
Sun Java™ System

Application Server 8
Migrating and Redeploying Server

Applications Guide

March 2004

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-6089

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
Use is subject to license terms. This distribution may include materials developed by third parties.
Sun, Sun Microsystems, the Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems, Inc. in
the U.S. and other countries.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l’adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L’AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
L’utilisation est soumise aux termes de la Licence. Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, et le logo Java Coffee Cup sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans
d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires, des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris,
mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

Contents 3

Contents

About This Guide . 7

Who Should Use This Guide . 7

Using the Documentation . 8

How This Guide Is Organized . 9

Documentation Conventions . 10

General Conventions . 10

Conventions Referring to Directories . 12

Contacting Sun . 12

Give Us Feedback . 12

Obtain Training . 12

Contact Product Support . 13

Chapter 1 Understanding Migration . 15
J2EE Component Standards . 15

J2EE Application Components and Migration . 16

Migration and Redeployment . 17

Why is Migration Necessary? . 18

What Needs to be Migrated . 18

What is Redeployment? . 19

Chapter 2 Migrating from EJB 1.1 to EJB 2.0 . 21
EJB Query Language . 21

Local Interfaces . 22

EJB 2.0 Container-Managed Persistence (CMP) . 23

Defining Persistent Fields . 23

Defining Entity Bean Relationships . 24

Message-Driven Beans . 24

4 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Migrating EJB Client Applications . 24

Declaring EJBs in the JNDI Context . 25

Recap on Using EJB JNDI References . 26

Placing EJB References in the JNDI Context . 26

Global JNDI context versus local JNDI context . 26

Migrating CMP Entity EJBs . 26

Migrating the Bean Class . 27

Migration of ejb-jar.xml . 29

Custom Finder Methods . 30

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System
Application Server Platform Edition 8 . 33
Migrating Deployment Descriptors . 34

Migrating J2EE Components . 35

Migrating JDBC Code . 36

Establishing Connections Through the DriverManager Interface . 36

Using JDBC 2.0 Data Sources . 37

Configuring a Data Source . 37

Looking Up the Data Source Via JNDI To Obtain a Connection . 39

Migrating Java Server Pages and JSP Custom Tag Libraries . 40

Migrating Servlets . 40

Obtaining a Data Source from the JNDI Context . 41

Declaring EJBs in the JNDI Context . 42

EJB Migration . 42

EJB Changes Specific to Sun Java System Application Server Platform Edition 8 42

Session Beans . 42

Entity Beans . 43

Message Driven Beans . 44

Migrating Web Applications . 44

Migrating Web Application Modules . 45

Potential Servlets and JSP Migration Problems . 46

Migrating Enterprise EJB Modules . 47

Migrating Enterprise Applications . 48

Application Root Context and Access URL . 49

Migrating Proprietary Extensions . 49

Migrating UIF . 50

Approach 1: Checking in the registry files . 50

Approach 2: Checking for UIF binaries in installation directories . 51

Migrating Rich Clients . 52

Authenticating a Client in Sun One Application Server 6.x . 52

Authenticating a Client in Sun Java System Application Server Platform Edition 8 53

Using ACC in Sun ONE Application Server 6.x and Sun Java System Application Server Platform

Edition 8 . 53

Contents 5

Chapter 4 Migrating a Sample Application - an Overview . 55
Preparing for Migrating the iBank Application . 56

Choosing the Target . 56

Identifying the Components of the iBank Application . 56

Manual Steps in the iBank Application Migration . 57

Assembling Application for Deployment . 57

Using the asadmin Utility to Deploy the iBank Application on Sun Java System Application Server Platform

Edition 8 . 57

Chapter 5 Migration Tools and Resources . 59
Migration Tool for Sun Java System Application Server Platform Edition 8 . 59

Redeploying Migrated Applications . 60

Sun ONE Migration Toolbox for Applogic and NetDynamics . 60

J2EE Application Verification Kit . 61

More Migration Information . 61

Migrating from KIVA/NAS/NetDynamics Application Servers . 61

Appendix A iBank Application Specification . 63
Database Schema . 64

Application Navigation and Logic . 67

Login Process . 68

View/Edit Details . 68

Account Summary and Transaction History . 69

Fund Transfer . 70

Interest Calculation . 71

Application Components . 72

Data Components . 72

Business Components . 73

Application Logic Components (Servlets) . 73

Presentation Logic Components (JSP Pages) . 74

Fitness of Design Choices with Regard to Potential Migration Issues . 76

Servlets . 76

Java Server Pages . 76

JDBC . 77

Enterprise Java Beans . 77

Entity Beans . 77

Session Beans . 77

Application Assembly . 78

Index . 79

6 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

7

About This Guide

This guide describes how Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications are migrated from the Sun ONE Application Server, J2EE Reference
Implementation (RI) Application Server, Sun Java System Application Server 7,
and several third party application servers to the Sun Java System Application
Server 8 product line.

This preface contains information about the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Documentation Conventions

• Contacting Sun

Who Should Use This Guide
The intended audience for this guide is the system administrator, network
administrator, application server administrator, and web developer who has an
interest in migration issues.

This guide assumes you are familiar with the following topics:

• HTML

• Application Servers

• Client/Server programming model

• Internet and World Wide Web

Using the Documentation

8 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• Windows 2000 and/or Solaris™ operating systems

• Java programming

• Java APIs as defined in specifications for EJBs, Java Server Pages (JSP)

• Java Database Connectivity (JDBC)

• Structured database query languages such as SQL

• Relational database concepts

• Software development processes, including debugging and source code
control

Using the Documentation
The Sun Java System Application Server Platform Edition manuals are available as
online files in Portable Document Format (PDF) and Hypertext Markup Language
(HTML).

The following table lists tasks and concepts described in the Sun Java System
Application Server manuals.

Table 1 Sun Java System Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the documentation. Includes a
comprehensive, table-based summary of supported hardware, operating system,
JDK, and JDBC/RDBMS.

Release Notes

Installing the Sun Java System Application Server software and its components,
such as sample applications, the Administration Console, and the high-availability
components. Instructions for implementing a basic high-availability configuration are
included.

Installation Guide

Creating and implementing Java™ 2 Platform, Enterprise Edition (J2EE™ platform)
applications intended to run on the Sun Java System Application Server that follow
the open Java standards model for J2EE components and APIs. Includes general
information about application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules. A comprehensive Sun Java
System Application Server glossary is included.

Developer’s Guide

Using J2EE 1.4 platform technologies and APIs to develop J2EE applications and
deploying the applications on the Sun Java System Application Server.

J2EE 1.4 Tutorial

How This Guide Is Organized

About This Guide 9

How This Guide Is Organized
This guide is organized as follows:

• Chapter 1, “Understanding Migration,” describes the process of migrating
applications developed for earlier versions of application servers from Sun
Microsystems, Inc. and other third party vendors.

• Chapter 2, “Migrating from EJB 1.1 to EJB 2.0,” describes modifications that must be

made within the source code of components when migrating from EJB 1.1 to EJB 2.0.

• Chapter 3, “Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System
Application Server Platform Edition 8,” describes the considerations and
strategies that are needed when moving J2EE applications from Sun ONE
Application Server 6.x and Sun Java System Application Server 7 to the Sun
Java System Application Server Platform Edition 8.

• Chapter 4, “Migrating a Sample Application - an Overview,” describes the process
for migrating the main components of a J2EE application to Sun Java System
Application Server Platform Edition 8. Uses iBank sample application as the
example to demonstrate the steps.

Information and instructions on the configuration, management, and deployment of
the Sun Java System Application Server subsystems and components, from both
the Administration Console and the command-line interface. Topics include cluster
management, the high-availability database, load balancing, and session
persistence. A comprehensive Sun Java System Application Server glossary is
included.

Administration Guide

Editing the Sun Java System Application Server configuration file, domain.xml. Reference

Migrating your applications to the new Sun Java System Application Server
programming model, specifically from Sun ONE Application Server 6.x/7.x and from
Netscape Application Server 4.0. Includes a sample migration.

Migrating and Redeploying
Server Applications Guide

Information on solving Sun Java System Application Server problems. Troubleshooting Guide

Utility commands available with the Sun Java System Application Server; written in
manpage style.

Utility Reference Manual

Using the Sun™ Java System Message Queue 3.5 software. The Sun Java System
Message Queue
documentation at:

http://docs.sun.com/db?p=
prod/s1.s1msgqu

Table 1 Sun Java System Application Server Documentation Roadmap (Continued)

For information about See the following

http://docs.sun.com/db?p=prod/s1.s1msgqu

Documentation Conventions

10 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• Chapter 5, “Migration Tools and Resources,” describes migration tools that help

automate the migration process from earlier versions of Sun ONE Application Server,

Sun Java System Application Server 7, Netscape Application Server (Kiva),

NetDynamics Application Server, and competitive application servers to Sun Java

System Application Server Platform Edition 8.

• Appendix A, “iBank Application Specification,” provides an in-depth description
of the iBank sample application.

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

Documentation Conventions

About This Guide 11

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 12.

By default, the location of install_dir on most platforms is:

❍ Solaris and Linux file-based installations, non-root user:

user’s home directory/SUNWappserver

❍ Solaris and Linux file-based installations, root user:

/opt/SUNWappserver

❍ Windows, all installations:

system drive:\Sun\AppServer

For the platforms listed above, default_config_dir is identical to install_dir. See
“Conventions Referring to Directories” on page 12 for exceptions and
additional information.

• Domain root directories are indicated by domain_dir in this document, which
by default is an abbreviation for the following:

install_dir/domains/domain_dir

However, for package-based installations, the directory containing all the
domains can be changed from install_dir/domains/ to another directory during
installation. In configuration files, you may see domain_dir represented as
follows:

${com.sun.aas.instanceRoot}

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Contacting Sun

12 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Conventions Referring to Directories
By default, when using the Solaris package-based or Linux RPM-based installation,
the application server files are spread across several root directories. This guide
uses the following document conventions to correspond to the various default
installation directories provided:

• install_dir refers to /opt/SUNWappserver, which is the default location for the
static portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

• default_config_dir refers to /var/opt/SUNWappserver/domains, which is the default
location for any domains that are created.

Contacting Sun
You might want to contact Sun Microsystems in order to:

• Give Us Feedback

• Obtain Training

• Contact Product Support

Give Us Feedback
If you have general feedback on the product or documentation, please send this to
appserver-feedback@sun.com.

Obtain Training
Application Server training courses are available at:

http://training.sun.com/US/catalog/enterprise/web_application.html/

Visit this site often for new course availability on the Sun Java System Application
Server.

http://training.sun.com/US/catalog/enterprise/web_application.html/
mailto:appserver-feedback@sun.com

Contacting Sun

About This Guide 13

Contact Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem. Here are some
of the commonly used commands:

❍ Solaris: pkginfo, showrev

❍ Linux: rpm

❍ All: asadmin version --verbose

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

• Configuration files such as:

❍ domain_dir/config/domain.xml

❍ a web application’s web.xml file,
when a web application is involved in the problem

• For an application, whether the problem appears when it is running in a cluster
or standalone

http://www.sun.com/supportraining/

Contacting Sun

14 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

15

Chapter 1

Understanding Migration

This chapter addresses the following topics:

• J2EE Component Standards

• J2EE Application Components and Migration

• Migration and Redeployment

J2EE Component Standards
Sun Java System Application Server Platform Edition 8 (hereafter called Application

Server) is a J2EE v1.4-compliant server based on the component standards developed by

the Java community for Java Servlets (servlets) , Java Server Pages (JSPs), and Enterprise

JavaBeans (EJBs).

By contrast, Sun Java System Application Server 7 is a J2EE v1.3-compliant server and Sun

ONE Application Server 6.x is a J2EE v1.2-compliant server. Between the three J2EE

versions, there are considerable differences with the J2EE application component APIs.

The following table characterizes the differences between the component APIs used with

the J2EE v1.4-compliant Sun Java System Application Server Platform Edition 8, the J2EE

v1.3-compliant Sun ONE Application Server 7, and the J2EE v1.2-compliant Sun ONE

Application Server 6.x.

Table 1-1 Application Server Version Comparison of APIs for J2EE Components

Component
API

Sun ONE Application
Server 6.x

Sun Java System
Application Server 7

Sun Java System
Application Server
Platform Edition 8

JDK 1.2.2 1.4 1.4

Servlet 2.2 2.3 2.4

J2EE Application Components and Migration

16 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

In addition, the two products support a number of technologies connected with XML

standards and Web Services which are not part of the J2EE specification.

J2EE Application Components and Migration
J2EE simplifies development of enterprise applications by basing them on standardized,

modular components, providing a complete set of services to those components, and

handling many details of application behavior automatically, without complex

programming. J2EE v1.4 architecture includes several component APIs. Prominent J2EE

components include:

• Servlets

• Java Server Pages (JSPs)

• EJBs, including Message Driven Beans (MDBs)

• Java Database Connectivity (JDBC)

• Java Transaction Service (JTS)

• Java Naming and Directory Interface (JNDI)

• Java Message Service (JMS)

J2EE components are packaged separately and bundled into a J2EE application for

deployment. Each component, its related files such as GIF and HTML files or server-side

utility classes, and a deployment descriptor are assembled into a module and added to the

J2EE application. A J2EE application is composed of one or more enterprise bean(s), Web,

or application client component modules. The final enterprise solution can use one J2EE

application or be made up of two or more J2EE applications, depending on design

requirements.

JSP 1.1 1.2 2.0

JDBC 2.0 2.0 2.1, 3.0

EJB 1.1 2.0 2.0

JNDI 1.2 1.2 1.2.1

JMS 1.0 1.1 1.1

JTA 1.0 1.01 1.01

Table 1-1 Application Server Version Comparison of APIs for J2EE Components

Migration and Redeployment

Chapter 1 Understanding Migration 17

A J2EE application and each of its modules has its own deployment descriptor. A

deployment descriptor is an XML document with an .xml extension that describes a

component’s deployment settings. An enterprise bean module deployment descriptor, for

example, declares transaction attributes and security authorizations for an enterprise bean.

Because deployment descriptor information is declarative, it can be changed without

modifying the bean source code. At run time, the J2EE server reads the deployment

descriptor and acts upon the component accordingly.

A J2EE application with all of its modules is delivered in an Enterprise Archive (EAR) file.

An EAR file is a standard Java Archive (JAR) file with an .ear extension. The EAR file

contains EJB JAR files, application client JAR files and/or Web Archive (WAR) files. The

characteristics of these files are as follows:

• Each EJB JAR file contains a deployment descriptor, the enterprise bean files, and

related files

• Each application client JAR file contains a deployment descriptor, the class files for the

application client, and related files

• Each WAR file contains a deployment descriptor, the Web component files, and related

resources

Using modules and EAR files makes it possible to assemble a number of different J2EE

applications using some of the same components. No extra coding is needed; it is just a

matter of assembling various J2EE modules into J2EE EAR files.

The migration process is concerned with moving J2EE application components, modules,

and files.

For more information on migrating various J2EE components please refer to Chapter 3.

For more background information on J2EE, see the following references:

• J2EE tutorial - http://java.sun.com/j2ee/tutorial/

• J2EE overview - http://java.sun.com/j2ee/overview.html

• J2EE topics - http://java.sun.com/j2ee

Migration and Redeployment
This section describes the need to migrate J2EE applications and the particular files that

will need to be migrated. Following successful migration, a J2EE application can be

redeployed to the Application Server. Redeployment is also described in this section.

The following topics are addressed:

http://java.sun.com/j2ee/tutorial
http://java.sun.com/j2ee/overview.html
http://java.sun.com/j2ee

Migration and Redeployment

18 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• Why is Migration Necessary?

• What Needs to be Migrated

• What is Redeployment?

Why is Migration Necessary?
Although J2EE specifications broadly cover requirements for applications, it is nonetheless

an evolving standard. It either does not cover some aspects of applications or leaves

implementation details as the responsibility of application providers.

These product implementation-dependent aspects manifest as differences in the way

application servers are configured and also in the deployment of J2EE components on

application servers. The array of available configuration and deployment tools for use with

any particular application server product also contribute to the product implementation

differences.

The evolutionary nature of the specifications itself presents challenges to application

providers. Each of the component APIs in turn are separately evolving. This leads to a

varying degree of conformance by products. In particular, an emerging product, such as the

Application Server, has to contend with differences in J2EE application components,

modules, and files deployed on other established application server platforms. Such

differences require mappings between earlier implementation details of the J2EE standard

such as file naming conventions, messaging syntax, and so forth.

Moreover, product providers usually bundle additional features and services with their

products. These features are available as custom JSP tags or proprietary Java API libraries.

Unfortunately, using these proprietary features will render these applications non-portable.

What Needs to be Migrated
For migration purposes, the J2EE application consists of the following file categories:

• Deployment descriptors (XML files)

• JSP source files that contain Proprietary APIs

• Java source files that contain Proprietary APIs

Migration and Redeployment

Chapter 1 Understanding Migration 19

Deployment descriptors (XML files)
Deployment is accomplished by specifying deployment descriptors (DDs) for standalone

enterprise beans (EJB JAR files), front-end Web components (WAR files) and enterprise

applications (EAR files). Deployment descriptors are used to resolve all external

dependencies of the J2EE components/applications. The J2EE specification for DDs is

common across all application server products. However, the specification leaves several

deployment aspects of components pertaining to an application dependent on

product-implementation.

JSP source files
J2EE specifies how to extend JSP by adding extra custom tags. Product vendors include

some custom JSP extensions in their products, simplifying some tasks for developers.

However, usage of these proprietary custom tags results in non-portability of JSP files.

Additionally, JSP can invoke methods defined in other Java source files as well. The JSPs

containing proprietary APIs needs to be rewritten before they can be migrated.

Java source files
The Java source files can be EJBs, servlets, or other helper classes. The EJBs and servlets

can invoke standard J2EE services directly. They can also invoke methods defined in helper

classes. Java source files are used to encode the business layer of applications, such as

EJBs.Vendors bundle several services and proprietary Java API with their products. The

usage of proprietary Java APIs is a major source of non-portability in applications. Since

J2EE is an evolving standard, different products may support different versions of J2EE

component APIs. This is another aspect that migration will address.

What is Redeployment?
Redeployment refers to deploying a previously deployed application from an earlier version

of Sun ONE Application Server 6.x, Sun Java System Application Server 7, or from

applications that were previously deployed, but migrated, from third party application

server platforms.

The act of redeploying an application typically refers to using the standard deployment

actions outlined in the Sun Java System Application Server Platform Edition 8
Administration Guide. However, when migration activities are performed with automated

tools, such as the Migration Tool for Sun Java System Application Server Platform Edition

8 (for J2EE applications) or the Sun ONE Migration Toolbox (for NetDynamics and

Netscape Application Servers), there might be post-migration or pre-deployment tasks that

are needed (and defined) prior to deploying the migrated application.

See Migration Tools and Resources for more information about migration tools that are

available.

Migration and Redeployment

20 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

21

Chapter 2

Migrating from EJB 1.1 to EJB 2.0

Although the EJB 1.1 specification will continue to be supported in Sun Java
System Application Server Platform Edition 8, the use of the EJB 2.0 architecture is
recommended to leverage its enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0 a number of modifications will be required, including
within the source code of components.

Essentially, the required modifications relate to the differences between EJB 1.1 and
EJB 2.0, all of which are described in the following topics.

• EJB Query Language

• Local Interfaces

• EJB 2.0 Container-Managed Persistence (CMP)

• Defining Persistent Fields

• Defining Entity Bean Relationships

• Message-Driven Beans

EJB Query Language
The EJB 1.1 specification left the manner and language for forming and expressing
queries for finder methods to each individual application server. While many
application server vendors let developers form queries using SQL, others use their
own proprietary language specific to their particular application server product.
This mixture of query implementations causes inconsistencies between application
servers.

Local Interfaces

22 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

The EJB 2.0 specification introduces a query language called EJB Query Language, or
EJB QL to correct many of these inconsistencies and shortcomings. EJB QL is based
on SQL92. It defines query methods, in the form of both finder and select methods,
specifically for entity beans with container-managed persistence. EJB QL's
principal advantage over SQL is its portability across EJB containers and its ability
to navigate entity bean relationships.

Local Interfaces
In the EJB 1.1 architecture, session and entity beans have one type of interface, a
remote interface, through which they can be accessed by clients and other
application components. The remote interface is designed such that a bean instance
has remote capabilities; the bean inherits from RMI and can interact with
distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients
through two types of interfaces: a remote interface and a local interface. The 2.0
remote interface is identical to the remote interface used in the 1.1 architecture,
whereby, the bean inherits from RMI, exposes its methods across the network tier,
and has the same capability to interact with distributed clients.

However, the local interfaces for session and entity beans provide support for
lightweight access from EJBs that are local clients; that is, clients co-located in the
same EJB container. The EJB 2.0 specification further requires that EJBs that use
local interfaces be within the same application. That is, the deployment descriptors
for an application's EJBs using local interfaces must be contained within one
ejb-jar file.

The local interface is a standard Java interface. It does not inherit from RMI. An
enterprise bean uses the local interface to expose its methods to other beans that
reside within the same container. By using a local interface, a bean may be more
tightly coupled with its clients and may be directly accessed without the overhead
of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by
reference semantics. Because you are now passing a reference to an object, rather
than the object itself, this reduces the overhead incurred when passing objects with
large amounts of data, resulting in a performance gain.

Setting up a session or entity bean to use a local interface rather than a remote
interface is simple. The local interface through which the bean's methods are
exposed to clients extends EJBLocalObject rather than EJBObject. Similarly, the
bean's home interface extends EJBLocalHome rather than EJBHome. The
implementation class extends the same EntityBean or SessionBean interface.

EJB 2.0 Container-Managed Persistence (CMP)

Chapter 2 Migrating from EJB 1.1 to EJB 2.0 23

In EJB 2.0, a bean that is destined to be remote extends EJBObject in its remote
interface and EJBHome in its home interface, just as it did in EJB 1.1.

EJB 2.0 Container-Managed Persistence (CMP)
The EJB 2.0 specification expanded CMP to allow multiple entity beans to have
relationships among themselves. This is referred to as Container-Managed
Relationships (CMR). The container manages the relationships and the referential
integrity of the relationships.

The EJB 1.1 specification presented a more limited CMP model. The EJB 1.1
architecture limited CMP to data access that is independent of the database or
resource manager type. It allowed you to expose only an entity bean's instance
state through its remote interface; there is no means to expose bean relationships.
The EJB 1.1 version of CMP depends on mapping the instance variables of an entity
bean class to the data items representing their state in the database or resource
manager. The CMP instance fields are specified in the deployment descriptor, and
when the bean is deployed, the deployer uses tools to generate code that
implements the mapping of the instance fields to the data items.

You must also change the way you code the bean's implementation class.
According to the EJB 2.0 specification, the implementation class for an entity bean
that uses CMP is now defined as an abstract class.

Defining Persistent Fields
The EJB 2.0 specification lets you designate an entity bean's instance variables as
CMP fields or CMR fields. You define these fields in the deployment descriptor.
CMP fields are marked with the element cmp-field, while container-managed
relationship fields are marked with the element cmr-field.

In the implementation class, note that you do not declare the CMP and CMR fields
as public variables. Instead, you define get and set methods in the entity bean to
retrieve and set the values of these CMP and CMR fields. In this sense, beans using
the 2.0 CMP follow the JavaBeans model: instead of accessing instance variables
directly, clients use the entity bean's get and set methods to retrieve and set these
instance variables. Keep in mind that the get and set methods only pertain to
variables that have been designated as CMP or CMR fields.

Migrating EJB Client Applications

24 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Defining Entity Bean Relationships
As noted previously, the EJB 1.1 architecture does not support CMRs between
entity beans. The EJB 2.0 architecture does support both one-to-one and
one-to-many CMRs. Relationships are expressed using CMR fields, and these fields
are marked as such in the deployment descriptor. You set up the CMR fields in the
deployment descriptor using the appropriate deployment tool for your application
server.

Similar to CMP fields, the bean does not declare the CMR fields as instance
variables. Instead, the bean provides get and set methods for these fields.

Message-Driven Beans
Message-driven beans are another new feature introduced by the EJB 2.0
architecture. Message-driven beans are transaction-aware components that process
asynchronous messages delivered through the Java Message Service (JMS). The
JMS API is an integral part of the J2EE 1.3 and J2EE 1.4 platform.

Asynchronous messaging allows applications to communicate by exchanging
messages so that senders are independent of receivers. The sender sends its
message and does not have to wait for the receiver to receive or process that
message. This differs from synchronous communication, which requires the
component that is invoking a method on another component to wait or block until
the processing completes and control returns to the caller component.

Migrating EJB Client Applications
This section includes the following topics:

• Declaring EJBs in the JNDI Context

• Recap on Using EJB JNDI References

Migrating EJB Client Applications

Chapter 2 Migrating from EJB 1.1 to EJB 2.0 25

Declaring EJBs in the JNDI Context
In Sun Java System Application Server Platform Edition 8, EJBs are systematically
mapped to the JNDI sub-context "ejb/". If we attribute the JNDI name "Account" to
an EJB, then Sun Java System Application Server Platform Edition 8 will
automatically create the reference "ejb/Account" in the global JNDI context. The
clients of this EJB will therefore have to look up "ejb/Account" to retrieve the
corresponding home interface.

Let us examine the code for a servlet method deployed in Sun ONE Application
Server 6.x.

The servlet presented here calls on a stateful session bean, BankTeller, mapped to
the root of the JNDI context. The method whose code we are considering is
responsible for retrieving the home interface of the EJB, so as to enable a BankTeller
object to be instantiated and a remote interface for this object to be retrieved, in
order to make business method calls to this component.

/**
 * Look up the BankTellerHome interface using JNDI.
 */
private BankTellerHome lookupBankTellerHome(Context ctx)

 throws NamingException
{
 try
 {
 Object home = (BankTellerHome) ctx.lookup("ejb/BankTeller");
 return (BankTellerHome) PortableRemoteObject.narrow(home,
BankTellerHome.class);
 }
 catch (NamingException ne)
 {

log("lookupBankTellerHome: unable to lookup BankTellerHome" +

 "with JNDI name 'BankTeller': " + ne.getMessage());
 throw ne;
 }
}

As the code already uses ejb/BankTeller as an argument for the lookup, there is
no need for modifying the code to be deployed on Sun Java System Application
Server Platform Edition 8.

Migrating CMP Entity EJBs

26 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Recap on Using EJB JNDI References
This section summarizes the considerations when using EJB JNDI references.
Where noted, the consideration details are specific to a particular source
application server platform.

Placing EJB References in the JNDI Context
It is only necessary to modify the name of the EJB references in the JNDI context
mentioned above (moving these references from the JNDI context root to the
sub-context "ejb/") when the EJBs are mapped to the root of the JNDI context in the
existing WebLogic application.

If these EJBs are already mapped to the JNDI sub-context ejb/ in the existing
application, no modification is required.

However, when configuring the JNDI names of EJBs in the deployment descriptor
within the Forté for Java IDE, it is important to avoid including the prefix ejb/ in
the JNDI name of an EJB. Remember that these EJB references are automatically
placed in the JNDI ejb/ sub-context with Sun Java System Application Server
Platform Edition 8. So, if an EJB is given to the JNDI name "BankTeller" in its
deployment descriptor, the reference to this EJB will be "translated" by Sun Java
System Application Server Platform Edition 8 into ejb/BankTeller, and this is the
JNDI name that client components of this EJB must use when carrying out a
lookup.

Global JNDI context versus local JNDI context
Using the global JNDI context to obtain EJB references is a perfectly valid, feasible
approach with Sun Java System Application Server Platform Edition 8.
Nonetheless, it is preferable to stay as close as possible to the J2EE specification,
and retrieve EJB references through the local JNDI context of EJB client
applications. When using the local JNDI context, you must first declare EJB
resource references in the deployment descriptor of the client part (web.xml for a
Web application, ejb-jar.xml for an EJB component).

Migrating CMP Entity EJBs
This section describes the steps to migrate your application components from the
EJB 1.1 architecture to the EJB 2.0 architecture.

Migrating CMP Entity EJBs

Chapter 2 Migrating from EJB 1.1 to EJB 2.0 27

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a
particular bean can be migrated. The steps to perform this verification are as
follows.

1. From the ejb-jar.xml file, go to the <cmp-fields> names and check if the
optional tag <prim-key-field> is present in the ejb-jar.xml file and has
an indicated value. If it does, go to next step.

Look for the <prim-key-class> field name in the ejb-jar.xml, get the class
name and get the public instance variables declared in the class. Now see
if the signature (name and case) of these variables matches with the
<cmp-field> names above. Segregate the ones that are found. In these
segregated fields, check if some of them start with an upper case letter. If any
of them do, then migration cannot be performed.

2. Look into the bean class source code and obtain the java types of all the
<cmp-field> variables.

3. Changeall the<cmp-field>namestolowercaseandconstructaccessorsfrom
them. For example if the original field name is Name and its java type is
String, the accessor method signature will be:

Public void setName(String name)
Public String getName()

4. Compare these accessor method signatures with the method signatures in the
bean class. If there is an exact match found, migration is not possible.

5. Get the custom finder methods signatures and their corresponding SQLs.
Check if there is a ‘Join’ or ‘Outer join’ or an ‘OrderBy’ in the SQL, if yes, we
cannot migrate, as EJB QL does not support ‘joins’, ‘Outer join’ and ‘OrderBy’.

6. Any CMP 1.1 finder, which used java.util.Enumeration, should now use
java.util.Collection. Change your code to reflect this. CMP2.0 finders
cannot return java.util.Enumeration.

“Migrating the Bean Class,” explains how to perform the actual migration process.

Migrating the Bean Class
This section describes the steps required to migrate the bean class to Sun Java
System Application Server Platform Edition 8.

Migrating CMP Entity EJBs

28 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

1. Prepend the bean class declaration with the keyword abstract. For example if
the bean class declaration was:

Public class CabinBean implements EntityBean // before
modification

abstract Public class CabinBean implements EntityBean // after
modification

2. Prefix the accessors with the keyword abstract.

3. Insert all the accessors after modification into the source(.java) file of the bean
class at class level.

4. Comment out all the cmp fields in the source file of the bean class.

5. Construct protected instance variable declarations from the cmp-field names
in lowercase and insert them at the class level.

6. Read up all the ejbCreate() method bodies (there could be more than one
ejbCreate). Look for the pattern ‘<cmp-field>=some value or local variable’,
and replace it with the expression ‘abstract mutator method name (same value
or local variable)’. For example, if the ejbCreate body (before migration) is like
this:

public MyPK ejbCreate(int id, String name)
{

this.id = 10*id;
Name = name;//1
return null;
}

The changed method body (after migration) should be:

public MyPK ejbCreate(int id, String name)
{

setId(10*id);
setName(name);//1
return null;

}

Note that the method signature of the abstract accessor in //1 is as per the
Camel Case convention mandated by the EJB 2.0 specification. Also, the
keyword ‘this’ may or may not be present in the original source, but it must be
removed from the modified source file.

7. All the protected variables declared in the ejbPostCreate()methods in step 5
must be initialized. The protected variables will be equal in number with the
ejbCreate() methods. This initialization will be done by inserting the
initialization code in the following manner:

Migrating CMP Entity EJBs

Chapter 2 Migrating from EJB 1.1 to EJB 2.0 29

protected String name; //from step 5
protected int id; //from step 5

public void ejbPostCreate(int id, String name)
{

name /*protected variable*/ = getName(); /*abstract accessor*/
//inserted in this step
id /*protected variable*/ = getId(); /*abstract accessor*/
//inserted in this step

}

8. Inside the ejbLoad method, you must set the protected variables to the beans’
database state. To do so, insert the following lines of code:

public void ejbLoad()
{
name = getName(); //inserted in this step
id = getId(); //inserted in this step

……….. //already present code
}

9. Similarly, you will have to update the beans’ state inside ejbStore()so that
its database state gets updated. But remember, you are not allowed to update
the setters that correspond to the primary key outside the ejbCreate(), so do
not include them inside this method. Insert the following lines of code:

public void ejbStore()
{
setName(name); //inserted in this step

// setId(id); //Do not insert this if it is a
 part of the primary key

……………….. //already present code
}

10. As a last change to the bean class source (.java) file, examine the whole code
and replace all occurrences of any <cmp-field> variable name with the
equivalent protected variable name (as declared in step 5).

If you do not migrate the bean, at the minimum you need to insert the
<cmp-version>1.x</cmp-version> tag inside the ejb-jar.xml file at the
appropriate place, so that the unmigrated bean still works on Sun Java System
Application Server Platform Edition 8.

Migration of ejb-jar.xml
To migrate the file ejb-jar.xml to Sun Java System Application Server Platform
Edition 8, perform the following steps:

Migrating CMP Entity EJBs

30 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

1. In the ejb-jar.xml, convert all <cmp-fields> to lowercase.

2. In the ejb-jar.xml file, insert the tag <abstract-schema-name> after the
<reentrant> tag. The schema name will be the name of the bean as in the
< ejb-name> tag, prefixed with “ias_”.

3. Insert the following tags after the <primkey-field> tag:

<security-identity><use-caller-identity/></security-identity>

4. Use the SQL’s obtained above to construct the EJB QL from SQL.

5. Insert the <query> tag and all its nested child tags with all the required
information in the ejb-jar.xml, just after the <security-identity> tag.

Custom Finder Methods
The custom finder methods are the findBy... methods (other than the default
findByPrimaryKey method), which can be defined in the home interface of an
entity bean. Since the EJB 1.1 specification does not stipulate a standard for
defining the logic of these finder methods, EJB server vendors are free to choose
their implementations. As a result, the procedures used to define the methods vary
considerably between the different implementations chosen by vendors.

Sun ONE Application Server 6.x uses standard SQL to specify the finder logic.

Information concerning the definition of this finder method is stored in the
enterprise bean's persistence descriptor (Account-ias-cmp.xml) as follows:

<bean-property>
 <property>
 <name>findOrderedAccountsForCustomerSQL</name>
 <type>java.lang.String</type>
 <value>
 SELECT BRANCH_CODE,ACC_NO FROM ACCOUNT where CUST_NO = ?

</value>
 <delimiter>,</delimiter>
 </property>
</bean-property>
<bean-property>
 <property>
 <name>findOrderedAccountsForCustomerParms</name>
 <type>java.lang.Vector</type>
 <value>CustNo</value>
 <delimiter>,</delimiter>
 </property>
</bean-property>

Migrating CMP Entity EJBs

Chapter 2 Migrating from EJB 1.1 to EJB 2.0 31

Each findXXX finder method therefore has two corresponding entries in the
deployment descriptor (SQL code for the query, and the associated parameters).

In Sun Java System Application Server Platform Edition 8 the custom finder
method logic is also declarative, but is based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the
file ejb-jar.xml, in the <ejb-ql> tag. This tag is inside the <query> tag, which
defines a query (finder or select method) inside an EJB. The EJB container can
transform each query into the implementation of the finder or select method.
Here's an example of an <ejb-ql> tag:

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>hotelEJB</ejb-name>
 ...
<abstract-schema-name>TMBankSchemaName</abstract-schema-name>
 <cmp-field>...
 ...
 <query>
 <query-method>
 <method-name>findByCity</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>

 </method-params>
 </query-method>
 <ejb-ql>

<![CDATA[SELECT OBJECT(t) FROM TMBankSchemaName AS t
 WHERE t.city = ?1]]>

</ejb-ql>
 </query>

 </entity>
 ...
 </enterprise-beans>
...
</ejb-jar>

Migrating CMP Entity EJBs

32 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

33

Chapter 3

Migrating from Sun ONE Application
Server 6.x/7.x to Sun Java System

Application Server Platform Edition 8

This chapter describes the considerations and strategies that are needed when
moving J2EE applications from Sun ONE Application Server 6.x and Sun Java
System Application Server 7 to the Sun Java System Application Server Platform
Edition 8 product line.

The sections that follow describe issues that arise while migrating the main
components of a typical J2EE application from Sun ONE Application Server
6.x/7.x to Sun Java System Application Server Platform Edition 8.

The migration issues described in this section are based on an actual migration that
was performed for a J2EE application called iBank, a simulated online banking
service, from Sun ONE Application Server 6.x to Sun Java System Application
Server Platform Edition 8. This application reflects all aspects that comprise a
traditional J2EE application.

The following sensitive points of the J2EE specification covered by the iBank
application include:

• Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans.

Migrating Deployment Descriptors

34 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A - iBank Application
Specification

This section also describes specific migration tasks at the component level.

The following topics are addressed:

• "Migrating Deployment Descriptors"

• Migrating J2EE Components

• Migrating Web Applications

• Migrating Enterprise EJB Modules

• Migrating Enterprise Applications

• Migrating Proprietary Extensions

• Migrating UIF

Migrating Deployment Descriptors
The following table summarizes the deployment descriptor migration mapping.

The J2EE standard deployment descriptors ejb-jar.xml, web.xml and
application.xml are not modified significantly. However, the ejb-jar.xml
deployment descriptor is modified to make it compliant with EJB 2.0 specification
in order to make the application deployable onSun Java System Application Server
Platform Edition 8.

Source Deployment Descriptor Target Deployment Descriptor

ejb-jar.xml - 1.1 ejb-jar.xml - 2.0

ias-ejb-jar.xml sun-ejb-jar.xml

<bean-name>-ias-cmp.xml sun-cmp-mappings.xml

web.xml web.xml

ias-web.xml sun-web.xml

application.xml application.xml

Migrating J2EE Components

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 35

Majority of the information required for creating sun-ejb-jar.xml and
sun-web.xml comes from ias-ejb-jar.xml and ias-web.xml respectively.
However, there is some information that is required and extracted from the home
interface (java file) of the CMP entity bean, in case the sun-ejb-jar.xml being
migrated declares one. This is required to build the <query-filter> construct
inside the sun-ejb-jar.xml, which requires information from inside the home
interface of that CMP entity bean. If this source file is not present during the
migration time, the <query-filter> construct will get created, but with lots of
missing information (which will manifest itself in the form of "REPLACE ME"
phrases in the migrated sun-ejb-jar.xml).

Additionally, if the ias-ejb-jar.xml contains a <message-driven> element, then
information from inside this element is picked up and used to fill up information
inside both ejb-jar.xml and sun-ejb-jar.xml. Also, inside the
<message-driven> element of ias-ejb-jar.xml, there is an element
<destination-name>, which holds the JNDI name of the topic or queue to which
the MDB should listen to. In Sun ONE Application Server 6.5, the naming
convention for this jndi name is "cn=<SOME_NAME>". Since a JMS Topic or Queue
with this name is not deployable on Sun Java System Application Server Platform
Edition 8, changes this to "<SOME_NAME>", and insert this information in the
sun-ejb-jar.xml. This change must be reflected for all valid input files, namely, all
.java, .jsp and .xml files. Hence, this change of JNDI name is affected globally
across the application, and in case of non availability of some source files that
contain reference to this jndi-name, you need to make the change manually in them
so that the application becomes deployable.

Migrating J2EE Components
The following migration processes are described in this section:

• Migrating JDBC Code

• Migrating Java Server Pages and JSP Custom Tag Libraries

• Migrating Servlets

• Obtaining a Data Source from the JNDI Context

• EJB Migration

• EJB Changes Specific to Sun Java System Application Server Platform Edition 8

Migrating J2EE Components

36 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Migrating JDBC Code
With the JDBC API, there are two methods of database access:

• Establishing Connections Through the DriverManager Interface

(JDBC 1.0 API), by loading a specific driver and providing a connection URL.
This method is used by other Application Servers, such as IBM’s WebSphere
4.0

• Using JDBC 2.0 Data Sources

The DataSource interface (JDBC 2.0 API) can be used via a configurable
connection pool. According to J2EE 1.2, a data source is accessed through the
JNDI naming service

Establishing Connections Through the DriverManager Interface
Although this means of accessing a database is not recommended, as it is obsolete
and is not very effective, there may be some applications that still use this
approach.

In this case, the access code will be similar to the following:

public static final String driver =
"oracle.jdbc.driver.OracleDriver";
public static final String url =
"jdbc:oracle:thin:tmb_user/tmb_user@iben:1521:tmbank";
Class.forName(driver).newInstance();
Properties props = new Properties();
props.setProperty("user", "tmb_user");
props.setProperty("password", "tmb_user");
Connection conn = DriverManager.getConnection(url, props);

This code can be fully ported from Sun ONE Application Server 6.x to Sun Java
System Application Server Platform Edition 8, as long as the Application Server is
able to locate the classes needed to load the right JDBC driver. In order to make the
required classes accessible to the application deployed in the Application Server,
you should place the archive (JAR or ZIP) for the driver implementation in the
/lib directory of the Application Server installation directory.

NOTE Sun Java System Application Server Platform Edition 8 does not
support the Native Type 2 JDBC drivers bundled with Sun ONE
Application Server 6.x. You must manually migrate code that uses
the Type 2 drivers to use third party JDBC drivers.

Migrating J2EE Components

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 37

Modify the CLASSPATH by setting the path for the driver through the Admin
Console GUI. Click the server instance “server1” and then click the tab “JVM
Settings” from the right pane. Now click the option Path Settings and add the path
in the classpath suffix text entry box. Once you make the changes, click “Save” and
then apply the new settings. Restart the server to modify the configuration file,
server.xml.

Using JDBC 2.0 Data Sources
Using JDBC 2.0 data sources to access a database provides performance
advantages such as transparent connection pooling, enhances productivity by
simplifying code and implementation, and provides code portability.

Using a data source in an application requires an initial configuration phase
followed by a registration of the data source in the JNDI naming context of the
application server. Once the data source is registered, the application will easily be
able to obtain a connection to the database by retrieving the corresponding
DataSource object from the JNDI context. The actions are described in the following
topics:

• Configuring a Data Source

• Looking Up the Data Source Via JNDI To Obtain a Connection

Configuring a Data Source
In Sun ONE Application Server 6.0 data sources and their corresponding JDBC
drivers are configured from the server's graphic administration console.
Connection pools are managed automatically by the application server, and the
administration tool can be used to configure their properties. With integrated type
2 JDBC drivers, the connection pooling properties are defined on a per-driver basis,
and common to all data sources using a given driver.

On the other hand, for third-party JDBC drivers, connection pool properties are
defined on a per-data source basis. Third-party JDBC drivers can be configured
either from the administration tool, or from a separate utility (db_setup.sh in Sun
Solaris, and jdbcsetup in Windows NT/2000). Moreover, the command line utility
iasdeploy can be used to configure a data source from an XML file describing its
properties. These utilities are all located in the /bin/ sub-directory of the
Application Server installation root directory.

Migrating J2EE Components

38 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

In Application Server, data sources can be configured from the server's graphic
administration console or through the command line utility asadmin. The command
line utility asadmin can be invoked by executing the asadmin script in Solaris,
available in Application Server installation’s bin directory. At the asadmin prompt,
use the following commands to create connection pool and JNDI resource.

The syntax for calling the asadmin utility to create a connection pool is as follows:

asadmin>create-jdbc-connection-pool -u username -w password -H
hostname -p adminport [-s] --datasourceclassname classname
[--steadypoolsize=8] [--maxpoolsize=32] [--maxwait=60000]
[--poolresize=2] [--idletimeout=300]
[--isconnectvalidatereq=false] [--validationmethod=auto-commit]
[--validationtable tablename] [--failconnection=false]
[--description text] [--property (name=value)[:name=value]*]
connectionpoolid

For example:

asadmin>create-jdbc-connection-pool -u admin -w password -H cl1
-p 4848 --datasourceclassname
oracle.jdbc.pool.OracleConnectionPoolDataSource --property
(user-name=ibank_user):(password=ibank_user) oraclepool

Here JDBC connection pool ‘oraclepool’ for oracle database is created using
database schema having the username ‘ibank_user’ and password ‘ibank_user’.

The syntax to create a JDBC resource is as follows:

asadmin>create-jdbc-resource -u username -w password -H hostname
-p adminport [-s] --connectionpoolid id [--enabled=true]
[--description text] [--property (name=value)[:name=value]*]
jndiname

For example:

asadmin>create-jdbc-resource -u admin -w password -H cl1 -p 4848
--connectionpoolid oraclepool jdbc/IBANK

Here a JDBC resourcewith the JNDI name jdbc/IBANK is created for the connection
pool created above.

Here is the procedure to follow when registering a data source in Application
Server through graphical interface.

1. Register the data source classname

a. Place the archive (JAR or ZIP) for the data source class implementation in
the /lib directory of the Application Server installation directory.

Migrating J2EE Components

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 39

b. Modify the CLASSPATH by setting the path for the driver through the
Admin Console GUI. Click at the server instance “server1” and then click
at tab “JVM Settings”, now click at path settings and add the path at the
classpath suffix column. Once you make the changes save it and then
apply these new settings. Restart the server, which would modify the
configuration file, server.xml.

2. Register the data source

In Application Server, data sources and their corresponding JDBC drivers are
configured from the server's graphic administration interface.

The left pane is a tree view of all items you can configure in the Application Server.
Click on the item Connection pool at the left pane, the right pane would display the
page associated with it where the relevant entries can be made.

Similarly now click at the item Data source, right pane would show the entries
required for data source setup.

The Application Server-specific deployment descriptor sun-web.xml has to be
modified accordingly.

For example if a new data source is configured for the iBank application, the
sun-web.xml file would contain the following entries.

<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN' 'Http://localhost:8000/sun-web-app_2_3.dtd'>
<sun-web-app>
 <resource-ref>
 <res-ref-name>jdbc/iBank</res-ref-name>
 <jndi-name>jdbc/iBank</jndi-name>
 <default-resource-principal>
 <name>ibank_user</name>
 <password>ibank_user</password>
 </default-resource-principal>
 </resource-ref>
</sun-web-app>

Looking Up the Data Source Via JNDI To Obtain a Connection
To obtain a connection from a data source, the process is as follows:

1. Obtain the initial JNDI context.

To guarantee portability between different environments, the code used to
retrieve an InitialContext object (in a servlet, in a JSP page, or an EJB), should
be simply, as follows:

InitialContext ctx = new InitialContext();

Migrating J2EE Components

40 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

2. Use a JNDI lookup to obtain a data source reference.

To obtain a reference to a data source bound to the JNDI context, look up the
data source's JNDI name from the initial context object. The object retrieved in
this way should then be cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

3. Use the data source reference to obtain the connection.

This operation is very simple, and requires the following line of code:

conn = ds.getConnection();

Sun ONE Application Server 6.x and Application Server both follow the above
technique for obtaining a connection form data source. So to summarize migration
does not require any modification to be made to the code.

Migrating Java Server Pages and JSP Custom
Tag Libraries
Sun ONE Application Server 6.x complies with the JSP 1.1 specification and
Application Server complies with the JSP 2.0 specification.

JSP 2.0 specification contains many new features as well as corrections and
clarifications of areas that were not quite right in JSP 1.1 specification.

These changes are basically enhancements and are not required to be made, while
migrating JSP pages from JSP 1.1 to 2.0.

The implementation of JSP custom tag libraries in Sun ONE Application Server 6.x
complies with the J2EE specification. Consequently, migration of JSP custom tag
libraries to the Sun Java System Application Server Platform Edition 8 does not
pose any particular problem, nor require any modifications to be made.

Migrating Servlets
Sun ONE Application Server 6.x supports the Servlet 2.2 API. Sun Java System
Application Server Platform Edition 8 supports the Servlet 2.4 API.

Servlet API 2.4 actually leaves the core of servlets relatively untouched; most
changes are concerned with adding new features outside the core.

The most significant features are:

Migrating J2EE Components

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 41

• Servlets now require JDK 1.2 or later

• A filter mechanism has been created

• Application lifecycle events have been added

• New internationalization support has been added

• New error and security attributes have been added

• The HttpUtils class has been deprecated

• Several DTD behaviors have been expanded and clarified

These changes are basically enhancements and are not required to be made while
migrating servlets from Servlet API 2.2 to 2.4.

However, if the servlets in the application use JNDI to access resources of the J2EE
application (such as data sources, EJBs, and so forth), some modifications may be
needed in the source files or in the deployment descriptor.

These modifications are explained in detail in the following sections:

• Obtaining a Data Source from the JNDI Context

• Declaring EJBs in the JNDI Context

One last scenario may mean modifications are required in the servlet code, naming
conflicts may occur with Sun ONE Application Server if a JSP page has the same
name as an existing Java class. In this case, the conflict should be resolved by
modifying the name of the JSP page in question, which may then mean editing the
code of the servlets that call this JSP page. This issue is resolved in Application
Server as it uses new class loader hierarchy as compared to Sun ONE Application
Server 6.x. In this new scheme, for a given application, one class loader loads all
EJB modules and another class loader loads web module. As these two loaders do
not talk with each other, there would be no naming conflict.

Obtaining a Data Source from the JNDI Context
To obtain a reference to a data source bound to the JNDI context, look up the data
source's JNDI name from the initial context object. The object retrieved in this way
should then be cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

For detailed information, refer to section “Migrating JDBC Code” in the previous
pages.

Migrating J2EE Components

42 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Declaring EJBs in the JNDI Context
Please refer to section Declaring EJBs in the JNDI Context from “Migrating from
EJB 1.1 to EJB 2.0” on page 21.”

EJB Migration
As mentioned in Understanding Migration, while Sun ONE Application Server 6.x
supports the EJB 1.1 specification, Application Server also supports the EJB 2.0
specification. The EJB 2.0 specification introduces the following new features and
functions to the architecture:

• Message Driven Beans (MDBs)

• Improvements in Container-Managed Persistence (CMP)

• Container-managed relationships for entity beans with CMP

• Local interfaces

• EJB Query Language (EJB QL)

Although the EJB 1.1 specification will continue to be supported in the Application
Server, the use of the EJB 2.0 architecture is recommended to leverage its enhanced
capabilities.

For detailed information on migrating from EJB 1.1 to EJB 2.0, please refer to
Chapter 2, “Migrating from EJB 1.1 to EJB 2.0.”

EJB Changes Specific to Sun Java System
Application Server Platform Edition 8
Migrating EJBs from Sun ONE Application Server 6.x to the Application Server is
done without making any changes to the EJB code. However, the following DTD
changes are required.

Session Beans
• The <!DOCTYPE> definition should be modified to point to the latest DTDs with

J2EE standard DDs, such as ejb-jar.xml.

Migrating J2EE Components

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 43

• Replace ias-ejb-jar.xml file with the modified version of this file, named
sun-ejb-jar.xml,created manually according to the DDs. For more details,
see the URL
http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd

• In the sun-ejb-jar.xml file, the JNDI name for all the EJBs should prepend
‘ejb/’ in all the JNDI names. This is required as, in Sun ONE Application
Server 6.5, the JNDI name of the EJB could only be ejb/<ejb-name> where
<ejb-name> is the name of the EJB as declared inside the ejb-jar.xml file.

In the Application Server, a new tag has been introduced in the
sun-ejb-jar.xml, where the JNDI name of the EJB can be declared.

Entity Beans
• The <!DOCTYPE> definition should be modified to point to the latest DTDs with

J2EE standard DDs, such as ejb-jar.xml.

• Insert <cmp-version> tag with the value 1.1 for all CMPs in the ejb-jar.xml
file.

• Replace all the <ejb-name>-ias-cmp.xml files with the manually created
sun-cmp-mappings.xml file. For more information, see URL
http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mapping_1_0.dtd

• Generate dbschema by using the capture-schema utility in the Application
Server installation’s bin directory and place it above META-INF folder for Entity
beans.

• ias-ejb-jar.xml should be replaced with its new version, named
sun-ejb.jar.xml, in Application Server.

• In Sun ONE Application Server 6.5, the finders sql was directly embedded
inside the <ejb-name>-ias-cmp.xml. In Application Server, this has changed
such that, now mathematical expressions are used to declare the
<query-filter> for the various finder methods.

NOTE To avoid changing JNDI names throughout the application, we
recommend that the JNDI name of the EJB should be declared as
ejb/<ejb-name> inside the <jndi-name> tag.

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd
http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mapping_1_0.dtd

Migrating Web Applications

44 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Message Driven Beans
Application Server provides seamless Message Driven Support through the tight
integration of Sun Java System Message Queue with the Application Server,
providing a native, built-in JMS Service.

This installation provides Application Server with a JMS messaging system that
supports any number of Application Server instances. Each server instance, by
default, has an associated built-in JMS Service that supports all JMS clients running
in the instance.

Both container-managed and bean-managed transactions as defined in the
Enterprise JavaBeans Specification, v2.0 are supported.

Message Driven Bean support in iPlanet Application Server was restricted to
developers, and used many of the older proprietary APIs. Messaging services were
provided by iPlanet Message Queue for Java 2.0. An LDAP directory was also
required under iPlanet Application Server to configure the Queue Connection
Factory object.

The QueueConnectionFactory, and other particulars required to configure
Message Driven Beans in Application Server should be specified in the
ejb-jar.xml file.

For more information on the changes to deployment descriptors, see “Migrating
Deployment Descriptors.” For information on Message Driven Bean
implementation in Sun Java System Application Server Platform Edition 8, see Sun
Java System Application Server Platform Edition 8, Developer’s Guide to Enterprise Java
Bean Technology.

Migrating Web Applications
Sun ONE Application Server 6.x support servlets (Servlet API 2.2), and JSPs (JSP
1.1). Sun Java System Application Server Platform Edition 8 supports Servlet API
2.4 and JSP 2.0.

Within these environments it is essential to group the different components of an
application (servlets, JSP and HTML pages and other resources) together within an
archive file (J2EE-standard Web application module) before you can deploy it on
the application server.

According to the J2EE specification, a Web application is an archive file (WAR file)
with the following structure:

Migrating Web Applications

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 45

• a root directory containing the HTML pages, JSP, images and other "static"
resources of the application.

• a META-INF/ directory containing the archive manifest file (MANIFEST.MF)
containing the version information for the SDK used and, optionally, a list of
the files contained in the archive.

• a WEB-INF/ directory containing the application deployment descriptor
(web.xml file) and all the Java classes and libraries used by the application,
organized as follows:

• A classes/ sub-directory containing the tree-structure of the compiled
classes of the application (servlets, auxiliary classes), organized into
packages

• A lib/ directory containing any Java libraries (JAR files) used by the
application

Migrating Web Application Modules
Migrating applications from Sun ONE Application Server 6.x to Sun Java System
Application Server Platform Edition 8 does not require any changes in the Java/JSP
code. The following changes are, however, still required.

• web.xml

The Application Server adheres to J2EE 1.4 standards, according to which, the
web.xml file inside a WAR file should comply with the revised DTD available
at URL http://java.sun.com/dtd/web-app_2_3.dtd. This DTD fortunately, is a
superset of the previous versions’ DTD, hence only the
<! DOCTYPE definition needs to be changed inside the web.xml file, which is to
be migrated. The modified <! DOCTYPE declaration should look like:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

• ias-web.xml

In Sun Java System Application Server Platform Edition 8, the name of this file
is changed to sun-web.xml.

This XML file is required to declare the Application Server-specific
properties/resources that will be required by the Web application.

See “Potential Servlets and JSP Migration Problems,” for information about
important inclusions to this file.

http://java.sun.com/dtd/web-app_2_3.dtd

Migrating Web Applications

46 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

If the ias-web.xml of the Sun ONE Application Server 6.5 application is
present and does declare Sun ONE Application Server 6.5 specific properties,
then this file needs to be migrated to Application Server standards. The DTD
file name has to be changed to sun-web.xml. For more details, see URL
http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2_3-0.dtd.

Once the web.xml and ias-web.xml files are migrated in the above-mentioned
fashion, the Web application (WAR file) can be deployed from the Application
Server’s deploytool GUI interfaceor from the command line utility asadmin, where
the deployment command should mention the type of application as web.

Invoke the asadmin command line utility by running asadmin.bat file or the
asadmin.sh script in the Application Server’s bin directory.

The command at the asadmin prompt would be:

asadmin> deploy -u username -w password -H hostname -p adminport
--type web [--contextroot contextroot] [--force=true] [--name
component-name] [--upload=true] filepath

Potential Servlets and JSP Migration Problems
The actual migration of the components of a Servlet / JSP application from Sun
ONE Application Server 6.x to Application Server will not require any
modifications to be made to the component code.

If the Web application is using a server resource, a DataSource for example, then
the Application Server requires that this resource to be declared inside the web.xml
file and, correspondingly, inside the sun-web.xml file. To declare a DataSource
called jdbc/iBank, the <resource-ref> tag in the web.xml file would be as follows:

<resource-ref>
 <res-ref-name>jdbc/iBank</res-ref-name>
 <res-type>javax.sql.XADataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

Corresponding declaration inside the sun-web.xml file will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<! DOCTYPE FIX ME: need confirmation on the DTD to be used for
this file

http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mapping_1_0.dtd

Migrating Enterprise EJB Modules

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 47

<sun-web-app>
 <resource-ref>
 <res-ref-name>jdbc/iBank</res-ref-name>
 <jndi-name>jdbc/iBank</jndi-name>
 </resource-ref>
</sun-web-app>

Migrating Enterprise EJB Modules
Sun ONE Application Server 6.x supports EJB 1.1; the Application Server supports
EJB 2.0. Thereby, both can support:

• Stateful or stateless session beans

• Entity beans with bean-managed persistence (BMP), or container-managed
persistence (CMP)

EJB 2.0, however, introduces a new type of enterprise bean, called a
message-driven bean(MDB) in addition to the session and entity beans.

J2EE 1.4 specification dictates that the different components of an EJB must be
grouped together in a JAR file with the following structure:

• META-INF/ directory with an XML deployment descriptor named ejb-jar.xml

• The .class files corresponding to the home interface, remote interface, the
implementation class, and the auxiliary classes of the bean with their package

Sun ONE application servers observe this archive structure. However, the EJB 1.1
specification leaves each EJB container vendor to implement certain aspects as they
see fit:

• Database persistence of CMP EJBs (particularly the configuration of mapping
between the bean's CMP fields and columns in a database table).

• Implementation of the custom finder method logic for CMP beans.

As we might expect, Sun ONE Application Server 6.x andApplication Server
diverge on certain points, which means that when migrating an application certain
aspects require particular attention. Some XML files have to be modified:

• The <!DOCTYPE definition should be modified to point to the latest DTD url in
case of J2EE standard DDs, like ejb-jar.xml.

Migrating Enterprise Applications

48 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• Replace the ias-ejb-jar.xml file with the modified version of this file (for
example, file sun-ejb-jar.xml, which is created manually according to the
DTDs). For more information, see URL
http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd.

• Replace all the <ejb-name>-ias-cmp.xml files with one sun-cmp-mappings.xml
file, which is created manually. For more information, see URL
http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mapping_1_0.dtd.

• Optionally, for CMP entity beans, use the capture-schema utility in the
Application Server’s bin directory to generate dbschema. Then place it above
the META-INF directory for the entity beans.

Migrating Enterprise Applications
According to the J2EE specifications, an enterprise application is an EAR file,
which must have the following structure:

• a META-INF/ directory containing the XML deployment descriptor of the J2EE
application called application.xml

• the JAR and WAR archive files for the EJB modules and Web module of the
enterprise application, respectively

In the application deployment descriptor, we define the modules that make up the
enterprise application, and the Web application's context root.

Sun ONE Application server 6.x and the Application Server support the J2EE
model wherein applications are packaged in the form of an enterprise archive
(EAR) file (extension .ear). The application is further subdivided into a collection
of J2EE modules, packaged into Java archives (JAR files, which have a .jar file
extension) for EJBs and Web archives (WAR files,which have a .war file extension)
for servlets and JSPs.

It is essential to follow the steps listed here before deploying an enterprise
application:

1. Package EJBs in one or more EJB modules.

2. Package the components of the Web application in a Web module.

3. Assemble the EJB modules and Web modules in an enterprise application
module.

4. Define the name of the enterprise application's root context, which will
determine the URL for accessing the application.

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2_0-0.dtd
http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mapping_1_0.dtd

Migrating Proprietary Extensions

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 49

The Application Server uses a newer class loader hierarchy than Sun ONE
Application Server 6.x does. In the new scheme, for a given application, one class
loader loads all EJB modules and another class loader loads Web modules. These
two are related in a parent child hierarchy where the JAR module class loader is the
parent module of the WAR module class loader. All classes loaded by the JAR class
loader are available/accessible to the WAR module but the reverse is not true. If a
certain class is required by the JAR file as well as the WAR file, then the class file
should be packaged inside the JAR module only. If this guideline is not followed it
could lead to class conflicts.

Application Root Context and Access URL
There is one particular difference between Sun ONE Application Server 6.x and the
Application Server, concerning the applications access URL (root context of the
application's Web module. If AppName is the name of the root context of an
application deployed on a server called hostname, the access URL for this
application will differ depending on the application server used:

• With Sun ONE Application Server 6.x, which is always used jointly with a Web
front-end, the access URL for the application will take the following form
(assuming the Web server is configured on the standard HTTP port, 80):

http://<hostname>/NASApp/AppName/

• With the Application Server, the URL will take the form:

http://<hostname>:<portnumber>/AppName/

The TCP port used as default by Application Server is port 8080.

Although the difference in access URLs between Sun ONE Application Server 6.x
and the Application Server may appear minor, it can be problematic when
migrating applications that make use of absolute URL references. In such cases, it
will be necessary to edit the code to update any absolute URL references so that
they are no longer prefixed with the specific marker used by the Web Server
plug-in for Sun ONE Application Server 6.x.

Migrating Proprietary Extensions
A number of classes proprietary to the Sun ONE Application Server 6.x
environment may have been used in applications. Some of the proprietary Sun
ONE packages used by Sun ONE Application Server 6.x are listed below:

• com.iplanet.server.servlet.extension

Migrating UIF

50 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• com.kivasoft.dlm

• com.iplanetiplanet.server.jdbc

• com.kivasoft.util

• com.netscape.server.servlet.extension

• com.kivasoft

• com.netscape.server

These APIs are not supported in the Application Server. Applications using any
classes belonging to the above package will have to be rewritten to use standard
J2EE APIs. Applications using custom JSP tags and UIF framework also needs to be
rewritten to use standard J2EE APIs.

For a sample migration walkthrough using the iBank application, see Migrating a
Sample Application - an Overview.

Migrating UIF
The Application Server does not support the use of Unified Integration Framework
(UIF) API for applications. Instead, it supports the use of J2EE Connector
Architecture (JCA) for integrating the applications. However, the applications
developed in Sun ONE Application Server 6.5 use the UIF. In order to deploy such
applications to the Application Server, you need to migrate the UIF to J2EE
Connector Architecture. This section discusses the prerequisites and steps to
migrate the applications using UIF to Application Server.

Before migrating the applications, you need to make sure that the UIF is installed
on Sun ONE Application Server 6.5. To check for the installation, you can follow
any of the following two approaches:

Approach 1: Checking in the registry files
UIF is installed as a set of application server extensions. They are registered in the
application server registry during the installation. Search for the following strings
in the registry to check whether UIF is installed.

Extension Name Set:

• Extension DataObjectExt-cDataObject

• Extension RepositoryExt-cLDAPRepository

• Extension MetadataService-cMetadataService

Migrating UIF

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 51

• Extension RepoValidator-cRepoValidator

• Extension BSPRuntime-cBSPRuntime

• Extension BSPErrorLogExt-cErrorLogMgr

• Extension BSPUserMap-cBSPUserMap

The registry file on Solaris Operating Environment can be found at the following
location:

AS_HOME/AS/registry/reg.dat

Approach 2: Checking for UIF binaries in installation directories
UIF installers copy specific binary files in to the application server installation. A
successful find of these files below indicate that UIF is installed.

The location of the following files on Solaris and Windows is:

AS_HOME/AS/APPS/bin

List of files to be searched on Solaris:

• libcBSPRlop.so

• libcBSPRuntime.so

• libcBSPUserMap.so

• libcDataObject.so

• libcErrorLogMgr.so

• libcLDAPRepository.so

• libcMetadataService.so

• libcRepoValidator.so

• libjx2cBSPRuntime.so

• libjx2cDataObject.so

• libjx2cLDAPRepository.so

• libjx2cMetadataService.so

List of files to be searched on Windows:

• cBSPRlop.dll

• cBSPRuntime.dll

• cBSPUserMap.dll

• cDataObject.dll

Migrating UIF

52 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• ErrorLogMgr.dll

• cLDAPRepository.dll

• cMetadataService.dll

• cRepoValidator.dll

• jx2cBSPRuntime.dll

• jx2cDataObject.dll

• jx2cLDAPRepository.dll

• jx2cMetadataService.dll

Before migrating the UIF to Application Server, make sure that the UIF API is
being used in applications. To verify its usage:

• Check for the usage of netscape.bsp package name in the Java sources

• Check for the usage of access_cBSPRuntime.getcBSPRuntime method in the
sources. You must call this method to acquire the UIF runtime.

Contact appserver-migration@sun.com for information about UIF migration to the
Application Server.

Migrating Rich Clients
This section describes the steps for migrating RMI/IIOP and ACC clients
developed in Planet Application Server 6.x to the Application Server.

Authenticating a Client in Sun One Application Server 6.x
iPlanet Application Server provides a client-side callback mechanism that enables
applications to collect authentication data from the user such as the username and
the password.The authentication data collected by the iPlanet CORBA
infrastructure is propagated to the Application Server via IIOP.

If ORBIX 2000 is the ORB used for RMI/IIOP, portable interceptors implement
security by providing hooks, or interception points, which define stages within the
request and reply sequence.

mailto:appserver-migration@sun.com

Migrating UIF

Chapter 3 Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform Edition 8 53

Authenticating a Client in Sun Java System Application Server
Platform Edition 8
The authentication is done based on JAAS (Java Authorization and Authentication
System API) and the client can that implement a CallBackHandler. If a client does
not provide a CallbackHandler, then the default CallbackHandler, called the
LoginModule, will be used by the ACC for obtaining the authentication data.

For detailed instructions on using JAAS for authentication, see the Sun Java System
Application Server Platform Edition 8 Developer’s Guide to Clients.

Using ACC in Sun ONE Application Server 6.x and Sun Java System
Application Server Platform Edition 8
In Sun ONE Application Server 6.x, no separate appclient script is provided. You
are required to place the iasacc.jar file in the classpath instead of the
iascleint.jar file. The only benefit of using the ACC for packaging application
clients in 6.x is that the JNDI names specified in the client application are indirectly
mapped to the absolute JNDI names of the EJBs.

In case of Sun ONE Application Server 6.x applications, a stand-alone client would
use the absolute name of the EJB in the JNDI lookup. That is, outside an ACC, the
following approach would be used to lookup the JNDI:

initial.lookup(“ejb/ejb-name”);
initial.lookup(“ejb/module-name/ejb-name”);

If your application was developed using Sun ONE Application Server 6.5 SP3, you
would have used the prefix “java:comp/env/ejb/” when performing lookups via
absolute references.

initial.lookup(“java:comp/env/ejb/ejb-name”);

In Sun Java System Application Server Platform Edition 8, the JNDI lookup is done
on the jndi-name of the EJB. The absolute name of the ejb must not be used. Also,
the prefix, java:comp/env/ejb is not supported in Sun Java System Application
Server Platform Edition 8. Replace the iasclient.jar, iasacc.jar, or javax.jar
JAR files in the classpath with appserv-ext.jar.

If your application provides load balancing capabilities, in Sun Java System
Application Server Platform Edition 8, load balancing capabilities are supported
only in the form of S1ASCTXFactory as the context factory on the client side and
then specifying the alternate hosts and ports in the cluster by setting the
com.sun.appserv.iiop.loadbalancingpolicy system property as follows:

com.sun.appserv.iiop.loadbalancingpolicy=roundrobin,host1:port1,host2:port2,...,

Migrating UIF

54 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

This property provides you with a list of host:port combinations to round robin the
ORBs. These host names may also map to multiple IP addresses. If you use this
property along with org.omg.CORBA.ORBInitialHost and
org.omg.CORBA.ORBInitialPort as system properties, the round robin algorithm
will round robin across all the values provided. If, however, you provide a host
name and port number in your code, in the environment object, that value will
override any such system property settings.

The Provider URL to which the client is connected in Sun ONE Application Server
6.5 is the IIOP host and port of the CORBA Executive Engine (CXS Engine). In case
of Sun Java System Application Server Platform Edition 8, the client needs to
specify the IIOP listener Host and Port number of the instance. No separate CXS
engine exists in Sun Java System Application Server Platform Edition 8.

The default IIOP port is 3700 in Sun Java System Application Server Platform
Edition 8; the actual value of the IIOP Port can be found in the server.xml
configuration file.

55

Chapter 4

Migrating a Sample Application - an
Overview

This chapter describes the process for migrating the main components of a typical
J2EE application from Sun ONE Application Server 6.x to Sun Java System
Application Server Platform Edition 8. This chapter highlights some of the
problems posed during the migration of each type of component and suggests
practical solutions to overcome such problems.

For this migration process, the J2EE application presented is called iBank and is
based on the actual migration of the iBank application from Sun ONE Application
Server 6.x to the Application Server. iBank simulates an online banking service and
covers all of the aspects traditionally associated with a J2EE application.

The sensitive points of the J2EE specification covered by the iBank application are
summarized below:

• Servlets, especially with redirection to JSP pages (model-view-controller
architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP
entity beans

• Assembly and deployment in line with the standard packaging methods of the
J2EE application

The iBank application is presented in detail in Appendix A, “iBank Application
Specification.”

Preparing for Migrating the iBank Application

56 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Preparing for Migrating the iBank Application
Before you start with the migration process learn about the differences in the
deployment descriptors. For detailed information, see “Migrating Deployment
Descriptors” on page 34.

Choosing the Target
You must choose the migration target server as Sun Java System Application
Server Platform Edition 8. After choosing the target server, install the server on
your migration environment. For step-by-step instructions to install the software,
see the Sun Java System Application Server Platform Edition 8 Installation Guide.

If you are using Migration Tool for Sun Java System Application Server Platform
Edition 8 to migrate the components, you must install the tool. The Migration Tool
can be downloaded from the following location:

http://java.sun.com/j2ee/tools/migration

For information on how to use the Migration Tool for Sun Java System Application
Server Platform Edition 8, see the Migration Tool online help. The iBank
application is bundled with the tool.

Identifying the Components of the iBank
Application
The iBank application has the following directory structure:

iBank
/docroot
/session
/entity
/misc

• /docroot contains HTML, JSP’s and Image files in its root. It also contains the
source files for servlets and EJBs in the sub-folder WEB-INF\classes following
the package structure com.sun.bank.*. A war file is generated through the
contents of this directory.

• /session contains the source code for the session beans following the package
structure com.sun.bank.ejb.session. This directory forms the EJB module for
the session beans.

http://java.sun.com/j2ee/tools/migration

Manual Steps in the iBank Application Migration

Chapter 4 Migrating a Sample Application - an Overview 57

• /entity contains the entity beans following the package structure
com.sun.bank.ejb.entity. This directory would form the EJB module for
entity beans.

• /misc contain the sql scripts for the database setup.

Manual Steps in the iBank Application Migration
Most of the migration is done by the Migration Tool. There are some aspects of
migration that must be done manually. These steps are documented in the
Migration Tool’s user’s guide and the documentation for the iBank sample
application, which is included in the bundle.

Assembling Application for Deployment
Application Server primarily supports the J2EE model wherein applications are
packaged in the form of an enterprise archive (EAR) file (extension .ear). The
application is further subdivided into a collection of J2EE modules, packaged into
Java archives (JAR, extension .jar) for EJBs and web archives (WAR, extension
.war) for servlets and JSPs.

All the JSPs and Servlets should be packaged into WAR file, all EJBs into the JAR
file and finally the WAR and the JAR file together with the deployment descriptors
in to the EAR file. This EAR file is a deployable component.

Using the asadmin Utility to Deploy the iBank
Application on Sun Java System Application
Server Platform Edition 8
The last stage is to deploy the application on Sun Java System Application Server
Platform Edition 8. The process for deploying an application is described below:

The Sun Java System Application Server Platform Edition 8 asadmin command
includes a help section on deployment that is accessible from the Help menu.

The command line utility asadmin can be invoked by executing asadmin.bat file in
Windows and asadmin file in Solaris Operating Environment that is stored in
Application Server’s installation's bin directory.

At asadmin prompt, the command for deployment would be:

Manual Steps in the iBank Application Migration

58 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

asadmin> deploy -u username -w password -H hostname -p adminport
absolute_path_to_application

After you restart the Application Server, open a browser and go to the following
URL to test the application:

 http://<machine_name>:<port_number>/IBank

When prompted, enter one of the available user names and passwords. The main
menu page of the iBank application should display.

59

Chapter 5

Migration Tools and Resources

This chapter describes migration tools that help automate the migration process from earlier

versions of Sun ONE Application Server, Sun Java System Application Server 7, Netscape

Application Server (Kiva), NetDynamics Application Server, and competitive application

servers to Sun Java System Application Server Platform Edition 8.

Migration Tool for Sun Java System Application
Server Platform Edition 8

The Migration Tool for Sun Java System Application Server Platform Edition 8 (hereafter

called Migration Tool) migrates J2EE applications from other server platforms to Sun Java
System Application Server Platform Edition 8.

For Sun Java System Application Server Platform Edition 8 the following source

platforms are supported:

• Sun ONE Application Server 6.x, 7.0

• J2EE Reference Implementation Application Server (RI) 1.3, 1.4 Beta1

• Sun ONE Web Server 6.0

• WebLogic Application Server (WLS) 5.1, 6.0, 6.1

• WebSphere Application Server (WAS) 4.0

Migration Tool for Sun Java System Application Server Platform Edition 8 automates the

migration of J2EE applications to Sun Java System Application Server Platform Edition 8,

without much modification to the source code.

The key features of the tool are:

• Migration of application server-specific deployment descriptors

Sun ONE Migration Toolbox for Applogic and NetDynamics

60 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• Runtime support for selected custom JavaServer Pages (JSP) tags and proprietary APIs

• Conversion of selected configuration parameters with equivalent functionality in

Application Server

• Automatic generation of Ant based scripts for building and deploying the migrated

application to the target server, Application Server

• Generation of comprehensive migration reports after achieving migration

You can download the Migration Tool from the following location:

http://java.sun.com/j2ee/tools/migration/index.html

For detailed information on how to install and use the tool, consult its online help.

The Migration Tool specifications and migration process change from time to time, so the

sample migration using the tool is not included in this guide. The migration process of a

sample application is discussed in the documentation for this tool.

Redeploying Migrated Applications
Most of the applications that are migrated automatically through the use of the available

migration tools will utilize the standard deployment tasks described in the Sun Java System
Application Server Platform Edition 8 Administration Guide.

In some cases, the automatic migration will not be able to migrate particular methods or

syntaxes from the source application. When this occurs in the case of the Migration Tool,

you are notified of the steps that will be needed to complete the migration. Once you

complete the post-migration manual steps, you will be able to deploy the application in the

standard manner.

Sun ONE Migration Toolbox for Applogic and
NetDynamics

Sun ONE Migration Toolbox (formerly called the iPlanet Migration Toolbox or iMT) is

used to migrate applications built on NetDynamics or Kiva/NAS platforms to Sun ONE

Application Server 6.x. In some cases, you might be able to use the Migration Tool for Sun

Java System Application Server Platform Edition 8 to complete a migration to Sun Java

System Application Server Platform Edition 8.

The Sun ONE Migration Toolbox is available upon request. Please contact

appserver-migration@sun.com.

mailto:appserver-migration@sun.com
http://java.sun.com/j2ee/tools/migration/index.html

J2EE Application Verification Kit

Chapter 5 Migration Tools and Resources 61

J2EE Application Verification Kit
The Java Application Verification Kit (AVK) for the Enterprise helps you build and test

your applications for correct use of J2EE APIs and migrate to other J2EE compatible

application servers using specific guidelines and rules.

You can download the Java Application Verification Kit (AVK) from the following

location:

http://java.sun.com/j2ee/verified/

More Migration Information
This section provides references to additional migration documents.

Migrating from KIVA/NAS/NetDynamics
Application Servers
For information about migrating your KIVA/NAS/NetDynamics applications to Sun ONE

Application Server 6.0, see the Sun ONE Application Server Migration Guide at the

following URL:

http://docs.sun.com/db/doc/816-5780-10

For information about migrating your KIVA/NAS/NetDynamics applications to Sun ONE

Application Server 6.5, see the Sun ONE Application Server 6.5 Migration Guide at the

following URL:

http://docs.sun.com/db/doc/816-5793-11

For information about migrating your KIVA/NAS/NetDynamics applications to Sun Java

System Application Server 7, see Sun Java System Application Server 7 Migrating and
Redeploying Server Applications Guide at the following URL:

http://docs.sun.com/db/doc/817-2158-10

http://java.sun.com/j2ee/verified/
http://docs.sun.com/db/doc/816-5780-10
http://docs.sun.com/db/doc/816-5793-11
http://docs.sun.com/db/doc/817-2198-10

More Migration Information

62 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

63

Appendix A

iBank Application Specification

The iBank application is used as the migration sample. This application simulates a
basic online banking service with the following functionality:

• log on to the online banking service

• view/edit personal details and branch details

• summary view of accounts showing cleared balances

• facility to drill down by account to view individual transaction history

• money transfer service, allowing online transfer of funds between accounts

• compound interest earnings projection over a number of years for a given
principal and annual yield rate

The application is designed after the MVC (Model-View-Controller) model where:

• EJBs are used to define the business and data model components of the
application

• Java Server Pages handle the presentation logic and represent the View.

• Servlets play the role of Controllers and handle application logic, taking charge
of calling the business logic components and accessing business data via EJBs
(the Model), and dispatching processed data for display to Java Server Pages
(the View).

Standard J2EE methods are used for assembling and deploying the application
components. This includes the definition of deployment descriptors and
assembling the application components within the archive files:

• a WAR archive file for the Web application including HTML pages, images,
Servlets, JSPs and custom tag libraries, and ancillary server-side Java classes.

Database Schema

64 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• EJB-JAR archive files for the assembling of one or more EJBs, including
deployment descriptor, bean class and interfaces, stub and skeleton classes,
and other helper classes as required.

• an EAR archive file for the packaging of the enterprise application module that
includes the Web application module and the EJB modules used by the
application.

The use of standard J2EE assembling methods will be useful in pointing out any
differences between Sun ONE Application Server 6.x/7.x and Sun Java System
Application Server Platform Edition 8, and any issues arising thereof.

Database Schema
The iBank database schema is derived from the following business rules:

• The iBank company has local branches in major cities.

• A Branch manages all customers within its regional area.

• A Customer has one or more accounts held at their regional branch.

• A customer Account is uniquely identified by the branch code and account
number, and also holds the number of the customer to which it belongs. The
current cleared balance available is also stored with the account.

• Accounts are of a particular Account Type that is used to distinguish between
several kinds of accounts (checking account, savings account, etc.).

• Each Account Type stores a number of particulars that apply to all accounts of
this type (regardless of branch or customer) such as interest rate and allowed
overdraft limit.

• Every time a customer receives or pays money into/from one of their accounts,
the transaction is recorded in a global transaction log, the Transaction History.

• The Transaction History stores details about individual transactions, such as
the relevant branch code and account number, the date the transaction was
posted (recorded), a code identifying the type of transaction and a
complementary description of the particular transaction, and the amount for
the transaction.

• Transaction types allow different types of transactions to be distinguished,
such as cash deposit, credit card payment, fund transfer between accounts, and
so on.

Database Schema

Appendix A iBank Application Specification 65

Figure A-1, the entity-relationship diagram shown below, illustrates these business
rules.

Figure A-1 Database Schema

The database model translates as a series of table definitions below, where primary
key columns are printed in bold type, while foreign key columns are shown in
italics.

BRANCH

BRANCH_CODE CHAR(4) NOT NULL 4-digit code identifying the branch

BRANCH_NAME VARCHAR(40) NOT NULL Name of the branch

Database Schema

66 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

BRANCH_ADDRESS1 VARCHAR(60) NOT NULL Branch postal address, street address, 1st
line

BRANCH_ADDRESS2 VARCHAR(60) Branch postal address, street address, 2nd
line

BRANCH_CITY VARCHAR(30
)

NOT NULL Branch postal address, City

BRANCH_ZIP VARCHAR(10
)

NOT NULL Branch postal address, Zip code

BRANCH_STATE CHAR(2) NOT NULL Branch postal address, State
abbreviation

CUSTOMER

CUST_NO INT NOT NULL iBank customer number (global)

BRANCH_CODE CHAR(4) NOT NULL References this customer's branch

CUST_USERNAME VARCHAR(16) NOT NULL Customer's login username

CUST_PASSWORD VARCHAR(10) NOT NULL Customer's login password

CUST_EMAIL VARCHAR(40) Customer's e-mail address

CUST_TITLE VARCHAR(3) NOT NULL Customer's courtesy title

CUST_GIVENNAMES VARCHAR(40) NOT NULL Customer's given names

CUST_SURNAME VARCHAR(40) NOT NULL Customer's family name

CUST_ADDRESS1 VARCHAR(60) NOT NULL Customer postal address, street address, 1st
line

CUST_ADDRESS2 VARCHAR(60) Customer postal address, street address,
2nd line

CUST_CITY VARCHAR(30) NOT NULL Customer postal address, City

CUST_ZIP VARCHAR(10) NOT NULL Customer postal address, Zip code

CUST_STATE CHAR(2) NOT NULL Customer postal address, State abbreviation

ACCOUNT_TYPE

ACCTYPE_ID CHAR(3) NOT NULL 3-letter account type code

ACCTYPE_DESC VARCHAR(30) NOT NULL Account type description

Application Navigation and Logic

Appendix A iBank Application Specification 67

Application Navigation and Logic
Figure A-2 provides a high-level view of application navigation.

ACCTYPE_INTERESTR
ATE

DECIMAL(4,2) DEFAULT
0.0

Annual interest rate

ACCOUNT

BRANCH_CODE CHAR(4) NOT NULL branch code (primary-key part 1)

ACC_NO CHAR(8) NOT NULL account no. (primary-key part 2)

CUST_NO INT NOT NULL Customer to whom accounts belongs

ACCTYPE_ID CHAR(3) NOT NULL Account type, references ACCOUNT_TYPE

ACC_BALANCE DECIMAL(10,2) DEFAULT
0.0

Cleared balance available

TRANSACTION_TYPE

TRANSTYPE_ID CHAR(4) NOT NULL A 4-letter transaction type code

TRANSTYPE_DESC VARCHAR(40) NOT NULL Human-readable description of code

TRANSACTION_HISTORY

TRANS_ID LONGINT NOT NULL Global transaction serial no

BRANCH_CODE CHAR(4) NOT NULL key referencing ACCOUNT part 1

ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2

TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE

TRANS_POSTDATE TIMESTAMP NOT NULL Date & time transaction was posted

TRANS_DESC VARCHAR(40) Additional details for the transaction

TRANS_AMOUNT DECIMAL(10,2) NOT NULL Money amount for this transaction

Application Navigation and Logic

68 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Figure A-2 Application Navigation and Logic

Login Process
Figure A-3 shows the login process used in the iBank application.

Figure A-3 Login Process

View/Edit Details
Figure A-4 shows the view/edit details process used in the iBank application.

Application Navigation and Logic

Appendix A iBank Application Specification 69

Figure A-4 View/Edit Details Process

Account Summary and Transaction History
Figure A-5 shows how the account summary and transaction history work in the
iBank application.

Application Navigation and Logic

70 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Figure A-5 Account Summary and Transaction History

Fund Transfer
Figure A-6 shows how funds are transferred in the iBank application.

Application Navigation and Logic

Appendix A iBank Application Specification 71

Figure A-6 Fund Transfer

Interest Calculation
Figure A-7 shows how interest is calculated in the iBank application.

Application Components

72 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Figure A-7 Interest Calculation

Application Components

Data Components
Each table in the database schema is encapsulated as an entity bean:

All entity beans use container-managed persistence (CMP), except Customer,
which uses bean-managed persistence (BMP).

Currently, the application only makes use of the Account, AccountType,
Branch, and Customer beans.

Entity Bean Database Table

Account ACCOUNT table

AccountType ACCOUNT_TYPE table

Branch BRANCH table

Customer CUSTOMER table

Transaction TRANSACTION_HISTORY table

TransactionType TRANSACTION_TYPE table

Application Components

Appendix A iBank Application Specification 73

Business Components
Business components of the application are encapsulated by session beans.

The BankTeller bean is a stateful session bean that encapsulates all interaction
between the customer and the system. BankTeller is notably in charge of the
following activities:

• Authenticating a customer through the authCheck() method

• Giving the list of accounts for the customer through the getAccountSummary()
method

• Transferring funds between accounts on behalf of the customer through the
transferFunds() method

The InterestCalculator bean is a stateless session bean that encapsulates
financial calculations. It is responsible for providing the compound interest
projection calculations, through the projectEarnings() method.

Application Logic Components (Servlets)

Component name Purpose

LoginServlet Authenticates the user with the BankTeller session bean
(authCheck() method), creates the HTTP session and saves
information pertaining to the user in the session.Upon successful
authentication, forwards request to the main menu page
(UserMenu.jsp)

CustomerProfileServlet Retrieves customer and branch details from the Customer and Branch
entity beans and forwards request to the view/edit details page
(CustomerProfile.jsp).

UpdateCustomerDetailsSe
rvlet

Attempts to effect customer details changes amended in
CustomerProfile.jsp by updating the Customer entity bean after
checking validity of changes. Redirects to UpdatedDetails.jsp if
success, or to DetailsUpdateFailed.jsp in case of incorrect input.

ShowAccountSummarySe
rvlet

Retrieves the list of customer accounts from the BankTeller session
bean (getAccountSummary() method) and forwards request to
AccountSummary.jsp for display.

Application Components

74 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Presentation Logic Components (JSP Pages)

TransferFundsServlet Retrieves the list of customer accounts from the BankTeller session
bean (getAccountSummary() method) and forwards request to
TransferFunds.jsp allowing the user to set up the transfer
operation.

CheckTransferServlet Checks the validity of source and destination accounts selected by the
user for transfer and the amount entered. Calls the
transferFunds() method of the BankTeller session bean to
perform the transfer operation. Redirects the user to
CheckTransferFailed.jsp in case of input error or processing
error, or to TransferSuccess.jsp if the operation was successfully
carried out.

ProjectEarningsServlet Retrieves the interest calculation parameters defined by the user in
InterestCalc.jsp and calls the projectEarnings() method of the
InterestCalculator stateless session bean to perform the calculation,
and forwards results to the ShowProjectionResults.jsp page for
display. In case of invalid input, redirects to BadIntCalcInput.jsp

Component name Purpose

index.jsp Index page to the application that also serves as the login page.

LoginError.jsp Login error page displayed in case of invalid user credentials
supplied. Prints an indication as to why login was unsuccessful.

Header.jsp Page header that is dynamically included in every HTML page of the
application

CheckSession.jsp This page is statically included in every page in the application and
serves to verify whether the user is logged in (i.e. has a valid HTTP
session). If no valid session is active, the user is redirected to the
NotLoggedIn.jsp page.

NotLoggedIn.jsp Page that the user gets redirected to when they try to access an
application page without having gone through the login process first.

UserMenu.jsp Main application menu page that the user gets redirected to after
successfully logging in. This page provides links to all available
actions.

CustomerProfile.js
p

Page displaying editable customer details and static branch details.
This page allows the customer to amend their correspondence
address.

Application Components

Appendix A iBank Application Specification 75

UpdatedDetails.jsp Page where the user gets redirected to after successfully updating
their details.

DetailsUpdateFaile
d.jsp

Page where the user gets redirected if an input error prevents their
details to be updated.

AccountSummaryPage
.jsp

This page displays the list of accounts belonging to the customer in
tabular form listing the account no, account type and current balance.
Clicking on an account no. in the table causes the application to
present a detailed transaction history for the selected account.

ShowTransactionHis
tory.jsp

This page prints the detailed transaction history for a particular
account no. The transaction history is printed using a custom tag
library.

TransferFunds.jsp This page allows the user to set up a transfer from one account to
another for a specific amount of money.

TransferCheckFaile
d.jsp

When the user chooses incorrect settings for fund transfer, they get
redirected to this page.

TransferSuccess.js
p

When the fund transfer set-up by the user can successfully be carried
out, this page will be displayed, showing a confirmation message.

InterestCalc.jsp This page allows the user to enter parameters for a compound
interest calculation.

BadIntCalcInput.js
p

If the parameters for compound interest calculation are incorrect, the
user gets redirected to this page.

ShowProjectionResu
lts.jsp

When an interest calculation is successfully carried out, the user is
redirected to this page that displays the projection results in tabular
form.

Logout.jsp Exit page of the application. This page removes the stateful session
bean associated with the user and invalidates the HTTP session.

Error.jsp In case of unexpected application error, the user will be redirected to
this page that will print details about the exception that occurred.

Fitness of Design Choices with Regard to Potential Migration Issues

76 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

Fitness of Design Choices with Regard to
Potential Migration Issues

While many of application design choices made are certainly debatable especially
in the “real-world” context, care was taken to ensure that these choices enable the
sample application to encompass as many potential issues as possible as one would
face in the process of migrating a typical J2EE application.

This section will go through the potential issues that you might face when
migrating a J2EE application, and the corresponding component of iBank that was
included to check for this issue during the migration process.

With respect to the selected migration areas to address, this section specifically
looks at the following technologies:

Servlets
The iBank application includes a number of servlets, that enable us to detect
potential issues with:

• The use of generic functionality of the Servlet API

• Storage/retrieval of attributes in the HTTP session and HTTP request

• Retrieval of servlet context initialization parameters

• Page redirection

Java Server Pages
With respect to the JSP specification, the following aspects have been addressed:

• Use of JSP declarations, scriptlets, expressions, and comments

• Static includes (<%@ include file="…" %>): notably tested with the inclusion
of the CheckSession.jsp file in every page)

• Dynamic includes (<jsp:include page=… />): this is catered for by the
dynamic inclusion of Header.jsp in every page

• Use of custom tag libraries: a custom tag library is used in the file
ShowTransactionHistory.jsp

Fitness of Design Choices with Regard to Potential Migration Issues

Appendix A iBank Application Specification 77

• Error pages for JSP exception handling: the Error.jsp page is the application
error redirection page

JDBC
The iBank application accesses a database via a connection pool and the data
source, both programmatically (BMP entity bean, BankTeller session bean,
custom tag library) and declaratively (with the CMP entity beans).

Enterprise Java Beans
The iBank application uses a variety of Enterprise Java Beans.

Entity Beans
Bean-managed persistence (Customer bean): allows us to test the following:

• JNDI lookup of initial context

• Pooled data source access via JDBC

• Definition of a BMP custom finder ("findByCustUsername()")

Container-managed persistence ("Account" and "Branch" beans): allow us to test
the following:

• Object/Relational mapping with the development tool and within the
deployment descriptor

• Use of composite primary keys (Account)

• Definition of custom CMP finders (with the "Account" bean, and its
findOrderedAccountsForCustomer() method). This is the occasion to look at
differences in declaring the query logic in the deployment descriptor, and also
to have a complex example returning a collection of objects.

Session Beans
Stateless session beans: InterestCalculator allows us to test the following:

• Using and deploying a stateless session bean

• Calling a business method for calculations

Stateful session beans: BankTeller allows us to test the following:

Fitness of Design Choices with Regard to Potential Migration Issues

78 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

• Looking up various interfaces using JNDI and initial contexts

• Using JDBC to perform database queries

• Using various transactional attributes on bean methods

• Using container-demarcated transactions

• Maintaining conversational state between calls

• Business methods acting as front-ends to entity beans (e.g., the
"getAccountSummary()" method)

Application Assembly
The iBank application is assembled by following the J2EE standard procedures. It
contains the following components:

• A Web application archive file for the Web application module, and EJB-JAR
archives for the EJBs

• An enterprise application archive file (EAR file) for the final packaging of the
Web application and EJB modules

Section A

Index 79

Index

A
application client JAR file contents 17

asadmin command for deploying a Web application 46

automated migration tools 19

D
data source benefits 37

Deployment descriptors 17

DTD changes for S1AS 6.x to SJS AS 8 EJB

migration 42

E
EAR file contents 17

EAR file definition 17

EJB 1.1 to EJB 2.0

Defining Entity Bean Relationships 24

EJB 2.0 Container-Managed Persistence (CMP) 23

EJB Query Language 21

Message-Driven Beans 24

Migrating CMP Entity EJBs

Custom Finder Methods 30

Migrating the Bean Class 27

Migration of ejb-jar.xml 29

Migrating EJB Client Applications 24

Declaring EJBs in the JNDI Context 25

Migration of ejb-jar.xml 29

EJB JAR file contents 17

EJB migration actions 42

I
iBank Application specification

Application Components 72

Application navigation and logic 67

Database schema 64

Fitness of design choices with regard to potential

migration issues 76

iBank sample application 33

J
J2EE applications

components 16

J2EE Component Standards 15

JDBC code migration 36

JSP and JSP custom tag library conversions 40

Section M

80 Application Server 8 March 2004 • Migrating and Redeploying Server Applications Guide

M
manual migration of iBank application 57

assembling application for deployment 57

Migration Tool for Sun Java System Application Server

Platform Edition 8 19, 59

O
obtaining a data source from the JNDI context 41

R
rpm 13

S
servlet migration modifications 40

showrev 13

Sun customer support 13

Sun ONE Migration Toolbox 19

W
WAR file contents 17

	Application Server 8 Migrating and Redeploying Server Applications Guide
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Contacting Sun
	Give Us Feedback
	Obtain Training
	Contact Product Support

	Understanding Migration
	J2EE Component Standards
	J2EE Application Components and Migration
	Migration and Redeployment
	Why is Migration Necessary?
	What Needs to be Migrated
	What is Redeployment?

	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Persistent Fields
	Defining Entity Bean Relationships
	Message-Driven Beans

	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References

	Migrating CMP Entity EJBs
	Migrating the Bean Class
	Migration of ejb-jar.xml
	Custom Finder Methods

	Migrating from Sun ONE Application Server 6.x/7.x to Sun Java System Application Server Platform ...
	Migrating Deployment Descriptors
	Migrating J2EE Components
	Migrating JDBC Code
	Using JDBC 2.0 Data Sources
	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	EJB Migration
	EJB Changes Specific to Sun Java System Application Server Platform Edition 8

	Migrating Web Applications
	Migrating Web Application Modules

	Migrating Enterprise EJB Modules
	Migrating Enterprise Applications
	Application Root Context and Access URL

	Migrating Proprietary Extensions
	Migrating UIF
	Migrating Rich Clients

	Migrating a Sample Application - an Overview
	Preparing for Migrating the iBank Application
	Choosing the Target
	Identifying the Components of the iBank Application

	Manual Steps in the iBank Application Migration
	Assembling Application for Deployment
	Using the asadmin Utility to Deploy the iBank Application on Sun Java System Application Server P...

	Migration Tools and Resources
	Migration Tool for Sun Java System Application Server Platform Edition 8
	Redeploying Migrated Applications

	Sun ONE Migration Toolbox for Applogic and NetDynamics
	J2EE Application Verification Kit
	More Migration Information
	Migrating from KIVA/NAS/NetDynamics Application Servers

	iBank Application Specification
	Database Schema
	Application Navigation and Logic
	Login Process
	View/Edit Details
	Account Summary and Transaction History
	Fund Transfer
	Interest Calculation

	Application Components
	Data Components
	Business Components
	Application Logic Components (Servlets)
	Presentation Logic Components (JSP Pages)

	Fitness of Design Choices with Regard to Potential Migration Issues
	Servlets
	Java Server Pages
	JDBC
	Enterprise Java Beans
	Application Assembly

	Index

