
field is mandatory.

■ Description. An explanation of the role. This field is optional.

■ Security Role Link. A link to a security role in the deployment environment.
(This field is optional at the bean level. The data might not be available until
deployment time; the field typically is completed by the deployer.)

Using the Sun ONE AS Tab
The tab for Sun ONE Application Server (the Sun ONE AS tab) shows properties
that are automatically assigned when you use the EJB Builder to create an enterprise
bean. Many of these properties contain default values based on how the server
understands the type of enterprise bean. Also, any non-local EJB references that
you’ve declared between enterprise beans appear automatically as EJB Reference
Mappings in the Sun ONE AS tab.
Chapter 8 Preparing Enterprise Beans for Deployment 185

You’ll rarely need to specify any properties on the Sun ONE AS tab for an individual
enterprise bean. The application server requires more information on an EJB module
that contains one or more CMP beans. There, you see the IDE’s generated
instructions to the container on how to intercede between the bean and its
underlying data storage.

First, let’s consider the property-field values in the Sun ONE AS tab for individual
enterprise beans. Then, starting in “Creating and Configuring an EJB Module” on
page 190, we will explore how to create an EJB module around enterprise beans, and
how to set a CMP entity bean’s database-related properties at the EJB-module level.

Setting Server Properties for Individual Session and
Entity Beans

For a session bean, a CMP bean, or a BMP bean, the Sun ONE AS tab displays the
properties shown next. The following example uses a session bean called Process
Order.

The plugin supplies values in the following fields if they have been specified in the
bean’s other property sheets or source code:

■ EJB Reference Mappings. This property names the target referenced enterprise
bean as it is known to the specifying bean (which doesn’t have to be the actual
JNDI name) and to the server (this must be the actual JNDI name).

■ JNDI Name. The server plugin populates this field with the name by which a
JNDI lookup call locates your bean before creation. You can change the name here
if you want, but you can’t leave it blank.
186 Building Enterprise JavaBeans Components • June 2003

■ Pass By Reference. By default, the server plugin applies pass-by-value semantics
to enterprise beans co-located within the same process, but without marshalling
all call parameters. In this way, the call overhead is kept low. However, you can
set the value of this property to true if you want pass-by-reference semantics to
be used on a particular enterprise bean.

■ Resource Environment Reference Mappings. The server plugin populates this
property with a resource pair: the JNDI name from the bean’s source code, and
the resource manager that is registered with the server and that the bean needs
(for example, a JMS destination object such as a message queue).

■ Resource Reference Mappings. The server plugin populates this field with
another resource pair: the JNDI name from the bean’s source code, and a
connection factory that is registered with the server (for example, a queue
connection factory).

For an entity bean, this is where you specify the data source by two names: the
reference name and the actual JNDI name. When you open the properties editor,
you see a dialog box with two tabs, as shown in the next two figures.

■ In the Standard tab, you specify the logical name defined in the entity bean’s
source code, which is the name used in the initial context lookup. It doesn’t
have to match the actual JNDI name of the data source. In the example in
FIGURE 8-2, the logical name of the data source is jdbc/myPointbase.

FIGURE 8-2 Standard Tab of the Resource Reference Property Editor for an Entity Bean
Chapter 8 Preparing Enterprise Beans for Deployment 187

■ In the Sun ONE App Server tab, you specify the actual JNDI name of the data
source as it was assigned under Registered JDBC DataSources in the Explorer’s
Runtime tab.

In the example in FIGURE 8-3, the data source’s actual JNDI name is
jdbc/jdbc-pointbase. Both the default user name and the default
password are PBPUBLIC (all capitals). After you type the password, press the
Enter or Return key.

FIGURE 8-3 Sun ONE App Server Tab of the Resource Reference Property Editor for an
Entity Bean

In most cases, you don’t need to change the values of the other properties in the Sun
ONE AS tab. However, if you need details, refer to the documentation on Sun ONE
Application Server. The remaining properties in this tab allow you to do the
following:

■ Adjust the behavior of the bean pool
■ Change the default runtime bindings of a resource reference
■ Use another commit option for the bean’s transactions
■ Redirect the bean’s input or output
■ Change the bean’s run-as role
■ Make a bean read-only, so that a client can’t modify it
■ Tell the server how often to refresh a read-only bean from its JDBC data source

The relationship between an enterprise bean and its underlying data storage is
controlled through properties specified on the EJB module that contains the bean,
not through the individual bean’s properties. Before you deploy an enterprise bean
188 Building Enterprise JavaBeans Components • June 2003

to any server, you must first create an EJB module to hold the bean, whether you do
this within the context of testing (see) or for production purposes. See “Setting
Database-related Properties for CMP Entity Beans” on page 192 for details.

Setting Sun ONE AS Properties for Message-Driven Beans

The Sun ONE AS tab for a message-driven bean also contains properties that
describe the kinds of messages the bean consumes and the resources the bean uses.

Most of the time, you will need to consider only the following properties:

■ JMS Durable Subscription Name. If the message-driven bean subscribes to a
topic and has a durable subscription, specify the name here.

■ JMS Max Messages Load. If necessary, you can specify here the maximum
number of messages to be loaded into a JMS session for the message-driven bean
to consume.

■ MDB Connection Factory. The server plugin supplies these values from the
registered resource, including any access data (a name and password for the
default resource principal, or user of the database).

For details on the other properties, refer to the documentation for Sun ONE
Application Server 7.

To deploy an enterprise bean, you must first create an EJB module around the bean.
EJB modules are discussed next.
Chapter 8 Preparing Enterprise Beans for Deployment 189

Creating and Configuring an
EJB Module
Perhaps you have designed an enterprise bean to work on its own, or perhaps you
have designed several beans to work cooperatively. In either case, you must package
your enterprise beans in an EJB module to deploy it to an application server. In the
case of multiple cooperating beans, the module ensures that the right beans are kept
together and that all necessary information about the beans’ operating requirements
is packaged with them.

Enterprise beans don’t have to be in the same module to work together; they can run
in different modules and even in different JVMs. However, sometimes it’s more
convenient to keep cooperating beans together in the same module.

If you need to have multiple CMP beans working together within an EJB module,
it’s best to start by using the EJB Builder wizard to create a set of related CMP beans
from a database or database schema. At the same time, the wizard creates the
surrounding EJB module. When you approach the task that way, the IDE
automatically preserves all the relationships between the beans.

An EJB module is a logical entity in the IDE, a symbolic representation of its
physical counterpart, which is an EJB JAR (a standard Java archival file with the
extension .jar). The EJB module contains a J2EE deployment descriptor, which it
uses to track cooperating enterprise beans, the beans’ source code and
interconnections, and properties that reflect the deployment environment, that is,
information specific to an application server. However, neither the beans nor copies
of them actually reside in the EJB module.

The beans in an EJB module can be in the same directory or in several directories,
even in different filesystems.

An EJB module is the smallest unit of enterprise beans that can be deployed to an
application server. Ordinarily, the unit that executes on an application server is a
J2EE application containing several EJB modules, each of which contains one or
more enterprise beans.

Deciding What Should Go Into an EJB Module
Here are some general guidelines for deciding how many enterprise beans to
package in a single EJB module. (For details, refer to the documentation for the
Java 2 Platform, Enterprise Edition.) You might want to package your beans for any
of the following results.
190 Building Enterprise JavaBeans Components • June 2003

■ Maximum reusability. If one enterprise bean is highly reusable, you might
package it in its own EJB module. When the application is assembled, this module
can be combined freely with other modules, to supply only the functionality that
the application needs and to keep the size of the application down.

You should group into one module any beans that are most likely to be used
together. For example, all CMP beans that were built in the EJB 2.0 environment
and that have relationships between them must be in the same module.

■ Maximum ease of assembly. The application assembler has less work to do if you
package in one module all the enterprise beans an application needs, or at least all
the beans in a chunk of the application. This can be an effective approach if
reusability isn’t an issue.

■ A balance between reusability and ease of assembly. For a J2EE application of
moderate size, you can probably group any related or closely coupled enterprise
beans in one module, and any singly reusable beans each in its own module.
Good candidates for grouping are beans with related functionality, dependencies
on each other, circular references, or common security profiles.

Considering When to Create an EJB Module
If you are going to use the IDE’s testing feature on a CMP bean, consider whether
you want to create the bean’s EJB module first and use it in testing, or wait until
after you have tested the bean.

The testing process creates an EJB module for you. This is not a module you can
deploy in production, but one that lets you test your CMP bean’s code and all its
deployment settings. You might save time by running your CMP bean through the
testing process, finding out how the properties you set there work, and afterward
replicating those settings in a “real” EJB module that you generate for production
purposes, following the instructions in this section.

Or, if you would rather not do the process twice, you can create a production EJB
module according to the instructions in this chapter and substitute it for the module
that the testing feature provides.

For information on testing enterprise beans, see Chapter 9.

Putting Enterprise Beans in an EJB Module
To create an EJB module around a single enterprise bean, do as follows:

1. In the Explorer window, right-click the bean’s logical node and choose Create
New EJB Module.
Chapter 8 Preparing Enterprise Beans for Deployment 191

2. In the New EJB Module dialog box, rename the module if necessary.

3. Select a location for the module from the tree view of your filesystem.

4. Click OK.

To create an EJB module around multiple cooperating enterprise beans, follow the
steps above, but use the Control or Shift key to select at the same time all the beans
you want in the module.

Another way to create an EJB module around several beans is to right-click the
beans’ Java package and choose New → All Templates. In the New wizard, expand
the J2EE node and select EJB Module. The IDE creates a new, empty EJB module in
the package. Right-click the module node and choose Add EJB. In the file chooser
that appears, use the Control or Shift key to select all the beans you want to include
in the EJB module.

See the contents of the module by expanding its node in the Explorer.

If you need to add one enterprise bean to a module you’ve already created, do as
follows:

1. In the Explorer window, right-click the EJB module’s node and choose Add EJB.

A file chooser appears, showing a tree view of your filesystem.

2. Select an enterprise bean from the tree view.

3. Click OK.

Setting Database-related Properties for CMP
Entity Beans
The server-related properties for a CMP entity bean are provided at the level of the
EJB module.

FIGURE 8-4 shows the Sun ONE AS tab for an EJB module called
EJBModule_Customer. This EJB module, as you will see a little later, contains
several related CMP beans.
192 Building Enterprise JavaBeans Components • June 2003

FIGURE 8-4 Sun ONE AS Tab’s Properties for an EJB Module Containing CMP Beans

In a CMP bean’s Sun ONE AS tab, you can edit the following properties:

■ CMP Resource. Specify the actual name of the data source whose tables are
represented by the CMP entity bean or beans in the EJB module. An example is
shown in FIGURE 8-5.

FIGURE 8-5 How to Specify a CMP Bean’s Data-Source Properties to Sun ONE
Application Server 7

■ Notice how the PointBase database is referred to.
■ After typing the password, press the Enter or Return key.

■ Mapped Security Roles. You can specify resource principals (that is, users who
are authorized to access the database) at the level of the EJB module or the J2EE
application. The editor for this property lets you add or delete principal names
and group names.
Chapter 8 Preparing Enterprise Beans for Deployment 193

Understanding the Application Server’s Generated SQL

Sun ONE Application Server 7 automatically generates its own SQL to handle your
CMP beans’ queries to the database. Ordinarily, you don’t need to be concerned with
those SQL statements.

However, it’s possible for your application to use a CMP entity bean that was
created in the EJB 1.1 environment, or a CMP bean that was created using an earlier
version of the Sun ONE Studio IDE. Or, you might have based a CMP bean in your
application on a bean class of version 1.x (for details on creating such a CMP bean,
see Chapter 4).

If your application contains such CMP beans, you can treat them the same as you do
EJB 2.0 CMP beans, with one important change. You need to go to the server’s
generated SQL and adjust a statement relating to the bean’s finder or selector
methods. For these methods of CMP 1.1 beans, Sun ONE Application Server 7 uses
an extended version of the Java Data Objects query language (JDO QL).

The application server exposes that query language in the property sheet for the
CMP 1.1 bean’s finder method. Look in the Sun ONE AS tab for properties relating
to this method.

Note – Be sure that none of your beans (tables) or their fields (columns) have names
that are reserved words in SQL.

For details, refer to the documentation for Sun ONE Application Server 7.

Adding Transaction Attributes to an EJB Module
Transaction attributes tell the EJB container how to control a CMT bean’s
transactions. In a session bean that manages its own transactions (a BMT bean), you
must explicitly code the bean’s transactions. In a CMT bean, you include no explicit
code for transactions; instead, you let the container control them based on
transaction attributes you assign to your bean’s methods.

By default, the IDE sets all bean methods to use the Required attribute. You can
assign different transaction attributes at the bean level or at the method level. For
example, if you don’t want a particular method to be included in the context of a
transaction, you can change that method’s attribute from Required to Not
Supported.

The transaction attributes are stored in the deployment descriptor, and they can be
edited using the EJB module’s property sheet. Before an EJB module that contains
CMT beans is assembled into an application, you should make sure that the
appropriate transaction attributes are specified for that module.
194 Building Enterprise JavaBeans Components • June 2003

When you change a transaction attribute for an individual bean or for a method in a
bean, the attribute is changed only for execution within that EJB module. The bean’s
source code has not been changed. If you reuse that bean within another EJB
module, you can apply a different set of transaction attributes.

To change a CMT bean’s transaction attributes within an EJB module, do as follows:

1. In the Explorer window, right-click the bean’s EJB module and select Properties.

In the Properties tab, notice that the Transaction Settings field displays the value
Container-transaction.

2. In the Properties tab, click the Container-transaction field, and click the ellipsis
(…) button.

The Transaction Settings dialog box appears. Notice that the larger panel displays
the module’s enterprise beans that use CMT, each bean with a transaction attribute
that applies to the entire bean.

■ To change a bean’s transaction attribute, select the bean and select another item
from the Trans-attribute combo box. The new attribute appears beside the bean’s
name in the larger window.

■ To change a particular method’s transaction attribute, expand the bean, select the
method, and select another item from the Trans-attribute combo box. The new
attribute appears beside the method’s name in the larger window, as shown next.
Notice that the bean’s other methods display no transaction attribute unless the
default attribute is overridden.
Chapter 8 Preparing Enterprise Beans for Deployment 195

While you’re working in the Transaction Settings dialog box, you can take the
opportunity to provide the application assembler a description of the transaction
settings for individual beans or methods in the module. For example, you might
want to explain why you’ve changed a particular transaction attribute in this EJB
module.

3. Click OK when you’re finished with transaction attributes.

Changing EJB References Within the EJB Module
or Application
In “Specifying EJB Local References” on page 180 and “Specifying EJB References”
on page 181, you saw how references between enterprise beans are declared at the
level of the individual bean. Those references also can be overridden as follows:

■ If the beans are in the same EJB module, you can override the references at the
level of the EJB module.

■ If the beans are in different EJB modules but within the same application, you can
override the references at the level of the application.

This feature is handy if, for example, you want to package a particular enterprise
bean in three different EJB modules to be used variously by one or more
applications.

To use this feature, you must provide the EJB module (or application) two or more
enterprise beans whose interfaces are the same. The feature works for local, remote,
or local and remote interfaces, but the beans’ interfaces must be identical, while the
bean classes or properties (deployment information) can differ.

Overriding a Reference at the Module Level

To override a bean reference within the EJB module, do as follows:

1. In the Explorer window, right-click the bean’s EJB module and select Properties.
196 Building Enterprise JavaBeans Components • June 2003

2. Click the applicable references field (EJB Local References or EJB References) and
then click the ellipsis (…) button.

The appropriate property editor appears.

3. Find the enterprise bean whose reference you want to override and click the
Override checkbox.

4. Click the Override Value field.

Below the Override Value field appears a combo box containing the names of the
enterprise beans you can select from. An example is shown in FIGURE 8-6.

FIGURE 8-6 EJB Local References Property Editor, Showing an Example of Override
Selections for an Enterprise Bean’s Local References

5. Select the reference you want the enterprise bean to use, and click OK.
Chapter 8 Preparing Enterprise Beans for Deployment 197

Overriding a Reference at the Application Level

To override a bean reference at the application level, do as follows:

1. In the Explorer window, right-click the bean’s application and select Properties.

2. Click the applicable references field (EJB Local References or EJB References) and
then click the ellipsis (…) button.

The appropriate property editor appears.

The property editors for EJB references and EJB local references are the same at the
module and application level. Continue with the same steps as described in the
previous section.

Adding Extra Files to an EJB Module
When you select an enterprise bean and create an EJB module around it, or when
you add enterprise beans to an EJB module, the module’s class closure feature takes
care of finding and including all of the bean’s source code, including helper classes.

Look at the classes included in a module as follows:

1. In the Explorer window, select the EJB module.

2. Right-click and select Calculate EJB JAR Contents.

A window opens to display all the included classes.

However, in a few cases, class closure might not pick up all the files you want in the
module. For example, you might want to add an image file from elsewhere. You can
add extra files by hand.

Add a file to an EJB module as follows:

1. In the Explorer, display the property sheet for the EJB module.

2. Click the Extra Files field and then the ellipsis (…) button.

The Extra Files property editor appears.

3. In the Source pane, select a file and click Add.

The file appears in the Files To Be Added pane.

4. Click OK to add the file.

When you deploy the EJB module, this file is included in the EJB module.
198 Building Enterprise JavaBeans Components • June 2003

Creating an EJB JAR
An EJB module is a standard JAR file (see “Creating and Configuring an
EJB Module” on page 190 for more discussion). An individual EJB module can be
deployed to an application server. Or, you might want to hand off an EJB module to
another part of the organization for application assembly. You can create an EJB JAR
file in which to export the module and its contents for use by the assembly people.

Create an EJB JAR file to house an EJB module as follows:

1. In the Explorer window, select the EJB module.

2. Right-click the module node and select Export EJB JAR File.

The Specify Location and Application Server Type window appears.

3. Accept the default location or navigate to another place you want the resulting
JAR file to live.

4. Select the appropriate server in the Application Server Type field.

5. Specify which types of files to include: all files or just JAR files. Then, accept the
resulting JAR file name or specify another.

If you select All JAR files, the resulting JAR file appears in the large pane. Select
it and its file name appears in the File Name field. Specify another name here if you
wish.

If you select All Files, all the files in the folder appear in the large pane. Select a
file to export, renaming the result unless you want to replace the original file.

6. Click Export.

The Output Window appears and shows you the progress as the module and its
contents are compiled. Notice any error messages in this window.

After the EJB JAR file has been created, you can still adjust the module or its
contents for use in this or another EJB JAR file.

One or more EJB modules can be placed in a J2EE application and deployed. For
details on assembly and deployment, refer to Building J2EE Applications.

Creating a J2EE Application
When you have one or more EJB modules containing all the enterprise beans that
will be needed to produce a desired result, you are ready to create a J2EE application
around all the components. Normally, what is deployed on an application server is
an application containing one or more EJB modules and one or more web modules.
Chapter 8 Preparing Enterprise Beans for Deployment 199

The IDE automatically generates an EAR file for each J2EE application. The EAR file
is the portable archive of the application’s contents, and it includes a deployment
descriptor for the application as a whole. You can separately configure the properties
on the application.

For details about assembling EJB modules and other types of modules into an
applications and for details on their configuration, refer to Building J2EE Applications.
200 Building Enterprise JavaBeans Components • June 2003

CHAPTER 9

Testing Enterprise Beans

As you develop enterprise beans, you might find it expedient to test them before
doing a full-scale application assembly and deployment to an application server for
production purposes. Using the Sun ONE Studio 5 IDE, you can generate a J2EE
application for testing purposes, including a web module with JavaServer Pages™

(JSP™) test pages and an EJB module for your bean. You then use the test feature to
display the JSP page’s resulting HTML page in a web browser. In the HTML page,
you can create instances of an enterprise bean and exercise the bean’s methods.

The objects that the IDE creates for you are designed for use only during the test
process. They are not intended for deployment in a production environment.

You can use the IDE’s testing feature with any supported database and application
server. The following instructions and example use PointBase as the test database,
Sun ONE Application Server 7 (which is hereafter referred to as the application
server) as the test server, and Netscape Navigator as the web browser.

Notice that you can also deploy and execute production applications on the
application server. Refer to Building J2EE Applications for details.

Fulfilling the Prerequisites for Testing
Your testing set-up can vary depending on which type of enterprise bean you want
to test. Some preparation pointers follow.

■ Consider how you want to set up the EJB module. To test a session bean, you
can simply use the EJB module generated by the testing feature. However, an
entity bean’s EJB module can be handled two different ways. See “If You Want to
Test a CMP or BMP Bean” on page 214.

Message-driven beans are not supported by the testing feature in this release of
the IDE.
201

■ Have all referenced beans in the same module. With the testing feature, you
exercise one bean at a time. However, the bean being tested must have any bean
it references available for its use. See “If You Want to Test a Bean With EJB
References” on page 216.

■ Remote references are required. Any enterprise bean you want to test must have
remote interfaces; it can also have local interfaces, but the testing feature requires
remote ones. A bean referred to by the bean you’re testing can have either or both
kinds of interfaces. For details, see “Adding Remote Interfaces to a Bean” on
page 216.

■ Your bean’s resources must be available. You must have the application server
and the required database server up and running. See the following section for
details.

Variations on the set-up for enterprise bean tests are described in “If You Want to
Test a CMP or BMP Bean” on page 214.

Preparing to Deploy to the Application Server
To use the IDE’s testing feature on an enterprise bean, you must be able to deploy
your bean’s application to the application server. Sun ONE Application Server 7 was
installed automatically when you installed the IDE. (If you intend to use another
application server for testing, you must have installed it.) Before you start testing
your enterprise bean, the admin server and at least one server instance must be
running.

Start the application server as follows:

1. Go to the Runtime tab of the IDE’s Explorer.

2. Expand the nodes for Server Registry, Installed Servers, and Sun ONE
Application Server 7.

Under the Sun ONE Application Server 7 node is the admin server node, and under
that node is the server instance node. An example is shown in FIGURE 9-1.

FIGURE 9-1 Example of Sun ONE Application Server 7 Nodes as Displayed in IDE
Explorer’s Runtime Tab
202 Building Enterprise JavaBeans Components • June 2003

3. Right-click the admin server node and choose Start.

The admin server node is labeled app-server-host:admin-server-port. In FIGURE 9-1, the
admin server node is localhost:4848.

Below it, the application server instance node is labeled server1 (app-server-
host:app-server-instance-port). In FIGURE 9-1, the server instance node is
server1(localhost:80).

Depending on how your environment is set up, you might or might not have to start
the server instance separately. If the server instance does not start automatically
when you deploy an application, follow these steps:

4. Right-click the application server instance node and choose Status.

The Sun ONE Application Server Instance Status dialog box appears.

5. Click the Start Server button.

The admin server opens the server instance code window and displays messages as
the server instance is starting. When it’s finished, you see the message
Application OnReady complete.

6. Minimize the code window if you like.

However, don’t close the code window, as that stops the server. Close the server
instance status window.

If you need detailed instructions for starting the application server, refer to Sun ONE
Studio 5, Standard Edition Getting Started Guide.

Preparing to Test Beans Against the PointBase
Database
You can use the PointBase database, which is included in the IDE, to test any
enterprise bean that needs access to a database. (Normally, the database is needed
only for testing entity beans.)

■ If you have decided to let the testing feature create an EJB module for your use,
apply the following instructions when you reach that point in the process.

■ If you have decided to use an existing EJB module to test entity beans, be sure the
module’s properties are set so that your test application will be able to find and
log into the database.

Set these properties as follows:

1. In the Explorer’s Filesystems tab, select the EJB module node (the node that isn’t
included under a test application node) and display its Properties.

The module’s property sheet appears.
Chapter 9 Testing Enterprise Beans 203

2. In the Sun ONE AS tab of the EJB module’s property sheet, display the property
editor of the CMP Resource property.

3. In the property editor, specify a connection to the database as follows:

Note – Here, type Pointbase with an initial capital only. After you type the
password, press Enter.

4. Save your work with File → Save All.

Starting PointBase and a Web Browser
Start the PointBase server, connect to the database, and start the PointBase console.
Then, launch a web browser from inside or outside the IDE.

To start the PointBase database server:

● Choose Tools → PointBase Network Server → Start Server from the main menu.

When the PointBase server window appears, you can minimize it.

To connect to the database:

1. In the Runtime tab of the Explorer, expand the Databases node.

2. Right-click the node whose label starts jdbc:pointbase:server:// and choose
Connect.

The broken icon changes to appear whole.

To start the PointBase console:

1. Choose Tools → PointBase Network Server → Start Console from the main menu.

The console window appears behind the Connect to Database window.

2. Click OK to use the default (sample) database.

The Connect to Database window closes and the console window remains. You can
minimize the console window.

Field Your Input

JNDI Name jdo/PointbasePM

Default Resource Principal:

Name PBPUBLIC

Password PBPUBLIC (displayed as asterisks)
204 Building Enterprise JavaBeans Components • June 2003

Don’t close down either the console window or the server window until you’re
finished with your testing activities. However, you can minimize those windows.

To launch a web browser from inside the IDE:

● Choose View → Web Browser from the main menu.

Generating Test Objects
Now you’re ready to use the IDE’s wizard to create the EJB module, the web
module, and the application with which you will test your enterprise bean.

Follow these steps to generate test objects for your enterprise bean:

1. In the Explorer window, select the bean’s logical node, right-click, and choose
Create New EJB Test Application.

A wizard appears, showing default values for all the components needed to test
your application.

Note – If you right-click one bean and see that the Create New EJB Test Application
menu item is disabled, the bean probably has no remote interfaces. Follow the
directions in “Adding Remote Interfaces to a Bean” on page 216 and try again.

Notice that the Package field displays the current package name where your bean
resides. You can move the EJB module and test application objects that the wizard is
about to create by typing other package names into those fields.

In the next fields, you can also specify other package and module names if necessary.
However, if you plan to substitute an existing EJB module for the one that this
feature will generate, don’t specify the existing module here. Instead, you’ll use the
application’s property sheets later in the process.

Notice the selections in the application server combo box. All extant application
server instances appear there, and you can deploy your test application to any of
them.

2. Mark the Auto Deploy checkbox or leave it blank.

If you select the checkbox, the IDE automatically deploys your bean’s testing
module to the server as soon as you’ve finished creating it in the wizard. You might
find this approach efficient if the bean you’re testing is stand-alone and needs no
other beans to do its work.

If you leave the checkbox unselected, you will handle the deployment yourself in a
later step. If your bean needs to be tested in conjunction with other beans, leave the
checkbox blank.
Chapter 9 Testing Enterprise Beans 205

3. Click OK to generate the EJB module, the web module, and the application, and
(if applicable) to deploy the application automatically.

A progress monitor tells you how the module generation and deployment are going.
When deployment is complete, a message appears in the IDE’s log window.

Dismiss the information window telling you an alternate view is available.

FIGURE 9-2 shows an example of how generated testing objects might appear for a
session bean called Converter. In this example, the wizard has been allowed to
place in the bean’s package all the testing objects it produced.

FIGURE 9-2 Example of Test Objects Generated for Enterprise Beans

Notice the generated objects that have been added to the bean’s package:

■ An EJB module containing the enterprise bean to be tested

■ A test application containing references to the EJB module and the web module

■ An actual web module containing the web client in the form of JSP pages and
helper Java classes that will be used during testing

■ A logical web module

Unless you specified otherwise in the wizard, the IDE has placed the web module in
a new filesystem of its own, as shown next. When you expand the filesystem node,
you see the web module as the first subnode, labeled WEB-INF. Under it, you see the
JSP pages. Within the WEB-INF subnode, you see the helper Java classes.

Actual web module
Test application
EJB module

Logical web module
206 Building Enterprise JavaBeans Components • June 2003

You have now generated the basic test application. If your bean references any other
beans, add them to the EJB module as follows:

4. In the Explorer window, select the generated EJB module node, right-click, and
choose Add EJB.

5. In the tree view, navigate to the referenced enterprise bean, select it, and click OK.

The referenced bean is added to the EJB module, and a reference to the bean is
added to the test application.

Repeat Step 4 and Step 5 for each referenced bean.

Now, unless you marked the Auto Deploy checkbox in Step 2, you’re ready to
deploy your test application to a server. Or, if you prefer, you can deploy and
execute the application in one step. The following sections describe each approach.

Deploying the Test Application to a
Server
To deploy your test application to the application server, do the following:

● In the Explorer window, select the J2EE application node, right-click, and choose
Deploy.

A progress monitor tells you how the deployment is going. When the progress
monitor disappears, look in the server instance tab of the output window for a
message indicating that deployment was successful.

Now, follow the steps under “Executing the Test Application” on page 208.

Web module

JSP pages
Chapter 9 Testing Enterprise Beans 207

Deploying and Executing the Test Application in
One Step
To deploy your test application to a server and start it executing at the same time, do
the following:

● In the Explorer window, select the J2EE application node, right-click, and choose
Execute.

A progress monitor and output window tell you how the deployment and execution
are going. You see messages, for example, indicating that the application server has
been contacted, the enterprise bean or beans have been deployed on the server
(notice that the server instance is referred to by a name such as localhost), the
wrapper and RMI-IIOP code have been compiled, the JAR or JARs for the server and
client have been made, the web server has been contacted and asked to run the test
application, and all the generated code has been saved.

When this double step is complete, a web browser appears and opens to the test
client, a JSP page that contains the GUI for testing your enterprise beans. An
example is shown in FIGURE 9-3.

Continue at “Using the Test Client to Test Your Beans” on page 209.

Executing the Test Application
If you didn’t choose Execute to deploy and execute your test application in one step,
you can do the following to test your enterprise bean or beans:

● Open a web browser and type in the appropriate URL.

This URL has the following format if you are using the application server:

http://app-server-host:app-server-port/application_name/

■ app-server-host is the host name assigned to the admin server.
■ port is the port number assigned to the application server instance.
■ application_name is the name of the application you’re testing.

The test application’s client, a JSP page, appears in the browser.
208 Building Enterprise JavaBeans Components • June 2003

Using the Test Client to Test Your Beans
You follow the instructions on the test client’s JSP page to create instances of your
enterprise bean and call its business methods. The following section describes how
you might test a very simple session bean called Converter, which converts
amounts in U.S. dollars to the equivalent values in Japanese yen at the rate of .009
dollar to the yen.

This example session bean resides in the Java package ConverterPack.The bean’s
method to be tested is yenToDollar, and its source code looks like this:

Understanding the Test Client Page
FIGURE 9-3 shows the JSP page that the IDE has created for this particular application
client, which was generated to test the Converter session bean.

public double yenToDollar(double yen) {
return yen * .009;

}

Chapter 9 Testing Enterprise Beans 209

FIGURE 9-3 Client JSP Page Generated to Test Example Session Bean Converter

1

2

3

4

5

210 Building Enterprise JavaBeans Components • June 2003

As shown in FIGURE 9-3, the parts of the testing window are as follows:

1. The browser’s URL field shows the location of the test client’s JSP page. Your
client’s URL is generated automatically by the IDE’s testing feature. If you like,
you can use this URL to return to this testing window.

2. The Stored Objects frame shows the stack of objects created during your testing
sequence by the IDE or by your own actions, for example, when you have called
a method on an interface or on a bean class. Right now, only the home interface is
shown.

You can remove objects from the Stored Objects stack by using the Remove
Selected or Remove All button.

3. The EJB Navigation frame shows the objects that the IDE has generated so that
you can test your bean. If the bean you’re testing has references to other beans
and your EJB module contains more than one bean, this frame lists the created
objects in logical order, that is, in the order that one bean in the module calls
another.

In the EJB Navigation frame in FIGURE 9-3, you see
Converter.dollarToYenHome, which shows that the IDE has created the
session bean’s home interface. Later, you will click this home interface to create
and initialize a new instance of the session bean.

When you see more than one object listed in this frame, you click an object to
change focus to the bean component you want to test. When you click an object,
notice how the other frames change.

4. The Results of the Last Method Invocation frame shows, for example, the last
method you called and its parameters. Right now, since we haven’t yet begun
testing the session bean, nothing appears in this frame.

5. The bottom frame shows the methods that are now available for you to test. This
frame changes as you place focus on different components of the bean (listed in
the EJB Navigation frame).

Now let’s test the dollarToYen bean’s home interface and business method.

Testing the Sample Bean’s Home Interface
To verify that ConverterPack.ConverterHome correctly creates an instance of the
session bean, do as follows:

1. In the EJB Navigation frame, click the home interface name.
Chapter 9 Testing Enterprise Beans 211

2. In the bottom frame, click the Invoke button under the home interface name.

In this case, you click the Invoke button under ConverterPack.ConverterHome.

Notice the following changes in the page’s frames:

■ In the EJB Navigation frame, an instance of the bean has been added. In this
particular case, the instance is called ConverterPack.Converter and followed
by a process number.

■ In the Stored Objects frame, the bean instance has been added to the top of the
stack.

■ In the Results frame, the bean instance is reflected, along with the fact that the
create method was invoked with no parameters.

Now let’s test the Converter bean’s business method, yenToDollar.

Testing the Sample Bean’s Business Method
To verify that the instance of ConverterPack.Converter correctly converts
Japanese yen amounts to U.S. dollars, call the bean’s business method as follows:

1. In the EJB Navigation frame, click the bean name (under the home interface
name).

Notice that the Results frame is cleared and that the bottom frame’s list of invokable
methods now starts with the bean’s business method.

2. In the bottom frame, under the business method, type a parameter into the input
field and then click the Invoke button.

As shown next, we use the parameter 1000. (The .0 is appended by the IDE.)

After clicking Invoke, notice the following changes in the page’s frames:

■ In the Results frame, as shown next, are the result of the method invocation (the
result is 9.0, because the business method included a calculation of .009 dollar to
the yen) and the parameter we input for testing purposes (1000 yen).
212 Building Enterprise JavaBeans Components • June 2003

■ In the Stored Objects frame, the stack includes the result object and the parameter
object.

You can invoke and test any other bean methods that are shown in the Invoke
Methods frame.

Creating New Testing Classes
When you create an object by invoking the bean’s other methods, that object can be
used to test the bean further. For example, the objects created so far by testing
ConverterPack.Converter also appear in a combo box beside the label
javax.ejb.EJBObject. You can select one of the objects and create a new class to
use for testing.

Making Changes After Deployment
You can make changes in an enterprise bean and retest it without generating another
test application. However, you must redeploy the test application before testing a
bean any of whose components you have modified. Do this as follows:

1. Close the testing window.

2. In the Source Editor, make your changes in the enterprise bean’s code.

3. In the Explorer’s Runtime tab, undeploy the test application.

Expand the server instance node and the Deployed Applications node. Right-click
the test application’s node and choose Undeploy.

4. In the Explorer’s Filesystems tab, redeploy and re-execute the test application.
Chapter 9 Testing Enterprise Beans 213

Caution – The IDE generates an EJB module, a web module, and a J2EE application
that are designed only to be used to test your enterprise bean. These generated
objects are not meant to be modified, except for server properties that you specify to
test a CMP bean against a data source. If you make other changes in generated
modules, you might not be able to redeploy the J2EE application.

Preparing to Test: Some Variations
As mentioned in “Fulfilling the Prerequisites for Testing” on page 201, if you’re not
testing something like a simple session bean that already has its remote interfaces,
you need to consider the preparatory steps described next.

If You Want to Test a CMP or BMP Bean
You can test an entity bean in one of the following ways:

■ You can test your bean in an EJB module that is automatically created for you
during the testing process and in which you declare data-source-related
properties before going on to test the bean. As explained in “Preparing to Test
Beans Against the PointBase Database” on page 203, you specify the database
you’re using in the property sheet for the EJB module. An example is shown in
FIGURE 9-4.
214 Building Enterprise JavaBeans Components • June 2003

FIGURE 9-4 How to Specify a Database Connection for a CMP Entity Bean

■ You can create the bean’s EJB module outside the testing process (see “Putting
Enterprise Beans in an EJB Module” on page 191) and make all your properties
declarations there. Then, before you begin testing the bean, you can substitute the
EJB module you created for the one that the testing feature generates.
Chapter 9 Testing Enterprise Beans 215

Either way, when you’re testing an entity bean, you must use an EJB module in
which the bean’s properties are declared. Since the EJB module generated by the
testing feature is designed only for test use, you will also have to create a “real” EJB
module for your production entity beans. You can do this before or after testing.

If You Want to Test a Bean With EJB References
If you want to test an enterprise bean that is designed to interact with another bean,
(for example, if you’re testing a session bean that manages work done by an entity
bean), you must make sure the referenced bean is included in the EJB module.

You can take either of the following approaches:

■ Use an existing EJB module that has all the necessary properties specified. To do
this, you specify the EJB module in the Create a New EJB Test Application wizard,
using the Modify button.

■ Build the module around the referencing bean and add the referenced beans.
To do this, first create a test application around the bean you want to test. Then,
in the Explorer window, find the EJB module that the IDE created for you. Right-
click the EJB module node and choose Add EJB.

Before you generate the test application, make sure that all necessary EJB references
are specified in the beans’ property sheets, and that any necessary overrides are
specified in the EJB module’s property sheet. Otherwise, the test might fail or give
mixed results.

See “Specifying EJB References” on page 181 for details.

Adding Remote Interfaces to a Bean
If the bean you’re testing has only local interfaces, you can prepare it for testing by
copying the local interfaces to create remote ones. Briefly, you use existing interfaces
as follows:

■ Use the local interface (LocalBean_name) to create the corresponding remote
interface (Bean_name).

■ Use the local home interface (LocalBean_nameHome) to create the corresponding
home interface (Bean_nameHome).
216 Building Enterprise JavaBeans Components • June 2003

Caution – Don’t try to use this process to add EJB 2.0 features (such as local
interfaces or references) to an EJB 1.1 CMP entity bean that has not been fully
updated to conform to the current version of the Enterprise JavaBeans Specification.
The resulting bean will be invalid and irreparable. See “Avoiding the Use of New
Features in an Old Bean” on page 235 for details.

Add remote interfaces one at a time. (These instructions start with the local interface
and the corresponding remote interface. Later you will repeat the process with the
local home interface and the home interface.)

You can add remote interfaces to a bean using either the Customizer or the bean’s
property sheets. Each approach is explained next.

Using the Customizer to Add Remote Interfaces

Do as follows:

1. In the Explorer window, right-click the interface node labeled LocalBean_name
and choose Copy from the menu.

2. Select the bean’s Java package, right-click, and choose Paste → Copy.

A copy of the interface appears in the folder, labeled LocalBean_name_1.

3. Select the copy, right-click, and choose Rename. In the Rename dialog box, name
the copied interface according to the J2EE convention: Bean_name.

4. In the Explorer, right-click the bean’s logical node and choose Customize.

The Customizer dialog box appears.

Notice that the Customizer deals with many of the properties that are also available
in the property sheet that appears when you right-click the bean’s logical node and
choose Properties. You can change many of the bean’s properties in either dialog
box. However, the Customizer deals only with properties on the bean itself, not with
properties relating to application servers.

5. In the Customizer dialog box, find the empty Remote Interface field and click the
Browse button.

The Select a Class file chooser appears, as shown in FIGURE 9-5. This example uses a
CMP entity bean called Customer.
Chapter 9 Testing Enterprise Beans 217

FIGURE 9-5 Customizer for Adding an Interface Class to a Bean

6. Navigate to the interface class you created by copying and pasting. Select the
interface node and click OK.

The class appears in the Remote Interface field.

(You will see later that the Remote Interface field in the bean’s property sheet has
automatically been updated.)

7. Dismiss the Customizer dialog box.
218 Building Enterprise JavaBeans Components • June 2003

8. In the Explorer, expand the logical bean node. Expand the Classes node, select the
new remote interface (labeled Remote Interface Class), and open it in the
Source Editor.

Edit the remote interface class to extend javax.ejb.EJBObject.

9. For each method in the remote class, add the exception
java.rmi.RemoteException.

10. Use the same process (Step 1 through Step 13) to create a home interface from a
copy of the local home interface.

However, in Step 8, edit the home interface class to extend javax.ejb.EJBHome.

11. For each create method in the home interface, change the return type to the new
remote interface.

You don’t need to change the ejbCreate method in the bean class.

12. For each of the home interface’s finder methods that finds a single object, change
the return type to the new remote interface.

13. Compile your enterprise bean and resolve any errors.

Note – Be sure to remove from the two new interfaces any methods that cannot be
used as remote methods.

Using Property Sheets to Add Remote Interfaces

Do as follows:

1. In the Explorer window, right-click the logical bean node and display the bean’s
properties.

2. In the Properties tab, click the Component Interface Set property and select Local
and Remote from its combo box.

The logical bean icon appears with a red-X error badge until the actual interface
classes are added and a yellow warning badge until you have edited the classes.

3. Right-click the local interface node and choose Copy.

4. Right-click the package node and choose Paste → Copy.

5. Rename the copy to reflect that it is a remote interface class (bean_name).

6. Follow Step 4 and Step 5 to create a new home interface class as well.

Rename the copy bean_name_Home like other home interface classes.

7. Follow Step 8 through Step 13 in the previous section to make each of the two
new interfaces remote.
Chapter 9 Testing Enterprise Beans 219

220 Building Enterprise JavaBeans Components • June 2003

APPENDIX A

Working With Enterprise Beans

The relationships between the elements of an enterprise bean can be intricate and
complex. The Sun ONE Studio 5 IDE makes certain assumptions to preserve the
integrity of your beans, but also flexibly supports various options for reusing beans.
This appendix prescribes the best practices for working with existing enterprise
beans.

Using Recommended Approaches When
Editing Beans
To be certain that changes take place as you intended, make your edits through the
enterprise bean’s logical node and property sheets. If you use these recommended
approaches, the IDE can ensure that the standards in the J2EE specification are
followed.

These approaches are explained next.

Working Through the Logical Node
As a general rule, it’s best to go through the logical node of your enterprise bean to
make changes in the bean’s code. This node’s icon looks like a coffee bean:
The node was designed to organize all the elements of your enterprise bean.

When you work through the logical node, the IDE can most easily propagate the
changes correctly throughout the bean.

All the classes in your bean are represented under this one node, as if the bean were
a single object. There you can edit your enterprise beans without having to think
about which class must receive each change. For example:
221

■ When you add a new method to the Create Methods node under a bean’s logical
node, the body of that method (ejbCreateXxx) and its related method
(ejbPostCreateXxx, required for entity beans) are added to the bean class.
Depending on which types of interface the bean has, the corresponding method
signature (createXxx) is added to the local home interface, the home interface,
or both.

■ When you add a new method to the Finder Methods node under an entity bean’s
logical node, the Add New Finder Method dialog box prompts you for the correct
name of the method. The method signature is added to the local home interface,
the home interface, or both.

■ In a CMP entity bean, the Add New Finder Method dialog box also prompts
you for EJB QL Select, From, and Where statements. When you deploy your
bean to a supported application server, this EJB QL code is automatically
converted into the kind of SQL that the server needs.

If you want to define a new finder or select method but you aren’t ready to
provide the EJB QL code yet, you can disable the EJB Compiler’s requirement
for EJB QL. See “Compiling and Validating Enterprise Beans” on page 225.

■ In a BMP entity bean, the corresponding ejbFind method is also added to the
bean class.)

■ When you add a new method to the Business Methods node under a bean’s
logical node, the method body is added to the bean class. Depending on which
types of interface the bean has, the method signature is added to the local
interface, the remote interface, or both.

■ When you add a new method to the Home Methods node under the logical node,
the method body is added to the bean class, and the method signature is added to
the appropriate interface or interfaces.

■ When you add a new method to the Select Methods node under a CMP entity
bean’s logical node, the Add New Select Method dialog box prompts you for all
the information needed to complete the method, including EJB QL statements.
The method body is added to the bean class.

In many cases, the IDE can propagate your changes and synchronize your bean’s
classes and interface even when you go through other nodes of your bean to edit the
Java code. However, you get the most consistent results by working through the
logical node.

Using the Customizer or Property Sheet
When you need to modify a method’s name or return type, or when you need to edit
or add a parameter or exception, the best place to do so is in the method’s
Customizer dialog box or property sheet. Under the logical node, select the method,
right-click, and choose Customize or Properties.
222 Building Enterprise JavaBeans Components • June 2003

■ The Customizer has the same format as the dialog box in which you created the
method.

■ The property sheet shows the method’s parts in tabbed interfaces that correspond
to the classes that the method inhabits.

Any change you make in one of these two places is validated and propagated in the
right form to the right classes.

When you need to add code to complete a method, use the IDE’s Source Editor.

Caution – If you make changes outside the logical node, by working within the
bean class node or one of the interface nodes, the EJB Builder still tries to propagate
your changes. However, in certain cases, you might need to manually ensure that
your code matches Sun’s J2EE specification. See the specific examples that follow.

Using the Source Editor to Edit Beans
You can create or modify any part of an enterprise bean by using the IDE’s Source
Editor exclusively. However, the IDE’s wizards and other GUI tools are designed to
save you work and to help prevent inconsistencies, so that you can produce
standard, J2EE-compliant enterprise beans quickly.

In some cases, if you bypass the assistance offered by the EJB Builder, you might get
mixed results. The EJB Builder tries to keep the changes you make in one class
synchronized appropriately with the other classes, but the tool might not always be
able to understand your intent and might not apply all the changes needed.
Therefore, if you make direct changes to class code, the result might be an enterprise
bean with errors that you must correct by hand.

A few examples follow:

■ You open a bean’s interface class (home, remote, local home, or local) in the
Source Editor, and you add code for a new method.

To be valid, a method must have a name and the correct return type, and the
method must throw the appropriate exceptions. If the new method is valid, it is
automatically added to the bean class. If not, the method remains as you coded it,
in the interface only.

Afterward, you might find and fix the problem in the method. However, the EJB
Builder might not always be able to add the repaired method to the bean class;
you might have to add it yourself. Until you make the manual addition, the
method’s node in the Explorer displays an error badge with a red X. (See
“Understanding the IDE’s Error Information” on page 225.)

Here are two examples of how changes are propagated between classes:
Appendix A Working With Enterprise Beans 223

■ If you correctly add a create method to the home interface, the EJB Builder
automatically adds the corresponding ejbCreateXxx method to the bean
class.

■ If you correctly add an ejbCreateXxx method to the bean class, the EJB
Builder automatically adds the corresponding create method to the appropriate
interface or interfaces.

■ You open a bean class in the Source Editor, and you add a finder method.

The compiler validates the code. Assuming that the method is valid, it is
automatically added to the correct interface or interfaces.

■ You open a bean class in the Source Editor, and you add a business method.

The compiler validates the code as far as is possible. However, it’s possible that
you might have intended your addition merely as a helper or utility method
within the bean class, and therefore the method is not propagated to the remote
or local interface.

■ You add a business method with the correct exception to a bean’s remote or local
interface.

The method is automatically propagated to the bean class.

■ You use the Source Editor to modify a create method in a bean’s home (or local
home) interface or a business method in a bean’s remote (or local) interface.

The EJB Builder propagates your changes to the bean class.

■ You modify the ejbCreateXxx method in the bean class.

The compiler validates the code as far as is possible, but does not propagate the
change to the home or local home interface. (Relationships between Java interface
classes are treated similarly throughout the IDE.)

■ You modify a method in a bean’s home interface. In the process, you make the
method invalid by removing a required exception.

The compiler validates the code and provides error information, but does not
propagate the change to the bean class.

■ You enter a new create method in the bean class and give it a name other than
ejbCreate or ejbCreateXxx. Or, you enter a new finder method in a home or
local home interface and name it other than findByXxx. (Or, you modify such a
method.)

The compiler verifies that the declaration is syntactically correct and that the
return type and parameter types are valid Java classes that can be resolved.

Caution – Once you start working on a class in the Source Editor, your enterprise
bean is not saved until you explicitly save it.
224 Building Enterprise JavaBeans Components • June 2003

Understanding the IDE’s Error
Information
If you create code that is inconsistent with the J2EE specification, a warning badge or
an error badge appears on a node’s icon in the Explorer. To see a description of the
problem, select the offending node, right-click, and choose Error Information or
Validate EJB.

This yellow triangle warning badge on the logical node means that the bean or
one of its classes might have a validation problem. Expand the logical node to see
where the problem lies. For instance, a method defined in the remote interface might
not be in the bean class, or a class might extend the wrong Java superclass. Even if
you can compile the bean, it will encounter problems.

This red X error badge on the logical node means that the bean or one of its
classes might have a severe problem. For instance, an entire class could be missing.
A bean bearing this error badge will not execute or even allow interaction.

Compiling and Validating Enterprise
Beans
The EJB Builder contains a custom compiler that validates your enterprise beans
against the Enterprise JavaBeans Specification. You can decide whether to have
compilation and validation done separately. However, when you select an enterprise
bean node, right-click it, and choose Validate EJB, the default action is to compile the
bean and then immediately validate it.

Notice that compilation alone does not catch all errors, and that if a bean has
compilation errors, it is not validated.

Validation and compilation in the IDE serve different purposes. When you only
compile an enterprise bean, the IDE compiles the various classes that constitute the
bean. If these individual classes have Java code that is syntactically correct, the bean
can compile without errors, even if one class is not consistent with another or with
the J2EE specifications. To ensure consistency between the elements of an enterprise
bean, you must also validate the bean.

The EJB Compiler conforms to the IDE’s definitions of build, compile, and clean.
Appendix A Working With Enterprise Beans 225

■ If the bean is out of date (that is, the bean’s deployment descriptor has been
modified, or a directly referenced Java class has been modified since the last
successful compilation), a compilation both compiles and validates the Java class
according to the Enterprise JavaBeans Specification.

■ A clean removes the directly referenced Java class files and the time stamp of the
last EJB compilation.

■ A build first performs a clean and then compiles the referenced classes.

In most cases, you can save considerable time by using the EJB Compiler with its
default options during your iterative development cycle. However, under certain
conditions (for example, if you must change a superclass after a successful
compilation), compilation does not catch Java or EJB validation errors. In such cases,
you might need to perform a build (possibly traversing several directories,
depending on the location of all your bean’s Java files) to detect or resolve
compilation errors.

The compiler also does some semantic checking of the EJB QL in the select and
finder methods of a CMP entity bean. Again, you can choose whether or not to have
the compiler require EJB QL statements. Sometimes, you might find it convenient to
turn off that requirement, so that you can develop, compile, and validate your
enterprise bean without receiving error messages about missing EJB QL statements.

However, you must add the EJB QL (and turn the compiler’s EJB QL requirement
option back on) before you deploy the bean to the IDE’s embedded application
server, Sun ONE Application Server 7. This server and some others require EJB QL,
which the server plugin converts to the SQL it needs in order to run queries in your
finder and select methods.

To set compilation and validation options for your enterprise bean, do as follows:

1. From the main menu, choose Tools → Options.

2. Expand the Options node, the Building node, and the Compiler Types node.

3. Select EJB 2.0 Compiler.

4. In the property sheet, make your selections.

The default setting for both fields is True. Change the setting in the following cases:

■ Change the Require Compilation field to False if you want to be able to validate
your bean in a separate step before you compile it.

■ Change the Require EJB QL field to False if you want your bean to pass
validation without EJB QL statements in its finder and select methods.

If you have chosen to separate validation from compilation, validate your bean as
follows:
226 Building Enterprise JavaBeans Components • June 2003

● In the Explorer’s Filesystems tab, select the bean’s logical node, right-click, and
choose Validate EJB.

Depending on the size of your bean, validation might take a few moments. When it’s
finished, an output window opens and displays messages about your bean.

When you compile an EJB module or do anything to a module that involves a
compile (such as exporting an EJB JAR file, or calculating the class files for export),
the module and all its component beans are validated automatically.

Saving Your Changes
In many cases, your work is saved automatically. However, this is not always true.
For example, compiling a bean does not always save it. When you exit from the IDE,
notice the confirmation dialog box and save the work you want to. For best results,
use File → Save All periodically while you work in the IDE.

Renaming an Enterprise Bean
When you rename a bean, you don’t have to manually rename all the bean’s related
objects and their internal references. Use the IDE’s GUI support as explained next,
and the IDE synchronizes all interfaces automatically (both their external object
names and related references within the source code). Do as follows:

1. Select the bean’s logical node, right-click, and choose Rename.

The Rename dialog box appears. As soon as you begin typing into the New Name
field, the checkbox options are activated.

2. Use the checkboxes to rename all the bean’s related objects at once.

However, if you obtained one of your bean’s objects from elsewhere, carefully
consider whether or not you want to rename it. For example, if two or more entity
beans share the same home and remote interfaces, you might want to keep similar
interfaces named the same wherever they occur.

Caution – If you rename any one of the related objects independently, connections
between the objects can be lost.
Appendix A Working With Enterprise Beans 227

Modifying a Bean Based on Another
Bean
An enterprise bean’s class can be based on a class from another bean. For example,
you can create an enterprise bean that uses another bean’s remote interface. When
you modify a class that is based on another class, you are actually modifying the
original class. The more recent bean points to the earlier bean’s class. You are not
working with a separate copy of the class file. This is part of the IDE’s design to
promote easy reuse of enterprise bean elements.

Copying and Pasting an Enterprise Bean
When you copy and paste a bean into another package, the IDE creates a node in the
new package that points to classes and interfaces in the original package. The IDE
does not make the assumption that you want everything in one package; some
organizations need to reuse bean elements more flexibly. Therefore, if you want an
exact copy of one bean in another package, you must also ensure that the paths of all
the bean’s classes and interfaces are changed to the new package.

To copy and paste an enterprise bean from one package to another, do as follows:

1. In the Explorer’s Filesystems tab, right-click the logical node of the bean you want
to copy and choose Copy.

2. Right-click the package to which you want to copy the bean and choose
Paste → Copy.

3. Expand the Classes node under the original bean’s logical node, right-click the
node for a class or interface, and choose Copy. Then paste the class or interface
into the destination package by right-clicking the destination package and
choosing Paste → Copy.

Repeat this step for each of the bean’s classes and interfaces.

4. Right-click the logical node of the copied bean and choose Properties.

5. In the property sheet, update each class to point to the destination package. Find
the following fields:

■ bean class
■ home interface (if any)
■ remote interface (if any)
228 Building Enterprise JavaBeans Components • June 2003

■ local home interface (if any)
■ local interface (if any)
■ primary-key class (if any)

a. Click each field, then click the ellipsis (…) button.

b. In the property editor, navigate to the destination package, select the copy of
the class or interface you pasted into the package, and click OK.

The property value changes to PackageName.classname.

When you’re done, each class and interface property has the package name
appended to the original name. The destination package contains a complete copy of
the bean.

Exchanging Bean Classes or Interfaces
After you create an enterprise bean, you might need to change it to use an element
from another bean, such as a home or remote interface. To do this, use the bean’s
property sheet as follows:

1. In the Explorer window, select the bean that needs a different class or interface,
right-click, and choose Properties.

2. In the Properties tab, click the appropriate property (Bean Class, Home Interface,
Primary Key Class, or Remote Interface), and click the ellipsis (…) button.

3. Navigate to the class or interface you want to use, select it, and click OK.

The property field shows the fully qualified path name of the new class or interface.
Your bean does not contain a copy of the new element. It merely points to the
original element.

Editing a Bean’s Methods
When you have added a method using the GUI support available from the Explorer
window, you can edit the method in the Source Editor. If all you need to do is
complete the body of the method in the bean class, and your edits don’t affect any
other class or interface, you should use the Source Editor. However, for changes that
might have a ripple effect on other classes, you might need to synchronize the
changes in the bean’s related objects. For examples, see “Using the Source Editor to
Edit Beans” on page 223.
Appendix A Working With Enterprise Beans 229

Or, you can simply use the Customizer dialog box as follows:

1. In the Explorer window, expand the logical node of the bean whose method you
want to edit. Navigate to the method.

2. Select the method, right-click, and choose Customize.

The Customizer dialog box appears with the same fields as the New Method dialog
box.

3. Edit the fields as needed. Click Close when you’re done.

The IDE propagates your changes throughout the bean.

Viewing a Method
To see any method you have created for an enterprise bean, expand the bean’s
logical node and navigate to the sub-node for the kind of method you want to view.
Right-click the method’s node and choose Open. The Source Editor opens the class
directly to the method code.

Changing an Entity Bean’s Fields
Depending on whether your entity bean uses container-managed or bean-managed
persistence, you use different methods to rename a field and to change a field’s type.

Renaming a Field
In a CMP bean, use the GUI support available from the Explorer window. Do as
follows:

1. Expand the bean’s logical node and select the CMP field. Right-click, and choose
Rename.

2. Use the checkboxes to specify the extent of your change.

In a BMP bean, use the Source Editor to rename a persistent or a nonpersistent field.
230 Building Enterprise JavaBeans Components • June 2003

Changing the Type of a Field
In a CMP bean, use the Explorer’s GUI support. Change a field’s type as follows:

1. Expand the bean’s logical node and select the CMP field. Right-click, and choose
Customize.

2. In the Customizer dialog box, select another type.

In a BMP bean, use the Source Editor to change the type of a persistent or a
nonpersistent field.

Deleting an Enterprise Bean
Regardless of the type of enterprise bean, delete a bean only as follows:

1. Select the bean’s logical node, right-click, and choose Delete.

The Confirm EJB Deletion dialog box appears.

2. Use the checkboxes to confirm that you want to delete all the bean’s related
objects at once.

If one of your bean’s related objects is used elsewhere, carefully consider whether or
not you want to delete it. For example, if several entity beans use the same primary-
key class, you should deselect its checkbox before deleting the rest of the bean’s
classes.

Caution – Don’t choose Edit → Delete from the menu bar when deleting beans; the
IDE simply deletes the selected class without trying to synchronize your bean’s
constituent classes.
Appendix A Working With Enterprise Beans 231

232 Building Enterprise JavaBeans Components • June 2003

APPENDIX B

Migrating and Upgrading EJB 1.1
Enterprise Beans

If you want to use enterprise beans that were built according to the Enterprise
JavaBeans Specification version 1.1 (EJB 1.1), you can use the Sun ONE Studio 5 IDE to
migrate your beans to the currently supported version (EJB 2.0). Depending on the
type of EJB 1.1 enterprise bean and what you want to do with it, the bean might be
converted automatically by the IDE. Or, you might have to make some manual
changes, which are described in this appendix.

Understanding Updates in Recent
Releases
Some of the differences between recent and older versions of the EJB specification
involve container-managed persistent (CMP) entity beans, their properties, and the
validation of enterprise beans in general. Notice the following points.

■ Most bean conversions are automatic. In most cases, when you import an EJB 1.1
enterprise bean into the IDE, the bean is automatically converted to an EJB 2.0
enterprise bean. However, CMP entity beans created in the EJB 1.1 environment
are a special case.

You can easily identify these beans by their version tag. In the property sheets for
a CMP entity bean, in the CMP Version field, you see that a bean created in the
current IDE has the value 2.x, while the older CMP entity bean has the value
1.x. (We’ll refer to the older type of bean as a CMP 1.x entity bean.)

■ Old CMP entity beans are mainly OK to use in development, but update them
before deployment. When you’re ready to deploy a CMP 1.x entity bean to Sun
ONE Application Server 7, you must make a few changes by hand in the query-
language statements for any finder and selector methods. See “Understanding the
Application Server’s Generated SQL” on page 194 for some discussion, and the
application server’s documentation for details.
233

When you have made these changes, the CMP entity bean still has the CMP
Version value 1.x; it hasn’t been converted to a CMP 2.x entity bean. However, the
bean and its existing interfaces should operate and deploy without problems in
the IDE, assuming you’re deploying the beans to an application server that
complies with EJB 2.0.

■ Convert old CMP entity beans before adding new features. You can’t add new
EJB 2.0 features such as local interfaces to a CMP 1.x entity bean. If you need new
features in an old bean, you must first convert the bean manually to the CMP 2.x
level. These instructions are given in “Converting a CMP 1.x Entity Bean” on
page 234.

Making Specific Changes
In the sections that follow are instructions for updating enterprise beans that were
created in the EJB 1.1 environment.

Converting a CMP 1.x Entity Bean
Sometimes you can’t recreate a CMP 1.x entity bean from scratch, but you want the
bean to be able to use new EJB 2.0 features such as local interfaces, local references,
select and home methods. In this case, you will probably need to manually upgrade
the bean. Convert it to a CMP 2.x bean as follows:

1. In the Explorer window, create a new Java package.

2. Copy the Java files from the CMP 1.x entity bean’s old package. Paste them into
the new package (as copies, not as links).

3. Use the EJB Builder Wizard as discussed in Chapter 4 to create a new CMP entity
bean.

On the last page of the wizard, specify the copied classes as the bean’s remote and
home interfaces. Also specify the bean class and primary-key class.

For the moment, ignore the IDE’s warning that no CMP (persistent) fields have been
found.

4. Add fields as needed and make other edits to correct EJB validation errors.

When you import any other kind of EJB 1.1 enterprise bean into the IDE, the bean is
automatically updated to conform to EJB 2.0.
234 Building Enterprise JavaBeans Components • June 2003

Avoiding the Use of New Features in an Old Bean
If you try to use new features in an enterprise bean that was created in the EJB 1.1
environment, the results cannot be predicted. Two examples follow.

Don’t Add Local Interfaces to a CMP 1.x Entity Bean

When you use the product as intended, EJB 1.1 beans have a different contextual
menu (the menu that appears in the Explorer window when you right-click the
bean’s logical node), and the menu options are limited. However, if you choose
Customize from the contextual menu, you see a window that seems to allow a local
home and a local interface file.

These fields are not editable directly, and the file paths of the local interface do not
appear on the property sheet of an EJB 1.1 CMP entity bean.

Caution – Do not add local interfaces in this way. If you do, you will not be able to
remove the interfaces again. The CMP entity bean will become invalid and cannot be
repaired.

Don’t Add Local EJB References, Either

The same caveat applies to local EJB references. They cannot be added to a CMP 1.x
entity bean, even though the Customizer window might appear to allow it. If you
have done so, you can go to the Customizer window and delete the references you
added.

The EJB 2.0 standard is quite large, and its new coding practices are strongly
encouraged or enforced by the IDE. If possible, you should recreate your old
enterprise beans using the IDE’s EJB Builder Wizard. Carefully evaluate your code
and upgrade it where necessary to conform to the current EJB standard.

Note – You can add local interfaces and local EJB references, if needed, to another
type of EJB 1.1 enterprise bean, because the IDE converts those beans automatically
to conform to the current EJB standard. Either the Customizer dialog box or the
property sheets can be used to modify these enterprise beans.
Appendix B Migrating and Upgrading EJB 1.1 Enterprise Beans 235

236 Building Enterprise JavaBeans Components • June 2003

Index
A
abstract schema name, 113, 135, 144, 178
accessor methods, 112 to 113

abstract, 60
acknowledgement mode for message-driven

beans, 171
activating

application server, 202 to 203
database server, 203 to 205
entity bean instances, 56
message-driven bean instances, 63
stateful session bean instances, 52
web browser from within the IDE, 205

adding remote interfaces to a bean for testing, 216
to 219

admin server, Sun ONE Application Server, 202
afterBegin method

in a stateful CMT session bean, 53, 83, 89
afterCompletion method

in a stateful CMT session bean, 53, 83, 89
anonymous instance

entity bean, 58
message-driven bean, 64
stateless session bean, 52

application assembly, 173 to 200
Also refer to Building J2EE Applications

application clients
for testing purposes, 201 to 213
using the IDE to create, 42

application examples, refer to Sun ONE Studio 5
tutorials and examples at
http://forte.sun.com/ffj/documentati
on/tutorialsandexamples.html

application server
admin server, starting, 202
distributed support, 79
EJB container services, 28, 54
instance, starting, 203
plugin, 186 to 189
provided with IDE, 43, 69
specifying resources, 170, 174, 182 to 184
Sun ONE Application Server requirements, 185

to 189, 192 to 194
tab on property sheets, 176

application-level problems, See exceptions
applications, configuring, 65
assembling beans into an EJB module, 190 to 192
attributes, See transaction attributes
avoiding message-driven bean problems, 171

B
back-end tier, See data store
base classes, See bean classes and interfaces
bean

class, 36
entity bean, 108, 139
message-driven bean, 164
session bean, 79

classes and interfaces, 31, 79 to 80, 108, 151
entity bean types, 95, 129
237

methods, introduction to, 32
properties, 66 to 67, 167 to 170, 176 to 189
session bean types, 73

bean home name, See abstract schema name
bean-managed persistence (BMP), 54

comparing with CMP, 95
completing the generated code, 153 to 157

bean-managed transactions (BMT), 49, 75, 77, 161
beforeCompletion method

in a stateful CMT session bean, 53, 83, 89
business methods, 33, 222

in entity beans, 58
in a BMP entity bean, 156
in a CMP entity bean, 121
in a message-driven bean, 64
in a session bean, 51, 87
testing, 212 to 213
compared to home methods, 123

C
cardinality of a CMR, 60
cascade-delete functionality in a CMR, 60
changing

a primary-key class, 119
an entity bean’s fields, 230
beans, general rules, 221 to 224
field types, 231
to another bean class or interface, 229

checking security, 67
class closure, 198
class files

of a session bean, 78
of an entity bean, 102

clean-up after server crash, 171
clients

relationships with enterprise beans, 46, 53
supported by the IDE, 26, 42

clients, web, refer to Building Web Components and
Building Web Services

CMP 1.1 entity beans and the application server’s
generated SQL, 194

CMP entity beans, configuring for databases, 192
to 194

CMP fields
adding, 125
and CMRs, 135
from database table columns, 101, 135
in a set of related CMP entity beans, 135
in a single CMP entity bean, 101
initializing values, 57
specifying individually, 106 to 108

CMRs (container-managed relationships)
introduction to, 60
adding, 143 to 145
editing, 136 to 138
in a set of related CMP entity beans, 136
managed by the EJB module, 141

code, finishing
entity beans, 55, 116 to 125, 141 to 145
message-driven beans, 165 to 167
session beans, 50, 83 to 90

coding security into enterprise beans, 67
commit method, 88
compiler options

include validation or not, 226
require EJB QL or not, 226

compiling compared to validating, 225
configuring application components, 65, 167 to

170, 173 to 200
Also refer to Building J2EE Applications

configuring CMP entity beans for databases, 192 to
194

connection factories
for enterprise beans in general, 183
for message-driven beans, 167

connections to resources
for enterprise beans in general, 182
for message-driven beans, 168

consistency through validation, 225
container, See EJB container
container-managed persistence (CMP), 54, 95
container-managed transactions (CMT), 49, 75, 77,

161
contracts within J2EE architecture, 30
conversational session, 46 to 53
copying and pasting a bean, 228 to 229
create methods, 32, 222

in entity beans, 117 to 119, 155
in message-driven beans, 164
238 Building Enterprise JavaBeans Components • June 2003

in session beans, 81, 84 to 85
to insert data into a data store, 57

creating
a new entity bean instance, 57
a new J2EE application, 199
a new message-driven bean instance, 63
a new session bean instance, 50
an EJB module around enterprise beans, 190
testing objects, 205

current PointBase user ID and password, 188
customized exceptions, 66
customizer

adding interfaces to a bean, 216 to 219
modifying methods, parameters, and

exceptions, 222 to 223

D
data access object (DAO), 153
data store in the J2EE application model, 28
data synchronization, 59
database connections, 101 to 102

specifying in property sheets, 183 to 184
when generating a CMP entity bean, 97 to 98,

130 to 131
database mapping, 42

properties on CMP entity beans, 192 to 194
with CMP fields, 100 to 102, 133 to 138

database schema
capturing, 103
using to generate CMP fields, 103 to 104, 138 to

139
database server

included in the IDE, 42, 69
user ID and password, 188
using to generate CMP entity beans, 97

data-storage connections, 182 to 184
declaring

database resources and connection factories, 183
to 184

JMS resources, 182 to 184
runtime information, 66, 167, 174 to 189, 192 to

198
security, 67, 185
transaction attributes, 49, 194 to 196

default servers, 202

deleting an enterprise bean, 231
deployment descriptor, 37, 66, 174
deployment, providing for, 43
descriptor, See deployment descriptor
design recommendations, 69
destination, message-driven, 167
destroying, See removing
developer roles in the J2EE model, 29
development life cycle of an enterprise bean, 39
difference between

business and home methods, 123
container-managed and bean-managed

persistence, 54
container-managed and bean-managed

transactions, 49
enterprise beans and JavaBeans, 27
finder and select methods, 122
session and entity beans, 46, 53
stateless and stateful session beans, 47
using JTA and the JDBC API, 49

directionality of a CMR, 60
dropped ejbRemove invocations, 171
duplicate messages, 171

E
editing

bean methods, 229
beans, 221 to 224
CMRs, 136 to 138
EJB QL statements, 123
SQL statements generated by an application

server, 194
EJB 2.0 specification supported, 25
EJB Builder Wizard, 40, 72 to 91

defining a BMP entity bean, 147 to 157
defining a CMP entity bean, 93 to 126
defining a message-driven bean bean, 160 to 171
defining a session bean, 76 to 79
defining a set of related CMP entity beans, 128

to 139
generating CMP entity bean classes, 132 to 139
generating exceptions, 66
generating method signatures, 51, 57, 64
generating session bean classes, 79 to 83
propagating changes through bean classes, 221
Index 239

to 224
EJB container

managing persistence, 54
managing transactions, 49
pooling entity bean instances, 55
pooling message-driven bean instances, 65
pooling stateless session bean instances, 52
role within a J2EE application, 28
services provided to entity beans, 54

EJB group, See set of related CMP entity beans
EJB JAR file, 29, 190 to 199
EJB module, 29

configuring, 192 to 199
creating, 190 to 199
for testing purposes, 201
properties, 66 to 67, 192 to 197
transaction attributes, 194 to 196

EJB QL, 222
editing, 123
errors, 226
foreign keys, 60
in finder methods, 32, 123
in select methods, 33, 124
required or not by compiler, 226
table-to-table joins, 60

EJB references, 181
ejbActivate method, 82, 115, 152

completing in a stateful session bean, 85 to 86
on entity bean instances, 56
on stateless session bean instances, 52

ejbCreate method, 155, 222
in a BMP entity bean, 155 to 156
in a CMP entity bean, 117 to 119
in a message-driven bean, 63, 164
in a session bean, 50, 84 to 85
in entity bean instances, 57
pooling stateless session bean instances, 52

ejbFind method, 222
ejbLoad method, 116, 153

on BMP entity bean instances, 56
on CMP entity bean instances, 116
to synchronize with the data store, 59

ejbPassivate method, 82, 115, 152
completing in a stateful session bean, 85 to 86
on entity bean instances, 56
on stateless session bean instances, 52

ejbPostCreate method, 57, 155, 222
in a BMP entity bean, 155 to 156
in a CMP entity bean, 117 to 118
in a session bean, 84 to 85

ejbRemove method, 82, 116, 153, 165
pooling stateless session bean instances, 52
removing a database entity, 59

ejbStore method, 59, 116, 153
on BMP entity bean instances, 56

empty EJB group, See set of related CMP entity
beans

enterprise beans
classes, 31
deleting, 231
design recommendations, 69
development life cycle, 39
different from JavaBeans, 27
elements of a bean, 31
methods, 32
persistence, 42
relationship to EJB container, 28
security, 42, 67, 185
testing, 201 to 214
transactions, 41
updating, 221 to 231
used in applications, 65
workflow, 37

entity
context method, 56
mapping bean to database, 42
represented by a session bean, 47
represented by an entity bean, 53

entity beans
introduction to, 53
bean class, 108, 139
completing the code for a BMP, 153 to 157
completing the code for a CMP, 116 to 126, 141

to 145
generating a set of related CMP beans, 127 to

145
generating BMP classes, 149 to 152
generating CMP classes, 99 to 108, 132 to 139
home interface, 108, 139
life cycle, 55
local home interface, 109, 140
local interface, 109, 140
locating instances, 57
methods, 32
240 Building Enterprise JavaBeans Components • June 2003

pooled state, 56
primary keys, 57
primary-key class, 108
ready state, 56
relationship to EJB container, 54
remote interface, 108, 139
type, 95, 129

environment
entry on property sheet, 182
information for runtime, See deployment

descriptor
equals method, 114
error information, 225
evicting

a message-driven bean instance from
memory, 64

a session bean instance from memory, 51
an entity bean instance from the pool, 56

example applications, where to download, 22
exceptions

customized, 66
java.rmi.RemoteException, 66
javax.ejb.CreateException, 66
javax.ejb.EJBException, 66
predefined, 66
remote, 66
system-level and application-level, 66, 88

executing business logic
in a message-driven bean, 64
in a session bean, 51
in entity beans, generally, 58

Explorer window of the IDE, 76, 97, 98, 130, 131,
148, 149, 162

external dependencies, See deployment descriptor
extra files, adding to an EJB module, 198

F
features of J2EE architecture, 26
filter for messages, See message selector
final methods, 125
findByPrimaryKey method, 57, 151
finder methods, 32, 57, 112, 122 to 123, 156, 222
foreign keys, 121

G
generated code

CMP entity bean set classes, 128
deployment descriptor, 174
entity bean classes, 94
exceptions, 66
message-driven bean class, 160
method signatures in entity beans, 57
method signatures in message-driven beans, 64
method signatures in session beans, 52
session bean classes, 72

generated testing objects, 205
getCallerPrincipal method, 67
getRollbackOnly method, 89
getter and setter methods, 60, 112 to 113
getUserTransaction method, 88
gotchas for message-driven beans, avoiding, 171

H
hashCode method, 114
home interface, 35, 36

entity bean, 108, 139
session bean, 79
testing, 211 to 212
See also local home interface

home methods, 33, 222
compared to business methods, 123

I
IDE

best practices, 221 to 231
completing a BMP entity bean, 153 to 157
completing a CMP entity bean, 116 to 126, 141 to

145
completing a deployment descriptor, 174 to 200
completing a message-driven bean, 165 to 167
completing a session bean, 83 to 90
completing a set of related CMP beans, 141 to

145
EJB compiler, 225
error information, 225
Explorer window, 76, 97, 98, 130, 131, 148, 149,

162
Index 241

saving changes, 227
Source Editor, 223
validating beans, 225

initializing
a message-driven bean instance, 63
a session bean instance, 50
an entity bean instance, 57
persistent fields, 57
state in stateful session beans, 74

inserting data into a data store
using a create method, 57

installed servers, 202
instance pool

entity beans, 55
message-driven beans, 65
stateless session beans, 52

instance, application server, 203
isCallerInRole method, 67

J
J2EE

application architecture, 26
contracts, 30
developer roles, 29
documentation list, 18
specification, Blueprints, 18

JAR, See EJB JAR file
Java Message Service (JMS), 61
Java Transaction API, 50
Java Transaction Service (JTS), 50
java.io.Serializable, 114
java.rmi.Remote, 114
java.rmi.RemoteException, 66
java.security.Principal, 68
java.sql.Connection, 88
JavaBeans, different from enterprise beans, 27
Javadoc, using in the IDE, 22
javax.ejb.CreateException, 66
javax.ejb.EJBContext, 88
javax.ejb.EJBException, 66
javax.ejb.EJBHome, 79, 108
javax.ejb.EJBObject, 79, 109
javax.ejb.EntityBean, 108
javax.ejb.MessageDrivenBean, 163

javax.ejb.MessageListener, 163
javax.ejb.SessionBean, 79
javax.transaction.UserTransaction, 88
JDBC API, 28, 50, 54 to 55

don’t mix with JTA code, 88
JDO QL, Sun ONE Application Server’s approach

to CMP 1.1 entity beans, 194
JNDI, 28, 180

matching resource values, 170, 186 to 188
JSP pages as clients, 26
JTA, 50, 88

L
large icon, 177
life cycle

methods, 33
in a BMP entity bean, 151 to 153
in a CMP entity bean, 115 to 116
in a session bean, 85 to 86

of a message-driven bean, 63
of a session bean, 50
of an entity bean, 55

local home interface
introduction to, 36
See also home interface

local interface
introduction to, 35
See also remote interface

locating entity bean instances, 57
logical node, 79, 108, 140, 163, 221 to 222
lookup methods, 169 to 170, 182 to 184

M
maintaining enterprise beans, 221 to 231
maintaining state across method calls, 48
making changes to beans, 221 to 224
matching properties to lookup code, 169 to 170, 182

to 184
message order, 171
message selector, 167
message-driven beans

bean class, 164
242 Building Enterprise JavaBeans Components • June 2003

completing the code, 165 to 167
developing, 159 to 171
methods, 32
onMessage method, 166
setMessageDrivenContext method, 166
transaction management, 161

message-driven destination, 167
message-oriented middleware, 61
methods on enterprise beans, 32

afterBegin, 53
afterCompletion, 53
beforeCompletion, 53
business, 33
create, 32, 57
editing, 229
ejbActivate, 52
ejbCreate, 50, 57, 63
ejbLoad, 56, 59
ejbPassivate, 52, 56
ejbPostCreate, 57
ejbRemove, 52, 59
ejbStore, 56, 59
equals, 114
final, 125
findByPrimaryKey, 57
finder, 32, 57
getCallerPrincipal, 67
hashCode, 114
home, 33
isCallerInRole, 67
life-cycle, 33
newInstance, 50, 56, 63
onMessage, 33
permission to execute, 68
private, 125
security, 42
select, 33
setEntityContext, 56
setMessageDrivenContext, 63
setSessionContext, 50
unsetEntityContext, 56

modifying a bean based on another bean, 228
modifying bean methods, 222 to 224
modifying beans in general, 221 to 231
module, See EJB module
multithreading

approximating with message-driven beans, 61
not needed in enterprise beans, 53

N
nested transactions, 50
newInstance method

in entity beans, 56
in message-driven beans, 63
in session beans, 50

nodes
entity bean, 108, 140, 163
logical, 79, 108, 140, 163
message-driven bean, 163
session bean, 79

O
onMessage method, 33, 166
optimizing enterprise beans, 69
order of messages, 171
out-of-sequence messages, 171

P
package (folder) node in Explorer, 76, 97, 130, 148,

162
parallel processing, approximating with message-

driven beans, 61
passivating

entity bean instances, 56
stateful session bean instances, 52

password and user ID
PointBase, 188

performance in enterprise beans, 69
permission to execute a method, 68
persistence, 42

completing BMP entity beans, 154
managed by the EJB container, 54
setting properties, 186 to 188
wizard selections for CMP entity beans, 99, 132

persistent fields, 112
specifying individually, 106 to 108

plugin, application server, 176, 186 to 189
PointBase Server 4.2 Restricted Edition, 42, 69
PointBase user ID and password, 188
poison messages, 171
Index 243

pooling
entity bean instances, 55
message-driven bean instances, 65
session bean instances, 48
stateless session bean instances, 52

predefined exceptions, 66
primary keys, 57

adding a new one to an entity bean, 119 to 121
adding more to an entity bean, 119

primary-key class, 154
in an entity bean, 108
required methods, 114

private fields, 153
private methods, 125
problem handling with exceptions, 66
problems

error information, 225
system-level or application-level, See exceptions
working outside the logical node, 221 to 222

programmatic security, 67, 68
project pane, See Explorer window
propagating changes, 221 to 224
properties

of a bean, 66 to 67, 176 to 189
of an EJB module, 66 to 67
of CMP entity beans using databases, 192 to 194

publish model for message-driven beans, 167

Q
queue, 167
quick reference

to entity bean types, 95
to session bean types, 74 to 75

R
ready state, entity bean instances, 56
recommendations for enterprise bean design, 69
references

EJB local references, 180 to 181
EJB references, 181
environment entries, 182
overriding at the EJB module level, 196 to 197
overriding at the J2EE application level, 198

resource environment references, 182 to 183
resource references, 183 to 184
tab on Properties window, 179
to a database, 183 to 184

related CMP entity beans, creating sets of, 127 to
145

related objects
of an entity bean, 102
renaming all at once, 227

remote exceptions, 66
remote interface, 34, 35

entity bean, 108, 139
session bean, 79
See also local interface

remote interfaces, required for testing, 216 to 219
remote object, 57
remotely referenced enterprise beans, 181
removing

a database entity, 59
a message-driven bean instance, 64
a session bean instance, 51
an entity bean instance, 56

renaming
an enterprise bean, 227
bean fields, 230

repeated messages, 171
resource environment references

to destinations (queues or topics), 167 to 170
to queues or topics, 182 to 183

resource references
to connection factories, 167
to databases and connection factories, 183 to 184

resource-factory references, 182 to 184
responsibilities of the bean provider

when coding entity beans, 55
when coding message-driven beans, 64
when coding session beans, 50

reuse
through declarative runtime information, 66,

174
through wizard selections, 79

roles, security, 67, 185
runtime information, 66, 174
244 Building Enterprise JavaBeans Components • June 2003

S
sample applications, where to download, 22
saving changes, 227
scenarios for different J2EE applications, refer to

Building J2EE Applications
schema, See database schema or abstract schema
security, 42, 67

getCallerPrincipal method, 67
isCallerInRole method, 67
roles in deployment descriptor, 185

security checking
in a message-driven bean, 64, 185
in a session bean, 51
in an entity bean, 57

select methods, 33, 222
sequence of messages, 171
server crash, entity bean state survives, 53
server registry, 202
server, See application server or database server
services

provided by EJB container, 28
services provided by EJB container, 28, 54
servlets as clients, 26
session beans

introduction to, 46
bean class, 79
completing the code, 83 to 90
home interface, 79
life cycle, 50
methods, 32
pooling, 48
remote interface, 79
representing entities, 47
stateful, 48
stateless, 47
synchronizing state during a session, 53
type, 73

session-synchronization interface, 53, 89 to 90
classes, 82 to 83

set of related CMP entity beans, 41, 127
setAutoCommit method, 88
setEntityContext method, 56, 115, 152
setMessageDrivenContext method, 63, 165, 166
setRollBackOnly method, 88
setSessionContext method, 50, 82

small icon, 177
Source Editor, 223 to 224
specification supported

EJB 2.0, 25
specifying security, 67
SQL, 28, 54

generated by the application server, 194
generated from EJB QL statements, 222
setting properties in the Sun ONE AS tab, 194

SQL Insert statements, 155
starting an application server instance, 203
starting the application server, 202
state, maintaining across method calls, 48
stateful session beans, 48, 73

passivating and activating, 52
selecting in the wizard, 77

stateless session beans, 47, 73
selecting in the wizard, 77

subscribe model for message-driven beans, 167
Sun ONE Application Server, 69

declaring properties, 185 to 189
connection factories, 170
database resources, 192 to 194
finder methods, 194
JNDI names, 170, 186 to 188
on BMP entity beans, 186
on CMP entity beans, 192 to 194
on message-driven beans, 189
on session beans, 186
queues or topics, 170, 187 to 189
security, 185
transaction attributes, 194 to 196

plugin, 186 to 189
starting a server instance, 203
starting the admin server, 202

superclass, 78, 225
supported EJB specification, 25
synchronizing

an entity bean instance with the data store, 59
state during a session, 53, 82 to 83

system exception, 88

T
table mappings, 100 to 104, 133 to 138
Index 245

techniques for working with enterprise beans, 221
to 231

test client, 209 to 213
testing on Sun ONE Application Server, 69, 201 to

214
threading, approximating with message-driven

beans, 61
tiers in J2EE architecture, 26
topic, 167
transaction control

in a message-driven bean, 64
in a session bean, 51
in an entity bean, 57

transactions, 41
attributes, 49

on an EJB module, 194 to 196
on individual beans, 195
on individual methods, 195

bean-managed, 49, 75, 161
boundaries, 88
container-managed, 49, 75, 161
in entity beans, 54
in message-driven beans, 161
in session beans, 48, 75, 87 to 90
nested, not allowed in JTA, 50, 88
rollbacks, 88
using JTA, 50
using the JDBC API, 50

type of
entity bean, 95, 129
session bean, 73

U
unique identifiers in entity beans, 53
unsetEntityContext method, 56, 115, 153
updating enterprise beans, 221 to 231
user ID and password for PointBase, 188
user security roles, 67
user transaction (UT) methods, 88

V
validating beans, 225 to 227
verifying, See validating

W
walkthroughs, see application examples
web clients or modules, refer to Building Web

Components and Building Web Services
wizard, See EJB Builder Wizard
workflow of an EJB application, 37
wrapping legacy code using the JDBC API, 50, 55

X
XML deployment-descriptor file, 66, 174
246 Building Enterprise JavaBeans Components • June 2003

	Building Enterprise JavaBeans™ Components
	Contents
	Figures
	Tables
	Before You Begin
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation
	Documentation in Accessible Formats

	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Enterprise JavaBeans Concepts and the�Sun ONE Studio 5 IDE
	The J2EE Architecture
	The Roles of EJB Components
	The Roles of Application Builders
	Inside an EJB Application
	The Elements of an Enterprise Bean
	Bean Methods
	Types of Interfaces
	The Bean Class
	EJB QL
	The Deployment Descriptor

	The Work Flow of an EJB Application at Runtime
	An Enterprise Bean’s Development Life Cycle

	The IDE’s Support for Enterprise Beans
	Developing Enterprise Beans in the IDE
	Creating Sets of Related CMP Entity Beans
	Providing Transactions
	Providing Persistence
	Providing Security
	Creating Application Clients
	Providing for Deployment

	Further Reading

	Design and Programming Issues
	Deciding Which Type of Bean You Need
	Understanding Session Beans
	Deciding When to Use a Stateless Session Bean
	Deciding When to Use a Stateful Session Bean
	Selecting a Transaction Mode
	Understanding the Life Cycle of a Session Bean

	Understanding Entity Beans
	Taking Advantage of the EJB Container’s Services
	Understanding the Life Cycle of an Entity Bean

	Understanding Sets of Related CMP Entity Beans and Container-Managed Relationships
	Understanding Message-Driven Beans
	Using Message Sources (Destinations)
	Deciding When to Use a Message-Driven Bean
	Deciding When Another Bean Type Is Better
	Understanding the Life Cycle of a Message-Driven Bean

	Using Enterprise Beans in Applications
	Using Exceptions to Handle Problems
	Working With Deployment Descriptors
	Enforcing Security Policies
	Declaring Security in Enterprise Beans
	Programming Security Into Enterprise Beans

	Understanding the Application Servers and Databases
	Further Reading

	Developing Session Beans
	Using the EJB Builder With Session Beans
	Selecting a Session Bean Type
	Stateless or Stateful Session Beans
	Container-Managed or Bean-Managed Transactions

	Defining a Session Bean
	Creating a Package
	Starting the EJB Builder Wizard
	Generating the Default Session Bean

	Looking at a Session Bean’s Classes
	Expanding the Nodes
	Reviewing the Generated Classes
	Default Create Method
	Life-Cycle Methods

	Completing Your Session Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Completing Create Methods
	Completing a Stateless Bean’s Create Method
	Completing a Stateful Bean’s Create Methods
	Adding a Create Method to a Stateful Bean

	Completing Life-Cycle Methods
	Completing the ejbPassivate Method
	Completing the ejbActivate Method

	Adding Business Methods
	Coding Transactions
	Understanding Transaction Spans
	Specifying Transaction Boundaries and Rollbacks

	After Creating Your Session Bean
	Further Reading

	Developing CMP Entity Beans
	Using the EJB Builder With CMP Entity Beans
	Comparing CMP and BMP Entity Beans
	Creating Sets of Related CMP Entity Beans
	Defining a CMP Entity Bean
	Creating a Package
	Having a Data Source Ready
	Starting the EJB Builder Wizard
	Generating a CMP Entity Bean’s Infrastructure
	Specifying Persistent Fields From a Database Table
	Creating Your Bean’s Persistent Fields From Scratch

	Looking at a CMP Entity Bean’s Classes
	Expanding the Nodes
	Reviewing the Generated Classes
	Default Finder Method
	Persistent Fields and Accessor Methods
	Primary-Key Class and Required Methods
	A CMP Entity Bean’s Life-Cycle Methods

	Completing Your CMP Entity Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Defining Create Methods
	Adding or Replacing a Primary Key
	Creating a New Primary Key
	Handling Foreign Keys
	Defining Business Methods
	Adding Finder Methods
	Defining Home Methods
	Defining Select Methods
	Defining Private Methods
	Defining Additional Fields

	After Creating Your CMP Entity Bean
	Further Reading

	Developing Sets of Related CMP Entity Beans
	Using the EJB Builder With Sets of Related CMP Entity Beans
	Creating All Related CMP Entity Beans at Once
	Creating a Set of Related CMP Entity Beans One at a Time

	Defining a Set of Related CMP Entity Beans
	Creating a Package
	Preparing to Use a Database or Schema
	Starting the EJB Builder Wizard
	Generating the Bean Set’s Infrastructure
	Using a Database Connection
	Using a Database Schema Object

	Looking at the Components of a CMP Entity Bean Set
	Expanding the EJB Module’s Node
	Reviewing the Generated Classes

	Completing Your Set of Related CMP Entity Beans
	Using Recommended Approaches When Working With Enterprise Beans
	Adding a Bean to the Set

	After Creating Your Set of Related CMP Beans

	Developing BMP Entity Beans
	Deciding on an Approach
	Building a BMP Entity Bean
	Creating a Package
	Starting the EJB Builder Wizard
	Generating a BMP Entity Bean’s Infrastructure

	Looking at a BMP Entity Bean’s Classes
	Expanding the Nodes
	Reviewing the Generated Classes
	findByPrimaryKey Method
	A BMP Entity Bean’s Life-Cycle Methods

	Completing Your BMP Entity Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Adding Persistence Logic
	Adding a Primary-Key Class
	Adding Methods
	Defining Create Methods
	Adding Finder Methods
	Defining Business and Home Methods

	After Creating Your BMP Entity Bean
	Further Reading

	Developing Message-Driven Beans
	Using the EJB Builder With Message- Driven Beans
	Deciding on Transaction Management
	Defining a Message-Driven Bean
	Creating a Package
	Starting the EJB Builder Wizard
	Generating the Basic Message-Driven Bean

	Looking at a Message-Driven Bean’s Components
	Expanding the Nodes
	Reviewing the Generated Class

	Completing Your Message-Driven Bean
	Using Recommended Approaches When Working With Enterprise Beans
	Completing the onMessage Method
	Completing the setMessageDrivenContext Method

	After Creating Your Message-Driven Bean
	Specifying a Message-Driven Destination
	Specifying a Message Selector
	Specifying Resources for Client Message-Driven Beans
	Specifying Resource Factories
	Specifying Resources

	Avoiding Pitfalls of Message-Driven Beans
	Further Reading

	Preparing Enterprise Beans for Deployment
	Understanding Deployment Information
	Looking at a Generated Deployment Descriptor
	Changing a Deployment Descriptor
	Editing an EJB Module’s Deployment Descriptor Directly
	Reverting to the EJB Module’s Last Generated Descriptor
	Using Properties to Edit a Deployment Descriptor

	Specifying Bean Properties
	Using the Properties Tab
	Properties of Entity Beans
	Properties of Session Beans
	Properties of Message-Driven Beans

	Using the References Tab
	Specifying EJB Local References
	Specifying EJB References
	Specifying Environment Entries
	Specifying Resource Environment References
	Specifying Resource References
	Specifying Security-Role References

	Using the Sun ONE AS Tab
	Setting Server Properties for Individual Session and Entity�Beans
	Setting Sun ONE AS Properties for Message-Driven Beans

	Creating and Configuring an EJB�Module
	Deciding What Should Go Into an EJB Module
	Considering When to Create an EJB Module
	Putting Enterprise Beans in an EJB Module
	Setting Database-related Properties for CMP Entity Beans
	Understanding the Application Server’s Generated SQL

	Adding Transaction Attributes to an EJB Module
	Changing EJB References Within the EJB Module or Application
	Overriding a Reference at the Module Level
	Overriding a Reference at the Application Level

	Adding Extra Files to an EJB Module
	Creating an EJB JAR

	Creating a J2EE Application

	Testing Enterprise Beans
	Fulfilling the Prerequisites for Testing
	Preparing to Deploy to the Application Server
	Preparing to Test Beans Against the PointBase Database
	Starting PointBase and a Web Browser

	Generating Test Objects
	Deploying the Test Application to a Server
	Deploying and Executing the Test Application in One Step

	Executing the Test Application
	Using the Test Client to Test Your Beans
	Understanding the Test Client Page
	Testing the Sample Bean’s Home Interface
	Testing the Sample Bean’s Business Method
	Creating New Testing Classes

	Making Changes After Deployment
	Preparing to Test: Some Variations
	If You Want to Test a CMP or BMP Bean
	If You Want to Test a Bean With EJB References
	Adding Remote Interfaces to a Bean
	Using the Customizer to Add Remote Interfaces
	Using Property Sheets to Add Remote Interfaces

	Working With Enterprise Beans
	Using Recommended Approaches When Editing Beans
	Working Through the Logical Node
	Using the Customizer or Property Sheet
	Using the Source Editor to Edit Beans

	Understanding the IDE’s Error Information
	Compiling and Validating Enterprise Beans
	Saving Your Changes
	Renaming an Enterprise Bean
	Modifying a Bean Based on Another Bean
	Copying and Pasting an Enterprise Bean
	Exchanging Bean Classes or Interfaces
	Editing a Bean’s Methods
	Viewing a Method
	Changing an Entity Bean’s Fields
	Renaming a Field
	Changing the Type of a Field

	Deleting an Enterprise Bean

	Migrating and Upgrading EJB 1.1 Enterprise Beans
	Understanding Updates in Recent Releases
	Making Specific Changes
	Converting a CMP�1.x Entity Bean
	Avoiding the Use of New Features in an Old Bean
	Don’t Add Local Interfaces to a CMP�1.x Entity Bean
	Don’t Add Local EJB References, Either

	Index

