
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

Sun™ ONE Studio 5
J2EE™ Application Tutorial

Part No. 817-2322-10
June 2003 Revision A

Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Forte, Java, NetBeans, iPlanet, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit est un document protege par un copyright et distribue avec des licenses qui est en restreignent l’utilisation, la copie, la distribution et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, parquelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Forte, Java, NetBeans, iPlanet, docs.sun.com, et Solaris sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

UNIX est une marque enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin 13

1. Getting Started 21

Obtaining and Installing the Required Software 21

Starting the Software 23

Starting the IDE 23

Starting the Application Server 23

Confirming Sun ONE Application Server 7 as the Default Server 29

Setting Up Database Connectivity 29

Enabling the JDBC Driver 30

Setting JDBC Resources (Microsoft Windows Superusers) 30

Setting JDBC Resources (All Other Users) 31

Tutorial Database Table Descriptions 32

2. Introduction to the Tutorial 35

Functionality of the Tutorial Application 35

Application Scenarios 36

Application Functional Specification 36

User’s View of the Tutorial Application 37

Architecture of the Tutorial Application 40
3

Application Elements 41

EJB Tier Details 41

Overview of Tasks for Creating the Tutorial Application 42

Creating the EJB Components 42

Creating the Tutorial’s Web Service 44

Installing and Using the Provided Client 45

End Comments 46

3. Building the EJB Tier of the DiningGuide Application 47

Overview of the Tutorial’s EJB Tier 47

The Entity Beans 48

The Session Bean 49

The Detail Classes 49

Summary of Steps 51

Creating Entity Beans With the EJB Builder 52

Creating the Restaurant and Customerreview Entity Beans 52

Creating Create Methods for CMP Entity Beans 60

Creating Finder Methods on Entity Beans 63

Creating Business Methods for Testing Purposes 65

Creating Detail Classes to View Entity Bean Data 68

Creating the Detail Classes 68

Creating the Detail Class Properties and Their Accessor Methods 69

Creating the Detail Class Constructors 70

Creating Business Methods on the Entity Beans to Fetch the Detail Classes 71

Testing the Entity Beans 72

Creating a Test Client for the Restaurant Bean 73

Providing the Sun ONE Application Server 7 Plugin With Database
Information 75

Deploying and Executing the Restaurant Bean’s Test Application 77
4 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Using the Test Client to Test the Restaurant Bean 78

Checking the Additions to the Database 81

Creating a Test Client for the Customerreview Bean 82

Deploying and Executing the Customerreview Bean’s Test Application 84

Testing the Customerreview Entity Bean 84

Checking the Additions to the Database 86

Creating a Session Bean With the EJB Builder 87

Coding a Session Bean’s Create Method 88

Creating Business Methods to Get the Detail Data 91

Creating a Business Method to Create a Customer Review Record 95

Creating Business Methods That Return Detail Class Types 96

Adding EJB References 98

Testing the Session Bean 100

Creating a Test Client for a Session Bean 100

Adding Entity Bean References to the EJB Module 101

Providing the Sun ONE Application Server 7 Plugin With Database
Information 102

Deploying and Executing the Test Application 104

Using the Test Client to Test a Session Bean 106

Checking the Additions to the Database 109

Comments on Creating a Client 109

4. Creating the DiningGuide Application’s Web Service 111

Overview of the Tutorial’s Web Service 111

The Web Service 112

The Runtime Classes 112

The Client Files 112

Creating the Tutorial’s Web Service 113

Creating the Logical Web Service 113
Contents 5

Generating the Web Service’s Runtime Classes 115

Testing the Web Service 117

Creating a Test Client and Test Application 117

Adding the Web Service to the J2EE Application 118

Deploying the Test Application 119

Using the Test Application to Test the Web Service 121

Making Your Web Service Available to Other Developers 129

Generating the WSDL File 129

Generating Client Files From the WSDL File 130

5. Creating a Client for the Tutorial Application 133

Creating the Client With the Provided Code 133

Running the Tutorial Application 134

Examining the Client Code 137

Displaying Restaurant Data 137

Displaying Customer Review Data for a Selected Restaurant 138

Creating a New Customer Review Record 141

A. DiningGuide Source Files 145

RestaurantBean.java Source 146

RestaurantDetail.java Source 149

CustomerreviewBean.java Source 154

CustomerreviewDetail.java Source 157

DiningGuideManagerBean.java Source 160

RestaurantTable.java Source 164

CustomerReviewTable.java Source 168

B. DiningGuide Database Script 173

Script for a PointBase Database 174

Script for an Oracle Database 175
6 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

C. Creating the Tutorial with an Oracle Database 177

Setting up Database Connectivity with the Oracle Database 177

Enabling the Oracle Type 4 JDBC Driver 178

Connecting the IDE to the Oracle Server 179

Creating a JDBC Connection Pool 180

Creating a JDBC Data Source 182

Creating a JDBC Persistent Manager 182

Creating the Database Tables 183

Creating EJB Components with an Oracle Database 185

Creating the Web Service with an Oracle Database 186

Index 187
Contents 7

8 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Figures

FIGURE 2-1 DiningGuide Application Architecture 40

FIGURE 3-1 Function of a Detail Class 50
9

10 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Tables

TABLE 1-1 Admin Server Property Values 25

TABLE 1-2 DiningGuide Database Tables 33

TABLE 1-3 Restaurant Table Records 33

TABLE 1-4 CustomerReview Table Records 33

TABLE C-1 Oracle-Specific Changes to Chapter 3 185

TABLE C-2 Oracle-Specific Changes to Chapter 4 186
11

12 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Before You Begin

Welcome to the Sun™ ONE Studio 5 J2EE application tutorial. This tutorial shows
you how to use the following features of the Sun ONE Studio 5 integrated
development environment (IDE):

■ EJB™ 2.0 Builder—for creating and developing Enterprise JavaBeans™

components based on the Enterprise JavaBeans Specification, Version 2.0.

■ EJB module assembly—for assembling the EJB™ components into an EJB module,
which you export into an EJB Java Archive (JAR) file

■ Test application facility—for testing enterprise beans without having to create a
client manually, using the Sun ONE Application Server 7, Standard Edition
software as the application server.

■ Web Services features—for building a SOAP web service from the existing EJB
component, and generating JSP™ pages viewable from a web browser

■ Deploying to the Sun ONE Application Server—for testing the tutorial
application

See the release notes for a list of environments in which you can create the example
in this book. The release notes are available on this web page:

http://forte.sun.com/ffj/documentation/index.html

Screen shots vary slightly from one platform to another. Although almost all
procedures use the interface of the Sun ONE Studio 5 software, occasionally you
might be instructed to enter a command at the command line. Here too, there are
slight differences from one platform to another. For example, a Microsoft Windows
command might look like this:

c:>cd MyWorkDir\MyPackage
13

http://forte.sun.com/ffj/documentation/index.html

A UNIX command might look like this:

Before You Read This Book
This tutorial creates an application that conforms to the architecture documented in
Java 2 Platform, Enterprise Edition (J2EE™) Blueprints. If you want to learn how to
use the features of Sun ONE Studio 5, Standard Edition to create, develop, and
deploy a J2EE compliant application, you will benefit from working through this
tutorial.

Before starting, you should be familiar with the following subjects:

■ Java programming language
■ Enterprise JavaBeans concepts
■ Java™ Servlet syntax
■ JDBC™ enabled driver syntax
■ JavaServer Pages™ syntax
■ HTML syntax
■ Relational database concepts (such as tables and keys)
■ How to use the chosen database
■ J2EE application assembly and deployment concepts

This book requires a knowledge of J2EE concepts, as described in the following
resources:

■ Java 2 Platform, Enterprise Edition Blueprints
http://java.sun.com/j2ee/blueprints

■ Java 2 Platform, Enterprise Edition Specification
http://java.sun.com/j2ee/download.html#platformspec

■ The J2EE Tutorial
http://java.sun.com/j2ee/tutorial

■ Java Servlet Specification Version 2.3
http://java.sun.com/products/servlet/download.html#specs

■ JavaServer Pages Specification Version 1.2
http://java.sun.com/products/jsp/download.html#specs

% cd MyWorkDir/MyPackage
14 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

http://java.sun.com/j2ee/blueprints
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html
http://java.sun.com/products/servlet/download.html#specs
http://java.sun.com/products/jsp/download.html#specs

Familiarity with the Java API for XML-Based RPC (JAX-RPC) is helpful. For more
information, see this web page:

http://java.sun.com/xml/jaxrpc

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.

How This Book Is Organized
This manual is designed to be read from beginning to end. Each chapter in the
tutorial builds upon the code developed in earlier chapters.

Chapter 1 lists the software requirements for the DiningGuide tutorial, explains how
to start the Sun ONE Studio 5 IDE and the Sun ONE Application Server, how to get
the IDE and the application server to recognize each other and both communicating
with an Oracle database, how to create the tutorial database tables, and then create a
database schema in the IDE based on those tables.

Chapter 2 describes the functionality and architecture of the tutorial application.

Chapter 3 provides step-by-step instructions for creating the EJB tier of the tutorial
application, and how use the IDE’s test application facility to test each bean.

Chapter 4 describes how to use the IDE to generate the tutorial’s web service from
its EJB tier, and how to test the web service.

Chapter 5 explains how a provided Swing client accesses the output generated from
the Web Services module in Chapter 4, and how to run the tutorial application.

Appendix A provides complete source files for the tutorial application.

Appendix B provides the database script for the tutorial application.

Appendix C describes how to adapt the tutorial to create and run the application
using an Oracle database.
Before You Begin 15

http://java.sun.com/xml/jaxrpc

Typographic Conventions

Related Documentation
Sun ONE Studio 5 documentation includes books delivered in Acrobat Reader (PDF)
format, release notes, online help, readme files for example applications, and
Javadoc™ documentation.

Documentation Available Online
The documents described in this section are available from the docs.sun.comSM

web site and from the documentation page of the Sun ONE Studio Developer
Resources portal (http://forte.sun.com/ffj/documentation).

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index installed with the product on your local
system or network.

■ Release notes (HTML format)

Available for each Sun ONE Studio 5 edition. Describe last-minute release
changes and technical notes.

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .cvspass file.
Use DIR to list all files.
Search is complete.

AaBbCc123 What you type, when contrasted
with on-screen computer output

> login

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must save your changes.

AaBbCc123 Command-line variable; replace
with a real name or value

To delete a file, type DEL filename.
16 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

http://forte.sun.com/ffj/documentation/
http://docs.sun.com

■ Sun ONE Studio 5, Standard Edition Release Notes - part no. 817-2337-10

■ Getting Started guides (PDF format)

Describe how to install the Sun ONE Studio 5 integrated development
environment (IDE) on each supported platform and include other pertinent
information, such as system requirements, upgrade instructions, application
server information, command-line switches, installed subdirectories, database
integration, and information on how to use the Update Center.

■ Sun ONE Studio 5, Standard Edition Getting Started Guide - part no. 817-2318-10
■ Sun ONE Studio 4, Mobile Edition Getting Started Guide - part no. 817-1145-10

■ Sun ONE Studio 5 Programming series (PDF format)

This series provides in-depth information on how to use various Sun ONE Studio
5 features to develop well-formed J2EE applications.

■ Building Web Components - part no. 817-2334-10

Describes how to build a web application as a J2EE web module using JSP
pages, servlets, tag libraries, and supporting classes and files.

■ Building J2EE Applications - part no. 817-2327-10

Describes how to assemble EJB modules and web modules into a J2EE
application, and how to deploy and run a J2EE application.

■ Building Enterprise JavaBeans Components - part no. 817-2330-10

Describes how to build EJB components (session beans, message-driven beans,
and entity beans with container-managed or bean-managed persistence) using
the Sun ONE Studio 5 EJB Builder wizard and other components of the IDE.

■ Building Web Services - part no. 817-2324-10

Describes how to use the Sun ONE Studio 5 IDE to build web services, to make
web services available to others through a UDDI registry, and to generate web
service clients from a local web service or a UDDI registry.

■ Using Java DataBase Connectivity - part no. 817-2332-10

Describes how to use the JDBC productivity enhancement tools of the Sun
ONE Studio 5 IDE, including how to use them to create a JDBC application.

■ Sun ONE Studio 5 tutorials (PDF format)

These tutorials demonstrate how to use the major features of Sun ONE Studio 5,
Standard Edition.

■ Sun ONE Studio 5 Web Application Tutorial - part no. 817-2320-10

Provides step-by-step instructions for building a simple J2EE web application.

■ Sun ONE Studio 5 J2EE Application Tutorial - part no. 817-2322-10

Provides step-by-step instructions for building an application using EJB
components and Web Services technology.
Before You Begin 17

■ Sun ONE Studio 4, Mobile Edition Tutorial - part no. 816-7873-10

Provides step-by-step instructions for building a simple application for a
wireless device, such as a cellular phone or personal digital assistant (PDA).
The application will be compliant with the Java 2 Platform, Micro Edition
(J2ME™ platform) and conform to the Mobile Information Device Profile
(MIDP) and Connected, Limited Device Configuration (CLDC).

You can also find the completed tutorial applications at:
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Online Help
Online help is available inside the Sun ONE Studio 5 IDE. You can open help by
pressing the help key (F1 in Microsoft Windows and Linux environments, Help key
in the Solaris environment), or by choosing Help → Contents. Either action displays
a list of help topics and a search facility.

Examples
You can download examples that illustrate a particular Sun ONE Studio 5 feature, as
well as completed tutorial applications, from the Sun ONE Studio Developer
Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The site includes the applications used in this document.

Javadoc Documentation
Javadoc documentation is available within the IDE for many Sun ONE Studio 5
modules. Refer to the release notes for instructions on installing this documentation.
18 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (817-2322-10) of your document in the subject line of
your email.

Type of Documentation Format and Location of Accessible Version

Books and tutorials HTML at http://docs.sun.com

Mini-tutorials HTML at
http://forte.sun.com/ffj/tutorialsandexamples.html

Integrated example
readmes

HTML in the example subdirectories of
s1studio-install-directory/examples

Release notes HTML at http://docs.sun.com
Before You Begin 19

http://docs.sun.com
http://forte.sun.com/ffj/tutorialsandexamples.html
http://docs.sun.com

20 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

CHAPTER 1

Getting Started

This chapter describes what you must do before starting the Sun ONE Studio 5 J2EE
Application tutorial. The topics covered in this chapter are:

■ “Obtaining and Installing the Required Software,” which follows
■ “Starting the Software” on page 23
■ “Setting Up Database Connectivity” on page 29
■ “Tutorial Database Table Descriptions” on page 32

Note – There are several references in this book to the DiningGuide application files.
These files include a completed version of the tutorial application, a readme file
describing how to run the completed application, and SQL script files for creating
the required database tables. These files are compressed into a zip file you can
download from the Sun ONE Studio 5 Developer Resources portal at
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Obtaining and Installing the Required
Software
The following items are required to create and run the tutorial.

■ Sun ONE Studio 5, Standard Edition software, which includes:

■ The Sun ONE Studio 5, Standard Edition integrated development environment
(IDE)
21

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

■ The Sun ONE Application Server 7 software

The Sun ONE Studio 5, Standard Edition installer installs both products unless
it detects a supported version of the Sun ONE Application Server 7 already
installed. The Solaris™ 9 Update 2 Operating Environment, for example,
includes an installation of Sun ONE Application Server 7.

You can obtain the Sun ONE Studio 5, Standard Edition software from:

■ The Sun ONE Studio 5, Standard Edition CD
■ The Sun ONE Portal (http://wwws.sun.com/software/sundev/jde/)
■ The Sun ONE Developer Resources portal (http://forte.sun.com/ffj/)

■ Java™ 2 Software Development Kit (the J2SE™ SDK), version 1.4.1_02 or higher

The Sun ONE Studio 5, Standard Edition installer will not run if you do not have
the J2SE SDK on your system. If you do have a J2SE SDK on your system, the
installer will start and then verify whether the J2SE SDK you are using is a
version required by the IDE and the Sun ONE Application Server 7 for your
platform. If you do not have the required version, the installer will quit,
displaying a message that you must install the correct version before proceeding.
You can obtain the J2SE SDK from the same locations as the IDE.

■ PointBase Network Server database software

This tutorial uses the PointBase database. PointBase is installed with the Sun ONE
Studio 5, Standard Edition software, in the subdirectory that contains the Sun
ONE Application Server 7 software. If your IDE and application server were
installed separately, your application server may or may not include PointBase
software. If it does not, you must download and install PointBase software
manually. Instructions are provided in the Sun ONE Application Server 7 Getting
Started Guide. Alternatively, Appendix C describes how to create the tutorial
application with an Oracle database.

■ The tutorial database tables

The tutorial database tables are created for you by the Sun ONE Studio 5 installer
in the PointBase database in your user directory. The tables are described in
“Tutorial Database Table Descriptions” on page 32. Appendix C describes how to
install the tutorial tables in an Oracle database.

■ A web browser

You need a web browser to view the tutorial application pages. This can be either
Netscape Communicator™ or Microsoft’s Internet Explorer.

You can access general system requirements from the release notes or from the Sun
ONE Studio 5 Developer Resources portal’s Documentation page at
http://forte.sun.com/ffj/documentation/.
22 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

http://wwws.sun.com/software/sundev/jde/
http://forte.sun.com/ffj/documentation/
http://forte.sun.com/ffj/

Starting the Software
This section describes how to start the Sun ONE Studio 5 IDE and Sun ONE
Application Server 7 after the software has been installed.

Starting the IDE
There are several ways to start the Sun ONE Studio 5 IDE. Only one is described
here. For more options, see the Sun ONE Studio 5, Standard Edition Getting Started
Guide.

To start the IDE:

● Start the Sun ONE Studio 5 IDE by running the program executable.

■ On Microsoft Windows, choose Start → Programs → Sun Microsystems → Sun
ONE Studio 5 SE → Sun ONE Studio 5 SE

■ On Solaris, UNIX, and Linux environments, run the runide.sh script in a
terminal window, as follows:

The s1studio-install-directory variable stands for the IDE’s home directory, which is
by default $HOME/studio5_se (UNIX standard user) or /opt/studio5_se
(UNIX superuser).

Starting the Application Server
Before starting this section, you must have write access to an application server
domain. The default domain is created during installation and requires superuser
privileges (administrator privileges on Microsoft Windows systems or root
privileges in Solaris or Linux environments) to access. If your userid has superuser
privileges, you can start the application server using all default settings, as described
in the next section. Standard users (without superuser privileges) must use the
procedures described in “Starting the Admin Server (Standard User)” on page 25.

$ sh s1studio-install-directory/bin/runide.sh
Chapter 1 Getting Started 23

Starting the Admin Server (Superuser)

If you have started the admin server previously, confirm whether it is running. See
“Confirming Sun ONE Application Server 7 as the Default Server” on page 29 for
information. If this is the first time you have started the admin server, start with this
section.

To start the admin server:

1. In the IDE, select the Runtime tab of the Explorer.

The Runtime pane of the Explorer displays the Server Registry node, among other
nodes. This node contains subnodes for all the installed web and application servers,
and a node showing which servers are the default servers.

2. Select the Server Registry node.

A query window pops up, asking whether you want to start the admin server. This
refers to the default domain’s admin server, which can only be run by a privileged
user.

3. Click OK to start the default admin server.

The IDE starts the default admin server and configures Sun ONE Application Server
7 as the IDE’s default application server. It also creates a server instance, server1.

4. Expand the Server Registry node, the Installed Servers node, and the Sun ONE
Application Server 7 node.

The Server Registry in the Explorer looks like this:

Now, start the server instance, as described in “Starting the Application Server
Instance” on page 28.

Values show a local
installation of Sun ONE
Application Server 7 set
as default web and
application server

Admin server instance
Application server instance
24 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Starting the Admin Server (Standard User)

If your userid does not have superuser privileges, a superuser must create a domain
for you before you start this section. The procedures are described in the Sun ONE
Studio 5, Standard Edition Getting Started Guide.

If you have started the IDE previously, created an admin server, and started it,
confirm now whether it is running by using the procedures described in
“Confirming Sun ONE Application Server 7 as the Default Server” on page 29. If this
is the first time you have started the admin server, continue with this section.

Before starting the procedures described in this section, you will need values of
several properties of your domain. Your administrator can provide these for you.
Use the following table to record your values to these properties.:

To start the admin server:

1. In the IDE, select the Runtime tab of the Explorer.

The Runtime pane of the Explorer displays the Server Registry node, among other
nodes. This node contains subnodes for all the installed web and application servers,
and a node showing which servers are the default servers.

2. Select the Server Registry node.

A query window pops up, asking whether you want to start the admin server. This
refers to the admin server of the default domain, which can only be run by a
privileged user.

If you click OK, this action creates and starts an admin server that you cannot use.
Click Cancel.

3. Add your admin server to the IDE.

a. Expand the Server Registry node and the Installed Servers node.

b. Right-click the Sun ONE Application Server 7 node and choose Add Admin
Server.

The Add Admin Server dialog box is displayed.

TABLE 1-1 Admin Server Property Values

Admin Server Properties Your Value

Admin Server Host

Admin Server Port

User Name

User Password

Domain
Chapter 1 Getting Started 25

c. Type in your values (see TABLE 1-1) and click OK.

If an error message appears, stating that the IDE could not locate the admin
server, but will start it if it is local, click OK to close the error window. A progress
window appears, showing the admin server process starting up.

A new admin server node is generated in the Explorer. In the following screen
shot, for example, a new admin server’s host is localhost and port number is 4849.

4. Create an application server instance.

a. Right-click the new admin server node and choose Create a Server Instance.

The Enter Server Instance Values dialog box is displayed.

b. Type in a name and an available port number.

For example, you could type MyServer and 4855.

New admin server instance
26 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Note – On Solaris and Linux systems, port numbers below 1024 are reserved. Use a
port number above 1023. On all systems, do not use the port number used by the
default application server, which is 80.

c. Click OK.

This action starts the admin server, which you can verify by messages in the
output window and status bar. The new server instance is created in the IDE.

5. Set the default application and web server by right-clicking the new server
instance and choosing Set As Default.

6. Expand the Default Servers node to verify this action.

The default servers for J2EE applications and web tier applications show the new
server as the default.

Now start the server instance, as described in the next section.

New server as
default server
Chapter 1 Getting Started 27

Starting the Application Server Instance

When you are test deploying and deploying applications during development, the
IDE starts the application server instance automatically as long as the admin server
is running. In this section, you start the application server instance manually in
order to perform some operations described later in this chapter.

All users start the server instance as follows:

1. Right-click the application server node and choose Status.

Note – If this node is not displayed, select the admin server instance node and
choose Refresh.

The Sun ONE Application Server Instance Status dialog box is displayed, as shown
(your instance label may be different).

2. Click the Start Server button.

(If the dialog box has a Stop Server button, the server is already running.)

On Microsoft Windows systems, a command window appears, displaying progress
messages.

The server is started when the Server Instance Status window displays Status:
Running.

3. Click Close on the instance status dialog box.

Now, proceed to “Setting Up Database Connectivity” on page 29.

Start Server button
28 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Confirming Sun ONE Application Server 7 as the
Default Server
If you have started Sun ONE Application Server 7 before, this is how you confirm
that it is still the default server:

1. In the IDE, select the Runtime tab of the Explorer.

2. Expand the Server Registry node and its Default Servers subnode.

If the J2EE Applications node’s label is server-instance(server-hostname:server-port-
number), as shown, then Sun ONE Application Server 7 is the default application
server. Go to the next section. Otherwise, continue with the next step.

3. Find your application server instance under the Installed Servers node, right-click
it, and choose Set As Default.

Your server is set as the default server for J2EE and Web Tier applications.

Setting Up Database Connectivity
An enterprise application uses the Java Database Connectivity (JDBC™) API to
interact with a database. Before you can deploy and execute an enterprise
application with Sun ONE Application Server 7, the following required JDBC-related
actions must be performed in the application server environment. These include:

■ Enabling the database’s JDBC driver

■ Creating a connection pool

Enterprise applications require pooling of database connections so that the
business objects in the system can share database access.

■ Creating a JDBC data source

A JDBC data source (also called a JDBC resource) lets you make connections to a
database with the getConnection() method.

■ Creating a JDBC persistent manager

A persistent manager is a component responsible for the persistence of the entity
beans installed in the container.

Value shows a local
installation of Sun ONE
Application Server 7 set as
default application server
Chapter 1 Getting Started 29

Under most circumstances, the Sun ONE Studio 5 IDE performs all these actions for
you, providing the values required by the tutorial. Depending on the privileges of
your userid and the platform you are using, these are performed with different
methods, which are described in “Setting JDBC Resources (Microsoft Windows
Superusers)” on page 30 and “Setting JDBC Resources (All Other Users)” on page 31.

Exceptions to automatic enabling of the JDBC driver, however, are not dependent on
your userid, as the next section describes.

Enabling the JDBC Driver
The PointBase JDBC driver is installed automatically with the standard installation,
where the Sun ONE Studio 5 IDE and Sun ONE Application Server 7 are installed
together.

Note – If the Sun ONE Studio 5 IDE and Sun ONE Application Server 7 were
installed separately, there are actions you must take. These are described in the Sun
ONE Studio 5, Standard Edition Getting Started Guide.

Setting JDBC Resources (Microsoft Windows
Superusers)
The Sun ONE Studio 5 installer automatically creates the three connectivity
resources for the Microsoft Windows user with administrator privileges.

Note – If the Sun ONE Studio 5 IDE and Sun ONE Application Server 7 were
installed separately, you must configure the JDBC resources with the procedure
described in “Setting JDBC Resources (All Other Users)” on page 31.

To view the resources in the IDE:

1. In the Runtime pane of the Explorer, expand the Server Registry and Installed
Servers nodes.

2. Expand the default admin server node (localhost:4848) and the default application
server node (server1(localhost:80)).

3. Expand the registered resources for JDBC Connection Pools, JDBC Data Sources,
and Persistent Managers.
30 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

You should see the following nodes under these:

■ JDBC Connection Pools: PointbasePool
■ JDBC DataSources: jdbc/jdbc-pointbase
■ Persistent Managers: jdo/PointbasePM

The Explorer looks like this:

Setting JDBC Resources (All Other Users)

Note – Before starting this procedure, make sure both the admin server and the
application server are running (refer to “Starting the Software” on page 23).

To create the JDBC connection resources for this tutorial:

1. In the Runtime pane of the Explorer, expand the Server Registry and Installed
Servers nodes.

2. Locate your application server instance.

It is labeled app-server-name (app-server-host:app-server-port), for example, MyServer
(localhost:4855).

3. Right-click the application server instance node and choose Preconfigure
PointBase JDBC Resources.

A timer icon (such as an hour glass) appears. When the process is complete, the
cursor reverts to its usual icon.
Chapter 1 Getting Started 31

4. Expand the registered resources for JDBC Connection Pools, JDBC Data Sources,
and Persistent Managers.

You should see the following nodes under these:

■ JDBC Connection Pools: PointbasePool
■ JDBC DataSources: jdbc/jdbc-pointbase
■ Persistent Managers: jdo/PointbasePM

The Explorer looks like this:

Now proceed to the tutorial’s database tables.

Tutorial Database Table Descriptions
The DiningGuide tutorial uses two database tables, Restaurant and
CustomerReview. These tables are automatically created for you in the PointBase
default (sample) database with the standard installation, where Sun ONE Studio 5
software and Sun ONE Application Server 7 are installed together.

However, if Sun ONE Studio 5 software and Sun ONE Application Server 7 were not
installed together, you must follow the procedures described in “Enabling the JDBC
Driver” on page 30. This action not only enables the PointBase JDBC driver, but
copies the default sample database to your user directory, which makes these tables
available to you.
32 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

The database schemas shown in TABLE 1-2 are used in this tutorial. They are created
in the PointBase database by the Sun ONE Studio 5 installer.

The Restaurant table contains the records shown in TABLE 1-3.

The CustomerReview table contains the records shown in TABLE 1-4.

TABLE 1-2 DiningGuide Database Tables

Table Name Columns Primary Key Other

Restaurant restaurantName yes

cuisine

neighborhood

address

phone

description

rating

CustomerReview restaurantName yes Compound primary key with
CustomerName; references
Restaurant(restaurantName)

customerName yes

review

TABLE 1-3 Restaurant Table Records

restaurant-
Name cuisine neighborhood address phone description rating

French
Lemon

Mediterranean Rockridge 1200 College
Avenue

510 888
8888

Very nice
spot.

5

Bay Fox Mediterranean Piedmont 1200
Piedmont
Avenue

510 888
8888

Excellent. 5

TABLE 1-4 CustomerReview Table Records

restaurantName customerName comment

French Lemon Fred Nice flowers.

French Lemon Ralph Excellent Service
Chapter 1 Getting Started 33

Now you are ready to start the tutorial application. Either continue to Chapter 2 to
get an overview of the application you will build, or go directly to Chapter 3 and
start building it.
34 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

CHAPTER 2

Introduction to the Tutorial

In the process of creating the tutorial example application, you will learn how to
build a simple J2EE application using Sun ONE Studio 5, Standard Edition features.

This chapter describes the application you will build, first describing its
requirements, and then presenting an architecture that fulfills the requirements. The
final section describes how you use Sun ONE Studio 5, Standard Edition
features—the EJB Builder, the test application facility, and the New Web Service
wizard—to create the application.

This chapter is organized into the following sections:

■ “Functionality of the Tutorial Application,” which follows
■ “User’s View of the Tutorial Application” on page 37
■ “Architecture of the Tutorial Application” on page 40
■ “Overview of Tasks for Creating the Tutorial Application” on page 42

Functionality of the Tutorial Application
The tutorial application, DiningGuide, is a simple dining guide application that
enables users to view a list of available restaurants and their features. The user can
also view a list of a selected restaurant’s customer reviews, and add a review to a
restaurant’s record. The restaurant features include the restaurant name, its cuisine
type, its neighborhood, address, and phone number, a brief description of the
restaurant, and a rating number (1 - 5).

The user interacts with the application’s interface as follows:

■ The user views a complete list of restaurants
■ The user requests a list of customer reviews for a particular restaurant
■ The user writes a review and adds it to the restaurant’s list of reviews
35

Application Scenarios
The interaction of DiningGuide begins when the user executes a client page listing
all the restaurant records in the database. The interaction ends when the user quits
the application’s client. A simple Swing client is provided to illustrate how a user
can interact with the application’s features. However, other types of clients, such as
a web client or another application, could access the business methods of the
DiningGuide application.

The following scenarios illustrate interactions that happen within the application,
and the application’s requirements.

1. The user executes the application’s RestaurantTable class.

The application displays the DiningGuide Restaurant Listing window, which
displays a list of all restaurants, their names, cuisine type, location, phone
number, a short review comment, and a rating from 1 to 5. On the page is a
button labeled View Customer Comments.

2. The user selects a restaurant record in the list and clicks the View Customer
Comments button for a given restaurant.

The application displays a All Customer Reviews By Restaurant Name window
with a list of all the reviews submitted by customers for the selected restaurant.

3. On the customer review window, the user types text into the Customer Name and
Review fields and clicks the Submit Customer Review button.

The application adds the customer’s name and review text to the
CustomerReview database table, and redisplays the All Customer Reviews By
Restaurant Name window with the new record added.

4. The user returns to the Restaurant Listing window, selects another restaurant, and
clicks the View Customer Comments button.

The application displays a new All Customer Reviews By Restaurant Name
window showing all the reviews for the selected restaurant.

Application Functional Specification
The following items list the main functions for a user interface of an application that
supports the application scenarios.

■ A master view of all restaurant data through a displayed list

■ A button on the master restaurant list window for retrieving all customer review
data for a given restaurant

■ A master view of all customer review data for a given restaurant

■ A button on the customer review list window for adding a new review
36 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

■ Text entry fields on the customer review list window for typing in a new
customer name and new customer review for the current restaurant

■ A button on the customer review list window for submitting the finished review
data to the database

User’s View of the Tutorial Application
The user’s view of the application illustrates how the scenarios and the functional
specification, described in “Functionality of the Tutorial Application” on page 35 are
realized.

1. In the Sun ONE Studio 5 Explorer, right-click the RestaurantTable node and
choose Execute.

The IDE switches to Runtime mode. A Restaurant node appears in the execution
window. Then, the RestaurantTable window is displayed, as shown:

This window displays the data from the Restaurant table described in “Tutorial
Database Table Descriptions” on page 32.

2. To view the customer reviews for a given restaurant, select the restaurant name
and click the View Customer Comments button.

For example, select the Bay Fox restaurant. The CustomerReviewTable window is
displayed.
Chapter 2 Introduction to the Tutorial 37

In this case, no records are shown, because none are in the database. Refer to
TABLE 1-4.

3. To add a review, type in a customer name and some text for the review and click
the Submit Customer Review button.

For example, type in New User for the name and I’m speechless! for the review.
The application redisplays the customer review window, as shown:

Now, display the reviews of the other restaurant.

4. On the Restaurant List window, select French Lemon and click the View Customer
Comments button.

A new customer review list window is displayed, showing the comments for the
French Lemon restaurant.
38 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Two customer review records are displayed. Refer to TABLE 1-4 for confirmation.

5. Continue to add and view customer review records.

6. When you are done, quit the application by closing any of the application’s
windows.

7. To verify that the new customer review records were written to the database, in
the IDE, select the Runtime tab of the Explorer.

8. Expand the Databases node, the PointBase connection node, and the Tables node
under it.

9. Right-click the CUSTOMERREVIEW table and choose View Data.

A command editor window is displayed, showing any new CustomerReview
records you entered in Step 3, for example:
Chapter 2 Introduction to the Tutorial 39

Architecture of the Tutorial Application
The heart of the tutorial application is the EJB tier that contains two entity type
enterprise beans, two detail classes, and a session bean. The entity beans represent
the two DiningGuide database tables (Restaurant and CustomerReview); the two
detail classes mirror the entity bean fields and include getter and setter methods for
each field. The detail classes are used to reduce the number of method calls to the
entity beans when retrieving database data. The session bean manages the
interaction between the client (by way of the web service) and the entity beans.

FIGURE 2-1 shows the DiningGuide application architecture.

FIGURE 2-1 DiningGuide Application Architecture

In FIGURE 2-1, the client includes a client proxy, which uses the SOAP runtime system
to communicate with the SOAP runtime system on the web server. Requests are
passed as SOAP messages. The web service translates the SOAP messages into calls
on the EJB tier’s session bean’s methods. The session bean passes its responses back
to the web service, which translates them into SOAP messages to give to the client
proxy and ultimately get translated into a display of data or action.

A SOAP request is an XML wrapper that contains a method call on the web service
and input data in serialized form.
40 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Application Elements
The elements shown in FIGURE 2-1 are:

■ An application service tier (an EJB tier)

You build and test the EJB tier before you build anything else in the tutorial. The
EJB tier consists of:

■ Two entity enterprise beans that use container-managed persistence (CMP) to
represent the two database tables of the application

■ Two detail classes to hold returned database records

■ A stateless session enterprise bean to manage the requests from the client and
to format the objects returned to the client.

■ The web service tier

■ A web module containing Servlets and JSP pages for exercising the session
bean’s methods

This is automatically created when a test application is built for the session
bean.

■ A web service logical node that represents the entire web service and enables
modification and configuration of the web service

■ A client proxy that is generated when the web service is deployed

■ A WSDL (Web Services Descriptive Language) file that described the web
service for a client

■ The client

The client component is a Swing client that displays the application pages. In
Chapter 5, you copy code from provided client pages that instantiate the client
proxy created in the web service in Chapter 4.

EJB Tier Details
The EJB tier of the DiningGuide application contains two entity-type enterprise
beans, two detail classes, and a session bean used to manage the interaction between
the client and the entity beans.

■ Restaurant CMP EJB component

The Restaurant bean is an entity bean that uses container-managed persistence
(CMP) to represent the data of the Restaurant database table.

■ Customerreview CMP EJB component

Also a CMP-type entity bean, the Customerreview entity bean represents the data
from the CustomerReview database table.
Chapter 2 Introduction to the Tutorial 41

■ RestaurantDetail class

This component has the same fields as the Restaurant entity bean, plus getter and
setter methods for each field for retrieving this data from the entity bean’s remote
reference. Its constructor instantiates an object that represents the restaurant data.
This object can then be formatted into a JSP page, HTML page, or Swing
component for the client to view.

■ CustomerreviewDetail class

This component serves the same function for the Customerreview entity bean that
the RestaurantDetail class serves for the Restaurant entity bean.

■ DiningGuideManager session EJB component

This component is a stateless session bean that is used to manage the interaction
between the client and the entity beans.

Overview of Tasks for Creating the
Tutorial Application
The tutorial building process is divided into three chapters. In the first (Chapter 3),
you create the EJB tier and use the IDE’s test application facility to test each
enterprise bean as you work. Then you create a session bean to manage traffic. This
is a common model when creating the web services and the client manually.

In the second chapter (Chapter 4), you create a web service and specify which of the
EJB tier’s business methods to reference. You deploy the web service, which
generates a client proxy, and then you test the client proxy.

In the final chapter (Chapter 5), you install two provided Swing classes into the
application and execute them to test the application.

Creating the EJB Components
In Chapter 3 you learn how to use Sun ONE Studio 5 features to:

■ Build entity and session beans quickly with the EJB Builder

■ Generate classes (with getter and setter methods) from a database schema

■ Use the test application facility to assemble a test J2EE application from enterprise
beans

■ Add EJB references to a J2EE application
42 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

■ Deploy the test application to the J2EE Reference Implementation application
server

■ Exercise enterprise bean methods from the test client page created by the test
application facility.

Using the EJB Builder

The EJB Builder wizard automatically creates the various components that make up
an enterprise bean, whether it’s a stateless or stateful session bean, or an entity bean
with container-managed persistence (CMP) or bean-managed persistence (BMP). In
Chapter 3, you create two CMP entity beans based on existing database tables, and a
stateless session bean.

When you create the entity beans, you learn how to connect to a database during the
creation process, and then generate an entity bean whose fields represent the table’s
columns. The basic parts of the bean are generated into the Sun ONE Studio 5
Explorer with Java code already generated for the home interface, remote interface,
bean class, and (if applicable) the primary key class. You learn how to edit and
modify the bean properly by using the logical bean node, which represents the bean
as a whole. You learn to add create, finder, and business methods using the EJB
Builder’s GUI features.

Creating the Detail Classes

The detail classes must have the same fields as the entity beans. You create two
classes and add the appropriate bean properties to them. While adding each
property, you activate an option that automatically generates accessor methods for
the property. This way, you obtain the getter and setter methods the application
requires. Then you code each class’s constructor to instantiate the properties. Finally,
you add code to each of the two entity beans to return an instance of its
corresponding detail class.

Using the Test Application Facility

The Sun ONE Studio 5 IDE includes a facility for testing enterprise JavaBean
components without your having to create a client for this purpose. This facility uses
Sun ONE Application Server 7 as the application server and deploys the enterprise
bean as part of a J2EE application that includes a web module and client JSP pages.
An HTML page coordinates these JSP pages so that, from a web browser, you can
create an instance of the bean and then exercise its business methods.
Chapter 2 Introduction to the Tutorial 43

You create test applications for all three of the enterprise beans separately. For the
entity beans, the test application generates a J2EE application that contains a web
module, which contains the automatically generated JSP pages for the client’s use
from a web browser, and an EJB module for the entity bean. The session bean’s EJB
module must also contain the EJB modules of the entity beans, because it calls
methods on those entity beans. You add the entity bean references to the session
bean’s EJB module using commands in the IDE. The EJB module created while
creating the test application is referenced later by the web service.

When you test the session bean in a web browser, you can exercise all the
application’s business methods. At the end of Chapter 3 are guidelines for using the
test client apparatus to guide you if you want to create your own web service and
client manually.

Creating the Tutorial’s Web Service
In Chapter 4 you learn how to use Sun ONE Studio 5 features to:

■ Create a logical web service
■ Specify which session business methods are to be referenced by the web service
■ Create a J2EE application to contain the web service
■ Generate the web service’s runtime classes and client pages
■ Generate the web service’s client proxy

Creating a Web Service

A web service is a logical entity that represents the entire set of objects in the web
service, and facilitates modifying and configuring the web service. You create a web
service in the Explorer using the New wizard to define its name and package
location. As you create the web service, the wizard prompts you to specify the
business methods you want the web service to reference.

You inform the web service of the location of the JAX-RPC runtime by specifying its
URL as a property of the web service. You then generate the web service’s runtime
classes, which are EJB components that implement the web service.

Creating a Test Client for the Tutorial

You create a test client that consists of front-end client and a back-end J2EE
application. You then add references to the session bean’s EJB module and to the
web service. This action makes the web service’s WAR and EJB JAR files available,
so you can customize their properties. One property that you customize is the Web
Context property. This completes the DiningGuide’s J2EE application, and you are
ready to deploy it.
44 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Deploying the Web Service and Creating a Test Client

When you deploy the J2EE application that contains the web service, the IDE
automatically generates a client proxy and supporting files. The supporting files
include a JSP page for each referenced method, a JSP error page, and a welcome
page.

Testing the Web Service

You use an IDE command to deploy the DiningGuide application. This starts the
application server and displays the test client’s welcome page that displays all the
operations on one page. The generated JSP pages contain input fields when an input
parameter is required, and an Invoke button to execute the operation. You use these
means to test how the web service calls each of the session bean’s methods.

Making a Web Service Available to Other Developers

Although this tutorial does not describe how to publish the web service to a UDDI
registry, it does describe an informal method for enabling other developers to use
the web service for testing purposes. You learn how to generate a WSDL file, which
you can then make available, either by placing it on a server, or by distributing it
some other way, such as by email. The target developers can generate a client proxy
from this file and discover which methods are available on your web service. They
can then build a client accordingly, and, if you provide them with the URL of your
deployed web service, they can test their client against your web service.

The Sun ONE Studio 5 IDE also provides a single-user internal UDDI registry for
testing purposes. The StockApp example, available from the Examples and Tutorials
page of the Sun ONE Studio 5 Developer’s portal, demonstrates how to publish a
web service using this device. The Examples and Tutorials page is at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

See Building Web Services in the Sun ONE Studio 5 Programming series for complete
information about publishing a web service to a UDDI registry.

Installing and Using the Provided Client
Code for a simple Swing client that demonstrates the functionality of the
DiningGuide application is provided in Appendix A. This client consists of a Swing
class for each of the database tables. You create two classes and then replace their
default code with the provided code. Then, you simply execute the main class.
Chapter 2 Introduction to the Tutorial 45

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

You learn by examining the provided code how a client accesses the application’s
methods. First, the client must instantiate the client proxy. This makes the client
proxy’s methods available to the client. These methods (see FIGURE 2-1) are used by
the SOAP runtime to access the methods of the application’s EJB tier.

End Comments
This tutorial application is designed to be a running application that illustrates the
main features of Sun ONE Studio 5, Standard Edition, while still brief enough for
you to create in a short time (perhaps a day). This places certain restrictions on its
scope, for example:

■ There is no error handling
■ There are no debugging procedures
■ Publishing the web service is not described

Although the tutorial application described in this book is designed to be a simple
application that you can complete quickly, you might want to import the entire
application, view the source files, or copy and paste method code into methods you
create. The DiningGuide application is accessible from the Examples and Tutorials
page of the Sun ONE Studio 5 Developer’s portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
46 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

CHAPTER 3

Building the EJB Tier of the
DiningGuide Application

This chapter describes, step by step, how to create the EJB tier of the DiningGuide
tutorial application. Along the way, you learn how to use the EJB Builder to create
both entity and session beans, and how to use the IDE’s test mechanism to test the
beans. The topics covered in this chapter are:

■ “Overview of the Tutorial’s EJB Tier,” which follows
■ “Creating Entity Beans With the EJB Builder” on page 52
■ “Creating Detail Classes to View Entity Bean Data” on page 68
■ “Testing the Entity Beans” on page 72
■ “Creating a Session Bean With the EJB Builder” on page 87
■ “Testing the Session Bean” on page 100
■ “Comments on Creating a Client” on page 109

By the end of this chapter, you will be able to run the whole EJB tier of the
DiningGuide application as a deployed test application.

After you have created the EJB tier, you are free to create your own web services and
client pages. Alternatively, you can continue on to Chapter 4, to learn how to create
the application’s web services using the Sun ONE Studio 5 Web Services features.

Overview of the Tutorial’s EJB Tier
In this chapter, you create the module that is the heart of the tutorial application,
namely, its EJB tier. As you create each component, you test it using the IDE’s test
application facility, which automatically creates a test web service and test client.
47

The EJB tier you create will include:

■ a Restaurant entity bean
■ a Customerreview entity bean
■ a DiningGuideManager session bean
■ a RestaurantDetail bean
■ a CustomerreviewDetail bean

For a complete discussion of the role of the EJB tier within J2EE architecture, see
Building Enterprise JavaBeans Components in the Sun ONE Studio 5 Programming
series. That document provides full descriptions of all the bean elements, and
explains how transactions, persistence, and security are supported in enterprise
beans.

To examine an application that also uses an EJB tier and a web service generated
from it, see the PartSupplier example on the Sun ONE Studio 5 examples page,
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

The Entity Beans
An entity bean provides a consistent interface to a set of shared data that defines a
concept. In this tutorial, there are two concepts: restaurant and customer review. The
Restaurant and Customerreview entity beans that you create represent the database
tables you created in Chapter 1.

Entity beans can have either container-managed persistence (CMP) or bean-managed
persistence (BMP). With a BMP entity bean, the developer must provide code for
mapping the bean’s fields to the database table columns. With a CMP entity bean,
the EJB execution environment manages persistence operations. In this tutorial, you
use CMP entity beans. Using the IDE’s EJB Builder wizard, you connect to the
database and indicate which columns to map. The wizard creates the entity beans
mapped to the database.

The EJB Builder creates the CMP entity bean’s framework, including the required
home interface, remote interface, and bean class. The wizard also creates a logical
node to organize and facilitate customization of the entity bean.

You manually define the entity bean’s create, finder, and business methods. When
you define these methods, the IDE automatically propagates the method to the
appropriate bean components. For example, a create method is propagated to the
bean’s home interface and a corresponding ejbCreate method to the bean’s class.
When you edit the method, the changes are propagated as well.
48 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

With finder methods, you must define the appropriate database statements to find
the objects you want. The EJB 2.0 architecture defines a database-independent
version of SQL, called EJB QL, which you use for your statements. At deployment,
the Sun ONE Application Server plugin translates the EJB QL into the SQL
appropriate for your database and places the SQL in the deployment descriptor.

The Session Bean
Entity beans represent shared data, but session beans access data that spans concepts
and is not shared. Session beans can also manage the steps required to accomplish a
particular task. Session beans can be stateful or stateless. A stateful session bean
performs tasks on behalf of a client while maintaining a continued conversational
state with the client. A stateless session bean does not maintain a conversational state
and is not dedicated to one client. Once a stateless bean has finished calling a
method for a client, the bean is available to service a request from a different client.

In the DiningGuide application, client requests might include obtaining data on all
the restaurants in the database or finding all the customer reviews for a given
restaurant. Submitting a review for a given restaurant is another client request.
These requests are not interrelated, and don’t require maintenance of a
conversational state. For these reasons, the DiningGuide tutorial uses a stateless
session bean to manage the different steps required for each request.

The session bean repeatedly builds collections of restaurant and customer review
records to satisfy a client’s request. This task could be accomplished by adding
getter and setter methods for each field onto the entity beans, but this approach
would require calling a method for every field each time the session bean has to
retrieve a row of the table. To reduce the number of method calls, this tutorial uses
special helper classes, called detail classes, to hold the row data.

The Detail Classes
A detail class is a Java class that has fields that correspond to the container-managed
fields of the entity beans, plus getter and setter methods for each field. When the
session bean looks up an entity bean, it uses the corresponding detail class to create
an instance of each remote reference returned by the entity bean. The session bean
just calls the detail class’s constructor to instantiate a row of data for viewing. In this
way, the session bean can create a collection of row instances that can be formatted
into an HTML page for the client to view. Returning detail class instances to the
client consumes less network bandwidth than returning remote references for the
entity bean instances.

FIGURE 3-1 shows graphically how the detail classes work.
Chapter 3 Building the EJB Tier of the DiningGuide Application 49

FIGURE 3-1 Function of a Detail Class

The numbered items in FIGURE 3-1 signify the following actions:

1. The web container passes a client’s request for all restaurant data to the
DiningGuideManager session bean.

2. The session bean calls the Restaurant entity bean’s findAll method to perform a
lookup on the Restaurant entity bean.

3. The findAll method obtains all available remote references to the entity bean.

4. For each remote reference returned, the session bean calls the Restaurant bean’s
getRestaurantDetail business method to fetch the RestaurantDetail class.

5. The getRestaurantDetail method returns a RestaurantDetail object, which is
added to the collection.

6. The session bean returns a collection of all RestaurantDetail objects to the web
container, which formats the data appropriately for the client to view.
50 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Summary of Steps
Creating the EJB tier requires six steps:

1. Creating the entity beans

First, you create database schemas in the IDE, mapped from the tutorial’s
database tables. Next, using the EJB Builder, you create CMP entity beans that
model the tables with the EJB Builder wizard. Then, you program the entity beans
by adding and coding create, finder, and business methods.

2. Creating detail classes to be passed to the client for display

You create two JavaBeans classes with the same fields as the corresponding entity
beans, and include the same accessor methods. These classes are used by the
entity beans as types for parameters, fields, and return values. Returning these
classes to the client is more efficient regarding network bandwidth than returning
remote references for the entity bean instances.

3. Creating business methods on the entity beans to fetch the detail classes

4. Testing the entity beans’ methods with the IDE’s test application facility

From each entity bean, you automatically generate a test client that, when viewed
in a web browser, allows you to create an instance of the bean and then exercise
the business methods on the instance.

5. Creating the session bean

You use the EJB Builder to create a stateless session bean. You program the bean’s
create method to perform a lookup on the entity beans and its getter methods to
construct collections of detail objects (from the detail classes for each entity bean.
You create a method that creates customer review record in the database. You also
create two dummy business methods required by the SOAP runtime.

6. Testing the session bean’s methods

Before testing the session bean, you add references to the CMP entity beans to the
EJB module’s property sheet. From the session bean, you then generate a test
application, which includes an EJB module. To this module, you add the EJB
modules from the entity beans’ test applications. Then you use the test client to
create an instance of the session bean and then exercise its methods.

Note – Before you can begin work on the tutorial application, you must first have
performed all the setup steps described in Chapter 1.
Chapter 3 Building the EJB Tier of the DiningGuide Application 51

Creating Entity Beans With the EJB
Builder
Create two entity beans, Restaurant and Customerreview, to represent the two
database tables you created in Chapter 1.

In version 2.0 of the EJB architecture, entity beans can have local interfaces, remote
interfaces, or both. The criterion for deciding which to use rests on whether the
client that calls the bean’s methods is remote or local to the bean. In this tutorial, you
create the entity beans with both remote and local interfaces, for flexibility regarding
how the web service will access the beans’ methods. Two possibilities are the session
bean accesses the beans’ methods (using local interfaces), or the web service accesses
the methods directly (using remote interfaces).

Tip – For more details about working with the EJB Builder, see the Sun ONE Studio
5 help topics on EJB components.

Note – The source code for the completed entity beans is provided in Appendix A.

Creating the Restaurant and Customerreview
Entity Beans
First, create a directory to contain the application, then mount the directory in the
IDE. Mounting a directory puts it in the IDE’s class path. Next, in the mounted
directory, create a database schema from the two database tables. Finally, create a
package for the EJB tier and create two entity beans in it that are modeled from the
database schema.

Creating the Tutorial’s Directory

Create a directory to contain the tutorial’s files and mount it in the IDE’s file system,
as follows:

1. Somewhere on your file system, create a directory and name it DiningGuide.
52 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Note – If you create this as a subdirectory of another directory, the specifications of
some methods you create for this tutorial, which include the file specification, may
become very long. This may cause execution problems for platforms using Microsoft
Windows 2000 with a Service Pack number less than 3. To avoid this, create this
directory at the top level of a disk or volume (for example c:\DiningGuide).

2. Mount the DiningGuide directory.

Mounting an object in the Explorer puts that object into the IDE’s class path.

a. In the Sun ONE Studio 5 IDE, choose the File → Mount Filesystem.

The New wizard is displayed.

b. Select Local Directory, and click Next.

The Select Directory page of the New wizard is displayed.

c. Use the Look In file finder to find the DiningGuide directory, select it, and
click Finish.

The new directory (for example, c:\DiningGuide) is mounted in the Explorer.

Creating a Database Schema for the Tutorial’s Tables

Now create a database schema that models the Restaurant and Customerreview
database tables. The IDE reads table definitions from the database and creates the
schema.

1. Start the PointBase server by choosing Tools → PointBase Network Server → Start
Server.

If the Start Server command is dimmed, the server is already running.

2. Open a connection to the PointBase sample database.

a. Select the Runtime tab of the Explorer.

b. Expand the Databases node.

■ If there is a square icon labeled jdbc:pointbase:server://localhost:9092/sample
[PBPUBLIC on PBPUBLIC] and it is whole, skip to Step 3.

■ If there is a square icon, as above, and it is broken, right-click it and choose
Connect.

The broken square icon redisplays as a whole square when the connection is
opened.
Chapter 3 Building the EJB Tier of the DiningGuide Application 53

Note – If there is no square icon, your IDE and application server were installed
separately from each other and the PointBase JDBC driver has not been enabled in
the IDE; consult the Sun ONE Studio 5, Mobile Edition Getting Started Guide for
instructions on connecting an external PointBase database to the IDE.

3. Begin creating the schema.

a. Right-click the DiningGuide node in the Explorer and choose New → All
Templates.

The New Wizard is displayed, showing the Choose Template page.

b. Expand the Databases node, select Database Schema, and click Next.

The New Object Name page of the New wizard is displayed.

4. Type dgSchema in the Name field and click Next.

The Database Connection page of the wizard is displayed.

5. Specify the source database for the schema.

a. Enable the Existing Connection option.

b. Select from the list jdbc:pointbase:server://localhost:9092/sample [PBPUBLIC
on PBPUBLIC].

c. Click Next.

The Tables and Views page is displayed.

6. Select the table to be modeled in the schema.

a. Select the CUSTOMERREVIEW table in the list of available tables and click
the Add button.

b. Select the RESTAURANT table in the list and click the Add button.

The CUSTOMERREVIEW and RESTAURANT tables appear in the list of selected
tables and views.

c. Click Finish.

The new database schema appears under the DiningGuide directory in the
Explorer. If you expand all its subnodes, it looks like this:
54 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating a Java Package for the EJB Tier

Create a Java package within the mounted DiningGuide node to hold the EJB tier,
which is the data of your application.

1. Right-click the DiningGuide node and choose New → Java Package.

2. Name the new package Data and click Finish.

The new Data package appears under the DiningGuide directory.

Creating the Restaurant Entity Bean

Create an entity bean to model the Restaurant table, as follows:

1. Begin creating the Restaurant entity bean.

a. Right-click the new Data package and choose New → All Templates.

Restaurant schema

Customerreview schema
Chapter 3 Building the EJB Tier of the DiningGuide Application 55

b. From the Templates wizard, expand the J2EE node, select CMP Entity EJB and
click Next.

The CMP Entity Bean Name and Properties page of the New wizard (used by the
EJB Builder module) is displayed. If you click the Help button on any page of the
wizard, you can get context-sensitive help on creating CMP entity beans.

c. Name the new CMP entity bean Restaurant and select the following options:

The New wizard looks like this.

d. Click Next.

This displays the Table from Database Schema Object page.

2. Specify the RESTAURANT schema.

a. Expand the DiningGuide node and the nodes under the dgSchema node, and
select the RESTAURANT table.

Option Category Option to Select

Source for Entities and Fields Table from Database Schema Object

Component Interfaces Both Remote and Local Interfaces
56 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

The page looks like this:

b. Click Next to go to the CMP Fields page.

3. Customize any fields you wish to define the CMP bean.

You see a side-by-side display of the columns of the Restaurant database table and
the corresponding Java fields that the columns will be mapped to when the wizard
creates the Restaurant entity bean. For this tutorial, you want to change the type of
the rating field.

a. Select the rating field and click the Edit button.

The Edit Persistent Field dialog box is displayed.

b. Delete the existing text in the Type field and type int.

The dialog box looks like this:

c. Click OK to close the dialog box.

The type of the rating Java field is changed to int.
Chapter 3 Building the EJB Tier of the DiningGuide Application 57

d. Click Next.

The CMP Entity Bean Class Files page is displayed, listing the parts of the
Restaurant bean that will be created. Notice that the EJB Builder wizard has
automatically named the new entity bean with the same name as the database
table.

4. Finish creating the bean by clicking Finish.

The new Restaurant entity bean and all its parts are created and displayed in the
Explorer window.

Five of the parts are interfaces and one part is the bean class. The sixth part is the
logical node that groups all the elements of the enterprise bean together and facilitates
working with them.

Creating the Customerreview Entity Bean

Create the Customerreview entity bean as you did the Restaurant bean, using the
following steps:

1. Begin creating the Customerreview entity bean.

a. Right-click the new Data package and choose New → CMP Entity EJB.

Notice that this item appears in the contextual menu. This shortcut is created for
your convenience whenever you select an item from the New menu.

b. Name the new CMP bean Customerreview and select the following options:

c. Click Next.

This displays the Table from Database Schema Object page.

Option Category Option to Select

Source for Entities and Fields Table from Database Schema Object

Component Interfaces Both Remote and Local Interfaces

Logical node

Local interface

Bean class

Local home interface

Remote interface

Remote home interface
58 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

2. Specify the CUSTOMERREVIEW schema.

a. Expand the DiningGuide node and all the nodes under the dgSchema node.

b. Select the CUSTOMERREVIEW table.

c. Click Next.

3. Finish creating the bean.

a. Click Next on the CMP Fields page.

b. Click Finish on the last page (CMP Entity Bean Class Files page).

The Customerreview entity bean is displayed in the Data package in the
Explorer. Notice that there is also a primary key class named CustomerreviewKey.
This class is automatically created when the entity bean has a composite primary
key. (See TABLE 1-2 in Chapter 1 to confirm the composite primary key in this
table.)

Logical node

Local interface

Bean class

Primary key class

Local home interface

Remote home interface

Remote interface
Chapter 3 Building the EJB Tier of the DiningGuide Application 59

Creating Create Methods for CMP Entity Beans
Create the create methods for both entity beans, adding parameters and code to
initialize the fields of the beans’ instances.

Creating the Restaurant Bean’s Create Method

Create the create method for the Restaurant entity bean as follows:

1. In the Explorer, right-click the Restaurant(EJB) logical node (the bean icon).

2. Choose Add Create Method from the contextual menu.

The Add New Create Method dialog box is displayed.

3. Add method parameters for each column of the Restaurant database.

a. Click the Add button in the Parameters section.

The Enter Method Parameter dialog box is displayed.

b. Type restaurantname for the Field Name.

c. Select java.lang.String for the Type.

d. Click OK (or press Enter) to create the parameter and close the dialog box.

e. Similarly, create the other parameters:

Note – The order in which you create these parameters becomes important when
you test the bean with the test application facility. Create them in the order given
here.

Keep the two exceptions created by default, and make sure the method is added to
both Home and Local Home interfaces.

Field Name Type

cuisine java.lang.String

neighborhood java.lang.String

address java.lang.String

phone java.lang.String

description java.lang.String

rating int
60 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

4. Click OK.

The IDE propagates a create method under the RestaurantHome interface, another
create method under the LocalRestaurantHome interface, and an ejbCreate method
under the Restaurant bean class (RestaurantBean). A related ejbPostCreate method is
also added to the bean class.

5. Expand the Restaurant(EJB) logical node and the Create Methods folder, and
double-click the create method.

The Source Editor is displayed with the cursor at the ejbCreate method of the bean.

Note – If you right-click the create method node and choose Help, you can get
online help information on create methods.

6. Add the following code (the bold text only) to the body of the ejbCreate method
to initialize the fields of the bean instance:

Tip – After you enter code (either by typing or copying and pasting) into the Source
Editor, press Control-Shift F to reformat it properly. If you are copying from the PDF
file, join the lines that get broken by word wrap, as indicated by the code comment.

When the Restaurant entity bean’s create method is called, it creates a new record in
the database, based on the container-managed fields of this bean.

public String ejbCreate(java.lang.String restaurantname,
java.lang.String cuisine, java.lang.String neighborhood,
java.lang.String address, java.lang.String phone,
java.lang.String description, int rating) throws
javax.ejb.CreateException {

if (restaurantname == null) {
// Join the following two lines in the Source Editor

throw new javax.ejb.CreateException("The restaurant
name is required.");

}
setRestaurantname(restaurantname);
setCuisine(cuisine);
setNeighborhood(neighborhood);
setAddress(address);
setPhone(phone);
setDescription(description);
setRating(rating);

return null;
}

Chapter 3 Building the EJB Tier of the DiningGuide Application 61

7. Select the Restaurant(EJB) logical node and press F9 to compile the bean.

The Restaurant entity bean should compile without errors.

Creating the Customerreview Bean’s Create Method

Create the create method for the Customerreview entity bean as follows:

1. Right-click the Customerreview(EJB) logical node (the bean icon) and choose
Add Create Method.

2. Use the Add button to create three parameters, one for each column of the
CustomerReview table:

Note – As in Step a, create these parameters in the order given.

Keep the two exceptions created by default, and make sure the method is added to
both Home and Local Home interfaces.

3. Click OK.

4. Open the Customerreview(EJB) logical node and the Create Methods folder, and
double-click the create method.

The Source Editor opens with the cursor at the ejbCreate method of the bean.

Field Name Type

restaurantname java.lang.String

customername java.lang.String

review java.lang.String
62 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

5. Add the following (bold) code to the body of the ejbCreate method to initialize
the fields of the bean instance:

Tip – After you enter code (either by typing or copying and pasting) into the Source
Editor, press Control-Shift F to reformat it properly. If you are copying from the PDF
file, join the lines that get broken by word wrap, as indicated by the code comment.

When the ejbCreate method is called, it creates a new record in the database, based
on the container-managed fields of this bean.

6. Select the Customerreview(EJB) logical node and press F9 to compile the bean.

The Customerreview entity bean should compile without errors.

Now, create finder methods on both entity beans that will locate all or selected
instances of each bean in the context.

Creating Finder Methods on Entity Beans
Create a findAll method on the Restaurant bean to locate all restaurant data. Also
create a findByRestaurantName on the Customerreview bean to locate review data
for a given restaurant.

Every finder method, except findByPrimaryKey, must be associated with a query
element in the deployment descriptor. When you create the finder methods for these
two entity beans, specify SQL statements using a database-independent language
specified in the EJB 2.0 specification, namely EJB QL. At deployment time, the
application server plugin translates the EJB QL into the SQL of the target database.

public CustomerreviewKey ejbCreate(java.lang.String
restaurantname, java.lang.String customername, java.lang.String
review) throws javax.ejb.CreateException {

if ((restaurantname == null) || (customername == null)) {
// Join the following two lines in the Source Editor

throw new javax.ejb.CreateException("Both the
restaurant name and customer name are required.");

}
setRestaurantname(restaurantname);
setCustomername(customername);
setReview(review);

return null;
}

Chapter 3 Building the EJB Tier of the DiningGuide Application 63

Creating the Restaurant Bean’s findAll Method

To create the Restaurant bean’s findAll method:

1. Right-click the Restaurant(EJB) logical node and choose Add Finder Method.

The Add New Finder Method dialog box is displayed.

2. Type All after the “find” string in the Name field.

3. Select java.util.Collection for the Return type.

4. Accept the two default exceptions.

5. Define the EJB QL statements, as follows:

6. Make sure the method is added to both Home and Local Home interfaces.

7. Click OK.

The new findAll method is created in the Local and Local Home interfaces of the
Restaurant bean.

Note – If you right-click the Finder Methods node and choose Help, you can get
online help information on finder methods.

8. Select the Restaurant(EJB) logical node and press F9 to compile the bean.

The Restaurant entity bean should compile without errors.

Creating the Customerreview Bean’s findByRestaurantName
Method

To create the Customerreview bean’s findByRestaurantName method:

1. Right-click the Customerreview(EJB) logical node and choose Add Finder
Method.

The Add New Finder Method dialog box is displayed.

2. Type ByRestaurantName after the “find” string in the Name field.

3. Select java.util.Collection for the Return type.

EJB QL Statement Text

Select Object(o)

From Restaurant o
64 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

4. Click the parameter’s Add button.

The Enter New Parameter dialog box is displayed.

5. Type restaurantname for the parameter name.

6. Select java.lang.String for the parameter type.

7. Click OK.

8. Accept the two default exceptions.

9. Define the EJB QL statements, as follows:

(Which numeral you use for the Where clause depends on the position of the
parameter in the finder method. In this case there’s only one parameter, so the
numeral is “1”).

10. Make sure the method is added to both Home and Local Home interfaces.

11. Click OK.

The new findByRestaurantName method is created in the Local and Local Home
interfaces of the Customerreview bean.

12. Select the Customerreview(EJB) logical node and press F9 to compile the bean.

The Customerreview entity bean should compile without errors.

Creating Business Methods for Testing Purposes
Create a business method for each entity bean that returns a value of one of its
parameters. The business method enables you to test the beans later. For Restaurant,
create a getRating method; for Customerreview, create a getReview method.

EJB QL Statement Text

Select Object(o)

From Customerreview o

Where o.restaurantname = ?1
Chapter 3 Building the EJB Tier of the DiningGuide Application 65

Creating the Restaurant Bean’s getRating Method

To create the getRating business method for the Restaurant bean:

1. Examine the Restaurant entity bean’s business methods.

a. Expand the Restaurant(EJB) logical node, and then expand its Business
Methods node.

There are no business methods yet for this entity bean.

b. Expand the Restaurant bean’s class (RestaurantBean), and then expand its
Methods node.

Every field on the bean has accessor methods, including a getRating method.

These methods are used by the container for synchronization with the data
source. To use any of these methods in development, you have to create them as
business methods.

2. Create the getRating business method.

a. Right-click the Restaurant(EJB) logical node and choose Add Business Method.

The Add New Business Method dialog box is displayed.

b. Type getRating in the Name field.

c. Select int from the list of the Return Type field.

d. Accept the default exception (RemoteException), and the designation that the
method will be created in both Remote and Local Home interfaces.

e. Click OK.

3. Examine the Restaurant entity bean’s business methods again.

Under the logical node’s Business Methods folder, the getRating method is now
accessible as a business method. When the getRating method is used, it returns the
value in the rating column of a selected restaurant record.

4. Validate the bean by right-clicking the Restaurant(EJB) logical node and choosing
Validate EJB from the contextual menu.

The Restaurant entity bean should compile without errors. Now, create a similar
method for the Customerreview bean.
66 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating the Customerreview Bean’s getReview Method

To create the getReview business method for the Customerreview bean:

1. Right-click the Customerreview(EJB) logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getReview in the Name field.

3. Select java.lang.String in the Return Type field.

Accept the default exception (RemoteException), and the designation that the
method will be created in both Remote and Local Home interfaces.

4. Click OK.

The getReview method is now accessible as a business method. When the getReview
method is called, it returns the value in the review column of a selected restaurant
record.

5. Right-click the Customerreview(EJB) logical node and choose Validate EJB from
the contextual menu.

The Customerreview entity bean should compile without errors.

6. Check that the icons in the Explorer no longer indicate that the beans are
uncompiled.
Chapter 3 Building the EJB Tier of the DiningGuide Application 67

Creating Detail Classes to View Entity
Bean Data
As discussed in “The Detail Classes” on page 49, this tutorial uses detail classes as a
mechanism for holding row data for viewing and reducing method calls to the entity
beans. These classes must have the same fields as the corresponding entity beans,
access methods for each field, and a constructor that sets each field.

Note – The source code for the completed detail classes is provided in Appendix A.

Creating the Detail Classes
First, create a RestaurantDetail class and a CustomerreviewDetail class:

1. In the Explorer, right-click the Data package and choose New → All Templates.

The New wizard is displayed.

2. In the Choose Template page of the wizard, expand the Java Beans node and select
Java Bean.

3. Click Next.

The New Object Name page of the wizard is displayed.

4. Type RestaurantDetail in the Name field and click Finish.

The new bean is displayed in the Explorer.

5. Right-click the Data package node and choose New → Java Bean.

Notice the IDE has created a shortcut to the Java Bean template.

6. Type CustomerreviewDetail in the Name field and click Finish.
68 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating the Detail Class Properties and Their
Accessor Methods
Now, duplicate the entity beans’ CMP fields in the detail classes. You do this by
adding these fields as bean properties. (If you look in the Bean Patterns nodes of an
entity bean’s bean class, you will see that the CMP fields are stored as bean
properties.) While adding the fields, you can automatically create accessor methods
for each field.

To create the detail class properties and methods:

1. Expand the RestaurantDetail node and the class RestaurantDetail node.

2. Right-click the Bean Patterns node and choose Add → Property.

The New Property Pattern dialog box is displayed.

3. Type restaurantname in the Name field.

4. Select String for the Type.

5. Select the Generate Field option.

6. Select the Generate Return Statement option.

7. Select the Generate Set Statement option.

8. Click OK.

9. Repeat Step 2 through Step 8 to create the following additional properties:

cuisine (String)
neighborhood (String)
address (String)
phone (String)
description (String)
rating (int)

10. Expand the RestaurantDetail bean’s Methods node.

Observe that accessor methods have been generated for each field.

11. Expand the CustomerreviewDetail node and the class CustomerreviewDetail
node.

12. Repeat Step 2 through Step 8 to create the following properties in the Bean
Properties node:

restaurantname (String)
customername (String)
review (String)
Chapter 3 Building the EJB Tier of the DiningGuide Application 69

Creating the Detail Class Constructors
To create constructors for the detail classes that instantiate the class fields:

1. Expand the RestaurantDetail bean, right-click the class RestaurantDetail node,
and choose Add → Constructor.

The Edit New Constructor dialog box is displayed.

2. Add the following method parameters and click OK:

java.lang.String restaurantname
java.lang.String cuisine
java.lang.String neighborhood
java.lang.String address
java.lang.String phone
java.lang.String description
int rating

3. Add the following bold code to the body of this RestaurantDetail constructor to
initialize the fields:

Tip – Remember, you can reformat code you paste or type into the Source Editor by
pressing Control-Shift F.

4. Similarly, add a constructor to the CustomerreviewDetail class with the following
parameters:

java.lang.String restaurantname
java.lang.String customername
java.lang.String review

public RestaurantDetail(java.lang.String restaurantname,
java.lang.String cuisine, java.lang.String neighborhood,
java.lang.String address, java.lang.String phone,
java.lang.String description, java.lang.Integer rating){

System.out.println("Creating new RestaurantDetail");
setRestaurantname(restaurantname);
setCuisine(cuisine);
setNeighborhood(neighborhood);
setAddress(address);
setPhone(phone);
setDescription(description);
setRating(rating);

}

70 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

5. Add the following bold code to the body of this CustomerreviewDetail
constructor to initialize the fields:

6. Right-click the Data package and choose Compile All.

The package should compile without errors.

Now, create get methods on the entity beans to retrieve instances of the detail
classes.

Creating Business Methods on the Entity Beans to
Fetch the Detail Classes
Create a method on each entity bean that returns an instance of its corresponding
detail class.

To create these methods:

1. In the Explorer, right-click the Restaurant (EJB) logical node and choose Add
Business Method.

The Add New Business Method dialog box is displayed.

2. Type getRestaurantDetail in the Name field.

3. For the return type, use the Browse button to select the RestaurantDetail class.

Tip – Be sure to select the class (), not the bean’s node.

Data.RestaurantDetail is displayed in the Return Type field.

4. Make sure the option Both Remote and Local Interfaces is enabled.

5. Accept all other default values and click OK to create the method.

6. Find the new method under the logical bean’s Business Methods node and
double-click it to display it in the Source Editor.

public CustomerreviewDetail(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review){

System.out.println("Creating new CustomerreviewDetail");
setRestaurantname(restaurantname);
setCustomername(customername);
setReview(review);

}

Chapter 3 Building the EJB Tier of the DiningGuide Application 71

7. Add the following bold code to the method’s body:

8. Select the Restaurant (EJB) logical node and press F9 to compile the code.

9. In the Explorer, right-click the Customerreview (EJB) logical node and choose Add
Business Method.

10. Type getCustomerreviewDetail in the Name field.

11. For the return type, use the Browse button to select the CustomerreviewDetail
class icon.

12. Make sure the option Both Remote and Local Interfaces is enabled.

13. Accept all other default values and click OK to create the method.

14. Open the method in the Source Editor and add the following bold code:

15. Right-click the Data package and choose Compile All.

The entire package should compile without errors.

You have finished creating the entity beans of the tutorial application and their
detail class helpers. Your next task is to test the beans.

Testing the Entity Beans
With the Sun ONE Studio 5 IDE, you can create a test client to exercise the methods
on an entity bean. The test client uses JavaServer Pages technology that allows you
to create instances of the bean and exercise the bean’s create, finder, and business
methods in a web browser.

Use this test client to exercise the Restaurant bean’s create and getRating methods.

public Data.RestaurantDetail getRestaurantDetail() {
return (new RestaurantDetail(getRestaurantname(),

getCuisine(), getNeighborhood(), getAddress(), getPhone(),
getDescription(), getRating()));
}

public Data.CustomerreviewDetail getCustomerreviewDetail() {
return (new CustomerreviewDetail(getRestaurantname(),

getCustomername(), getReview()));
}

72 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating a Test Client for the Restaurant Bean
When you create a test client, the IDE generates an EJB module, a J2EE application
module, and many supporting elements.

To create a test client for the Restaurant entity bean:

1. Right-click the Restaurant(EJB) logical node and choose Create New EJB Test
Application.

The EJB Test Application wizard is displayed.

2. Accept all default values.

The wizard’s window looks like this:

3. Click OK.

A progress monitor appears briefly and then goes away when the process is
complete. Another window is displayed informing you that the web module that
was created is also visible in the Project tab. This window should go away
automatically, also. If not, click OK to close the window.
Chapter 3 Building the EJB Tier of the DiningGuide Application 73

4. View the resulting test objects in the Explorer.

The IDE has created an EJB module named Restaurant_EJBModule, a web module
named Restaurant_WebModule (which is also mounted separately), and a J2EE
application named Restaurant_TestApp. The web module contains a number of JSP
pages that support the test client. The J2EE application includes references to the EJB
module and to the web module.

The J2EE application created by the IDE contains references to the web module and
the EJB module. You can see these objects by expanding the Restaurant_TestApp:

Web module

JSP pages

EJB module
J2EE application

Web module (mounted)
74 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Providing the Sun ONE Application Server 7
Plugin With Database Information
In order for the test client to find the database and log onto it, you must add
information about your database to the application server properties of the EJB
module.

To add the required information:

1. Expand the EJB module (Restaurant_EJBModule) in the Explorer and select the
Restaurant node (a reference to the Restaurant bean) under it, to display its
properties.

If the Properties Window is not already displayed, choose View → Properties.

2. Select the Sun ONE AS tab of the Properties window.

3. Confirm that the following properties are set as follows:

If these values are displayed, continue with Step 5.

4. If the values are not displayed, remap the Restaurant reference as follows:

a. Select the value field of the Mapped Fields value and click on the ellipsis
button.

The Map to Database wizard is displayed.

b. Click Next to view the Select Tables page.

c. Select RESTAURANT from the drop list of the Primary Table field.

If RESTAURANT is not in the list, use the Browse button to find the table within
the dgSchema schema.

d. Click Next to view the Field Mappings page.

e. If the fields are unmapped, click the Automap button.

Property Value

Mapped Fields 7 container managed fields mapped

Mapped Primary Table RESTAURANT

Mapped Schema dgSchema
Chapter 3 Building the EJB Tier of the DiningGuide Application 75

Values for mappings appear for each field, as shown:

f. Click Finish.

The values should now display as in Step 3.

5. Select the EJB module (Restaurant_EJBModule) to display its properties.

6. Select the Sun ONE AS tab of the properties window.

7. Click in the value field for the CMP Resource property to display an ellipsis
button.

8. Click the ellipsis button to display the CMP Resource property editor.

9. Type jdo/PointbasePM in the Jndi Name field.

This is the JNDI name of the JDBC Persistence Manager described in “Setting JDBC
Resources (Microsoft Windows Superusers)” on page 30 or “Setting JDBC Resources
(All Other Users)” on page 31.

10. For the Name and Password fields, type the User Name and Password for your
database.
76 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

For the PointBase sample database, these are both PBPUBLIC. The editor looks
similar to this:

11. Click OK to accept the values and close the property editor.

You have finished configuring the test application to use your database and now you
can deploy the test application.

Deploying and Executing the Restaurant Bean’s
Test Application

Note – Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database. In addition,
make sure Sun ONE Application Server 7 is running and is the default application
server of the IDE. See “Confirming Sun ONE Application Server 7 as the Default
Server” on page 29 for information.

To deploy the Restaurant test application:

● Right-click the Restaurant_TestApp J2EE application node and choose Execute
from the contextual menu.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The IDE starts the default web browser and displays the test application’s home
URL:

http://server-host:server-port-number/Restaurant_TestApp/dispatch.jsp
Chapter 3 Building the EJB Tier of the DiningGuide Application 77

Your browser displays the test client like this:

Note – If you do not see the browser, look behind the windows of the IDE. You can
verify whether the application is deployed by checking the server instance’s log file
tab on the output window. The application is successfully deployed when you see
success messages.

Using the Test Client to Test the Restaurant Bean
On the test client’s web page that is displayed, use the create method of the
Restaurant bean’s home interface to create an instance of the bean. Then test a
business method (in this case, getRating) on that instance.

To test the Restaurant bean:

1. Create an instance of the Restaurant bean by invoking the create method.

The create method is under the heading “Invoke Methods on
Data.RestaurantHome.” There are seven fields under it. The fields are not named,
but you can deduce what they are by their order, which is the same order you
created them in (see Step a under “Creating Create Methods for CMP Entity Beans”
on page 60).

Note – Double-click the Restaurant.create method in the Explorer to display it in the
Source Editor; the order of the fields is shown in the method’s definition.

List of objects created
during the test session.

Area where results of
last method invocation
are shown.

Area where you can
enter parameters and
invoke methods.

List of instances being
tested, beginning with
the home interface of
the bean being tested.
78 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Tip – If you want the parameters to appear in a different order, right-click the
Restaurant.create method node in the Explorer window and choose Customize. In
the Customizer dialog box, rearrange the parameters by selecting and clicking the
Up and Down buttons. Then redeploy the test application by right-clicking its node
in the Explorer and choosing Deploy.

Type any data you like into the fields, for example (your field order may be
different):

2. Click the Invoke button next to the create method.

The deployed test application adds the records you created to the test database. The
new Restaurant instance is listed by its restaurantname value in the upper left, and
new data objects are listed in the upper right, as shown.
Chapter 3 Building the EJB Tier of the DiningGuide Application 79

The results are shown in the Results area.

3. Test the findAll method of the Restaurant bean by clicking the Invoke button next
to it.

The results area should look like this:

Notice that three items were returned. This demonstrates that the new database
record you created in Step 2 was added to the two you created in Chapter 1.
80 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

4. Test the findByPrimaryKey method by typing in Bay Fox and clicking the Invoke
button next to the method.

The results area shows that the Bay Fox record was returned.

Now, test the entity bean’s business methods.

5. Select the instance for Joe’s House of Fish listed under Data.RestaurantHome in the
instances list (upper left).

The getRating method is now listed under the Invoke Methods area.

6. Click the Invoke button next to the getRating method.

The results of this action are listed in the Results area and should look like this:

This demonstrates that you have created a new record in the database and used the
getRating method to retrieve the value of one of its fields.

Continue testing by selecting created objects and invoking their methods. For
example, if you select one of the Data.RestaurantDetail objects, you can invoke its
getter methods to view its data, or its setter methods to write new data to the
database.

7. When you are finished testing, you can quit the browser, point it to a different
URL, or do nothing, as you wish

Checking the Additions to the Database
To verify that the Restaurant_TestApp application inserted data in the database:

1. In the IDE, select the Runtime tab of the Explorer.

2. Expand the Databases node, the PointBase connection node, and the Tables node.

The nodes for each table in the sample database are displayed.

3. Right-click the RESTAURANT table and choose View Data.

A command editor window is displayed, showing the new Restaurant record you
entered in Step 1 under “Using the Test Client to Test the Restaurant Bean” on
page 78, as shown.
Chapter 3 Building the EJB Tier of the DiningGuide Application 81

You are now ready to create the session bean.

Note – You do not need to stop the application server’s process (which is listed in
the execution window). Whenever you redeploy, the server undeploys the
application and then redeploys. When you exit the IDE, a dialog box is displayed for
terminating the application server’s instance process. However, you can manually
terminate it at any time by right-clicking the server1(hostname:host-port) node in the
execution window and choosing Terminate Process.

Creating a Test Client for the Customerreview
Bean
Create a test client for the Customerreview entity bean by repeating all the steps in
“Creating a Test Client for the Restaurant Bean” on page 73, but using values
appropriate to the Customerreview bean.

To summarize creating the test client application:

1. Select the Customerreview(EJB) logical bean and choose Create a new EJB Test
Application.

2. Accept all default values and click OK.

Add database information for the plugin, similar to the description in “Providing the
Sun ONE Application Server 7 Plugin With Database Information” on page 75, using
values appropriate to the Customerreview bean.
82 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

To summarize adding database information to the plugin:

1. Expand the EJB module (Customerreview_EJBModule), select the Customerreview
node under it, and display its properties.

2. Select the Sun ONE AS tab of the Properties window.

3. Confirm that the following three values for the appropriate properties:

If these values are displayed, continue with Step 5.

4. If the values are not displayed, remap the Customerreview bean as follows:

a. Set the Mapped Schema to Data/dgSchema.

b. Set the Mapped Primary Table to CUSTOMERREVIEW.

c. Click the ellipsis button in the value field of the Mapped Fields property.

d. In the wizard, click Next to view the Select Tables page.

e. Select CUSTOMERREVIEW from the drop list of the Primary Table field.

f. Click Next to view the Field Mappings page.

g. If the fields are unmapped, click the Automap button.

h. Click Finish.

5. Display the EJB module (Customerreview_EJBModule) properties.

6. Select the Sun ONE AS tab of the properties window.

7. Click the ellipsis button in the value field of the CMP Resource property.

8. In the CMP Resource property editor, type jdo/PointbasePM in the Jndi Name
field.

9. For the Name and Password fields, type the User Name and Password for your
database.

For the PointBase sample database, these are both PBPUBLIC.

10. Click OK to accept the values and close the property editor.

Property Value

Mapped Fields 3 container managed fields mapped

Mapped Primary Table CUSTOMERREVIEW

Mapped Schema dgSchema
Chapter 3 Building the EJB Tier of the DiningGuide Application 83

Deploying and Executing the Customerreview
Bean’s Test Application

Note – Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database. In addition,
make sure Sun ONE Application Server 7 is running and is the default application
server of the IDE. See “Confirming Sun ONE Application Server 7 as the Default
Server” on page 29 for information.

To deploy the Customerreview test application:

● Right-click the Customerreview_TestApp J2EE application node and choose
Execute from the contextual menu.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The IDE starts the default web browser and displays the test application’s home
URL:

http://server-host:server-port-
number/Customerreview_TestApp/dispatch.jsp

Note – If you do not see the browser, look behind the windows of the IDE. You can
verify whether the application is deployed by checking the server instance’s log file
tab on the output window. The application is successfully deployed when you see
success messages.

Testing the Customerreview Entity Bean
On the test client’s web page, use the create method of the Customerreview bean’s
home interface to create an instance of the bean. Then test a business method (in this
case, getCustomerreview) on that instance.

To test the Customerreview bean:

1. Create an instance of the Customerreview bean by invoking the create method.

The create method is under the heading “Invoke Methods on
Data.CustomerreviewHome.” There are three fields under it.
84 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

2. Type values in the three fields.

Type any data you like into the fields, for example (your field order may be
different):

3. Click the Invoke button next to the create method.

The deployed test application adds the records you created to the test database. The
new Restaurant instance is listed by its restaurantname value in the upper left, and
new data objects are listed in the upper right, as shown.

4. In the field for the findByRestaurantName method, type French Lemon and click
the Invoke button.

The results look like this, showing that the French Lemon record was returned:

5. In the Navigation cell (upper left), select the CustomerreviewKey instance.

6. Find the instance’s getReview method and click its Invoke button.

The results display the customer review of the instance you created in Step 2 and
Step 3, for example:
Chapter 3 Building the EJB Tier of the DiningGuide Application 85

Continue testing by selecting created objects and invoking their methods.

7. When you are finished testing, you can quit the browser, point it to a different
URL, or do nothing, as you wish.

Checking the Additions to the Database
Verify that the Customerreview_TestApp application inserted data in the database,
as you tested the Restaurant_TestApp in “Checking the Additions to the Database”
on page 81:

1. In the IDE, select the Runtime tab of the Explorer.

2. Expand the Databases node, the PointBase connection node, and the Tables node.

3. Right-click the CUSTOMERREVIEW table and choose View Data.

Your new review record should be displayed in the command editor.
86 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating a Session Bean With the EJB
Builder
Create a stateless session bean to manage the conversation between the client (the
web service you will create in Chapter 4) and the entity beans.

Note – The source code for the completed session bean is provided in Appendix A.

In version 2.0 of the EJB architecture, session beans can have local interfaces, remote
interfaces, or both. In this tutorial, the session beans’ methods will be called by the
test application (which is local to the session bean), the web services (also local), and
the client (remote). Therefore, create a session bean with both local and remote
interfaces.

1. In the Sun ONE Studio 5 Explorer, right-click the Data package and choose New
→ All Templates.

The New wizard is displayed, showing the Choose Templates page.

2. Expand the J2EE node and select Session EJB.

3. Click Next.

The Session Bean Name and Properties page is displayed.

i. Type DiningGuideManager in the Name field and select the following
options:

4. Click Next.

The Session Bean Class Files page of the wizard is displayed, listing all the
components that will be created for this session bean.

Notice that the names of the all the components are based on DiningGuideManager.

5. Click Finish.

The new DiningGuideManager session bean is displayed in the Explorer.

Option Category Option to Select

State Stateless

Transaction Type Container Managed

Component Interfaces Both Remote and Local Interfaces
Chapter 3 Building the EJB Tier of the DiningGuide Application 87

Now create the session bean’s methods.

Coding a Session Bean’s Create Method
The create method was created when you created the DiningGuideManager session
bean. You will now modify it.

Create methods of stateless session beans have no arguments, because session beans
do not maintain an ongoing state that needs to be initialized. The create method of
the DiningGuideManager session bean must first create an initial context, which it
then uses to get the required remote references.

1. Locate the DiningGuideManager’s create method within the logical bean’s Create
folder, and double-click it to display it in the Source Editor.

DiningGuideManager session bean
88 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

2. Begin coding the method with a JNDI lookup for a remote reference to the
RestaurantHome interface.

Tip – Remember, you can reformat the code you enter in the Source Editor by
pressing Control-Shift F. Also remember to remove line breaks when indicated by
the code comments.

public void ejbCreate(){
// Join the following two lines in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.ejbCreate()");

Context c = null;
Object result = null;

if (this.myRestaurantHome == null) {
try {

c = new InitialContext();
result =

c.lookup("java:comp/env/ejb/Restaurant");
myRestaurantHome =

(RestaurantHome)javax.rmi.PortableRemoteObject.narrow (result,
RestaurantHome.class);

}
catch (Exception e) {System.out.println("Error: "+

e); }
}

Chapter 3 Building the EJB Tier of the DiningGuide Application 89

3. Under the preceding code, add a similar JNDI lookup for the
CustomerreviewHome interface.

4. Now add an import statement for the javax.naming package.

Add the import statement at the top of the file. You must import javax.naming
because it contains the lookup method you just used.

5. Declare the myRestaurantHome and myCustomerreviewHome fields.

Add these declarations to the definition of the DiningGuideManagerEJB session
bean after the import statements.

6. Select the (DiningGuideManager(EJB) logical node and press F9 to compile the
bean.

Next, create the DiningGuideManager’s business methods.

Context crc = null;
Object crresult = null;

if (this.myCustomerreviewHome == null) {
try {

crc = new InitialContext();
result =

crc.lookup("java:comp/env/ejb/Customerreview");
myCustomerreviewHome =

(CustomerreviewHome)javax.rmi.PortableRemoteObject.narrow(result
, CustomerreviewHome.class);

}
catch (Exception e) {System.out.println("Error: "+

e); }
}

import javax.naming.*;

public class DiningGuideManagerBean implements
javax.ejb.SessionBean {

private javax.ejb.SessionContext Context;
private RestaurantHome myRestaurantHome;
private CustomerreviewHome myCustomerreviewHome;
90 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating Business Methods to Get the Detail Data
The DiningGuideManager bean requires a method that retrieves all restaurant data
when it receives a request from the client to see the list of restaurants. It also requires
a method to retrieve review data for a specific restaurant when the client requests a
list of customer reviews. Create the getAllRestaurants and
getCustomerreviewsByRestaurant methods to satisfy these requirements.

Creating the getAllRestaurants Method

To create the getAllRestaurants business method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getAllRestaurants in the Name field.

3. Type java.util.Vector in the Return Type field.

4. Make sure the option Both Remote and Local Interfaces is enabled.

This method should be added to both remote and local interfaces.

5. Accept all other default values and click OK.

The method shell is created in the DiningGuideManager session bean’s business
methods.
Chapter 3 Building the EJB Tier of the DiningGuide Application 91

6. Open the method in the Source Editor and add the following (bold only) code:

Note – Remember to remove line breaks when indicated by the code comments.

This code gets an instance of RestaurantDetail for each remote reference of the
Restaurant bean in the context, adds it to a vector called restaurantList, and returns
this vector.

7. Select the DiningGuideManager(EJB) logical node and press F9 to compile the
bean.

Now, create a similar method to get a list of customer reviews.

public java.util.Vector getAllRestaurants() {
// Join the following two lines in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.getAllRestaurants()");

java.util.Vector restaurantList = new java.util.Vector();
try {

java.util.Collection rl =
myRestaurantHome.findAll();

if (rl == null) { restaurantList = null; }
else {

RestaurantDetail rd;
java.util.Iterator rli = rl.iterator();
while (rli.hasNext()) {

rd =
((Restaurant)rli.next()).getRestaurantDetail();

System.out.println(rd.getRestaurantname());
System.out.println(rd.getRating());
restaurantList.addElement(rd);

}
}

}
catch (Exception e) {

// Join the following two lines in the Source Editor
System.out.println("Error in

DiningGuideManagerEJB.getAllRestaurants(): " + e);
}

// Join the following two lines in the Source Editor
System.out.println("Leaving

DiningGuideManagerEJB.getAllRestaurants()");
return restaurantList;

}

92 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating the getCustomerreviewsByRestaurant Method

To create the getCustomerreviewsByRestaurant method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getCustomerreviewsByRestaurant in the Name field.

3. Type java.util.Vector in the Return Type field.

4. Click the Add button to add a parameter with the following values:

5. Click OK to close the dialog box and create the method parameter.

6. Make sure the option Both Remote and Local Interfaces is enabled.

7. Accept all other default values and click OK again create the business method.

The method is created in the DiningGuideManager session bean.

Parameter Name Type

restaurantname java.lang.String
Chapter 3 Building the EJB Tier of the DiningGuide Application 93

8. Find the method in the Source Editor and add the following bold code:

Note – Remember to remove line breaks when indicated by the code comments.

Similar to the getAllRestaurants code, this method retrieves an instance of
CustomerreviewDetail for each remote reference of the Customerreview bean in the
context, adds it to a vector called reviewList and returns this vector.

public java.util.Vector
getCustomerreviewsByRestaurant(java.lang.String

restaurantname) {
// Join the following two lines in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");

java.util.Vector reviewList = new java.util.Vector();
try {

java.util.Collection rl =
myCustomerreviewHome.findByRestaurantName(restaurantname);

if (rl == null) { reviewList = null; }
else {

CustomerreviewDetail crd;
java.util.Iterator rli = rl.iterator();
while (rli.hasNext()) {

crd =
((Customerreview)rli.next()).getCustomerreviewDetail();

System.out.println(crd.getRestaurantname());

System.out.println(crd.getCustomername());
System.out.println(crd.getReview());
reviewList.addElement(crd);

}
}

}
catch (Exception e) {

// Join the following two lines in the Source Editor
System.out.println("Error in

DiningGuideManagerEJB.getCustomerreviewsByRestaurant(): " + e);
}

// Join the following two lines in the Source Editor
System.out.println("Leaving

DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");
return reviewList;

}

94 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

9. Select the DiningGuideManager(EJB) logical node and press F9 to compile the
bean.

Creating a Business Method to Create a Customer
Review Record
Now create a business method that calls the Customerreview entity bean’s create
method to create a new record in the database.

To create the createCustomerreview method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type createCustomerreview in the Name field.

3. Type void in the Return Type field.

4. Use the Add button to add three parameters with the following values:

5. Click OK to close the Add Parameter dialog box.

6. Make sure the option Both Remote and Local Interfaces is enabled.

7. Click OK again create the business method.

The method is created in the DiningGuideManager session bean.

Parameter Name Type

restaurantname java.lang.String

customername java.lang.String

review java.lang.String
Chapter 3 Building the EJB Tier of the DiningGuide Application 95

8. Find the method in the Source Editor and add the following bold code:

Note – Make sure you eliminate the three line breaks indicated by the comments.

9. Select the (DiningGuideManager(EJB) logical node again and press F9 to compile
the bean.

Creating Business Methods That Return Detail
Class Types
The web service you will create in Chapter 4 is a JAX-RPC implementation of the
SOAP RPC web service. SOAP (Simple Object Access Protocol) is an abstract
messaging technique that allows web services to communicate with one another
using HTTP and XML. The SOAP runtime must know of all the Java types employed
by any methods that are called by the web service in order to map them properly
into XML. Because the tutorial’s web service will call session bean methods, it needs
to know every type used by those methods.

One type the SOAP runtime can not have knowledge of is the type of objects that
make up collections. The methods that you just created (getAllRestaurants and
getCustomerreviewsByRestaurant) all return collections of the detail classes. You

public void createCustomerreview(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) {
// Join the following two lines in the Source Editor

System.out.println("Entering
DiningGuideManagerEJB.createCustomerreview()");

try {
Customerreview customerrev =

myCustomerreviewHome.create(restaurantname, customername,
review);

} catch (Exception e) {
// Join the following two lines in the Source Editor

System.out.println("Error in
DiningGuideManagerEJB.createCustomerreview(): " + e);

}
// Join the following two lines in the Source Editor

System.out.println("Leaving
DiningGuideManagerEJB.createCustomerreview()");
}

96 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

must provide knowledge of these classes to the SOAP runtime by creating, for each
detail class, a method that returns the class. The methods you will create are the
getRestaurantDetail and getCustomerreviewDetail methods.

You created methods with the same names on the entity beans (see “Creating
Business Methods on the Entity Beans to Fetch the Detail Classes” on page 71), but
the methods you create now are empty, their purpose being simply to supply the
required return type to the SOAP runtime.

For more information on Sun ONE Studio 5 web services and the SOAP runtime, see
Building Web Services in the Sun ONE Studio 5 Programming series.

Creating the getRestaurantDetail Method

To create the getRestaurantDetail method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

2. Type getRestaurantDetail in the Name field.

3. For the return type, use the Browse button to select the RestaurantDetail class.

Be sure to select the class (), not the bean’s node. Data.RestaurantDetail is
displayed in the Return Type field.

4. Make sure the option Both Remote and Local Interfaces is enabled.

5. Accept all other default values and click OK to create the business method and
close the dialog box.

The method is created in the DiningGuideManager session bean.

6. Find the method in the Source Editor and add the following bold code:

Creating the getCustomerreviewDetail Method

To create the getCustomerreviewDetail method:

1. Right-click the DiningGuideManager logical node and choose Add Business
Method.

The Add New Business Method dialog box is displayed.

public Data.RestaurantDetail getRestaurantDetail() {
return null;

}

Chapter 3 Building the EJB Tier of the DiningGuide Application 97

2. Type getCustomerreviewDetail in the Name field.

3. For the return type, use the Browse button to select the CustomerreviewDetail
class.

Data.CustomerreviewDetail is displayed in the Return Type field.

4. Make sure the option Both Remote and Local Interfaces is enabled.

5. Click OK to create the business method and close the dialog box.

The method is created in the DiningGuideManager session bean.

6. Find the method in the Source Editor and add the following bold code:

7. Right-click DiningGuideManager(EJB) and choose Validate EJB.

The DiningGuideManager session bean should validate without errors.

Adding EJB References
When you deploy a session bean, the bean’s properties must contain references to
any entity beans methods called by the session bean. Add them to the session bean
now; you can not add them after the bean has been assembled into an EJB module.

1. In the Explorer, select the DiningGuideManager(EJB) logical node.

2. Display the bean’s property sheet.

If the Properties window is not already visible, choose View → Properties.

3. Select the References tab of the property window.

4. Click the EJB References field and then click the ellipsis (…) button.

The EJB References property editor is displayed.

5. Click the Add button.

The Add EJB Reference property editor is displayed.

6. Type ejb/Restaurant in the Reference Name field.

7. For the Referenced EJB Name field, click the Browse button.

The Select an EJB browser is displayed.

public Data.CustomerreviewDetail getCustomerreviewDetail() {
return null;

}

98 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

8. Select the Restaurant (EJB) bean under the DiningGuide/Data node and click OK.

Notice that the Home and Remote interface fields are automatically filled.

9. Set the Type field to Entity.

The Add EJB Reference property editor looks like this:

10. Select the Sun ONE App Server tab.

11. Type ejb/Restaurant in the JNDI Name field and click OK.

This is the default JNDI name that was assigned to the Restaurant bean when you
created it.

12. Similarly, add a reference to the Customerreview entity bean, so that the
properties have the following values:

Tab Property Value

Standard Reference Name ejb/Customerreview

Referenced EJB Name Customerreview

Type Entity

Home Interface Data.CustomerreviewHome

Remote Interface Data.Customerreview

Sun ONE App Server JNDI Name ebj/Customerreview
Chapter 3 Building the EJB Tier of the DiningGuide Application 99

The EJB References dialog box looks like this:

13. Click OK to close the Property Editor window.

You have now completed the EJB Tier of the tutorial application and are ready to test
it. As when you tested the entity beans, the IDE’s test application facility creates a
web tier and JSP pages that can be read by a client in a browser.

Testing the Session Bean
Use the IDE’s test application facility to test the DiningGuideManager session bean.
This will test the whole EJB tier, because the session bean’s methods provide access
to methods on all of the tier’s components.

Creating a Test Client for a Session Bean
Create a test application from the DiningGuideManager bean. Then add the two
entity beans to the EJB module.

To create a test client for the session bean:

1. Right-click the DiningGuideManager logical node and choose Create New EJB
Test Application.

The EJB Test Application wizard is displayed.

2. Accept all default values and click OK.

A progress monitor appears briefly and then goes away when the process is
complete. Another window is displayed informing you that the web module that
was created is also visible in the Project tab. It should go away automatically, also. If
not, click OK to close the window.
100 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

3. View the resulting test objects in the Explorer.

The IDE has created the following objects:

■ An EJB module (DiningGuideManager_EJBModule)
■ A web module (DiningGuideManager_WebModule)
■ A J2EE application (DiningGuideManager_TestApp)

The EJB module and the web module appear as subnodes under the Data package
and also as modules contained in the J2EE application. The web module has also
been mounted separately.

Adding Entity Bean References to the EJB Module
The EJB module contains only the DiningGuideManager bean, so you must add the
two entity beans to it.

1. Right-click the DiningGuideManager_EJBModule and choose Add EJB.

The Add EJB to EJB Module browser is displayed.

2. Expand the DiningGuide filesystem and the Data package.

3. Using Control-Click, select both the Restaurant and Customerreview logical
beans.

4. Click OK.

The IDE adds references to the two entity beans to the EJB module, and to its
reference in the test applications. The DiningGuideManager_EJBModule should look
like this:

5. Choose File → Save All.
Chapter 3 Building the EJB Tier of the DiningGuide Application 101

Providing the Sun ONE Application Server 7
Plugin With Database Information
You must add database information to the Sun ONE Application Server 7 properties
of the EJB module. You performed this task with the entity bean test client in
“Providing the Sun ONE Application Server 7 Plugin With Database Information”
on page 75.

To add the required information:

1. Expand the EJB module (DiningGuideManager_EJBModule) in the Explorer and
select the Restaurant node (a reference to the Restaurant bean) under it, to display
its properties.

If the Properties Window is not already displayed, choose View → Properties.

2. Select the Sun ONE AS tab of the Properties window.

Note – If there is no Sun ONE AS tab on the Properties window, there is no instance
of the Sun ONE Application Server 7 in the Server Registry. See “Confirming Sun
ONE Application Server 7 as the Default Server” on page 29 to correct this problem.

3. Confirm that the following three values for the appropriate properties:

If these values are displayed, continue with Step 5.

4. If the values are not displayed, remap the Restaurant bean as follows:

a. Set the Mapped Schema property to Data/dgSchema.

b. Set the Mapped Primary Table property to Restaurant.

c. Click in the value field of the Mapped Fields, then click on the ellipsis button.

The Map to Database wizard is displayed.

d. Click Next to view the Select Tables page.

e. Select RESTAURANT from the drop list of the Primary Table field.

If RESTAURANT is not in the list, use the Browse button to find the table with the
dgSchema schema.

Property Value

Mapped Fields 7 container managed fields mapped

Mapped Primary Table RESTAURANT

Mapped Schema dgSchema
102 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

f. Click Next to view the Field Mappings page.

g. If the fields are unmapped, click the Automap button.

Values for mappings appear for each field.

h. Click Finish.

The values should now display as in Step 3.

5. Repeat Step 1 through Step 4 (if required) for the Customerreview reference.

6. Select the EJB module (DiningGuideManager_EJBModule) to display its
properties.

7. Select the Sun ONE AS tab of the properties window.

8. Click in the value field for the CMP Resource property, then click the ellipsis
button.

The CMP Resource property editor is displayed.

9. Type jdo/PointbasePM in the Jndi Name field.

This is the JNDI name of the JDBC Persistence Manager you defined in “Setting
JDBC Resources (Microsoft Windows Superusers)” on page 30 or “Setting JDBC
Resources (All Other Users)” on page 31.

10. For the Name and Password fields, type the User Name and Password for your
database.

For the PointBase sample database, these are both PBPUBLIC. The editor looks
similar to this:

11. Click OK to accept the values and close the property editor.

You have finished configuring the test application to use your database and now you
can deploy the test application.

12. Save your work with File → Save All.
Chapter 3 Building the EJB Tier of the DiningGuide Application 103

Deploying and Executing the Test Application
You must first undeploy the two test applications of the entity beans (if they are still
deployed) before you deploy the session bean’s test application. This is because they
use the same JNDI lookups to the Restaurant and Customerreview beans that are
used by the DiningGuideManager_TestApp application. If you fail to undeploy these
applications, the DiningGuideManager test application will deploy, but will not
load.

Note – Make sure your application server instance is running and is set as the
default application server, before you proceed with this section.

Undeploying the Entity Bean Test Applications

To undeploy any previously deployed applications.

1. Click the Explorer’s Runtime tab to display the Runtime page.

2. Expand the servername(hostname:host-number) instance node under the Sun ONE
Application Server 7 node under Installed Servers.

For example, server1(localhost:80) is the default server instance. Or your instance
might have other labels, such as MyServer(localhost:82).

3. Make sure the application server is running.

a. Right-click the application server node and choose Status.

The Application Server Instance Status dialog box is displayed. If the Status is
Running, go on to Step 4.

b. Click the Start Server button.

A command window appears, displaying progress messages. The server is started
when this window displays the string “Application onReady complete.”

c. Click Close on the instance status dialog box.

Do not close the command window, although you can minimize it if necessary.

4. Expand the Deployed Applications node.

The two entity bean test applications are displayed.
104 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

If nothing is displayed, right-click the Deployed Applications node and choose
Refresh List.

5. Right-click one of the applications and choose Undeploy.

The application is undeployed.

6. Repeat Step 5 to undeploy the other application.

Deploying the DiningGuideManager Test Application

Note – Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database.

To deploy the DiningGuideManager test application:

1. Click the Explorer’s Filesystems tab to display the Filesystems page.

Deployed applications
Chapter 3 Building the EJB Tier of the DiningGuide Application 105

2. Right-click the DiningGuideManager_TestApp J2EE application node and choose
Execute from the contextual menu.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The IDE starts the default web browser and displays the test application’s home
URL, similar to http://localhost/DiningGuideManager_TestApp/ if your
application server is installed locally; it will be different if it is installed remotely.

Using the Test Client to Test a Session Bean
On the test client’s web page, create an instance of the DiningGuideManager session
bean by exercising the create method; then test the business methods (getRating) on
that instance.

To test the DiningGuideManager bean:

1. Create an instance of the DiningGuideManager session bean by invoking the
DiningGuideManagerHome’s create method.

The Data.DiningGuideManager[x] instance appears in the instance list. Now you can
test the bean’s getter methods.

2. Select the new Data.DiningGuideManager[x] instance.

The getAllRestaurants and getCustomerreviewsByRestaurant methods are made
available.

3. Type any data you like in the createCustomerreview fields.
106 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

For example:

4. Click the Invoke button next to the createCustomerreview method.

The deployed test application adds the record you created to the database. The new
parameter values are listed in the Stored Objects section (upper right), and the
results are shown in the Results area:

5. Click the Invoke button on the getAllRestaurants method.

If you created Joe’s House of Fish in the database (in “Using the Test Client to Test
the Restaurant Bean” on page 78), a vector of size 3 appears in the list of created
objects (upper right), and the results of the method invocation should look as shown
(actual numbers may be different). If you didn’t create this record, your results
might be different.

6. Click the Invoke button on the getCustomerreviewDetail method.

The result is shown in the Results section.
Chapter 3 Building the EJB Tier of the DiningGuide Application 107

7. Type Joe’s House of Fish in the field for the getCustomerreviewsByRestaurant
method and click the Invoke button.

No CustomerreviewDetail records should be returned, because there are no
customer review comments in the database. Now try the French Lemon record.

8. Type French Lemon in the same field and invoke the method.

Two CustomerreviewDetail records should be returned:

9. Click the Invoke button on the getRestaurantDetail method.

The result is shown in the Results section.

10. When you are finished testing, stop the test client by pointing your web browser
at another URL or by exiting the browser (or do nothing).

Note – You do not need to stop the application server’s process (which is listed in
the execution window). Whenever you redeploy, the server undeploys the
application and then redeploys. When you exit the IDE, a dialog box is displayed for
terminating the application server’s instance process. However, you can manually
terminate it at any time by right-clicking the server1(hostname:host-port) node in
the execution window and choosing Terminate Process.
108 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Checking the Additions to the Database
To verify that the DiningGuideManager_TestApp application inserted data in the
database, repeat the procedures described in “Checking the Additions to the
Database” on page 81 and “Checking the Additions to the Database” on page 86.

You are now ready to create the web service.

Comments on Creating a Client
Congratulations, you have successfully completed the EJB tier of the DiningGuide
application. You are ready to go on to Chapter 4, to use the Sun ONE Studio 5 IDE’s
Web Services module to create web services for the application, and then on to
Chapter 5 to install the provided Swing classes for your client.

You may, however, wish to create your own web services and client, in which case,
the Sun ONE Studio 5 test application can offer some guidelines.

Web services that access a session bean like the DiningGuideManager bean must
include a servlet and JSP pages with lookup methods for obtaining the Home
interfaces and Home objects of the entity beans in the EJB tier. The web module
created by the test application facility offers examples of the required code.

Lookup method examples are found in the EjbInvoker class under the web module.
Specifically, look for this class under the
WEB-INF/Classes/com/sun/forte4j/j2ee/ejbtest/webtest directory.
Chapter 3 Building the EJB Tier of the DiningGuide Application 109

For example, the following methods offer good example lookup code:

■ EjbInvoker.getHomeObject
■ EjbInvoker.getHomeInterface
■ EjbInvoker.resolveEjb

Lookup method examples
110 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

CHAPTER 4

Creating the DiningGuide
Application’s Web Service

This chapter describes how to use the Sun ONE Studio 5 IDE to create web services
for the DiningGuide application. This chapter covers the following topics:

■ “Overview of the Tutorial’s Web Service,” which follows
■ “Creating the Tutorial’s Web Service” on page 113
■ “Testing the Web Service” on page 117
■ “Making Your Web Service Available to Other Developers” on page 129

For a complete discussion of Sun ONE Studio 5 web service features, see Building
Web Services from the Sun ONE Studio 5 Programming series. This book is available
from the Sun ONE Studio 5 portal’s Documentation page at
http://forte.sun.com/ffj/documentation/index.html. For information
on specific features, see the Sun ONE Studio 5 online help.

Overview of the Tutorial’s Web Service
In this chapter, you will create the DiningGuide application’s web service. As part of
this procedure you will explicitly create a number of components and generate some
others.

You will explicitly create:

■ A logical web service, the DGWebService web service

■ A J2EE application, which references both the session bean’s EJB module and the
web service

You will generate:

■ Runtime classes, which are EJB components for implementing the web service
■ A test client
■ Test client files
111

http://forte.sun.com/ffj/documentation/index.html

The Web Service
For more complete information about web services and how to create and program
them, see Building Web Services. See also the Sun ONE Studio 5 online help for
specific web service topics and procedures.

In this tutorial, you develop your web service’s functionality by creating references
in the web service to the methods you want clients to be able to access.

The Runtime Classes
After creating your web service and its method references, you generate its runtime
classes. You do not work directly on the runtime classes, but you will see them
generated in the package containing the web service.

The Client Files
When you create a client and generate its files, supporting client pages are created.
You will use these client pages for testing the web service. You can also use them as
a starting point or a guide for developing a full-featured referenced method. These
client files include a JSP page for each reference method, a JSP page to display errors
for the web service, and an HTML welcome page to organize the method JSP pages
for presentation in a web browser.

The welcome page contains one HTML form for each of the JSP pages generated for
the referenced methods. If a method requires parameters, the HTML form contains
the appropriate input fields. You test the methods by inputting data for each
parameter, if required, and pressing the method’s Invoke button. The following
actions then occur:

1. The JSP page passes the request to the SOAP client file.

2. The SOAP client file passes the request to the JAX-RPC runtime system on the
application server.

A SOAP request is an XML wrapper that contains a method call on the web
service and input data in a serialized form.

3. The JAX-RPC runtime system on the application server transforms the SOAP
requests into a method call on the appropriate method referenced by the
DiningGuide web service.

4. The method call is passed to the appropriate business method in the EJB tier.

5. The processed response is passed back up the chain to the SOAP client file.
112 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

6. The SOAP client file passes the response to the JSP page, which displays the
response on a web page.

Creating the Tutorial’s Web Service
Creating the tutorial’s web service requires two steps:

1. Creating the logical web service for the application.

Use the IDE’s Web Service wizard to create the logical web service and specify the
methods you want to reference. These are the five business methods you created
for the DiningGuideManager session bean.

2. Generating the web services runtime classes.

This task generates the supporting EJB components that are used for testing and
implementing the web service.

Creating the Logical Web Service
Use the New Web Service wizard to create the logical web service. The wizard offers
a choice of architectures: multitier or web-centric. The DiningGuide application’s
web service calls methods on the EJB tier components, so choose the multitier
architecture.

The wizard also prompts you to select the methods the web service will call, so it
can build references to these methods. Select the five business methods of the EJB
tier’s session bean.

To create the tutorial’s logical web service:

1. In the Explorer, right-click the mounted DiningGuide Filesystem and choose
New → Java Package.

The New Package dialog box is displayed.

2. Type WebService for the name and click Finish.

The new WebService package appears under the DiningGuide directory.

3. Right-click the WebService package and choose New → All Templates.

The New wizard is displayed, showing the Choose Template page.

4. Expand the Web Services node, select Web Service and click Next.

The New wizard displays the Web Service page.
Chapter 4 Creating the DiningGuide Application’s Web Service 113

5. Type DGWebService in the Name field, select the following options:

6. Click Next.

The Select Methods page of the New wizard is displayed.

7. Expand the Data, DiningGuideManager(EJB), and Business Methods nodes.

8. Use Shift-Click to select all the DiningGuideManager’s business methods:

The Methods page looks like this:

9. Click Finish.

The new DGWebService web service (the icon with a blue sphere) appears under
the WebService package in the Explorer. If you expand this node, the Explorer looks
like this:

Option Category Option to Select

Create From Java Methods

Architecture Multitier
114 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Generating the Web Service’s Runtime Classes
Before you can assemble the web service as a J2EE application and deploy it for
testing, you must generate the web service’s runtime classes. When the architecture
is multitier, the IDE generates many classes to implement the web service, three of
which are for a generated EJB component.

Note – Make sure your admin server is running and your application server is set
as the default server.

To generate a web service’s runtime classes:

1. Right-click the DGWebService node and choose Generate Web Service Files.

When the operation is complete, the word “Finished” appears in the IDE’s output
window. Runtime classes that are EJB components for implementing the SOAP RPC
web service appear in the Explorer:

New web service

Included methods
Chapter 4 Creating the DiningGuide Application’s Web Service 115

2. Display the DGWebService node’s properties.

Either view them in the Properties window beneath the Explorer, or right-click the
node and choose Properties from the contextual menu.

3. Verify that the value of the SOAP RPC URL property reflects the hostname and
portnumber of your application server.

For example, for an application server host name of “tech5” and a port number of
“4855,” the URL should be as follows:

http://tech5:4855/DGWebService/DGWebService

Web service
components
116 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Testing the Web Service
Testing your web service requires the following tasks:

1. Creating a test client that includes:

■ A test client
■ A J2EE application that references both the EJB module the web service

2. Deploying the test application.

3. Using the test application to test the web service.

The Web Services test application generates a JSP page for each XML operation in
the web service, plus a welcome page to organize them for viewing in a browser.
When you execute the test client, you exercise the XML operations from the welcome
page.

Creating a Test Client and Test Application
To test your web service, create a test client and a J2EE application. Add the EJB
modules and the web service module to the J2EE application.

Tip – When you create the test client, make it the default test client for the web
service. Then when you deploy the J2EE application, the test client is deployed as
well.

To create and deploy a client application for your web service:

1. In the Explorer, right-click the DGWebService node () and choose Create New
Web Service Test Client.

The Create a New Web Service Test Client dialog box is displayed.

The option to make this client the default test client for the web service is selected by
default.
Chapter 4 Creating the DiningGuide Application’s Web Service 117

2. Accept all the defaults and click OK.

A new client node appears in the Explorer (). Now create a new J2EE application
for the web service.

3. Right-click the WebService package and choose New → All Templates.

4. In the New wizard, expand the J2EE node, select Application and click Next.

5. Type DGApp in the Name field and click Finish.

The new J2EE application node () appears under the WebService package.

Adding the Web Service to the J2EE Application
Now add the web service to the application:

1. Right-click the DGApp node and choose Add Module.

The Add Module to Application dialog box appears.

2. In the dialog box, expand the DiningGuide filesystem and both the Data and
WebService packages.

3. Using Control-Click, select both the DiningGuideManager_EJBModule and the
DGWebService nodes.
118 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

The dialog box looks like this:

4. Click OK to accept the selection and close the dialog box.

5. In the Explorer, expand the DGApp J2EE application.

Both the DGWebService’s WAR and EJB JAR files have been added to the
application, as well as the DiningGuideManager_EJBModule:

Deploying the Test Application
You must first undeploy the any deployed test applications before you deploy the
session bean’s test application, for the same reason given in “Deploying and
Executing the Test Application” on page 104. (Because they use the same JNDI
lookups to the Restaurant and Customerreview beans that will be used by the web
service test application.)
Chapter 4 Creating the DiningGuide Application’s Web Service 119

For the procedure for undeploying an application, see “Undeploying the Entity Bean
Test Applications” on page 104.

Note – Make sure the PointBase server is running before you deploy the test
application, or any other J2EE application that accesses the database. In addition,
make sure your Sun ONE Application Server 7 instance is running and is the default
application server of the IDE. See “Confirming Sun ONE Application Server 7 as the
Default Server” on page 29 for information.

To deploy the DGApp application:

1. Undeploy any deployed DiningGuide test applications.

Refer to “Undeploying the Entity Bean Test Applications” on page 104 for this
procedure, if it is necessary. Make sure you also restart the application server.

2. In the Explorer, right-click the DGApp node () and choose Deploy.

A progress monitor window shows the deployment process running.

3. Verify that the application is deployed.

A Progress Monitor window shows the progress of the deployment process. The
server instance’s log file tab on the output window displays progress messages. The
application is successfully deployed when you see success messages.

The Execution View window of the Explorer displays a servername(server-
hostname:server-port-number) node.

4. Expand the DGWebServiceClient$Documents node under the WebService
package.

The following supporting items have been created:

■ A JSP page for each method that formats the display using tag libraries
■ A JSP page for each method for displaying the returned SOAP message
■ A set of JSP pages that compose a welcome page
■ A JSP error page

See Building Web Services for more information about these pages.
120 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

The Explorer looks like this:

These files are also referenced under the Generated Documents node under the
DGWebServiceClient node.

Using the Test Application to Test the Web Service
For an explanation of the details of how SOAP requests and responses are passed
between the client and the web service, see Building Web Services, available from the
Sun ONE Studio 5 portal’s Documentation page at
http://forte.sun.com/ffj/documentation/index.html.

Note – Make sure the admin server and the PointBase server are running. Make
sure your application server is the default application server.

To test the web service:

1. In the Explorer, right-click the DGWebServiceClient node () and choose
Deploy.

The DGWebServiceClient is deployed. The node is visible under your application
server instance’s Deployed Web Modules node in the Runtime pane of the Explorer.

Generated client pages
Chapter 4 Creating the DiningGuide Application’s Web Service 121

http://forte.sun.com/ffj/documentation/index.html

2. Right-click the same node and choose Execute.

The IDE deploys the test client, launches the default web browser, and displays the
client’s generated welcome page (DGWebServiceClient_SOAP.html):

This page lets you test whether the operations work as expected.

3. Test the getCustomerreviewsByRestaurant method by typing French Lemon in the
text field and clicking the Invoke button.
122 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

A SOAP message is created and sent to the application server. The DGApp web
service turns the SOAP message into a method invocation of the
DiningGuideManager.getCustomerreviewsByRestaurant method. This method
returns a collection to the generated JSP page,
getCustomerreviewsByRestaurant_TAGLIB.jsp, which displays the returned data in
a formatted table, as shown.

The data includes all the records entered for the French Lemon restaurant.Verify the
data by starting the Pointbase console and running the following SQL statement:

select * from CustomerReview;

The results show what CustomerReview records you have entered.

4. To view the SOAP message, click the View SOAP Request/Response link.

This is displays the returned data as an XML-wrapped SOAP message.
Chapter 4 Creating the DiningGuide Application’s Web Service 123

5. Use the Back button on your browser to return to the welcome page.

6. Test the createCustomerreview operation by typing French Lemon in the
restaurantname field, and whatever you want in the other two fields.
124 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

For example:

7. Click the Invoke button.

This method takes a complex Java object as an input parameter. The generated JSP
page, createCustomerreview_SOAP.jsp, prompts for the three inputs. These are then
converted into a Customerreview object and passed as a SOAP message. This
message is sent to the application server, where it is turned back into a Java method
call and sent to the DiningGuideManagerEJB component. The result is displayed in
the browser:
Chapter 4 Creating the DiningGuide Application’s Web Service 125

8. Click the View SOAP Request/Response link.
126 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

The SOAP request and response looks like this.

9. Use the Back button on your browser to return to the welcome page.

10. Test the getAllRestaurants operation by clicking its Invoke button on the welcome
page.

This method does not require an input parameter. It returns a collection of restaurant
data, which the getAllRestaurants_SOAP.jsp page displays as XML:
Chapter 4 Creating the DiningGuide Application’s Web Service 127

Notice the Restaurant record you entered when you tested the Restaurant entity
bean (see “Using the Test Client to Test the Restaurant Bean” on page 78) is the last
record on the page.

You have successfully created a web service for the DiningGuide tutorial. In
Chapter 5, you will use a provided Swing client to run the DiningGuide application.
128 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Making Your Web Service Available to
Other Developers
You have learned a convenient method for testing web services if you are a web
services developer. However, other development groups in your organization,
particularly the client developers, need to test their work against your web service,
as well. You can easily provide them with your web service’s WSDL file. From this
file, they can generate a client files from which they can build the application’s
client. They can then test the client against your web service, if you provide them
with the URL of your deployed web service (and make sure the web server is
running).

To make web services available to other developers involves these tasks:

1. The web services developer:

■ Generates a WSDL file from the web service
■ Makes the WSDL file available to the target user
■ Provides the target user with the URL of the deployed web service

2. The target user:

■ Adds the WSDL file to a mounted filesystem in the Explorer
■ Creates a web service client from this WSDL
■ Generates client files
■ Builds the client around the client files
■ Specifies the web service URL as the SOAP RPC URL property of the client

Generating the client files generates the JSP pages required for developing a real
client for the application.

Generating the WSDL File
The first step in sharing access to the application’s web service is to generate a
WSDL file for the web service. This is performed by the developers of the web
service.
Chapter 4 Creating the DiningGuide Application’s Web Service 129

To generate a WSDL file for the web service:

1. In the Explorer, right-click the DGWebService node () and choose Generate
WSDL.

A WSDL file (the node with a green sphere) named DGWebService is created
under the WebService package.

You can find this file, named DGWebService.wsdl, in the
DiningGuide/WebService directory on your operating system’s file system.

2. Make this file available to other development teams.

You can attach the file to an email message or post it on a web site.

Generating Client Files From the WSDL File
The second part of sharing access to the application’s web service is to generate all
the web service supporting files from the WSDL file. This is performed by the
developers of the client.

To generate the web service files and client files from the WSDL file:

1. On your operating system’s file system, create a directory and place the
DGWebService.wsdl file in it.

For example, create the c:\wsdlHolder directory and paste the file in it.

2. In the Sun ONE Studio 5 Explorer, mount this directory.

3. Right-click the new directory and choose New → Java Package.

4. Type MyClientPackage in the Name field and click Finish.

MyClientPackage is displayed in the mounted directory.

5. In the Explorer, right-click MyClientPackage and choose New → All Templates.

6. In the New wizard, expand the Web Services node, select Web Service Client and
click Next.

The Web Service Client page is displayed.

7. Type NewClient in the Name field.

8. Make sure the package is the MyClientPackage package.

9. For the Source, select the Local WSDL File option and click Next.

The Select Local WSDL File page of the New wizard is displayed.
130 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

10. Expand the directory you created in Step 1, select the DGWebService WSDL file,
and click Finish.

A new client node () appears in the Explorer.

11. Right-click the NewClient client node and choose Generate Client Files.

A Generated Documents node is generated in the Explorer. The expanded Generated
Documents node reveals the JSP pages and welcome page required for the client, as
shown:

You can now use the client to test the web service, as described in “Using the Test
Application to Test the Web Service” on page 121.

When your application is finished, you will probably publish your web service to a
UDDI registry, to make it available to developers outside your immediate locale. Sun
ONE Studio 5 provides a single-user internal UDDI registry to test this process, and
the StockApp example, available from the Sun ONE Studio 5 portal’s Examples and
Tutorials page at
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html
illustrates how to use this feature. For information on publishing to an external
UDDI registry, see Building Web Services.

Generated support files
Chapter 4 Creating the DiningGuide Application’s Web Service 131

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

132 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

CHAPTER 5

Creating a Client for the Tutorial
Application

This chapter shows you how to run the DiningGuide application using a provided
Swing client that communicates with the web service you created in Chapter 4.

The provided client contains two Swing classes, RestaurantTable and
CustomerReviewTable. You add these classes to the WebService package, then
execute the RestaurantTable class to run the application.

This client is very primitive, provided only to illustrate how to access the methods of
the client you have generated for the web service.

This chapter covers these topics:

■ “Creating the Client With the Provided Code,” which follows
■ “Running the Tutorial Application” on page 134
■ “Examining the Client Code” on page 137

Creating the Client With the Provided
Code
The client classes are provided as Java class files in the DiningGuide.zip file,
which you can download from the Developer Resources portal.

To copy the two provided Java client classes into the DiningGuide application:

1. In the IDE, create the Client package within the DiningGuide folder.

a. Right-click the DiningGuide folder and choose New → Java Package.

b. In the New wizard, type Client in the Name field and click Finish.

2. Unzip the DiningGuide.zip file from the Developer Resources portal.
133

a. Download the DiningGuide.zip file from the Developer Resources portal.

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

b. Unzip the file to a local directory, for example, the /MyZipFiles directory.

3. Using a file system command, copy the two client files from the DiningGuide
source files to the Client package, as follows:

■ On Microsoft Windows systems, copy the files and paste them into the new
Client folder.

■ On Solaris or Linux environments, type a command like this:

4. In the IDE’s Explorer, expand the DiningGuide/Client package and verify that the
two new classes are there.

Note – When you create a Swing client in the IDE’s Form Editor, the IDE generates
a .form file and a .java file. The .form file enables you to edit the GUI
components in the Form Editor. However, the .form files have not been provided
for the RestaurantTable and CustomerReviewTable classes, which prevents you from
modifying the GUI components in the Form Editor.

Running the Tutorial Application

Note – Make sure the PointBase server is running before you run the tutorial
application. In addition, make sure Sun ONE Application Server 7 is running and is
the default application server of the IDE. See “Confirming Sun ONE Application
Server 7 as the Default Server” on page 29 for information.

Run the DiningGuide application by executing the RestaurantTable class, as follows:

1. In the IDE, click the Runtime tab of the Explorer.

2. Expand the Server Registry, the Installed Servers, the Sun ONE Application
Server 7, and its subnodes.

3. Right-click the Deployed Applications subnode of the server instance.

$ cp /MyZipFiles/DiningGuide/Client/*.java /DiningGuide/Client
134 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

4. Make sure the DiningGuideApp application is still deployed.

If it is still deployed, a DiningGuideApp node is displayed under the Deployed
Applications subnode.

5. If it is not still deployed, deploy it, as described in “Deploying the Test
Application” on page 119.

6. In the Filesystems tab of the Explorer, right-click the RestaurantTable node and
choose Execute.

The IDE switches to Runtime mode. A Restaurant node appears in the execution
window. Then, the RestaurantTable window is displayed, as shown:

7. Select any restaurant in the table and Click the View Customer Comments button.

For example, select the French Lemon restaurant. The CustomerReviewTable
window is displayed. If any comments exist in the database for this restaurant, they
are displayed, as shown. Otherwise, an empty table is displayed.

8. Type a something in the Customer Name field and in the Review field and click
the Submit Customer Review button.
Chapter 5 Creating a Client for the Tutorial Application 135

For example:

The record is entered in the database and is displayed on the same
CustomerReviewTable window, as shown:

9. Play around with the features, as described in “User’s View of the Tutorial
Application” on page 37.

10. Quit the application by closing any window.

After you quit the application, the execution window shows that the Sun ONE
Application Server 7 process is still running. You need not stop the application
server. If you redeploy any of the tutorial’s J2EE applications or rerun the test clients
(but not this Swing client), the server is automatically restarted.

When you quit the IDE, a dialog box is displayed for terminating any process that is
still running (including the application server or the web server). Select each
running process and click the End Tasks button. You can also manually terminate
any process at any time while the IDE is running by right-clicking its node in the
execution window and choosing Terminate Process.
136 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Examining the Client Code
The two client classes you have installed in the DiningGuide application are
composed of Swing components and actions that were created in the Form Editor,
and several methods that were created in the Source Editor. The methods added in
the Source Editor include the crucial task of instantiating the client so that its
methods become available to the client.

To help you understand how the Swing client interacts with the web service, the
next few sections discuss the main actions of the client, namely:

■ “Displaying Restaurant Data” on page 137
■ “Displaying Customer Review Data for a Selected Restaurant” on page 138
■ “Creating a New Customer Review Record” on page 141

Displaying Restaurant Data
Displaying restaurant data is accomplished by the RestaurantTable class’s methods,
which instantiate the client and call its getAllRestaurants method, as follows:

1. RestaurantTable.getAllRestaurants method instantiates the client, calls the client’s
getAllRestaurants method to fetch the restaurant data, and returns the fetched
restaurant data as a vector.

private Vector getAllRestaurants() {
Vector restList = new Vector();
try {

WebService.DGWebServiceClientGenClient.DGWebService service1 =
new

WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface port =
service1.getDGWebServiceServantInterfacePort();

restList = (java.util.Vector)port.getAllRestaurants();
}
catch (Exception ex) {

System.err.println("Caught an exception.");
ex.printStackTrace();

}
return restList;

}

Chapter 5 Creating a Client for the Tutorial Application 137

2. The RestaurantTable constructor puts the returned restaurant data into the
restaurantList variable and calls RestaurantTable.putDataToTable.

3. The RestaurantTable.putDataToTable method iterates through the vector and
populates the table.

4. The RestaurantTable.Main method displays the table as a Swing jTable
component.

Displaying Customer Review Data for a Selected
Restaurant
Displaying customer review data begins when the RestaurantTable’s button
component’s action instantiates a CustomerReviewTable. The
CustomerReviewTable’s methods fetch the customer review data by means of the
client’s methods, and populate the table. The RestaurantTable’s button component’s
action then displays it, as follows:

public RestaurantTable() {
initComponents();
restaurantList=getAllRestaurants();
putDataToTable();

}

private void putDataToTable() {
Iterator j=restaurantList.iterator();
while (j.hasNext()) {

RestaurantDetail ci = (RestaurantDetail)j.next();
String strRating = null;
String[] str ={ci.getRestaurantname(),

ci.getCuisine(), ci.getNeighborhood(), ci.getAddress(),
ci.getPhone(), ci.getDescription(),
strRating.valueOf(ci.getRating()),

};
TableModel.addRow(str);

}
}

public static void main(String args[]) {
new RestaurantTable().show();

}

138 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

1. When the RestaurantTable’s button is pressed to retrieve customer review data,
the RestaurantTable.jButton1ActionPerformed method instantiates a new
CustomerReviewTable object, calls its putDataToTable method, and passes it the
data of the selected column.

2. The CustomerReviewTable.putDataToTable method calls the
CustomerReviewTable.getCustomerReviewByName method, passing it the
selected restaurant name, assigning the returned vector to the customerList
variable.

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt)
{

int r =jTable1.getSelectedRow();
int c = jTable1.getSelectedColumnCount();
String i =(String)TableModel.getValueAt(r,0);
CustomerReviewTable crt = new CustomerReviewTable();
crt.putDataToTable(i);
crt.show();
System.out.println(i);

}

public void putDataToTable(java.lang.String restaurantname) {
RestaurantName = restaurantname;
java.util.Vector customerList =

getCustomerReviewByName(restaurantname);
Iterator j=customerList.iterator();
while (j.hasNext()) {

CustomerreviewDetail ci =
(CustomerreviewDetail)j.next();

String[] str = {ci.getCustomername(),ci.getReview()
};
TableModel.addRow(str);

}
}

Chapter 5 Creating a Client for the Tutorial Application 139

3. The CustomerReviewTable.getCustomerReviewByName method instantiates a
client (if required) and calls its getCustomerreviewsByRestaurant method,
passing it the name of the selected restaurant.

4. The review data is passed up to the CustomerReviewTable.putDataToTable
method, which iterates through it and populates the table.

private Vector getCustomerReviewByName(java.lang.String restaurantname) {
Vector custList = new Vector();
try {

WebService.DGWebServiceClientGenClient.DGWebService service2 =
new

WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface port =
service2.getDGWebServiceServantInterfacePort();

custList =
(java.util.Vector)port.getCustomerreviewsByRestaurant(restaurantname);}

catch (Exception ex) {
System.err.println("Caught an exception.");
ex.printStackTrace();

}
return custList;

}

public void putDataToTable(java.lang.String restaurantname) {
RestaurantName = restaurantname;
java.util.Vector customerList =

getCustomerReviewByName(restaurantname);
Iterator j=customerList.iterator();
while (j.hasNext()) {

CustomerreviewDetail ci =
(CustomerreviewDetail)j.next();

String[] str = {ci.getCustomername(),ci.getReview()
};
TableModel.addRow(str);

}
}

140 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

5. The RestaurantTable.jButton1ActionPerformed method then displays the data.

Creating a New Customer Review Record
When the user types a name and review comments on the Customer Review
window and clicks the Submit Customer Review button, the
CustomerReviewTable’s jButton1ActionPerformed method creates the review record
in the database by means of the client’s methods, then refreshes the Customer
Review window, as follows:

private void jButton1ActionPerformed(java.awt.event.ActionEvent
evt)
{

int r =jTable1.getSelectedRow();
int c = jTable1.getSelectedColumnCount();
String i =(String)TableModel.getValueAt(r,0);
CustomerReviewTable crt = new CustomerReviewTable();
crt.putDataToTable(i);
crt.show();
System.out.println(i);

}

Chapter 5 Creating a Client for the Tutorial Application 141

1. When the CustomerReviewTable’s button is pressed to submit a customer review
record, the CustomerReviewTable.jButton1ActionPerformed method instantiates a
new client (if required) and calls its createCustomerreview method, passing it the
restaurant name, the customer name, and the review data.

2. This same method (jButton1ActionPerformed) calls the
CustomerReviewTable.refreshView method.

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
try {

WebService.DGWebServiceClientGenClient.DGWebService service1 =
new

WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface port =
service1.getDGWebServiceServantInterfacePort();

port.createCustomerreview(RestaurantName,
customerNameField.getText(),reviewField.getText());

}
catch (Exception ex) {

System.err.println("Caught an exception.");
ex.printStackTrace();

}
refreshView();

 }

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {
try {

WebService.DGWebServiceClientGenClient.DGWebService service1 =
new

WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface port =
service1.getDGWebServiceServantInterfacePort();

port.createCustomerreview(RestaurantName,
customerNameField.getText(),reviewField.getText());

}
catch (Exception ex) {

System.err.println("Caught an exception.");
ex.printStackTrace();

}
refreshView();

 }
142 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

3. The CustomerReviewTable.refreshView method calls the putDataToTable method,
passing it the restaurant name.

4. The CustomerReviewTable.putDataToTable method populates the table.

void refreshView() {
try{

while(TableModel.getRowCount()>0) {
TableModel.removeRow(0);

}
putDataToTable(RestaurantName);
repaint();

}
catch (Exception ex) {

ex.printStackTrace();
}

}

public void putDataToTable(java.lang.String restaurantname) {
RestaurantName = restaurantname;
java.util.Vector customerList =

getCustomerReviewByName(restaurantname);
Iterator j=customerList.iterator();
while (j.hasNext()) {

CustomerreviewDetail ci =
(CustomerreviewDetail)j.next();

String[] str = {ci.getCustomername(),ci.getReview()
};
TableModel.addRow(str);

}
}

Chapter 5 Creating a Client for the Tutorial Application 143

5. Then the CustomerReviewTable.refreshView method repaints the window,
showing the new data.

void refreshView() {
try{

while(TableModel.getRowCount()>0) {
TableModel.removeRow(0);

}
putDataToTable(RestaurantName);
repaint();

}
catch (Exception ex) {

ex.printStackTrace();
}

}

144 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

APPENDIX A

DiningGuide Source Files

This appendix displays the code for the following DiningGuide components:

■ EJB tier components:

■ “RestaurantBean.java Source” on page 146
■ “RestaurantDetail.java Source” on page 149
■ “CustomerreviewBean.java Source” on page 154
■ “CustomerreviewDetail.java Source” on page 157
■ “DiningGuideManagerBean.java Source” on page 160

■ Client components:

■ “RestaurantTable.java Source” on page 164
■ “CustomerReviewTable.java Source” on page 168

This code is also available as source files within the DiningGuide application zip file,
which you can download from the Forte for Java Developer Resources portal at:

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Tip – If you use these files to cut and paste code into the Sun ONE Studio 5 Source
Editor, all formatting is lost. To automatically reformat the code in the Source Editor,
press Control-Shift F after you paste the code.

Note – Wrapped lines are copied from PDF as separate lines, causing the compiler
to interpret certain types of statements as nonesense. These lines are preceeded in
this code by the comment, “Join the following two lines in the Source Editor.” Also,
the Source Editor will mark such lines as coding errors, so they are easy to find and
correct.

Solaris and Linux users are advised not to copy these files, because the Source Editor
does not read the carriage returns at the ends of lines. To view source files, unzip the
DiningGuide source zip file and then mount the unzipped directory in the IDE.
145

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

RestaurantBean.java Source
package Data;

import javax.ejb.*;

public abstract class RestaurantBean implements javax.ejb.EntityBean {

 private javax.ejb.EntityContext context;

 /**

 * @see javax.ejb.EntityBean#setEntityContext(javax.ejb.EntityContext)

 */

 public void setEntityContext(javax.ejb.EntityContext aContext) {

 context=aContext;

 }

 /**

 * @see javax.ejb.EntityBean#ejbActivate()

 */

 public void ejbActivate() {

 }

 /**

 * @see javax.ejb.EntityBean#ejbPassivate()

 */

 public void ejbPassivate() {

 }

 /**

 * @see javax.ejb.EntityBean#ejbRemove()

 */

 public void ejbRemove() {

 }
146 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 /**

 * @see javax.ejb.EntityBean#unsetEntityContext()

 */

 public void unsetEntityContext() {

 context=null;

 }

 /**

 * @see javax.ejb.EntityBean#ejbLoad()

 */

 public void ejbLoad() {

 }

 /**

 * @see javax.ejb.EntityBean#ejbStore()

 */

 public void ejbStore() {

 }

 public abstract java.lang.String getRestaurantname();

 public abstract void setRestaurantname(java.lang.String restaurantname);

 public abstract java.lang.String getCuisine();

 public abstract void setCuisine(java.lang.String cuisine);

 public abstract java.lang.String getNeighborhood();

 public abstract void setNeighborhood(java.lang.String neighborhood);

 public abstract java.lang.String getAddress();

 public abstract void setAddress(java.lang.String address);

 public abstract java.lang.String getPhone();

 public abstract void setPhone(java.lang.String phone);

 public abstract java.lang.String getDescription();

 public abstract void setDescription(java.lang.String description);

 public abstract int getRating();

 public abstract void setRating(int rating);
Appendix A DiningGuide Source Files 147

 public java.lang.String ejbCreate(java.lang.String restaurantname,
java.lang.String cuisine, java.lang.String neighborhood, java.lang.String
address, java.lang.String phone, java.lang.String description, int rating)
throws javax.ejb.CreateException {

 if (restaurantname == null) {

 // Join the following two lines in the Source Editor

 throw new javax.ejb.CreateException("The restaurant name is
required.");

 }

 setRestaurantname(restaurantname);

 setCuisine(cuisine);

 setNeighborhood(neighborhood);

 setAddress(address);

 setPhone(phone);

 setDescription(description);

 setRating(rating);

 return null;

 }

public void ejbPostCreate(java.lang.String restaurantname, java.lang.String
cuisine, java.lang.String neighborhood, java.lang.String address,
java.lang.String phone, java.lang.String description, int rating) throws
javax.ejb.CreateException {

 }

 public Data.RestaurantDetail getRestaurantDetail() {

 return (new RestaurantDetail(getRestaurantname(),

 getCuisine(), getNeighborhood(), getAddress(), getPhone(),

 getDescription(), getRating()));

 }

}

148 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

RestaurantDetail.java Source
/*

 * RestaurantDetail.java

 *

 * Created on March 27, 2003, 3:35 PM

 */

package Data;

import java.beans.*;

public class RestaurantDetail extends Object implements java.io.Serializable {

 private static final String PROP_SAMPLE_PROPERTY = "SampleProperty";

 private String sampleProperty;

 private PropertyChangeSupport propertySupport;

 /** Holds value of property restaurantname. */

 private String restaurantname;

 /** Holds value of property cuisine. */

 private String cuisine;

 /** Holds value of property neighborhood. */

 private String neighborhood;

 /** Holds value of property address. */

 private String address;

 /** Holds value of property phone. */

 private String phone;

 /** Holds value of property description. */

 private String description;

 /** Holds value of property rating. */
Appendix A DiningGuide Source Files 149

 private int rating;

 /** Creates new RestaurantDetail */

 public RestaurantDetail() {

 propertySupport = new PropertyChangeSupport(this);

 }

 public RestaurantDetail(java.lang.String restaurantname, java.lang.String
cuisine, java.lang.String neighborhood, java.lang.String address,
java.lang.String phone, java.lang.String description, int rating) {

 System.out.println("Creating new RestaurantDetail");

 setRestaurantname(restaurantname);

 setCuisine(cuisine);

 setNeighborhood(neighborhood);

 setAddress(address);

 setPhone(phone);

 setDescription(description);

 setRating(rating);

 }

 public String getSampleProperty() {

 return sampleProperty;

 }

 public void setSampleProperty(String value) {

 String oldValue = sampleProperty;

 sampleProperty = value;

 propertySupport.firePropertyChange(PROP_SAMPLE_PROPERTY, oldValue,
sampleProperty);

 }

 public void addPropertyChangeListener(PropertyChangeListener listener) {

 propertySupport.addPropertyChangeListener(listener);

 }

public void removePropertyChangeListener(PropertyChangeListener listener) {

 propertySupport.removePropertyChangeListener(listener);

 }

 /** Getter for property restaurantname.

 * @return Value of property restaurantname.
150 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 *

 */

 public String getRestaurantname() {

 return this.restaurantname;

 }

 /** Setter for property restaurantname.

 * @param restaurantname New value of property restaurantname.

 *

 */

 public void setRestaurantname(String restaurantname) {

 this.restaurantname = restaurantname;

 }

 /** Getter for property cuisine.

 * @return Value of property cuisine.

 *

 */

 public String getCuisine() {

 return this.cuisine;

 }

 /** Setter for property cuisine.

 * @param cuisine New value of property cuisine.

 *

 */

 public void setCuisine(String cuisine) {

 this.cuisine = cuisine;

 }

 /** Getter for property neighborhood.

 * @return Value of property neighborhood.

 *

 */

 public String getNeighborhood() {

 return this.neighborhood;

 }

 /** Setter for property neighborhood.

 * @param neighborhood New value of property neighborhood.

 *
Appendix A DiningGuide Source Files 151

 */

 public void setNeighborhood(String neighborhood) {

 this.neighborhood = neighborhood;

 }

 /** Getter for property address.

 * @return Value of property address.

 *

 */

 public String getAddress() {

 return this.address;

 }

 /** Setter for property address.

 * @param address New value of property address.

 *

 */

 public void setAddress(String address) {

 this.address = address;

 }

 /** Getter for property phone.

 * @return Value of property phone.

 *

 */

 public String getPhone() {

 return this.phone;

 }

 /** Setter for property phone.

 * @param phone New value of property phone.

 *

 */

 public void setPhone(String phone) {

 this.phone = phone;

 }

 /** Getter for property description.

 * @return Value of property description.

 *

 */
152 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 public String getDescription() {

 return this.description;

 }

 /** Setter for property description.

 * @param description New value of property description.

 *

 */

 public void setDescription(String description) {

 this.description = description;

 }

 /** Getter for property rating.

 * @return Value of property rating.

 *

 */

 public int getRating() {

 return this.rating;

 }

 /** Setter for property rating.

 * @param rating New value of property rating.

 *

 */

 public void setRating(int rating) {

 this.rating = rating;

 }

}

Appendix A DiningGuide Source Files 153

CustomerreviewBean.java Source
package Data;

import javax.ejb.*;

public abstract class CustomerreviewBean implements javax.ejb.EntityBean {

 private javax.ejb.EntityContext context;

 /**

 * @see javax.ejb.EntityBean#setEntityContext(javax.ejb.EntityContext)

 */

 public void setEntityContext(javax.ejb.EntityContext aContext) {

 context=aContext;

 }

 /**

 * @see javax.ejb.EntityBean#ejbActivate()

 */

 public void ejbActivate() {

 }

 /**

 * @see javax.ejb.EntityBean#ejbPassivate()

 */

 public void ejbPassivate() {

 }

 /**

 * @see javax.ejb.EntityBean#ejbRemove()

 */

 public void ejbRemove() {

 }
154 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 /**

 * @see javax.ejb.EntityBean#unsetEntityContext()

 */

 public void unsetEntityContext() {

 context=null;

 }

 /**

 * @see javax.ejb.EntityBean#ejbLoad()

 */

 public void ejbLoad() {

 }

 /**

 * @see javax.ejb.EntityBean#ejbStore()

 */

 public void ejbStore() {

 }

 public abstract java.lang.String getRestaurantname();

 public abstract void setRestaurantname(java.lang.String restaurantname);

 public abstract java.lang.String getCustomername();

 public abstract void setCustomername(java.lang.String customername);

 public abstract java.lang.String getReview();

 public abstract void setReview(java.lang.String review);

 public Data.CustomerreviewKey ejbCreate(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) throws
javax.ejb.CreateException {

 if ((restaurantname == null) || (customername == null)) {

 // Join the following two lines in the Source Editor

 throw new javax.ejb.CreateException("Both the restaurant name and
customer name are required.");

 }

 setRestaurantname(restaurantname);

 setCustomername(customername);

 setReview(review);

 return null;
Appendix A DiningGuide Source Files 155

 }

public void ejbPostCreate(java.lang.String restaurantname, java.lang.String
customername, java.lang.String review) throws javax.ejb.CreateException {

 }

 public Data.CustomerreviewDetail getCustomerreviewDetail() {

 return (new CustomerreviewDetail(getRestaurantname(),

 getCustomername(), getReview()));

 }

}

156 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

CustomerreviewDetail.java Source
 * CustomerreviewDetail.java

 *

 * Created on March 27, 2003, 3:35 PM

 */

package Data;

import java.beans.*;

public class CustomerreviewDetail extends Object implements
java.io.Serializable {

 private static final String PROP_SAMPLE_PROPERTY = "SampleProperty";

 private String sampleProperty;

 private PropertyChangeSupport propertySupport;

 /** Holds value of property restaurantname. */

 private String restaurantname;

 /** Holds value of property customername. */

 private String customername;

 /** Holds value of property review. */

 private String review;

 /** Creates new CustomerreviewDetail */

 public CustomerreviewDetail() {

 propertySupport = new PropertyChangeSupport(this);

 }

 public CustomerreviewDetail(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) {

 System.out.println("Creating new CustomerreviewDetail");

 setRestaurantname(restaurantname);

 setCustomername(customername);
Appendix A DiningGuide Source Files 157

 setReview(review);

 }

 public String getSampleProperty() {

 return sampleProperty;

 }

 public void setSampleProperty(String value) {

 String oldValue = sampleProperty;

 sampleProperty = value;

 propertySupport.firePropertyChange(PROP_SAMPLE_PROPERTY, oldValue,
sampleProperty);

 }

 public void addPropertyChangeListener(PropertyChangeListener listener) {

 propertySupport.addPropertyChangeListener(listener);

 }

public void removePropertyChangeListener(PropertyChangeListener listener) {

 propertySupport.removePropertyChangeListener(listener);

 }

 /** Getter for property restaurantname.

 * @return Value of property restaurantname.

 *

 */

 public String getRestaurantname() {

 return this.restaurantname;

 }

 /** Setter for property restaurantname.

 * @param restaurantname New value of property restaurantname.

 *

 */

 public void setRestaurantname(String restaurantname) {

 this.restaurantname = restaurantname;

 }

 /** Getter for property customername.

 * @return Value of property customername.

 *
158 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 */

 public String getCustomername() {

 return this.customername;

 }

 /** Setter for property customername.

 * @param customername New value of property customername.

 *

 */

 public void setCustomername(String customername) {

 this.customername = customername;

 }

 /** Getter for property review.

 * @return Value of property review.

 *

 */

 public String getReview() {

 return this.review;

 }

 /** Setter for property review.

 * @param review New value of property review.

 *

 */

 public void setReview(String review) {

 this.review = review;

 }

}

Appendix A DiningGuide Source Files 159

DiningGuideManagerBean.java Source
package Data;

import javax.ejb.*;

import javax.naming.*;

public class DiningGuideManagerBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext context;

 private RestaurantHome myRestaurantHome;

 private CustomerreviewHome myCustomerreviewHome;

 /**

 * @see javax.ejb.SessionBean#setSessionContext(javax.ejb.SessionContext)

 */

 public void setSessionContext(javax.ejb.SessionContext aContext) {

 context=aContext;

 }

 /**

 * @see javax.ejb.SessionBean#ejbActivate()

 */

 public void ejbActivate() {

 }

 /**

 * @see javax.ejb.SessionBean#ejbPassivate()

 */

 public void ejbPassivate() {

 }

 /**

 * @see javax.ejb.SessionBean#ejbRemove()

 */

 public void ejbRemove() {

 }
160 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 /**

 * See section 7.10.3 of the EJB 2.0 specification

 */

 public void ejbCreate() {

 System.out.println("Entering DiningGuideManagerEJB.ejbCreate()");

 Context c = null;

 Object result = null;

 if (this.myRestaurantHome == null) {

 try {

 c = new InitialContext();

 result = c.lookup("java:comp/env/ejb/Restaurant");

 myRestaurantHome =
(RestaurantHome)javax.rmi.PortableRemoteObject.narrow(result,
RestaurantHome.class);

 }

 catch (Exception e) {System.out.println("Error: "+

 e); }

 }

 Context crc = null;

 Object crresult = null;

 if (this.myCustomerreviewHome == null) {

 try {

 crc = new InitialContext();

 result = crc.lookup("java:comp/env/ejb/Customerreview");

 myCustomerreviewHome =
(CustomerreviewHome)javax.rmi.PortableRemoteObject.narrow(result,
CustomerreviewHome.class);

 }

 catch (Exception e) {System.out.println("Error: "+

 e); }

 }

 }

 public java.util.Vector getAllRestaurants() {

 System.out.println("Entering
DiningGuideManagerEJB.getAllRestaurants()");

 java.util.Vector restaurantList = new java.util.Vector();

 try {

 java.util.Collection rl = myRestaurantHome.findAll();

 if (rl == null) { restaurantList = null; }
Appendix A DiningGuide Source Files 161

 else {

 RestaurantDetail rd;

 java.util.Iterator rli = rl.iterator();

 while (rli.hasNext()) {

 rd = ((Restaurant)rli.next()).getRestaurantDetail();

 System.out.println(rd.getRestaurantname());

 System.out.println(rd.getRating());

 restaurantList.addElement(rd);

 }

 }

 }

 catch (Exception e) {

 // Join the following two lines in the Source Editor

 System.out.println("Error in
DiningGuideManagerEJB.getAllRestaurants(): " + e);

 }

 // Join the following two lines in the Source Editor

System.out.println("Leaving DiningGuideManagerEJB.getAllRestaurants()");

 return restaurantList;

 }

 public java.util.Vector getCustomerreviewsByRestaurant(java.lang.String
restaurantname) {

 System.out.println("Entering
DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");

 java.util.Vector reviewList = new java.util.Vector();

 try {

 java.util.Collection rl =
myCustomerreviewHome.findByRestaurantName(restaurantname);

 if (rl == null) { reviewList = null; }

 else {

 CustomerreviewDetail crd;

 java.util.Iterator rli = rl.iterator();

 while (rli.hasNext()) {

crd = ((Customerreview)rli.next()).getCustomerreviewDetail();

 System.out.println(crd.getRestaurantname());

 System.out.println(crd.getCustomername());

 System.out.println(crd.getReview());

 reviewList.addElement(crd);

 }

 }

 }
162 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 catch (Exception e) {

 // Join the following two lines in the Source Editor

 System.out.println("Error in
DiningGuideManagerEJB.getCustomerreviewsByRestaurant(): " + e);

 }

 // Join the following two lines in the Source Editor

 System.out.println("Leaving
DiningGuideManagerEJB.getCustomerreviewsByRestaurant()");

 return reviewList;

 }

 public void createCustomerreview(java.lang.String restaurantname,
java.lang.String customername, java.lang.String review) {

 System.out.println("Entering
DiningGuideManagerEJB.createCustomerreview()");

 try {

 Customerreview customerrev =
myCustomerreviewHome.create(restaurantname, customername,

 review);

 } catch (Exception e) {

 // Join the following two lines in the Source Editor

 System.out.println("Error in
DiningGuideManagerEJB.createCustomerreview(): " + e);

 }

 // Join the following two lines in the Source Editor

 System.out.println("Leaving
DiningGuideManagerEJB.createCustomerreview()");

 }

 public Data.RestaurantDetail getRestaurantDetail() {

 return null;

 }

 public Data.CustomerreviewDetail getCustomerreviewDetail() {

 return null;

 }

}

Appendix A DiningGuide Source Files 163

RestaurantTable.java Source
/*

 * RestaurantTable.java

 *

 * Created on March 12, 2003, 4:29 PM

 */

package Client;

import javax.swing.table.*;

import java.util.*;

import WebService.DGWebServiceClientGenClient.*;

/**

 *

 * @author administrator

 */

public class RestaurantTable extends javax.swing.JFrame {

 /** Creates new form RestaurantTable */

 public RestaurantTable() {

 initComponents();

 restaurantList=getAllRestaurants();

 putDataToTable();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 private void initComponents() {//GEN-BEGIN:initComponents

 jButton1 = new javax.swing.JButton();

 jScrollPane1 = new javax.swing.JScrollPane();

 jTable1 = new javax.swing.JTable();

 jLabel1 = new javax.swing.JLabel();

 getContentPane().setLayout(new

 org.netbeans.lib.awtextra.AbsoluteLayout());

 addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent evt) {

 exitForm(evt);

 }
164 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 });

 jButton1.setText("View Customer Comments");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton1, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(200, 240, -1, -1));

 TableModel = (new javax.swing.table.DefaultTableModel(

 new Object [][] {

 },

 new String [] {

 "RESTAURANT NAME", "CUISINE", "NEIGHBORHOOD", "ADDRESS", "PHONE",

 "DESCRIPTION", "RATING"

 }

) {

 Class[] types = new Class [] {

 java.lang.String.class, java.lang.String.class,

 java.lang.String.class,

java.lang.String.class,java.lang.String.class,java.lang.String.class,java.lang

 .String.class

 };

 public Class getColumnClass(int columnIndex) {

 return types [columnIndex];

 }

 });

 jTable1.setModel(TableModel);

 jScrollPane1.setViewportView(jTable1);

 getContentPane().add(jScrollPane1, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(0, 60, 600, 100));

 jLabel1.setText("Restaurant Listing");

 getContentPane().add(jLabel1, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(230, 20, 110, 30));

 pack();

 }//GEN-END:initComponents

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {//GEN-
FIRST:event_jButton1ActionPerformed

 int r =jTable1.getSelectedRow();

 int c = jTable1.getSelectedColumnCount();
Appendix A DiningGuide Source Files 165

 String i =(String)TableModel.getValueAt(r,0);

 CustomerReviewTable crt = new CustomerReviewTable();

 crt.putDataToTable(i);

 crt.show();

 System.out.println(i);

 }//GEN-LAST:event_jButton1ActionPerformed

 /** Exit the Application */

 private void exitForm(java.awt.event.WindowEvent evt) {//GEN-
FIRST:event_exitForm

 System.exit(0);

 }//GEN-LAST:event_exitForm

 private void putDataToTable() {

 Iterator j=restaurantList.iterator();

 while (j.hasNext()) {

 RestaurantDetail ci = (RestaurantDetail)j.next();

 String strRating = null;

 String[] str =

{ci.getRestaurantname(),ci.getCuisine(),ci.getNeighborhood(),ci.getAddress(),

 ci.getPhone(),ci.getDescription(),

 strRating.valueOf(ci.getRating()),

 };

 TableModel.addRow(str);

 }

 }

 private Vector getAllRestaurants() {

 Vector restList = new Vector();

 try {

 WebService.DGWebServiceClientGenClient.DGWebService service1 = new

 WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface
port

 =

 service1.getDGWebServiceServantInterfacePort();

 restList = (java.util.Vector)port.getAllRestaurants();

 }

 catch (Exception ex) {

 System.err.println("Caught an exception.");

 ex.printStackTrace();

 }

 return restList;

 }
166 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 private Vector getCustomerreviewByRestaurant(java.lang.String

 restaurantname) {

 Vector reviewList = new Vector();

 try {

 WebService.DGWebServiceClientGenClient.DGWebService service2 = new

 WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface
port

 =

 service2.getDGWebServiceServantInterfacePort();

 reviewList =

(java.util.Vector)port.getCustomerreviewsByRestaurant(restaurantname);

 }

 catch (Exception ex) {

 System.err.println("Caught an exception.");

 ex.printStackTrace();

 }

 return reviewList;

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 new RestaurantTable().show();

 }

 // Variables declaration - do not modify//GEN-BEGIN:variables

 private javax.swing.JButton jButton1;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JTable jTable1;

 private javax.swing.JLabel jLabel1;

 // End of variables declaration//GEN-END:variables

 private DefaultTableModel TableModel;

 private java.util.Vector restaurantList = null;

}

Appendix A DiningGuide Source Files 167

CustomerReviewTable.java Source
/*

 * CustomerReviewTable.java

 *

 * Created on March 12, 2003, 4:29 PM

 */

package Client;

import javax.swing.table.*;

import java.util.*;

import WebService.DGWebServiceClientGenClient.*;

/**

 *

 ** @author administrator

 */

public class CustomerReviewTable extends javax.swing.JFrame {

 /** Creates new form CustomerReviewTable */

 public CustomerReviewTable() {

 initComponents();

 }

 /** This method is called from within the constructor to

 * initialize the form.

 * WARNING: Do NOT modify this code. The content of this method is

 * always regenerated by the Form Editor.

 */

 private void initComponents() {//GEN-BEGIN:initComponents

 jScrollPane1 = new javax.swing.JScrollPane();

 jTable1 = new javax.swing.JTable();

 jButton1 = new javax.swing.JButton();

 customerNameLabel = new javax.swing.JLabel();

 customerNameField = new javax.swing.JTextField();

 reviewLabel = new javax.swing.JLabel();

 reviewField = new javax.swing.JTextField();

 jLabel1 = new javax.swing.JLabel();

 getContentPane().setLayout(new

 org.netbeans.lib.awtextra.AbsoluteLayout());

 addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent evt) {
168 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 exitForm(evt);

 }

 });

 TableModel = (new javax.swing.table.DefaultTableModel(

 new Object [][] {

 },

 new String [] {

 "CUSTOMER NAME", "REVIEW"

 }

) {

 Class[] types = new Class [] {

 java.lang.String.class,java.lang.String.class

 };

 public Class getColumnClass(int columnIndex) {

 return types [columnIndex];

 }

 });

 jTable1.setModel(TableModel);

 jScrollPane1.setViewportView(jTable1);

 getContentPane().add(jScrollPane1, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(0, 60, 400, 100));

 jButton1.setText("Submit Customer Review");

 jButton1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 jButton1ActionPerformed(evt);

 }

 });

 getContentPane().add(jButton1, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(100, 250, 190, -1));

 customerNameLabel.setText("Customer Name");

 getContentPane().add(customerNameLabel, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(40, 170, -1, -1));

 getContentPane().add(customerNameField, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(153, 170, 170, -1));

 reviewLabel.setText("Review");

 getContentPane().add(reviewLabel, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(40, 200, 80, -1));

 getContentPane().add(reviewField, new

 org.netbeans.lib.awtextra.AbsoluteConstraints(153, 200, 170, 20));

 jLabel1.setText("All Customer Review By Restaurant Name");

 getContentPane().add(jLabel1, new
Appendix A DiningGuide Source Files 169

 org.netbeans.lib.awtextra.AbsoluteConstraints(80, 10, 240, -1));

 pack();

 }//GEN-END:initComponents

 private void jButton1ActionPerformed(java.awt.event.ActionEvent evt)
{//GENFIRST:event_jButton1ActionPerformed

 try {

 WebService.DGWebServiceClientGenClient.DGWebService service1 = new

 WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface

 port =

 service1.getDGWebServiceServantInterfacePort();

 port.createCustomerreview(RestaurantName,

 customerNameField.getText(),reviewField.getText());

 }

 catch (Exception ex) {

 System.err.println("Caught an exception.");

 ex.printStackTrace();

 }

 refreshView();

 }//GEN-LAST:event_jButton1ActionPerformed

 void refreshView() {

 try{

 while(TableModel.getRowCount()>0) {

 TableModel.removeRow(0);

 }

 putDataToTable(RestaurantName);

 repaint();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 /** Exit the Application */

 private void exitForm(java.awt.event.WindowEvent evt)
{//GENFIRST:event_exitForm

 System.exit(0);

 }//GEN-LAST:event_exitForm

 public void putDataToTable(java.lang.String restaurantname) {

 RestaurantName = restaurantname;

java.util.Vector customerList =getCustomerReviewByName(restaurantname);

 Iterator j=customerList.iterator();
170 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

 while (j.hasNext()) {

 CustomerreviewDetail ci = (CustomerreviewDetail)j.next();

 String[] str = {ci.getCustomername(),ci.getReview()

 };

 TableModel.addRow(str);

 }

 }

 private Vector getCustomerReviewByName(java.lang.String restaurantname) {

 Vector custList = new Vector();

 try {

 WebService.DGWebServiceClientGenClient.DGWebService service2 = new

 WebService.DGWebServiceClientGenClient.DGWebService_Impl();

WebService.DGWebServiceClientGenClient.DGWebServiceServantInterface

 port =

 service2.getDGWebServiceServantInterfacePort();

 custList =

(java.util.Vector)port.getCustomerreviewsByRestaurant(restaurantname);

 }

 catch (Exception ex) {

 System.err.println("Caught an exception.");

 ex.printStackTrace();

 }

 return custList;

 }

 /**

 * @param args the command line arguments

 */

 public static void main(String args[]) {

 new CustomerReviewTable().show();

 }

 // Variables declaration - do not modify//GEN-BEGIN:variables

 private javax.swing.JLabel reviewLabel;

 private javax.swing.JButton jButton1;

 private javax.swing.JScrollPane jScrollPane1;

 private javax.swing.JTextField customerNameField;

 private javax.swing.JTable jTable1;

 private javax.swing.JLabel customerNameLabel;

 private javax.swing.JLabel jLabel1;

 private javax.swing.JTextField reviewField;

 // End of variables declaration//GEN-END:variables
Appendix A DiningGuide Source Files 171

 private DefaultTableModel TableModel;

 private java.lang.String RestaurantName = null;

 //private java.util.Vector restaurantList = null;

}

172 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

APPENDIX B

DiningGuide Database Script

This appendix displays the following database scripts for the DiningGuide tutorial:

■ “Script for a PointBase Database” on page 174
■ “Script for an Oracle Database” on page 175
173

Script for a PointBase Database
drop table CustomerReview;

drop table Restaurant;

create table Restaurant(

restaurantName varchar(80),

cuisine varchar(25),

neighborhood varchar(25),

address varchar(30),

phone varchar(12),

description varchar(200),

rating tinyint,

constraint pk_Restaurant primary key(restaurantName));

create table CustomerReview(

restaurantName varchar(80) not null references
Restaurant(restaurantName),

customerName varchar(25),

review varchar(200),

constraint pk_CustomerReview primary key(CustomerName, restaurantName));

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('French Lemon','Mediterranean','Rockridge','1200
College Avenue','510 888 8888','Very nice spot.',5);

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('Bay Fox','Mediterranean','Piedmont','1200
Piedmont Avenue','510 888 8888','Excellent.',5);

insert into CustomerReview (restaurantName, customerName, review) values
('French Lemon','Fred','Nice flowers.');

insert into CustomerReview (restaurantName, customerName, review) values
('French Lemon','Ralph','Excellent service.');
174 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Script for an Oracle Database

drop table CustomerReview;
drop table Restaurant;

create table Restaurant(
restaurantName varchar(80),
cuisine varchar(25),
neighborhood varchar(25),
address varchar(30),
phone varchar(12),
description varchar(200),
rating number(1,0),

constraint pk_Restaurant primary key(restaurantName));
grant all on Restaurant to public;

create table CustomerReview(
restaurantName varchar(80) not null references

Restaurant(restaurantName),
customerName varchar(25),
review varchar(200),

constraint pk_CustomerReview primary key(CustomerName, restaurantName));
grant all on CustomerReview to public;

insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('French Lemon','Mediterranean','Rockridge','1200
College Avenue','510 888 8888','Very nice spot.',5);
insert into Restaurant (restaurantName, cuisine, neighborhood, address, phone,
description, rating) values ('Bay Fox','Mediterranean','Piedmont','1200
Piedmont Avenue','510 888 8888','Excellent.',5);

insert into CustomerReview (restaurantName, customerName, review) values
('French Lemon','Fred','Nice flowers.');
insert into CustomerReview (restaurantName, customerName, review) values
('French Lemon','Ralph','Excellent service.');

commit;
Appendix B DiningGuide Database Script 175

176 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

APPENDIX C

Creating the Tutorial with an Oracle
Database

This appendix describes the steps you must perform to create and run the
DiningGuide tutorial with an Oracle database. The topics covered are:

■ “Setting up Database Connectivity with the Oracle Database,” which follows
■ “Creating the Database Tables” on page 183
■ “Creating EJB Components with an Oracle Database” on page 185
■ “Creating the Web Service with an Oracle Database” on page 186

Note – There are several references in this book to the DiningGuide application files.
These files include a completed version of the tutorial application, a readme file
describing how to run the completed application, and SQL script files for creating
the required database tables. These files are compressed into a zip file you can
download from the Sun ONE Studio 5 Developer Resources portal at
http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Setting up Database Connectivity with
the Oracle Database
Configure Sun ONE Application Server 7 to connect to the Oracle database by
performing the required JDBC-related actions in the application server environment.
These include:

■ Enabling the database’s JDBC driver
■ Creating a connection pool
■ Creating a JDBC data source
■ Creating a JDBC persistent manager
177

http://forte.sun.com/ffj/documentation/tutorialsandexamples.html

Enabling the Oracle Type 4 JDBC Driver
Enabling a JDBC driver means putting the driver library in the Sun ONE Studio 5
and Sun ONE Application Server 7 class paths. To do this, you need the Oracle Type
4 JDBC driver library (the classes12.zip file). You can download this driver from
the Oracle portal. Copy the JDBC Type 4 driver into the program files of Sun ONE
Studio 5 before you start the IDE.

To enable the Oracle Type 4 JDBC driver:

1. Copy the Oracle Type 4 driver library to the s1studio-install-directory/lib/ext
directory.

For example, copy the classes12.zip file to c:\Sun\studio5_se\lib\ext.

Note – You must have root or administrator privileges to write to the Sun ONE
Studio 5 home directories.

2. Restart the IDE.

3. In the Runtime pane of the Explorer, select your application server instance.

It is labeled app-server-name (app-server-host:app-server-port). For example, the default
server is server1 (localhost:4848), or a standard user’s server could be MyServer
(localhost:4855).

4. Display the properties of the application server instance.

The property window is usually below the Explorer window. Selecting the node
displays the properties in the window. If the window is not there, right-click the
server instance node and choose Properties.

5. Open the property editor for the Classpath Suffix property.

Click on the value field of this property, then on the ellipsis button that appears. The
Classpath Suffix editor window is displayed.

6. Click the Add JAR/ZIP button.

Use the Add JAR File file finder to locate your classes12.zip file.

7. Select the classes12.zip file and click OK.

8. Click OK to close the property editor window. J
178 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Connecting the IDE to the Oracle Server
To create the JDBC connectivity resources or the EJB tier of the tutorial, you must
connect the IDE to the Oracle database. You can either connect before creating these
components or during the creation process. Here is how you connect to the database
beforehand:

1. Make sure the Oracle server is running.

2. In the Runtime pane of the Explorer, expand the Databases node and its Drivers
subnode.

A node labeled Oracle thin is displayed.

If this node has a red strike across it, you have not enabled the Oracle JDBC driver
properly. Follow the procedures in “Enabling the Oracle Type 4 JDBC Driver” on
page 178.

3. Right-click this node and choose Connect Using.

The New Database Connection dialog box is displayed.

4. Make sure Oracle thin is selected in the name field.

5. Fill in the property values for Database URL, User, and Password.

For example, the following values are correct for a locally installed Oracle database
with a SID of “extut,” and the default Oracle login of “scott” for User and “tiger” for
Password: (1521 is the standard Oracle port number.)

6. Enable the Remember password during this session option.

Name Value

URL jdbc:oracle:thin:@localhost:1521:extut

User scott

Password tiger
Appendix C Creating the Tutorial with an Oracle Database 179

The New Database Connection dialog box should look like this:

7. Click OK.

8. Close the Drivers node.

The new Oracle thin driver node is displayed, labeled
jdbc:oracle:thin:@hostname:1521:sid [Username on Password].

9. Expand this node and its Tables subnode.

The tables in the database, including the RESTAURANT and CUSTOMERREVIEW
tables, are displayed.

Creating a JDBC Connection Pool
To create a JDBC connection pool so that the business objects in the system can share
database access, you first define a JDBC connection pool with information related to
your database, then register it with Sun ONE Application Server 7.

Note – Before starting this procedure, make sure both the admin server and the
application server are running (refer to “Starting the Software” on page 23).

To create an Oracle JDBC connection pool for this tutorial:

1. In the Runtime pane of the Explorer, expand the Server Registry, Installed
Servers, and Sun ONE Application Server 7 nodes.

2. Right-click the Unregistered JDBC Connection Pools node and choose Add New
JDBC Connection Pool.

This opens the New JDBC Connection Pool wizard.

3. Type OraclePool for the JDBC Connection Pool Name.

4. Enable the Extract From Existing Connection option.
180 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

5. Select the Oracle thin string from the pull-down menu.

6. Click Next, then Finish.

A window is displayed, asking whether you want to register this resource.

7. Click the Register button.

The JDBC Connection Pool Registration dialog box is displayed.

8. Select the server instance you wish to register to from the list and click Register.

When the connection pool is registered, a message is displayed indicating success.

9. Click the Close button to close the window.

The registered OraclePool connection pool is displayed.

If you do not see the OraclePool connection pool, right-click the Registered JDBC
Connection Pools node and choose Refresh List.

Registered Oracle connection pool
Appendix C Creating the Tutorial with an Oracle Database 181

Creating a JDBC Data Source
A JDBC data source (also called a JDBC resource) lets you make connections to a
database with the getConnection() method. Before creating a data source, make sure
both the admin server and the application server are running.

To create a JDBC persistent manager:

1. If necessary, expand the Server Registry, Installed Servers, and Sun ONE
Application Server 7 nodes in the Explorer’s Runtime page.

2. Right-click the Unregistered JDBC Data Sources node and choose Add New Data
Source.

This opens the New JDBC Resource wizard.

3. Enable the Use Existing JDBC Data Source option, and select OraclePool from
the list.

4. Type jdbc/jdbc-oracle for the JNDI name and select True in the Enabled field.

5. Click Finish.

A window is displayed, asking whether you want to register this resource.

6. Click the Register button.

The Persistence Manager Registration dialog box is displayed.

7. Select the server instance you wish to register to from the list and click Register.

When the data resource is registered, a message is displayed indicating success.

8. Click the Close button to close the window.

The jdbc/jdbc-oracle node is displayed under the Registered JDBC DataSources
node. If you don’t see it, right-click the JDBC Data Sources node and choose Refresh
List.

Creating a JDBC Persistent Manager
A persistent manager is a component responsible for the persistence of the entity
beans installed in the container. Before creating a persistent manager, make sure both
the admin server and the application server are running.

To create a JDBC persistent manager:

1. If necessary, expand the Server Registry, Installed Servers, Sun ONE Application
Server 7, and the nodes in the Explorer’s Runtime page.
182 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

2. Right-click the Unregistered persistent managers node and choose Add a
Persistent Manager.

This opens the New Persistence Manager wizard.

3. Enable the Use Existing JDBC Resource option, and select jdbc/jdbc-oracle
from the list.

4. Type jdo/OraclePm for the JNDI name and select True in the Enabled field.

5. Click Finish.

A window is displayed, asking whether you want to register this resource.

6. Click the Register button.

The Persistence Manager Registration dialog box is displayed.

7. Select the server instance you wish to register to from the list and click Register.

When the persistent manager is registered, a message is displayed indicating
success.

8. Click the Close button to close the window.

The jdo/OraclePm node is displayed under the Registered Persistence Managers
node. If you don’t see it, right-click the node and choose Refresh List.

Creating the Database Tables
The DiningGuide tutorial uses two database tables, which you must create in an
Oracle Server database. The instructions that follow describe how to use the
provided SQL script to create your tables. Microsoft Windows users can copy and
paste the SQL script provided in Appendix B to create these tables. Solaris and Linux
users can use a script file, diningguide_ora.sql, which is available within
DiningGuide application files.

To install the tutorial tables in an Oracle database on Microsoft Windows systems:

1. Open the Oracle Console by choosing Start → Programs →
Oracle (your version) → Application Development → SQL Plus.

2. Log in to SQL Plus using your user name and password.

For example, use the user name (scott) and password (tiger) for the default Oracle
installation.

3. When the SQL prompt appears, copy the script from Chapter B and paste it next to
the prompt.
Appendix C Creating the Tutorial with an Oracle Database 183

Tip – Avoid the first two DROP statements, which refer to tables that have not yet
been created and will create harmless errors. These DROP statements are useful in
future, however, if you want to rerun the script to initialize the tables.

To install the tutorial database on Solaris or Linux environments:

1. Unzip the DiningGuide.zip file from the Developer Resources portal.

For example, unzip it to the /MyZipFiles directory.

2. At a command prompt, type:

For example,

The two DROP statements will generate errors, but they are harmless.

$ cd your-unzip-dir/DiningGuide/db
$ sqlplus db-userid/db-password@db-servicename @diningguide_ora.sql

$ cd /MyZipFiles/DiningGuide/db
$ sqlplus scott/tiger@MyDB @diningguide_ora.sql
184 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Creating EJB Components with an
Oracle Database
This section lists the changes to Chapter 3 required to create the EJB tier using an
Oracle database. TABLE C-1 lists the sections and the changes required.

TABLE C-1 Oracle-Specific Changes to Chapter 3

Section Change

“Creating a Database Schema
for the Tutorial’s Tables” on
page 53, Step 2b.

1. Expand the Drivers folder, right-click the Oracle thin
node and choose New Database Connection.

2. In the dialog box, specify your Oracle URL, User
Name, and Password.

3. Check Remember password during this session and
click OK.

4. Close the Drivers folder. An Oracle connection
appears.

Same section, Step 5b. Select the Oracle connection from the list.

“Creating the Restaurant Entity
Bean” on page 55

Use the Oracle schema to create the Restaurant entity
bean.

“Creating the Customerreview
Entity Bean” on page 58

Use the Oracle schema to create the Customerreview
entity bean.

“Providing the Sun ONE
Application Server 7 Plugin
With Database Information” on
page 75, Step 9.

Step 9. Type jdo/OraclePM in the JNDI Name field.
Step 10: Type your Oracle database username and
password.

“Checking the Additions to the
Database” on page 81

1. Start SQLPlus.
2. Log into your database.
3. Enter the SQL statements.

“Creating a Test Client for the
Customerreview Bean” on
page 82

Step 8. Type jdo/OraclePM in the JNDI Name field.
Step 9. Type your Oracle database username and
password.

“Providing the Sun ONE
Application Server 7 Plugin
With Database Information” on
page 102

Step 9. Type jdo/OraclePM in the JNDI Name field.
Step 10: Type your Oracle database username and
password.
Appendix C Creating the Tutorial with an Oracle Database 185

Creating the Web Service with an Oracle
Database
This section lists the changes to Chapter 4 required to create the web service using
an Oracle database. TABLE C-2 lists the sections and the changes required.

TABLE C-2 Oracle-Specific Changes to Chapter 4

Section Change

“Using the Test Application to
Test the Web Service” on
page 121, Step 2

Start SQLPlus, log into your database, and test the
insertion of the record, as described.
186 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

Index
A
accessor methods, exposing to the user, 65
Add Admin Server menu item, 25
Add Business Method menu item, 66
Add Constructor menu item, 70
Add Create Method menu item, 60
Add Finder Method menu item, 64
Add Module menu item, 118

B
business methods

Customerreview
getCustomerreviewDetail, 72
getReview, 67

DiningGuideManager
createCustomerreview, 95, 107
getAllRestaurants, 91, 107
getCustomerreviewDetail, 98, 107
getCustomerreviewsByRestaurant, 93,

108
getRestaurantDetail, 97, 108

Restaurant
getRating, 66, 81
getRestaurantDetail, 71

Restaurant.getRestaurantDetail, 50
business methods, Swing client

CustomerReviewTable
getCustomerReviewByName, 140
jButton1ActionPerformed, 142
putDataToTable, 139, 140, 143

refreshView, 142, 144
RestaurantTable

getAllRestaurants, 137
jButton1ActionPerformed, 139, 141
putDataToTable, 138

C
client file methods

getAllRestaurants, 127
getCustomerreviewsByRestaurant, 122

constructors
CustomerreviewDetail, 71
RestaurantDetail, 70

Create a Server Instance menu item, 26
create methods

Customerreview.create, 62, 78, 84
DiningGuideManager.create, 88 to 90, 106
JNDI lookup code in, 89
Restaurant.create, 60, 79, 85

Create New EJB Test Application menu item, 73,
100

Create New Web Service Test Client command, 117
Creating a web service, 44
creating a web service, 113 to 115
creating a web service client, 118
Customerreview entity bean

create method, creating, 62
creating, 52 to 67
getReview method, creating, 67
testing, 82
187

CustomerReview table, description, 33
Customerreview_TestApp, 82

bean methods, testing, 84 to 86
creating, 82 to 83
deploying, 84
undeploying, 104 to 105

CustomerReviewTable
copying into the DiningGuide application, 133

to 134
displayed, 37, 135, 136

D
databases

creating a database schema (Oracle), 185
creating a database schema (PointBase), 53
creating an entity bean from a schema, 52 to 59
creating the tutorial tables (Oracle), 183 to 184
installing the Oracle JDBC driver, 178
installing the PointBase JDBC driver, 30
opening a connection (Oracle), 185
opening a connection (PointBase), 53
setting up connectivity (Oracle), 177 to 183
setting up connectivity (PointBase), 29 to 32
supported versions, 22
tutorial SQL script (Oracle), 175
tutorial SQL script (PointBase), 174
viewing data in the IDE, 39, 81, 86

Deploy menu item, 120
deploying

adding Sun ONE Application Server 7 properties
for entity beans (Oracle), 185

adding Sun ONE Application Server 7 properties
for entity beans (PointBase), 75 to 77, 83

adding Sun ONE Application Server 7 properties
for session beans (Oracle), 185

adding Sun ONE Application Server 7 properties
for session beans (PointBase), 102 to 103

test applications for entity beans, 77, 84
test applications for session beans, 105
undeploying with the IDE, 104 to 105

detail classes
creating, 68 to 71
description, 43, 49

DGApp, 121
DGWebService, 114

DiningGuide application
application scenarios, 36
architecture, 40
database script (Oracle), 175
database script (PointBase), 174
database tables, description, 33
deploying, 45, 119
EJB tier, 47 to 51
functional description, 35
functional specs, 36
limitations, 46, 53
requirements, 22
Swing client, adding to the application, 133 to

134
Swing client, examining, 137 to 144
Swing client, executing, 134
user’s view, 37
zipped source files, 21, 177

DiningGuide Swing client
executing, 37
generated from web services, 122
installing and using, 45

DiningGuideManager session bean
create method, coding, 88 to 90
createCustomerreviewmethod, 82, 95 to 96,

107, 124
creating, 87
getAllRestaurants method, 91 to 92, 107
getCustomerreviewDetail method, 97, 107
getCustomerreviewsByRestaurant

method, 93 to 95, 108
getRestaurantDetail method, 97, 108
testing, 106 to 108

DiningGuideManager_TestApp
bean methods, testing, 106 to 108
creating, 100 to 103
deploying, 105

E
EJB Builder

entity beans, creating, 52 to 59
local or remote interfaces, 52, 87
session beans, creating, 87
using, 43

EJB QL, using in finder methods, 63
EJB tier overview, 41, 47 to 51
188 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

entity beans
adding to an EJB module, 101
business methods, creating, 65
business methods, testing, 81
create methods, creating, 60
create methods, testing, 78
creating, 52 to 59
finder methods, creating, 63
finder methods, testing, 80
local or remote interfaces, 52
primary key class, 59
testing, 78 to 81
validating, 66

example applications
StockApp and UDDI registry, 45
where to download, 18

executing
test applications for entity beans, 77, 84
test applications for session beans, 105

F
finder methods

Customerreview.findByRestaurantName,
63, 80

Restaurant.findAll, 50, 63, 80
testing, 80

G
Generate Client Files menu item, 131
Generate Web Service Files menu item, 115
generated runtime classes, 112
generated web service, 112

I
interfaces, local or remote

for entity beans, 52
for session beans, 87

J
J2EE applications

creating, 118
deploying, 119
DGApp, 118

Javadoc technology, using in the IDE, 18
JDBC connection pools

creating (Oracle), 180 to 181
creating as administrator user (PointBase), 30
creating as all other users (PointBase), 31
purpose, 29

JDBC data sources
creating (Oracle), 182
creating as administrator user (PointBase), 30
creating as all other users (PointBase), 31
purpose, 29

JDBC drivers
enabling (Oracle), 178
enabling (PointBase), 30

JNDI lookup code, 89

M
Mount Filesystem menu item, 53

N
Netscape browser, supported version, 22
New CMP Entity EJB menu item, 55
New EJB Test Application menu item, 73
New J2EE Application menu item, 118
New Java Bean menu item, 68
New Web Service menu item, 113

O
Oracle database

connecting to the IDE, 179 to 180
installing a type 4 JDBC driver, 178
See also databases

Overview of tasks, 42 to 45
Index 189

P
parameters

changing order of, 79
order in test client, 79

persistent managers
creating (Oracle), 182 to 183
creating as administrator user (PointBase), 30
creating as all other users (PointBase), 31
purpose, 29

PointBase database
installing a type 4 JDBC driver, 30
supported version, 22

R
Restaurant entity bean

create method, 60, 79, 85
creating, 52 to 67
findall method, 50
getRating method, 66, 81
getRestaurantDetail method, 50

Restaurant table, description, 33
Restaurant_TestApp

bean methods, testing, 78 to 81
creating, 73 to 77
deploying, 77
undeploying, 104 to 105

RestaurantTable
copying into the DiningGuide application, 133

to 134
displayed, 37, 135

runide.sh script, 23

S
session beans

business methods, creating, 91 to 94
create method, modifying, 88
create method, testing, 106
creating, 87 to 100
EJB references, adding, 98 to 100
local or remote interfaces, 87
testing, 100 to 108
validating, 98

Sun ONE Application Server 7
confirming as the default server, 29
database connectivity, 29 to 32
starting the admin server (standard user), 25 to

27
starting the admin server (superuser), 24
starting the application server, 28
stopping, 136

Sun ONE Application Server 7 server
plugin properties to set for entity beans

(Oracle), 185
plugin properties to set for entity beans

(PointBase), 75 to 77, 83
plugin properties to set for session beans

(Oracle), 185
plugin properties to set for session beans

(PointBase), 102 to 103
Sun ONE Studio 5 IDE

connecting to the Oracle server, 179 to 180
creating a database schema (Oracle), 185
creating a database schema (PointBase), 53
opening a database connection (Oracle), 185
opening a database connection (PointBase), 53
setting up database connectivity (Oracle), 177 to

183
setting up database connectivity (PointBase), 29

to 32
starting the IDE, 23

Sun ONE Studio 5, Standard Edition, where to
obtain, 22

Swing client
adding to the DiningGuide application, 133 to

134
examining the code, 137 to 144
executing, 135

T
test application facility

adding entity beans to the EJB module, 101
entity beans, testing, 78 to 82
session bean, testing, 100 to 108
test client, creating, 73 to 77, 82 to 83, 100 to 103
test client, deploying, 77, 84, 105
test client, using, 78 to 82, 106 to 108
using, 43
web service, testing, 117 to 128
190 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

test applications
Customerreview_TestApp, 82
DGApp, 117
DiningGuideManager_TestApp, 100
Restaurant_TestApp, 73

testing enterprise beans
business methods, testing, 81
create method, testing, 79, 85
finder methods, testing, 80
results in IDE’s output window, 78, 120
results in J2EE command window, 78, 120
test client page, 78, 106

U
undeploying an application

how to, 104 to 105
reasons for, 104, 119

Using the test application facility, 43

V
Validate EJB menu item, 66, 98
View Data menu item, 39, 81, 86

W
web browsers, supported versions, 22
web service

client files, 112
creating, 113 to 115
description, 111 to 113
exposing class types underlying collection

types, 96 to 98
generating client files, 131
generating WSDL, 129
sharing with other developers, 129 to 131
testing, 117 to 128

web service client methods
createCustomerreview, 142
getAllRestaurants, 137
getCustomerreviewsByRestaurant, 140

Web Service Descriptive Language (WSDL),
generating, 129
Index 191

192 Sun ONE Studio 5 J2EE Application Tutorial • June 2003

	Sun™ ONE Studio 5 J2EE ™ Application Tutorial
	Contents
	Figures
	Tables
	Before You Begin
	Before You Read This Book
	How This Book Is Organized
	Typographic Conventions
	Related Documentation
	Documentation Available Online
	Online Help
	Examples
	Javadoc Documentation
	Documentation in Accessible Formats

	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Getting Started
	Obtaining and Installing the Required Software
	Starting the Software
	Starting the IDE
	Starting the Application Server
	Starting the Admin Server (Superuser)
	Starting the Admin Server (Standard User)
	Starting the Application Server Instance

	Confirming Sun ONE Application Server 7 as the Default Server

	Setting Up Database Connectivity
	Enabling the JDBC Driver
	Setting JDBC Resources (Microsoft Windows Superusers)
	Setting JDBC Resources (All Other Users)

	Tutorial Database Table Descriptions

	Introduction to the Tutorial
	Functionality of the Tutorial Application
	Application Scenarios
	Application Functional Specification

	User’s View of the Tutorial Application
	Architecture of the Tutorial Application
	Application Elements
	EJB Tier Details

	Overview of Tasks for Creating the Tutorial Application
	Creating the EJB Components
	Using the EJB Builder
	Creating the Detail Classes
	Using the Test Application Facility

	Creating the Tutorial’s Web Service
	Creating a Web Service
	Creating a Test Client for the Tutorial
	Deploying the Web Service and Creating a Test Client
	Testing the Web Service
	Making a Web Service Available to Other Developers

	Installing and Using the Provided Client

	End Comments

	Building the EJB Tier of the DiningGuide Application
	Overview of the Tutorial’s EJB Tier
	The Entity Beans
	The Session Bean
	The Detail Classes
	Summary of Steps

	Creating Entity Beans With the EJB Builder
	Creating the Restaurant and Customerreview Entity Beans
	Creating the Tutorial’s Directory
	Creating a Database Schema for the Tutorial’s Tables
	Creating a Java Package for the EJB Tier
	Creating the Restaurant Entity Bean
	Creating the Customerreview Entity Bean

	Creating Create Methods for CMP Entity Beans
	Creating the Restaurant Bean’s Create Method
	Creating the Customerreview Bean’s Create Method

	Creating Finder Methods on Entity Beans
	Creating the Restaurant Bean’s findAll Method
	Creating the Customerreview Bean’s findByRestaurantName Method

	Creating Business Methods for Testing Purposes
	Creating the Restaurant Bean’s getRating Method
	Creating the Customerreview Bean’s getReview Method

	Creating Detail Classes to View Entity Bean Data
	Creating the Detail Classes
	Creating the Detail Class Properties and Their Accessor Methods
	Creating the Detail Class Constructors
	Creating Business Methods on the Entity Beans to Fetch the Detail Classes

	Testing the Entity Beans
	Creating a Test Client for the Restaurant Bean
	Providing the Sun ONE Application Server 7 Plugin With Database Information
	Deploying and Executing the Restaurant Bean’s Test Application
	Using the Test Client to Test the Restaurant Bean
	Checking the Additions to the Database
	Creating a Test Client for the Customerreview Bean
	Deploying and Executing the Customerreview Bean’s Test Application
	Testing the Customerreview Entity Bean
	Checking the Additions to the Database

	Creating a Session Bean With the EJB Builder
	Coding a Session Bean’s Create Method
	Creating Business Methods to Get the Detail Data
	Creating the getAllRestaurants Method
	Creating the getCustomerreviewsByRestaurant Method

	Creating a Business Method to Create a Customer Review Record
	Creating Business Methods That Return Detail Class Types
	Creating the getRestaurantDetail Method
	Creating the getCustomerreviewDetail Method

	Adding EJB References

	Testing the Session Bean
	Creating a Test Client for a Session Bean
	Adding Entity Bean References to the EJB Module
	Providing the Sun ONE Application Server 7 Plugin With Database Information
	Deploying and Executing the Test Application
	Undeploying the Entity Bean Test Applications
	Deploying the DiningGuideManager Test Application

	Using the Test Client to Test a Session Bean
	Checking the Additions to the Database

	Comments on Creating a Client

	Creating the DiningGuide Application’s Web Service
	Overview of the Tutorial’s Web Service
	The Web Service
	The Runtime Classes
	The Client Files

	Creating the Tutorial’s Web Service
	Creating the Logical Web Service
	Generating the Web Service’s Runtime Classes

	Testing the Web Service
	Creating a Test Client and Test Application
	Adding the Web Service to the J2EE Application
	Deploying the Test Application
	Using the Test Application to Test the Web Service

	Making Your Web Service Available to Other Developers
	Generating the WSDL File
	Generating Client Files From the WSDL File

	Creating a Client for the Tutorial Application
	Creating the Client With the Provided Code
	Running the Tutorial Application
	Examining the Client Code
	Displaying Restaurant Data
	Displaying Customer Review Data for a Selected Restaurant
	Creating a New Customer Review Record

	DiningGuide Source Files
	RestaurantBean.java Source
	RestaurantDetail.java Source
	CustomerreviewBean.java Source
	CustomerreviewDetail.java Source
	DiningGuideManagerBean.java Source
	RestaurantTable.java Source
	CustomerReviewTable.java Source

	DiningGuide Database Script
	Script for a PointBase Database
	Script for an Oracle Database

	Creating the Tutorial with an Oracle Database
	Setting up Database Connectivity with the Oracle Database
	Enabling the Oracle Type 4 JDBC Driver
	Connecting the IDE to the Oracle Server
	Creating a JDBC Connection Pool
	Creating a JDBC Data Source
	Creating a JDBC Persistent Manager

	Creating the Database Tables
	Creating EJB Components with an Oracle Database
	Creating the Web Service with an Oracle Database

	Index

