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Preface

The Oracle Solaris Trusted Extensions Developer's Guide describes how to use the application
programming interfaces (APIs) to write new trusted applications for systems that are
configured with the Trusted Extensions feature of the Oracle Solaris OS. Readers must be
familiar with UNIX programming and understand security policy concepts.

Note – This Solaris release supports systems that use the SPARC and x86 families of processor
architectures. The supported systems appear in the Solaris OS: Hardware Compatibility Lists
(http://www.sun.com/bigadmin/hcl). This document cites any implementation differences
between the platform types.

In this document these x86 related terms mean the following:

■ “x86” refers to the larger family of 64-bit and 32-bit x86 compatible products.
■ “x64” relates specifically to 64-bit x86 compatible CPUs.
■ “32-bit x86” points out specific 32-bit information about x86 based systems.

For supported systems, see the Solaris OS: Hardware Compatibility Lists.

Note that the example programs in this book focus on the APIs being shown and do not
perform error checking. Your applications should perform the appropriate error checking.

How the Trusted Extensions Books Are Organized
The Trusted Extensions documentation set supplements the documentation for the Oracle
Solaris release. Review both sets of documentation for a more complete understanding of
Trusted Extensions. The Trusted Extensions documentation set consists of the following books.

9
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Book Title Topics Audience

Solaris Trusted Extensions Transition
Guide

Obsolete. Provides an overview of the differences between
Trusted Solaris 8 software, Oracle Solaris software, and Trusted
Extensions software.

For this release, the What's New document for the Oracle Solaris
OS provides an overview of Trusted Extensions changes.

All

Solaris Trusted Extensions Reference
Manual

Obsolete. Provides Trusted Extensions man pages for the Solaris
10 11/06 and Solaris 10 8/07 releases of Trusted Extensions. For
this release, Trusted Extensions man pages are included with the
Oracle Solaris man pages.

All

Oracle Solaris Trusted Extensions User’s
Guide

Describes the basic features of Trusted Extensions. This book
contains a glossary.

End users,
administrators,
developers

Oracle Solaris Trusted Extensions
Configuration Guide

Starting with the Solaris 10 5/08 release, describes how to enable
and initially configure Trusted Extensions. Replaces Solaris
Trusted Extensions Installation and Configuration.

Administrators,
developers

Oracle Solaris Trusted Extensions
Administrator’s Procedures

Shows how to perform specific administration tasks. Administrators,
developers

Oracle Solaris Trusted Extensions
Developer’s Guide

Describes how to develop applications with Trusted Extensions. Developers,
administrators

Oracle Solaris Trusted Extensions Label
Administration

Provides information about how to specify label components in
the label encodings file.

Administrators

Compartmented Mode Workstation
Labeling: Encodings Format

Describes the syntax used in the label encodings file. The syntax
enforces the various rules for well-formed labels for a system.

Administrators

How This Book Is Organized
Chapter 1, “Trusted Extensions APIs and Security Policy,” provides an overview of the Trusted
Extensions APIs and describes how the security policy is enforced within the system.

Chapter 2, “Labels and Clearances,” describes the data types and the APIs for managing labels
on processes and on device objects. This chapter also describes clearances, how a process
acquires a sensitivity label, and when label operations require privileges. Guidelines for
handling labels are also provided.

Chapter 3, “Label Code Examples,” provides sample code that uses the APIs for labels.

Chapter 4, “Printing and the Label APIs,” uses the Trusted Extensions multilevel printing
service as an example of using the label APIs.

Preface
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Chapter 5, “Interprocess Communications,” provides an overview of how the security policy is
applied to process-to-process communications within the same workstation and across the
network.

Chapter 6, “Trusted X Window System,” describes the data types and the APIs that enable
administrative applications to access and modify security-related X Window System
information. This chapter has a section of code examples.

Chapter 7, “Label Builder APIs,” describes the data types and the APIs for creating a graphical
user interface (GUI) for building labels and clearances. This chapter has a section of code
examples.

Chapter 8, “Trusted Web Guard Prototype,” provides an example of a safe web browsing
prototype that isolates a web server and its web content from an Internet attack.

Chapter 9, “Experimental Java Bindings for the Solaris Trusted Extensions Label APIs,”
describes an experimental set of Java classes and methods that mirror the label APIs that are
provided with the Trusted Extensions software. This chapter also includes a pointer to the
source code and build instructions, so you can use these APIs to create label-aware applications.

Appendix A, “Programmer's Reference,” provides information about Trusted Extensions man
pages, shared libraries, header files, and abbreviations used in data type names and in interface
names. This appendix also provides information about preparing an application for release.

Appendix B, “Trusted Extensions API Reference,” provides programming interface listings,
including parameter and return value declarations.

Documentation, Support, and Training
See the following web sites for additional resources:

■ Documentation (http://docs.sun.com)
■ Support (http://www.oracle.com/us/support/systems/index.html)
■ Training (http://education.oracle.com) – Click the Sun link in the left navigation bar.

Oracle Welcomes Your Comments
Oracle welcomes your comments and suggestions on the quality and usefulness of its
documentation. If you find any errors or have any other suggestions for improvement, go to
http://docs.sun.com and click Feedback. Indicate the title and part number of the
documentation along with the chapter, section, and page number, if available. Please let us
know if you want a reply.

Preface
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Oracle Technology Network (http://www.oracle.com/technetwork/index.html) offers a
range of resources related to Oracle software:

■ Discuss technical problems and solutions on the Discussion Forums
(http://forums.oracle.com).

■ Get hands-on step-by-step tutorials with Oracle By Example (http://www.oracle.com/
technology/obe/start/index.html).

■ Download Sample Code (http://www.oracle.com/technology/sample_code/
index.html).

Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.
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TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface
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Trusted Extensions APIs and Security Policy

The Trusted Extensions feature of the Oracle Solaris OS (Trusted Extensions) provides
application programming interfaces (APIs) that enable you to write applications that access and
handle labels. This chapter summarizes the API functionality and introduces you to the Trusted
Extensions security policy.

For Trusted Extensions term definitions, see the glossary in the Oracle Solaris Trusted
Extensions User’s Guide.

For examples of how the Trusted Extensions APIs are used in the Oracle Solaris operating
system (Oracle Solaris OS), see the Oracle Solaris source code. Go to the Open Solaris web site
(http://hub.opensolaris.org/bin/view/Main/) and click Source Browser in the left
navigation bar. Use the Source Browser to search through the Oracle Solaris source code.

This chapter covers the following topics:

■ “Understanding Labels” on page 15
■ “Trusted Extensions APIs” on page 19
■ “Trusted Extensions Security Policy” on page 23

Understanding Labels
The Trusted Extensions software provides a set of policies and services to extend the security
features of the Oracle Solaris OS. These extensions provide access control that is based on label
relationships.

Labels control access to data and maintain the classification of data. The labels are attributes
that are interpreted by the system security policy. The system security policy is the set of rules
that is enforced by system software to protect information that is being processed on the system.
The term security policy can refer to the policy itself or to the implementation of the policy. For
more information, see “Trusted Extensions Security Policy” on page 23.

1C H A P T E R 1
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This section includes overview information about label types, ranges, components, and
relationships.

Label Types
The Trusted Extensions software defines two types of labels: sensitivity labels and clearance
labels. A sensitivity label indicates the security level of an entity and is usually referred to as a
label. A clearance label defines the upper boundary of a label range and is usually referred to as a
clearance.

Sensitivity Labels
The Trusted Extensions software uses zones to contain classified information at various levels.
Each level is associated with its own zone that has a sensitivity label. The sensitivity label
specifies the sensitivity of the information in that zone and is applied to all of the subjects and
objects in that zone. A label might be something like CONFIDENTIAL, SECRET, or TOP SECRET. A
subject is an active entity, such as a process, that causes information to flow among objects or
changes a system's state. An object is a passive entity that contains or receives data, such as a file
or device. All processes that run in a zone, all files that are contained in a zone, and so on, have
the same sensitivity label as their zone. All processes and objects have a sensitivity label that is
used in mandatory access control (MAC) decisions. By default, sensitivity labels are visible in
the windowing system.

Clearance Labels
The security administrator assigns a clearance to each user. A clearance is a label that defines the
upper boundary of a label range. For example, if you have a clearance of SECRET, you can access
information that is classified at this level or lower, but not information that is classified at a
higher level. A user clearance is assigned by the security administrator. It is the highest label at
which a user can access files and initiate processes during a session. In other words, a user
clearance is the upper boundary of a user's account label range. At login, a user selects his
session clearance. The session clearance determines which labels a user can access. The session
clearance sets the least upper bound at which the user can access files and initiate processes
during that login session. The session clearance is dominated by the user clearance.

Label Ranges
The security administrator defines label ranges and label sets to enforce mandatory access
control (MAC) policy. A label range is a set of labels that is bounded at the upper end by a
clearance or a limit and at the lower end by a minimum label. A label limit is the upper bound of
a label range. A label set contains one or more discrete labels that might be disjoint from one
another. Labels in a label set do not dominate one another.

Understanding Labels
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Label Components
A label contains a hierarchical classification and a set of zero or more nonhierarchical
compartments. A classification is also referred to as a level or a security level. A classification
represents a single level within a hierarchy of labels, for example, TOP SECRET or UNCLASSIFIED.
A compartment is associated with a classification and represents a distinct, nonhierarchical area
of information in a system, such as private information for a human resources (HR) group or a
sales group. A compartment limits access only to users who need to know the information in a
particular area. For example, a user with a SECRET classification only has access to the secret
information that is specified by the associated list of compartments, not to any other secret
information. The classification and compartments together represent the label of the zone and
the resources within that zone.

The textual format of a classification is specified in the label_encodings file and appears
similar to this:

CLASSIFICATIONS:

name= CONFIDENTIAL; sname= C; value= 4; initial compartments= 4-5 190-239;

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

The textual format of a compartment is specified in the label_encodings file and appears
similar to this:

WORDS:

name= HR; minclass= C; compartments= 0;

For more information about label definitions and label formats, see Oracle Solaris Trusted
Extensions Label Administration and Compartmented Mode Workstation Labeling: Encodings
Format. For information about the label APIs, see Chapter 2, “Labels and Clearances.”

Label Relationships
Comparing labels means that the label of a process is compared to the label of a target, which
might be a sensitivity label or a clearance label. Based on the result of the comparison, the
process is either granted access or denied access to the object. Access is granted only when the
label of the process dominates the label of the target. Label relationships and dominance are
described later in this section. For examples, see “Determining the Relationship Between Two
Labels” on page 46.

A security level is a numerical classification. A label indicates the security level of an entity and
might include zero or more compartments. An entity is something that can be labeled, such as a
process, zone, file, or device.

Understanding Labels
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Labels are of the following types and relate to each other in these ways:

■

Equal – When one label is equal to another label, both of these statements are true:
■ The label's classification is numerically equal to the other label's classification.
■ The label has exactly the same compartments as the other label.

■

Dominant – When one label dominates another label, both of these statements are true:
■ The label's classification is numerically greater than or equal to the other label's

classification.
■ The label has exactly the same compartments as the other label.

■

Strictly dominant – When one label strictly dominates another label, both of these
statements are true:
■ The label's classification is numerically greater than or equal to the other label's

classification.
■ The label has all the compartments that the other label has and at least one other

compartment.
■

Disjoint – When one label is disjoint with another label, both of these statements are true:
■ The labels are not equal.
■ Neither label dominates the other label.

The label_encodings file is used to specify the classifications and compartments for labels. See
the label_encodings(4) man page.

When any type of label has a security level that is equal to or greater than the security level of a
second label, the first label is said to dominate the second label. This comparison of security
levels is based on classifications and compartments in the labels. The classification of the
dominant label must be equal to or greater than the classification of the second label.
Additionally, the dominant label must include all the compartments in the second label. Two
equal labels are said to dominate each other.

In the following sample excerpt of the label_encodings file, the REGISTERED (REG) label
dominates the CONFIDENTIAL (C) label. The comparison is based on the value of each label's
value keyword. The value of the REG label's value keyword is numerically greater than or equal
to the value of the C label's value keyword. Both labels dominate the PUBLIC (P) label.

The value of the initial compartments keyword shows the list of compartments that are
initially associated with the classification. Each number in the initial compartments keyword
is a compartment bit, each of which represents a particular compartment.
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CLASSIFICATIONS:

name= PUBLIC; sname= P; value= 1;

name= CONFIDENTIAL; sname= C; value= 4; initial compartments= 4-5 190-239;

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

The following label_encodings excerpt shows that the REG HR label (Human Resources)
dominates the REG label. The REG HR label has the REGISTERED classification and the HR
compartment. The compartments keyword for the HR compartment sets the 0 compartment bit,
so the REG HR classification has compartments 0, 4–5, and 190–239 set, which is more than the
compartments set by the REG classification.

CLASSIFICATIONS:

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

...

WORDS:

name= HR; minclass= C; compartments= 0;

Sometimes, strict dominance is required to access an object. In the previous examples, the REG
label strictly dominates the P label, and the REG HR label strictly dominates the REG label. When
comparing labels, a REG label dominates another REG label.

Labels that do not dominate each other are said to be disjoint. A disjoint label might be used to
separate departments in a company. In the following example, the REG HR label (Human
Resources) is defined as being disjoint from the REG Sales label. These labels are disjoint
because each compartment sets a different compartment bit.

CLASSIFICATIONS:

name= REGISTERED; sname= REG; value= 6; initial compartments= 4-5 190-239;

...

WORDS:

name= HR; minclass= C; compartments= 0;

name= Sales; minclass= C; compartments= 1;

For information about label APIs, see “Sensitivity Label APIs” on page 21.

Trusted Extensions APIs
This section introduces the following Trusted Extensions APIs that are described in this book:

■ Label APIs
■ Trusted X Window System APIs
■ Label Builder APIs

In addition to these Trusted Extensions APIs, you can use the security APIs that are available
with the Oracle Solaris OS. An application that runs on Trusted Extensions might require the
manipulation of other security attributes. For example, the user and profile databases contain
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information about users, roles, authorizations, and profiles. These databases can restrict who
can run a program. Privileges are coded into various Oracle Solaris programs and can also be
coded into third-party applications.

For more information about these Oracle Solaris OS security APIs, see Chapter 2, “Developing
Privileged Applications,” in Oracle Solaris Security for Developers Guide.

The Oracle Solaris OS provides discretionary access control (DAC), in which the owner of the
data determines who is permitted access to the data. The Trusted Extensions software provides
additional access control, which is called mandatory access control (MAC). In MAC, ordinary
users cannot specify or override the security policy. The security administrator sets the security
policy.

Applications use Trusted Extensions APIs to obtain labels for hosts, zones, users, and roles.
Where the security policy permits, the APIs enable you to set labels on user processes or on role
processes. Setting a label on a zone or on a host is an administrative procedure, not a
programmatic procedure.

You can write applications to customize window labels. The Trusted Extensions software
provides Motif based programming interfaces for adding a basic label-building user interface to
an application. The label-building interface enables a user to interactively build valid sensitivity
labels and valid clearances.

The label APIs operate on opaque labels. In an opaque label, the internal structure of the label is
not exposed. Using an opaque label enables existing programs that are created with the APIs to
function even if the internal structure of the label changes. For example, you cannot use the
label APIs to locate particular bits in a label. The label APIs enable you to obtain labels and to set
labels. You can only set labels if you are permitted to do so by the security policy.

Label APIs
Labels, label ranges, and a label limit determine who can access information on a system that is
configured with Trusted Extensions.

The label APIs are used to access, convert, and perform comparisons for labels, label ranges and
limits, and the relationship between labels. A label can dominate another label, or a label can be
disjoint from another label.

The label_encodings file defines the sensitivity labels, clearance labels, label ranges, and label
relationships that pertain to your Trusted Extensions environment. This file also controls the
appearance of labels. The security administrator is responsible for creating and maintaining the
label_encodings file. See the label_encodings(4) man page.

The label of a process is determined by the zone in which the process executes.
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All objects are associated with a label or sometimes with a label range. An object can be accessed
at a particular label within the defined label range. The objects that are associated with a label
range include the following:

■ All users and all roles
■ All hosts with which communications are permitted
■ Zone interfaces and network interfaces
■ Allocatable devices, such as tape drives, diskette drives, CD-ROM devices, and audio devices
■ Other devices that are not allocatable, such as printers and workstations

Workstation access is controlled by the label range that is set for the frame buffer or video
display device. The security administrator sets this range by using the Device Manager GUI.
By default, devices have a range from ADMIN_LOW to ADMIN_HIGH.

For more information about labels, see “Label Types” on page 16.

How Labels Are Used in Access Control Decisions
MAC compares the label of the process that is running an application with the label or the label
range of any object that the process tries to access. MAC permits a process to read down to a
lower label and permits a process to write to an equal label.

Label[Process] >= Label[Object]

A process bound to a multilevel port (MLP) can listen for requests at multiple labels and send
replies to the originator of the request. In Trusted Extensions, such replies are write-equal.

Label[Process] = Label[Object]

Types of Label APIs

Sensitivity Label APIs

Sensitivity label APIs can be used to do the following:

■ Obtain a process label
■ Initialize labels
■ Find the greatest lower bound or the least upper bound between two labels
■ Compare labels for dominance and equality
■ Check and set label types
■ Convert labels to a readable format
■ Obtain information from the label_encodings file
■ Check that a sensitivity label is valid and within the system range

For a description of these APIs, see Chapter 2, “Labels and Clearances.”
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Clearance Label APIs

Users, devices, and network interfaces have label ranges. The upper bound of the range is
effectively the clearance. If the upper bound of the range and the lower bound of the range are
equal, the range is a single label.

Clearance label APIs can be used to do the following:

■ Find the greatest lower bound or the least upper bound between two labels
■ Compare labels for dominance and equality
■ Convert clearances between the internal format and the hexadecimal format

For a description of these APIs, see Chapter 2, “Labels and Clearances.”

Label Range APIs

A label range is used to set limits on the following:

■ The labels at which hosts can send and receive information
■ The labels at which processes acting on behalf of users and roles can work on the system
■ The labels at which users can allocate devices

This use of a label range restricts the labels at which files can be written to storage media on
these devices.

Label ranges are assigned administratively. Label ranges can apply to users, roles, hosts, zones,
network interfaces, printers, and other objects.

You can use the following methods to obtain information about label ranges:

■ getuserrange() obtains the user's label range.
■ getdevicerange() obtains the label range of a device.
■ tninfo -t template-name shows the label range of a template that is associated with a

network interface.

For a description of these APIs, see Chapter 2, “Labels and Clearances.”

Trusted X Window System APIs
The Trusted X Window System, Version 11, server starts at login. The server handles the
workstation windowing system by using a trusted interprocess communication (IPC) path.
Windows, properties, selections, and ToolTalk sessions are created at multiple sensitivity labels
as separate and distinct objects. The creation of distinct objects at multiple sensitivity labels is
called polyinstantiation. Applications that are created with Motif widgets, Xt Intrinsics, Xlib,
and desktop interfaces run within the constraints of the security policy. These constraints are
enforced by extensions to the X11 protocols.
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Chapter 6, “Trusted X Window System,” describes the programming interfaces that can access
the security attribute information described in “Trusted Extensions Security Policy” on
page 23. These programming interfaces can also be used to translate the labels and clearances
to text. The text can be constrained by a specified width and font list for display in the Trusted X
Window System.

The Trusted X Window System stores the following security attributes:

Audit ID
Group ID
Internet address
Process ID
Sensitivity label
Session ID

Trusted Path flag
Trusted Path window
User ID
X Window Server owner ID
X Window Server clearance
X Window Server minimum label

The Trusted Path flag identifies a window as a Trusted Path window. The Trusted Path window
protects the system from being accessed by untrusted programs. This window is always the
topmost window, such as the screen stripe or login window.

Appendix B, “Trusted Extensions API Reference,” lists the extensions that you can use to create
an X11 trusted IPC path.

Label Builder APIs
The Trusted Extensions software provides a label builder API that enables you to create a
graphical user interface (GUI) for your application. The GUI takes user input and builds a valid
label from that input.

A system that is configured with Trusted Extensions provides Motif based programming
interfaces for adding a basic label-building user interface to an application. The label-building
interface enables a user to interactively build valid sensitivity labels and valid clearances. For
information about these programming interfaces, see Chapter 7, “Label Builder APIs.”

Trusted Extensions Security Policy
Sensitivity labels control access to data and maintain the classification of data. All processes and
objects have a sensitivity label that is used in MAC decisions. The labels are attributes that are
interpreted by the system security policy. The system security policy is the set of rules that is
enforced by system software to protect information being processed on the system.

The following sections describe how the Trusted Extensions security policy affects multilevel
operations, zones, and labels.
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Multilevel Operations
When you create an operation that runs at multiple security levels, you must consider the
following issues:
■ Write-down policy in the global zone
■ Default security attributes
■ Default network policy
■ Multilevel ports
■ MAC-exempt sockets

Operations that run at multiple security levels are controlled by the global zone because only
processes in the global zone can initiate processes at specified labels.

Write-Down Policy in the Global Zone
The ability of a subject, such as a process, to write an object whose label it dominates is referred
to as writing down. The write-down policy in the global zone is specified administratively.
Because global zone processes run at the ADMIN_HIGH label, certain file systems that are
associated with other labels can be mounted read-write in the global zone. However, these
special file system mounts must be administratively specified in automount maps, and they
must be mounted by the global zone automounter. These mounts must have mount points
within the zone path of the zone that has the same label as the exported file system. However,
these mount points must not be visible from within the labeled zone.

For example, if the PUBLIC zone has a zone path of /zone/public, a writable mount point of
/zone/public/home/mydir is permitted. However, a writable mount point of
/zone/public/root/home/mydir is not permitted because it can be accessed by the labeled
zone and not by the global zone. No cross-zone NFS mounts are permitted, which means that
the NFS-mounted files can only be accessed by processes that run in the zone that mounted the
file system. Global zone processes can write down to such files, subject to the standard
discretionary access control (DAC) policy.

Local file systems associated with zones are protected from access by global zone processes by
DAC, which uses file permissions and access control lists (ACLs). The parent directory of each
zone's root (/) directory is only accessible by root processes or by processes that assert the
file_dac_search privilege.

In general, the ability to write down from the global zone is restricted. Typically, writing down
is used only when a file is reclassified by using the setflabel() interface or when privileged
users drag and drop files between File Manager applications in different zones.

Default Security Attributes
Default security attributes are assigned to messages that arrive on Trusted Extensions hosts
from other host types. The attributes are assigned according to settings in the network database
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files. For information about host types, their supported security attributes, and network
database file defaults, see Oracle Solaris Trusted Extensions Administrator’s Procedures.

Default Network Policy
For network operations that send or receive data, the default policy is that the local process and
the remote peer must have the same label. This policy applies to all zones, including the global
zone, whose network label is ADMIN_LOW. However, the default network policy is more flexible
than the policy for mounting file systems. Trusted Extensions provides administrative
interfaces and programmatic interfaces for overriding the default network policy. For example,
a system administrator can create an MLP in the global zone or in a labeled zone to enable
listening at different labels.

Multilevel Ports

Caution – Use extreme caution when using a multilevel port to violate MAC policy. When you
must use this mechanism, ensure that your server application enforces MAC policy.

Multilevel ports (MLPs) are listed in the tnzonecfg administrative database. Processes within
the zone can bind to MLPs if these processes assert the net_bindmlp privilege. If the port
number is less than 1024, the net_privaddr privilege must also be asserted. Such bindings
allow a process to accept connections at all labels that are associated with the IP addresses to
which the process is bound. The labels that are associated with a network interface are specified
in the tnrhdb database and the tnrhtp database. The labels can be specified by a range, by a set
of explicit enumerated labels, or by a combination of both.

When a privileged process that is bound to an MLP receives a TCP request, the reply is
automatically sent with the label of the requester. For UDP datagrams, the reply is sent with the
label that is specified by the SO_RECVUCRED option.

The privileged process can implement a more restrictive MAC policy by comparing the label of
the request to other parameters. For example, a web server could compare the label of the
requesting process with the label of the file specified in the URL. The remote label can be
determined by using the getpeerucred() function, which returns the credentials of the remote
peer. If the peer is running in a zone on the same host, the ucred_get() library routine returns a
full set of credentials. Regardless of whether the peer is local or remote, the label of the peer is
accessible from the ucred data structure by using the ucred_getlabel() function. This label
can be compared with other labels by using functions such as bldominates().

A zone can have single-level ports and multilevel ports. See “Multilevel Port Information” on
page 61.
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MAC-Exempt Sockets
The Trusted Extensions software provides an explicit socket option, SO_MAC_EXEMPT, to specify
that the socket can be used to communicate with an endpoint at a lower label.

Caution – The SO_MAC_EXEMPT socket option must never be used unintentionally. Use extreme
caution when using this socket option to disable MAC policy. When you must use this
mechanism, ensure that your client application enforces MAC policy.

The Trusted Extensions software restricts the use of the SO_MAC_EXEMPT option in these ways:

■ To explicitly set the socket option, a process must assert the net_mac_aware privilege.
■ To further restrict the use of this socket option, the net_mac_aware privilege can be

removed from the limit set for ordinary users.

See the user_attr(4) man page for details.

Sometimes, explicitly setting the socket option is not practical, such as when the socket is
managed by a library. In such circumstances, the socket option can be set implicitly. The
setpflags() system call enables you to set the NET_MAC_AWARE process flag. Setting this process
flag also requires the net_mac_aware privilege. All sockets that are opened while the process flag
is enabled automatically have the SO_MAC_EXEMPT socket option set. See the setpflags(2) and
getpflags(2) man pages.

For applications that cannot be modified or recompiled, use the ppriv -M command to pass the
net_mac_aware process flag to the application. In this case, all sockets that are opened by the
application have the SO_MAC_EXEMPT option set. However, child processes of the application do
not have this process flag or the related privilege.

Whenever you can, scrutinize and modify the source code of an application when you need to
use the SO_MAC_EXEMPT socket option. If you cannot make such modifications to the code or if a
safer method is not available to you, you may use the ppriv -M command.

The SO_MAC_EXEMPT socket option has been used sparingly by the Oracle Solaris OS. This
option has been used by the NFS client. An NFS client might need to communicate with an NFS
server that runs at a different label on an untrusted operating system. The NFS client enforces
MAC policy to ensure that inappropriate requests are not granted.

In the Oracle Solaris OS, both the NFS server and client code include and enforce MAC policy
so that communications between the Oracle Solaris client or server and an untrusted client or
server has MAC policy enabled. To enable an untrusted host to communicate with a system that
runs Trusted Extensions, the untrusted host must have an entry in the tnrhdb database. For
more information, see “Configuring Trusted Network Databases (Task Map)” in Oracle Solaris
Trusted Extensions Administrator’s Procedures.
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Note – For examples of how the Trusted Extensions APIs are used in the Oracle Solaris OS, see
the Oracle Solaris source code. Go to the OpenSolaris web site (http://
hub.opensolaris.org/bin/view/Main/) and click Source Browser in the left navigation bar.
Use the Source Browser to search through the Oracle Solaris source code.

Zones and Labels
All objects on a system configured with Trusted Extensions are associated with a zone. Such
zones are called labeled zones. A labeled zone is a non-global zone and is accessible to ordinary
users. A user who is cleared at more than one label is permitted access to a zone at each of those
labels.

The global zone is a special zone that contains files and processes that control the security policy
of the system. Files in the global zone can only be accessed by roles and by privileged processes.

Labels in the Global Zone
The global zone is assigned a range of labels. The range is from ADMIN_LOW to ADMIN_HIGH.
ADMIN_HIGH and ADMIN_LOW are administrative labels.

Objects in the global zone that are shared with other zones are assigned the ADMIN_LOW label. For
example, files in the /usr, /sbin, and /lib directories are assigned the ADMIN_LOW label. These
directories and their contents are shared by all zones. These files and directories are typically
installed from packages and are generally not modified, except during packaging or patching
procedures. To modify ADMIN_LOW files, a process must typically be run by superuser or by
someone who has all privileges.

Information that is private to the global zone is assigned the label ADMIN_HIGH. For example, all
processes in the global zone and all administrative files in the /etc directory are assigned the
ADMIN_HIGH label. Home directories that are associated with roles are assigned the ADMIN_HIGH
label. Multilevel information that is associated with users is also assigned the ADMIN_HIGH label.
See “Multilevel Operations” on page 24. Access to the global zone is restricted. Only system
services and administrative roles can execute processes in the global zone.

Labeled Zones
Non-global zones are called labeled zones. Each labeled zone has a unique label. All objects
within a labeled zone have the same label. For example, all processes that run in a labeled zone
have the same label. All files that are writable in a labeled zone have the same label. A user who is
cleared for more than one label has access to a labeled zone at each label.
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Trusted Extensions defines a set of label APIs for zones. These APIs obtain the labels that are
associated with labeled zones and the path names within those zones:

■ getpathbylabel()

■ getzoneidbylabel()

■ getzonelabelbyid()

■ getzonelabelbyname()

■ getzonerootbyid()

■ getzonerootbylabel()

■ getzonerootbyname()

For more information about these APIs, see “Accessing Labels in Zones” on page 34.

The label of a file is based on the label of the zone or of the host that owns the file. Therefore,
when you relabel a file, the file must be moved to the appropriate labeled zone or to the
appropriate labeled host. This process of relabeling a file is also referred to as reclassifying a file.
The setflabel() library routine can relabel a file by moving the file. To relabel a file, a process
must assert the file_upgrade_sl privilege or the file_downgrade_sl privilege. See the
getlabel(2) and setflabel(3TSOL) man pages.

For more information about setting privileges, see Chapter 2, “Developing Privileged
Applications,” in Oracle Solaris Security for Developers Guide.

Trusted Extensions Security Policy

Oracle Solaris Trusted Extensions Developer's Guide • September 201028

http://docs.sun.com/doc/816-5167/getlabel-2?a=view
http://docs.sun.com/doc/816-5172/setflabel-3tsol?a=view
http://docs.sun.com/doc/816-4863
http://docs.sun.com/doc/816-4863


Labels and Clearances

This chapter describes the Trusted Extensions APIs for performing basic label operations such
as initializing labels, and comparing labels and clearances. This chapter also describes the APIs
for accessing the label of a process.

For examples of how the Trusted Extensions APIs are used in the Oracle Solaris OS, see the
Oracle Solaris source code. Go to the OpenSolaris web site (http://hub.opensolaris.org/
bin/view/Main/) and click Source Browser in the left navigation bar. Use the Source Browser
to search through the Oracle Solaris source code.

This chapter covers the following topics:

■ “Privileged Operations and Labels” on page 29
■ “Label APIs” on page 31
■ “Acquiring a Sensitivity Label” on page 39

Chapter 3, “Label Code Examples,” provides code examples for the programming interfaces that
are described in this chapter.

Privileged Operations and Labels
When an operation can bypass or override the security policy, the operation requires special
privileges in its effective set.
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Privileges are added to the effective set programmatically or administratively in these ways:

■ If the executable file is owned by root and has the set user ID permission bit set, it starts with
all privileges in its effective set. For example, the CDE File Manager starts with all privileges
in its effective set. Then, File Manager programmatically relinquishes most of its privileges
to retain only the ones it needs to perform drag-and-drop operations across labels.

■ The administrator can specify privileges in manifest files for SMF services or in the RBAC
database exec_attr file for general commands. For more information about this file, see the
exec_attr(4) man page.

The operation needs special privileges when translating binary labels and when upgrading or
downgrading sensitivity labels.

Users and roles can run operations with special privileges. These privileges can be specified by
using rights profiles. Applications can be written to run certain functions with certain privileges,
as well. When you write an application that must assume special privileges, make sure that you
enable the privilege only while running the function that needs it and that you remove the
privilege when the function completes. This practice is referred to as privilege bracketing. For
more information, see Oracle Solaris Security for Developers Guide.

■ Translating binary labels – You can translate a label between its internal representation
and a string. If the label being translated is not dominated by the label of the process, the
calling process requires the sys_trans_label privilege to perform the translation.

■ Upgrading or downgrading sensitivity labels – You can downgrade or upgrade the
sensitivity label on a file. If the file is not owned by the calling process, the calling process
requires the file_owner privilege in its effective set. For more information, see the
setflabel(3TSOL) man page.

A process can set the sensitivity label on a file system object to a new sensitivity label that
does not dominate the object's existing sensitivity label with the file_downgrade_sl
privilege in its effective set. The file_downgrade_sl privilege also allows a file to be
relabeled to a disjoint label.

A process can set the sensitivity label on a file system object to a new sensitivity label that
dominates the object's existing sensitivity label with the file_upgrade_sl privilege in its
effective set.

Most applications do not use privileges to bypass access controls because the applications
operate in one of the following ways:

■ The application is launched at one sensitivity label and accesses data in objects at that same
sensitivity label.

■ The application is launched at one sensitivity label and accesses data in objects at other
sensitivity labels, but the mandatory access operations are permitted by the system security
policy. For example, read-down is allowed by MAC.
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If an application tries to access data at sensitivity labels other than the sensitivity label of its
process and access is denied, the process needs privileges to gain access. Privileges enable an
application to bypass MAC or DAC. For example, the file_dac_read, file_dac_write, and
file_dac_search privileges bypass DAC. The file_upgrade_sl and file_downgrade_sl

privileges bypass MAC. No matter how access is obtained, the application design must not
compromise the classification of the data that is accessed.

When your application changes its own sensitivity label or the sensitivity label of another
object, be sure to close all file descriptors. An open file descriptor might leak sensitive data to
other processes.

Label APIs
This section describes the APIs that are available for basic label operations. To use these APIs,
you must include the following header file:

#include <tsol/label.h>

The label APIs compile with the -ltsol library option.

The Trusted Extensions APIs include data types for the following:

■ Sensitivity label – The m_label_t type definition represents a sensitivity label. The
m_label_t structure is opaque.

Interfaces accept a variable of type m_label_t as a parameter. Interfaces can return
sensitivity labels in a variable of type m_label_t. The m_label_t type definition is
compatible with the blevel_t structure.

■ Sensitivity label range – The brange_t data structure represents a range of sensitivity
labels. The structure holds a minimum label and a maximum label. The structure fields are
referred to as variable.lower_bound and variable.upper_bound.

The APIs for the following operations are described in this section:

■ Detecting a Trusted Extensions system
■ Accessing the process sensitivity label
■ Allocating and freeing memory for labels
■ Obtaining and setting the label of a file
■ Obtaining label ranges
■ Accessing labels in zones
■ Obtaining the remote host type
■ Translating between labels and strings
■ Comparing labels
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Detecting a Trusted Extensions System
The is_system_labeled() routine is used to determine whether you are running on a Trusted
Extensions system. The following routine description includes the prototype declaration for
each routine:

int is_system_labeled(void);

The is_system_labeled() routine returns TRUE (1) if the Trusted Extensions software is
installed and active. Otherwise, it returns FALSE (0).

See the is_system_labeled(3C) man page. For an example of this routine's use, see
“get_peer_label() Label-Aware Function” on page 53.

You can also use these other interfaces to determine whether the system is labeled:
■ X client. If you are writing an X client that depends on multilevel functionality, use the

XQueryExtension() routine to query the X server for the SUN_TSOL extension.
■ Shell script. If you are writing a shell script that will determine whether the system is

labeled, use the plabel command. See the plabel(1) man page.
The following example shows the smf_is_system_labeled() function used by the
/onnv/onnv-gate/usr/src/cmd/svc/shell/smf_include.sh script:

#

# Returns zero (success) if system is labeled (aka Trusted Extensions).

# 1 otherwise.

#

smf_is_system_labeled() {

[ ! -x /bin/plabel ] && return 1

/bin/plabel > /dev/null 2>&1

return $?

}

Accessing the Process Sensitivity Label
The getplabel() and ucred_getlabel() routines are used to access the sensitivity label of a
process. The following routine descriptions include the prototype declaration for each routine:

int getplabel(m_label_t *label_p);

The getplabel() routine obtains the process label of the calling process.

See the getplabel(3TSOL) man page.

m_label_t *ucred_getlabel(const ucred_t *uc);

The ucred_getlabel() routine obtains the label in the credential of the remote process.

See the ucred_getlabel(3C) man page. For an example of this routine's use, see
“get_peer_label() Label-Aware Function” on page 53.
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Allocating and Freeing Memory for Labels
The m_label_alloc(), m_label_dup(), and m_label_free() routines are used to allocate and
free memory for labels. The following routine descriptions include the prototype declaration
for each routine:

m_label_t *m_label_alloc(const m_label_type_t label_type);

The m_label_alloc() routine allocates a label in an m_label_t data structure on the heap.
Labels must be allocated before calling routines such as getlabel() and fgetlabel(). Some
routines, such as str_to_label(), automatically allocate an m_label_t structure.

When you create a label by using the m_label_alloc() routine, you can set the label type to
be a sensitivity label or a clearance label.

int m_label_dup(m_label_t **dst, const m_label_t *src);

The m_label_dup() routine duplicates a label.

void m_label_free(m_label_t *label);

The m_label_free() routine frees the memory that was allocated for a label.

When you allocate an m_label_t structure or when you call another routine that
automatically allocates an m_label_t structure, you are responsible for freeing the allocated
memory. The m_label_free() routine frees the allocated memory.

See the m_label(3TSOL) man page.

Obtaining and Setting the Label of a File
The setflabel() routine, the getlabel() system call, and the fgetlabel() system call are
used to obtain and set the label of a file. The following descriptions include the prototype
declarations for the routine and the system calls:

int setflabel(const char *path, const m_label_t *label_p);

The setflabel() routine changes the sensitivity label of a file. When the sensitivity label of a
file changes, the file is moved to a zone that corresponds to the new label. The file is moved to
a new path name that is relative to the root of the other zone.

See the setflabel(3TSOL) man page.

For example, if you use the setflabel() routine to change the label of the file
/zone/internal/documents/designdoc.odt from INTERNAL to RESTRICTED, the new path
of the file will be /zone/restricted/documents/designdoc.odt. Note that if the
destination directory does not exist, the file is not moved.

When you change the sensitivity label of a file, the original file is deleted. The only exception
occurs when the source and destination file systems are loopback-mounted from the same
underlying file system. In this case, the file is renamed.
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When a process creates an object, the object inherits the sensitivity label of its calling process.
The setflabel() routine programmatically sets the sensitivity label of a file system object.

The File Manager application and the setlabel command permit an authorized user to
move an existing file to a different sensitivity label. See the setlabel(1) man page.

int getlabel(const char *path, m_label_t *label_p);

The getlabel() system call obtains the label of a file that is specified by path. The label is
stored in an m_label_t structure that you allocate.

See the getlabel(2) man page.

int fgetlabel(int fd, m_label_t *label_p);

The fgetlabel() system call obtains the label of an open file by specifying a file descriptor.

When you allocate an m_label_t structure, you are responsible for freeing the allocated
memory by using the m_label_free() routine. See the m_label(3TSOL) man page.

Obtaining Label Ranges
The getuserrange() and getdevicerange() routines are used to obtain the label range of a
user and a device, respectively. The following routine descriptions include the prototype
declaration for each routine:

m_range_t *getuserrange(const char *username);

The getuserrange() routine obtains the label range of the specified user. The lower bound
in the range is used as the initial workspace label when a user logs in to a multilevel desktop.
The upper bound, or clearance, is used as an upper limit to the available labels that a user can
assign to labeled workspaces.

The default value for a user's label range is specified in the label_encodings file. The value
can be overridden by the user_attr file.

See the setflabel(3TSOL), label_encodings(4), and user_attr(4) man pages.

bl_range_t *getdevicerange(const char *device);

The getdevicerange() routine obtains the label range of a user-allocatable device. If no
label range is specified for the device, the default range has an upper bound of ADMIN_HIGH
and a lower bound of ADMIN_LOW.

You can use the list_devices command to show the label range for a device.

See the list_devices(1) and getdevicerange(3TSOL) man pages.

Accessing Labels in Zones
These functions obtain label information from objects in zones. The following routine
descriptions include the prototype declaration for each routine:
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char *getpathbylabel(const char *path, char *resolved_path, size_t bufsize,

const m_label_t *sl);

The getpathbylabel() routine expands all symbolic links and resolves references to /./,
/../, removes extra slash (/) characters, and stores the zone path name in the buffer named
by resolved_path. The bufsize variable specifies the size in bytes of this buffer. The resulting
path does not have any symbolic link components or any /./, /../. This function can only
be called from the global zone.

The zone path name is relative to the sensitivity label, sl. To specify a sensitivity label for a
zone name that does not exist, the process must assert either the priv_file_upgrade_sl or
the priv_file_downgrade_sl privilege, depending on whether the specified sensitivity label
dominates or does not dominate the process sensitivity label.

See the getpathbylabel(3TSOL) man page.

m_label_t *getzoneidbylabel(const m_label_t *label);

The getzoneidbylabel() routine returns the zone ID of the zone whose label is label. This
routine requires that the specified zone's state is at least ZONE_IS_READY. The zone of the
calling process must dominate the specified zone's label, or the calling process must be in the
global zone.

See the getzoneidbylabel(3TSOL) man page.

m_label_t *getzonelabelbyid(zoneid_t zoneid);

The getzonelabelbyid() routine returns the MAC label of zoneid. This routine requires
that the specified zone's state is at least ZONE_IS_READY. The zone of the calling process must
dominate the specified zone's label, or the calling process must be in the global zone.

See the getzonelabelbyid(3TSOL) man page.

m_label_t *getzonelabelbyname(const char *zonename);

The getzonelabelbyname() routine returns the MAC label of the zone whose name is
zonename. This routine requires that the specified zone's state is at least ZONE_IS_READY. The
zone of the calling process must dominate the specified zone's label, or the calling process
must be in the global zone.

See the getzonelabelbyname(3TSOL) man page.

m_label_t *getzonerootbyid(zoneid_t zoneid);

The getzonerootbyid() routine returns the root path name of zoneid. This routine requires
that the specified zone's state is at least ZONE_IS_READY. The zone of the calling process must
dominate the specified zone's label, or the calling process must be in the global zone. The
returned path name is relative to the root path of the caller's zone.

See the getzonerootbyid(3TSOL) man page.

m_label_t *getzonerootbylabel(const m_label_t *label);

The getzonerootbylabel() routine returns the root path name of the zone whose label is
label. This routine requires that the specified zone's state is at least ZONE_IS_READY. The zone
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of the calling process must dominate the specified zone's label, or the calling process must be
in the global zone. The returned path name is relative to the root path of the caller's zone.

See the getzonerootbylabel(3TSOL) man page.

m_label_t *getzonerootbyname(const char *zonename);

The getzonerootbyname() routine returns the root path name of zonename. This routine
requires that the specified zone's state is at least ZONE_IS_READY. The zone of the calling
process must dominate the specified zone's label, or the calling process must be in the global
zone. The returned path name is relative to the root path of the caller's zone.

See the getzonerootbyname(3TSOL) man page.

Obtaining the Remote Host Type
This routine determines the remote host type. The following routine description includes the
prototype declaration:

tsol_host_type_t tsol_getrhtype(char *hostname);

The tsol_getrhtype() routine queries the kernel-level network information to determine
the host type that is associated with the specified host name. hostname can be a regular host
name, an IP address, or a network wildcard address. The returned value is one of the
enumerated types that is defined in the tsol_host_type_t structure. Currently, these types
are UNLABELED and SUN_CIPSO.

See the tsol_getrhtype(3TSOL) man page.

Translating Between Labels and Strings
The label_to_str() and str_to_label() routines are used to translate between labels and
strings. The following routine descriptions include the prototype declaration for each routine:

int label_to_str(const m_label_t *label, char **string, const m_label_str_t

conversion_type, uint_t flags);

The label_to_str() routine translates a label, m_label_t, to a string. You can use this
routine to translate a label into a string that hides the classification name. This format is
suitable for storing in public objects. The calling process must dominate the label to be
translated, or the process must have the sys_trans_label privilege.

See the label_to_str(3TSOL) man page.

The label_to_str() routine allocates memory for the translated string. The caller must free
this memory by calling the free() routine.

See the free(3C) man page.
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int str_to_label(const char *string, m_label_t **label, const m_label_type_t

label_type, uint_t flags, int *error);

The str_to_label() routine translates a label string to a label, m_label_t. When you
allocate an m_label_t structure, you must free the allocated memory by using the
m_label_free() routine.

When you create a label by using the str_to_label() routine, you can set the label type to
be a sensitivity label or a clearance label.

See the str_to_label(3TSOL) and m_label(3TSOL) man pages.

Readable Versions of Labels
The label_to_str() routine provides readable versions of labels. The M_LABEL conversion type
returns a string that is classified at that label. The M_INTERNAL conversion type returns a string
that is unclassified. The classified string version is typically used for displays, as in windows. The
classified string might not be suitable for storage. Several conversion types are offered for
printing purposes. All printing types show a readable string that is classified at the label that the
string shows.

The conversion_type parameter controls the type of label conversion. The following are valid
values for conversion_type, although not all types of conversion are valid for both level types:
■ M_LABEL is a string of the label that is based on the type of label: sensitivity or clearance. This

label string is classified at the level of the label and is therefore not safe for storing in a public
object. For example, an M_LABEL string such as CONFIDENTIAL is not safe for storing in a
public directory because the words in the label are often classified.

■ M_INTERNAL is a string of an unclassified representation of the label. This string is safe for
storing in a public object. For example, an M_INTERNAL string such as 0x0002-04-48 is safe
for storing in an LDAP database.

■ M_COLOR is a string that represents the color that the security administrator has associated
with the label. The association between the label and the color is stored in the LOCAL
DEFINITIONS section of the label_encodings file.

■ PRINTER_TOP_BOTTOM is a string used as the top and the bottom label of banner and trailer
pages.

■ PRINTER_LABEL is a string used as the downgrade warning on the banner page.
■ PRINTER_CAVEATS is a string used in the caveats section on the banner page.
■ PRINTER_CHANNEL is a string used as the handling channels on the banner page.

Label Encodings File
The label_to_str() routine uses the label definitions in the label_encodings file. The
encodings file is a text file that is maintained by the security administrator. The file contains
site-specific label definitions and constraints. This file is kept in
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/etc/security/tsol/label_encodings. For information about the label_encodings file, see
Oracle Solaris Trusted Extensions Label Administration, Compartmented Mode Workstation
Labeling: Encodings Format, and the label_encodings(4) man page.

Comparing Labels
The blequal(), bldominates(), and blstrictdom() routines are used to compare labels. The
blinrange() routine is used to determine whether a label is within a specified label range. In
these routines, a level refers to a classification and a set of compartments in a sensitivity label or
in a clearance label.

int blequal(const blevel_t *level1, const blevel_t *level2);

The blequal() routine compares two labels to determine whether level1 equals level2.

int bldominates(const m_label_t *level1, const m_label_t *level2);

The bldominates() routine compares two labels to determine whether level1 dominates
level2.

int blstrictdom(const m_label_t *level1, const m_label_t *level2);

The blstrictdom() routine compares two labels to determine whether level1 strictly
dominates level2.

int blinrange(const m_label_t *level, const brange_t *range);

The blinrange() routine determines whether the label, level, is within the specified range,
range.

These routines return a nonzero value when the comparison is true and a value of 0 when the
comparison is false. For more information about these routines, see the blcompare(3TSOL)
man page. For examples of how these routines are used in the multilevel printing application,
see “Validating the Label Request Against the Printer's Label Range” on page 57.

For more information about label relationships, see “Label Relationships” on page 17.

The blmaximum() and blminimum() routines are used to determine the upper and lower bounds
of the specified label range.

void blmaximum(m_label_t *maximum_label, const m_label_t *bounding_label);

The blmaximum() routine compares two labels to find the least upper bound of the range.
The least upper bound is the lower of two clearances, which is used to determine whether you
have access to a system of a particular clearance.

For instance, use this routine to determine the label to use when creating a new labeled object
that combines information from two other labeled objects. The label of the new object will
dominate both of the original labeled objects.

See the blminmax(3TSOL) man page.
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void blminimum(m_label_t *minimum_label, const m_label_t *bounding_label);

The blminimum() routine compares two labels to find the label that represents the greatest
lower bound of the range that is bounded by the two levels. The greatest lower bound is the
higher of two labels, which is also used to determine whether you have access to a system of a
particular clearance.

See the blminmax(3TSOL) man page.

Acquiring a Sensitivity Label
Sensitivity labels are acquired from labeled zones and from other processes. A user can start a
process only at the current sensitivity label of the current zone.

When a process creates an object, the object inherits the sensitivity label of its calling process.
You can use the setlabel command or the setflabel() routine to set the sensitivity label of a
file system object. See the setlabel(1) and setflabel(3TSOL) man pages.

The following script, runwlabel, runs a program that you specify in the labeled zone that you
specify. You must run this script from the global zone.

EXAMPLE 2–1 runwlabel Script

The runwlabel script must first acquire the sensitivity label of the labeled zone in which you
want to run the specified program. This script uses the getzonepath command to obtain the
zone path from the label that you specify on the command line. See the getzonepath(1) man
page.

Next, the runwlabel script uses the zoneadm command to find the zone name associated with
the zone path, which was acquired by the getzonepath command. See the zoneadm(1M) man
page.

Finally, the runwlabel script uses the zlogin command to run the program that you specify in
the zone associated with the label you specified. See the zlogin(1) man page.

To run the zonename command in the zone associated with the Confidential: Internal Use
Only label, run the runwlabel script from the global zone. For example:

machine1% runwlabel "Confidential : Internal Use Only" zonename

The following shows the source of the runwlabel script:

#!/sbin/sh

#

# Usage:

# runwlabel "my-label" my-program

#
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EXAMPLE 2–1 runwlabel Script (Continued)

[ ! -x /usr/sbin/zoneadm ] && exit 0 # SUNWzoneu not installed

PATH=/usr/sbin:/usr/bin; export PATH

# Get the zone path associated with the "my-label" zone

# Remove the trailing "/root"
zonepath=‘getzonepath "$1" | sed -e ’s/\/root$//’‘
progname="$2"

# Find the zone name that is associated with this zone path

for zone in ‘zoneadm list -pi | nawk -F: -v zonepath=${zonepath} ’{

if ($4 == zonepath) {

print $2

}

}’‘; do

# Run the specified command in the matching zone

zlogin ${zone} ${progname}

done

exit

The following script, runinzone, runs a program in a zone that you specify even if the zone is
not booted. You must run this script from the global zone.

EXAMPLE 2–2 runinzone Script

The script first boots the zone you specified, and then it uses the zlogin command to run the
waitforzone script in the specified zone.

The waitforzone script waits for the local zone automounter to come up, and then it runs the
program you specified as the user you specified.

To run the /usr/bin/xclock command in the public zone, run the following from the global
zone:

machine1% runinzone public terry /usr/bin/xclock

The following shows the source of the runinzone script:

#!/sbin/ksh

zonename=$1

user=$2

program=$3

# Boot the specified zone
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EXAMPLE 2–2 runinzone Script (Continued)

zoneadm -z ${zonename} boot

# Run the command in the specified zone

zlogin ${zonename} /bin/demo/waitforzone ${user} ${program} ${DISPLAY}

The runinzone script calls the following script, waitforzone:

#!/bin/ksh

user=$1

program=$2

display=$3

# Wait for the local zone automounter to come up

# by checking for the auto_home trigger being loaded

while [ ! -d /home/${user} ]; do

sleep 1

done

# Now, run the command you specified as the specified user

su - ${user} -c "${program} -display ${display}"
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Label Code Examples

This chapter contains several code examples that show how to use the label APIs that are
described in Chapter 2, “Labels and Clearances.”

This chapter covers the following topics:

■ “Obtaining a Process Label” on page 43
■ “Obtaining a File Label” on page 44
■ “Setting a File Sensitivity Label” on page 45
■ “Determining the Relationship Between Two Labels” on page 46
■ “Obtaining the Color Names of Labels” on page 47
■ “Obtaining Printer Banner Information” on page 48

Obtaining a Process Label
This code example shows how to obtain and print the sensitivity label of the zone in which this
program is run.

#include <tsol/label.h>

main()

{

m_label_t* pl;

char *plabel = NULL;

int retval;

/* allocate an m_label_t for the process sensitivity label */

pl = m_label_alloc(MAC_LABEL);

/* get the process sensitivity label */

if ((retval = getplabel(pl)) != 0) {

perror("getplabel(pl) failed");
exit(1);
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43



}

/* Translate the process sensitivity label to text and print */

if ((retval = label_to_str(pl, &plabel, M_LABEL, LONG_NAMES)) != 0) {

perror("label_to_str(M_LABEL, LONG_NAMES) failed");
exit(1);

}

printf("Process label = %s\n", plabel);

/* free allocated memory */

m_label_free(pl);

free(plabel);

}

The printf() statement prints the sensitivity label. The sensitivity label is inherited from the
zone in which the program is run. The following shows the text output of this example
program:

Process label = ADMIN_LOW

The text output depends on the specifications in the label_encodings file.

Obtaining a File Label
You can obtain a file's sensitivity label and perform operations on that label.

This code example uses the getlabel() routine to obtain the file's label. The fgetlabel()
routine can be used in the same way, but it operates on a file descriptor.

#include <tsol/label.h>

main()

{

m_label_t* docLabel;

const char* path = "/zone/restricted/documents/designdoc.odt";
int retval;

char* label_string;

/* allocate label and get the file label specified by path */

docLabel = m_label_alloc(MAC_LABEL);

retval = getlabel(path, docLabel);

/* translate the file’s label to a string and print the string */

retval = label_to_str(docLabel, &label_string, M_LABEL, LONG_NAMES);

printf("The file’s label = %s\n", label_string);
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/* free allocated memory */

m_label_free(docLabel);

free(label_string);

}

When you run this program, the output might look similar to this:

The file’s label = CONFIDENTIAL : INTERNAL USE ONLY

Setting a File Sensitivity Label
When you change the sensitivity label of a file, the file is moved to a new zone that matches the
file's new label.

In this code example, the process is running at the CONFIDENTIAL label. The user who is running
the process has a TOP SECRET clearance. The TOP SECRET label dominates the CONFIDENTIAL
label. The process upgrades the sensitivity label to TOP SECRET. The user needs the Upgrade File
Label RBAC authorization to successfully perform the upgrade.

The following program is called upgrade-afile.

#include <tsol/label.h>

main()

{

int retval, error;

m_label_t *fsenslabel;

char *string = “TOP SECRET”;

*string1 = “TOP SECRET”;

/* Create new sensitivity label value */

if ((retval = str_to_label(string, &fsenslabel, MAC_LABEL, L_DEFAULT, &err)) != 0) {

perror("str_to_label(MAC_LABEL, L_DEFAULT) failed");
exit(1);

}

/* Set file label to new value */

if ((retval = setflabel(“/export/home/zelda/afile”, &fsenslabel)) != 0) {

perror("setflabel(“/export/home/zelda/afile”) failed");
exit(1);

}

m_label_free(fsenslabel);

}

The result of running this program depends on the process's label, relative to the label of the file
that was passed to the process.
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Before and after you run this program, you use the getlabel command to verify the file's label.
As the following shows, before the program runs, the label for afile is CONFIDENTIAL. After the
program runs, the label for afile is TOP SECRET.

% pwd

/export/home/zelda

% getlabel afile

afile: CONFIDENTIAL

% update-afile

% getlabel afile

afile: TOP SECRET

If you run the getlabel command from a window labeled CONFIDENTIAL after you reclassified
the file, it is no longer visible. If you run the getlabel command in a window labeled TOP

SECRET, you can see the reclassified file.

Determining the Relationship Between Two Labels
If your application accesses data at different sensitivity labels, perform checks in your code to
ensure that the process label has the correct relationship to the data label before you permit an
access operation to occur. You check the sensitivity label of the object that is being accessed to
determine whether access is permitted by the system.

The following code example shows how to test two sensitivity labels for equality, dominance,
and strict dominance. The program checks whether a file's label is dominated by or is equal to
the process's label.

#include <stdio.h>

#include <stdlib.h>

#include <tsol/label.h>

main(int argc, char *argv[])

{

m_label_t *plabel;

m_label_t *flabel;

plabel = m_label_alloc(MAC_LABEL);

flabel = m_label_alloc(MAC_LABEL);

if (getplabel(plabel) == -1) {

perror("getplabel");
exit(1);

}

if (getlabel(argv[1], flabel) == -1) {

perror("getlabel");
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exit(1);

}

if (blequal(plabel, flabel)) {

printf("Labels are equal\n");
}

if (bldominates(plabel, flabel)) {

printf("Process label dominates file label\n");
}

if (blstrictdom(plabel, flabel)) {

printf("Process label strictly dominates file label\n");
}

m_label_free(plabel);

m_label_free(flabel);

return (0);

}

The text output of this program depends on the process's label, relative to the label of the file
that was passed to the process, as follows:

■ Because “dominates” includes “equal,” when the labels are equal, the output is the following:

Labels are equal

Process label dominates file label

■ If the process's label strictly dominates the file's label, the output is the following:

Process label strictly dominates file label

Obtaining the Color Names of Labels
This code example uses the label_to_str() function to obtain the color name of a label. The
mappings between color names and labels are defined in the label_encodings file.

#include <stdlib.h>

#include <stdio.h>

#include <tsol/label.h>

int

main()

{

m_label_t *plabel;

char *label = NULL;

char *color = NULL;
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plabel = m_label_alloc(MAC_LABEL);

if (getplabel(plabel) == -1) {

perror("getplabel");
exit(1);

}

if (label_to_str(plabel, &color, M_COLOR, 0) != 0) {

perror("label_to_string(M_COLOR)");
exit(1);

}

if (label_to_str(plabel, &label, M_LABEL, DEF_NAMES) != 0) {

perror("label_to_str(M_LABEL)");
exit(1);

}

printf("The color for the \"%s\" label is \"%s\".\n, label, color);

m_label_free(plabel);

return (0);

}

If the label_encodings file maps the color blue to the label CONFIDENTIAL, the program prints
the following:

The color for the "CONFIDENTIAL" label is "BLUE".

Obtaining Printer Banner Information
The label_encodings file defines several conversions that are useful for printing security
information on printer output. Label conversions are printed at the top and at the bottom of
pages. Other conversions, such as handling channels, can appear on the banner pages.

In the following code example, the label_to_str() routine converts a label to strings, such as
the header and footer, a caveats section, and handling channels. This routine is used internally
by the Trusted Extensions print system, as shown in Chapter 4, “Printing and the Label APIs.”

#include <stdlib.h>

#include <stdio.h>

#include <tsol/label.h>

int

main()

{
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m_label_t *plabel;

char *header = NULL;

char *label = NULL;

char *caveats = NULL;

char *channels = NULL;

plabel = m_label_alloc(MAC_LABEL);

if (getplabel(plabel) == -1) {

perror("getplabel");
exit(1);

}

if (label_to_str(plabel, &header, PRINTER_TOP_BOTTOM, DEF_NAMES) != 0) {

perror("label_to_str: header");
exit(1);

}

if (label_to_str(plabel, &label, PRINTER_LABEL, DEF_NAMES) != 0) {

perror("label_to_str: label");
exit(1);

}

if (label_to_str(plabel, &caveats, PRINTER_CAVEATS, DEF_NAMES) != 0) {

perror("label_to_str: caveats");
exit(1);

}

if (label_to_str(plabel, &channels, PRINTER_CHANNELS, DEF_NAMES) != 0) {

perror("label_to_str: channels");
exit(1);

}

printf("\t\t\t\"%s\"\n\n", header);

printf("\t\tUnless manually reviewed and downgraded, this output\n");
printf("\t\tmust be protected at the following label:\n\n");
printf("\t\t\t\"%s\"\n", label);

printf("\n\n\n");
printf("\t\t\"%s\"\n", caveats);

printf("\t\t\"%s\"\n", channels);

printf("\n\n");
printf("\t\t\t\"%s\"\n", header);

m_label_free(plabel);

return (0);

}

For a process label of TS SA SB, the text output might be the following:

"TOP SECRET"

Unless manually reviewed and downgraded, this output
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must be protected at the following label:

"TOP SECRET A B SA SB"

"(FULL SB NAME) (FULL SA NAME)"
"HANDLE VIA (CH B)/(CH A) CHANNELS JOINTLY"

"TOP SECRET"

For more information, see the label_encodings(4) man page, Compartmented Mode
Workstation Labeling: Encodings Format, and Oracle Solaris Trusted Extensions Label
Administration.
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Printing and the Label APIs

Printing is one type of service that needs to be label-aware. This chapter introduces the Trusted
Extensions label APIs by using as an example the multilevel printing service that was developed
for Trusted Extensions.

This chapter covers the following topics:

■ “Printing Labeled Output” on page 51
■ “Designing a Label-Aware Application” on page 52
■ “Understanding the Multilevel Printing Service” on page 52
■ “get_peer_label() Label-Aware Function” on page 53
■ “Validating the Label Request Against the Printer's Label Range” on page 57

Printing Labeled Output
Typically, printers are shared resources. Multilevel printing allows users who are operating at
different security levels to share a printer, subject to the restrictions of the security policy. The
printing service is also label-aware so that labels can be clearly marked on printed documents.

You can assume the System Administrator role in role-based access control (RBAC) to
configure a printer so that the output is labeled. The session label at which the print job is
initiated is printed on the banner and trailer pages. The label of the session is also added to the
header and footer of every printed page. The labels can be printed because of a printing adapter.
The Trusted Extensions printing adapter determines the host label or the zone label at which
the print request was initiated. The adapter passes along this label information with the print
job to enable the printed output to be labeled.
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Designing a Label-Aware Application
Most applications do not need to be label-aware. Therefore, most Oracle Solaris software
applications run under Trusted Extensions without modification. The Trusted Extensions
label-based access restriction is designed to operate in a way that is consistent with Oracle
Solaris OS standards. Generally, any process that you bind to a multilevel port needs to be
label-aware because it receives data at multiple labels and is trusted to enforce the security
policy.

For example, an application might not be able to access a resource because the application is
running at a label that is lower than the required resource. However, an attempt to access that
resource does not result in a special error condition. Instead, the application might issue a File
not found error. Or, an application might attempt to access information that has a higher label
than the application is allowed to access. However, the security policy dictates that without
sufficient privileges, an application cannot be aware of the existence of a resource with a higher
label. Therefore, if an application attempts to access a resource with a label that is higher than
the application's label, the resulting error condition is not label-specific. The error message is
the same as the error message that is returned to an application that tries to access a resource
that does not exist. The lack of “special error conditions” helps to enforce security principles.

In Trusted Extensions, the operating system, not the application, enforces the security policy.
This security policy is called the the mandatory access control (MAC) policy. For example, an
application does not determine if a protected resource is accessible. Ultimately, the operating
system enforces the MAC policy. If an application does not have sufficient privileges to access a
resource, the resource is not available to the application. Thus, an application does not need to
know anything about labels to access labeled resources.

Similarly, most label-aware applications must be designed so that they can operate in a
consistent manner with applications that are not label-aware. Label-aware applications must
behave in essentially the same way in environments that involve only a single label, in
environments that are unlabeled, and in environments that involve multiple labels. An example
of a single-label environment is when a user session with a given label mounts a device at the
same label. In an unlabeled environment, a label is not explicitly set, but a default label is
specified in the tnrhdb database. See the smtnrhdb(1M) man page.

Understanding the Multilevel Printing Service
Because the printing service accepts requests from processes that operate at different labels,
printing must be label-aware. Ordinarily, MAC allows access only to resources that are at the
same labels at which the user is operating. Even when print requests are issued only at the same
label, printing should be label-aware to enable the printed output to display labels on the
printed page.
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To handle labels, the printing service must perform these essential functions:

■ Determine if the host on which the print process is running is labeled or unlabeled
■ If the printing process is running in a labeled environment, obtain the credential of the

network connection from which the print request originates (the credential contains the
label for that process)

■ Extract the label from the network credential
■ Obtain the printer's label range, that is, the range of labels for which the printer can accept

requests
■ Determine if the user's label falls within the acceptable range of labels for the specified

printer

get_peer_label() Label-Aware Function
The get_peer_label() function in the lp/lib/lp/tx.c file implements the logic of multilevel
printing in Trusted Extensions. The following sections describe this function and step you
through its implementation.

In Trusted Extensions software, much of the logic for handling labels in the printing service is in
the get_peer_label() function. This function obtains the credential of the remote process in a
ucred_t data structure and extracts the label from the credential.

The following shows the get_peer_label() code.

int

get_peer_label(int fd, char **slabel)

{

if (is_system_labeled()) {

ucred_t *uc = NULL;

m_label_t *sl;

char *pslabel = NULL; /* peer’s slabel */

if ((fd < 0) || (slabel == NULL)) {

errno = EINVAL;

return (-1);

}

if (getpeerucred(fd, &uc) == -1)

return (-1);

sl = ucred_getlabel(uc);

if (label_to_str(sl, &pslabel, M_INTERNAL, DEF_NAMES) != 0)

syslog(LOG_WARNING, "label_to_str(): %m");
ucred_free(uc);
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if (pslabel != NULL) {

syslog(LOG_DEBUG, "get_peer_label(%d, %s): becomes %s",
fd, (*slabel ? *slabel : "NULL"), pslabel);

if (*slabel != NULL)

free(*slabel);

*slabel = strdup(pslabel);

}

}

return (0);

}

Determining Whether the Printing Service Is Running
in a Labeled Environment
The printing service is designed to work in labeled and unlabeled environments. Therefore, the
printing application must determine when the label of a remote host should be requested and
whether the label should be applied. The printing process first checks its own environment. Is
the process running in a label-aware environment?

Note that the application does not first determine whether the remote request is labeled.
Instead, the printing application determines if its own environment is labeled. If the application
is not running on a labeled host, the MAC policy prevents the printing application from
receiving labeled requests.

The printing service uses the is_system_labeled() function to determine whether the process
is running in a labeled environment. For information about this function, see the
is_system_labeled(3C) man page.

This code excerpt shows how to determine whether the application is running in a labeled
environment:

if (is_system_labeled()) {

ucred_t *uc = NULL;

m_label_t *sl;

char *pslabel = NULL; /* peer’s slabel */

if ((fd < 0) || (slabel == NULL)) {

errno = EINVAL;

return (-1);

}

If the printing adapter process is running on a system configured with Trusted Extensions, the
is_system_labeled() function obtains the ucred_t credential abstraction from the remote
process. The ucred_t data structure for the remote process and the peer's label are then set to
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NULL. The functions that return values for the credential and the peer's label fill the data
structures. These data structures are discussed in the following sections.

See “get_peer_label() Label-Aware Function” on page 53 to view the source of the entire
get_peer_label() routine.

Understanding the Remote Host Credential
The Oracle Solaris OS network API provides an abstraction of a process's credentials. This
credentials data is available through a network connection. The credentials are represented by
the ucred_t data structure. This structure can include the label of a process.

The ucred API provides functions for obtaining the ucred_t data structure from a remote
process. This API also provides functions for extracting the label from the ucred_t data
structure.

Obtaining the Credential and Remote Host Label
Obtaining the label of a remote process is a two-step procedure. First, you must obtain the
credential. Then, you must obtain the label from this credential.

The credential is in the ucred_t data structure of the remote process. The label is in the
m_label_t data structure in the credential. After obtaining the credential of the remote process,
you extract the label information from that credential.

The getpeerucred() function obtains the ucred_t credential data structure from the remote
process. The ucred_getlabel() function extracts the label from the ucred_t data structure. In
the get_peer_label() function, the two-step procedure is coded as follows:

if (getpeerucred(fd, &uc) == -1)

return (-1);

sl = ucred_getlabel(uc);

See “get_peer_label() Label-Aware Function” on page 53 to view the source of the entire
get_peer_label() routine.

For information about the two functions, see the getpeerucred(3C) and ucred_getlabel(3C)
man pages.

In addition to obtaining a remote host's label, you can obtain a remote host's type. To obtain the
remote host type, use the tsol_getrhtype() routine. See “Obtaining the Remote Host Type”
on page 36.
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Using the label_to_str() Function
After obtaining the credential and remote host label, an application can call label_to_str() to
convert the label data structure into a string. The string form of the label data structure can be
used by the application.

Note that in the Trusted Extensions printing service, the label is returned as a string. The
get_peer_label() function returns the string that is obtained by calling label_to_str() on
the m_label_t data structure. This string value is returned in the slabel parameter of the
get_peer_label() function, char** slabel.

The following code excerpt shows how the label_to_str() function is used:

sl = ucred_getlabel(uc);

if (label_to_str(sl, &pslabel, M_INTERNAL, DEF_NAMES) != 0)

syslog(LOG_WARNING, "label_to_str(): %m");
ucred_free(uc);

if (pslabel != NULL) {

syslog(LOG_DEBUG, "get_peer_label(%d, %s): becomes %s",
fd, (*slabel ? *slabel : "NULL"), pslabel);

if (*slabel != NULL)

free(*slabel);

*slabel = strdup(pslabel);

}

See “get_peer_label() Label-Aware Function” on page 53 to view the source of the entire
get_peer_label() routine.

Handling Memory Management
As shown in “get_peer_label() Label-Aware Function” on page 53, labels are often
dynamically allocated. The functions str_to_label(), label_to_str(), getdevicerange(),
and other functions allocate memory that must be freed by the caller. The following man pages
for these functions describe the memory allocation requirements:

■ getdevicerange(3TSOL)
■ label_to_str(3TSOL)
■ m_label(3TSOL)
■ str_to_label(3TSOL)

get_peer_label() Label-Aware Function

Oracle Solaris Trusted Extensions Developer's Guide • September 201056

http://docs.sun.com/doc/816-5172/getdevicerange-3tsol?a=view
http://docs.sun.com/doc/816-5172/label-to-str-3tsol?a=view
http://docs.sun.com/doc/816-5172/m-label-3tsol?a=view
http://docs.sun.com/doc/816-5172/str-to-label-3tsol?a=view


Using the Returned Label String
The get_peer_label() function extracts the label from a remote host and returns that label as
a string. The printing application, as is typical of label-aware applications, uses the label for the
following purposes:

■ To make sure that information associated with a label is clearly marked with the correct
label. The banner and trailer pages, as well as the header and footer, are marked with the
label of the document being printed.

■ To validate that the label of a resource permits a given operation to be performed by another
labeled resource. That is, the label of the requesting process permits this printer to accept a
request from that requesting process. This permission is based on the range of labels that
this printer is assigned.

Validating the Label Request Against the Printer's Label
Range

In the printing application, the code for validating the label is contained in the
lp/cmd/lpsched/validate.c file.

Some types of applications need to compare two given labels. For example, an application might
need to determine if one label strictly dominates another label. These applications use API
functions that compare one label to another label.

The printing application, however, is based on a range of labels. A printer is configured to
accept printing requests from a range of different labels. Therefore, the printing application
uses API functions that check a label against a range. The application checks that the label from
the remote host falls within the range of labels that the printer allows.

In the validate.c file, the printing application uses the blinrange() function to check the
remote host's label against the label range of the printer. This check is made within the
tsol_check_printer_label_range() function, as shown here:

static int

tsol_check_printer_label_range(char *slabel, const char *printer)

{

int in_range = 0;

int err = 0;

blrange_t *range;

m_label_t *sl = NULL;

if (slabel == NULL)

return (0);
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if ((err =

(str_to_label(slabel, &sl, USER_CLEAR, L_NO_CORRECTION, &in_range)))

== -1) {

/* str_to_label error on printer max label */

return (0);

}

if ((range = getdevicerange(printer)) == NULL) {

m_label_free(sl);

return (0);

}

/* blinrange returns true (1) if in range, false (0) if not */

in_range = blinrange(sl, range);

m_label_free(sl);

m_label_free(range->lower_bound);

m_label_free(range->upper_bound);

free(range);

return (in_range);

}

The tsol_check_printer_label_range() function takes as parameters the label returned by
the get_peer_label() function and the name of the printer.

Before comparing the labels, tsol_check_printer_label_range() converts the string into a
label by using the str_to_label() function.

The label type is set to USER_CLEAR, which produces the clearance label of the associated object.
The clearance label ensures that the appropriate level of label is used in the range check that the
blinrange() function performs.

The sl label that is obtained from str_to_label() is checked to determine whether the remote
host's label, slabel, is within the range of the requested device, that is, the printer. This label is
tested against the printer's label. The printer's range is obtained by calling the
getdevicerange() function for the selected printer. The range is returned as a blrange_t data
structure.

The printer's label range in the blrange_t data structure is passed into the blinrange()
function, along with the clearance label of the requester. See the blinrange(3TSOL) man page.

The following code excerpt shows the _validate() function in the validate.c file. This
function is used to find a printer to handle a printing request. This code compares the user ID
and the label associated with the request against the set of allowed users and the label range that
is associated with each printer.

/*

* If a single printer was named, check the request against it.

* Do the accept/reject check late so that we give the most
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* useful information to the user.

*/

if (pps) {

(pc = &single)->pps = pps;

/* Does the printer allow access to the user? */

if (!CHKU(prs, pps)) {

ret = MDENYDEST;

goto Return;

}

/* Check printer label range */

if (is_system_labeled() && prs->secure->slabel != NULL) {

if (tsol_check_printer_label_range(prs->secure->slabel,

pps->printer->name) == 0) {

ret = MDENYDEST;

goto Return;

}

}
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Interprocess Communications

A system that is configured with Trusted Extensions enforces mandatory access control (MAC)
and discretionary access control (DAC). Access control is enforced between communicating
processes on the same host and across the network. This chapter summarizes the interprocess
communication (IPC) mechanisms that are available in a system configured with Trusted
Extensions. This chapter also discusses how access controls apply.

For examples of how the Trusted Extensions APIs are used in the Oracle Solaris OS, see the
Oracle Solaris source code. Go to the OpenSolaris web site (http://hub.opensolaris.org/
bin/view/Main/) and click Source Browser in the left navigation bar. Use the Source Browser
to search through the Oracle Solaris source code.

This chapter covers the following topics:

■ “Multilevel Port Information” on page 61
■ “Communication Endpoints” on page 62

Multilevel Port Information
A system that is configured with Trusted Extensions supports single-level and multilevel ports.
These ports are used to create connections between applications. A multilevel port can receive
data within the range of sensitivity labels that is defined for that port. A single-level port can
receive data at a designated sensitivity label only.

■ Single-level port – A communication channel is established between two unprivileged
applications. The sensitivity label of the communication endpoints must be equal.

■ Multilevel port – A communication channel is established between an application with the
net_bindmlp privilege in its effective set and any number of unprivileged applications that
run at different sensitivity labels. The application with the net_bindmlp privilege in the
effective set of its process can receive all data from the applications, regardless of the
receiving application's sensitivity label.

5C H A P T E R 5

61

http://hub.opensolaris.org/bin/view/Main/
http://hub.opensolaris.org/bin/view/Main/


A multilevel port is a server-side mechanism to establish a connection between two Trusted
Extensions applications that are running at different labels. If you want a Trusted
Extensions client application to communicate with a service that runs on an untrusted
operating system at a different label, you might be able to use the SO_MAC_EXEMPT socket
option. For more information, see “MAC-Exempt Sockets” on page 26.

Caution – If a connection is multilevel, ensure that the application does not make a connection at
one sensitivity label, and then send or receive data at another sensitivity label. Such a
configuration would cause data to reach an unauthorized destination.

The Trusted Network library provides an interface to retrieve the label from a packet. The
programmatic manipulation of network packets is not needed. Specifically, you cannot change
the security attributes of a message before it is sent. Also, you cannot change the security
attributes on the communication endpoint over which the message is sent. You can read the
label of a packet, just as you read other security information of a packet. The ucred_getlabel()
function is used to retrieve label information.

If your application requires the use of a multilevel port, that port cannot be created
programmatically. Rather, you must tell the system administrator to create a multilevel port for
the application.

For more information about multilevel ports, see the following:

■ “Zones and Multilevel Ports” in Oracle Solaris Trusted Extensions Administrator’s
Procedures

■ “How to Create a Multilevel Port for a Zone” in Oracle Solaris Trusted Extensions
Administrator’s Procedures

■ “How to Configure a Multilevel Print Server and Its Printers” in Oracle Solaris Trusted
Extensions Administrator’s Procedures

Communication Endpoints
The Trusted Extensions software supports IPC over communication endpoints by using the
following socket-based mechanisms:

■ Berkeley sockets
■ Transport Layer Interface (TLI)
■ Remote procedure calls (RPC)

This section summarizes the socket communication mechanisms and the related security
policy. See the appropriate man page for specific information about the security policy and
applicable privileges.
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In addition to these mechanisms, Trusted Extensions also supports multilevel ports. See
“Multilevel Port Information” on page 61.

Berkeley Sockets and TLI
The Trusted Extensions software supports network communication by using Berkeley sockets
and the TLI over single-level ports and multilevel ports. The AF_UNIX family of system calls
establishes interprocess connections in the same labeled zone by means of a special file that is
specified by using a fully resolved path name. The AF_INET family of system calls establishes
interprocess connections across the network by using IP addresses and port numbers.

AF_UNIX Family
In the AF_UNIX family of interfaces, only one server bind can be established to a single special
file, which is a UNIX domain socket. The AF_UNIX family does not support multilevel ports.

Like UNIX domain sockets, doors and named pipes use special files for rendezvous purposes.

The default policy for all Trusted Extensions IPC mechanisms is that they are all constrained to
work within a single labeled zone. The following are exceptions to this policy:
■ The global zone administrator can make a named pipe (FIFO) available to a zone whose

label dominates the owning zone. The administrator does this by loopback-mounting the
directory that contains the FIFO.
A process that runs in the higher-level zone is permitted to open the FIFO in read-only
mode. A process is not permitted to use the FIFO to write down.

■ A labeled zone can access global zone door servers if the global zone rendezvous file is
loopback-mounted into the labeled zone.
The Trusted Extensions software depends on the door policy to support the labeld and
nscd doors-based services. The default zonecfg template specifies that the
/var/tsol/doors directory in the global zone is loopback-mounted into each labeled zone.

AF_INET Family
In the AF_INET family, the process can establish a single-label connection or a multilabel
connection to privileged or unprivileged port numbers. To connect to privileged port numbers,
the net_priv_addr privilege is required. If a multilevel port connection is sought, the
net_bindmlp privilege is also required.

The server process needs the net_bindmlp privilege in its effective set for a multilevel port
connection. If a single-level port connection is made instead, the server process needs
mandatory read-equal access to the socket, and the client process needs mandatory write-equal
access. Both processes need mandatory and discretionary access to the file. If access to the file is
denied, any process that is denied access needs the appropriate file privilege in its effective set to
gain access.
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The following code example shows how a multilevel server can obtain the labels of its connected
clients. The standard C library function getpeerucred() obtains a connected socket or a
STREAM peer's credentials. In the context of Trusted Extensions, when the listening socket of a
multilevel port server accepts a connection request, the first argument is typically a client socket
file descriptor. The Trusted Extensions application uses the getpeerucred() function in
exactly the same way a normal application program does. The Trusted Extensions addition is
ucred_getlabel(), which returns a label. For more information, see the ucred_get(3C) man
page.

/*

* This example shows how a multilevel server can

* get the label of its connected clients.

*/

void

remote_client_label(int svr_fd)

{

ucred_t *uc = NULL;

m_label_t *sl;

struct sockaddr_in6 remote_addr;

bzero((void *)&remote_addr, sizeof (struct sockaddr_in6));

while (1) {

int clnt_fd;

clnt_fd = accept(svr_fd, (struct sockaddr *)&remote_addr,

&sizeof (struct sockaddr_in6));

/*

* Get client attributes from the socket

*/

if (getpeerucred(clnt_fd, &uc) == -1) {

return;

}

/*

* Extract individual fields from the ucred structure

*/

sl = ucred_getlabel(uc);

/*

* Security label usage here

* .....

*/

ucred_free(uc);

close(clnt_fd);
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}

}

RPC Mechanism
The Trusted Extensions software provides multilevel port support for remote procedure calls
(RPCs). A client application can send inquiries to a server's PORTMAPPER service (port 111)
whether or not a particular service is available. If the requested service is registered with the
PORTMAPPER on the server, the server will dynamically allocate an anonymous port and return
this port to the client.

On a Trusted Extensions system, an administrator can configure the PORTMAPPER port as a
multilevel port so that multiple single-level applications can use this service. If the PORTMAPPER
port is made a multilevel port, all anonymous ports allocated by the PORTMAPPER service are also
multilevel ports. There are no other programmable interfaces or administrative interfaces to
control anonymous multilevel ports.

Using Multilevel Ports With UDP
The PORTMAPPER service described in the previous section is implemented by using UDP. Unlike
TCP, UDP sockets are not connection oriented, so some ambiguity might arise about which
credentials to use when replying to a client on a multilevel port. Therefore, the client's request
socket must be explicitly associated with the server's reply packet. To make this association, use
the SO_RECVUCRED socket option.

When SO_RECVUCRED is set on a UDP socket, the kernel UDP module can pass a label in a ucred
structure as ancillary data to an application. The level and type values of the ucred are
SOL_SOCKET and SCM_UCRED, respectively.

An application can handle this ucred structure in one of these ways:

■ Copy this ucred structure from the receiving buffer to the send buffer
■ Reuse the receiving buffer as the send buffer and leave the ucred structure in the receiving

buffer

The following code excerpt shows the reuse case.

/*

* Find the SCM_UCRED in src and place a pointer to that

* option alone in dest. Note that these two ’netbuf’

* structures might be the same one, so the code has to

* be careful about referring to src after changing dest.

*/

static void
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extract_cred(const struct netbuf *src, struct netbuf *dest)

{

char *cp = src->buf;

unsigned int len = src->len;

const struct T_opthdr *opt;

unsigned int olen;

while (len >= sizeof (*opt)) {

/* LINTED: pointer alignment */

opt = (const struct T_opthdr *)cp;

olen = opt->len;

if (olen > len || olen < sizeof (*opt) ||

!IS_P2ALIGNED(olen, sizeof (t_uscalar_t)))

break;

if (opt->level == SOL_SOCKET &&

opt->name == SCM_UCRED) {

dest->buf = cp;

dest->len = olen;

return;

}

cp += olen;

len -= olen;

}

dest->len = 0;

}

The following code excerpt shows how to access the user credential from the receiving buffer:

void

examine_udp_label()

{

struct msghdr recv_msg;

struct cmsghdr *cmsgp;

char message[MAX_MSGLEN+1];

char inmsg[MAX_MSGLEN+1];

int on = 1;

setsockopt(sockfd, SOL_SOCKET, SO_RECVUCRED, (void *)&on,

sizeof (int));

[...]

while (1) {

if (recvmsg(sockfd, &recv_msg, 0) < 0) {

(void) fprintf(stderr, "recvmsg_errno: %d\n", errno);

exit(1);

}
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/*

* Check ucred in ancillary data

*/

ucred = NULL;

for (cmsgp = CMSG_FIRSTHDR(&recv_msg); cmsgp;

cmsgp = CMSG_NXTHDR(&recv_msg, cmsgp)) {

if (cmsgp->cmsg_level == SOL_SOCKET &&

cmsgp->cmsg_type == SCM_UCRED) {

ucred = (ucred_t *)CMSG_DATA(cmsgp);

break;

}

if (ucred == NULL) {

(void) sprintf(&message[0],

"No ucred info in ancillary data with UDP");
} else {

/*

* You might want to extract the label from the

* ucred by using ucred_getlabel(3C) here.

*/

}

}

[...]

if (message != NULL)

(void) strlcpy(&inmsg[0], message, MAX_MSGLEN);

/*

* Use the received message so that it will contain

* the correct label

*/

iov.iov_len = strlen(inmsg);

ret = sendmsg(sockfd, &recv_msg, 0);

}

}
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Trusted X Window System

This chapter describes the Trusted Extensions X Window System APIs. This chapter also
includes a short Motif application that is used to describe the Trusted X Window System
security policy and the Trusted Extensions interfaces.

For examples of how the Trusted Extensions APIs are used in the Oracle Solaris OS, see the
Oracle Solaris source code. Go to the OpenSolaris web site (http://hub.opensolaris.org/
bin/view/Main/) and click Source Browser in the left navigation bar. Use the Source Browser
to search through the Oracle Solaris source code.

This chapter covers the following topics:

■ “Trusted X Window System Environment” on page 69
■ “Trusted X Window System Security Attributes” on page 70
■ “Trusted X Window System Security Policy” on page 71
■ “Privileged Operations and the Trusted X Window System” on page 73
■ “Trusted Extensions X Window System APIs” on page 74
■ “Using Trusted X Window System Interfaces” on page 79

Trusted X Window System Environment
A system that is configured with Trusted Extensions uses the Trusted Extensions CDE (CDE),
which is an enhanced version of the Common Desktop Environment (CDE). The Trusted
Extensions CDE (CDE) uses the Trusted Extensions X Window System. The Trusted
Extensions X Window System includes protocol extensions to support mandatory access
control (MAC), discretionary access control (DAC), and the use of privileges.

Data transfer sessions are polyinstantiated, meaning that they are instantiated at different
sensitivity labels and user IDs. Polyinstantiation ensures that data in an unprivileged client at
one sensitivity label or user ID is not transferred to another client at another sensitivity label or
user ID. Such a transfer might violate the Trusted X Window System DAC policies and the
MAC policies of write-equal and read-down.
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The Trusted Extensions X Window System APIs enable you to obtain and set security-related
attribute information. These APIs also enable you to translate labels to strings by using a font
list and width to apply a style to the text string output. For example, the font might be 14-point,
bold Helvetica. These interfaces are usually called by administrative applications that are
written with Motif widgets, Xt Intrinsics, Xlib, and CDE interfaces.

■ Obtaining security-related information – These interfaces operate at the Xlib level where
X protocol requests are made. Use Xlib interfaces to obtain data for the input parameter
values.

■ Translating labels to strings – These interfaces operate at the Motif level. The input
parameters are the label, a font list that specifies the appearance of the text string output, and
the desired width. A compound string of the specified style and width is returned.

For declarations of these routines, see “Trusted Extensions X Window System APIs” on
page 74.

Trusted X Window System Security Attributes
The Trusted X Window System interfaces manage security-related attribute information for
various X Window System objects. You can choose to create a GUI application with Motif only.
The Motif application should use XToolkit routines to retrieve the Xlib object IDs underlying
the Motif widgets to handle security attribute information for an Xlib object.

The X Window System objects for which security attribute information can be retrieved by the
Trusted X Window System interfaces are window, property, X Window Server, and the
connection between the client and the X Window Server. Xlib provides calls to retrieve the
window, property, display, and client connection IDs.

A window displays output to the user and accepts input from clients.

A property is an arbitrary collection of data that is accessed by the property name. Property
names and property types can be referenced by an atom, which is a unique, 32-bit identifier and
a character name string.

The security attributes for windows, properties, and client connections consist of ownership
IDs and sensitivity label information. For information about the structures for capturing some
of these attributes, see “Data Types for X11” on page 75. For information about the interfaces
that obtain and set security attribute information, see “Trusted Extensions X Window System
APIs” on page 74.
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Trusted X Window System Security Policy
Window, property, and pixmap objects have a user ID, a client ID, and a sensitivity label.
Graphic contexts, fonts, and cursors have a client ID only. The connection between the client
and the X Window Server has a user ID, an X Window Server ID, and a sensitivity label.

The user ID is the ID of the client that created the object. The client ID is related to the
connection number to which the client that creates the object is connected.

The DAC policy requires a client to own an object to perform any operations on that object. A
client owns an object when the client's user ID equals the object's ID. For a connection request,
the user ID of the client must be in the access control list (ACL) of the owner of the X Window
Server workstation. Or, the client must assert the Trusted Path attribute.

The MAC policy is write-equal for windows and pixmaps, and read-equal for naming windows.
The MAC policy is read-down for properties. The sensitivity label is set to the sensitivity label of
the creating client. The following shows the MAC policy for these actions:

■ Modify, create, or delete – The sensitivity label of the client must equal the object's
sensitivity label.

■ Name, read, or retrieve – The client's sensitivity label must dominate the object's sensitivity
label.

■ Connection request – The sensitivity label of the client must be dominated by the session
clearance of the owner of the X Window Server workstation, or the client must assert the
Trusted Path attribute.

Windows can have properties that contain information to be shared among clients. Window
properties are created at the sensitivity label at which the application is running, so access to the
property data is segregated by its sensitivity label. Clients can create properties, store data in a
property on a window, and retrieve the data from a property subject to MAC and DAC
restrictions. To specify properties that are not polyinstantiated, update the
TrustedExtensionsPolicy file.

The TrustedExtensionsPolicy file is supported for the Xsun server and the Xorg server:

■ SPARC: For Xsun, the file is in /usr/openwin/server/etc.
■ x86: For Xorg, the file is in /usr/X11/lib/X11/xserver.

These sections describe the security policy for the following:

■ Root window
■ Client windows
■ Override-redirect windows
■ Keyboard, pointer, and server control
■ Selection Manager
■ Default window resources
■ Moving data between windows

Trusted X Window System Security Policy
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Root Window
The root window is at the top of the window hierarchy. The root window is a public object that
does not belong to any client, but it has data that must be protected. The root window attributes
are protected at ADMIN_LOW.

Client Windows
A client usually has at least one top-level client window that descends from the root window
and additional windows nested within the top-level window. All windows that descend from
the client's top-level window have the same sensitivity label.

Override-Redirect Windows
Override-redirect windows, such as menus and certain dialog boxes, cannot take the input
focus away from another client. This prevents the input focus from accepting input into a file at
the wrong sensitivity label. Override-redirect windows are owned by the creating client and
cannot be used by other clients to access data at another sensitivity label.

Keyboard, Pointer, and Server Control
A client needs MAC and DAC to gain control of the keyboard, pointer, and server. To reset the
focus, a client must own the focus or have the win_devices privilege in its effective set.

To warp a pointer, the client needs pointer control and MAC and DAC to the destination
window. X and Y coordinate information can be obtained for events that involve explicit user
action.

Selection Manager
The Selection Manager application arbitrates user-level interwindow data moves, such as cut
and paste or drag and drop, where information is transferred between untrusted windows.
When a transfer is attempted, the Selection Manager captures the transfer, verifies the
controlling user's authorization, and requests confirmation and labeling information from the
user. Any time the user attempts a data move, the Selection Manager automatically appears.
You do not need to update your application code to get the Selection Manager to appear.

The administrator can set automatic confirmation for some transfer types, in which case the
Selection Manager does not appear. If the transfer meets the MAC and DAC policies, the data
transfer completes. The File Manager and the window manager also act as selection agents for
their private drop sites. See the /usr/openwin/server/etc/TrustedExtensionsPolicy file to
specify selection targets that are polyinstantiated. See the /usr/dt/config/sel_config file to
determine which selection targets are automatically confirmed.
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Default Window Resources
Resources that are not created by clients are default resources that are protected at ADMIN_LOW.
Only clients that run at ADMIN_LOW or with the appropriate privileges can modify default
resources.

The following are window resources:
■ Root window attributes – All clients have read and create access, but only privileged clients

have write or modify access. See “Privileged Operations and the Trusted X Window System”
on page 73.

■ Default cursor – Clients are free to reference the default cursor in protocol requests.
■ Predefined atoms – The TrustedExtensionsPolicy file contains a read-only list of

predefined atoms.

Moving Data Between Windows
A client needs the win_selection privilege in its effective set to move data between one
window and another window without going through the Selection Manager. See “Selection
Manager” on page 72.

Privileged Operations and the Trusted X Window System
Library routines that access a window, property, or atom name without user involvement
require MAC and DAC. Library routines that access frame buffer graphic contexts, fonts, and
cursors require discretionary access and might also require additional privileges for special
tasks.

The client might need one or more of the following privileges in its effective set if access to the
object is denied: win_dac_read, win_dac_write, win_mac_read, or win_mac_write. See the
TrustedExtensionsPolicy file to enable or disable these privileges.

This list shows the privileges needed to perform the following tasks:

■ Configuring and destroying window resources – A client process needs the win_config
privilege in its effective set to configure or destroy windows or properties that are
permanently retained by the X Window Server. The screen saver timeout is an example of
such a resource.

■ Using window input devices – A client process needs the win_devices privilege in its
effective set to obtain and set keyboard and pointer controls, or to modify pointer button
mappings and key mappings.

■ Using direct graphics access – A client process needs the win_dga privilege in its effective
set to use the direct graphics access (DGA) X protocol extension.
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■ Downgrading window labels – A client process needs the win_downgrade_sl privilege in
its effective set to change the sensitivity label of a window, pixmap, or property to a new label
that does not dominate the existing label.

■ Upgrading window labels – A client process needs the win_upgrade_sl privilege in its
effective set to change the sensitivity label of a window, pixmap, or property to a new label
that dominates the existing label.

■ Setting a font path on a window – A client process needs the win_fontpath privilege in its
effective set to modify the font path.

Trusted Extensions X Window System APIs
To use the Trusted X11 APIs, you need the following header file:

#include <X11/extensions/Xtsol.h>

The Trusted X11 examples compile with the -lXtsol and -ltsol library options.

To use the X11 label-clipping APIs, you need the following header file:

#include <Dt/label_clipping.h>

The label-clipping examples compile with the -lDtTsol and -ltsol library options.

The following sections provide data types and declarations for the Trusted X11 interfaces and
the X11 label-clipping interfaces:

■ Data types for X11
■ Accessing attributes
■ Accessing and setting a window label
■ Accessing and setting a window user ID
■ Accessing and setting a window property label
■ Accessing and setting a window property user ID
■ Accessing and setting a workstation owner ID
■ Setting the X Window Server clearance and minimum label
■ Working with the Trusted Path window
■ Accessing and setting the screen stripe height
■ Setting window polyinstantiation information
■ Working with the X11 label-clipping interface

Trusted Extensions X Window System APIs

Oracle Solaris Trusted Extensions Developer's Guide • September 201074



Data Types for X11
The following data types are defined in X11/extensions/Xtsol.h and are used for the Trusted
Extensions X Window System APIs:

■ Object type for X11 – The ResourceType definition indicates the type of resource to be
handled. The value can be IsWindow, IsPixmap, or IsColormap.
ResourceType is a type definition to represent a clearance. Interfaces accept a structure of
type m_label_t as parameters and return clearances in a structure of the same type.

■ Object attributes for X11 –The XTsolResAttributes structure contains these resource
attributes:

typedef struct _XTsolResAttributes {

CARD32 ouid; /* owner uid */

CARD32 uid; /* uid of the window */

m_label_t *sl; /* sensitivity label */

} XTsolResAttributes;

■ Property attributes for X11 – The XTsolPropAttributes structure contains these property
attributes:

typedef struct _XTsolPropAttributes {

CARD32 uid; /* uid of the property */

m_label_t *sl; /* sensitivity label */

} XTsolPropAttributes;

■ Client attributes for X11 – The XTsolClientAttributes structure contains these client
attributes:

typedef struct _XTsolClientAttributes {

int trustflag; /* true if client masked as trusted */

uid_t uid; /* owner uid who started the client */

gid_t gid; /* group id */

pid_t pid; /* process id */

u_long sessionid; /* session id */

au_id_t auditid; /* audit id */

u_long iaddr; /* internet addr of host where client is running */

} XTsolClientAttributes;

Accessing Attributes
The following routines are used to access resource, property, and client attributes:

Status XTSOLgetResAttributes(Display *display, XID object, ResourceType type,

XTSOLResAttributes *winattrp);

This routine returns the resource attributes for a window ID in winattrp. See the
XTSOLgetResAttributes(3XTSOL) man page.
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Status XTSOLgetPropAttributes(Display *display, Window window, Atom property,

XTSOLPropAttributes *propattrp);

This routine returns the property attributes for a property hanging on a window ID in
propattrp. See the XTSOLgetPropAttributes(3XTSOL) man page.

Status XTSOLgetClientAttributes(Display *display, XID windowid,

XTsolClientAttributes *clientattrp);

This routine returns the client attributes in clientattrp. See the
XTSOLgetClientAttributes(3XTSOL) man page.

Accessing and Setting a Window Label
The XTSOLgetResLabel() and XTSOLsetResLabel() routines are used to obtain and set the
sensitivity label of a window.

Status XTSOLgetResLabel(Display *display, XID object, ResourceType type,

m_label_t *sl);

This routine obtains the sensitivity label of a window. See the XTSOLgetResLabel(3XTSOL)
man page.

Status XTSOLsetResLabel(Display *display, XID object, ResourceType type,

m_label_t *sl);

This routine sets the sensitivity label of a window. See the XTSOLsetResLabel(3XTSOL) man
page.

Accessing and Setting a Window User ID
The XTSOLgetResUID() and XTSOLsetResUID() routines are used to obtain and set the user ID
of a window.

Status XTSOLgetResUID(Display *display, XID object, ResourceType type, uid_t

*uidp);

This routine obtains the user ID of a window. See the XTSOLgetResUID(3XTSOL) man page.

Status XTSOLsetResUID(Display *display, XID object, ResourceType type, uid_t

*uidp);

This routine sets the user ID of a window. See the XTSOLsetResUID(3XTSOL) man page.

Accessing and Setting a Window Property Label
The XTSOLgetPropLabel() and XTSOLsetPropLabel() routines are used to obtain and set the
sensitivity label of a property hanging on a window ID.
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Status XTSOLgetPropLabel(Display *display, Window window, Atom property,

m_label_t *sl);

This routine obtains the sensitivity label of a property hanging on a window ID. See the
XTSOLgetPropLabel(3XTSOL) man page.

Status XTSOLsetPropLabel(Display *display, Window window, Atom property,

m_label_t *sl);

This routine sets the sensitivity label of a property hanging on a window ID. See the
XTSOLsetPropLabel(3XTSOL) man page.

Accessing and Setting a Window Property User ID
The XTSOLgetPropUID() and XTSOLsetPropUID() routines are used to obtain and set the user
ID of a property hanging on a window ID.

Status XTSOLgetPropUID(Display *display, Window window, Atom property, uid_t

*uidp);

This routine obtains the user ID of a property hanging on a window ID. See the
XTSOLgetPropUID(3XTSOL) man page.

Status XTSOLsetPropUID(Display *display, Window window, Atom property, uid_t

*uidp);

This routine sets the user ID of a property hanging on a window ID. See the
XTSOLsetPropUID(3XTSOL) man page.

Accessing and Setting a Workstation Owner ID
The XTSOLgetWorkstationOwner() and XTSOLsetWorkstationOwner() routines are used to
obtain and set the user ID of the owner of the workstation server.

Note – The XTSOLsetWorkstationOwner() routine should only be used by the window manager.

Status XTSOLgetWorkstationOwner(Display *display, uid_t *uidp);

This routine obtains the user ID of the owner of the workstation server. See the
XTSOLgetWorkstationOwner(3XTSOL) man page

Status XTSOLsetWorkstationOwner(Display *display, uid_t *uidp);

This routine sets the user ID of the owner of the workstation server. See the
XTSOLsetWorkstationOwner(3XTSOL) man page.
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Setting the X Window Server Clearance and Minimum
Label
The XTSOLsetSessionHI() and XTSOLsetSessionLO() routines are used to set the session high
clearance and the session low minimum label for the X Window Server. Session high can be
selected from the Label Builder GUI and must be within the user's range. Session low is the
same as the user's minimum label for the multilevel session.

Note – These interfaces should only be used by the window manager.

Status XTSOLsetSessionHI(Display *display, m_label_t *sl);

The session high clearance is set from the workstation owner's clearance at login. The session
high clearance must be dominated by the owner's clearance and by the upper bound of the
machine monitor's label range. Once changed, connection requests from clients that run at a
sensitivity label higher than the window server clearance are rejected unless they have
privileges. See the XTSOLsetSessionHI(3XTSOL) man page.

Status XTSOLsetSessionLO(Display *display, m_label_t *sl);

The session low minimum label is set from the workstation owner's minimum label at login.
The session low minimum label must be greater than the user's administratively set
minimum label and the lower bound of the machine monitor's label range. When this setting
is changed, connection requests from clients that run at a sensitivity label lower than the
window server sensitivity label are rejected unless they have privileges. See the
XTSOLsetSessionLO(3XTSOL) man page.

Working With the Trusted Path Window
The XTSOLMakeTPWindow() and XTSOLIsWindowTrusted() routines are used to make the
specified window the Trusted Path window and to test whether the specified window is the
Trusted Path window.

Status XTSOLMakeTPWindow(Display *display, Window *w);

This routine makes the specified window the Trusted Path window. See the
XTSOLMakeTPWindow(3XTSOL) man page.

Bool XTSOLIsWindowTrusted(Display *display, Window *window);

This routine tests whether the specified window is the Trusted Path window. See the
XTSOLIsWindowTrusted(3XTSOL) man page.

Accessing and Setting the Screen Stripe Height
The XTSOLgetSSHeight() and XTSOLsetSSHeight() routines are used to obtain and set the
screen stripe height.
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Note – These interfaces should only be used by the window manager.

Status XTSOLgetSSHeight(Display *display, int screen_num, int *newHeight);

This routine obtains the screen stripe height. See the XTSOLgetSSHeight(3XTSOL) man
page.

Status XTSOLsetSSHeight(Display *display, int screen_num, int newHeight);

This routine sets the screen stripe height. Be careful that you do not end up without a screen
stripe or with a very large screen stripe. See the XTSOLsetSSHeight(3XTSOL) man page.

Setting Window Polyinstantiation Information
Status XTSOLsetPolyInstInfo(Display *display, m_label_t sl, uid_t *uidp, int

enabled);

The XTSOLsetPolyInstInfo() routine enables a client to obtain property information from
a property at a different sensitivity label than the client. In the first call, you specify the
desired sensitivity label and the user ID, and set the enabled property to True. Then, you call
XTSOLgetPropAttributes(), XTSOLgetPropLabel(), or XTSOLgetPropUID(). To finish, you
call the XTSOLsetPolyInstInfo() routine again with the enabled property set to False. See
the XTSOLsetPolyInstInfo(3XTSOL) man page.

Working With the X11 Label-Clipping Interface
int label_to_str(const m_label_t *label, char **string, const m_label_str_t

conversion_type, uint_t flags);

The label_to_str() routine translates a sensitivity label or clearance to a string. See the
label_to_str(3TSOL) man page.

Using Trusted X Window System Interfaces
The following sections provide example code excerpts that use Trusted Extensions interface
calls. These calls handle security attributes and translate a label to a string. The excerpts focus
on handling window security attributes, the most commonly managed attributes in application
programs. Often, a client retrieves security attributes by using the appropriate privileges for an
object that was created by another application. The client then checks the attributes to
determine whether an operation on the object is permitted by the system's security policy. The
security policy covers DAC policies and the MAC write-equal and read-down policies. If access
is denied, the application generates an error or uses privileges, as appropriate. See “Privileged
Operations and the Trusted X Window System” on page 73 for a discussion about when
privileges are needed.
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You must create an object before you can retrieve its ID to pass to the Trusted Extensions APIs.

Obtaining Window Attributes
The XTSOLgetResAttributes() routine returns security-related attributes for a window. You
supply the following:
■ Display ID
■ Window ID
■ Flag to indicate that the object for which you want security attributes is a window
■ XtsolResAttributes structure to receive the returned attributes

Because the client is obtaining the security attributes for a window that the client created, no
privileges are required.

Note that the example programs in this book focus on the APIs being shown and do not
perform error checking. Your applications should perform the appropriate error checking.

/* Retrieve underlying window and display IDs with Xlib calls */

window = XtWindow(topLevel);

display = XtDisplay(topLevel);

/* Retrieve window security attributes */

retval = XTSOLgetResAttributes(display, window, IsWindow, &winattrs);

/* Translate labels to strings */

retval = label_to_str(&winattrs.sl, &plabel, M_LABEL, LONG_NAMES);

/* Print security attribute information */

printf(“Workstation Owner ID = %d\nUser ID = %d\nLabel = %s\n”,

winattrs.ouid, winattrs.uid, string1);

The printf statement prints the following:

Workstation Owner ID = 29378

User ID = 29378

Label = CONFIDENTIAL

Translating the Window Label With the Font List
This example shows how to obtain the process sensitivity label and translate it to a string by
using a font list and the pixel width. A label widget is created with the string for its label. The
process sensitivity label equals the window sensitivity label. Therefore, no privileges are
required.
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When the final string is longer than the width, the string is clipped and the clipped indicator is
used. Note that the X Window System label-translation interfaces clip to the specified number
of pixels, while the label-clipping interfaces clip to the number of characters.

Note – If your site uses a label_encodings file in a language other than English, the translation
might not work on accent characters in the ISO standard above 128. The following example
does not work for the Asian character set.

retval = getplabel(&senslabel);

/* Create the font list and translate the label using it */

italic = XLoadQueryFont(XtDisplay(topLevel),

“-adobe-times-medium-i-*-*-14-*-*-*-*-*-iso8859-1”);

fontlist = XmFontListCreate(italic, “italic”);

xmstr = Xbsltos(XtDisplay(topLevel), &senslabel, width, fontlist,

LONG_WORDS);

/* Create a label widget using the font list and label text*/

i=0;

XtSetArg(args[i], XmNfontList, fontlist); i++;

XtSetArg(args[i], XmNlabelString, xmstr); i++;

label = XtCreateManagedWidget(“label”, xmLabelWidgetClass,

form, args, i);

Obtaining a Window Label
This example shows how to obtain the sensitivity label for a window. The process sensitivity
label equals the window sensitivity label. Therefore, no privileges are required.

/* Retrieve window label */

retval = XTSOLgetResLabel(display, window, IsWindow, &senslabel);

/* Translate labels to string and print */

retval = label_to_str(label, &string, M_LABEL, LONG_NAMES);

printf(“Label = %s\n”, string);

The printf statement, for example, prints the following:

Label = PUBLIC

Setting a Window Label
This example shows how to set the sensitivity label on a window. The new sensitivity label
dominates the sensitivity label of the window and the process. The client needs the
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sys_trans_label privilege in its effective set to translate a label that the client does not
dominate. The client also needs the win_upgrade_sl privilege to change the window's
sensitivity label.

For more information about using privileges, see Oracle Solaris Security for Developers Guide.

/* Translate text string to sensitivity label */

retval = label_to_str(string4, &label, M_LABEL, L_NO_CORRECTION, &error);

/* Set sensitivity label with new value */

retval = XTSOLsetResLabel(display, window, IsWindow, label);

Obtaining the Window User ID
This example shows how to obtain the window user ID. The process owns the window resource
and is running at the same sensitivity label. Therefore, no privileges are required.

/* Get the user ID of the window */

retval = XTSOLgetResUID(display, window, IsWindow, &uid);

Obtaining the X Window Server Workstation Owner ID
This example shows how to obtain the ID of the user who is logged in to the X Window Server.
The process sensitivity label equals the window sensitivity label. Therefore, no privileges are
required.

/* Get the user ID of the window */

retval = XTSOLgetWorkstationOwner(display, &uid);
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Label Builder APIs

Trusted Extensions provides a set of Motif based APIs. You can use these interfaces to create an
interactive GUI to build valid sensitivity labels or clearances from user input. These interfaces
are called the Label Builder APIs. These APIs are most often called from within administrative
applications.

The Label Builder GUIs are used in a system that is configured with Trusted Extensions. The
Oracle Solaris Trusted Extensions User’s Guide describes these interfaces from the end user's
point of view, as well as the functionality that is provided by the Label Builder library routines.

For examples of how the Trusted Extensions APIs are used in the Oracle Solaris OS, see the
Oracle Solaris source code. Go to the Open Solaris web site (http://opensolaris.org/) and
click Source Browser in the left navigation bar. Use the Source Browser to search through the
Oracle Solaris source code.

This chapter covers the following topics:

■ “APIs for Label Builder GUIs” on page 83
■ “Creating an Interactive User Interface” on page 84
■ “Online Help for Label Builder” on page 93

APIs for Label Builder GUIs
To use the APIs that are described in this section, you need to include the following header file:

#include <Dt/ModLabel.h>

The Label Builder examples compile with the -lDtTsol and -ltsol library options.

The following APIs are available for building label GUIs. The data types and parameter lists are
described in “Creating an Interactive User Interface” on page 84.

7C H A P T E R 7

83

http://docs.sun.com/doc/819-0868
http://opensolaris.org/


ModLabelData *tsol_lbuild_create(Widget widget, void (*event_handler)()

ok_callback, lbuild_attributes extended_operation, ..., NULL);

The tsol_lbuild_create() routine creates the GUI and returns a pointer variable of type
ModLabeldata, which contains information about the user interface. This information is a
combination of values passed in the tsol_lbuild_create() input parameter list, default
values for information not provided, and information about the widgets that the Label
Builder uses to create the user interface.

The LBUILD_WORK_SL and LBUILD_WORK_CLR operation values are not valid for
tsol_lbuild_create() because these values are set from input that is supplied by the user.

You can use the tsol_lbuild_get() and tsol_lbuild_set() routines to obtain and set
extended operations and values. However, these routines cannot be used for widget
information, which is accessed directly by referencing fields in the ModLabelData structure.
See the labelbuilder(3TSOL) man page.

void tsol_lbuild_destroy(ModLabelData *lbdata);

The tsol_lbuild_destroy() routine destroys the ModLabelData structure that is returned
by the tsol_lbuild_create() routine.

void *tsol_lbuild_get(ModLabelData *lbdata, lbuild_attributes

extended_operation);

The tsol_lbuild_get() routine accesses the user interface information that is created by
tsol_lbuild_create() and stored in the ModLabelData structure.

void tsol_lbuild_set(ModLabelData *lbdata, lbuild_attributes

extended_operation, ..., NULL);

The tsol_lbuild_set() routine changes the user interface information that is created by
tsol_lbuild_create() and stored in the ModLabelData structure. The LBUILD_WORK_SL
and LBUILD_WORK_CLR operation values are not valid for tsol_lbuild_set() because these
values are set from input that is supplied by the user.

Creating an Interactive User Interface
The following figure shows a GUI similar to the one created by the code that follows the figure.
The main program creates a parent form (form) with one button (display). The button callback
shows the Label Builder dialog box that is created by the call to the tsol_lbuild_create()
routine. See the tsol_lbuild_create(3TSOL) man page.
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The Label Builder dialog box appears when you click the Show button in the parent form. The
callouts indicate where the parameters passed to the tsol_lbuild_create() routine appear in
the Label Builder dialog box. See the tsol_lbuild_create(3TSOL) man page.

The following code creates a GUI something like that shown by the figure.

#include <X11/Intrinsic.h>

#include <X11/StringDefs.h>

#include <Xm/Xm.h>

#include <Xm/PushB.h>

#include <Xm/Form.h>

#include <Dt/ModLabel.h>

FIGURE 7–1 Label Building Interface
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ModLabelData *data;

/* Callback passed to tsol_lbuild_create() */

void callback_function()

{

char *title, *userval;

char *string = (char *)0;

char *string1 = (char *)0;

int mode, view;

Boolean show;

m_label_t *sl_label, *work_sl_label;

Position x, y;

/* Your application-specific implementation goes here */

printf("OK button called\n");

/* Query settings */

mode = (int)tsol_lbuild_get(data, LBUILD_MODE);

title = (String)tsol_lbuild_get(data, LBUILD_TITLE);

sl_label = (m_label_t*) tsol_lbuild_get(data, LBUILD_VALUE_SL);

work_sl_label = (m_label_t*) tsol_lbuild_get(data, LBUILD_WORK_SL);

view = (int)tsol_lbuild_get(data, LBUILD_VIEW);

x = (Position ) tsol_lbuild_get(data, LBUILD_X);

y = (Position ) tsol_lbuild_get(data, LBUILD_Y);

userval = (char *)tsol_lbuild_get(data, LBUILD_USERFIELD);

show = (Boolean )tsol_lbuild_get(data, LBUILD_SHOW);

label_to_str(sl_label, &string, M_LABEL, LONG_NAMES);

label_to_str(work_sl_label, &string1, M_LABEL, LONG_NAMES);

printf("Mode = %d, Title = %s, SL = %s, WorkSL = %s, View = %d, ",
mode, title, string, string1, view);

printf("X = %d, Y = %d, Userval = %s, Show = %d\n",
x, y, userval, show);

}

/* Callback to display dialog box upon button press */

void Show(Widget display, caddr_t client_data, caddr_t call_data)

{

tsol_lbuild_set(data, LBUILD_SHOW, TRUE, NULL);

}

main(int argc, char **argv)

{

Widget form, topLevel, display;

Arg args[9];

int i = 0, error, retval;
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char *sl_string = "CNF";
m_label_t * sl_label;

topLevel = XtInitialize(argv[0], "XMcmds1", NULL, 0, &argc, argv);

form = XtCreateManagedWidget("form",
xmFormWidgetClass, topLevel, NULL, 0);

retval = str_to_label(sl_string, &sl_label, MAC_LABEL, L_NO_CORRECTION, NULL);

printf("Retval = %d\n", retval);

data = tsol_lbuild_create( form, callback_function,

LBUILD_MODE, LBUILD_MODE_SL,

LBUILD_TITLE, "Building Sensitivity Label",
LBUILD_VALUE_SL, sl_label,

LBUILD_VIEW, LBUILD_VIEW_EXTERNAL,

LBUILD_X, 200,

LBUILD_Y, 200,

LBUILD_USERFIELD, "/export/home/zelda",
LBUILD_SHOW, FALSE,

NULL);

i = 0;

XtSetArg(args[i], XmNtopAttachment, XmATTACH_FORM); i++;

XtSetArg(args[i], XmNleftAttachment, XmATTACH_FORM); i++;

XtSetArg(args[i], XmNrightAttachment, XmATTACH_FORM); i++;

XtSetArg(args[i], XmNbottomAttachment, XmATTACH_FORM); i++;

display = XtCreateManagedWidget("Show",
xmPushButtonWidgetClass, form, args, i);

XtAddCallback(display, XmNactivateCallback, Show,0);

XtRealizeWidget(topLevel);

XtMainLoop();

tsol_lbuild_destroy(data);

}

When run, the program produces the following output:

OK button called

Mode = 12, Title = Building Sensitivity label,

Label = CNF, WorkSL = SECRET,

View = 1, X = 200, Y = 200,

Userval = /export/home/zelda,

Show = 1
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The following sections cover these topics:
■ Label Builder behavior
■ Application-specific functionality for Label Builder
■ Privileged operations and Label Builder
■ tsol_lbuild_create() routine
■ Extended Label Builder operations
■ ModLabelData structure

Label Builder Behavior
The Label Builder dialog box prompts the end user for information and generates a valid
sensitivity label from the input. Label Builder ensures that a valid label or clearance is built. The
labels and clearances are defined in the label_encodings file for the system.

Label Builder provides default behavior for the OK, Reset, Cancel, and Update buttons. The
callback passed to the tsol_lbuild_create() routine is mapped to the OK button to provide
application-specific behavior.

Keyboard Entry and Update Button
The Update button takes the text the user types in the Update With field and checks that the
string is a valid label or clearance as defined in the label_encodings file.
■ If the input is not valid, Label Builder generates an error for the user.
■ If the input is valid, Label Builder updates the text in the Label field and stores the value in

the appropriate working label field of the ModLabelData variable that is returned by the
tsol_lbuild_create() routine. See “ModLabelData Structure” on page 92.

When the user clicks OK, the user-built value is handled according to the OK button callback
implementation.

Radio Button Options
The Label Settings radio button options enable you to build a sensitivity label or clearance from
classifications and compartments. These options also enable you to build an information label
from classifications, compartments, and markings. Depending on the mode, one of these
buttons might be grayed out. This approach is independent of the keyboard entry and Update
button method described in the previous section.

The information about the classifications, compartments, and markings is specified in the
label_encodings file for the system. The combinations and constraints that are specified in the
label_encodings file are enforced by graying out invalid combinations. The Label field is
updated and the value is stored in the appropriate working label field of the ModLabelData
variable that is returned by the tsol_lbuild_create() routine when the user chooses options.

Creating an Interactive User Interface

Oracle Solaris Trusted Extensions Developer's Guide • September 201088



The user can build a sensitivity label or a clearance by selecting radio buttons in the
classification (CLASS) and compartment (COMPS) lists.

When the user clicks OK, the user-built value is handled according to the OK button callback
implementation.

Reset Button
The Reset button sets the text in the Label field to what its value was when the application
started.

Cancel Button
The Cancel button exits the application without saving any changes.

Application-Specific Functionality for Label Builder
The Label Builder GUI generates a valid label or clearance. You must also add
application-specific callbacks, error handling, and other functionality that is associated with
that label or clearance.

Privileged Operations and Label Builder
Label Builder shows the user only those classifications and related compartments that are
dominated by the workspace sensitivity label. If the executable has the sys_trans_label
privilege in its effective set, more classifications and compartments might be shown.

Your application-specific implementation for the OK button callback might require privileges.

If the user does not have the authorization to upgrade or downgrade labels, the OK and Reset
buttons are grayed out. The same is true if the user-built label is out of the user's range. The
grayed-out buttons prevent the user from completing the task. No privileges can override these
restrictions.

tsol_lbuild_create()Routine
The tsol_lbuild_create() routine accepts any widget, a callback function, and a
null-terminated series of name and value pairs. The name represents an operation. The routine
returns a variable of type ModLabelData.
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The following describes the information accepted by the tsol_lbuild_create() routine:

■ Widget – Label Builder can build the dialog box from any widget.
■ Callback function – The callback function activates when the OK button is clicked. This

callback function provides application-specific behavior.
■ Name and value pairs – The name (left) side of the pair specifies an extended operation (see

“Extended Label Builder Operations” on page 90) and the value (right) side specifies the
value. In some cases, the value is an enumerated constant. In other cases, you provide a
value. The pairs can be specified in any order, but every operation you specify requires a
valid value.

The return value is a data structure that contains information about the dialog box that was
just created. The information comes from the tsol_lbuild_create() input parameters
and user activities during execution. Label Builder provides default values for some fields
where no values have been specified.

Use the tsol_lbuild_get() routine and the tsol_lbuild_set() routine to
programmatically access and change the information in these name and value pairs. The
data structure is described in “ModLabelData Structure” on page 92.

The following shows a sample call to the tsol_lbuild_create() routine:

data= tsol_lbuild_create(form, callback_function,

LBUILD_MODE, LBUILD_MODE_SL,

LBUILD_TITLE, "Building a Label",
LBUILD_VALUE_SL, sl_label,

LBUILD_VIEW, LBUILD_VIEW_EXTERNAL,

LBUILD_X, 200,

LBUILD_Y, 200,

LBUILD_USERFIELD “/export/home/zelda”,

LBUILD_SHOW, FALSE,

NULL);

Extended Label Builder Operations
This section describes the extended operations and valid values that you can pass to the
tsol_lbuild_create(), tsol_lbuild_get(), and tsol_lbuild_set() routines. The values
that are passed to tsol_lbuild_create() are stored in its return value. The return value is of
type ModLabelData. The values returned in the parameters can be accessed by calls to
tsol_lbuild_get() and tsol_lbuild_set(). The ModLabelData structure is described in
“ModLabelData Structure” on page 92. See the tsol_lbuild_create(3TSOL),
tsol_lbuild_get(3TSOL), and tsol_lbuild_set(3TSOL) man pages.
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All extended operations are valid to pass to tsol_lbuild_get(). However, the
LBUILD_WORK_SL and LBUILD_WORK_CLR operations are not valid to pass to tsol_lbuild_set()

or tsol_lbuild_create() because these values are set by Label Builder based on user input.
These exceptions are noted in the following operation descriptions:

■ LBUILD_MODE – You can instruct tsol_lbuild_create() to create a user interface to build
sensitivity labels or clearances. The default value is LBUILD_MODE_SL.
■ LBUILD_MODE_SL – Builds a sensitivity label.
■ LBUILD_MODE_CLR – Builds a clearance.

■ LBUILD_VALUE_SL – The starting sensitivity label that is shown in the Label field when the
mode is LBUILD_MODE_SL. The default value is ADMIN_LOW.

■ LBUILD_VALUE_CLR – The starting clearance that is shown in the Label field when the mode
is LBUILD_MODE_CLR. The default value is ADMIN_LOW.

■ LBUILD_USERFIELD – A character string prompt that appears at the top of the Label Builder
dialog box. The default value is NULL.

■ LBUILD_SHOW – Shows or hides the Label Builder dialog box. The default value is FALSE.
■ TRUE – Shows the Label Builder dialog box.
■ FALSE – Hides the Label Builder dialog box.

■ LBUILD_TITLE – A character string title that appears at the top of the Label Builder dialog
box. The default value is NULL.

■ LBUILD_WORK_SL – The sensitivity label that the user is building. This value is updated based
on the user's input when the user selects the Update button or interactively chooses an
option. The default value is ADMIN_LOW and is not a valid extended operation for
tsol_lbuild_set() or tsol_lbuild_create().

■ LBUILD_WORK_CLR – The clearance that the user is building. This value is updated based on
the user's input when the user selects the Update button or interactively chooses an option.
The default value is ADMIN_LOW and is not a valid extended operation for
tsol_lbuild_set() or tsol_lbuild_create().

■ LBUILD_X – The X offset in pixels from the upper left corner of the Label Builder dialog box
in relation to the upper left corner of the screen. By default, the Label Builder dialog box is
positioned in the middle of the screen.

■ LBUILD_Y – The Y offset in pixels from the upper left corner of the Label Builder dialog box
in relation to the upper left corner of the screen. By default, the Label Builder dialog box is
positioned in the middle of the screen.

■ LBUILD_UPPER_BOUND – The highest classification, and related compartments and markings,
that are available to the user as radio buttons. These buttons are used to interactively build a
label or a clearance. A value you supply must be within the user's range. If no value is
supplied, this value is the user's workspace sensitivity label. Or, if the executable has the
sys_trans_label privilege, this value is the user's clearance.
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■ LBUILD_LOWER_BOUND – The lowest classification, and related compartments and markings,
that are available to the user as radio buttons. These buttons are used to interactively build a
label or a clearance. This value is the user's minimum label. If no value is specified, the value
is based on the default specified by the user's attributes.

■ LBUILD_CHECK_AR – Checks whether the user-built label is within the user's range. A value of
1 means “check,” and a value of 0 means “do not check.” If the label is out of range, an error
message is displayed to the user. The default value is 1.

■ LBUILD_VIEW – Determines whether to use the internal or the external label representation.
The default value is LBUILD_VIEW_EXTERNAL.
■ LBUILD_VIEW_INTERNAL – Uses the internal names for the highest and lowest labels in

the system, ADMIN_HIGH and ADMIN_LOW.
■ LBUILD_VIEW_EXTERNAL – Promotes an ADMIN_LOW label to the next lowest label and

demotes an ADMIN_HIGH label to the next highest label.

ModLabelData Structure
The ModLabelData structure contains information about the state of the Label Builder interface
that is created by the call to the tsol_lbuild_create() routine. The following table describes
the ModLabelData fields. All fields, except for the widgets and the callbacks, are accessible by
specifying the associated extended operation and a valid value in a call to tsol_lbuild_set()

or tsol_lbuild_get(). For descriptions of the extended operations, see “Extended Label
Builder Operations” on page 90.

TABLE 7–1 ModLabelData Structure

Extended Operation or Description Data Type Field Comments

LBUILD_CHECK_AR int check_ar

LBUILD_MODE int mode

LBUILD_SHOW Bool show

LBUILD_TITLE char *lbuild_title

LBUILD_UPPER_BOUND,
LBUILD_LOWER_BOUND

brange_t range

LBUILD_USERFIELD char *userfield

LBUILD_VALUE_CLR bclear_t *clr

LBUILD_VALUE_SL m_label_t *sl

LBUILD_VIEW int view
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TABLE 7–1 ModLabelData Structure (Continued)
Extended Operation or Description Data Type Field Comments

LBUILD_WORK_CLR bclear_t *clr_work Not valid for tsol_lbuild_set() or
tsol_lbuild_create()

LBUILD_WORK_SL m_label_t *sl_work Not valid for tsol_lbuild_set() or
tsol_lbuild_create()

LBUILD_X Position x

LBUILD_Y Position y

Callback passed to
tsol_lbuild_create()

void (*event_handler)()

Cancel button Widget cancel

Help button Widget help

Label Builder dialog box Widget lbuild_dialog

OK button Widget ok

Reset button Widget reset

Update button Widget update

Online Help for Label Builder
The Help button and other widgets that are used in the user interface can be accessed directly
from your application code through the lbl_shell field in the ModLabelData structure. To add
online help to your application, follow the procedures and guidelines in the Common Desktop
Environment: Help System Author's and Programmer's Guide.
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Trusted Web Guard Prototype

This chapter describes the configuration of a safe web browsing prototype called Web Guard.
Web Guard is configured to isolate a web server and its web content to prevent attacks from the
Internet.

The Web Guard prototype described in this chapter is not a complete solution. Rather, the
prototype is intended to demonstrate how multilevel ports can be used to proxy URL requests
across label boundaries. A more complete solution would include authentication, data filtering,
auditing, and so on.

The primary implementation of the prototype is administrative. The prototype uses multilevel
ports, trusted networking, and Apache web server configuration to set up Web Guard. In
addition to the administrative example, you can use some programmatic methods to set up the
safe web browsing prototype.

This chapter covers the following topics:

■ “Administrative Web Guard Prototype” on page 95
■ “Accessing Lower-Level Untrusted Servers” on page 103

Administrative Web Guard Prototype
This section provides an example of a safe web browsing prototype that isolates a web server
and its web content to prevent attacks from the Internet. This Web Guard prototype takes
advantage of administrative trusted networking features to configure a two-stage filter that
restricts access to a protected web server and web content. This prototype was implemented
solely by administrative means. No programming was required.

The following figure shows the configuration of the Web Guard prototype in a multilevel
environment. The label relationships are shown by how the labels are positioned in the figure.
Vertical relationships represent label dominance, while horizontal relationships represent
disjoint labels.
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Web requests come in to the web server that is configured in the public zone and are passed to
the web server that is configured in the restricted zone.

The restricted zone uses a multilevel port (MLP) to listen for requests at port 8080 of the
public zone. This web server passes the requests to the webservice labeled zone.

The webservice zone also uses an MLP to listen for requests at port 80 of the restricted zone
and reads content from the webcontent labeled zone.

The webcontent zone is in the ready state and has its web content stored in the /export/home
file system, which is automatically mounted in all other labeled zones. When a zone is in the
ready state, no processes run in that zone. Thus, the zone is essentially a disk drive attached
directly to the webservice zone.

You configure the Web Guard prototype by performing these high-level tasks:

1. Modifying the label_encodings file to configure the labels in your safe web browsing
environment
The default label_encodings file is updated to configure two new labels: WEB GUARD
SERVICE and WEB GUARD CONTENT. See “Modifying the label_encodings File” on page 97.

2. Configuring trusted networking
The private IP addresses and MLPs are configured on the restricted and webservice

labeled zones. See “Configuring Trusted Networking” on page 100.

FIGURE 8–1 Web Guard Configuration
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3. Configuring the Apache web servers
The public, restricted, and webservice zones all have web servers configured. In this
example, the web server used is Apache. See “Configuring the Apache Web Servers” on
page 101.

Modifying the label_encodings File
The default label_encodings file is updated to configure two new labels: WEB GUARD SERVICE
and WEB GUARD CONTENT. The SANDBOX label, which is part of the default file, is modified to serve
as the WEB GUARD CONTENT label. The WEB GUARD SERVICE label is added.

You must install the label_encodings file in the /etc/security/tsol directory. You can
install this file on top of an existing Trusted Extensions installation.

After you install the updated file in the /etc/security/tsol directory, activate the new
label_encodings file:

# svcadm restart svc:/system/labeld

The following shows the label_encodings file used in this Web Guard prototype.

* ident "@(#)label_encodings.simple 5.15 05/08/09 SMI"
*

* Copyright 2005 Sun Microsystems, Inc. All rights reserved.

* Use is subject to license terms.

*

* This example shows how to specify labels that meet an actual

* site’s legal information protection requirements for

* labeling email and printer output. These labels may also

* be used to enforce mandatory access control checks based on user

* clearance labels and sensitivity labels on files and directories.

VERSION= Sun Microsystems, Inc. Example Version - 6.0. 2/15/05

CLASSIFICATIONS:

name= PUBLIC; sname= PUB; value= 2; initial compartments= 4;

name= CONFIDENTIAL; sname= CNF; value= 4; initial compartments= 4;

name= WEB GUARD; sname= WEB; value= 5; initial compartments= 0;

name= MAX LABEL; sname= MAX; value= 10; initial compartments= 0 4 5;

INFORMATION LABELS:

WORDS:

name= :; prefix;
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name= INTERNAL USE ONLY; sname= INTERNAL; compartments= 1 ~2; minclass= CNF;

name= NEED TO KNOW; sname= NEED TO KNOW; compartments= 1-2 ~3; minclass= CNF;

name= RESTRICTED; compartments= 1-3; minclass= CNF;

name= CONTENT; compartments= 0 ~1 ~2 ~3; minclass= WEB;

name= SERVICE; compartments= 5; minclass= WEB;

REQUIRED COMBINATIONS:

COMBINATION CONSTRAINTS:

SENSITIVITY LABELS:

WORDS:

name= :; prefix;

name= INTERNAL USE ONLY; sname= INTERNAL; compartments= 1 ~2; minclass= CNF;

prefix= :

name= NEED TO KNOW; sname= NEED TO KNOW; compartments= 1-2 ~3; minclass= CNF;

prefix= :

name= RESTRICTED; compartments= 1-3; minclass= CNF; prefix= :

name= CONTENT; compartments= 0 ~1 ~2 ~3; minclass= WEB;

name= SERVICE; compartments= 5; minclass= WEB;

REQUIRED COMBINATIONS:

COMBINATION CONSTRAINTS:

CLEARANCES:

WORDS:

name= INTERNAL USE ONLY; sname= INTERNAL; compartments= 1 ~2; minclass= CNF;

name= NEED TO KNOW; sname= NEED TO KNOW; compartments= 1-2 ~3; minclass= CNF;

name= RESTRICTED; sname= RESTRICTED; compartments= 1-3; minclass= CNF;

name= CONTENT; compartments= 0 ~1 ~2 ~3; minclass= WEB;

name= SERVICE; compartments= 5; minclass= WEB;

REQUIRED COMBINATIONS:

COMBINATION CONSTRAINTS:

CHANNELS:
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WORDS:

PRINTER BANNERS:

WORDS:

ACCREDITATION RANGE:

classification= PUB; all compartment combinations valid;

classification= WEB; all compartment combinations valid;

classification= CNF; all compartment combinations valid except: CNF

minimum clearance= PUB;

minimum sensitivity label= PUB;

minimum protect as classification= PUB;

* Local site definitions and locally configurable options.

LOCAL DEFINITIONS:

default flags= 0x0;

forced flags= 0x0;

Default Label View is Internal;

Classification Name= Classification;

Compartments Name= Sensitivity;

Default User Sensitivity Label= PUB;

Default User Clearance= CNF NEED TO KNOW;

COLOR NAMES:

label= Admin_Low; color= #bdbdbd;

label= PUB; color= blue violet;

label= WEB SERVICE; color= yellow;

label= CNF; color= navy blue;

label= CNF : INTERNAL USE ONLY; color= blue;

label= CNF : NEED TO KNOW; color= #00bfff;

label= CNF : RESTRICTED; color= #87ceff;

label= Admin_High; color= #636363;

* End of local site definitions

For more information about the label_encodings file, see Oracle Solaris Trusted Extensions
Label Administration.
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Configuring Trusted Networking
The restricted and webservice zones are assigned a private IP address in addition to the IP
address that they already share. Each private IP address has a multilevel port configured and is
associated with a restricted label set.

The following table shows the network configuration for each of the labeled zones.

Zone Name Zone Label Local IP Address Host Name Multilevel Port Security Label Set

restricted CONFIDENTIAL :

RESTRICTED

10.4.5.6 proxy 8080/tcp PUBLIC

webservice WEB GUARD

SERVICE

10.1.2.3 webservice 80/tcp CONFIDENTIAL :

RESTRICTED

webcontent WEB GUARD

CONTENT

None

First, you must create the new zones. You can clone an existing zone, such as the public zone.
After these zones are created, use the zonecfg command to add a network (with the address
specified in the table) and your local interface name.

For example, the following command associates the 10.4.5.6 IP address and the bge0 interface
with the restricted zone:

# zonecfg -z restricted

add net

set address=10.4.5.6

set physical=bge0

end

exit

After you specify the IP address and network interface for each labeled zone, you use the Solaris
Management Console to configure the remaining values in the table. When using this tool,
make sure that you select the tool box with Scope=Files and Policy=TSOL.

Follow these steps to finish the zone configuration:

1. Start the Solaris Management Console as superuser.

# smc &

2. From the Navigation panel, select This Computer, and then click the System Configuration
icon.

3. Click the Computers and Network icon.
4. Click the Computers icon, and then choose Add Computer from the Action menu.
5. Add the host names and IP addresses for the proxy host and the webeservice host.

Administrative Web Guard Prototype

Oracle Solaris Trusted Extensions Developer's Guide • September 2010100



6. From the Navigation panel, select Trusted Network Zones.
You might need to expand the columns. If the zone names do not appear in the list, choose
Add Zone Configuration from the Action menu.

7. Assign each zone its label and specify the appropriate port and protocol in the MLP
Configuration for Local IP Addresses field.

8. From the Navigation panel, click the Security Families icon and choose Add Template from
the Action menu.
Add templates for the proxy host name and the webservices host name based on the
information in the table.
a. Specify the corresponding host name for the template name.
b. Specify CIPSO in the Host Type field.
c. Specify the corresponding zone label in the Minimum Label and Maximum Label fields.
d. Specify the corresponding security label in the Security Label Set field.
e. Click the Hosts Explicitly Assigned tab.
f. In the Add an Entry section, add the corresponding local IP address to each template.

9. Exit the Solaris Management Console.

After you exit the Solaris Management Console, start or restart the affected zones. In the global
zone, add routes for the new addresses, where shared-IP-addr is the shared IP address.

# route add proxy shared-IP-addr
# route add webservice shared-IP-addr

Configuring the Apache Web Servers
An instance of the Apache web server runs in the public zone, the restricted zone, and the
webservice zone. The /etc/apache/httpd.conf file is updated in each of the zones as follows:
■ public zone – Specify the IP address or host name of the server for the ServerName

keyword, and update the proxy configuration as follows:

ServerName myserver

ProxyRequests Off

ProxyPass /demo http://proxy:8080/demo

ProxyPassReverse /demo http://proxy:8080/demo

■ restricted zone – Specify the listen proxy port and the port. Then, specify the IP address
or host name of this zone for the ServerName keyword, and update the proxy configuration
as follows:

Listen proxy:8080

Port 8080
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ServerName proxy

ProxyRequests Off

ProxyPass /demo http://webservice

ProxyPassReverse /demo http://webservice

You might also want to set up some filtering of the web requests, such as dirty word filters,
or other filters to restrict the types of requests for web content.

■ webservice zone – Specify the IP address or host name of this zone for the ServerName
keyword, and point to the location of the web content directory in the DocumentRoot
keyword and the <Directory> element as follows:

ServerName webservice

DocumentRoot "/zone/webcontent/export/home/www/htdocs"
<Directory "/zone/webcontent/export/home/www/htdocs">

After you have updated the Apache web server configuration files for each labeled zone, store
your web content in the /export/home/www/htdocs directory of the webcontent zone.

Create the demo directory in the /export/home/www/htdocs directory, and then create an
index.html file in the demo directory to use for testing.

The /export/home directory is automatically mounted by using lofs into the webservice zone
when it is booted. The webcontent zone only needs to brought up to the ready state.

# zoneadm -z webcontent ready

When a zone is in the ready state, no processes are running in that zone. The zone's file system
can be mounted read-only by the webservice zone. Accessing the web content in this way
ensures that the content cannot be changed.

Running the Trusted Web Guard Demonstration
From your browser in the public zone or from a remote browser running at the PUBLIC label,
type the following URL:

http://server-name/demo

The browser should show the default index.html file from the webcontent zone.

Note that the Web Guard flow cannot by bypassed. The web server in the webservice zone
cannot receive packets from the public zone or from any remote host. The web content cannot
be changed because the webcontent zone is in the ready state.
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Accessing Lower-Level Untrusted Servers
Sometimes a client needs to be able to access a server on an unlabeled system. An unlabeled
system is a system that does not run the Trusted Extensions software. In such a case, you cannot
use multilevel ports because they are restricted to privileged servers that run in the global zone
or in labeled zones.

For example, suppose your browser is running in the INTERNAL zone. You want to access a web
server that runs on a single-level network that has been assigned the PUBLIC sensitivity label by
means of the tnrhdb database. Such access is not permitted by default. However, you could
write a privileged proxy server to forward the HTTP request to the PUBLIC web server. The
proxy should use a special Trusted Extensions socket option called SO_MAC_EXEMPT. This socket
option permits a request to be sent to an untrusted lower-level service, and permits the reply
from that service to be returned to the requester.

Note – The use of the SO_MAC_EXEMPT option represents an unprotected downgrade channel and
should be used very carefully. The SO_MAC_EXEMPT option cannot be set unless the calling
process has the PRIV_NET_MAC_AWARE privilege in its effective set. Such a process must enforce
its own data filtering policy to prevent leaking higher-level data to the lower-level service. For
example, the proxy should sanitize URLs to restrict words from being used as values.

The following code excerpt demonstrates the use of SO_MAC_EXEMPT in a modified version of the
wget command's connect_to_ip() routine in connect.c. The call to setsockopt() has been
added to show how to set the SO_MAC_EXEMPT option.

int

connect_to_ip (const ip_address *ip, int port, const char *print)

{

struct sockaddr_storage ss;

struct sockaddr *sa = (struct sockaddr *)&ss;

int sock;

int on = 1;

/* If PRINT is non-NULL, print the "Connecting to..." line, with

PRINT being the host name we’re connecting to. */

if (print)

{

const char *txt_addr = pretty_print_address (ip);

if (print && 0 != strcmp (print, txt_addr))

logprintf (LOG_VERBOSE, _("Connecting to %s|%s|:%d... "),
escnonprint (print), txt_addr, port);

else

logprintf (LOG_VERBOSE, _("Connecting to %s:%d... "), txt_addr, port);

}
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/* Store the sockaddr info to SA. */

sockaddr_set_data (sa, ip, port);

/* Create the socket of the family appropriate for the address. */

sock = socket (sa->sa_family, SOCK_STREAM, 0);

if (sock < 0)

goto err;

if (setsockopt (sock, SOL_SOCKET, SO_MAC_EXEMPT, &on, sizeof (on)) == -1) {

perror("setsockopt SO_MAC_EXEMPT");
}

#if defined(ENABLE_IPV6) && defined(IPV6_V6ONLY)

if (opt.ipv6_only) {

/* In case of error, we will go on anyway... */

int err = setsockopt (sock, IPPROTO_IPV6, IPV6_V6ONLY, &on, sizeof (on));

}

#endif
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Experimental Java Bindings for the Solaris
Trusted Extensions Label APIs

This chapter describes an experimental set of Java classes and methods that mirror the label
application programming interfaces (APIs) that are provided with the Trusted Extensions
software. The Java implementation of the Trusted Extensions label APIs is intended to be used
to create label-aware applications. As a result, all of the label APIs provided by Trusted
Extensions are not part of the Java implementation.

The presentation of these experimental Java APIs (Java bindings) demonstrate how the Trusted
Extensions features can be expanded into the Java development environment.

Caution – These experimental Java bindings are not a supported part of the Trusted Extensions
software.

This chapter covers the following topics:

■ “Java Bindings Overview” on page 105
■ “Structure of the Experimental Java Label Interfaces” on page 106
■ “Java Bindings” on page 108

Java Bindings Overview
The Java language is an untapped resource for creating label-aware applications that run in
secure, multilevel arenas. These experimental Java bindings provide a foundation on which to
develop more applications, such as system audit log generation and system resource controls.

Adding platform services to the Java environment will enable Java applications to handle
sensitive multilevel data.

Trusted Extensions provides label services through the label daemon, labeld. This daemon is
available to processes that run in the global zone and in labeled zones.
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The Java bindings described in this chapter are Java Native Interface (JNI) implementations of
some of the Trusted Extensions label APIs. The experimental JNI code calls the Trusted
Extensions label library functions to extend some of the label functionality to the Java language.
Constructors and methods in these Java classes call private JNI interfaces, written in C, that in
turn call the Trusted Extensions APIs. For example, the SolarisLabel.dominates method calls
a private JNI interface written in C that calls the bldominates() routine. These experimental
Java bindings have been developed using Java 2 Platform, Standard Edition 5.0. For more
information about JNI, see Java Native Interface Documentation (http://java.sun.com/
j2se/1.5.0/docs/guide/jni/).

You can download this experimental code from the Trusted Extensions project page of the
OpenSolaris web site (http://hub.opensolaris.org/bin/view/
Community+Group+security/tx/).

Structure of the Experimental Java Label Interfaces
The JNI implementation of the Trusted Extensions label APIs introduces several label-related
classes that relate to each other in this way:

■ SolarisLabel abstract class
■ ClearanceLabel subclass
■ SensitivityLabel subclass

■ Range class

SolarisLabelAbstract Class
The SolarisLabel abstract class provides the foundation for common and native methods
related to Trusted Extensions labels. The SensitivityLabel and ClearanceLabel subclasses
inherit members from this abstract class. Static factories for creating sensitivity labels and
clearance labels are also provided by the abstract class.

Static factories and methods throw exceptions when errors are encountered to ensure that no
mandatory access control-related errors occur silently.

This abstract class defines the following general-purpose methods that are used to compare
labels and to translate labels to strings:

■ dominates

■ equals

■ setFileLabel

■ strictlyDominates

■ toColor

■ toInternal
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■ toRootPath

■ toString

■ toText

■ toTextLong

■ toTextShort

The equals, dominates, and strictlyDominates methods are analogous to the blequal(),
bldominates(), and blstrictdom() label APIs currently available with Trusted Extensions.
The setFileLabel method is analogous to the setflabel() routine currently available with
Trusted Extensions.

The rest of the methods (such as toText, toInternal, and toColor) are related in function to
the label_to_str() routine that is currently available with Trusted Extensions. These methods
enable you to translate a label to a particular type of string. Depending on the label relationship
of the process and the object, you might need privileges in your effective set to translate a label
to a human-readable form. For instance, the Java Virtual Machine (JVM) process must be
running with the sys_trans_label privilege to translate labels that it does not dominate.

The SolarisLabel abstract class also includes the following static factories:

■ getClearanceLabel

■ getFileLabel

■ getSensitivityLabel

■ getSocketPeer

The string that you pass as a label to getSensitivityLabel or getClearanceLabel can be in
one of the following forms:

■ Human-readable form of the label, such as PUBLIC
■ Internal form of the label, such as 0x0002-08-08

Only the internal form of the label is suitable for storage and for transmission over a network
connection, as the internal form does not reveal the actual label. For more information, see
“Readable Versions of Labels” on page 37.

The ClearanceLabel and SensitivityLabel subclasses extend the SolarisLabel abstract
class. These subclasses each inherit the common methods provided by the SolarisLabel
abstract class.

ClearanceLabel Subclass
The ClearanceLabel subclass extends the SolarisLabel abstract class and defines the
getMaximum and getMinimum methods, which return the ClearanceLabel object that represents
the least upper bound and the greatest lower bound, respectively.
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SensitivityLabel Subclass
The SensitivityLabel subclass extends the SolarisLabel abstract class and defines the
getMaximum and getMinimum methods, which return the SensitivityLabel object that
represents the least upper bound and the greatest lower bound, respectively.

The SensitivityLabel subclass introduces the following methods that provide information
suitable for labeled printer banner pages:

■ toCaveats

■ toChannels

■ toFooter

■ toHeader

■ toProtectAs

RangeClass
The Range class represents a Java version of a Trusted Extensions label range.

This class defines the following general-purpose methods that are used to obtain the upper and
lower labels in a label range and to determine whether a label is within a specified label range:

■ getLower

■ getUpper

■ inRange

The Range class also includes the following static factories that create range objects:

■ getDeviceRange

■ getLabelRange

■ getUserRange

The getDeviceRange and getUserRange static factories create range objects based on the range
for the specified device and the specified user, respectively. The getLabelRange static factory
enables you to create a label range where you specify the upper and lower bounds for the range.

Java Bindings
The Java implementation of the Trusted Extensions label APIs is intended to be used to create
label-aware applications. As a result, not all of the label APIs provided by Trusted Extensions
are part of the Java implementation.
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The Java classes and methods that are presented in this chapter mimic the following general
label functionality shown in “Label APIs” on page 31:

■ Detecting a Trusted Extensions system
■ Accessing the process sensitivity label
■ Allocating and freeing memory for label objects
■ Obtaining and setting the label of a file
■ Obtaining label range objects
■ Accessing labels in zones
■ Obtaining the remote host type
■ Translating between labels and strings
■ Comparing label objects

Detecting a Trusted Extensions System
These Java bindings do not include methods to determine whether a system is labeled. Rather,
the library will fail to load if Trusted Extensions is not enabled.

Accessing the Process Sensitivity Label
These Java bindings do not include methods to obtain the label of a process. In Trusted
Extensions, a process that runs in a labeled zone has the same label as the zone.

Allocating and Freeing Memory for Label Objects
These Java bindings take advantage of the Java “garbage-collection” functionality. As a result,
you do not need to explicitly free the memory used by label objects as you do for the label APIs
described in “Obtaining and Setting the Label of a File” on page 33.

Obtaining and Setting the Label of a File
These Java bindings use the Java File object to obtain and set file labels. Use the getFileLabel
static factory to obtain the label from the file's File object. To set a file label to another specified
label, use the setFileLabel method on the file's File object.

In addition to obtaining the sensitivity label of a file, the getSocketPeer static factory enables
you to obtain the sensitivity label for the peer endpoint of a socket.

The getFileLabel static factory and the setFileLabel method correspond to the getlabel()
system call and the setflabel() routine, respectively. For more information, see “Obtaining
and Setting the Label of a File” on page 33 and the getlabel(2) and setflabel(3TSOL) man
pages.
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The following descriptions include the prototype declarations for the static factories and the
method:

public static SensitivityLabel getFileLabel(java.io.File file)

The getFileLabel static factory obtains the label of a Java File object that is specified by file.

public static SensitivityLabel getSocketPeer(java.net.Socket socket)

The getSocketPeer static factory obtains a sensitivity label object from the specified socket,
socket.

The following code fragment obtains the sensitivity label object of the socket, s:

SensitivityLabel sl = SolarisLabel.getSocketPeer(s);

The following example code shows how to create a server socket on port 9090 and then
obtain the sensitivity label of the peer end of the accepted connection. This code example
also outputs the internal and human-readable forms, the color, and the root path of the
obtained socket peer label.

import java.io.*;

import java.net.*;

import solarismac.*;

public class ServerSocketTest

{

public static void main (String args[]) {

System.out.println("ServerSocketTest Start");

CreateListner();

System.out.println("ServerSocketTest End");

}

/*

* Listen for connections on port then print the peer connection label.

* You can use telnet host 9090 to create a client connection.

*/

private static void CreateListner() {

int port = 9090;

ServerSocket acceptSocket;

Socket s;

try {

System.out.println("Creating ServerSocket on port " + port);

acceptSocket = new ServerSocket(port);
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System.out.println("ServerSocket created, waiting for connection");

s = acceptSocket.accept();

/*

* Get the Sensitivity Label for the peer end of the socket.

*/

SensitivityLabel socksl = SolarisLabel.getSocketPeer(s);

System.out.println("Client connected...");
System.out.println(" toInternal: " + socksl.toInternal());

System.out.println(" toText: " + socksl.toText());

System.out.println(" toString: " + socksl.toString());

System.out.println(" toColor: " + socksl.toColor());

System.out.println(" toRootPath: " + socksl.toRootPath());

} catch (Exception e) {

e.printStackTrace();

}

}

}

public static void setFileLabel(java.io.File file, SensitivityLabel label)

The setFileLabel method changes the sensitivity label of the specified file to the specified
label. When the sensitivity label of a file changes, the file is moved to the zone that
corresponds to the new label. The file is moved to a new path name that is relative to the root
of the other zone.

For example, if you use the setFileLabel method to change the label of the file
/zone/internal/documents/designdoc.odt from INTERNAL to RESTRICTED, the new path
of the file will be /zone/restricted/documents/designdoc.odt. Note that if the
destination directory does not exist, the file is not moved.

The following code fragment shows how you might change the label of the file:

SolarisLabel.setFileLabel(new File("/zone/internal/documents/designdoc.odt"),
SolarisLabel.getSensitivityLabel("RESTRICTED"));

When you change the sensitivity label of a file, the original file is deleted. The only exception
occurs when the source and destination file systems are loopback-mounted from the same
underlying file system. In this case, the file is renamed.

The Java virtual machine must be running with the appropriate privilege (file_upgrade_sl
or file_downgrade_sl) to relabel a file.

For more information about setting privileges, see Chapter 2, “Developing Privileged
Applications,” in Oracle Solaris Security for Developers Guide. See also the
setflabel(3TSOL) man page.
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Obtaining Label Range Objects
The getLabelRange static factory creates a label range object. The getUserRange and
getDeviceRange static factories obtain label range objects for a user and a device, respectively.
The getUpper and getLower methods are used to obtain the upper and lower labels of the
range, respectively. In addition, the inRange method determines whether the specified label is
in a range. For more information about the inRange method, see “Comparing Label Objects”
on page 117.

The getUserRange and getDeviceRange static factories correspond to the getuserrange()
and getdevicerange() routines. For more information, see “Obtaining Label Ranges” on
page 34 and the getdevicerange(3TSOL) man page.

The following constructor and method descriptions include the prototype declaration for each
constructor:

public static Range getDeviceRange(java.lang.String device)

The getDeviceRange static factory obtains the label range of a user-allocatable device. If no
label range is specified for the device, the default range has an upper bound of ADMIN_HIGH
and a lower bound of ADMIN_LOW.

You can use the list_devices command to show the label range for a device. See the
list_devices(1) and getdevicerange(3TSOL) man pages.

public static <L extends SolarisLabel,U extends SolarisLabel> Range

getLabelRange(L lower, U upper)

The getLabelRange static factory creates a label range. The static factory takes the lower
bound value in the range and the upper bound, or clearance, as parameters. An exception is
thrown if upper does not dominate lower.

public L getLower()

The getLower method returns the lower portion of the range.

public U getUpper()

The getUpper method returns the upper portion of the range.

public static Range getUserRange(java.lang.String user)

The getUserRange static factory obtains the label range of the specified user. The lower
bound in the range is used as the initial workspace label when a user logs in to a multilevel
desktop. The upper bound, or clearance, is used as an upper limit to the available labels that a
user can assign to labeled workspaces.

The default value for a user's label range is specified in the label_encodings file. The value
can be overridden by the user_attr file.

For more information, see the getuserrange(3TSOL) man page.
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Accessing Labels in Zones
The following description includes the prototype declaration for the method:

public final java.lang.String toRootPath()

This method returns the root path name of the zone for the specified sensitivity label.

The following code excerpt shows how to obtain the root path for the PUBLIC sensitivity
label:

SensitivityLabel sl = SolarisLabel.getSensitivityLabel("PUBLIC");
System.out.println("toRootPath: " + sl.toRootPath();

This method throws a java.io.IOException if an invalid label is specified or if no zone is
configured for the specified label.

This method mimics the getzonerootbylabel() routine. See the
getzonerootbylabel(3TSOL) man page. See also “Accessing Labels in Zones” on page 34.

Obtaining the Remote Host Type
The Java implementation of the Trusted Extensions label APIs does not include interfaces for
obtaining the remote host type.

Translating Between Labels and Strings
The SolarisLabel abstract class includes methods for translating between labels and strings,
which are inherited by its subclasses.

These methods translate the internal representation of a label (m_label_t) to String objects.

You can use the toInternal method to translate a label into a string that hides the classification
name. This format is suitable for storing labels in public objects.

The running Java virtual machine must dominate the label to be translated, or it must have the
sys_trans_label privilege. See the label_to_str(3TSOL) man page.

Some of the label values are based on data in the label_encodings file.

The following methods mimic the label_to_str() routine. See the label_to_str(3TSOL)
man page.

public final java.lang.String toColor()

This method returns the color of the SolarisLabel object. The value is suitable for use by
HTML.
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public final java.lang.String toInternal()

This method returns the internal representation of the label that is safe for storing in a public
object. An internal conversion can later be parsed to its same value. This is the same as using
the toString method.

These two methods differ in the way that they handle errors. If the toInternal method
encounters an error, it returns a java.io.IOException. However, if the toString method
encounters an error, it returns a null.

public java.lang.String toString()

This method returns the internal hexadecimal version of the label in string form, which is the
same as using the toInternal method.

These two methods differ in the way that they handle errors. If the toString method
encounters an error, it returns a null. However, if the toInternal method encounters an
error, it returns a java.io.IOException.

public java.lang.String toText()

This method returns a human-readable text string of the SolarisLabel object.

public java.lang.String toTextLong()

This method returns the long human-readable text string of the SolarisLabel object.

public java.lang.String toTextShort()

This method returns the short human-readable text string of the SolarisLabel object.

The following methods perform label translations that are suitable for creating multilevel
printer banner pages. These methods mimic some of the functionality of the label_to_str()
routine. See the label_to_str(3TSOL) and m_label(3TSOL) man pages.

public java.lang.String toCaveats()

This method returns a human-readable text string that is suitable for the caveats section of
the banner page.

This method is only available for SensitivityLabel objects, not for ClearanceLabel
objects.

public java.lang.String toChannels()

This method returns a human-readable text string that is suitable for the handling channels
section of the banner page.

This method is only available for SensitivityLabel objects, not for ClearanceLabel
objects.

public java.lang.String toFooter()

This method returns a human-readable text string that is appropriate for use as the
sensitivity label. This sensitivity label appears at the bottom of banner and trailing pages.

This method is only available for SensitivityLabel objects, not for ClearanceLabel
objects.
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public java.lang.String toHeader()

This method returns a human-readable text string that is appropriate for use as the
sensitivity label. This sensitivity label appears at the top of banner and trailing pages.

This method is only available for SensitivityLabel objects, not for ClearanceLabel
objects.

public java.lang.String toProtectAs()

This method returns a human-readable text string that is suitable for the page downgrade
section of the banner page.

This method is only available for SensitivityLabel objects, not for ClearanceLabel
objects.

EXAMPLE 9–1 Using the Java Bindings to Create a Banner Page

The following example code shows how to use the Java bindings to create a banner page similar
to the one described in “Obtaining Printer Banner Information” on page 48.

import solarismac.*;

import java.io.*;

/*

* Banner page example

*/

public class PrintTest1

{

public static void main (String args[]) {

try {

// Pick a valid label using the label_encodings.example

SensitivityLabel sl = SolarisLabel.getSensitivityLabel("TOP SECRET A B SA");

// "Protect as classification"
System.out.println(sl.toHeader());

System.out.println();

// "Protect as classification plus compartments"
System.out.println("This output must be protected as:");
System.out.println(sl.toProtectAs());

System.out.println("unless manually reviewed and downgraded.");
System.out.println();

// Handling instructions specified in PRINTER BANNERS

System.out.println(sl.toCaveats());

System.out.println();
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EXAMPLE 9–1 Using the Java Bindings to Create a Banner Page (Continued)

// Handling instructions specified in CHANNELS

System.out.println(sl.toChannels());

System.out.println();

// "Protect as classification"
System.out.println(sl.toFooter());

System.out.println();

} catch (Exception e) {

e.printStackTrace();

}

}

}

For a process label of TOP SECRET A B SA, the text output might be the following:

TOP SECRET

This output must be protected as:

TOP SECRET A B SA

unless manually reviewed and downgraded.

(FULL SA NAME)

HANDLE VIA (CH B)/(CH A) CHANNELS JOINTLY

TOP SECRET

Methods such as toText, toInternal, and toColor do not translate from a string to a label. To
translate a string to a sensitivity label or to a clearance label, you must call the
getSensitivityLabel or getClearanceLabel static factories, respectively. The following static
factories mimic the str_to_label() routine. See the str_to_label(3TSOL) and
m_label(3TSOL) man pages.

public static ClearanceLabel getClearanceLabel(java.lang.String label)

This static factory creates a clearance label from the specified string. The following examples
create new clearance labels based on a label name and the internal hexadecimal name of a
label:

ClearanceLabel cl = SolarisLabel.getClearanceLabel("PUBLIC");
ClearanceLabel cl = SolarisLabel.getClearanceLabel("0x0002-08-08");
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public static SensitivityLabel getSensitivityLabel(java.lang.String label)

This static factory creates a sensitivity label from the specified string. The following examples
create new sensitivity labels based on a label name and the internal hexadecimal name of a
label:

SensitivityLabel sl = SolarisLabel.getSensitivityLabel("PUBLIC");
SensitivityLabel sl = SolarisLabel.getSensitivityLabel("0x0002-08-08");

Comparing Label Objects
The following equals, dominates, and strictlyDominates methods are used to compare
labels, and correspond to the blequal(), bldominate(), and blstrictdom() routines. The
inRange method is used to determine whether a label is within a specified label range, and
corresponds to the blinrange() routine. In these methods, a label refers to a classification and a
set of compartments in a sensitivity label or in a clearance label. For more information, see
“Comparing Labels” on page 38 and the blcompare(3TSOL) man page.

public boolean dominates(SolarisLabel label)

The dominates method compares two labels to determine whether one label dominates the
other.

The following example code shows how you can make the comparison. The CNF : INTERNAL
label is being compared to check its dominance over the PUBLIC label.

SensitivityLabel sl = SolarisLabel.getSensitivityLabel("CNF : INTERNAL");
boolean isDominant = sl.dominates(SolarisLabel.getSensitivityLabel("PUBLIC"));

public boolean equals(java.lang.Object obj)

The equals method compares two labels to determine whether they are equal.

The following example code shows how you can make the comparison:

SensitivityLabel sl = SolarisLabel.getSensitivityLabel("CNF : INTERNAL");
boolean isSame = sl.equals(SolarisLabel.getSensitivityLabel("PUBLIC"));

public boolean Range inRange(SensitivityLabel label)

The inRange method determines whether the specified label is within the range. This
method belongs to the Range class.

The following code fragment shows how you can verify that a file is within a user's clearance
range:

import solarismac.*;

import java.io.*;

public class Example1

{

public static void main (String args[]) {
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try {

Range range;

range = Range.getUserRange("jweeks");
SensitivityLabel fsl =

SolarisLabel.getFileLabel(new File("/etc/passwd"));
boolean isInRange;

isInRange = Range.inRange(fsl);

if (isInRange)

System.out.println("File is within user’s range");
else

System.out.println("File is not within user’s range");

}

catch (Exception e) {

e.PrintStackTrace();

}

}

}

public boolean strictlyDominates(SolarisLabel label)

The strictlyDominates method compares two labels to determine whether one label
strictly dominates the other. When a label strictly dominates another, it dominates the other
label, but is not equal to the other label.

The following example code shows how you can make the comparison. The CNF : INTERNAL
label is being compared to check its strict dominance over the PUBLIC label.

SensitivityLabel sl = SolarisLabel.getSensitivityLabel("CNF : INTERNAL");
boolean isStrictlyDominant =

sl.strictlyDominates(SolarisLabel.getSensitivityLabel("PUBLIC"));

For more information about label relationships, see “Label Relationships” on page 17.

The getMaximum and getMinimum methods are used to determine the least upper bound and the
greatest lower bound of the specified label range, respectively. These methods mirror the
functionality of the blmaximum() and blminimum() routines. For more information, see
“Comparing Labels” on page 38 and the blminmax(3TSOL) man page.

For instance, use the getMaximum method to determine the label to use when creating a new
labeled object that combines information from two other labeled objects. The label of the new
object will dominate both of the original labeled objects. Each method is defined by the
ClearanceLabel and SensitivityLabel subclasses.
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public ClearanceLabel getMaximum(ClearanceLabel bounding)

The getMaximum method creates a new clearance label object that is the lowest label that can
dominate two label objects you specify. The resulting object is the least upper bound of the
range. getMaximum returns an object in the internal form of the clearance label.

public ClearanceLabel getMinimum(ClearanceLabel bounding)

The getMinimum method creates a new clearance label object that is the highest label that is
dominated by two labels you specify. The resulting object is the greatest lower bound of the
range. getMinimum returns an object in the internal form of the clearance label.

public SensitivityLabel getMaximum(SensitivityLabel bounding)

The getMaximum method creates a new sensitivity label object that is the lowest label that can
dominate two label objects you specify. The resulting object is the least upper bound of the
range. getMaximum returns an object in the internal form of the sensitivity label.

public SensitivityLabel getMinimum(SensitivityLabel bounding)

The getMinimum method creates a new sensitivity label object that is the highest label that is
dominated by two labels you specify. The resulting object is the greatest lower bound of the
range. getMinimum returns an object in the internal form of the sensitivity label.

The following table shows label input and output from the getMaximum and getMinimum

methods.

TABLE 9–1 Using the getMinimum and getMaximumMethods

Input Labels getMinimumOutput getMaximumOutput

SECRET A B

TOP SECRET A B SA SB CC

SECRET A B TOP SECRET A B SA SB CC

SECRET A B

TOP SECRET A SA CC

SECRET A TOP SECRET A B SA CC

SECRET A B

TOP SECRET

SECRET TOP SECRET A B

SECRET A

TOP SECRET B

SECRET TOP SECRET A B
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Programmer's Reference

This appendix explains where to find information about developing, testing, and releasing
label-aware applications to an environment that uses the Trusted Extensions software.

This appendix covers the following topics:

■ “Header File Locations” on page 121
■ “Abbreviations Used in Interface Names and Data Structure Names” on page 122
■ “Developing, Testing, and Debugging an Application” on page 123
■ “Releasing an Application” on page 123

Header File Locations
Most Trusted Extensions header files are located in the /usr/include/tsol directory and in
the /usr/include/sys/tsol directory. The locations of other header files are shown in the
following table.

Header File and Its Location Category of Interface

/usr/dt/include/Dt/label_clipping.h X11 label translation and label clipping with
font list

/usr/dt/include/Dt/ModLabel.h Label Builder

/usr/openwin/include/X11/extensions/Xtsol.h X Window System

/usr/include/libtsnet.h Trusted network library

/usr/include/bsm/libbsm.h Audit library
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Abbreviations Used in Interface Names and Data Structure
Names

Many of the Trusted Extensions interface names and data structure names use the following
short abbreviations. Knowing the abbreviations of these names will help you recognize the
purpose of an interface or structure.

TABLE A–1 Name Abbreviations Used by Trusted Extensions APIs

Abbreviation Name

attr Attribute

b Binary

clear Clearance

ent Entry

f File

fs File system

h Hexadecimal

l Level, label, or symbolic link

lbuild Label Builder

prop Properties

r Re-entrant

res Resource

s String

sec Security

sl Sensitivity label

tp Trusted Path

tsol Trusted Extensions

xtsol Trusted X11 Server

Abbreviations Used in Interface Names and Data Structure Names
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Developing, Testing, and Debugging an Application
You must develop, test, and debug an application on an isolated development system to prevent
software bugs and incomplete code from compromising the security policy on the main system.

Follow these guidelines:

■ Remove extra debugging code, especially code that provides undocumented features and
code that bypasses security checks.

■ Make application data manipulation easy to follow so that the manipulation can be
inspected for security problems by an administrator before installation.

■ Test return codes for all programming interfaces. An unsuccessful call can have
unpredictable results. When an unexpected error condition occurs, the application must
always terminate.

■ Test all functionality by running the application at all sensitivity labels and from all roles
that you expect will run the application.
■ If the program is run by an ordinary user and not by a role, start the program from the

command line at the labels where the program is intended to run.
■ If the program is run by a role, start the program from the command line in the global

zone or from the user role at the labels where the program is intended to run.
■ Test all functionality under privilege debugging mode so that you know whether the

application has all the privileges it needs. This type of testing also determines whether the
application is attempting to perform privileged tasks that it should not be performing.

■ Know the security implications of using privileges. Ensure that the application does not
compromise system security by its use of privileges.

■ Know and follow good privilege bracketing practices.

See Oracle Solaris Security for Developers Guide.
■ If you use the SUNWspro debugger or the dbx command to test a privileged application, start

the debugger before you attach it to a running process. You cannot start the debugger with
the command name as an argument.

Releasing an Application
You submit a fully tested and debugged application to the system administrator for application
integration. The application can be submitted as a CDE action or as a software package. If the
application uses privileges, the system administrator must evaluate the application source code
and the security information that you supply. This evaluation verifies that your use of privileges
does not compromise system security.

Releasing an Application
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Caution – Notify the system administrator of new auditing events, audit classes, or X Window
System properties that your application uses. The system administrator must place these items
into the correct files. For more information, see Chapter 6, “Trusted X Window System.”

Creating a CDE Action
A CDE action is started from the workspace by a user or a role. The action inherits the privileges
assigned to the profile of that user or role. A CDE action is a set of instructions that work like
application macros or APIs to automate desktop tasks such as running applications and
opening data files. On a system configured with Trusted Extensions, applications are started
from the workspace as CDE actions. Instructions on how to create a CDE action are provided in
the Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide.

Note – When you create a CDE action, create an f.action, not an f.exec. An f.exec executes
the program as superuser with all privileges.

The system administrator puts the CDE action into the appropriate profiles and assigns any
necessary privileges to the CDE action. You must list the privileges that the program uses,
indicate the labels at which the application is intended to run, and supply any required effective
user or group IDs. The system administrator assigns privileges as well as effective user and
group IDs to the CDE action in the profile.

Creating a Software Package
To create a software package, see the Application Packaging Developer’s Guide. To debug
package installation issues, see Chapter 14, “Troubleshooting Software Problems (Overview),”
in System Administration Guide: Advanced Administration.

Releasing an Application
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Trusted Extensions API Reference

This appendix provides application programming interface (API) listings and cross-references
to their use. Declarations are grouped by security topic.

This appendix covers the following topics:

■ “Process Security Attribute Flags APIs” on page 125
■ “Label APIs” on page 125
■ “Label-Clipping APIs” on page 127
■ “RPC APIs” on page 127
■ “Label Builder APIs” on page 127
■ “Trusted X Window System APIs” on page 127
■ “Oracle Solaris Library Routines and System Calls That Use Trusted Extensions Parameters”

on page 128
■ “System Calls and Library Routines in Trusted Extensions” on page 129

Process Security Attribute Flags APIs
The following Oracle Solaris APIs accept Trusted Extensions parameters:

■ uint_t getpflags(uint_t flag);

■ int setpflags(uint_t flag, uint_t value);

Label APIs
The label APIs are introduced in Chapter 2, “Labels and Clearances.” Sample code is provided in
Chapter 3, “Label Code Examples.” A fully described example is provided in Chapter 4,
“Printing and the Label APIs.”
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The following lists the types of label-related APIs and shows the prototype declarations of the
routines and system calls for each type:

■ Accessing the label_encodings file
■ m_label_t *m_label_alloc(const m_label_type_t label_type);

■ int m_label_dup(m_label_t **dst, const m_label_t *src);

■ void m_label_free(m_label_t *label);

■ int label_to_str(const m_label_t *label, char **string, const

m_label_str_t conversion_type, uint_t flags);

■ Comparing level relationships
■ int blequal(const m_label_t *level1, const m_label_t *level2);

■ int bldominates(const m_label_t *level1, const m_label_t *level2);

■ int blstrictdom(const m_label_t *level1, const m_label_t *level2);

■ int blinrange(const m_label_t *level, const brange_t *range);

■ void blmaximum(m_label_t *maximum_label, const m_label_t

*bounding_label);

■ void blminimum(m_label_t *minimum_label, const m_label_t

*bounding_label);

■ Accessing label ranges
■ m_range_t *getuserrange(const char *username);

■ blrange_t *getdevicerange(const char *device);

■ Accessing labels in zones
■ char *getpathbylabel(const char *path, char *resolved_path, size_t

bufsize, const m_label_t *sl);

■ m_label_t *getzonelabelbyid(zoneid_t zoneid);

■ m_label_t *getzonelabelbyname(const char *zonename);

■ zoneid_t *getzoneidbylabel(const m_label_t *label);

■ char *getzonerootbyid(zoneid_t zoneid);

■ char *getzonerootbylabel(const m_label_t *label);

■ char *getzonerootbyname(const char *zonename);

■ Obtaining the remote host type
■ tsol_host_type_t tsol_getrhtype(char *hostname);

■ Accessing and modifying sensitivity labels
■ int fgetlabel(int fd, m_label_t *label_p);

■ int getlabel(const char *path, m_label_t *label_p);

■ int setflabel(const char *path, const m_label_t *label_p);

■ int getplabel(m_label_t *label_p);

Label APIs
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■ int label_to_str(const m_label_t *label, char **string, const

m_label_str_t conversion_type, uint_t flags);

■ int str_to_label(const char *string, m_label_t **label, const

m_label_type_t label_type, uint_t flags, int *error);

Label-Clipping APIs
For information about this label-clipping API, see Chapter 6, “Trusted X Window System.”

int label_to_str(const m_label_t *label, char **string,

const m_label_str_t conversion_type, uint_t flags);

RPC APIs
Trusted Extensions does not provide interfaces for remote procedure calls (RPC). RPC
interfaces have been modified to work with Trusted Extensions. For conceptual information,
see Chapter 5, “Interprocess Communications.” For an example that uses the getpeerucred()
and ucred_getlabel() routines, see Chapter 4, “Printing and the Label APIs.”

Label Builder APIs
For information about the Label Builder user interface, see Chapter 7, “Label Builder APIs.”

■ ModLabelData *tsol_lbuild_create(Widget widget, void (*event_handler)()

ok_callback, lbuild_attributes extended_operation, ..., NULL);

■ void tsol_lbuild_destroy(ModLabelData *lbdata);

■ void *tsol_lbuild_get(ModLabelData *lbdata, lbuild_attributes

extended_operation);

■ void tsol_lbuild_set(ModLabelData *lbdata, lbuild_attributes

extended_operation, ..., NULL);

Trusted X Window System APIs
For information about the Trusted X Window System APIs, see Chapter 6, “Trusted X Window
System.”

■ Status XTSOLgetResAttributes(Display *display, XID object, ResourceType

type, XTSOLResAttributes *winattrp);

■ Status XTSOLgetPropAttributes(Display *display, Window window, Atom

property, XTSOLPropAttributes *propattrp);

Trusted X Window System APIs
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■ Status XTSOLgetClientAttributes(Display *display, XID windowid,

XTsolClientAttributes *clientattrp);

■ Status XTSOLgetResLabel(Display *display, XID object, ResourceType type,

m_label_t *sl);

■ Status XTSOLsetResLabel(Display *display, XID object, ResourceType type,

m_label_t *sl);

■ Status XTSOLgetResUID(Display *display, XID object, ResourceType type, uid_t

*uidp);

■ Status XTSOLsetResUID(Display *display, XID object, ResourceType type, uid_t

*uidp);

■ Status XTSOLgetPropLabel(Display *display, Window window, Atom property,

m_label_t *sl);

■ Status XTSOLsetPropLabel(Display *display, Window window, Atom property,

m_label_t *sl);

■ Status XTSOLgetPropUID(Display *display, Window window, Atom property, uid_t

*uidp);

■ Status XTSOLsetPropUID(Display *display, Window window, Atom property, uid_t

*uidp);

■ Status XTSOLgetWorkstationOwner(Display *display, uid_t *uidp);

■ Status XTSOLsetWorkstationOwner(Display *display, uid_t *uidp);

■ Status XTSOLsetSessionHI(Display *display, m_label_t *sl);

■ Status XTSOLsetSessionLO(Display *display, m_label_t *sl);

■ Status XTSOLMakeTPWindow(Display *display, Window *w);

■ Bool XTSOLIsWindowTrusted(Display *display, Window *window);

■ Status XTSOLgetSSHeight(Display *display, int screen_num, int *newheight);

■ Status XTSOLsetSSHeight(Display *display, int screen_num, int newheight);

■ Status XTSOLsetPolyInstInfo(Display *display, m_label_t sl, uid_t *uidp, int

enabled);

Oracle Solaris Library Routines and System Calls That Use
Trusted Extensions Parameters

The following Oracle Solaris interfaces either include Trusted Extensions parameters or are
used in this guide with Trusted Extensions interfaces:

■ int auditon(int cmd, caddr_t data, int length);

■ void free(void *ptr);

Oracle Solaris Library Routines and System Calls That Use Trusted Extensions Parameters
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■ int getpeerucred(int fd, ucred_t **ucred);

■ uint_t getpflags(uint_t flag);

■ int is_system_labeled(void);

■ int setpflags(uint_t flag, uint_t value);

■ int getsockopt(int s, int level, int optname, void *optval, int *optlen);

■ int setsockopt(int s, int level, int optname, const void *optval, int

optlen);

■ int socket(int domain, int type, int protocol);

■ ucred_t *ucred_get(pid_t pid);

■ m_label_t *ucred_getlabel(const ucred_t *uc);

System Calls and Library Routines in Trusted Extensions
The following table lists the Trusted Extensions system calls and routines. The table also
provides references to descriptions and declarations of the interface and to examples of the
interface that appear in this guide. The man page section is included as part of the name of each
system call and routine.

TABLE B–1 System Calls and Library Routines That Are Used in Trusted Extensions

System Call or Library Routine Cross-Reference to Description Cross-Reference to Example

bldominates(3TSOL) “Label Relationships” on page 17

“Comparing Labels” on page 38

“Determining the Relationship
Between Two Labels” on page 46

blequal(3TSOL) “Comparing Labels” on page 38 “Determining the Relationship
Between Two Labels” on page 46

blinrange(3TSOL) “Label Relationships” on page 17 “Validating the Label Request Against
the Printer's Label Range” on page 57

blmaximum(3TSOL) “Comparing Labels” on page 38

blminimum(3TSOL) “Comparing Labels” on page 38

blstrictdom(3TSOL) “Comparing Labels” on page 38

fgetlabel(2) “Labeled Zones” on page 27

“Obtaining and Setting the Label of a File” on
page 33

free(3C) “Translating Between Labels and Strings” on
page 36

getdevicerange(3TSOL) “Obtaining Label Ranges” on page 34 “Validating the Label Request Against
the Printer's Label Range” on page 57
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TABLE B–1 System Calls and Library Routines That Are Used in Trusted Extensions (Continued)
System Call or Library Routine Cross-Reference to Description Cross-Reference to Example

getlabel(2) “Labeled Zones” on page 27

“Obtaining and Setting the Label of a File” on
page 33

“Obtaining a File Label” on page 44

getpathbylabel(3TSOL) “Accessing Labels in Zones” on page 34

getpeerucred(3C) “get_peer_label() Label-Aware Function” on
page 53

“Obtaining the Credential and
Remote Host Label” on page 55

getpflags(2) “MAC-Exempt Sockets” on page 26

getplabel(3TSOL) “Accessing the Process Sensitivity Label” on
page 32

“Translating the Window Label With
the Font List” on page 80

getuserrange(3TSOL) “Obtaining Label Ranges” on page 34

getzoneidbylabel(3TSOL) “Accessing Labels in Zones” on page 34

getzonelabelbyid(3TSOL) “Accessing Labels in Zones” on page 34

getzonelabelbyname(3TSOL) “Accessing Labels in Zones” on page 34

getzonerootbyid(3TSOL) “Accessing Labels in Zones” on page 34

getzonerootbylabel(3TSOL) “Accessing Labels in Zones” on page 34

getzonerootbyname(3TSOL) “Accessing Labels in Zones” on page 34

is_system_labeled(3C) “get_peer_label() Label-Aware Function” on
page 53

“Detecting a Trusted Extensions System” on
page 32

“Determining Whether the Printing
Service Is Running in a Labeled
Environment” on page 54

labelbuilder(3TSOL) Chapter 7, “Label Builder APIs” “Creating an Interactive User
Interface” on page 84

label_to_str(3TSOL) “Translating Between Labels and Strings” on
page 36

“Obtaining a Process Label” on
page 43

m_label_alloc(3TSOL) “Allocating and Freeing Memory for Labels” on
page 33

“Obtaining a Process Label” on
page 43

“Obtaining a File Label” on page 44

m_label_dup(3TSOL) “Allocating and Freeing Memory for Labels” on
page 33
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http://docs.sun.com/doc/816-5172/getzonelabelbyname-3tsol?a=view
http://docs.sun.com/doc/816-5172/getzonerootbyid-3tsol?a=view
http://docs.sun.com/doc/816-5172/getzonerootbylabel-3tsol?a=view
http://docs.sun.com/doc/816-5172/getzonerootbyname-3tsol?a=view
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TABLE B–1 System Calls and Library Routines That Are Used in Trusted Extensions (Continued)
System Call or Library Routine Cross-Reference to Description Cross-Reference to Example

m_label_free(3TSOL) “Allocating and Freeing Memory for Labels” on
page 33

“Validating the Label Request Against
the Printer's Label Range” on page 57

“Obtaining a Process Label” on
page 43

setflabel(3TSOL) “Obtaining and Setting the Label of a File” on
page 33

“Obtaining and Setting the Label of a File” on
page 33

setpflags(2) “MAC-Exempt Sockets” on page 26

str_to_label(3TSOL) “Translating Between Labels and Strings” on
page 36

“Validating the Label Request Against
the Printer's Label Range” on page 57

“Obtaining a File Label” on page 44

tsol_getrhtype(3TSOL) “Obtaining the Remote Host Type” on page 36

ucred_get(3C) “Multilevel Ports” on page 25

ucred_getlabel(3C) “Multilevel Ports” on page 25

XTSOLgetClientAttributes(3XTSOL) “Accessing Attributes” on page 75

XTSOLgetPropAttributes(3XTSOL) “Accessing Attributes” on page 75

XTSOLgetPropLabel(3XTSOL) “Accessing and Setting a Window Property
Label” on page 76

XTSOLgetPropUID(3XTSOL) “Accessing and Setting a Window Property
Label” on page 76

XTSOLgetResAttributes(3XTSOL) “Obtaining Window Attributes” on page 80

XTSOLgetResLabel(3XTSOL) “Obtaining a Window Label” on page 81

XTSOLgetResUID(3XTSOL) “Obtaining the Window User ID” on page 82

“Accessing and Setting a Window User ID” on
page 76

XTSOLgetSSHeight(3XTSOL) “Accessing and Setting the Screen Stripe Height”
on page 78

XTSOLgetWorkstationOwner(3XTSOL) “Accessing and Setting a Workstation Owner ID”
on page 77

XTSOLIsWindowTrusted(3XTSOL) “Working With the Trusted Path Window” on
page 78
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http://docs.sun.com/doc/816-5172/tsol-getrhtype-3tsol?a=view
http://docs.sun.com/doc/816-5168/ucred-get-3c?a=view
http://docs.sun.com/doc/816-5168/ucred-getlabel-3c?a=view
http://docs.sun.com/doc/816-5172/xtsolgetclientattributes-3xtsol?a=view
http://docs.sun.com/doc/816-5172/xtsolgetpropattributes-3xtsol?a=view
http://docs.sun.com/doc/816-5172/xtsolgetproplabel-3xtsol?a=view
http://docs.sun.com/doc/816-5172/xtsolgetpropuid-3xtsol?a=view
http://docs.sun.com/doc/816-5172/xtsolgetresattributes-3xtsol?a=view
http://docs.sun.com/doc/816-5172/xtsolgetreslabel-3xtsol?a=view
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TABLE B–1 System Calls and Library Routines That Are Used in Trusted Extensions (Continued)
System Call or Library Routine Cross-Reference to Description Cross-Reference to Example

XTSOLMakeTPWindow(3XTSOL) “Working With the Trusted Path Window” on
page 78

XTSOLsetPolyInstInfo(3XTSOL) Chapter 6, “Trusted X Window System”

XTSOLsetPropLabel(3XTSOL) “Accessing and Setting a Window Property
Label” on page 76

XTSOLsetPropUID(3XTSOL) “Accessing and Setting a Window Property
Label” on page 76

XTSOLsetResLabel(3XTSOL) “Setting a Window Label” on page 81

XTSOLsetResUID(3XTSOL) “Accessing and Setting a Window User ID” on
page 76

XTSOLsetSessionHI(3XTSOL) “Setting the X Window Server Clearance and
Minimum Label” on page 78

XTSOLsetSessionLO(3XTSOL) “Setting the X Window Server Clearance and
Minimum Label” on page 78

XTSOLsetSSHeight(3XTSOL) “Accessing and Setting the Screen Stripe Height”
on page 78

XTSOLsetWorkstationOwner(3XTSOL) “Accessing and Setting a Workstation Owner ID”
on page 77
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A
abbreviations used in interface names, 122
access

checks for
network, 62-67
sockets, 63
Trusted X Window System, 71

file labels, 29-31
guidelines for labels, 31
multilevel port connections, 61-62

ADMIN_HIGH label, 27
ADMIN_LOW label, 27
APIs

clearance label, 22
declarations, 125-132
examples of Trusted Extensions in Oracle

Solaris, 15
introduction to, 16
Label Builder, 83, 127
label clipping, 127
label range, 22
labels, 31-39, 43, 125-127
for Oracle Solaris that use Trusted Extensions

parameters, 128-129
process security attribute flags, 125
RPC, 127
security APIs from Oracle Solaris OS, 19
sensitivity label, 21
Trusted X Window System, 22-23, 69-82, 127-128
for zone labels and zone paths, 28

applications
integrating, 123-124

applications (Continued)
releasing, 123-124
testing and debugging, 123

atoms, predefined in X Window System, 73
auditid field, 75
authorizations, Label Builder, 89

B
bldominates() routine

code example, 46
declaration, 38-39

blequal() routine
code example, 46
declaration, 38-39

blinrange() routine
declaration, 38-39

blmaximum() routine, declaration, 38
blminimum() routine, declaration, 38
blstrictdom() routine

code example, 46
declaration, 38-39

brange_t type, 31
builders, API declarations for GUI, 127

C
CDE actions

assigning inheritable privileges, 124
creating, 124

133



classifications
clearance component, 16
disjoint, 18
dominant, 18
equal, 18
label component, 16
strictly dominant, 18

clearance labels, 16
ClearanceLabel subclass, 107
clearances

disjoint labels, 18
dominant labels, 18
equal labels, 18
session, 16
strictly dominant labels, 18
user, 16

code examples
file systems

obtaining label, 44
getSocketPeer static factory

obtaining socket peer label, 110
Label Builder, 85
label_encodings file

creating printer banner, 48-50, 115-116
obtaining character-coded color names, 47

label relationships, 46
labels

obtaining on file system, 44
obtaining on window, 81
obtaining process label, 43
setting on window, 81-82

obtain socket peer label, 110
printer banner, 48-50, 115-116
set file sensitivity label, 45
Trusted X Window System, 79-82

obtaining window attributes, 80
obtaining window label, 81
obtaining window user ID, 82
obtaining workstation owner, 82
setting window label, 81-82
translating with font list, 80-81

communication endpoints
access checks, 62-67
connections described, 63-65

compartments
clearance component, 16
disjoint, 18
dominant, 18
equal, 18
label component, 16
strictly dominant, 18

compile
Label Builder libraries, 83-84
label libraries, 31-39
Trusted X Window System libraries, 74

connection requests
security attributes, 70
security policy, 71

D
DAC (discretionary access control), 61, 69
data types

label APIs, 31
Label Builder APIs

ModLabelData structure, 92-93
tsol_lbuild_create() routine, 89-90

Trusted X Window System APIs, 74
debugging, applications, 123
definitions of terms, 15
detecting a Trusted Extensions system, 109
determining whether a system is labeled, example, 32
devices, input device privileges, 73
DGA (direct graphics access), privileges, 73
disjoint labels, 18
dominant labels, 18
dominates method, declaration, 117-119
downgrading labels

guidelines, 31
privileges needed, 30
Trusted X Window System, 74

E
equal labels, 18
equals method, declaration, 117-119

Index

Oracle Solaris Trusted Extensions Developer's Guide • September 2010134



examples of Trusted Extensions APIs in Oracle
Solaris, 15

extended operations, 90-92

F
fgetlabel() system call, declaration, 33-34
file_dac_search privilege, overriding access to parent

directory of zone's root directory, 24
file_downgrade_sl privilege, 30
file_owner privilege, 30
files, label privileges, 30
fonts

font list translation, 80-81
font path privileges, 74

G
get_peer_label() function, 53-57
getClearanceLabel static factory, declaration, 116
getdevicerange() routine, declaration, 34
getDeviceRange static factory, declaration, 112
getFileLabel static factory

declaration, 109-111
getlabel command, 45

code example, 46
getlabel() system call

code example, 44
declaration, 33-34

getLabelRange static factory, declaration, 112
getLower method, declaration, 112
getMaximum method

declaration, 118, 119
getMinimum method

declaration, 118, 119
getpathbylabel() routine, declaration, 34-36
getplabel() routine

code example, 43, 46, 47
declaration, 32

getSensitivityLabel static factory
code example, 115-116
declaration, 117

getSocketPeer static factory
code example, 110
declaration, 109-111

getUpper method, declaration, 112
getuserrange() routine, declaration, 34
getUserRange static factory, declaration, 112
getzoneidbylabel() routine, declaration, 34-36
getzonelabelbyid() routine, declaration, 34-36
getzonelabelbyname() routine, declaration, 34-36
getzonerootbyid() routine, declaration, 34-36
getzonerootbylabel() routine, declaration, 34-36
getzonerootbyname() routine, declaration, 34-36
gid field, 75
global zone

controlling multilevel operations, 24-27
labels in, 27
mounts in, 24

GUIs
Label Builder, 83
Xlib objects, 70

H
header files

label APIs, 31-39
Label Builder APIs, 83-84
locations, list of, 121
Trusted X Window System APIs, 74

I
iaddr field, 75
inRange method

declaration, 117-119
integrating an application, 123-124
interface names, abbreviations used in, 122
IPC (interprocess communication), 61
is_system_labeled() routine

declaration, 32
example, 54-55
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J
Java bindings

classes, 106-108
ClearanceLabel subclass, 107
Range class, 108
SensitivityLabel subclass, 108
SolarisLabel abstract class, 106-108

Java methods
dominates, 117-119
equals, 117-119
getLower, 112
getMaximum, 118, 119
getMinimum, 118, 119
getUpper, 112
inRange, 117-119
setFileLabel, 109-111
strictlyDominates, 117-119
toCaveats, 114
toChannels, 114
toColor, 113
toFooter, 114
toHeader, 115
toInternal, 114
toProtectAs, 115
toRootPath, 113
toString, 114
toText, 114
toTextLong, 114
toTextShort, 114

Java static factories
getClearanceLabel, 116
getDeviceRange, 112
getFileLabel, 109-111
getLabelRange, 112
getSensitivityLabel, 117
getSocketPeer, 109-111
getUserRange, 112

L
label APIs, 31-39

introduction to, 16
Label Builder, 83, 127
label clipping, 127

label APIs (Continued)
labels

code examples, 43
list of, 125-127
RPC, 127
Trusted X Window System, 69-82, 127-128
windows, 22-23, 23
for zone labels and zone paths, 28

Label Builder
APIs, 83-84
authorizations, 89
Cancel button, 89
declarations, 83-84
description of, 23
functionality, 88-89
header files, 83-84
label radio buttons, 88
libraries, 83-84
ModLabelData structure, 92-93
online help, 93
privileged tasks, 89
Reset button, 89
tsol_lbuild_create() routine, 89-90
Update button, 88

label clipping
API declaration, 79, 127
translating with font list, 80-81

label data types
label ranges, 31
sensitivity labels, 31

label_encodings file
API declarations, 126
color names, 47
Label Builder, 88-89
non-English, 81

label ranges, 16
file systems

data structure, 31
overview, 21

label_to_str() routine
code example, 47, 48-50, 80-81
declaration, 79

labeled zones, 27-28
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labels
acquiring, 39-41
ADMIN_HIGH, 27
ADMIN_LOW, 27
API declarations, 126

label clipping, 127
label_encodings file, 126
labels, 126
levels, 126
network databases, 126
ranges, 126
zones, 126

components of, 16
definition of, 17
disjoint, 19
dominant, 18
downgrading guidelines, 31
in global zone, 27
objects, 33, 39-41, 111
privileged tasks, 29-31
privileges

downgrading labels, 30
upgrading labels, 30

ranges, 22, 31
relationships, 17, 46
strictly dominant, 19
types

clearance, 16
sensitivity, 16

upgrading guidelines, 31
user processes, 39-41

LBUILD_CHECK_AR operation, 92
LBUILD_LOWER_BOUND operation, 92
LBUILD_MODE_CLR value, 91
LBUILD_MODE operation, 91
LBUILD_MODE_SL value, 91
LBUILD_SHOW operation, 91
LBUILD_TITLE operation, 91
LBUILD_UPPER_BOUND operation, 91
LBUILD_USERFIELD operation, 91
LBUILD_VALUE_CLR operation, 91
LBUILD_VALUE_SL operation, 91
LBUILD_VIEW_EXTERNAL value, 92
LBUILD_VIEW_INTERNAL value, 92

LBUILD_VIEW operation, 92
LBUILD_WORK_CLR operation, 91
LBUILD_WORK_SL operation, 91
LBUILD_X operation, 91
LBUILD_Y operation, 91
libraries, Trusted X Window System APIs, 74
libraries, compile

label APIs, 31-39
Label Builder APIs, 83-84

library routines
API declarations, 129-132
bldominates(), 38-39
blequal(), 38-39
blinrange(), 38-39
blmaximum(), 38
blminimum(), 38
blstrictdom(), 38-39
getdevicerange(), 34
getpathbylabel(), 34-36
getplabel(), 32
getuserrange(), 34
getzoneidbylabel(), 34-36
getzonelabelbyid(), 34-36
getzonelabelbyname(), 34-36
getzonerootbyid(), 34-36
getzonerootbylabel(), 34-36
getzonerootbyname(), 34-36
is_system_labeled(), 32
label_to_str(), 36, 37, 79
m_label_alloc(), 33
m_label_dup(), 33
m_label_free(), 33
setflabel(), 33-34
str_to_label(), 37
tsol_getrhtype(), 36
tsol_lbuild_create(), 83-84
tsol_lbuild_destroy(), 83-84
tsol_lbuild_get(), 83-84
tsol_lbuild_set(), 83-84
ucred_getlabel(), 32
XQueryExtension(), 32
XTSOLgetClientAttributes(), 76
XTSOLgetPropAttributes(), 76
XTSOLgetPropLabel(), 76-77

Index

137



library routines (Continued)
XTSOLgetPropUID(), 77
XTSOLgetResAttributes(), 75
XTSOLgetResLabel(), 76
XTSOLgetResUID(), 76
XTSOLgetSSHeight(), 78-79
XTSOLgetWorkstationOwner(), 77
XTSOLIsWindowTrusted(), 78
XTSOLmakeTPWindow(), 78
XTSOLsetPolyInstInfo(), 79
XTSOLsetPropLabel(), 76-77
XTSOLsetPropUID(), 77
XTSOLsetResLabel(), 76
XTSOLsetResUID(), 76
XTSOLsetSessionHI(), 78
XTSOLsetSessionLO(), 78
XTSOLsetSSHeight(), 78-79
XTSOLsetWorkstationOwner(), 77

M
m_label_alloc() routine

code example, 46
declaration, 33

m_label_dup() routine, declaration, 33
m_label_free() routine, declaration, 33
m_label_t type, 31
MAC (mandatory access control), 61, 69

making socket exempt from, 26-27
ModLabelData structure, 92-93
Motif application

Label Builder widgets, 92-93
online help, 93

multilevel operations, security policy for, 24-27
multilevel ports

description of, 25, 61-62
using with UDP, 65-67

N
net_bindmlp privilege, 61
net_mac_aware privilege, 26-27
network security policy, default, 25

networks, security attributes, 25
non-global zones, 27-28

O
online help, Label Builder, 93
operations, extended, See LBUILD_CHECK_AR operation
Oracle Solaris

examples of Trusted Extensions APIs, 15
interfaces, API declarations, 128-129

ouid field, 75

P
PAF_SELAGNT flag, 73
pid field, 75
plabel command, 32
polyinstantiation, description of, 69
PORTMAPPER service, 65
ports

multilevel, 61
single-level, 61

printer banner page
label translation, 48-50, 115-116

printing
banner page, 51
get_peer_label() function, 53-57
label API and, 51
labeled output, 51
multilevel, 51

privileged tasks
Label Builder, 89
labels, 29-31
multilevel port connections, 61-62
Trusted X Window System, 73-74

privileges
file_dac_read, 31
file_dac_search, 24, 31
file_dac_write, 31
file_downgrade_sl, 28, 30
file_owner, 30
file_upgrade_sl, 28, 30
net_bindmlp, 25, 61, 63
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privileges (Continued)
net_mac_aware, 26-27
sys_trans_label, 30, 81, 89, 91
win_config, 73
win_dac_read, 73
win_dac_write, 73
win_devices, 72, 73
win_dga, 73
win_downgrade_sl, 74
win_fontpath, 74
win_selection, 73
win_upgrade_sl, 74, 81

process clearances, labels defined, 17
processes

binding to multilevel ports, 25
in labeled zones, 27-28
multilevel initiated in global zone, 24-27
writing down from global zone, 24

properties
description of, 70, 71
privileges, 73

R
Range class

description of, 108
methods and static factories, 108

relationships between labels, 17
releasing an application, 123-124
remote host

credential, 53-57
label, 55
type, 36

ResourceType structure, 75
RPC (remote procedure call), 65

S
SCM_UCRED, 65
security attribute flags, API declarations, 125
security attributes

accessing labels, 29-31
labels from remote hosts, 25

security attributes (Continued)
Trusted X Window System

contrast with Oracle Solaris, 23
description of, 70

security policy
CDE actions, 124
communication endpoints, 62-67
definition of, 15
global zone, 27
label guidelines, 29-31
labels, 29-31
multilevel operations, 24-27
multilevel ports, 61-62
network, 25
sockets, 63
translating labels, 30
Trusted X Window System, 71-73
write-down in global zone, 24

Selection Manager
bypassing with flag, 73
security policy, 72

sensitivity labels, 16
SensitivityLabel subclass

code example, 115-116
description of, 108
methods, 108

sessionid field, 75
setFileLabel method, declaration, 109-111
setflabel() routine

code example, 45
declaration, 33-34

setpflags() system call, 26-27
single-level ports, description of, 61
sl field, 75
SO_MAC_EXEMPT option, 26-27
SO_RECVUCRED option, 25
sockets

access checks, 62-67
exempt from MAC, 26-27

software packages, creating, 124
SOL_SOCKET, 65
SolarisLabel abstract class

description of, 106-108
methods and static factories, 106

Index

139



str_to_label() routine, code example, 45
strictly dominant labels, 18
strictlyDominates method, declaration, 117-119
sys_trans_label privilege, 30, 89
system calls

API declarations, 129-132
fgetlabel() routine, 33-34
getlabel() routine, 33-34

T
terms, definitions of, 15
testing and debugging applications, 123
text, color names, 47
toCaveats method

code example, 115-116
declaration, 114

toChannels method
code example, 115-116
declaration, 114

toColor method, declaration, 113
toFooter method

code example, 115-116
declaration, 114

toHeader method
code example, 115-116
declaration, 115

toInternal method, declaration, 114
toProtectAs method

code example, 115-116
declaration, 115

toRootPath method, declaration, 113
toString method, declaration, 114
toText method, declaration, 114
toTextLong method, declaration, 114
toTextShort method, declaration, 114
translation

labels with font list, 80-81
privileges needed, 30

Trusted Extensions APIs, Oracle Solaris examples, 15
Trusted Extensions system, detecting, 109
Trusted Path window, definition of, 23
Trusted X Window System

API declarations, 74-79, 127-128

Trusted X Window System (Continued)
client attributes structure, 75
defaults, 73
description of, 22-23
input devices, 72
label-clipping API declaration, 127
object attribute structure, 75
object type definition, 75
objects, 70
override-redirect, 72
predefined atoms, 73
privileged tasks, 73-74
properties, 71
property attribute structure, 75
protocol extensions, 69-82
root window, 72
security attributes

contrast with Oracle Solaris, 23
description of, 70

security policy, 71-73
Selection Manager, 72
server control, 72
Trusted Path window, 23
using interfaces, 79-82

tsol_getrhtype() routine, declaration, 36
tsol_lbuild_create() routine

code example, 85
declaration, 83-84
description of, 89-90

tsol_lbuild_destroy() routine, declaration, 83-84
tsol_lbuild_get() routine

code example, 85
declaration, 83-84

tsol_lbuild_set() routine
code example, 85
declaration, 83-84

U
ucred_getlabel() routine, declaration, 32
ucred_t data structure, 53-57
uid field, 75
upgrading labels

guidelines, 31
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upgrading labels (Continued)
privileges needed, 30
Trusted X Window System, 74

user IDs
obtaining on window, 81-82
obtaining on workstation, 82

W
Web Guard prototype, 95
win_config privilege, 73
win_dac_read privilege, 73
win_dac_write privilege, 73
win_devices privilege, 73
win_dga privilege, 73
win_downgrade_sl privilege, 74
win_fontpath privilege, 74
win_mac_read privilege, 73
win_mac_write privilege, 73
win_upgrade_sl privilege, 74
windows

client, security policy, 72
defaults, 73
description of, 70
override-redirect, security policy, 72
privileges, 73
root, security policy, 72
security policy, 71

X
X Window System, See Trusted X Window System
Xlib

API declarations, 74-79
objects, 70

XTsolClientAttributes structure, 75
XTSOLgetClientAttributes() routine,

declaration, 76
XTSOLgetPropAttributes() routine, declaration, 76
XTSOLgetPropLabel() routine, declaration, 76-77
XTSOLgetPropUID() routine, declaration, 77
XTSOLgetResAttributes() routine

code example, 80

XTSOLgetResAttributes() routine (Continued)
declaration, 75

XTSOLgetResLabel() routine
code example, 81
declaration, 76

XTSOLgetResUID() routine
code example, 82
declaration, 76

XTSOLgetSSHeight() routine, declaration, 78-79
XTSOLgetWorkstationOwner() routine

code example, 82
declaration, 77

XTSOLIsWindowTrusted() routine, declaration, 78
XTSOLmakeTPWindow() routine, declaration, 78
XTsolPropAttributes structure, 75
XTsolResAttributes structure, 75
XTSOLsetPolyInstInfo() routine, declaration, 79
XTSOLsetPropLabel() routine, declaration, 76-77
XTSOLsetPropUID() routine, declaration, 77
XTSOLsetResLabel() routine

code example, 81-82
declaration, 76

XTSOLsetResUID() routine, declaration, 76
XTSOLsetSessionHI() routine, declaration, 78
XTSOLsetSessionLO() routine, declaration, 78
XTSOLsetSSHeight() routine, declaration, 78-79
XTSOLsetWorkstationOwner() routine,

declaration, 77

Z
zones

APIs for zone labels and zone paths, 28
labeled, 27-28
mounts and the global zone, 24
multilevel ports, 25
in Trusted Extensions, 27-28
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