
man pages section 9: DDI and DKI
Properties and Data Structures

Part No: 816–5181–16
September 2010

Copyright © 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following
notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
“commercial computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

100618@24378

Contents

Preface ...7

Introduction ...11
Intro(9S) .. 12

Data Structures for Drivers ..15
aio_req(9S) ... 16
buf(9S) .. 17
cb_ops(9S) .. 20
copyreq(9S) ... 22
copyresp(9S) ... 23
datab(9S) .. 24
ddi_device_acc_attr(9S) .. 25
ddi_dma_attr(9S) ... 31
ddi_dma_cookie(9S) ... 35
ddi_dmae_req(9S) ... 36
ddi_dma_lim_sparc(9S) .. 40
ddi_dma_lim_x86(9S) ... 42
ddi_dma_req(9S) ... 44
ddi_fm_error(9S) ... 47
ddi-forceattach(9P) .. 49
ddi_idevice_cookie(9S) .. 50
devmap_callback_ctl(9S) .. 51
dev_ops(9S) ... 53
fmodsw(9S) .. 54
free_rtn(9S) ... 55
gld_mac_info(9S) ... 56

3

gld_stats(9S) ... 59
hook_nic_event(9S) ... 61
hook_pkt_event(9S) ... 63
hook_t(9S) .. 65
inquiry-device-type(9P) .. 66
iocblk(9S) .. 67
iovec(9S) .. 68
kstat(9S) .. 69
kstat_intr(9S) ... 71
kstat_io(9S) ... 72
kstat_named(9S) ... 73
linkblk(9S) ... 74
mac_callbacks(9S) ... 75
mac_capab_lso(9S) ... 78
mac_register(9S) ... 79
modldrv(9S) ... 81
modlinkage(9S) ... 82
modlstrmod(9S) ... 83
module_info(9S) ... 84
msgb(9S) .. 85
net_inject_t(9S) ... 86
net_instance_t(9S) ... 87
no-involuntary-power-cycles(9P) ... 88
pm(9P) .. 90
pm-components(9P) .. 92
qband(9S) .. 95
qinit(9S) .. 96
queclass(9S) ... 97
queue(9S) .. 98
removable-media(9P) .. 101
scsi_address(9S) ... 102
scsi_arq_status(9S) ... 103
scsi_asc_key_strings(9S) .. 104
scsi_device(9S) ... 105
scsi_extended_sense(9S) .. 106
scsi_hba_tran(9S) ... 109

Contents

man pages section 9: DDI and DKI Properties and Data Structures • September 20104

scsi_inquiry(9S) ... 112
scsi_pkt(9S) ... 115
scsi_status(9S) ... 120
streamtab(9S) ... 122
stroptions(9S) ... 123
tuple(9S) .. 125
uio(9S) .. 128
usb_bulk_request(9S) .. 130
usb_callback_flags(9S) .. 134
usb_cfg_descr(9S) ... 139
usb_client_dev_data(9S) .. 141
usb_completion_reason(9S) .. 146
usb_ctrl_request(9S) .. 148
usb_dev_descr(9S) ... 151
usb_dev_qlf_descr(9S) .. 153
usb_ep_descr(9S) ... 155
usb_if_descr(9S) ... 158
usb_intr_request(9S) .. 160
usb_isoc_request(9S) .. 165
usb_other_speed_cfg_descr(9S) .. 169
usb_request_attributes(9S) .. 171
usb_string_descr(9S) .. 175

Contents

5

6

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:
■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 6 contains available games and demos.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9 provides reference information needed to write device drivers in the kernel
environment. It describes two device driver interface specifications: the Device Driver
Interface (DDI) and the Driver/Kernel Interface (DKI).

■ Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

7

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,
there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
"filename . . ." .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own

Preface

man pages section 9: DDI and DKI Properties and Data Structures • September 20108

http://docs.sun.com/doc/816-5165/man-1?a=view
http://docs.sun.com/doc/816-5167/ioctl-2?a=view

heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).
ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

Preface

9

http://docs.sun.com/doc/816-5177/mtio-7i?a=view

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete
example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 9: DDI and DKI Properties and Data Structures • September 201010

http://docs.sun.com/doc/816-5175/attributes-5?a=view

Introduction

R E F E R E N C E

11

Intro – introduction to kernel data structures and properties

Section 9P describes kernel properties used by device drivers. Section 9S describes the data
structures used by drivers to share information between the driver and the kernel. See
Intro(9E) for an overview of device driver interfaces.

In Section 9S, reference pages contain the following headings:
■ NAME summarizes the purpose of the structure or property.
■ SYNOPSIS lists the include file that defines the structure or property.
■ INTERFACE LEVEL describes any architecture dependencies.
■ DESCRIPTION provides general information about the structure or property.
■ STRUCTURE MEMBERS lists all accessible structure members (for Section 9S).
■ SEE ALSO gives sources for further information.

Of the preceding headings, Section 9P reference pages contain the NAME, DESCRIPTION, and
SEE ALSO fields.

Every driver MUST include <sys/ddi.h> and <sys/sunddi.h>, in that order, and as final
entries.

The following table summarizes the STREAMS structures described in Section 9S.

Structure Type

copyreq DDI/DKI

copyresp DDI/DKI

datab DDI/DKI

fmodsw Solaris DDI

free_rtn DDI/DKI

iocblk DDI/DKI

linkblk DDI/DKI

module_info DDI/DKI

msgb DDI/DKI

qband DDI/DKI

qinit DDI/DKI

queclass Solaris DDI

queue DDI/DKI

streamtab DDI/DKI

Name

Description

Intro(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 15 May 200112

http://docs.sun.com/doc/816-5179/intro-9e?a=view

Structure Type

stroptions DDI/DKI

The following table summarizes structures that are not specific to STREAMS I/O.

Structure Type

aio_req Solaris DDI

buf DDI/DKI

cb_ops Solaris DDI

ddi_device_acc_attr Solaris DDI

ddi_dma_attr Solaris DDI

ddi_dma_cookie Solaris DDI

ddi_dma_lim_sparc Solaris SPARC DDI

ddi_dma_lim_x86 Solaris x86 DDI

ddi_dma_req Solaris DDI

ddi_dmae_req Solaris x86 DDI

ddi_idevice_cookie Solaris DDI

ddi_mapdev_ctl Solaris DDI

devmap_callback_ctl Solaris DDI

dev_ops Solaris DDI

iovec DDI/DKI

kstat Solaris DDI

kstat_intr Solaris DDI

kstat_io Solaris DDI

kstat_named Solaris DDI

map DDI/DKI

modldrv Solaris DDI

modlinkage Solaris DDI

modlstrmod Solaris DDI

scsi_address Solaris DDI

Intro(9S)

Introduction 13

Structure Type

scsi_arq_status Solaris DDI

scsi_device Solaris DDI

scsi_extended_sense Solaris DDI

scsi_hba_tran Solaris DDI

scsi_inquiry Solaris DDI

scsi_pkt Solaris DDI

scsi_status Solaris DDI

uio DDI/DKI

Intro(9E)

Do not declare arrays of structures as the size of the structures can change between releases.
Rely only on the structure members listed in this chapter and not on unlisted members or the
position of a member in a structure.

See Also

Notes

Intro(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 15 May 200114

http://docs.sun.com/doc/816-5179/intro-9e?a=view

Data Structures for Drivers

R E F E R E N C E

15

aio_req – asynchronous I/O request structure

#include <sys/uio.h>

#include <sys/aio_req.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

An aio_req structure describes an asynchronous I/O request.

struct uio*aio_uio; /* uio structure describing the I/O request */

The aio_uio member is a pointer to a uio(9S) structure, describing the I/O transfer request.

aread(9E), awrite(9E), aphysio(9F), uio(9S)

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

aio_req(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 28 Mar 199716

http://docs.sun.com/doc/816-5179/aread-9e?a=view
http://docs.sun.com/doc/816-5179/awrite-9e?a=view
http://docs.sun.com/doc/816-5180/aphysio-9f?a=view

buf – block I/O data transfer structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

Architecture independent level 1 (DDI/DKI)

The buf structure is the basic data structure for block I/O transfers. Each block I/O transfer
has an associated buffer header. The header contains all the buffer control and status
information. For drivers, the buffer header pointer is the sole argument to a block driver
strategy(9E) routine. Do not depend on the size of the buf structure when writing a driver.

A buffer header can be linked in multiple lists simultaneously. Because of this, most of the
members in the buffer header cannot be changed by the driver, even when the buffer header is
in one of the driver's work lists.

Buffer headers are also used by the system for unbuffered or physical I/O for block drivers. In
this case, the buffer describes a portion of user data space that is locked into memory.

Block drivers often chain block requests so that overall throughput for the device is
maximized. The av_forw and the av_back members of the buf structure can serve as link
pointers for chaining block requests.

int b_flags; /* Buffer status */

struct buf *av_forw; /* Driver work list link */

struct buf *av_back; /* Driver work list link */

size_t b_bcount; /* # of bytes to transfer */

union {

caddr_t b_addr; /* Buffer’s virtual address */

} b_un;

daddr_t b_blkno; /* Block number on device */

diskaddr_t b_lblkno; /* Expanded block number on dev. */

size_t b_resid; /* # of bytes not xferred */

size_t b_bufsize; /* size of alloc. buffer */

int (*b_iodone)(struct buf *); /* function called */

/* by biodone */

int b_error; /* expanded error field */

void *b_private; /* "opaque" driver private area */

dev_t b_edev; /* expanded dev field */

The members of the buffer header available to test or set by a driver are as follows:

b_flags stores the buffer status and indicates to the driver whether to read or write to the
device. The driver must never clear the b_flags member. If this is done, unpredictable results
can occur including loss of disk sanity and the possible failure of other kernel processes.

All b_flags bit values not otherwise specified above are reserved by the kernel and may not be
used.

Valid flags are as follows:

Name

Synopsis

Interface Level

Description

Structure
Members

buf(9S)

Data Structures for Drivers 17

http://docs.sun.com/doc/816-5179/strategy-9e?a=view

B_BUSY Indicates the buffer is in use. The driver must not change this flag unless it
allocated the buffer with getrbuf(9F) and no I/O operation is in progress.

B_DONE Indicates the data transfer has completed. This flag is read-only.

B_ERROR Indicates an I/O transfer error. It is set in conjunction with the b_error field.
bioerror(9F) should be used in preference to setting the B_ERROR bit.

B_PAGEIO Indicates the buffer is being used in a paged I/O request. See the description of
the b_un.b_addr field for more information. This flag is read-only.

B_PHYS indicates the buffer header is being used for physical (direct) I/O to a user data
area. See the description of the b_un.b_addr field for more information. This
flag is read-only.

B_READ Indicates that data is to be read from the peripheral device into main memory.

B_WRITE Indicates that the data is to be transferred from main memory to the peripheral
device. B_WRITE is a pseudo flag and cannot be directly tested; it is only detected
as the NOT form of B_READ.

av_forw and av_back can be used by the driver to link the buffer into driver work lists.

b_bcount specifies the number of bytes to be transferred in both a paged and a non-paged I/O
request.

b_un.b_addr is the virtual address of the I/O request, unless B_PAGEIO is set. The address is a
kernel virtual address, unless B_PHYS is set, in which case it is a user virtual address. If
B_PAGEIO is set, b_un.b_addr contains kernel private data. Note that either one of B_PHYS and
B_PAGEIO, or neither, can be set, but not both.

b_blkno identifies which logical block on the device (the device is defined by the device
number) is to be accessed. The driver might have to convert this logical block number to a
physical location such as a cylinder, track, and sector of a disk. This is a 32-bit value. The
driver should use b_blkno or b_lblkno, but not both.

b_lblkno identifies which logical block on the device (the device is defined by the device
number) is to be accessed. The driver might have to convert this logical block number to a
physical location such as a cylinder, track, and sector of a disk. This is a 64-bit value. The
driver should use b_lblkno or b_blkno, but not both.

b_resid should be set to the number of bytes not transferred because of an error.

b_bufsize contains the size of the allocated buffer.

b_iodone identifies a specific biodone routine to be called by the driver when the I/O is
complete.

buf(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 19 Sep 200218

http://docs.sun.com/doc/816-5180/getrbuf-9f?a=view
http://docs.sun.com/doc/816-5180/bioerror-9f?a=view

b_error can hold an error code that should be passed as a return code from the driver.
b_error is set in conjunction with the B_ERROR bit set in the b_flags member. bioerror(9F)
should be used in preference to setting the b_error field.

b_private is for the private use of the device driver.

b_edev contains the major and minor device numbers of the device accessed.

strategy(9E), aphysio(9F), bioclone(9F), biodone(9F), bioerror(9F), bioinit(9F),
clrbuf(9F), getrbuf(9F), physio(9F), iovec(9S), uio(9S)

Writing Device Drivers

Buffers are a shared resource within the kernel. Drivers should read or write only the members
listed in this section. Drivers that attempt to use undocumented members of the buf structure
risk corrupting data in the kernel or on the device.

See Also

Warnings

buf(9S)

Data Structures for Drivers 19

http://docs.sun.com/doc/816-5180/bioerror-9f?a=view
http://docs.sun.com/doc/816-5179/strategy-9e?a=view
http://docs.sun.com/doc/816-5180/aphysio-9f?a=view
http://docs.sun.com/doc/816-5180/bioclone-9f?a=view
http://docs.sun.com/doc/816-5180/biodone-9f?a=view
http://docs.sun.com/doc/816-5180/bioerror-9f?a=view
http://docs.sun.com/doc/816-5180/bioinit-9f?a=view
http://docs.sun.com/doc/816-5180/clrbuf-9f?a=view
http://docs.sun.com/doc/816-5180/getrbuf-9f?a=view
http://docs.sun.com/doc/816-5180/physio-9f?a=view
http://docs.sun.com/doc/816-4854

cb_ops – character/block entry points structure

#include <sys/conf.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

The cb_ops structure contains all entry points for drivers that support both character and
block entry points. All leaf device drivers that support direct user process access to a device
should declare a cb_ops structure.

All drivers that safely allow multiple threads of execution in the driver at the same time must
set the D_MP flag in the cb_flag field. See open(9E).

If the driver properly handles 64-bit offsets, it should also set the D_64BIT flag in the cb_flag
field. This specifies that the driver will use the uio_loffset field of the uio(9S) structure.

If the driver returns EINTR from open(9E), it should also set the D_OPEN_RETURNS_EINTR flag in
the cb_flag field. This lets the framework know that it is safe for the driver to return EINTR

when waiting, to provide exclusion for a last-reference close(9E) call to complete before
calling open(9E).

The mt-streams(9F) function describes other flags that can be set in the cb_flag field.

The cb_rev is the cb_ops structure revision number. This field must be set to CB_REV.

Non-STREAMS drivers should set cb_str to NULL.

The following DDI/DKI or DKI-only or DDI-only functions are provided in the
character/block driver operations structure.

block/char Function Description

b/c XXopen DDI/DKI

b/c XXclose DDI/DKI

b XXstrategy DDI/DKI

b XXprint DDI/DKI

b XXdump DDI(Sun)

c XXread DDI/DKI

c XXwrite DDI/DKI

c XXioctl DDI/DKI

Name

Synopsis

Interface Level

Description

cb_ops(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 Apr 200820

http://docs.sun.com/doc/816-5179/open-9e?a=view
http://docs.sun.com/doc/816-5179/open-9e?a=view
http://docs.sun.com/doc/816-5179/close-9e?a=view
http://docs.sun.com/doc/816-5179/open-9e?a=view
http://docs.sun.com/doc/816-5180/mt-streams-9f?a=view

block/char Function Description

c XXdevmap DDI(Sun)

c XXmmap DKI

c XXsegmap DKI

c XXchpoll DDI/DKI

c XXprop_op DDI(Sun)

c XXaread DDI(Sun)

c XXawrite DDI(Sun)

int (*cb_open)(dev_t *devp, int flag, int otyp, cred_t *credp);

int (*cb_close)(dev_t dev, int flag, int otyp, cred_t *credp);

int (*cb_strategy)(struct buf *bp);

int (*cb_print)(dev_t dev, char *str);

int (*cb_dump)(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);

int (*cb_read)(dev_t dev, struct uio *uiop, cred_t *credp);

int (*cb_write)(dev_t dev, struct uio *uiop, cred_t *credp);

int (*cb_ioctl)(dev_t dev, int cmd, intptr_t arg, int mode,

cred_t *credp, int *rvalp);

int (*cb_devmap)(dev_t dev, devmap_cookie_t dhp, offset_t off,

size_t len, size_t *maplen, uint_t model);

int (*cb_mmap)(dev_t dev, off_t off, int prot);

int (*cb_segmap)(dev_t dev, off_t off, struct as *asp,

caddr_t *addrp, off_t len, unsigned int prot,

unsigned int maxprot, unsigned int flags, cred_t *credp);

int (*cb_chpoll)(dev_t dev, short events, int anyyet,

short *reventsp, struct pollhead **phpp);

int (*cb_prop_op)(dev_t dev, dev_info_t *dip,

ddi_prop_op_t prop_op, int mod_flags,

char *name, caddr_t valuep, int *length);

struct streamtab *cb_str; /* streams information */

int cb_flag;

int cb_rev;

int (*cb_aread)(dev_t dev, struct aio_req *aio, cred_t *credp);

int (*cb_awrite)(dev_t dev, struct aio_req *aio, cred_t *credp);

aread(9E), awrite(9E), chpoll(9E), close(9E), dump(9E), ioctl(9E), mmap(9E), open(9E),
print(9E), prop_op(9E), read(9E), segmap(9E), strategy(9E), write(9E), nochpoll(9F),
nodev(9F), nulldev(9F), dev_ops(9S), qinit(9S)

Writing Device Drivers

STREAMS Programming Guide

Structure
Members

See Also

cb_ops(9S)

Data Structures for Drivers 21

http://docs.sun.com/doc/816-5179/aread-9e?a=view
http://docs.sun.com/doc/816-5179/awrite-9e?a=view
http://docs.sun.com/doc/816-5179/chpoll-9e?a=view
http://docs.sun.com/doc/816-5179/close-9e?a=view
http://docs.sun.com/doc/816-5179/dump-9e?a=view
http://docs.sun.com/doc/816-5179/ioctl-9e?a=view
http://docs.sun.com/doc/816-5179/mmap-9e?a=view
http://docs.sun.com/doc/816-5179/open-9e?a=view
http://docs.sun.com/doc/816-5179/print-9e?a=view
http://docs.sun.com/doc/816-5179/prop-op-9e?a=view
http://docs.sun.com/doc/816-5179/read-9e?a=view
http://docs.sun.com/doc/816-5179/segmap-9e?a=view
http://docs.sun.com/doc/816-5179/strategy-9e?a=view
http://docs.sun.com/doc/816-5179/write-9e?a=view
http://docs.sun.com/doc/816-5180/nochpoll-9f?a=view
http://docs.sun.com/doc/816-5180/nodev-9f?a=view
http://docs.sun.com/doc/816-5180/nulldev-9f?a=view
http://docs.sun.com/doc/816-4854
http://docs.sun.com/doc/816-4855

copyreq – STREAMS data structure for the M_COPYIN and the M_COPYOUT message
types

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The data structure for the M_COPYIN and the M_COPYOUT message types.

int cq_cmd; /* ioctl command (from ioc_cmd) */

cred_t *cq_cr; /* full credentials */

uint_t cq_id; /* ioctl id (from ioc_id) */

uint_t cq_flag; /* must be zero */

mblk_t *cq_private; /* private state information */

caddr_t cq_addr; /* address to copy data to/from */

size_t cq_size; /* number of bytes to copy */

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

copyreq(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 6 October 200022

http://docs.sun.com/doc/816-4855

copyresp – STREAMS data structure for the M_IOCDATA message type

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The data structure copyresp is used with the M_IOCDATA message type.

int cp_cmd; /* ioctl command (from ioc_cmd) */

cred_t *cp_cr; /* full credentials */

uint_t cp_id; /* ioctl id (from ioc_id) */

uint_t cp_flag; /* ioctl flags */

mblk_t *cp_private; /* private state information */

caddr_t cp_rval; /* status of request: 0 -> success;

/* non-zero -> failure */

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

copyresp(9S)

Data Structures for Drivers 23

http://docs.sun.com/doc/816-4855

datab, dblk – STREAMS message data structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

The datab structure describes the data of a STREAMS message. The actual data contained in a
STREAMS message is stored in a data buffer pointed to by this structure. A msgb (message
block) structure includes a field that points to a datab structure.

Because a data block can have more than one message block pointing to it at one time, the
db_ref member keeps track of a data block's references, preventing it from being deallocated
until all message blocks are finished with it.

unsigned char *db_base; /* first byte of buffer */

unsigned char *db_lim; /* last byte (+1) of buffer */

unsigned char db_ref; /* # of message pointers to this data */

unsigned char db_type; /* message type */

A datab structure is defined as type dblk_t.

free_rtn(9S), msgb(9S)

Writing Device Drivers

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

datab(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 Oct 200324

http://docs.sun.com/doc/816-4854
http://docs.sun.com/doc/816-4855

ddi_device_acc_attr – data access attributes structure

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

The ddi_device_acc_attr structure describes the data access characteristics and
requirements of the device.

ushort_t devacc_attr_version;

uchar_t devacc_attr_endian_flags;

uchar_t devacc_attr_dataorder;

uchar_t devacc_attr_access;

The devacc_attr_version member identifies the version number of this structure. The
current version number is DDI_DEVICE_ATTR_V0.

The devacc_attr_endian_flags member describes the endian characteristics of the device.
Specify one of the following values:

DDI_NEVERSWAP_ACC Data access with no byte swapping

DDI_STRUCTURE_BE_ACC Structural data access in big-endian format

DDI_STRUCTURE_LE_ACC Structural data access in little endian format

DDI_STRUCTURE_BE_ACC and DDI_STRUCTURE_LE_ACC describe the endian characteristics of
the device as big-endian or little-endian, respectively. Although most of the devices have the
same endian characteristics as their buses, examples of devices that have opposite endian
characteristics of the buses do exist. When DDI_STRUCTURE_BE_ACC or
DDI_STRUCTURE_LE_ACC is set, byte swapping is automatically performed by the system if the
host machine and the device data formats have opposite endian characteristics. The
implementation can take advantage of hardware platform byte swapping capabilities.

When you specify DDI_NEVERSWAP_ACC, byte swapping is not invoked in the data access
functions.

The devacc_attr_dataorder member describes the order in which the CPU references data.
Specify one of the following values.

DDI_STRICTORDER_ACC Data references must be issued by a CPU in program order.
Strict ordering is the default behavior.

DDI_UNORDERED_OK_ACC The CPU can reorder the data references. This includes all
kinds of reordering. For example, a load followed by a store
might be replaced by a store followed by a load.

DDI_MERGING_OK_ACC The CPU can merge individual stores to consecutive
locations. For example, the CPU can turn two consecutive
byte stores into one half-word store. It can also batch

Name

Synopsis

Interface Level

Description

Structure
Members

ddi_device_acc_attr(9S)

Data Structures for Drivers 25

individual loads. For example, the CPU might turn two
consecutive byte loads into one half-word load.
DDI_MERGING_OK_ACC also implies reordering.

DDI_LOADCACHING_OK_ACC The CPU can cache the data it fetches and reuse it until
another store occurs. The default behavior is to fetch new
data on every load. DDI_LOADCACHING_OK_ACC also implies
merging and reordering.

DDI_STORECACHING_OK_ACC The CPU can keep the data in the cache and push it to the
device, perhaps with other data, at a later time. The default
behavior is to push the data right away.
DDI_STORECACHING_OK_ACC also implies load caching,
merging, and reordering.

These values are advisory, not mandatory. For example, data can be ordered without being
merged, or cached, even though a driver requests unordered, merged, and cached together.

The values defined for devacc_attr_access are:

DDI_DEFAULT_ACC If an I/O fault occurs, the system will take the default action, which
might be to panic.

DDI_FLAGERR_ACC Using this value indicates that the driver is hardened: able to cope
with the incorrect results of I/O operations that might result from an
I/O fault. The value also indicates that the driver will use
ddi_fm_acc_err_get(9F) to check access handles for faults on a
regular basis.

If possible, the system should not panic on such an I/O fault, but
should instead mark the I/O handle through which the access was
made as having faulted.

This value is advisory: it tells the system that the driver can continue
in the face of I/O faults. The value does not guarantee that the system
will not panic, as that depends on the nature of the fault and the
capabilities of the system. It is quite legitimate for an implementation
to ignore this flag and panic anyway.

DDI_CAUTIOUS_ACC This value indicates that an I/O fault is anticipated and should be
handled as gracefully as possible. For example, the framework should
not print a console message.

This value should be used when it is not certain that a device is
physically present: for example, when probing. As such, it provides an
alternative within the DDI access framework to the existing peek/poke

ddi_device_acc_attr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 13 May 200726

http://docs.sun.com/doc/816-5180/ddi-fm-acc-err-get-9f?a=view

functions, which don't use access handles and cannot be integrated
easily into a more general I/O fault handling framework.

In order to guarantee safe recovery from an I/O fault, it might be
necessary to acquire exclusive access to the parent bus, for example, or
to synchronize across processors on an MP machine. “Cautious”
access can be quite expensive and is only recommended for initial
probing and possibly for additional fault-recovery code.

The following examples illustrate the use of device register address mapping setup functions
and different data access functions.

EXAMPLE 1 Using ddi_device_acc_attr() in >ddi_regs_map_setup(9F)

This example demonstrates the use of the ddi_device_acc_attr() structure in
ddi_regs_map_setup(9F). It also shows the use of ddi_getw(9F) and ddi_putw(9F) functions
in accessing the register contents.

dev_info_t *dip;

uint_t rnumber;

ushort_t *dev_addr;

offset_t offset;

offset_t len;

ushort_t dev_command;

ddi_device_acc_attr_t dev_attr;

ddi_acc_handle_t handle;

. . .

/*

* setup the device attribute structure for little endian,

* strict ordering and 16-bit word access.

*/

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;

dev_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC;

dev_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;

/*

* set up the device registers address mapping

*/

ddi_regs_map_setup(dip, rnumber, (caddr_t *)&dev_addr, offset, len,

&dev_attr, &handle);

/* read a 16-bit word command register from the device */

dev_command = ddi_getw(handle, dev_addr);

dev_command |= DEV_INTR_ENABLE;

Examples

ddi_device_acc_attr(9S)

Data Structures for Drivers 27

http://docs.sun.com/doc/816-5180/ddi-regs-map-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-getw-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-putw-9f?a=view

EXAMPLE 1 Using ddi_device_acc_attr() in >ddi_regs_map_setup(9F) (Continued)

/* store a new value back to the device command register */

ddi_putw(handle, dev_addr, dev_command);

EXAMPLE 2 Accessing a Device with Different Apertures

The following example illustrates the steps used to access a device with different apertures.
Several apertures are assumed to be grouped under one single “reg” entry. For example, the
sample device has four different apertures, each 32 Kbyte in size. The apertures represent YUV
little-endian, YUV big-endian, RGB little-endian, and RGB big-endian. This sample device
uses entry 1 of the “reg” property list for this purpose. The size of the address space is 128
Kbyte with each 32 Kbyte range as a separate aperture. In the register mapping setup function,
the sample driver uses the offset and len parameters to specify one of the apertures.

ulong_t *dev_addr;

ddi_device_acc_attr_t dev_attr;

ddi_acc_handle_t handle;

uchar_t buf[256];

. . .

/*

* setup the device attribute structure for never swap,

* unordered and 32-bit word access.

*/

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;

dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;

dev_attr.devacc_attr_dataorder = DDI_UNORDERED_OK_ACC;

/*

* map in the RGB big-endian aperture

* while running in a big endian machine

* - offset 96K and len 32K

*/

ddi_regs_map_setup(dip, 1, (caddr_t *)&dev_addr, 96*1024, 32*1024,

&dev_attr, &handle);

/*

* Write to the screen buffer

* first 1K bytes words, each size 4 bytes

*/

ddi_rep_putl(handle, buf, dev_addr, 256, DDI_DEV_AUTOINCR);

ddi_device_acc_attr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 13 May 200728

EXAMPLE 3 Functions That Call Out the Data Word Size

The following example illustrates the use of the functions that explicitly call out the data word
size to override the data size in the device attribute structure.

struct device_blk {

ushort_t d_command; /* command register */

ushort_t d_status; /* status register */

ulong d_data; /* data register */

} *dev_blkp;

dev_info_t *dip;

caddr_t dev_addr;

ddi_device_acc_attr_t dev_attr;

ddi_acc_handle_t handle;

uchar_t buf[256];

. . .

/*

* setup the device attribute structure for never swap,

* strict ordering and 32-bit word access.

*/

dev_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;

dev_attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;

dev_attr.devacc_attr_dataorder= DDI_STRICTORDER_ACC;

ddi_regs_map_setup(dip, 1, (caddr_t *)&dev_blkp, 0, 0,

&dev_attr, &handle);

/* write command to the 16-bit command register */

ddi_putw(handle, &dev_blkp->d_command, START_XFER);

/* Read the 16-bit status register */

status = ddi_getw(handle, &dev_blkp->d_status);

if (status & DATA_READY)

/* Read 1K bytes off the 32-bit data register */

ddi_rep_getl(handle, buf, &dev_blkp->d_data,

256, DDI_DEV_NO_AUTOINCR);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

Attributes

ddi_device_acc_attr(9S)

Data Structures for Drivers 29

http://docs.sun.com/doc/816-5175/attributes-5?a=view

attributes(5), ddi_fm_acc_err_get(9F), ddi_getw(9F), ddi_putw(9F),
ddi_regs_map_setup(9F)

Writing Device Drivers

See Also

ddi_device_acc_attr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 13 May 200730

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/ddi-fm-acc-err-get-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-getw-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-putw-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-regs-map-setup-9f?a=view
http://docs.sun.com/doc/816-4854

ddi_dma_attr – DMA attributes structure

#include <sys/ddidmareq.h>

Solaris DDI specific (Solaris DDI)

A ddi_dma_attr_t structure describes device– and DMA engine-specific attributes necessary
to allocate DMA resources for a device. The driver might have to extend the attributes with
bus-specific information, depending on the bus to which the device is connected.

uint_t dma_attr_version; /* version number */

uint64_t dma_attr_addr_lo; /* low DMA address range */

uint64_t dma_attr_addr_hi; /* high DMA address range */

uint64_t dma_attr_count_max; /* DMA counter register */

uint64_t dma_attr_align; /* DMA address alignment */

uint_t dma_attr_burstsizes; /* DMA burstsizes */

uint32_t dma_attr_minxfer; /* min effective DMA size */

uint64_t dma_attr_maxxfer; /* max DMA xfer size */

uint64_t dma_attr_seg; /* segment boundary */

int dma_attr_sgllen; /* s/g list length */

uint32_t dma_attr_granular; /* granularity of device */

uint_t dma_attr_flags; /* DMA transfer flags */

The dma_attr_version stores the version number of this DMA attribute structure. It should
be set to DMA_ATTR_V0.

The dma_attr_addr_lo and dma_attr_addr_hi fields specify the address range the device's
DMA engine can access. The dma_attr_addr_lo field describes the inclusive lower 64–bit
boundary. The dma_attr_addr_hi describes the inclusive upper 64–bit boundary. The system
ensures that allocated DMA resources are within the range specified. See
ddi_dma_cookie(9S).

The dma_attr_count_max describes an inclusive upper bound for the device's DMA counter
register. For example, 0xFFFFFF would describe a DMA engine with a 24–bit counter register.
DMA resource allocation functions have to break up a DMA object into multiple DMA
cookies if the size of the object exceeds the size of the DMA counter register.

The dma_attr_align specifies alignment requirements for allocated DMA resources. This
field can be used to force more restrictive alignment than imposed by dma_attr_burstsizes
or dma_attr_minxfer, such as alignment at a page boundary. Most drivers set this field to 1,
indicating byte alignment.

The dma_attr_align only specifies alignment requirements for allocated DMA resources.
The buffer passed to ddi_dma_addr_bind_handle(9F) or ddi_dma_buf_bind_handle(9F)
must have an equally restrictive alignment (see ddi_dma_mem_alloc(9F)).

The dma_attr_burstsizes field describes the possible burst sizes the DMA engine of a device
can accept. The format of the data sizes is binary, encoded in terms of powers of two. When

Name

Synopsis

Interface Level

Description

Structure
Members

ddi_dma_attr(9S)

Data Structures for Drivers 31

http://docs.sun.com/doc/816-5180/ddi-dma-addr-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-buf-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-mem-alloc-9f?a=view

DMA resources are allocated, the system can modify the burstsizes value to reflect the
system limits. The driver must use the allowable burstsizes to program the DMA engine. See
ddi_dma_burstsizes(9F).

The dma_attr_minxfer field describes the minimum effective DMA access size in units of
bytes. DMA resources can be modified, depending on the presence and use of I/O caches and
write buffers between the DMA engine and the memory object. This field is used to determine
alignment and padding requirements for ddi_dma_mem_alloc(9F).

The dma_attr_maxxfer field describes the maximum effective DMA access size in units of
bytes.

The dma_attr_seg field specifies segment boundary restrictions for allocated DMA resources.
The system allocates DMA resources for the device so that the object does not span the
segment boundary specified by dma_attr_seg. For example, a value of 0xFFFF means DMA
resources must not cross a 64–Kbyte boundary. DMA resource allocation functions might
have to break up a DMA object into multiple DMA cookies to enforce segment boundary
restrictions. In this case, the transfer must be performed using scatter-gather I/O or multiple
DMA windows.

The dma_attr_sgllen field describes the length of the DMA scatter/gather list of a device.
Possible values are as follows:

< 0 Device DMA engine is not constrained by the size, for example, withDMA chaining.

= 0 Reserved.

= 1 Device DMA engine does not support scatter/gather such as third party DMA.

> 1 Device DMA engine uses scatter/gather. The dma_attr_sgllen value is the maximum
number of entries in the list.

The dma_attr_granular field describes the granularity of the device transfer size in units of
bytes. When the system allocates DMA resources, the size of a single segment is a multiple of
the device granularity. If dma_attr_sgllen is larger than 1 within a window, the sum of the
sizes for a subgroup of segments is a multiple of the device granularity.

All driver requests for DMA resources must be a multiple of the granularity of the device
transfer size.

The dma_attr_flags field can be set to a combination of:

DDI_DMA_FORCE_PHYSICAL Some platforms, such as SPARC systems, support what is
called Direct Virtual Memory Access (DVMA). On these
platforms, the device is provided with a virtual address by
the system in order to perform the transfer. In this case, the
underlying platform provides an IOMMU, which translates
accesses to these virtual addresses into the proper physical
addresses. Some of these platforms also support DMA.

ddi_dma_attr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 13 May 200732

http://docs.sun.com/doc/816-5180/ddi-dma-burstsizes-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-mem-alloc-9f?a=view

DDI_DMA_FORCE_PHYSICAL indicates that the system should
return physical rather than virtual I/O addresses if the
system supports both. If the system does not support
physical DMA, the return value from
ddi_dma_alloc_handle(9F) is DDI_DMA_BADATTR. In this
case, the driver has to clear DDI_DMA_FORCE_PHYSICAL and
retry the operation.

DDI_DMA_FLAGERR Using this value indicates that the driver is hardened: able to
cope with the incorrect results of DMA operations that
might result from an I/O fault. The value also indicates that
the driver will use ddi_fm_dma_err_get(9F) to check DMA
handles for faults on a regular basis.

If a DMA error is detected during a DMA access to an area
mapped by such a handle, the system should not panic if
possible, but should instead mark the DMA handle as
having faulted.

This value is advisory: it tells the system that the driver can
continue in the face of I/O faults. It does not guarantee that
the system will not panic, as that depends on the nature of
the fault and the capabilities of the system. It is quite
legitimate for an implementation to ignore this flag and
panic anyway.

DDI_DMA_RELAXED_ORDERING This optional flag can be set if the DMA transactions
associated with this handle are not required to observe
strong DMA write ordering among themselves, nor with
DMA write transactions of other handles.

The flag allows the host bridge to transfer data to and from
memory more efficiently and might result in better DMA
performance on some platforms.

Drivers for devices with hardware support, such as marking
the bus transactions relaxed ordered, should not use this
flag. Such drivers should use the hardware capability
instead.

EXAMPLE 1 Initializing the ddi_dma_attr_t Structure

Assume a device has the following DMA characteristics:

■ Full 32-bit range addressable
■ 24-bit DMA counter register

Examples

ddi_dma_attr(9S)

Data Structures for Drivers 33

http://docs.sun.com/doc/816-5180/ddi-dma-alloc-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-fm-dma-err-get-9f?a=view

EXAMPLE 1 Initializing the ddi_dma_attr_t Structure (Continued)

■ Byte alignment
■ 4– and 8-byte burst sizes support
■ Minimum effective transfer size of 1 bytes
■ 64 Mbyte maximum transfer size limit
■ Maximum segment size of 32 Kbyte
■ 17 scatter/gather list elements
■ 512–byte device transfer size granularity

The corresponding ddi_dma_attr_t structure is initialized as follows:

static ddi_dma_attr_t dma_attrs = {

DMA_ATTR_V0 /* version number */

(uint64_t)0x0, /* low address */

(uint64_t)0xffffffff, /* high address */

(uint64_t)0xffffff, /* DMA counter max */

(uint64_t)0x1 /* alignment */

0x0c, /* burst sizes */

0x1, /* minimum transfer size */

(uint64_t)0x3ffffff, /* maximum transfer size */

(uint64_t)0x7fff, /* maximum segment size */

17, /* scatter/gather list lgth */

512 /* granularity */

0 /* DMA flags */

};

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), ddi_dma_addr_bind_handle(9F), ddi_dma_alloc_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_burstsizes(9F), ddi_dma_mem_alloc(9F),
ddi_dma_nextcookie(9F), ddi_fm_dma_err_get(9F), ddi_dma_cookie(9S)

Writing Device Drivers

Attributes

See Also

ddi_dma_attr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 13 May 200734

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-addr-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-alloc-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-buf-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-burstsizes-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-mem-alloc-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-nextcookie-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-fm-dma-err-get-9f?a=view
http://docs.sun.com/doc/816-4854

ddi_dma_cookie – DMA address cookie

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI).

The ddi_dma_cookie_t structure contains DMA address information required to program a
DMA engine. The structure is filled in by a call to ddi_dma_getwin(9F),
ddi_dma_addr_bind_handle(9F), or ddi_dma_buf_bind_handle(9F), to get device-specific
DMA transfer information for a DMA request or a DMA window.

typedef struct {

union {

uint64_t _dmac_ll; /* 64 bit DMA add. */

uint32_t _dmac_la[2]; /* 2 x 32 bit add. */

} _dmu;

size_t dmac_size; /* DMA cookie size */

uint_t dmac_type; /* bus spec. type bits */

} ddi_dma_cookie_t;

You can access the DMA address through the #defines: dmac_address for 32-bit addresses
and dmac_laddress for 64-bit addresses. These macros are defined as follows:

#define dmac_laddress _dmu._dmac_ll

#ifdef _LONG_LONG_HTOL

#define dmac_notused _dmu._dmac_la[0]

#define dmac_address _dmu._dmac_la[1]

#else

#define dmac_address _dmu._dmac_la[0]

#define dmac_notused _dmu._dmac_la[1]

#endif

dmac_laddress specifies a 64-bit I/O address appropriate for programming the device's DMA
engine. If a device has a 64-bit DMA address register a driver should use this field to program
the DMA engine. dmac_address specifies a 32-bit I/O address. It should be used for devices
that have a 32-bit DMA address register. The I/O address range that the device can address
and other DMA attributes have to be specified in a ddi_dma_attr(9S) structure.

dmac_size describes the length of the transfer in bytes.

dmac_type contains bus-specific type bits, if appropriate. For example, a device on a PCI bus
has PCI address modifier bits placed here.

pci(4), sbus(4), sysbus(4), ddi_dma_addr_bind_handle(9F),
ddi_dma_buf_bind_handle(9F), ddi_dma_getwin(9F), ddi_dma_nextcookie(9F),
ddi_dma_attr(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

ddi_dma_cookie(9S)

Data Structures for Drivers 35

http://docs.sun.com/doc/816-5180/ddi-dma-getwin-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-addr-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-buf-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5174/pci-4?a=view
http://docs.sun.com/doc/816-5174/sbus-4?a=view
http://docs.sun.com/doc/816-5174/sysbus-4?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-addr-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-buf-bind-handle-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-getwin-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-nextcookie-9f?a=view
http://docs.sun.com/doc/816-4854

ddi_dmae_req – DMA engine request structure

#include <sys/dma_engine.h>

Solaris x86 DDI specific (Solaris x86 DDI).

A device driver uses the ddi_dmae_req structure to describe the parameters for a DMA
channel. This structure contains all the information necessary to set up the channel, except for
the DMA memory address and transfer count. The defaults, as specified below, support most
standard devices. Other modes might be desirable for some devices, or to increase
performance. The DMA engine request structure is passed to ddi_dmae_prog(9F).

The ddi_dmae_req structure contains several members, each of which controls some aspect of
DMA engine operation. The structure members associated with supported DMA engine
options are described here.

uchar_tder_command; /* Read / Write *

/uchar_tder_bufprocess; /* Standard / Chain */

uchar_tder_path; /* 8 / 16 / 32 */

uchar_tder_cycles; /* Compat / Type A / Type B / Burst */

uchar_tder_trans; /* Single / Demand / Block */

ddi_dma_cookie_t*(*proc)(); /* address of nextcookie routine */

void*procparms; /* parameter for nextcookie call */

der_command Specifies what DMA operation is to be performed. The value
DMAE_CMD_WRITE signifies that data is to be transferred from memory to
the I/O device. The value DMAE_CMD_READ signifies that data is to be
transferred from the I/O device to memory. This field must be set by the
driver before calling ddi_dmae_prog().

der_bufprocess On some bus types, a driver can set der_bufprocess to the value
DMAE_BUF_CHAIN to specify that multiple DMA cookies will be given to
the DMA engine for a single I/O transfer. This action causes a
scatter/gather operation. In this mode of operation, the driver calls
ddi_dmae_prog() to give the DMA engine the DMA engine request
structure and a pointer to the first cookie. The proc structure member
must be set to the address of a driver nextcookie routine. This routine
takes one argument, specified by the procparms structure member, and
returns a pointer to a structure of type ddi_dma_cookie_t that specifies
the next cookie for the I/O transfer. When the DMA engine is ready to
receive an additional cookie, the bus nexus driver controlling that DMA
engine calls the routine specified by the proc structure member to obtain
the next cookie from the driver. The driver's nextcookie routine must
then return the address of the next cookie (in static storage) to the bus
nexus routine that called it. If there are no more segments in the current
DMA window, then (*proc)() must return the NULL pointer.

Name

Synopsis

Interface Level

Description

Structure
Members

ddi_dmae_req(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 Nov 200436

http://docs.sun.com/doc/816-5180/ddi-dmae-prog-9f?a=view

A driver can specify the DMAE_BUF_CHAIN flag only if the particular bus
architecture supports the use of multiple DMA cookies in a single I/O
transfer. A bus DMA engine can support this feature either with a
fixed-length scatter/gather list, or by an interrupt chaining feature. A
driver must determine whether its parent bus nexus supports this
feature by examining the scatter/gather list size returned in the
dlim_sgllen member of the DMA limit structure returned by the
driver's call to ddi_dmae_getlim(). (See ddi_dma_lim_x86(9S).) If the
size of the scatter/gather list is 1, then no chaining is available. The driver
must not specify the DMAE_BUF_CHAIN flag in the ddi_dmae_req
structure it passes to ddi_dmae_prog(), and the driver need not provide
a nextcookie routine.

If the size of the scatter/gather list is greater than 1, then DMA chaining
is available, and the driver has two options. Under the first option, the
driver chooses not to use the chaining feature. In this case (a) the driver
must set the size of the scatter/gather list to 1 before passing it to the
DMA setup routine, and (b) the driver must not set the DMAE_BUF_CHAIN
flag.

Under the second option, the driver chooses to use the chaining feature,
in which case, (a) it should leave the size of the scatter/gather list alone,
and (b) it must set the DMAE_BUF_CHAIN flag in the ddi_dmae_req
structure. Before calling ddi_dmae_prog(), the driver must prefetch
cookies by repeatedly calling ddi_dma_nextseg(9F) and
ddi_dma_segtocookie(9F) until either (1) the end of the DMA window
is reached (ddi_dma_nextseg(9F) returns NULL), or (2) the size of the
scatter/gather list is reached, whichever occurs first. These cookies must
be saved by the driver until they are requested by the nexus driver calling
the driver's nextcookie routine. The driver's nextcookie routine must
return the prefetched cookies in order, one cookie for each call to the
nextcookie routine, until the list of prefetched cookies is exhausted.
After the end of the list of cookies is reached, the nextcookie routine
must return the NULL pointer.

The size of the scatter/gather list determines how many discontiguous
segments of physical memory can participate in a single DMA transfer.
ISA bus DMA engines have no scatter/gather capability, so their
scatter/gather list sizes are 1. Other finite scatter/gather list sizes would
also be possible. For performance reasons, drivers should use the
chaining capability if it is available on their parent bus.

As described above, a driver making use of DMA chaining must prefetch
DMA cookies before calling ddi_dmae_prog(). The reasons for this are:

ddi_dmae_req(9S)

Data Structures for Drivers 37

http://docs.sun.com/doc/816-5180/ddi-dma-nextseg-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-segtocookie-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-nextseg-9f?a=view

■ First, the driver must have some way to know the total I/O count
with which to program the I/O device. This I/O count must match
the total size of all the DMA segments that will be chained together
into one DMA operation. Depending on the size of the scatter/gather
list and the memory position and alignment of the DMA object, all
or just part of the current DMA window might be able to participate
in a single I/O operation. The driver must compute the I/O count by
adding up the sizes of the prefetched DMA cookies. The number of
cookies whose sizes are to be summed is the lesser of (a) the size of
the scatter/gather list, or (b) the number of segments remaining in
the window.

■ Second, on some bus architectures, the driver's nextcookie routine
can be called from a high-level interrupt routine. If the cookies were
not prefetched, the nextcookie routine would have to call
ddi_dma_nextseg() and ddi_dma_segtocookie() from a high-level
interrupt routine, which is not recommended.

When breaking a DMA window into segments, the system arranges for
the end of every segment whose number is an integral multiple of the
scatter/gather list size to fall on a device-granularity boundary, as
specified in the dlim_granular field in the ddi_dma_lim_x86(9S)
structure.

If the scatter/gather list size is 1 (either because no chaining is available
or because the driver does not want to use the chaining feature), then the
total I/O count for a single DMA operation is the size of DMA segment
denoted by the single DMA cookie that is passed in the call to
ddi_dmae_prog(). In this case, the system arranges for each DMA
segment to be a multiple of the device-granularity size.

der_path Specifies the DMA transfer size. The default of zero (DMAE_PATH_DEF)
specifies ISA compatibility mode. In that mode, channels 0, 1, 2, and 3
are programmed in 8-bit mode (DMAE_PATH_8), and channels 5, 6, and 7
are programmed in 16-bit, count-by-word mode (DMAE_PATH_16).

der_cycles Specifies the timing mode to be used during DMA data transfers. The
default of zero (DMAE_CYCLES_1) specifies ISA compatible timing.
Drivers using this mode must also specify DMAE_TRANS_SNGL in the
der_trans structure member.

der_trans Specifies the bus transfer mode that the DMA engine should expect from
the device. The default value of zero (DMAE_TRANS_SNGL) specifies that
the device performs one transfer for each bus arbitration cycle. Devices
that use ISA compatible timing (specified by a value of zero, which is the
default, in the der_cycles structure member) should use the

ddi_dmae_req(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 Nov 200438

DMAE_TRANS_SNGL mode.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

isa(4), attributes(5), ddi_dma_segtocookie(9F), ddi_dmae(9F), ddi_dma_lim_x86(9S),
ddi_dma_req(9S)

Attributes

See Also

ddi_dmae_req(9S)

Data Structures for Drivers 39

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5174/isa-4?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-segtocookie-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dmae-9f?a=view

ddi_dma_lim_sparc, ddi_dma_lim – SPARC DMA limits structure

#include <sys/ddidmareq.h>

Solaris SPARC DDI specific (Solaris SPARC DDI). These interfaces are obsolete.

This page describes the SPARC version of the ddi_dma_lim structure. See
ddi_dma_lim_x86(9S) for a description of the x86 version of this structure.

A ddi_dma_lim structure describes in a generic fashion the possible limitations of a device's
DMA engine. This information is used by the system when it attempts to set up DMA
resources for a device.

uint_t dlim_addr_lo; /* low range of 32 bit

addressing capability */

uint_t dlim_addr_hi; /* inclusive upper bound of address.

capability */

uint_t dlim_cntr_max; /* inclusive upper bound of

dma engine address limit * /

uint_t dlim_burstsizes; /* binary encoded dma burst sizes */

uint_t dlim_minxfer; /* minimum effective dma xfer size */

uint_t dlim_dmaspeed; /* average dma data rate (kb/s) */

The dlim_addr_lo and dlim_addr_hi fields specify the address range the device's DMA
engine can access. The dlim_addr_lo field describes the lower 32–bit boundary of the device's
DMA engine, the dlim_addr_hi describes the inclusive upper 32–bit boundary. The system
allocates DMA resources in a way that the address for programming the device's DMA engine
(see ddi_dma_cookie(9S) or ddi_dma_htoc(9F)) is within this range. For example, if your
device can access the whole 32–bit address range, you may use [0,0xFFFFFFFF]. If your device
has just a 16–bit address register but will access the top of the 32–bit address range, then
[0xFFFF0000,0xFFFFFFFF] is the right limit.

The dlim_cntr_max field describes an inclusive upper bound for the device's DMA engine
address register. This handles a fairly common case where a portion of the address register is
only a latch rather than a full register. For example, the upper 8 bits of a 32–bit address register
can be a latch. This splits the address register into a portion that acts as a true address register
(24 bits) for a 16 Mbyte segment and a latch (8 bits) to hold a segment number. To describe
these limits, specify 0xFFFFFF in the dlim_cntr_max structure.

The dlim_burstsizes field describes the possible burst sizes the device's DMA engine can
accept. At the time of a DMA resource request, this element defines the possible DMA burst
cycle sizes that the requester's DMA engine can handle. The format of the data is binary
encoding of burst sizes assumed to be powers of two. That is, if a DMA engine is capable of
doing 1–, 2–, 4–, and 16–byte transfers, the encoding ix 0x17. If the device is an SBus device
and can take advantage of a 64–bit SBus, the lower 16 bits are used to specify the burst size for
32–bit transfers and the upper 16 bits are used to specify the burst size for 64–bit transfers. As
the resource request is handled by the system, the burstsizes value can be modified. Prior to

Name

Synopsis

Interface Level

Description

Structure
Members

ddi_dma_lim_sparc(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 12 Oct 200540

http://docs.sun.com/doc/816-5180/ddi-dma-htoc-9f?a=view

enabling DMA for the specific device, the driver that owns the DMA engine should check
(using ddi_dma_burstsizes(9F)) what the allowed burstsizes have become and program
the DMA engine appropriately.

The dlim_minxfer field describes the minimum effective DMA transfer size (in units of
bytes). It must be a power of two. This value specifies the minimum effective granularity of the
DMA engine. It is distinct from dlim_burstsizes in that it describes the minimum amount of
access a DMA transfer will effect. dlim_burstsizes describes in what electrical fashion the
DMA engine might perform its accesses, while dlim_minxfer describes the minimum amount
of memory that can be touched by the DMA transfer. As a resource request is handled by the
system, the dlim_minxfer value can be modified contingent upon the presence (and use) of
I/O caches and DMA write buffers in between the DMA engine and the object that DMA is
being performed on. After DMA resources have been allocated, the resultant minimum
transfer value can be gotten using ddi_dma_devalign(9F).

The field dlim_dmaspeed is the expected average data rate for the DMA engine (in units of
kilobytes per second). Note that this should not be the maximum, or peak, burst data rate, but
a reasonable guess as to the average throughput. This field is entirely optional and can be left
as zero. Its intended use is to provide some hints about how much of the DMA resource this
device might need.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_burstsizes(9F),
ddi_dma_devalign(9F), ddi_dma_htoc(9F), ddi_dma_setup(9F), ddi_dma_cookie(9S),
ddi_dma_lim_x86(9S), ddi_dma_req(9S)

Attributes

See Also

ddi_dma_lim_sparc(9S)

Data Structures for Drivers 41

http://docs.sun.com/doc/816-5180/ddi-dma-burstsizes-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-devalign-9f?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-addr-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-buf-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-burstsizes-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-devalign-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-htoc-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-setup-9f?a=view

ddi_dma_lim_x86 – x86 DMA limits structure

#include <sys/ddidmareq.h>

Solaris x86 DDI specific (Solaris x86 DDI)

A ddi_dma_lim structure describes in a generic fashion the possible limitations of a device or
its DMA engine. This information is used by the system when it attempts to set up DMA
resources for a device. When the system is requested to perform a DMA transfer to or from an
object, the request is broken up, if necessary, into multiple sub-requests. Each sub–request
conforms to the limitations expressed in the ddi_dma_lim structure.

This structure should be filled in by calling the routine ddi_dmae_getlim(9F). This routine
sets the values of the structure members appropriately based on the characteristics of the
DMA engine on the driver's parent bus. If the driver has additional limitations, it can further
restrict some of the values in the structure members. A driver should not relax any restrictions
imposed by ddi_dmae_getlim().

uint_t dlim_addr_lo; /* low range of 32 bit addressing capability */

uint_t dlim_addr_hi; /* inclusive upper bound of addressing capability */

uint_t dlim_minxfer; /* minimum effective dma transfer size */

uint_t dlim_version; /* version number of this structure */

uint_t dlim_adreg_max; /* inclusive upper bound of

/* incrementing addr reg */

uint_t dlim_ctreg_max; /* maximum transfer count minus one */

uint_t dlim_granular; /* granularity (and min size) of transfer count */

short dlim_sgllen; /* length of DMA scatter/gather list */

uint_t dlim_reqsize; /* maximum transfer size in bytes of a single I/O */

The dlim_addr_lo and dlim_addr_hi fields specify the address range that the device's DMA
engine can access. The dlim_addr_lo field describes the lower 32–bit boundary of the device's
DMA engine. The dlim_addr_hi member describes the inclusive, upper 32–bit boundary.
The system allocates DMA resources in a way that the address for programming the device's
DMA engine will be within this range. For example, if your device can access the whole 32–bit
address range, you can use [0,0xFFFFFFFF]. See ddi_dma_cookie(9S) or
ddi_dma_segtocookie(9F).

The dlim_minxfer field describes the minimum effective DMA transfer size (in units of
bytes), which must be a power of two. This value specifies the minimum effective granularity
of the DMA engine and describes the minimum amount of memory that can be touched by
the DMA transfer. As a resource request is handled by the system, the dlim_minxfer value can
be modified. This modification is contingent upon the presence (and use) of I/O caches and
DMA write buffers between the DMA engine and the object that DMA is being performed on.
After DMA resources have been allocated, you can retrieve the resultant minimum transfer
value using ddi_dma_devalign(9F).

The dlim_version field specifies the version number of this structure. Set this field to
DMALIM_VER0.

Name

Synopsis

Interface Level

Description

Structure
Members

ddi_dma_lim_x86(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 31 Jan 199442

http://docs.sun.com/doc/816-5180/ddi-dmae-getlim-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-segtocookie-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-devalign-9f?a=view

The dlim_adreg_max field describes an inclusive upper bound for the device's DMA engine
address register. This bound handles a fairly common case where a portion of the address
register is simply a latch rather than a full register. For example, the upper 16 bits of a 32–bit
address register might be a latch. This splits the address register into a portion that acts as a
true address register (lower 16 bits) for a 64–kilobyte segment and a latch (upper 16 bits) to
hold a segment number. To describe these limits, you specify 0xFFFF in the dlim_adreg_max
structure member.

The dlim_ctreg_max field specifies the maximum transfer count that the DMA engine can
handle in one segment or cookie. The limit is expressed as the maximum count minus one.
This transfer count limitation is a per-segment limitation. Because the limitation is used as a
bit mask, it must be one less than a power of two.

The dlim_granular field describes the granularity of the device's DMA transfer ability, in
units of bytes. This value is used to specify, for example, the sector size of a mass storage
device. DMA requests are broken into multiples of this value. If there is no scatter/gather
capability, then the size of each DMA transfer will be a multiple of this value. If there is
scatter/gather capability, then a single segment cannot be smaller than the minimum transfer
value, but can be less than the granularity. However, the total transfer length of the
scatter/gather list is a multiple of the granularity value.

The dlim_sgllen field specifies the maximum number of entries in the scatter/gather list.
This value is the number of segments or cookies that the DMA engine can consume in one I/O
request to the device. If the DMA engine has no scatter/gather list, set this field to one.

The dlim_reqsize field describes the maximum number of bytes that the DMA engine can
transmit or receive in one I/O command. This limitation is only significant if it is less than (
dlim_ctreg_max +1) * dlim_sgllen. If the DMA engine has no particular limitation, set this
field to 0xFFFFFFFF.

ddi_dmae(9F), ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_devalign(9F),
ddi_dma_segtocookie(9F), ddi_dma_setup(9F), ddi_dma_cookie(9S)
ddi_dma_lim_sparc(9S), ddi_dma_req(9S)

See Also

ddi_dma_lim_x86(9S)

Data Structures for Drivers 43

http://docs.sun.com/doc/816-5180/ddi-dmae-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-addr-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-buf-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-devalign-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-segtocookie-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-setup-9f?a=view

ddi_dma_req – DMA Request structure

#include <sys/ddidmareq.h>

Solaris DDI specific (Solaris DDI). This interface is obsolete.

A ddi_dma_req structure describes a request for DMA resources. A driver can use it to
describe forms of allocations and ways to allocate DMA resources for a DMA request.

ddi_dma_lim_t *dmar_limits; /* Caller’s dma engine

constraints */

uint_t dmar_flags; /* Contains info for

mapping routines */

int (*dmar_fp)(caddr_t);/* Callback function */

caddr_t dmar_arg; /* Callback function’s argument */

ddi_dma_obj_t dmar_object; /* Descrip. of object

to be mapped */

For the definition of the DMA limits structure, which dmar_limits points to, see
ddi_dma_lim_sparc(9S) or ddi_dma_lim_x86(9S).

Valid values for dmar_flags are:

DDI_DMA_WRITE /* Direction memory --> IO */

DDI_DMA_READ /* Direction IO --> memory */

DDI_DMA_RDWR /* Both read and write */

DDI_DMA_REDZONE /* Establish MMU redzone at end of mapping */

DDI_DMA_PARTIAL /* Partial mapping is allowed */

DDI_DMA_CONSISTENT /* Byte consistent access wanted */

DDI_DMA_SBUS_64BIT /* Use 64 bit capability on SBus */

DDI_DMA_WRITE, DDI_DMA_READ, and DDI_DMA_RDWR describe the intended direction of the
DMA transfer. Some implementations might explicitly disallow DDI_DMA_RDWR.

DDI_DMA_REDZONE asks the system to establish a protected red zone after the object. The DMA
resource allocation functions do not guarantee the success of this request, as some
implementations might not have the hardware ability to support it.

DDI_DMA_PARTIAL lets the system know that the caller can accept partial mapping. That is, if
the size of the object exceeds the resources available, the system allocates only a portion of the
object and returns status indicating this partial allocation. At a later point, the caller can use
ddi_dma_curwin(9F) and ddi_dma_movwin(9F) to change the valid portion of the object that
has resources allocated.

DDI_DMA_CONSISTENT gives a hint to the system that the object should be mapped for byte
consistent access. Normal data transfers usually use a streaming mode of operation. They start
at a specific point, transfer a fairly large amount of data sequentially, and then stop, usually on
an aligned boundary. Control mode data transfers for memory-resident device control blocks

Name

Synopsis

Interface Level

Description

Structure
Members

ddi_dma_req(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 12 Oct 200544

http://docs.sun.com/doc/816-5180/ddi-dma-curwin-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-movwin-9f?a=view

(for example, Ethernet message descriptors) do not access memory in such a sequential
fashion. Instead, they tend to modify a few words or bytes, move around and maybe modify a
few more.

Many machine implementations make this non-sequential memory access difficult to control
in a generic and seamless fashion. Therefore, explicit synchronization steps using
ddi_dma_sync(9F) or ddi_dma_free(9F) are required to make the view of a memory object
shared between a CPU and a DMA device consistent. However, proper use of the
DDI_DMA_CONSISTENT flag can create a condition in which a system will pick resources in a way
that makes these synchronization steps are as efficient as possible.

DDI_DMA_SBUS_64BIT tells the system that the device can perform 64–bit transfers on a 64–bit
SBus. If the SBus does not support 64–bit data transfers, data will be transferred in 32–bit
mode.

The callback function specified by the member dmar_fp indicates how a caller to one of the
DMA resource allocation functions wants to deal with the possibility of resources not being
available. (See ddi_dma_setup(9F).) If dmar_fp is set to DDI_DMA_DONTWAIT, then the caller
does not care if the allocation fails, and can deal with an allocation failure appropriately.
Setting dmar_fp to DDI_DMA_SLEEP indicates the caller wants to have the allocation routines
wait for resources to become available. If any other value is set, and a DMA resource allocation
fails, this value is assumed to be a function to call later, when resources become available.
When the specified function is called, it is passed the value set in the structure member
dmar_arg. The specified callback function must return either:

0 Indicating that it attempted to allocate a DMA resource but failed to do so, again, in
which case the callback function will be put back on a list to be called again later.

1 Indicating either success at allocating DMA resources or that it no longer wants to retry.

The callback function is called in interrupt context. Therefore, only system functions and
contexts that are accessible from interrupt context are available. The callback function must
take whatever steps necessary to protect its critical resources, data structures, and queues.

It is possible that a call to ddi_dma_free(9F), which frees DMA resources, might cause a
callback function to be called and, unless some care is taken, an undesired recursion can
occur. This can cause an undesired recursive mutex_enter(9F), which makes the system
panic.

The dmar_object member of the ddi_dma_req structure is itself a complex and extensible
structure:

uint_t dmao_size; /* size, in bytes, of the object */

ddi_dma_atyp_t dmao_type; /* type of object */

ddi_dma_aobj_t dmao_obj; /* the object described */

The dmao_size element is the size, in bytes, of the object resources allocated for DMA.

dmar_object Structure

ddi_dma_req(9S)

Data Structures for Drivers 45

http://docs.sun.com/doc/816-5180/ddi-dma-sync-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-free-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-free-9f?a=view
http://docs.sun.com/doc/816-5180/mutex-enter-9f?a=view

The dmao_type element selects the kind of object described by dmao_obj. It can be set to
DMA_OTYP_VADDR, indicating virtual addresses.

The last element, dmao_obj, consists of the virtual address type:

struct v_address virt_obj;

It is specified as:

struct v_address {

caddr_t v_addr; /* base virtual address */

struct as *v_as; /* pointer to address space */

void *v_priv; /* priv data for shadow I/O */

};

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

ddi_dma_addr_setup(9F), ddi_dma_buf_setup(9F), ddi_dma_curwin(9F),
ddi_dma_free(9F), ddi_dma_movwin(9F), ddi_dma_setup(9F), ddi_dma_sync(9F), mutex(9F)

Writing Device Drivers

Attributes

See Also

ddi_dma_req(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 12 Oct 200546

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-addr-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-buf-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-curwin-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-free-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-movwin-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-dma-sync-9f?a=view
http://docs.sun.com/doc/816-5180/mutex-9f?a=view
http://docs.sun.com/doc/816-4854

ddi_fm_error – I/O error status structure

#include <sys/ddifm.h>

Solaris DDI specific (Solaris DDI)

A ddi_fm_error_t structure contains common data necessary for I/O error handling. A
pointer to a ddi_fm_error_t structure is passed to error handling callbacks where it can then
be used in a call to pci_ereport_post(). The same structure is also returned to callers of
ddi_fm_acc_err_get() and ddi_fm_dma_err_get().

int fme_version;

uint64_t fme_ena;

int fme_status;

int fme_flag;

ddi_acc_handle_t fme_acc_handle;

ddi_dma_handle_t fme_dma_handle;

The fme_version is the current version of ddi_fm_error_t. Valid values for the version are:
DDI_FME_VER0 and DDI_FME_VER1.

The fme_ena is the FMA event protocol Format 1 Error Numeric Association (ENA) for this
error condition.

The fme_flag field is set to DDI_FM_ERR_EXPECTED if the error is the result of a
DDI_ACC_CAUTIOUS protected operation. In this case, fme_acc_handle is valid and the driver
should check for and report only errors not associated with the DDI_ACC_CAUTIOUS protected
access operation. This field can also be set to DDI_FM_ERR_POKE or DDI_FM_ERR_PEEK if the
error is the result of a ddi_peek(9F) or ddi_poke(9F) operation. The driver should handle
these in a similar way to DDI_FM_ERR_EXPECTED. Otherwise, ddi_flag is set to
DDI_FM_ERR_UNEXPECTED and the driver must perform the full range of error handling tasks.

The fme_status indicates current status of an error handler callback or resource handle:

DDI_FM_OK No errors were detected.

DDI_FM_FATAL An error which is considered fatal to the operational state of the system
was detected.

DDI_FM_NONFATAL An error which is not considered fatal to the operational state of the
system was detected.

DDI_FM_UNKNOWN An error was detected, but the driver was unable to determine the
impact of the error on the operational state of the system.

The fme_acc_handle is the valid access handle associated with the error that can be returned
from pci_ereport_post()

The fme_dma_handle is the valid DMA handle associated with the error that can be returned
from pci_ereport_post()

Name

Synopsis

Interface Level

Description

Structure
Members

ddi_fm_error(9S)

Data Structures for Drivers 47

http://docs.sun.com/doc/816-5180/ddi-peek-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-poke-9f?a=view

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), ddi_fm_acc_err_get(9F), ddi_fm_dma_err_get(9F),
ddi_fm_handler_register(9F), ddi_peek(9F), ddi_poke(9F), pci_ereport_post(9F)

Writing Device Drivers

Attributes

See Also

ddi_fm_error(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 13 May 200748

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/ddi-fm-acc-err-get-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-fm-dma-err-get-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-fm-handler-register-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-peek-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-poke-9f?a=view
http://docs.sun.com/doc/816-5180/pci-ereport-post-9f?a=view
http://docs.sun.com/doc/816-4854

ddi-forceattach, ddi-no-autodetach – properties controlling driver attach/detach behavior

Solaris device drivers are attached by devfsadm(1M) and by the kernel in response to open(2)
requests from applications. Drivers not currently in use can be detached when the system
experiences memory pressure. The ddi-forceattach and ddi-no-autodetach properties can
be used to customize driver attach/detach behavior.

The ddi-forceattach is an integer property, to be set globally by means of the
driver.conf(4) file. Drivers with this property set to 1 are loaded and attached to all possible
instances during system startup. The driver will not be auto-detached due to system memory
pressure.

The ddi-no-autodetach is an integer property to be set globally by means of the
driver.conf(4) file or created dynamically by the driver on a per-instance basis with
ddi_prop_update_int(9F). When this property is set to 1, the kernel will not auto-detach
driver due to system memory pressure.

Note that ddi-forceattach implies ddi-no-autodetach. Setting either property to a
non-integer value or an integer value not equal to 1 produces undefined results. These
properties do not prevent driver detaching in response to reconfiguration requests, such as
executing commands cfgadm(1M), modunload(1M), rem_drv(1M), and update_drv(1M).

driver.conf(4)

Writing Device Drivers

Name

Description

See Also

ddi-forceattach(9P)

Data Structures for Drivers 49

http://docs.sun.com/doc/816-5166/devfsadm-1m?a=view
http://docs.sun.com/doc/816-5167/open-2?a=view
http://docs.sun.com/doc/816-5174/driver.conf-4?a=view
http://docs.sun.com/doc/816-5174/driver.conf-4?a=view
http://docs.sun.com/doc/816-5180/ddi-prop-update-int-9f?a=view
http://docs.sun.com/doc/816-5166/cfgadm-1m?a=view
http://docs.sun.com/doc/816-5166/modunload-1m?a=view
http://docs.sun.com/doc/816-5166/rem-drv-1m?a=view
http://docs.sun.com/doc/816-5166/update-drv-1m?a=view
http://docs.sun.com/doc/816-5174/driver.conf-4?a=view

ddi_idevice_cookie – device interrupt cookie

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI). This interface is obsolete. Use the new interrupt interfaces
referenced in Intro(9F). Refer to Writing Device Drivers for more information.

The ddi_idevice_cookie_t structure contains interrupt priority and interrupt vector
information for a device. This structure is useful for devices having programmable
bus-interrupt levels. ddi_add_intr(9F) assigns values to the ddi_idevice_cookie_t
structure members.

u_short idev_vector; /* interrupt vector */

ushort_t idev_priority; /* interrupt priority */

The idev_vector field contains the interrupt vector number for vectored bus architectures
such as VMEbus. The idev_priority field contains the bus interrupt priority level.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

ddi_add_intr(9F), Intro(9F)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

Attributes

See Also

ddi_idevice_cookie(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 19 Oct 200550

http://docs.sun.com/doc/816-5180/intro-9f?a=view
http://docs.sun.com/doc/816-4854
http://docs.sun.com/doc/816-5180/ddi-add-intr-9f?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/ddi-add-intr-9f?a=view
http://docs.sun.com/doc/816-5180/intro-9f?a=view
http://docs.sun.com/doc/816-4854

devmap_callback_ctl – device mapping-control structure

#include <sys/ddidevmap.h>

Solaris DDI specific (Solaris DDI).

A devmap_callback_ctl structure describes a set of callback routines that are called by the
system to notify a device driver to manage events on the device mappings created by
devmap_setup(9F) or ddi_devmap_segmap(9F).

Device drivers pass the initialized devmap_callback_ctl structure to either
devmap_devmem_setup(9F) or devmap_umem_setup(9F) in the devmap(9E) entry point during
the mapping setup. The system makes a private copy of the structure for later use. Device
drivers can specify different devmap_callback_ctl for different mappings.

A device driver should allocate the device mapping control structure and initialize the
following fields, if the driver wants the entry points to be called by the system:

devmap_rev Version number. Set this to DEVMAP_OPS_REV.

devmap_map Set to the address of the devmap_map(9E) entry point or to NULL if the
driver does not support this callback. If set, the system calls the
devmap_map(9E) entry point during the mmap(2) system call. The drivers
typically allocate driver private data structure in this function and return
the pointer to the private data structure to the system for later use.

devmap_access Set to the address of the devmap_access(9E) entry point or to NULL if the
driver does not support this callback. If set, the system calls the driver's
devmap_access(9E) entry point during memory access. The system
expects devmap_access(9E) to call either devmap_do_ctxmgt(9F) or
devmap_default_access(9F) to load the memory address translations
before it returns to the system.

devmap_dup Set to the address of the devmap_dup(9E) entry point or to NULL if the
driver does not support this call. If set, the system calls the
devmap_dup(9E) entry point during the fork(2) system call.

devmap_unmap Set to the address of the devmap_unmap(9E) entry point or to NULL if the
driver does not support this call. If set, the system will call the
devmap_unmap(9E) entry point during the munmap(2) or exit(2) system
calls.

int devmap_rev;

int (*devmap_map)(devmap_cookie_t dhp, dev_t dev,

uint_t flags,offset_t off, size_t len, void **pvtp);

int (*devmap_access)(devmap_cookie_t dhp, void *pvtp,

offset_t off, size_t len, uint_t type, uint_t rw);

int (*devmap_dup)(devmap_cookie_t dhp, void *pvtp,

devmap_cookie_t new_dhp, void **new_pvtp);

Name

Synopsis

Interface Level

Description

Structure
Members

devmap_callback_ctl(9S)

Data Structures for Drivers 51

http://docs.sun.com/doc/816-5180/devmap-setup-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-devmap-segmap-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-devmem-setup-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-umem-setup-9f?a=view
http://docs.sun.com/doc/816-5179/devmap-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-map-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-map-9e?a=view
http://docs.sun.com/doc/816-5167/mmap-2?a=view
http://docs.sun.com/doc/816-5179/devmap-access-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-access-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-access-9e?a=view
http://docs.sun.com/doc/816-5180/devmap-do-ctxmgt-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-default-access-9f?a=view
http://docs.sun.com/doc/816-5179/devmap-dup-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-dup-9e?a=view
http://docs.sun.com/doc/816-5167/fork-2?a=view
http://docs.sun.com/doc/816-5179/devmap-unmap-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-unmap-9e?a=view
http://docs.sun.com/doc/816-5167/munmap-2?a=view
http://docs.sun.com/doc/816-5167/exit-2?a=view

void (*devmap_unmap)(devmap_cookie_t dhp, void *pvtp,

offset_t off, size_t len, devmap_cookie_t new_dhp1,

void **new_pvtp1, devmap_cookie_t new_dhp2, void **new_pvtp2);

exit(2), fork(2), mmap(2), munmap(2), devmap(9E), devmap_access(9E), devmap_dup(9E),
devmap_map(9E), devmap_unmap(9E), ddi_devmap_segmap(9F), devmap_default_access(9F),
devmap_devmem_setup(9F), devmap_do_ctxmgt(9F), devmap_setup(9F),
devmap_umem_setup(9F)

Writing Device Drivers

See Also

devmap_callback_ctl(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 Jul 199652

http://docs.sun.com/doc/816-5167/exit-2?a=view
http://docs.sun.com/doc/816-5167/fork-2?a=view
http://docs.sun.com/doc/816-5167/mmap-2?a=view
http://docs.sun.com/doc/816-5167/munmap-2?a=view
http://docs.sun.com/doc/816-5179/devmap-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-access-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-dup-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-map-9e?a=view
http://docs.sun.com/doc/816-5179/devmap-unmap-9e?a=view
http://docs.sun.com/doc/816-5180/ddi-devmap-segmap-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-default-access-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-devmem-setup-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-do-ctxmgt-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-setup-9f?a=view
http://docs.sun.com/doc/816-5180/devmap-umem-setup-9f?a=view
http://docs.sun.com/doc/816-4854

dev_ops – device operations structure

#include <sys/conf.h>

#include <sys/devops.h>

Solaris DDI specific (Solaris DDI).

dev_ops contains driver common fields and pointers to the bus_ops and cb_ops(9S).

Following are the device functions provided in the device operations structure. All fields must
be set at compile time.

devo_rev Driver build version. Set this to DEVO_REV.

devo_refcnt Driver reference count. Set this to 0.

devo_getinfo Get device driver information (see getinfo(9E)).

devo_identify This entry point is obsolete. Set to nulldev.

devo_probe Probe device. See probe(9E).

devo_attach Attach driver to dev_info. See attach(9E).

devo_detach Detach/prepare driver to unload. See detach(9E).

devo_reset Reset device. (Not supported in this release.) Set this to nodev.

devo_cb_ops Pointer to cb_ops(9S) structure for leaf drivers.

devo_bus_ops Pointer to bus operations structure for nexus drivers. Set this to NULL if
this is for a leaf driver.

devo_power Power a device attached to system. See power(9E).

int devo_rev;

int devo_refcnt;

int (*devo_getinfo)(dev_info_t *dip,

ddi_info_cmd_t infocmd, void *arg, void **result);

int (*devo_identify)(dev_info_t *dip);

int (*devo_probe)(dev_info_t *dip);

int (*devo_attach)(dev_info_t *dip,

ddi_attach_cmd_t cmd);

int (*devo_detach)(dev_info_t *dip,

ddi_detach_cmd_t cmd);

int (*devo_reset)(dev_info_t *dip, ddi_reset_cmd_t cmd);

struct cb_ops *devo_cb_ops;

struct bus_ops *devo_bus_ops;

int (*devo_power)(dev_info_t *dip, int component, int level);

attach(9E), detach(9E), getinfo(9E), probe(9E), power(9E), nodev(9F)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

dev_ops(9S)

Data Structures for Drivers 53

http://docs.sun.com/doc/816-5179/getinfo-9e?a=view
http://docs.sun.com/doc/816-5179/probe-9e?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/power-9e?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/getinfo-9e?a=view
http://docs.sun.com/doc/816-5179/probe-9e?a=view
http://docs.sun.com/doc/816-5179/power-9e?a=view
http://docs.sun.com/doc/816-5180/nodev-9f?a=view
http://docs.sun.com/doc/816-4854

fmodsw – STREAMS module declaration structure

#include <sys/stream.h>

#include <sys/conf.h>

Solaris DDI specific (Solaris DDI)

The fmodsw structure contains information for STREAMS modules. All STREAMS modules
must define a fmodsw structure.

f_name must match mi_idname in the module_info structure. See module_info(9S). f_name
should also match the module binary name. (See WARNINGS.)

All modules must set the f_flag to D_MP to indicate that they safely allow multiple threads of
execution. See mt-streams(9F) for additional flags.

char f_name[FMNAMESZ + 1]; /* module name */

struct streamtab *f_str; /* streams information */

int f_flag; /* flags */

mt-streams(9F), modlstrmod(9S), module_info(9S)

STREAMS Programming Guide

If f_name does not match the module binary name, unexpected failures can occur.

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

Warnings

fmodsw(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 14 Nov 200254

http://docs.sun.com/doc/816-5180/mt-streams-9f?a=view
http://docs.sun.com/doc/816-5180/mt-streams-9f?a=view
http://docs.sun.com/doc/816-4855

free_rtn – structure that specifies a driver's message-freeing routine

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

The free_rtn structure is referenced by the datab structure. When freeb(9F) is called to free
the message, the driver's message-freeing routine (referenced through the free_rtn structure)
is called, with arguments, to free the data buffer.

void (*free_func)() /* user’s freeing routine */

char *free_arg /* arguments to free_func() */

The free_rtn structure is defined as type frtn_t.

esballoc(9F), freeb(9F), datab(9S)

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

free_rtn(9S)

Data Structures for Drivers 55

http://docs.sun.com/doc/816-5180/freeb-9f?a=view
http://docs.sun.com/doc/816-5180/esballoc-9f?a=view
http://docs.sun.com/doc/816-5180/freeb-9f?a=view
http://docs.sun.com/doc/816-4855

gld_mac_info – Generic LAN Driver MAC info data structure

#include <sys/gld.h>

Solaris architecture specific (Solaris DDI).

The Generic LAN Driver (GLD) Media Access Control (MAC) information (gld_mac_info)
structure is the main data interface between the device-specific driver and GLD. It contains
data required by GLD and a pointer to an optional additional driver-specific information
structure.

The gld_mac_info structure should be allocated using gld_mac_alloc() and deallocated
using gld_mac_free(). Drivers can make no assumptions about the length of this structure,
which might be different in different releases of Solaris and/or GLD. Structure members
private to GLD, not documented here, should not be set or read by the device-specific driver.

caddr_t gldm_private; /* Driver private data */

int (*gldm_reset)(); /* Reset device */

int (*gldm_start)(); /* Start device */

int (*gldm_stop)(); /* Stop device */

int (*gldm_set_mac_addr)(); /* Set device phys addr */

int (*gldm_set_multicast)(); /* Set/delete */

/* multicast address */

int (*gldm_set_promiscuous)();/* Set/reset */

/* promiscuous mode */

int (*gldm_send)(); /* Transmit routine */

u_int (*gldm_intr)(); /* Interrupt handler */

int (*gldm_get_stats)(); /* Get device statistics */

int (*gldm_ioctl)(); /* Driver-specific ioctls */

char *gldm_ident; /* Driver identity string */

uint32_t gldm_type; /* Device type */

uint32_t gldm_minpkt; /* Minimum packet size */

/* accepted by driver */

uint32_t gldm_maxpkt; /* Maximum packet size */

/* accepted by driver */

uint32_t gldm_addrlen; /* Physical address */

/* length */

int32_t gldm_saplen; /* SAP length for */

/* DL_INFO_ACK */

unsigned char *gldm_broadcast_addr; /* Physical broadcast */

/* addr */

unsigned char *gldm_vendor_addr; /* Factory MAC address */

t_uscalar_t gldm_ppa; /* Physical Point of */

/* Attachment (PPA) number */

dev_info_t *gldm_devinfo; /* Pointer to device’s */

/* dev_info node */

ddi_iblock_cookie_tgldm_cookie; /* Device’s interrupt */

/* block cookie */

Name

Synopsis

Interface Level

Description

Structure
Members

gld_mac_info(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 7 June 200456

uint32_t gldm_capabilities; /* Device capabilities */

Below is a description of the members of the gld_mac_info structure that are visible to the
device driver.

gldm_private This structure member is private to the device-specific driver and is not
used or modified by GLD. Conventionally, this is used as a pointer to
private data, pointing to a driver-defined and driver-allocated
per-instance data structure.

The following group of structure members must be set by the driver before calling
gld_register(), and should not thereafter be modified by the driver; gld_register() can
use or cache the values of some of these structure members, so changes made by the driver
after calling gld_register() might cause unpredicted results.

gldm_reset Pointer to driver entry point; see gld(9E).

gldm_start Pointer to driver entry point; see gld(9E).

gldm_stop Pointer to driver entry point; see gld(9E).

gldm_set_mac_addr Pointer to driver entry point; see gld(9E).

gldm_set_multicast Pointer to driver entry point; see gld(9E).

gldm_set_promiscuous Pointer to driver entry point; see gld(9E).

gldm_send Pointer to driver entry point; see gld(9E).

gldm_intr Pointer to driver entry point; see gld(9E).

gldm_get_stats Pointer to driver entry point; see gld(9E).

gldm_ioctl Pointer to driver entry point; can be NULL; see gld(9E).

gldm_ident Pointer to a string containing a short description of the device. It
is used to identify the device in system messages.

gldm_type The type of device the driver handles. The values currently
supported by GLD are DL_ETHER (IEEE 802.3 and Ethernet Bus),
DL_TPR (IEEE 802.5 Token Passing Ring), and DL_FDDI (ISO
9314-2 Fibre Distributed Data Interface). This structure member
must be correctly set for GLD to function properly.

Note – Support for the DL_TPR and DL_FDDI media types is
obsolete and may be removed in a future release of Solaris.

gldm_minpkt Minimum Service Data Unit size — the minimum packet size,
not including the MAC header, that the device will transmit.
This can be zero if the device-specific driver can handle any
required padding.

gld_mac_info(9S)

Data Structures for Drivers 57

http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view

gldm_maxpkt Maximum Service Data Unit size — the maximum size of packet,
not including the MAC header, that can be transmitted by the
device. For Ethernet, this number is 1500.

gldm_addrlen The length in bytes of physical addresses handled by the device.
For Ethernet, Token Ring, and FDDI, the value of this structure
member should be 6.

gldm_saplen The length in bytes of the Service Access Point (SAP) address
used by the driver. For GLD-based drivers, this should always be
set to -2, to indicate that two-byte SAP values are supported and
that the SAP appears after the physical address in a DLSAP
address. See the description under ‘‘Message DL_INFO_ACK''
in the DLPI specification for more details.

gldm_broadcast_addr Pointer to an array of bytes of length gldm_addrlen containing
the broadcast address to be used for transmit. The driver must
allocate space to hold the broadcast address, fill it in with the
appropriate value, and set gldm_broadcast_addr to point at it.
For Ethernet, Token Ring, and FDDI, the broadcast address is
normally 0xFF-FF-FF-FF-FF-FF.

gldm_vendor_addr Pointer to an array of bytes of length gldm_addrlen containing
the vendor-provided network physical address of the device. The
driver must allocate space to hold the address, fill it in with
information read from the device, and set gldm_vendor_addr to
point at it.

gldm_ppa The Physical Point of Attachment (PPA) number for this
instance of the device. Normally this should be set to the instance
number, returned from ddi_get_instance(9F).

gldm_devinfo Pointer to the dev_info node for this device.

gldm_cookie The interrupt block cookie returned by
ddi_get_iblock_cookie(9F), ddi_add_intr(9F),
ddi_get_soft_iblock_cookie(9F), or ddi_add_softintr(9F).
This must correspond to the device's receive interrupt, from
which gld_recv() is called.

gldm_capabilities Bit-field of device capabilities. If the device is capable of
reporting media link state, the GLD_CAP_LINKSTATE bit
should be set.

gld(7D), dlpi(7P), attach(9E), gld(9E), ddi_add_intr(9F), gld(9F), gld_stats(9S)

Writing Device Drivers

See Also

gld_mac_info(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 7 June 200458

http://docs.sun.com/doc/816-5180/ddi-get-instance-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-get-iblock-cookie-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-add-intr-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-get-soft-iblock-cookie-9f?a=view
http://docs.sun.com/doc/816-5180/ddi-add-softintr-9f?a=view
http://docs.sun.com/doc/816-5177/gld-7d?a=view
http://docs.sun.com/doc/816-5177/dlpi-7p?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5180/ddi-add-intr-9f?a=view
http://docs.sun.com/doc/816-5180/gld-9f?a=view
http://docs.sun.com/doc/816-4854

gld_stats – Generic LAN Driver statistics data structure

#include <sys/gld.h>

Solaris architecture specific (Solaris DDI).

The Generic LAN Driver (GLD) statistics (gld_stats) structure is used to communicate
statistics and state information from a GLD-based driver to GLD when returning from a
driver's gldm_get_stats() routine as discussed in gld(9E) and gld(7D). The members of this
structure, filled in by the GLD-based driver, are used when GLD reports the statistics. In the
tables below, the name of the statistics variable reported by GLD is noted in the comments. See
gld(7D) for a more detailed description of the meaning of each statistic.

Drivers can make no assumptions about the length of this structure, which might be different
in different releases of Solaris and/or GLD. Structure members private to GLD, not
documented here, should not be set or read by the device specific driver.

The following structure members are defined for all media types:

uint64_t glds_speed; /* ifspeed */

uint32_t glds_media; /* media */

uint32_t glds_intr; /* intr */

uint32_t glds_norcvbuf; /* norcvbuf */

uint32_t glds_errrcv; /* ierrors */

uint32_t glds_errxmt; /* oerrors */

uint32_t glds_missed; /* missed */

uint32_t glds_underflow; /* uflo */

uint32_t glds_overflow; /* oflo */

The following structure members are defined for media type DL_ETHER:

uint32_t glds_frame; /* align_errors */

uint32_t glds_crc; /* fcs_errors */

uint32_t glds_duplex; /* duplex */

uint32_t glds_nocarrier; /* carrier_errors */

uint32_t glds_collisions; /* collisions */

uint32_t glds_excoll; /* ex_collisions */

uint32_t glds_xmtlatecoll; /* tx_late_collisions */

uint32_t glds_defer; /* defer_xmts */

uint32_t glds_dot3_first_coll; /* first_collisions */

uint32_t glds_dot3_multi_coll; /* multi_collisions */

uint32_t glds_dot3_sqe_error; /* sqe_errors */

uint32_t glds_dot3_mac_xmt_error; /* macxmt_errors */

uint32_t glds_dot3_mac_rcv_error; /* macrcv_errors */

uint32_t glds_dot3_frame_too_long; /* toolong_errors */

uint32_t glds_short; /* runt_errors */

The following structure members are defined for media type DL_TPR:

Name

Synopsis

Interface Level

Description

Structure
Members

gld_stats(9S)

Data Structures for Drivers 59

http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-5177/gld-7d?a=view
http://docs.sun.com/doc/816-5177/gld-7d?a=view

uint32_t glds_dot5_line_error /* line_errors */

uint32_t glds_dot5_burst_error /* burst_errors */

uint32_t glds_dot5_signal_loss /* signal_losses */

uint32_t glds_dot5_ace_error /* ace_errors */

uint32_t glds_dot5_internal_error /* internal_errors */

uint32_t glds_dot5_lost_frame_error /* lost_frame_errors */

uint32_t glds_dot5_frame_copied_error /* frame_copied_errors */

uint32_t glds_dot5_token_error /* token_errors */

uint32_t glds_dot5_freq_error /* freq_errors */

Note – Support for the DL_TPR media type is obsolete and may be removed in a future release
of Solaris.

The following structure members are defined for media type DL_FDDI:

uint32_t glds_fddi_mac_error; /* mac_errors */

uint32_t glds_fddi_mac_lost; /* mac_lost_errors */

uint32_t glds_fddi_mac_token; /* mac_tokens */

uint32_t glds_fddi_mac_tvx_expired; /* mac_tvx_expired */

uint32_t glds_fddi_mac_late; /* mac_late */

uint32_t glds_fddi_mac_ring_op; /* mac_ring_ops */

Note – Support for the DL_FDDI media type is obsolete and may be removed in a future
release of Solaris.

Most of the above statistics variables are counters denoting the number of times the particular
event was observed. Exceptions are:

glds_speed An estimate of the interface's current bandwidth in bits per second. For
interfaces that do not vary in bandwidth or for those where no accurate
estimation can be made, this object should contain the nominal bandwidth.

glds_media The type of media (wiring) or connector used by the hardware. Currently
supported media names include GLDM_AUI, GLDM_BNC, GLDM_TP, GLDM_10BT,
GLDM_100BT, GLDM_100BTX, GLDM_100BT4, GLDM_RING4, GLDM_RING16,
GLDM_FIBER, and GLDM_PHYMII. GLDM_UNKNOWN can also be specified.

glds_duplex Current duplex state of the interface. Supported values are
GLD_DUPLEX_HALF and GLD_DUPLEX_FULL. GLD_DUPLEX_UNKNOWN can also be
specified.

gld(7D), gld(9F), gld(9E), gld_mac_info(9S)

Writing Device Drivers

See Also

gld_stats(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 7 Jun 200460

http://docs.sun.com/doc/816-5177/gld-7d?a=view
http://docs.sun.com/doc/816-5180/gld-9f?a=view
http://docs.sun.com/doc/816-5179/gld-9e?a=view
http://docs.sun.com/doc/816-4854

hook_nic_event – data structure describing events related to network interfaces

#include <sys/neti.h>

#include <sys/hook.h>

#include <sys/hook_event.h>

Solaris DDI specific (Solaris DDI).

The hook_nic_event structure contains fields that relate to an event that has occurred and
belongs to a network interface. This structure is passed through to callbacks for NE_PLUMB,
NE_UNPLUMB, NE_UP, NE_DOWN and NE_ADDRESS_CHANGE events.

A callback may not alter any of the fields in this structure.

net_data_t hne_family;

phy_if_t pkt_private;

lif_if_t hne_lif;

nic_event_t hne_event;

nic_event_data_t hne_data;

size_t hne_datalen;

The following fields are set for each event:

hne_family A valid reference for the network protocol that owns this network interface
and can be in calls to other netinfo(9F) functions.

hne_nic The physical interface to which an event belongs.

hne_event A value that indicates the respective event. The current list of available events
is:

NE_PLUMB

an interface has just been created.

NE_UNPLUMB

An interface has just been destroyed and no more events should be
received for it.

NE_UP

An interface has changed the state to “up” and may now generate packet
events.

NE_DOWN

An interface has changed the state to “down” and will no longer generate
packet events.

Name

Synopsis

Interface Level

Description

Structure
Members

hook_nic_event(9S)

Data Structures for Drivers 61

http://docs.sun.com/doc/816-5180/netinfo-9f?a=view

NE_ADDRESS_CHANGE

An address on an interface has changed. hne_lif refers to the logical
interface for which the change is occurring, hne_data is a pointer to a
sockaddr structure that is hne_datalen bytes long and contains the new
network address.

NE_IFINDEX_CHANGE

An interface index has changed. hne_lif refers to the logical interface for
which the change is occurring, hne_data is a new ifindex value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

attributes(5), netinfo(9F)

Attributes

See Also

hook_nic_event(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 29 Sep 200962

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/netinfo-9f?a=view

hook_pkt_event – packet event structure passed through to hooks

#include <sys/neti.h>

#include <sys/hook.h>

#include <sys/hook_event.h>

Solaris DDI specific (Solaris DDI).

The hook_pkt_event structure contains fields that relate to a packet in a network protocol
handler. This structure is passed through to a callback for NH_PRE_ROUTING,
NH_POST_ROUTING, NH_FORWARDING, NH_LOOPBACK_IN and NH_LOOPBACK_OUT events.

A callback may only modify the hpe_hdr, hpe_mp and hpe_mb fields.

The following table documents which fields can be safely used as a result of each event.

Event hpe_ifp hpe_ofp hpe_hdr hpe_mp hpe_mb

----- ------- ------- ------- ------ ------

NH_PRE_ROUTING yes yes yes yes

NH_POST_ROUTING yes yes yes yes

NH_FORWARDING yes yes yes yes yes

NH_LOOPBACK_IN yes yes yes yes

NH_LOOPBACK_OUT yes yes yes yes

net_data_t hne_family;

phy_if_t hpe_ifp;

phy_if_t hpe_ofp;

void *hpe_hdr;

mblk_t *hpe_mp;

mblk_t *hpe_mb;

uint32_t hpe_flags;

The following fields are set for each event:

hne_family The protocol family for this packet. This value matches the corresponding
value returned from a call to net_protocol_lookup(9F).

hpe_ifp The inbound interface for a packet.

hpe_ofp The outbound interface for a packet.

hpe_hdr Pointer to the start of the network protocol header within an mblk_t

structure.

hpe_mp Pointer to the mblk_t pointer that points to the first mblk_t structure in this
packet.

hpe_mb Pointer to the mblk_t structure that contains hpe_hdr.

hpe_flags This field is used to carry additional properties of packets. The current
collection of defined bits available is:

Name

Synopsis

Interface Level

Description

Structure
Members

hook_pkt_event(9S)

Data Structures for Drivers 63

http://docs.sun.com/doc/816-5180/net-protocol-lookup-9f?a=view

HPE_BROADCAST This bit is set if the packet was recognized as a broadcast
packet from the link layer. The bit cannot be set if
HPE_MULTICAST is set, currently only possible with
physical in packet events.

HPE_MULTICAST This set if the packet was recognized as a multicast packet
from the link layer. This bit cannot be set if
HPE_BROADCAST is set, currently only possible with
physical in packet events.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

net_protocol_lookup(9F), netinfo(9F)

Attributes

See Also

hook_pkt_event(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 May 200864

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/net-protocol-lookup-9f?a=view
http://docs.sun.com/doc/816-5180/netinfo-9f?a=view

hook_t – callback structure for subscribing to netinfo events

#include <sys/hook.h>

Solaris DDI specific (Solaris DDI).

The hook_t data structure defines a callback that is to be inserted into a networking event.
This data structure must be allocated with a call to hook_alloc() and released with a call to
hook_free().

hook_func_t h_func; /* callback function to invoke */

char *h_name; /* unique name given to the hook */

int h_flags;

hook_hint_t h_hint; /* insertion hint type */

uintptr_t h_hintvalue; /* used with h_hint */

void *h_arg; /* value to pass into h_func */

typedef int (*hook_func_t)(net_event_t token, hook_data_t info,

void *);

Hook hints are hints that are used at the time of insertion and are not rules that enforce where
a hook lives for its entire lifetime on an event. The valid values for the h_hint field are:

HH_NONE Insert the hook wherever convenient.

HH_FIRST Place the hook first on the list of hooks.

HH_LAST Place the hook last on the list of hooks.

HH_BEFORE Place the hook before another hook on the list of hooks. The value in
h_hintvalue must be a pointer to the name of another hook.

HH_AFTER Place the hook after another hook on the list of hooks. The value in
h_hintvalue must be a pointer to the name of another hook.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

netinfo(9F)

Name

Synopsis

Interface Level

Description

Structure
Members

HINT TYPES

Attributes

See Also

hook_t(9S)

Data Structures for Drivers 65

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/netinfo-9f?a=view

inquiry-device-type, inquiry-vendor-id, inquiry-product-id, inquiry-revision-id – properties
from SCSI inquiry data

These are optional properties created by the system for SCSI target devices.

inquiry-device-type is an integer property. When present, the least significant byte of the
value indicates the device type as defined by the SCSI standard.

inquiry-vendor-id is a string property. When present, it contains the SCSI vendor
identification inquiry data (from SCSI inquiry data bytes 8 - 15), formatted as a
NULL-terminated string.

inquiry-product-id is a string property. When present, it contains the SCSI product
identification inquiry data (from SCSI inquiry data bytes 16 - 31).

inquiry-revision-id is a string property. When present, it contains the SCSI product
revision inquiry data (from SCSI inquiry data bytes 32 - 35).

Consumers of these properties should compare the property values with DTYPE_* values
defined in <sys/scsi/generic/inquiry.h>.

Writing Device Drivers

Name

Description

See Also

inquiry-device-type(9P)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 May 200166

iocblk – STREAMS data structure for the M_IOCTL message type

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

The iocblk data structure is used for passing M_IOCTL messages.

int ioc_cmd; /* ioctl command type */

cred_t *ioc_cr; /* full credentials */

uint_t ioc_id; /* ioctl id */

uint_t ioc_flag; /* ioctl flags */

uint_t ioc_count; /* count of bytes in data field */

int ioc_rval; /* return value */

int ioc_error; /* error code */

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

iocblk(9S)

Data Structures for Drivers 67

http://docs.sun.com/doc/816-4855

iovec – data storage structure for I/O using uio

#include <sys/uio.h>

Architecture independent level 1 (DDI/DKI).

An iovec structure describes a data storage area for transfer in a uio(9S) structure.
Conceptually, it can be thought of as a base address and length specification.

caddr_t iov_base; /* base address of the data storage area */

/* represented by the iovec structure */

int iov_len; /* size of the data storage area in bytes */

uio(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

iovec(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 11 Apr 199168

http://docs.sun.com/doc/816-4854

kstat – kernel statistics structure

#include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Each kernel statistic (kstat) exported by device drivers consists of a header section and a data
section. The kstat structure is the header portion of the statistic.

A driver receives a pointer to a kstat structure from a successful call to kstat_create(9F).
Drivers should never allocate a kstat structure in any other manner.

After allocation, the driver should perform any further initialization needed before calling
kstat_install(9F) to actually export the kstat.

void *ks_data; /* kstat type-specif. data */

ulong_t ks_ndata; /* # of type-specif. data

records */

ulong_t ks_data_size; /* total size of kstat data

section */

int (*ks_update)(struct kstat *, int);

void *ks_private; /* arbitrary provider-private

data */

void *ks_lock; /* protects kstat’s data */

The members of the kstat structure available to examine or set by a driver are as follows:

ks_data Points to the data portion of the kstat. Either allocated by
kstat_create(9F) for the drivers use, or by the driver if it is using virtual
kstats.

ks_ndata The number of data records in this kstat. Set by the ks_update(9E)
routine.

ks_data_size The amount of data pointed to by ks_data. Set by the ks_update(9E)
routine.

ks_update Pointer to a routine that dynamically updates kstat. This is useful for
drivers where the underlying device keeps cheap hardware statistics, but
where extraction is expensive. Instead of constantly keeping the kstat
data section up to date, the driver can supply a ks_update(9E) function
that updates the kstat data section on demand. To take advantage of this
feature, set the ks_update field before calling kstat_install(9F).

ks_private Is a private field for the driver's use. Often used in ks_update(9E).

Name

Synopsis

Interface Level

Description

Structure
Members

kstat(9S)

Data Structures for Drivers 69

http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-install-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-5179/ks-update-9e?a=view
http://docs.sun.com/doc/816-5179/ks-update-9e?a=view
http://docs.sun.com/doc/816-5179/ks-update-9e?a=view
http://docs.sun.com/doc/816-5180/kstat-install-9f?a=view
http://docs.sun.com/doc/816-5179/ks-update-9e?a=view

ks_lock Is a pointer to a mutex that protects this kstat. kstat data sections are
optionally protected by the per-kstat ks_lock. If ks_lock is non-NULL,
kstat clients (such as /dev/kstat) will acquire this lock for all of their
operations on that kstat. It is up to the kstat provider to decide whether
guaranteeing consistent data to kstat clients is sufficiently important to
justify the locking cost. Note, however, that most statistic updates already
occur under one of the provider's mutexes. If the provider sets ks_lock to
point to that mutex, then kstat data locking is free. ks_lock is really of
type (kmutex_t*) and is declared as (void*) in the kstat header. That
way, users do not have to be exposed to all of the kernel's lock-related data
structures.

kstat_create(9F)

Writing Device Drivers

See Also

kstat(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 4 Apr 199470

http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-4854

kstat_intr – structure for interrupt kstats

#include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Interrupt statistics are kept in the kstat_intr structure. When kstat_create(9F) creates an
interrupt kstat, the ks_data field is a pointer to one of these structures. The macro
KSTAT_INTR_PTR() is provided to retrieve this field. It looks like this:

#define KSTAT_INTR_PTR(kptr) ((kstat_intr_t *)(kptr)->ks_data)

An interrupt is a hard interrupt (sourced from the hardware device itself), a soft interrupt
(induced by the system through the use of some system interrupt source), a watchdog
interrupt (induced by a periodic timer call), spurious (an interrupt entry point was entered but
there was no interrupt to service), or multiple service (an interrupt was detected and serviced
just prior to returning from any of the other types).

Drivers generally report only claimed hard interrupts and soft interrupts from their handlers,
but measurement of the spurious class of interrupts is useful for auto-vectored devices in
order to pinpoint any interrupt latency problems in a particular system configuration.

Devices that have more than one interrupt of the same type should use multiple structures.

ulong_t intrs[KSTAT_NUM_INTRS]; /* interrupt counters */

The only member exposed to drivers is the intrs member. This field is an array of counters.
The driver must use the appropriate counter in the array based on the type of interrupt
condition.

The following indexes are supported:

KSTAT_INTR_HARD Hard interrupt

KSTAT_INTR_SOFT Soft interrupt

KSTAT_INTR_WATCHDOG Watchdog interrupt

KSTAT_INTR_SPURIOUS Spurious interrupt

KSTAT_INTR_MULTSVC Multiple service interrupt

kstat(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

kstat_intr(9S)

Data Structures for Drivers 71

http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-4854

kstat_io – structure for I/O kstats

#include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

I/O kstat statistics are kept in a kstat_io structure. When kstat_create(9F) creates an I/O
kstat, the ks_data field is a pointer to one of these structures. The macro KSTAT_IO_PTR() is
provided to retrieve this field. It looks like this:

#define KSTAT_IO_PTR(kptr) ((kstat_io_t *)(kptr)->ks_data)

u_longlong_t nread; /* number of bytes read */

u_longlong_t nwritten; /* number of bytes written *]/

ulong_t reads; /* number of read operations */

ulong_t writes; /* number of write operations */

The nread field should be updated by the driver with the number of bytes successfully read
upon completion.

The nwritten field should be updated by the driver with the number of bytes successfully
written upon completion.

The reads field should be updated by the driver after each successful read operation.

The writes field should be updated by the driver after each successful write operation.

Other I/O statistics are updated through the use of the kstat_queue(9F) functions.

kstat_create(9F), kstat_named_init(9F), kstat_queue(9F),
kstat_runq_back_to_waitq(9F), kstat_runq_enter(9F), kstat_runq_exit(9F),
kstat_waitq_enter(9F), kstat_waitq_exit(9F), kstat_waitq_to_runq(9F)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

kstat_io(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 4 Apr 199472

http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-queue-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-named-init-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-queue-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-runq-back-to-waitq-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-runq-enter-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-runq-exit-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-waitq-enter-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-waitq-exit-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-waitq-to-runq-9f?a=view
http://docs.sun.com/doc/816-4854

kstat_named – structure for named kstats

#include <sys/types.h>

#include <sys/kstat.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Solaris DDI specific (Solaris DDI)

Named kstats are an array of name-value pairs. These pairs are kept in the kstat_named
structure. When a kstat is created by kstat_create(9F), the driver specifies how many of
these structures will be allocated. The structures are returned as an array pointed to by the
ks_data field.

union {

char c[16];

long l;

ulong_t ul;

longlong_t ll;

u_longlong_t ull;

} value; /* value of counter */

The only member exposed to drivers is the value member. This field is a union of several data
types. The driver must specify which type it will use in the call to kstat_named_init().

kstat_create(9F), kstat_named_init(9F)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

kstat_named(9S)

Data Structures for Drivers 73

http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-create-9f?a=view
http://docs.sun.com/doc/816-5180/kstat-named-init-9f?a=view
http://docs.sun.com/doc/816-4854

linkblk – STREAMS data structure sent to multiplexor drivers to indicate a link

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The linkblk structure is used to connect a lower Stream to an upper STREAMS multiplexor
driver. This structure is used in conjunction with the I_LINK, I_UNLINK, P_LINK, and
P_UNLINK ioctl commands. See streamio(7I). The M_DATA portion of the M_IOCTL message
contains the linkblk structure. Note that the linkblk structure is allocated and initialized by
the Stream head as a result of one of the above ioctl commands.

queue_t *l_qtop; /* lowest level write queue of upper stream */

/* (set to NULL for persistent links) */

queue_t *l_qbot; /* highest level write queue of lower stream */

int l_index; /* index for lower stream. */

ioctl(2), streamio(7I)

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

linkblk(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 7 Jul 199474

http://docs.sun.com/doc/816-5177/streamio-7i?a=view
http://docs.sun.com/doc/816-5167/ioctl-2?a=view
http://docs.sun.com/doc/816-5177/streamio-7i?a=view
http://docs.sun.com/doc/816-4855

mac_callbacks – MAC callbacks data structure

#include <sys/mac_provider.h>

Solaris architecture specific (Solaris DDI)

The mac_callbacks data structure is used by MAC device drivers to expose their entry points
to the MAC layer. A pointer to an instance of the mac_register(9S) structure is passed
through the m_callbacks field of the mac_callbacks structure as part of the registration of a
device driver instance through mac_register(9F).

uint_t mc_callbacks; /* Denotes which callbacks are set */

mac_getstat_t mc_getstat; /* Get the value of a statistic */

mac_start_t mc_start; /* Start the device */

mac_stop_t mc_stop; /* Stop the device */

mac_setpromisc_t mc_setpromisc; /* Enable or disable promiscuous mode */

mac_multicst_t mc_multicst; /* Enable or disable a multicast addr */

mac_unicst_t mc_unicst; /* Set the unicast MAC address */

mac_tx_t mc_tx; /* Transmit a packet */

mac_ioctl_t mc_ioctl; /* Process an unknown ioctl */

mac_getcapab_t mc_getcapab; /* Get capability information */

mac_set_prop_t mc_setprop; /* Set property value */

mac_get_prop_t mc_getprop; /* Get property value */

mac_prop_info_t mc_propinfo; /* Get property attributes */

Below are descriptions of the members of the mac_callbacks structure that are visible to the
device driver.

mc_callbacks
Flags specifying which ones of the optional entry points are implemented by the driver.
The following flags are supported:

MC_IOCTL

Set by the driver when the mc_ioctl() entry point is present.

MC_GETCAPAB

Set by the driver when the mc_getcapab() entry point is present.

MC_SETPROP

Set by the driver when the mc_setprop() entry point is present.

MC_GETPROP

Set by the driver when the mc_getprop() entry point is present.

MC_PROPINFO

Set by the driver when the mc_propinfo() entry point is present.

MC_PROPERTIES

Set by a driver which implements all properties entry points (mc_setprop(),
mc_getprop(), and mc_propinfo()). Setting MC_PROPERTIES is the equivalent of setting

Name

Synopsis

Interface Level

Description

Structure
Members

mac_callbacks(9S)

Data Structures for Drivers 75

http://docs.sun.com/doc/816-5180/mac-register-9f?a=view

the three flags MC_SETPROP, MC_GETPROP, and MC_PROPINFO.

mc_getstat
pointer to driver entry point

mc_start
pointer to driver entry point

mc_stop
pointer to driver entry point

mc_setpromisc
pointer to driver entry point

mc_getpromisc
pointer to driver entry point

mc_multicst
pointer to driver entry point

mc_unicst
pointer to driver entry point

mc_tx
pointer to driver entry point

mc_ioctl
pointer to driver entry point

mc_getcapab
pointer to driver entry point

mc_setprop
pointer to driver entry point

mc_getprop
pointer to driver entry point

mc_propinfo
pointer to driver entry point

See mac(9E) for more information about MAC driver entry points.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhea

Interface Stability Committed

Attributes

mac_callbacks(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 26 Mar 201076

http://docs.sun.com/doc/816-5179/mac-9e?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view

attributes(5), mac_register(9F), mac_register(9S)See Also

mac_callbacks(9S)

Data Structures for Drivers 77

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/mac-register-9f?a=view

mac_capab_lso, lso_basic_tcp_ipv4 – LSO capability data structure

#include <sys/mac_provider.h>

Solaris architecture specific (Solaris DDI)

The mac_capab_lso and lso_basic_tcp_ipv4 structures are used by a device driver to
describe its LSO capability. The structure is used as the argument to the mc_getcapab(9E)
driver entry point when querying the MAC_CAPAB_LSO capability.

The mac_capab_lso data structure has the following members:

t_uscalar_t lso_flags;

lso_basic_tcp_ipv4_t lso_basic_tcp_ipv4;

The fields must be set as follows:

lso_flags
Flag indicating the LSO capability supported by the device driver instance. The following
flags are currently supported:

LSO_TX_BASIC_TCP_IPV4 LSO for TCP on IPv4

lso_basic_tcp_ipv4
Parameters for TCP LSO over IPv4

The lso_basic_tcp_ipv4 data structure is used by the device driver to advertise specific
parameters when the LSO_TX_BASIC_TCP_IPV4 lso_flag is set. This data structure has the
following elements:

t_uscalar_t lso_max;

The lso_max field contains the maximum payload size supported by the driver instance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhea

Interface Stability Committed

attributes(5), mc_getcapab(9E), mac_lso_get(9F), mac_register(9F)

Name

Synopsis

Interface Level

Description

Structure
Members

Attributes

See Also

mac_capab_lso(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 26 Mar 201078

http://docs.sun.com/doc/816-5179/mc-getcapab-9e?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5179/mc-getcapab-9e?a=view
http://docs.sun.com/doc/816-5180/mac-lso-get-9f?a=view
http://docs.sun.com/doc/816-5180/mac-register-9f?a=view

mac_register – MAC device driver registration data structure

#include <sys/mac_provider.h>

#include <sys/mac_ether.h>

Solaris architecture specific (Solaris DDI)

The mac_register data structure is passed by device drivers to the MAC layer when
registering using mac_register(9F).

uint_t m_version; /* set by framework */

const char *m_type_ident;

void *m_driver;

dev_info_t *m_dip;

uint_t m_instance;

uint8_t *m_src_addr;

uint8_t *m_dst_addr;

mac_callbacks_t *m_callbacks;

uint_t m_min_sdu;

uint_t m_max_sdu;

void *m_pdata;

size_t m_pdata_size;

mac_priv_prop_t *m_priv_props;

uint32_t m_margin;

The following fields of mac_register_t must be set by the device driver before invoking the
mac_register()entry point:

m_version Set by mac_alloc(9F), device drivers should not modify this field.

m_type_ident Must be set to one of the following depending on the type of device being
registered.

MAC_PLUGIN_IDENT_ETHER Ethernet driver

m_driver Driver handle, opaque to the framework, usually points to a per-driver
instance data structure. Passed back as argument to driver's entry points
invoked by the framework.

m_dip Pointer to the driver instance dev_info structure, see attach(9E).

m_instance Used by the driver to specify the instance number to be associated with the
MAC being registered. This value should always specified by 0.

m_src_addr Pointer to the primary MAC address value of the MAC instance.

m_dst_addr Pointer to the destination MAC address value of a fixed destination MAC
address. This field is optional and should be set to NULL for regular device
drivers.

Name

Synopsis

Interface Level

Description

Structure
Members

mac_register(9S)

Data Structures for Drivers 79

http://docs.sun.com/doc/816-5180/mac-register-9f?a=view
http://docs.sun.com/doc/816-5180/mac-alloc-9f?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view

m_min_sdu Minimum Service Data Unit size, the minimum packet size, not including
the MAC header, that the device can transmit. This can be zero if the device
driver can handle any required padding.

m_max_sdu Maximum Service Data Unit size, the maximum packet size, not including
the MAC header, that can be transmitted by the device. For Ethernet, this
number is commonly referred to as the MTU (maximum transmission
unit.)

m_priv_props Array of driver-private property names, terminated by a null pointer.

m_margin Drivers set this value to the amount of data in bytes that the device can
transmit beyond m_max_sdu. For example, if an Ethernet device can handle
packets whose payload section is no greater than 1522 bytes and m_max_sdu

is set to 1500 (as is typical for Ethernet), then m_margin is set to 22.

See mac_register(9F) for more information about the use of these fields.

The driver is responsible for allocating the memory pointed to by the fields m_priv_props,
m_src_addr, and m_dst_addr. The driver can free this memory after the call to
mac_register() returns.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWhea

Interface Stability Committed

attributes(5), attach(9E), mac_register(9F)

Attributes

See Also

mac_register(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 May 201080

http://docs.sun.com/doc/816-5180/mac-register-9f?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5180/mac-register-9f?a=view

modldrv – linkage structure for loadable drivers

#include <sys/modctl.h>

Solaris DDI specific (Solaris DDI)

The modldrv structure is used by device drivers to export driver specific information to the
kernel.

struct mod_ops *drv_modops;

char *drv_linkinfo;

struct dev_ops *drv_dev_ops;

drv_modops Must always be initialized to the address of mod_driverops. This member
identifies the module as a loadable driver.

drv_linkinfo Can be any string up to MODMAXNAMELEN characters (including the
terminating NULL character), and is used to describe the module and its
version number. This is usually the name of the driver and module version
information, but can contain other information as well.

drv_dev_ops Pointer to the driver's dev_ops(9S) structure.

add_drv(1M), dev_ops(9S), modlinkage(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

modldrv(9S)

Data Structures for Drivers 81

http://docs.sun.com/doc/816-5166/add-drv-1m?a=view
http://docs.sun.com/doc/816-4854

modlinkage – module linkage structure

#include <sys/modctl.h>

Solaris DDI specific (Solaris DDI)

The modlinkage structure is provided by the module writer to the routines that install,
remove, and retrieve information from a module. See _init(9E), _fini(9E), and _info(9E).

int ml_rev

void *ml_linkage[4];

ml_rev Is the revision of the loadable modules system. This must have the value
MODREV_1 .

ml_linkage Is a null-terminated array of pointers to linkage structures. Driver modules
have only one linkage structure.

add_drv(1M), _fini(9E), _info(9E), _init(9E), modldrv(9S), modlstrmod(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

modlinkage(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 18 Sep 199282

http://docs.sun.com/doc/816-5179/u-init-9e?a=view
http://docs.sun.com/doc/816-5179/u-fini-9e?a=view
http://docs.sun.com/doc/816-5179/u-info-9e?a=view
http://docs.sun.com/doc/816-5166/add-drv-1m?a=view
http://docs.sun.com/doc/816-5179/u-fini-9e?a=view
http://docs.sun.com/doc/816-5179/u-info-9e?a=view
http://docs.sun.com/doc/816-5179/u-init-9e?a=view
http://docs.sun.com/doc/816-4854

modlstrmod – linkage structure for loadable STREAMS modules

#include <sys/modctl.h>

Solaris DDI specific (Solaris DDI)

The modlstrmod structure is used by STREAMS modules to export module specific
information to the kernel.

struct mod_ops *strmod_modops;

char *strmod_linkinfo;

struct fmodsw *strmod_fmodsw;

strmod_modops Must always be initialized to the address of mod_strmodops. This
identifies the module as a loadable STREAMS module.

strmod_linkinfo Can be any string up to MODMAXNAMELEN, and is used to describe the
module. This string is usually the name of the module, but can contain
other information (such as a version number).

strmod_fmodsw Is a pointer to a template of a class entry within the module that is
copied to the kernel's class table when the module is loaded.

modload(1M)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

modlstrmod(9S)

Data Structures for Drivers 83

http://docs.sun.com/doc/816-5166/modload-1m?a=view
http://docs.sun.com/doc/816-4854

module_info – STREAMS driver identification and limit value structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

When a module or driver is declared, several identification and limit values can be set. These
values are stored in the module_info structure.

The module_info structure is intended to be read-only. However, the flow control limits
(mi_hiwat and mi_lowat) and the packet size limits (mi_minpsz and mi_maxpsz) are copied to
the QUEUE structure, where they can be modified.

For a driver, mi_idname must match the name of the driver binary file. For a module,
mi_idname must match the fname field of the fmodsw structure. See fmodsw(9S) for details.

ushort_t mi_idnum; /* module ID number */

char *mi_idname; /* module name */

ssize_t mi_minpsz; /* minimum packet size */

ssize_t mi_maxpsz; /* maximum packet size */

size_t mi_hiwat; /* high water mark */

size_t mi_lowat; /* low water mark */

The constant FMNAMESZ, limiting the length of a module's name, is set to eight in this release.

fmodsw(9S), queue(9S)

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

module_info(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 26 Nov 200284

http://docs.sun.com/doc/816-4855

msgb, mblk – STREAMS message block structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

A STREAMS message is made up of one or more message blocks, referenced by a pointer to a
msgb structure. The b_next and b_prev pointers are used to link messages together on a
QUEUE. The b_cont pointer links message blocks together when a message consists of more
than one block.

Each msgb structure also includes a pointer to a datab(9S) structure, the data block (which
contains pointers to the actual data of the message), and the type of the message.

struct msgb *b_next; /* next message on queue */

struct msgb *b_prev; /* previous message on queue */

struct msgb *b_cont; /* next message block */

unsigned char *b_rptr; /* 1st unread data byte of buffer */

unsigned char *b_wptr; /* 1st unwritten data byte of buffer */

struct datab *b_datap; /* pointer to data block */

unsigned char b_band; /* message priority */

unsigned short b_flag; /* used by stream head */

Valid flags are as follows:

MSGMARK Last byte of message is marked.

MSGDELIM Message is delimited.

The msgb structure is defined as type mblk_t.

datab(9S)

Writing Device Drivers

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

msgb(9S)

Data Structures for Drivers 85

http://docs.sun.com/doc/816-4854
http://docs.sun.com/doc/816-4855

net_inject_t – structure for describing how to transmit a packet

#include <sys/neti.h>

Solaris DDI specific (Solaris DDI).

The net_inject_t data structure passes information in to net_inject about how to transmit
a packet. Transmit includes sending the packet up into the system as well as out of it.

mblk_t *ni_packet; /* start of the packet */

struct sockaddr_storage ni_addr; /* address of next hop */

phy_if_t ni_physical; /* network interface to use */

ni_packet Pointer to the first the mblk_t data structure that makes up this packet.

ni_addr This field is only required to be initialized if NI_DIRECT_OUT is being
used to transmit the packet. The sockaddr_storage field must be set to
indicate whether the destination address contained in the structure is IPv4
(cast ni_addr to struct sockaddr_in) or IPv6 (cast ni_addr to struct
sockaddr_in6).

ni_physical The physical interface where the packet will be injected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

net_inject(9F), netinfo(9F), attributes(5)

Name

Synopsis

Interface Level

Description

Structure
Members

Attributes

See Also

net_inject_t(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 May 200886

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/net-inject-9f?a=view
http://docs.sun.com/doc/816-5180/netinfo-9f?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view

net_instance_t – packet event structure passed through to hooks

#include <sys/neti.h>

Solaris DDI specific (Solaris DDI).

The net_instance_t data structure defines a collection of instances to be called when relevant
events happen within IP. The value returned by the nin_create() function is stored internally
and passed back to both the nin_destroy() and nin_shutdown() functions as the second
argument. The netid_t passed through to each function can be used to uniquely identify each
instance of IP.

char *nin_name;

void *(*nin_create)(const netid_t);

void (*nin_destroy)(const netid_t, void *);

void (*nin_shutdown)(const netid_t, void *);

nin_name Name of the owner of the instance.

nin_create Function to be called when a new instance of IP is created.

nin_destroy Function to be called when an instance of IP is being destroyed.

nin_shutdown Function to be called when an instance of IP is being shutdown.
nin_shutdown() is called before nin_destroy() is called.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

netinfo(9F), attributes(5)

Name

Synopsis

Interface Level

Description

Structure
Members

Attributes

See Also

net_instance_t(9S)

Data Structures for Drivers 87

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/netinfo-9f?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view

no-involuntary-power-cycles – device property to prevent involuntary power cycles

A device that might be damaged by power cycles should export the boolean (zero length)
property no-involuntary-power-cycles to notify the system that all power cycles for the
device must be under the control of the device driver.

The presence of this property prevents power from being removed from a device or any
ancestor of the device while the device driver is detached, unless the device was voluntarily
powered off as a result of the device driver calling pm_lower_power(9F).

The presence of no-involuntary-power-cycles also forces attachment of the device driver
during a CPR suspend operation and prevents the suspend from taking place, unless the
device driver returns DDI_SUCCESS when its detach(9E) entry point is called with
DDI_SUSPEND.

The presence of no-involuntary-power-cycles does not prevent the system from being
powered off due to a halt(1M) or uadmin(1M) invocation, except for CPR suspend.

This property can be exported by a device that is not power manageable, in which case power
is not removed from the device or from any of its ancestors, even when the driver for the
device and the drivers for its ancestors are detached.

EXAMPLE 1 Use of Property in Driver's Configuration File

The following is an example of a no-involuntary-power-cycles entry in a driver's .conf file:

no-involuntary-power-cycles=1;

...

EXAMPLE 2 Use of Property in attach() Function

The following is an example of how the preceding .conf file entry would be implemented in
the attach(9E) function of a driver:

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

...

if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,

"no-involuntary-power-cycles", NULL, 0) != DDI_PROP_SUCCESS)

goto failed;

...

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

Name

Description

Examples

Attributes

no-involuntary-power-cycles(9P)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 22 Mar 200188

http://docs.sun.com/doc/816-5180/pm-lower-power-9f?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5166/halt-1m?a=view
http://docs.sun.com/doc/816-5166/uadmin-1m?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view

attributes(5), pm(7D), attach(9E), detach(9E), ddi_prop_create(9F)

Writing Device Drivers

See Also

no-involuntary-power-cycles(9P)

Data Structures for Drivers 89

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5177/pm-7d?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5180/ddi-prop-create-9f?a=view

pm – Power Management properties

The pm-hardware-state property can be used to influence the behavior of the Power
Management framework. Its syntax and interpretation is described below.

Note that this property is only interpreted by the system immediately after the device has
successfully attached. Changes in the property made by the driver after the driver has attached
will not be recognized.

pm-hardware-state is a string-valued property. The existence of the pm-hardware-state
property indicates that a device needs special handling by the Power Management framework
with regard to its hardware state.

If the value of this property is needs-suspend-resume, the device has a hardware state that
cannot be deduced by the framework. The framework definition of a device with hardware
state is one with a reg property. Some drivers, such as SCSI disk and tape drivers, have no reg

property but manage devices with "remote" hardware. Such a device must have a
pm-hardware-state property with a value of needs-suspend-resume for the system to
identify it as needing a call to its detach(9E) entry point with command DDI_SUSPEND when
system is suspended, and a call to attach(9E) with command DDI_RESUME when system is
resumed. For devices using original Power Management interfaces (which are now obsolete)
detach(9E) is also called with DDI_PM_SUSPEND before power is removed from the device, and
attach(9E) is called with DDI_PM_RESUME after power is restored.

A value of no-suspend-resume indicates that, in spite of the existence of a reg property, a
device has no hardware state that needs saving and restoring. A device exporting this property
will not have its detach() entry point called with command DDI_SUSPEND when system is
suspended, nor will its attach() entry point be called with command DDI_RESUME when
system is resumed. For devices using the original (and now obsolete) Power Management
interfaces, detach(9E) will not be called with DDI_PM_SUSPEND command before power is
removed from the device, nor attach(9E) will be called with DDI_PM_RESUME command after
power is restored to the device.

A value of parental-suspend-resume indicates that the device does not implement the
detach(9E) DDI_SUSPEND semantics, nor the attach() DDI_RESUME semantics, but that a call
should be made up the device tree by the framework to effect the saving and/or restoring of
hardware state for this device. For devices using original Power Management interfaces
(which are now obsolete), it also indicates that the device does not implement the detach(9E)
DDI_PM_SUSPEND semantics, nor the attach(9E) DDI_PM_RESUME semantics, but that a call
should be made up the device tree by the framework to effect the saving and/or restoring the
hardware state for this device.

See attributes(5) for descriptions of the following attributes:

Name

Description

Attributes

pm(9P)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 20 Jan 200490

http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), attach(9E), detach(9E), pm_busy_component(9F),
pm_idle_component(9F), pm-components(9P)

Writing Device Drivers

See Also

pm(9P)

Data Structures for Drivers 91

http://docs.sun.com/doc/816-5174/power.conf-4?a=view
http://docs.sun.com/doc/816-5177/pm-7d?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5180/pm-busy-component-9f?a=view
http://docs.sun.com/doc/816-5180/pm-idle-component-9f?a=view

pm-components – Power Management device property

A device is power manageable if the power consumption of the device can be reduced when it
is idle. In general, a power manageable device consists of a number of power manageable
hardware units called components. Each component is separately controllable and has its own
set of power parameters.

An example of a one-component power manageable device is a disk whose spindle motor can
be stopped to save power when the disk is idle. An example of a two-component power
manageable device is a frame buffer card with a connected monitor. The frame buffer
electronics (with power that can be reduced when not in use) comprises the first component.
The second component is the monitor, which can enter in a lower power mode when not in
use. The combination of frame buffer electronics and monitor is considered as one device by
the system.

In the Power Management framework, all components are considered equal and completely
independent of each other. If this is not true for a particular device, the device driver must
ensure that undesirable state combinations do not occur. Each component is created in the
idle state.

The pm-components property describes the Power Management model of a device driver to
the Power Management framework. It lists each power manageable component by name and
lists the power level supported by each component by numerical value and name. Its syntax
and interpretation is described below.

This property is only interpreted by the system immediately after the device has successfully
attached, or upon the first call into Power Management framework, whichever comes first.
Changes in the property made by the driver after the property has been interpreted will not be
recognized.

pm-components is a string array property. The existence of the pm-components property
indicates that a device implements power manageable components and describes the Power
Management model implemented by the device driver. The existence of pm-components also
indicates to the framework that device is ready for Power Management if automatic device
Power Management is enabled. See power.conf(4).

The pm-component property syntax is:

pm-components="NAME=component name", "numeric power level=power level name",
"numeric power level=power level name"
[, "numeric power level=power level name" ...]

[, "NAME=component name", "numeric power level=power level name",
"numeric power level=power level name"
[, "numeric power level=power level name"...]...];

The start of each new component is represented by a string consisting of NAME= followed by
the name of the component. This should be a short name that a user would recognize, such as
"Monitor" or "Spindle Motor." The succeeding elements in the string array must be strings

Name

Description

pm-components(9P)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 6 Jan 200492

http://docs.sun.com/doc/816-5174/power.conf-4?a=view

consisting of the numeric value (can be decimal or 0x <hexadecimal number>) of a power
level the component supports, followed by an equal sign followed by a short descriptive name
for that power level. Again, the names should be descriptive, such as "On," "Off," "Suspend,"
"Standby," etc. The next component continues the array in the same manner, with a string that
starts out NAME=, specifying the beginning of a new component (and its name), followed by
specifications of the power levels the component supports.

The components must be listed in increasing order according to the component number as
interpreted by the driver's power(9E) routine. (Components are numbered sequentially from
0). The power levels must be listed in increasing order of power consumption. Each
component must support at least two power levels, or there is no possiblity of power level
transitions. If a power level value of 0 is used, it must be the first one listed for that component.
A power level value of 0 has a special meaning (off) to the Power Management framework.

An example of a pm-components entry from the .conf file of a driver which implements a
single power managed component consisting of a disk spindle motor is shown below. This is
component 0 and it supports 2 power level, which represent spindle stopped or full speed.

pm-components="NAME=Spindle Motor", "0=Stopped", "1=Full Speed";
...

Below is an example of how the above entry would be implemented in the attach(9E)
function of the driver.

static char *pmcomps[] = {

"NAME=Spindle Motor",
"0=Stopped",
"1=Full Speed"

};

...

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

...

if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip, "pm-components",
&pmcomp[0], sizeof (pmcomps) / sizeof (char *)) != DDI_PROP_SUCCESS)

goto failed;

}

Below is an example for a frame buffer which implements two components. Component 0 is
the frame buffer electronics which supports four different power levels. Component 1
represents the state of Power Management of the attached monitor.

pm-components="NAME=Frame Buffer", "0=Off"
"1=Suspend", "2=Standby", "3=On",

"NAME=Monitor", "0=Off", "1=Suspend", "2=Standby,"
"3=On;

Examples

pm-components(9P)

Data Structures for Drivers 93

http://docs.sun.com/doc/816-5179/power-9e?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), attach(9E), detach(9E), ddi_prop_update_string_array(9F)
pm_busy_component(9F), pm_idle_component(9F)

Writing Device Drivers

Attributes

See Also

pm-components(9P)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 6 Jan 200494

http://docs.sun.com/doc/816-5174/power.conf-4?a=view
http://docs.sun.com/doc/816-5177/pm-7d?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5180/ddi-prop-update-string-array-9f?a=view
http://docs.sun.com/doc/816-5180/pm-busy-component-9f?a=view
http://docs.sun.com/doc/816-5180/pm-idle-component-9f?a=view

qband – STREAMS queue flow control information structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The qband structure contains flow control information for each priority band in a queue.

The qband structure is defined as type qband_t.

struct qband*qb_next; /* next band’s info */

size_t qb_count /* number of bytes in band */

struct msgb *qb_first; /* start of band’s data */

struct msgb *qb_last; /* end of band’s data */

size_t qb_hiwat; /* band’s high water mark */

size_t qb_lowat; /* band’s low water mark */

uint_t qb_flag; /* see below */

Valid flags are as follows:

QB_FULL Band is considered full.

QB_WANTW Someone wants to write to band.

strqget(9F), strqset(9F), msgb(9S), queue(9S)

STREAMS Programming Guide

All access to this structure should be through strqget(9F) and strqset(9F). It is logically part
of the queue(9S) and its layout and partitioning with respect to that structure might change in
future releases. If portability is a concern, do not declare or store instances of or references to
this structure.

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

Notes

qband(9S)

Data Structures for Drivers 95

http://docs.sun.com/doc/816-5180/strqget-9f?a=view
http://docs.sun.com/doc/816-5180/strqset-9f?a=view
http://docs.sun.com/doc/816-4855
http://docs.sun.com/doc/816-5180/strqget-9f?a=view
http://docs.sun.com/doc/816-5180/strqset-9f?a=view

qinit – STREAMS queue processing procedures structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

The qinit structure contains pointers to processing procedures for a QUEUE. The streamtab
structure for the module or driver contains pointers to one queue(9S) structure for both
upstream and downstream processing.

int (*qi_putp)(); /* put procedure */

int (*qi_srvp)(); /* service procedure */

int (*qi_qopen)(); /* open procedure */

int (*qi_qclose)(); /* close procedure */

int (*qi_qadmin)(); /* unused */

struct module_info *qi_minfo; /* module parameters */

struct module_stat *qi_mstat; /* module statistics */

queue(9S), streamtab(9S)

Writing Device Drivers

STREAMS Programming Guide

This release includes no support for module statistics.

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

Notes

qinit(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 11 Apr 199196

http://docs.sun.com/doc/816-4854
http://docs.sun.com/doc/816-4855

queclass – a STREAMS macro that returns the queue message class definitions for a given
message block

#include <sys/stream.h>

queclass(mblk_t *bp);

Solaris DDI specific (Solaris DDI)

queclass returns the queue message class definition for a given data block pointed to by the
message block bp passed in.

The message can be either QNORM, a normal priority message, or QPCTL, a high priority
message.

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

See Also

queclass(9S)

Data Structures for Drivers 97

http://docs.sun.com/doc/816-4855

queue – STREAMS queue structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI)

A STREAMS driver or module consists of two queue structures: read for upstream processing
and write for downstream processing. The queue structure is the major building block of a
stream.

The queue structure is defined as type queue_t. The structure can be accessed at any time from
inside a STREAMS entry point associated with that queue.

struct qinit *q_qinfo; /* queue processing procedure */

struct msgb *q_first; /* first message in queue */

struct msgb *q_last; /* last message in queue */

struct queue *q_next; /* next queue in stream */

void *q_ptr; /* module-specific data */

size_t q_count; /* number of bytes on queue */

uint_t q_flag; /* queue state */

ssize_t q_minpsz; /* smallest packet OK on queue */

ssize_t q_maxpsz; /* largest packet OK on queue */

size_t q_hiwat; /* queue high water mark */

size_t q_lowat; /* queue low water mark */

Contstraints and restrictions on the use of q_flag and queue_t fields and the q_next values
are detailed in the following sections.

The q_flag field must be used only to check the following flag values.

QFULL Queue is full.

QREADR Queue is used for upstream (read-side) processing.

QUSE Queue has been allocated.

QENAB Queue has been enabled for service by qenable(9F).

QNOENB Queue will not be scheduled for service by putq(9F).

QWANTR Upstream processing element wants to read from queue.

QWANTW Downstream processing element wants to write to queue.

Aside from q_ptr and q_qinfo, a module or driver must never assume that a queue_t field
value will remain unchanged across calls to STREAMS entry points. In addition, many fields
can change values inside a STREAMS entry point, especially if the STREAMS module or
driver has perimeters that allow parallelism. See mt-streams(9F). Fields that are not
documented below are private to the STREAMS framework and must not be accessed.

Name

Synopsis

Interface Level

Description

queue Structure
Members

q_flag Field

queue_t Fields

queue(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 10 Jan 200698

http://docs.sun.com/doc/816-5180/qenable-9f?a=view
http://docs.sun.com/doc/816-5180/putq-9f?a=view
http://docs.sun.com/doc/816-5180/mt-streams-9f?a=view

– The values of the q_hiwat, q_lowat, q_minpsz, and q_maxpsz fields can be changed at the
discretion of the module or driver. As such, the stability of their values depends on the
perimeter configuration associated with any routines that modify them.

– The values of the q_first, q_last, and q_count fields can change whenever putq(9F),
putbq(9F), getq(9F), insq(9F), or rmvq(9F) is used on the queue. As such, the stability of
their values depends on the perimeter configuration associated with any routines that call
those STREAMS functions.

– The q_flag field can change at any time.
– The q_next field will not change while inside a given STREAMS entry point. Additional

restrictions on the use of the q_next value are described in the next section.

A STREAMS module or driver can assign any value to q_ptr. Typically q_ptr is used to point
to module-specific per-queue state, allocated in open(9E) and freed in close(9E). The value or
contents of q_ptr is never inspected by the STREAMS framework.

The initial values for q_minpsz, q_maxpsz, q_hiwat, and q_lowat are set using the
module_info(9S) structure when mod_install(9F) is called. A STREAMS module or driver
can subsequently change the values of those fields as necessary. The remaining visible fields,
q_qinfo, q_first, q_last, q_next, q_count, and q_flag, must never be modified by a
module or driver.

The Solaris DDI requires that STREAMS modules and drivers obey the rules described on this
page. Those that do not follow the rules can cause data corruption or system instability, and
might change in behavior across patches or upgrades.

There are additional restrictions associated with the use of the q_next value. In particular, a
STREAMS module or driver:

– Must not access the data structure pointed to by q_next.
– Must not rely on the value of q_next before calling qprocson(9F) or after calling

qprocsoff(9F).
– Must not pass the value into any STREAMS framework function other than put(9F),

canput(9F), bcanput(9F), putctl(9F), putctl1(9F). However, in all cases the “next”
version of these functions, such as putnext(9F), should be preferred.

– Must not use the value to compare against queue pointers from other streams. However,
checking q_next for NULL can be used to distinguish a module from a driver in code
shared by both.

close(9E), open(9E), bcanput(9F), canput(9F), getq(9F), insq(9F), mod_install(9F),
put(9F), putbq(9F), putctl(9F), putctl1(9F), putnext(9F), putq(9F), qprocsoff(9F),
qprocson(9F), rmvq(9F), strqget(9F), strqset(9F), module_info(9S), msgb(9S), qinit(9S),
streamtab(9S)

q_next Restrictions

See Also

queue(9S)

Data Structures for Drivers 99

http://docs.sun.com/doc/816-5180/putq-9f?a=view
http://docs.sun.com/doc/816-5180/putbq-9f?a=view
http://docs.sun.com/doc/816-5180/getq-9f?a=view
http://docs.sun.com/doc/816-5180/insq-9f?a=view
http://docs.sun.com/doc/816-5180/rmvq-9f?a=view
http://docs.sun.com/doc/816-5179/open-9e?a=view
http://docs.sun.com/doc/816-5179/close-9e?a=view
http://docs.sun.com/doc/816-5180/mod-install-9f?a=view
http://docs.sun.com/doc/816-5180/qprocson-9f?a=view
http://docs.sun.com/doc/816-5180/qprocsoff-9f?a=view
http://docs.sun.com/doc/816-5180/put-9f?a=view
http://docs.sun.com/doc/816-5180/canput-9f?a=view
http://docs.sun.com/doc/816-5180/bcanput-9f?a=view
http://docs.sun.com/doc/816-5180/putctl-9f?a=view
http://docs.sun.com/doc/816-5180/putctl1-9f?a=view
http://docs.sun.com/doc/816-5180/putnext-9f?a=view
http://docs.sun.com/doc/816-5179/close-9e?a=view
http://docs.sun.com/doc/816-5179/open-9e?a=view
http://docs.sun.com/doc/816-5180/bcanput-9f?a=view
http://docs.sun.com/doc/816-5180/canput-9f?a=view
http://docs.sun.com/doc/816-5180/getq-9f?a=view
http://docs.sun.com/doc/816-5180/insq-9f?a=view
http://docs.sun.com/doc/816-5180/mod-install-9f?a=view
http://docs.sun.com/doc/816-5180/put-9f?a=view
http://docs.sun.com/doc/816-5180/putbq-9f?a=view
http://docs.sun.com/doc/816-5180/putctl-9f?a=view
http://docs.sun.com/doc/816-5180/putctl1-9f?a=view
http://docs.sun.com/doc/816-5180/putnext-9f?a=view
http://docs.sun.com/doc/816-5180/putq-9f?a=view
http://docs.sun.com/doc/816-5180/qprocsoff-9f?a=view
http://docs.sun.com/doc/816-5180/qprocson-9f?a=view
http://docs.sun.com/doc/816-5180/rmvq-9f?a=view
http://docs.sun.com/doc/816-5180/strqget-9f?a=view
http://docs.sun.com/doc/816-5180/strqset-9f?a=view

Writing Device Drivers

STREAMS Programming Guide

queue(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 10 Jan 2006100

http://docs.sun.com/doc/816-4854
http://docs.sun.com/doc/816-4855

removable-media – removable media device property

A device that supports removable media—such as CDROM, JAZZ, and ZIP drives—and that
supports power management and expects automatic mounting of the device via the volume
manager should export the boolean (zero length) property removable-media. This property
enables the system to make the power state of the device dependent on the power state of the
frame buffer and monitor. See the power.conf(4) discussion of the
device-dependency-property entry for more information.

Devices that behave like removable devices (such as PC ATA cards, where the controller and
media both are removed at the same time) should also export this property.

EXAMPLE 1 removable-mediaEntry

An example of a removable-media entry from the .conf file of a driver is shown below.

This entry keeps removable media from being powered down unless

the console framebuffer and monitor are powered down

#

removable-media=1;

EXAMPLE 2 Implementation in attach()

Below is an example of how the entry above would be implemented in the attach(9E)
function of the driver.

xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)

{

...

if (ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,

"removable-media", NULL, 0)) != DDI_PROP_SUCCESS)

goto failed;

...

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

power.conf(4), pm(7D), attach(9E), detach(9E), ddi_prop_create(9F)

Writing Device Drivers

Name

Description

Examples

Attributes

See Also

removable-media(9P)

Data Structures for Drivers 101

http://docs.sun.com/doc/816-5174/power.conf-4?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5174/power.conf-4?a=view
http://docs.sun.com/doc/816-5177/pm-7d?a=view
http://docs.sun.com/doc/816-5179/attach-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5180/ddi-prop-create-9f?a=view

scsi_address – SCSI address structure

#include <sys/scsi/scsi.h>

Solaris architecture specific (Solaris DDI)

A scsi_address structure defines the addressing components for a SCSI target device. The
address of the target device is separated into two components: target number and logical unit
number. The two addressing components are used to uniquely identify any type of SCSI
device; however, most devices can be addressed with the target component of the address.

In the case where only the target component is used to address the device, the logical unit
should be set to 0. If the SCSI target device supports logical units, then the HBA must interpret
the logical units field of the data structure.

The pkt_address member of a scsi_pkt(9S) is initialized by scsi_init_pkt(9F).

scsi_hba_tran_t *a_hba_tran; /* Transport vectors for the SCSI bus */

ushort_t a_target; /* SCSI target id */

uchar_t a_lun; /* SCSI logical unit */

a_hba_tran is a pointer to the controlling HBA's transport vector structure. The SCSA
interface uses this field to pass any transport requests from the SCSI target device drivers to
the HBA driver.

a_target is the target component of the SCSI address.

a_lun is the logical unit component of the SCSI address. The logical unit is used to further
distinguish a SCSI target device that supports multiple logical units from one that does not.
The makecom(9F) family of functions use the a_lun field to set the logical unit field in the SCSI
CDB, for compatibility with SCSI-1.

makecom(9F), scsi_init_pkt(9F), scsi_hba_tran(9S), scsi_pkt(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

scsi_address(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Aug 1995102

http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-5180/makecom-9f?a=view
http://docs.sun.com/doc/816-5180/makecom-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-4854

scsi_arq_status – SCSI auto request sense structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI)

When auto request sense has been enabled using scsi_ifsetcap(9F) and the "auto-rqsense"
capability, the target driver must allocate a status area in the SCSI packet structure for the auto
request sense structure (see scsi_pkt(9S)). In the event of a check condition, the transport
layer automatically executes a request sense command. This check ensures that the request
sense information does not get lost. The auto request sense structure supplies the SCSI status
of the original command, the transport information pertaining to the request sense command,
and the request sense data.

struct scsi_status sts_status; /* SCSI status */

struct scsi_status sts_rqpkt_status; /* SCSI status of

request sense cmd */

uchar_t sts_rqpkt_reason; /* reason completion */

uchar_t sts_rqpkt_resid; /* residue */

uint_t sts_rqpkt_state; /* state of command */

uint_t sts_rqpkt_statistics;/* statistics */

struct scsi_extended_sense sts_sensedata; /* actual sense data */

sts_status is the SCSI status of the original command. If the status indicates a check
condition, the transport layer might have performed an auto request sense command.

sts_rqpkt_status is the SCSI status of the request sense command. sts_rqpkt_reason is the
completion reason of the request sense command. If the reason is not CMD_CMPLT, then the
request sense command did not complete normally.

sts_rqpkt_resid is the residual count of the data transfer and indicates the number of data
bytes that have not been transferred. The auto request sense command requests
SENSE_LENGTH bytes.

sts_rqpkt_state has bit positions representing the five most important statuses that a SCSI
command can go obtain.

sts_rqpkt_statistics maintains transport-related statistics of the request sense command.

sts_sensedata contains the actual sense data if the request sense command completed
normally.

scsi_ifgetcap(9F), scsi_init_pkt(9F), scsi_extended_sense(9S), scsi_pkt(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

scsi_arq_status(9S)

Data Structures for Drivers 103

http://docs.sun.com/doc/816-5180/scsi-ifsetcap-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-ifgetcap-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-4854

scsi_asc_key_strings – SCSI ASC ASCQ to message structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_asc_key_strings structure stores the ASC and ASCQ codes and a pointer to the
related ASCII string.

ushort_t asc; /* ASC code */

ushort_t ascq; /* ASCQ code */

char *message; /* ASCII message string */

asc Contains the ASC key code.

ascq Contains the ASCQ code.

message Points to the NULL terminated ASCII string

describing the asc and ascq condition

scsi_vu_errmsg(9F)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

scsi_asc_key_strings(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 24 Feb 1998104

http://docs.sun.com/doc/816-5180/scsi-vu-errmsg-9f?a=view
http://docs.sun.com/doc/816-4854

scsi_device – SCSI device structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_device structure stores common information about each SCSI logical unit,
including pointers to areas that contain both generic and device specific information. There is
one scsi_device structure for each logical unit attached to the system. The host adapter
driver initializes part of this structure prior to probe(9E) and destroys this structure after a
probe failure or successful detach(9E).

struct scsi_address sd_address; /* Routing info. */

dev_info_t *sd_dev; /* Cross-ref. to */

/* dev_info_t */

kmutex_t sd_mutex; /* Mutex for this dev. */

struct scsi_inquiry *sd_inq; /* scsi_inquiry data struc. */

struct scsi_extended_sense *sd_sense; /* Optional request */

/* sense buffer ptr */

caddr_t sd_private; /* Target drivers

private data */

sd_address contains the routing information that the target driver normally copies into a
scsi_pkt(9S) structure using the collection of makecom(9F) functions. The SCSA library
routines use this information to determine which host adapter, SCSI bus, and target/logical
unit number (lun) a command is intended for. This structure is initialized by the host adapter
driver.

sd_dev is a pointer to the corresponding dev_info structure. This pointer is initialized by the
host adapter driver.

sd_mutex is a mutual exclusion lock for this device. It is used to serialize access to a device. The
host adapter driver initializes this mutex. See mutex(9F).

sd_inq is initially NULL (zero). After executing scsi_probe(9F), this field contains the inquiry
data associated with the particular device.

sd_sense is initially NULL (zero). If the target driver wants to use this field for storing
REQUEST SENSE data, it should allocate an scsi_extended_sense(9S) buffer and set this
field to the address of this buffer.

sd_private is reserved for the use of target drivers and should generally be used to point to
target specific data structures.

detach(9E), probe(9E), makecom(9F), mutex(9F), scsi_probe(9F),
scsi_extended_sense(9S), scsi_pkt(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

scsi_device(9S)

Data Structures for Drivers 105

http://docs.sun.com/doc/816-5179/probe-9e?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5180/makecom-9f?a=view
http://docs.sun.com/doc/816-5180/mutex-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-probe-9f?a=view
http://docs.sun.com/doc/816-5179/detach-9e?a=view
http://docs.sun.com/doc/816-5179/probe-9e?a=view
http://docs.sun.com/doc/816-5180/makecom-9f?a=view
http://docs.sun.com/doc/816-5180/mutex-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-probe-9f?a=view
http://docs.sun.com/doc/816-4854

scsi_extended_sense – SCSI extended sense structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_extended_sense structure for error codes 0x70 (current errors) and 0x71 (deferred
errors) is returned on a successful REQUEST SENSE command. SCSI-2 compliant targets are
required to return at least the first 18 bytes of this structure. This structure is part of
scsi_device(9S) structure.

uchar_t es_valid :1; /* Sense data is valid */

uchar_t es_class :3; /* Error Class- fixed at 0x7 */

uchar_t es_code :4; /* Vendor Unique error code */

uchar_t es_segnum; /* Segment number: for COPY cmd only */

uchar_t es_filmk :1; /* File Mark Detected */

uchar_t es_eom :1; /* End of Media */

uchar_t es_ili :1; /* Incorrect Length Indicator */

uchar_t es_key :4; /* Sense key */

uchar_t es_info_1; /* Information byte 1 */

uchar_t es_info_2; /* Information byte 2 */

uchar_t es_info_3; /* Information byte 3 */

uchar_t es_info_4; /* Information byte 4 */

uchar_t es_add_len; /* Number of additional bytes */

uchar_t es_cmd_info[4]; /* Command specific information */

uchar_t es_add_code; /* Additional Sense Code */

uchar_t es_qual_code; /* Additional Sense Code Qualifier */

uchar_t es_fru_code; /* Field Replaceable Unit Code */

uchar_t es_skey_specific[3]; /* Sense Key Specific information */

es_valid, if set, indicates that the information field contains valid information.

es_class should be 0x7.

es_code is either 0x0 or 0x1.

es_segnum contains the number of the current segment descriptor if the REQUEST SENSE
command is in response to a COPY, COMPARE, and COPY AND VERIFY command.

es_filmk, if set, indicates that the current command had read a file mark or set mark
(sequential access devices only).

es_eom, if set, indicates that an end-of-medium condition exists (sequential access and printer
devices only).

es_ili, if set, indicates that the requested logical block length did not match the logical block
length of the data on the medium.

es_key indicates generic information describing an error or exception condition. The
following sense keys are defined:

Name

Synopsis

Interface Level

Description

Structure
Members

scsi_extended_sense(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Aug 1995106

KEY_NO_SENSE Indicates that there is no specific sense key
information to be reported.

KEY_RECOVERABLE_ERROR Indicates that the last command completed
successfully with some recovery action
performed by the target.

KEY_NOT_READY Indicates that the logical unit addressed cannot
be accessed.

KEY_MEDIUM_ERROR Indicates that the command terminated with a
non-recovered error condition that was
probably caused by a flaw on the medium or an
error in the recorded data.

KEY_HARDWARE_ERROR Indicates that the target detected a
non-recoverable hardware failure while
performing the command or during a self test.

KEY_ILLEGAL_REQUEST Indicates that there was an illegal parameter in
the CDB or in the additional parameters
supplied as data for some commands.

KEY_UNIT_ATTENTION Indicates that the removable medium might
have been changed or the target has been reset.

KEY_WRITE_PROTECT/KEY_DATA_PROTECT Indicates that a command that reads or writes
the medium was attempted on a block that is
protected from this operation.

KEY_BLANK_CHECK Indicates that a write-once device or a
sequential access device encountered blank
medium or format-defined end-of-data
indication while reading or a write-once device
encountered a non-blank medium while
writing.

KEY_VENDOR_UNIQUE This sense key is available for reporting
vendor-specific conditions.

KEY_COPY_ABORTED Indicates that a COPY, COMPARE, and COPY AND

VERIFY command was aborted.

KEY_ABORTED_COMMAND Indicates that the target aborted the command.

KEY_EQUAL Indicates that a SEARCH DATA command has
satisfied an equal comparison.

scsi_extended_sense(9S)

Data Structures for Drivers 107

KEY_VOLUME_OVERFLOW Indicates that a buffered peripheral device has
reached the end-of-partition and data might
remain in the buffer that has not been written
to the medium.

KEY_MISCOMPARE Indicates that the source data did not match the
data read from the medium.

KEY_RESERVE Indicates that the target is currently reserved by
a different initiator.

es_info_{1,2,3,4} is device-type or command specific.

es_add_len indicates the number of additional sense bytes to follow.

es_cmd_info contains information that depends on the command that was executed.

es_add_code (ASC) indicates further information related to the error or exception condition
reported in the sense key field.

es_qual_code (ASCQ) indicates detailed information related to the additional sense code.

es_fru_code (FRU) indicates a device-specific mechanism to unit that has failed.

es_skey_specific is defined when the value of the sense-key specific valid bit (bit 7) is 1. This
field is reserved for sense keys not defined above.

scsi_device(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

See Also

scsi_extended_sense(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Aug 1995108

http://docs.sun.com/doc/816-4854

scsi_hba_tran – SCSI Host Bus Adapter (HBA) driver transport vector structure

#include <sys/scsi/scsi.h>

Solaris architecture specific (Solaris DDI).

A scsi_hba_tran_t structure defines vectors that an HBA driver exports to SCSA interfaces
so that HBA specific functions can be executed.

dev_info_t *tran_hba_dip; /* HBAs dev_info pointer */

void *tran_hba_private; /* HBA softstate */

void *tran_tgt_private; /* HBA target private pointer */

struct scsi_device *tran_sd; /* scsi_device */

int (*tran_tgt_init)(); /* Transport target */

/* Initialization */

int (*tran_tgt_probe)(); /* Transport target probe */

void (*tran_tgt_free)(); /* Transport target free */

int (*tran_start)(); /* Transport start */

int (*tran_reset)(); /* Transport reset */

int (*tran_abort)(); /* Transport abort */

int (*tran_getcap)(); /* Capability retrieval */

int (*tran_setcap)(); /* Capability establishment */

struct scsi_pkt *(*tran_init_pkt)(); /* Packet and DMA allocation */

void (*tran_destroy_pkt)(); /* Packet and DMA */

/* deallocation */

void (*tran_dmafree)(); /* DMA deallocation */

void (*tran_sync_pkt)(); /* Sync DMA */

void (*tran_reset_notify)(); /* Bus reset notification */

int (*tran_bus_reset)(); /* Reset bus only */

int (*tran_quiesce)(); /* Quiesce a bus */

int (*tran_unquiesce)(); /* Unquiesce a bus */

int tran_interconnect_type; /* transport interconnect */

tran_hba_dip dev_info pointer to the HBA supplying the scsi_hba_tran
structure.

tran_hba_private Private pointer that the HBA driver can use to refer to the
device's soft state structure.

tran_tgt_private Private pointer that the HBA can use to refer to per-target
specific data. This field can only be used when the
SCSI_HBA_TRAN_CLONE flag is specified in
scsi_hba_attach(9F). In this case, the HBA driver must
initialize this field in its tran_tgt_init(9E) entry point.

tran_sd Pointer to scsi_device(9S) structure if cloning; otherwise
NULL.

Name

Synopsis

Interface Level

Description

Structure
Members

scsi_hba_tran(9S)

Data Structures for Drivers 109

http://docs.sun.com/doc/816-5180/scsi-hba-attach-9f?a=view
http://docs.sun.com/doc/816-5179/tran-tgt-init-9e?a=view

tran_tgt_init The function entry allowing per-target HBA initialization, if
necessary.

tran_tgt_probe The function entry allowing per-target scsi_probe(9F)
customization, if necessary.

tran_tgt_free The function entry allowing per-target HBA deallocation, if
necessary.

tran_start The function entry that starts a SCSI command execution on
the HBA hardware.

tran_reset The function entry that resets a SCSI bus or target device.

tran_abort The function entry that aborts one SCSI command, or all
pending SCSI commands.

tran_getcap The function entry that retrieves a SCSI capability.

tran_setcap The function entry that sets a SCSI capability.

tran_init_pkt The function entry that allocates a scsi_pkt structure.

tran_destroy_pkt The function entry that frees a scsi_pkt structure allocated
by tran_init_pkt.

tran_dmafree The function entry that frees DMA resources that were
previously allocated by tran_init_pkt.

tran_sync_pkt Synchronize data in pkt after a data transfer has been
completed.

tran_reset_notify The function entry allowing a target to register a bus reset
notification request with the HBA driver.

tran_bus_reset The function entry that resets the SCSI bus without resetting
targets.

tran_quiesce The function entry that waits for all outstanding commands
to complete and blocks (or queues) any I/O requests issued.

tran_unquiesce The function entry that allows I/O activities to resume on the
SCSI bus.

tran_interconnect_type Integer value denoting interconnect type of the transport as
defined in the services.h header file.

tran_abort(9E), tran_bus_reset(9E), tran_destroy_pkt(9E), tran_dmafree(9E),
tran_getcap(9E), tran_init_pkt(9E), tran_quiesce(9E), tran_reset(9E),
tran_reset_notify(9E), tran_setcap(9E), tran_start(9E), tran_sync_pkt(9E),
tran_tgt_free(9E), tran_tgt_init(9E), tran_tgt_probe(9E), tran_unquiesce(9E),

See Also

scsi_hba_tran(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 17 Nov 2005110

http://docs.sun.com/doc/816-5180/scsi-probe-9f?a=view
http://docs.sun.com/doc/816-5179/tran-abort-9e?a=view
http://docs.sun.com/doc/816-5179/tran-bus-reset-9e?a=view
http://docs.sun.com/doc/816-5179/tran-destroy-pkt-9e?a=view
http://docs.sun.com/doc/816-5179/tran-dmafree-9e?a=view
http://docs.sun.com/doc/816-5179/tran-getcap-9e?a=view
http://docs.sun.com/doc/816-5179/tran-init-pkt-9e?a=view
http://docs.sun.com/doc/816-5179/tran-quiesce-9e?a=view
http://docs.sun.com/doc/816-5179/tran-reset-9e?a=view
http://docs.sun.com/doc/816-5179/tran-reset-notify-9e?a=view
http://docs.sun.com/doc/816-5179/tran-setcap-9e?a=view
http://docs.sun.com/doc/816-5179/tran-start-9e?a=view
http://docs.sun.com/doc/816-5179/tran-sync-pkt-9e?a=view
http://docs.sun.com/doc/816-5179/tran-tgt-free-9e?a=view
http://docs.sun.com/doc/816-5179/tran-tgt-init-9e?a=view
http://docs.sun.com/doc/816-5179/tran-tgt-probe-9e?a=view
http://docs.sun.com/doc/816-5179/tran-unquiesce-9e?a=view

ddi_dma_sync(9F), scsi_hba_attach(9F), scsi_hba_pkt_alloc(9F),
scsi_hba_pkt_free(9F), scsi_probe(9F), scsi_device(9S), scsi_pkt(9S)

Writing Device Drivers

scsi_hba_tran(9S)

Data Structures for Drivers 111

http://docs.sun.com/doc/816-5180/ddi-dma-sync-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-hba-attach-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-hba-pkt-alloc-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-hba-pkt-free-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-probe-9f?a=view
http://docs.sun.com/doc/816-4854

scsi_inquiry – SCSI inquiry structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

The scsi_inquiry structure contains 36 required bytes, followed by a variable number of
vendor-specific parameters. Bytes 59 through 95, if returned, are reserved for future
standardization. This structure is part of scsi_device(9S) structure and typically filled in by
scsi_probe(9F).

uchar_t inq_dtype; /* Periph. qualifier, dev. type */

uchar_t inq_rmb :1; /* Removable media */

uchar_t inq_qual :7; /* Dev. type qualifier */

uchar_t inq_iso :2; /* ISO version */

uchar_t inq_ecma :3; /* ANSI version */

uchar_t inq_aenc :1; /* Async event notif. cap. */

uchar_t inq_trmiop :1; /* Supports TERMINATE I/O PROC msg */

uchar_t inq_rdf :4; /* Response data format */

uchar_t inq_len; /* Additional length */

uchar_t inq_reladdr :1; /* Supports relative addressing */

uchar_t inq_wbus32 :1; /* Supports 32 bit wide data xfers */

uchar_t inq_wbus16 :1; /* Supports 16 bit wide data xfers */

uchar_t inq_sync :1; /* Supports synchron. data xfers */

uchar_t inq_linked :1; /* Supports linked commands */

uchar_t inq_cmd_que :1; /* Supports command queueing */

uchar_t inq_sftre :1; /* Supports Soft Reset option */

char inq_vid[8]; /* Vendor ID */

char inq_pid[16]; /* Product ID */

char inq_revision[4]; /* Revision level */

inq_dtype identifies the type of device. Bits 0 - 4 represent the Peripheral Device Type and bits
5 - 7 represent the Peripheral Qualifier. The following values are appropriate for Peripheral
Device Type field:

DTYPE_ARRAY_CTRL Array controller device (for example, RAID).

DTYPE_DIRECT Direct-access device (for example, magnetic disk).

DTYPE_ESI Enclosure services device.

DTYPE_SEQUENTIAL Sequential-access device (for example, magnetic tape).

DTYPE_PRINTER Printer device.

DTYPE_PROCESSOR Processor device.

DTYPE_WORM Write-once device (for example, some optical disks).

DTYPE_RODIRECT CD-ROM device.

Name

Synopsis

Interface Level

Description

Structure
Members

scsi_inquiry(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 Apr 1997112

http://docs.sun.com/doc/816-5180/scsi-probe-9f?a=view

DTYPE_SCANNER Scanner device.

DTYPE_OPTICAL Optical memory device (for example, some optical disks).

DTYPE_CHANGER Medium Changer device (for example, jukeboxes).

DTYPE_COMM Communications device.

DTYPE_UNKNOWN Unknown or no device type.

DTYPE_MASK Mask to isolate Peripheral Device Type field.

The following values are appropriate for the Peripheral Qualifier field:

DPQ_POSSIBLE The specified peripheral device type is currently connected to this logical
unit. If the target cannot determine whether or not a physical device is
currently connected, it uses this peripheral qualifier when returning the
INQUIRY data. This peripheral qualifier does not imply that the device is
ready for access by the initiator.

DPQ_SUPPORTED The target is capable of supporting the specified peripheral device type on
this logical unit. However, the physical device is not currently connected
to this logical unit.

DPQ_NEVER The target is not capable of supporting a physical device on this logical
unit. For this peripheral qualifier, the peripheral device type shall be set to
DTYPE_UNKNOWN to provide compatibility with previous versions of SCSI.
For all other peripheral device type values, this peripheral qualifier is
reserved.

DPQ_VUNIQ This is a vendor-unique qualifier.

DTYPE_NOTPRESENT is the peripheral qualifier DPQ_NEVER and the peripheral device type
DTYPE_UNKNOWN combined.

inq_rmb, if set, indicates that the medium is removable.

inq_qual is a device type qualifier.

inq_iso indicates ISO version.

inq_ecma indicates ECMA version.

inq_ansi indicates ANSI version.

inq_aenc, if set, indicates that the device supports asynchronous event notification capability
as defined in SCSI-2 specification.

inq_trmiop, if set, indicates that the device supports the TERMINATE I/O PROCESS message.

scsi_inquiry(9S)

Data Structures for Drivers 113

inq_rdf, if reset, indicates the INQUIRY data format is as specified in SCSI-1.

inq_inq_len is the additional length field that specifies the length in bytes of the parameters.

inq_reladdr, if set, indicates that the device supports the relative addressing mode of this
logical unit.

inq_wbus32, if set, indicates that the device supports 32-bit wide data transfers.

inq_wbus16, if set, indicates that the device supports 16-bit wide data transfers.

inq_sync, if set, indicates that the device supports synchronous data transfers.

inq_linked, if set, indicates that the device supports linked commands for this logical unit.

inq_cmdque, if set, indicates that the device supports tagged command queueing.

inq_sftre, if reset, indicates that the device responds to the RESET condition with the hard
RESET alternative. If this bit is set, this indicates that the device responds with the soft RESET
alternative.

inq_vid contains eight bytes of ASCII data identifying the vendor of the product.

inq_pid contains sixteen bytes of ASCII data as defined by the vendor.

inq_revision contains four bytes of ASCII data as defined by the vendor.

scsi_probe(9F), scsi_device(9S)

ANSI Small Computer System Interface-2 (SCSI-2)

Writing Device Drivers

See Also

scsi_inquiry(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 1 Apr 1997114

http://docs.sun.com/doc/816-5180/scsi-probe-9f?a=view
http://docs.sun.com/doc/816-4854

scsi_pkt – SCSI packet structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI).

A scsi_pkt structure defines the packet that is allocated by scsi_init_pkt(9F). The target
driver fills in some information, and passes it to scsi_transport(9F) for execution on the
target. The host bus adapter (HBA) fills in some other information as the command is
processed. When the command completes (or can be taken no further) the completion
function specified in the packet is called, with a pointer to the packet as its argument. From
fields within the packet, the target driver can determine the success or failure of the command.

opaque_t pkt_ha_private;

/* private data for host adapter */

struct scsi_address pkt_address;

/* destination packet */

opaque_t pkt_private;

/* private data for target driver */

void (*pkt_comp)(struct scsi_pkt *);

/* callback */

uint_t pkt_flags;

/* flags */

int pkt_time;

/* time allotted to complete command */

uchar_t *pkt_scbp;

/* pointer to status block */

uchar_t *pkt_cdbp;

/* pointer to command block */

ssize_t pkt_resid;

/* number of bytes not transferred */

uint_t pkt_state;

/* state of command */

uint_t pkt_statistics;

/* statistics */

uchar_t pkt_reason;

/* reason completion called */

pkt_ha_private An opaque pointer that the Host Bus Adapter uses to
reference a private data structure used to transfer scsi_pkt
requests.

pkt_address Initialized by scsi_init_pkt(9F); pkt_address records the
intended route and recipient of a request.

pkt_private Reserved for the use of the target driver; pkt_private is not
changed by the HBA driver.

Name

Synopsis

Interface Level

Description

Structure
Members

scsi_pkt(9S)

Data Structures for Drivers 115

http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-transport-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view

pkt_comp Specifies the command completion callback routine. When
the host adapter driver has gone as far as it can in
transporting a command to a SCSI target, and the command
has either run to completion or can go no further for some
other reason, the host adapter driver will call the function
pointed to by this field and pass a pointer to the packet as
argument. The callback routine itself is called from interrupt
context and must not sleep or call any function that might
sleep.

pkt_flags Provides additional information about how the target driver
expects the command to be executed. See pkt_flag
Definitions.

pkt_time Will be set by the target driver to represent the maximum
time in seconds that this command is allowed to take to
complete. Timeout starts when the command is transmitted
on the SCSI bus. pkt_time may be 0 if no timeout is
required.

pkt_scbp Points to either a struct scsi_status(9S) or, if
auto–rqsense is enabled, and pkt_state includes
STATE_ARQ_DONE, a struct scsi_arq_status. If scsi_status
is returned, the SCSI status byte resulting from the requested
command is available; if scsi_arq_status(9S) is returned,
the sense information is also available.

pkt_cdbp Points to a kernel-addressable buffer whose length was
specified by a call to the proper resource allocation routine,
scsi_init_pkt(9F).

pkt_resid Contains a residual count, either the number of data bytes
that have not been transferred (scsi_transport(9F)) or the
number of data bytes for which DMA resources could not be
allocated scsi_init_pkt(9F). In the latter case, partial DMA
resources may only be allocated if scsi_init_pkt(9F) is
called with the PKT_DMA_PARTIAL flag.

pkt_state Has bit positions that represent the six most important states
that a SCSI command can go through (see pkt_state
Definitions).

pkt_statistics Maintains some transport-related statistics. (see
pkt_statistics Definitions).

pkt_reason Contains a completion code that indicates why the pkt_comp
function was called. See pkt_reason Definitions, below.

scsi_pkt(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 June 2004116

http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-transport-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view

The host adapter driver will update the pkt_resid, pkt_reason, pkt_state, and
pkt_statistics fields.

The appropriate definitions for the structure member pkt_flags are:

FLAG_NOINTR

Run command with no command completion callback; command is complete upon return
from scsi_transport(9F).

FLAG_NODISCON

Run command without disconnects.

FLAG_NOPARITY

Run command without parity checking.

FLAG_HTAG

Run command as the head-of-queue-tagged command.

FLAG_OTAG

Run command as an ordered-queue-tagged command.

FLAG_STAG

Run command as a simple-queue —tagged command.

FLAG_SENSING

Indicates command is a request sense command.

FLAG_HEAD

Place command at the head of the queue.

FLAG_RENEGOTIATE_WIDE_SYNC

Before transporting this command, the host adapter should initiate the renegotiation of
wide mode and synchronous transfer speed. Normally the HBA driver manages
negotiations but under certain conditions forcing a renegotiation is appropriate.
Renegotiation is recommended before Request Sense and Inquiry commands. (Refer to the
SCSI 2 standard, sections 6.6.21 and 6.6.23.) This flag should not be set for every packet as
this will severely impact performance.

The appropriate definitions for the structure member pkt_reason are:

CMD_CMPLT No transport errors; normal completion.

CMD_INCOMPLETE Transport stopped with abnormal state.

CMD_DMA_DERR DMA direction error.

CMD_TRAN_ERR Unspecified transport error.

CMD_RESET SCSI bus reset destroyed command.

CMD_ABORTED Command transport aborted on request.

CMD_TIMEOUT Command timed out.

pkt_flagsDefinitions:

pkt_reason

Definitions:

scsi_pkt(9S)

Data Structures for Drivers 117

http://docs.sun.com/doc/816-5180/scsi-transport-9f?a=view

CMD_DATA_OVR Data overrun.

CMD_CMD_OVR Command overrun.

CMD_STS_OVR Status overrun.

CMD_BADMSG Message not command complete.

CMD_NOMSGOUT Target refused to go to message out phase.

CMD_XID_FAIL Extended identify message rejected.

CMD_IDE_FAIL “Initiator Detected Error” message rejected.

CMD_ABORT_FAIL Abort message rejected.

CMD_REJECT_FAIL Reject message rejected.

CMD_NOP_FAIL “No Operation” message rejected.

CMD_PER_FAIL “Message Parity Error” message rejected.

CMD_BDR_FAIL “Bus Device Reset" message rejected.

CMD_ID_FAIL Identify message rejected.

CMD_UNX_BUS_FREE Unexpected bus free phase.

CMD_TAG_REJECT Target rejected the tag message.

CMD_DEV_GONE The device has been removed.

The appropriate definitions for the structure member pkt_state are:

STATE_GOT_BUS Bus arbitration succeeded.

STATE_GOT_TARGET Target successfully selected.

STATE_SENT_CMD Command successfully sent.

STATE_XFERRED_DATA Data transfer took place.

STATE_GOT_STATUS Status received.

STATE_ARQ_DONE The command resulted in a check condition and the host
adapter driver executed an automatic request sense
command.

The definitions that are appropriate for the structure member pkt_statistics are:

STAT_DISCON Device disconnect.

STAT_SYNC Command did a synchronous data transfer.

STAT_PERR SCSI parity error.

pkt_state Definitions:

pkt_statistics
Definitions:

scsi_pkt(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 June 2004118

STAT_BUS_RESET Bus reset.

STAT_DEV_RESET Device reset.

STAT_ABORTED Command was aborted.

STAT_TIMEOUT Command timed out.

tran_init_pkt(9E), scsi_arq_status(9S), scsi_init_pkt(9F), scsi_transport(9F),
scsi_status(9S)

Writing Device Drivers

See Also

scsi_pkt(9S)

Data Structures for Drivers 119

http://docs.sun.com/doc/816-5179/tran-init-pkt-9e?a=view
http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-4854

scsi_status – SCSI status structure

#include <sys/scsi/scsi.h>

Solaris DDI specific (Solaris DDI)

The SCSI-2standard defines a status byte that is normally sent by the target to the initiator
during the status phase at the completion of each command.

uchar sts_scsi2 :1; /* SCSI-2 modifier bit */

uchar sts_is :1; /* intermediate status sent */

uchar sts_busy :1; /* device busy or reserved */

uchar sts_cm :1; /* condition met */

ucha sts_chk :1; /* check condition */

sts_chk indicates that a contingent allegiance condition has occurred.

sts_cm is returned whenever the requested operation is satisfied

sts_busy indicates that the target is busy. This status is returned whenever a target is unable
to accept a command from an otherwise acceptable initiator (that is, no reservation conflicts).
The recommended initiator recovery action is to issue the command again later.

sts_is is returned for every successfully completed command in a series of linked commands
(except the last command), unless the command is terminated with a check condition status,
reservation conflict, or command terminated status. Note that host bus adapter drivers may
not support linked commands (see scsi_ifsetcap(9F)). If sts_is and sts_busy are both set,
then a reservation conflict has occurred.

sts_scsi2 is the SCSI-2 modifier bit. If sts_scsi2 and sts_chk are both set, this indicates a
command terminated status. If sts_scsi2 and sts_busy are both set, this indicates that the
command queue in the target is full.

For accessing the status as a byte, the following values are appropriate:

STATUS_GOOD This status indicates that the target has successfully
completed the command.

STATUS_CHECK This status indicates that a contingent allegiance
condition has occurred.

STATUS_MET This status is returned when the requested operations
are satisfied.

STATUS_BUSY This status indicates that the target is busy.

STATUS_INTERMEDIATE This status is returned for every successfully completed
command in a series of linked commands.

STATUS_SCSI2 This is the SCSI-2 modifier bit.

Name

Synopsis

Interface Level

Description

Structure
Members

scsi_status(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 30 Aug 1995120

http://docs.sun.com/doc/816-5180/scsi-ifsetcap-9f?a=view

STATUS_INTERMEDIATE_MET This status is a combination of STATUS_MET and
STATUS_INTERMEDIATE.

STATUS_RESERVATION_CONFLICT This status is a combination of STATUS_INTERMEDIATE
and STATUS_BUSY, and it is returned whenever an
initiator attempts to access a logical unit or an extent
within a logical unit is reserved.

STATUS_TERMINATED This status is a combination of STATUS_SCSI2 and
STATUS_CHECK, and it is returned whenever the target
terminates the current I/O process after receiving a
terminate I/O process message.

STATUS_QFULL This status is a combination of STATUS_SCSI2 and
STATUS_BUSY, and it is returned when the command
queue in the target is full.

scsi_ifgetcap(9F), scsi_init_pkt(9F), scsi_extended_sense(9S), scsi_pkt(9S)

Writing Device Drivers

See Also

scsi_status(9S)

Data Structures for Drivers 121

http://docs.sun.com/doc/816-5180/scsi-ifgetcap-9f?a=view
http://docs.sun.com/doc/816-5180/scsi-init-pkt-9f?a=view
http://docs.sun.com/doc/816-4854

streamtab – STREAMS entity declaration structure

#include <sys/stream.h>

Architecture independent level 1 (DDI/DKI).

Each STREAMS driver or module must have a streamtab structure.

streamtab is made up of qinit structures for both the read and write queue portions of each
module or driver. Multiplexing drivers require both upper and lower qinit structures. The
qinit structure contains the entry points through which the module or driver routines are
called.

Normally, the read QUEUE contains the open and close routines. Both the read and write
queue can contain put and service procedures.

struct qinit *st_rdinit; /* read QUEUE */

struct qinit *st_wrinit; /* write QUEUE */

struct qinit *st_muxrinit; /* lower read QUEUE*/

struct qinit *st_muxwinit; /* lower write QUEUE*/

qinit(9S)

STREAMS Programming Guide

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

streamtab(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 11 Apr 1991122

http://docs.sun.com/doc/816-4855

stroptions – options structure for M_SETOPTS message

#include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/ddi.h>

#include <sys/sunddi.h>

Architecture independent level 1 (DDI/DKI)

The M_SETOPTS message contains a stroptions structure and is used to control options in the
stream head.

uint_t so_flags; /* options to set */

short so_readopt; /* read option */

ushort_t so_wroff; /* write offset */

ssize_t so_minpsz; /* minimum read packet size */

ssize_t so_maxpsz; /* maximum read packet size */

size_t so_hiwat; /* read queue high water mark */

size_t so_lowat; /* read queue low water mark */

unsigned char so_band; /* band for water marks */

ushort_t so_erropt; /* error option */

The following are the flags that can be set in the so_flags bit mask in the stroptions
structure. Note that multiple flags can be set.

SO_READOPT Set read option.

SO_WROFF Set write offset.

SO_MINPSZ Set minimum packet size

SO_MAXPSZ Set maximum packet size.

SO_HIWAT Set high water mark.

SO_LOWAT Set low water mark.

SO_MREADON Set read notification ON.

SO_MREADOFF Set read notification OFF.

SO_NDELON Old TTY semantics for NDELAY reads and writes.

SO_NDELOFFSTREAMS Semantics for NDELAY reads and writes.

SO_ISTTY The stream is acting as a terminal.

SO_ISNTTY The stream is not acting as a terminal.

SO_TOSTOP Stop on background writes to this stream.

SO_TONSTOP Do not stop on background writes to this stream.

SO_BAND Water marks affect band.

Name

Synopsis

Interface Level

Description

Structure
Members

stroptions(9S)

Data Structures for Drivers 123

SO_ERROPT Set error option.

When SO_READOPT is set, the so_readopt field of the stroptions structure can take one of the
following values. See read(2).

RNORM Read message normal.

RMSGD Read message discard.

RMSGN Read message, no discard.

When SO_BAND is set, so_band determines to which band so_hiwat and so_lowat apply.

When SO_ERROPT is set, the so_erropt field of the stroptions structure can take a value that
is either none or one of:

RERRNORM Persistent read errors; default.

RERRNONPERSIST Non-persistent read errors.

OR'ed with either none or one of:

WERRNORM Persistent write errors; default.

WERRNONPERSIST Non-persistent write errors.

read(2), streamio(7I)

STREAMS Programming Guide

See Also

stroptions(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 14 Nov 1996124

http://docs.sun.com/doc/816-5167/read-2?a=view
http://docs.sun.com/doc/816-5167/read-2?a=view
http://docs.sun.com/doc/816-5177/streamio-7i?a=view
http://docs.sun.com/doc/816-4855

tuple – card information structure (CIS) access structure

#include <sys/pccard.h>

Solaris DDI Specific (Solaris DDI)

The tuple_t structure is the basic data structure provided by card services to manage PC card
information. A PC card provides identification and configuration information through its
card information structure (CIS). A PC card driver accesses a PC card's CIS through various
card services functions.

The CIS information allows PC cards to be self-identifying: the CIS provides information to
the system so that it can identify the proper PC card driver for the PC card, and provides
configuration information so that the driver can allocate appropriate resources to configure
the PC card for proper operation in the system.

The CIS information is contained on the PC card in a linked list of tuple data structures called
a CIS chain. Each tuple has a one-byte type and a one-byte link, an offset to the next tuple in
the list. A PC card can have one or more CIS chains.

A multi-function PC card that complies with the PC Card 95 MultiFunction Metaformat
specification will have one or more global CIS chains that collectively are referred to as the
global CIS. These PC Cards will also have one or more per-function CIS chains. Each
per-function collection of CIS chains is referred to as a function-specific CIS.

To examine a PC card's CIS, first a PC card driver must locate the desired tuple by calling
csx_GetFirstTuple(9F). Once the first tuple is located, subsequent tuples may be located by
calling csx_GetNextTuple(9F). See csx_GetFirstTuple(9F). The linked list of tuples may be
inspected one by one, or the driver may narrow the search by requesting only tuples of a
particular type.

Once a tuple has been located, the PC card driver may inspect the tuple data. The most
convenient way to do this for standard tuples is by calling one of the number of tuple-parsing
utility functions; for custom tuples, the driver may get access to the raw tuple data by calling
csx_GetTupleData(9F).

Solaris PC card drivers do not need to be concerned with which CIS chain a tuple appears in.
On a multi-function PC card, the client will get the tuples from the global CIS followed by the
tuples in the function-specific CIS. The caller will not get any tuples from a function-specific
CIS that does not belong to the caller's function.

The structure members of tuple_t are:

uint32_t Socket; /* socket number */

uint32_t Attributes; /* tuple attributes */

cisdata_t DesiredTuple; /* tuple to search for */

cisdata_t TupleOffset; /* tuple data offset */

Name

Synopsis

Interface Level

Description

Structure
Members

tuple(9S)

Data Structures for Drivers 125

http://docs.sun.com/doc/816-5180/csx-getfirsttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getnexttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getfirsttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-gettupledata-9f?a=view

cisdata_t TupleDataMax; /* max tuple data size */

cisdata_t TupleDataLen; /* actual tuple data length */

cisdata_t TupleData[CIS_MAX_TUPLE_DATA_LEN];

/* body tuple data */

cisdata_t TupleCode; /* tuple type code */

cisdata_t TupleLink; /* tuple link */

The fields are defined as follows:

Socket Not used in Solaris, but for portability with other card services
implementations, it should be set to the logical socket number.

Attributes This field is bit-mapped. The following bits are defined:

TUPLE_RETURN_LINK Return link tuples if set.

TUPLE_RETURN_IGNORED_TUPLES Return ignored tuples if set. Ignored
tuples are those tuples in a
multi-function PC card's global CIS
chain that are duplicates of the same
tuples in a function-specific CIS
chain.

TUPLE_RETURN_NAME Return tuple name string using the
csx_ParseTuple(9F) function if set.

DesiredTuple This field is the requested tuple type code to be returned when calling
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F).
RETURN_FIRST_TUPLE is used to return the first tuple regardless of tuple
type. RETURN_NEXT_TUPLE is used to return the next tuple regardless of
tuple type.

TupleOffset This field allows partial tuple information to be retrieved, starting at the
specified offset within the tuple. This field must only be set before calling
csx_GetTupleData(9F).

TupleDataMax This field is the size of the tuple data buffer that card services uses to return
raw tuple data from csx_GetTupleData(9F). It can be larger than the
number of bytes in the tuple data body. Card services ignores any value
placed here by the client.

TupleDataLen This field is the actual size of the tuple data body. It represents the number
of tuple data body bytes returned by csx_GetTupleData(9F).

TupleData This field is an array of bytes containing the raw tuple data body contents
returned by csx_GetTupleData(9F).

TupleCode This field is the tuple type code and is returned by
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F) when a tuple
matching the DesiredTuple field is returned.

tuple(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 20 Dec 1996126

http://docs.sun.com/doc/816-5180/csx-parsetuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getfirsttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getnexttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-gettupledata-9f?a=view
http://docs.sun.com/doc/816-5180/csx-gettupledata-9f?a=view
http://docs.sun.com/doc/816-5180/csx-gettupledata-9f?a=view
http://docs.sun.com/doc/816-5180/csx-gettupledata-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getfirsttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getnexttuple-9f?a=view

TupleLink This field is the tuple link, the offset to the next tuple, and is returned by
csx_GetFirstTuple(9F) or csx_GetNextTuple(9F) when a tuple
matching the DesiredTuple field is returned.

csx_GetFirstTuple(9F), csx_GetTupleData(9F), csx_ParseTuple(9F),
csx_Parse_CISTPL_BATTERY(9F), csx_Parse_CISTPL_BYTEORDER(9F),
csx_Parse_CISTPL_CFTABLE_ENTRY(9F), csx_Parse_CISTPL_CONFIG(9F),
csx_Parse_CISTPL_DATE(9F), csx_Parse_CISTPL_DEVICE(9F),
csx_Parse_CISTPL_FUNCE(9F), csx_Parse_CISTPL_FUNCID(9F),
csx_Parse_CISTPL_JEDEC_C(9F), csx_Parse_CISTPL_MANFID(9F),
csx_Parse_CISTPL_SPCL(9F), csx_Parse_CISTPL_VERS_1(9F),
csx_Parse_CISTPL_VERS_2(9F)

PC Card 95 Standard, PCMCIA/JEIDA

See Also

tuple(9S)

Data Structures for Drivers 127

http://docs.sun.com/doc/816-5180/csx-getfirsttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getnexttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-getfirsttuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-gettupledata-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parsetuple-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-battery-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-byteorder-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-cftable-entry-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-config-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-date-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-device-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-funce-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-funcid-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-jedec-c-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-manfid-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-spcl-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-vers-1-9f?a=view
http://docs.sun.com/doc/816-5180/csx-parse-cistpl-vers-2-9f?a=view

uio – scatter/gather I/O request structure

#include <sys/uio.h>

Architecture independent level 1 (DDI/DKI)

A uio structure describes an I/O request that can be broken up into different data storage
areas (scatter/gather I/O). A request is a list of iovec structures (base-length pairs) indicating
where in user space or kernel space the I/O data is to be read or written.

The contents of uio structures passed to the driver through the entry points should not be
written by the driver. The uiomove(9F) function takes care of all overhead related to
maintaining the state of the uio structure.

uio structures allocated by the driver should be initialized to zero before use, by bzero(9F),
kmem_zalloc(9F), or an equivalent.

iovec_t *uio_iov; /* pointer to start of iovec */

/* list for uio struc. */

int uio_iovcnt; /* number of iovecs in list */

off_t uio_offset; /* 32-bit offset into file where

/* data is xferred. See NOTES. */

offset_t uio_loffset; /* 64-bit offset into file where */

/* data is xferred. See NOTES. */

uio_seg_t uio_segflg; /* ID’s type of I/O transfer: */

/* UIO_SYSSPACE: kernel <-> kernel */

/* UIO_USERSPACE: kernel <-> user */

short uio_fmode; /* file mode flags (not driver setable) */

daddr_t uio_limit; /* 32-bit ulimit for file (max. block */

/* offset). not driver setable. */

/* See NOTES. */

diskaddr_t uio_llimit; /* 64-bit ulimit for file (max. block */

/* offset). not driver setable. */

/* See NOTES */

int uio_resid; /* residual count */

The uio_iov member is a pointer to the beginning of the iovec(9S) list for the uio. When the
uio structure is passed to the driver through an entry point, the driver should not set uio_iov.
When the uio structure is created by the driver, uio_iov should be initialized by the driver
and not written to afterward.

aread(9E), awrite(9E), read(9E), write(9E), bzero(9F), kmem_zalloc(9F), uiomove(9F),
cb_ops(9S), iovec(9S)

Writing Device Drivers

Name

Synopsis

Interface Level

Description

Structure
Members

See Also

uio(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 28 Mar 1997128

http://docs.sun.com/doc/816-5180/uiomove-9f?a=view
http://docs.sun.com/doc/816-5180/bzero-9f?a=view
http://docs.sun.com/doc/816-5180/kmem-zalloc-9f?a=view
http://docs.sun.com/doc/816-5179/aread-9e?a=view
http://docs.sun.com/doc/816-5179/awrite-9e?a=view
http://docs.sun.com/doc/816-5179/read-9e?a=view
http://docs.sun.com/doc/816-5179/write-9e?a=view
http://docs.sun.com/doc/816-5180/bzero-9f?a=view
http://docs.sun.com/doc/816-5180/kmem-zalloc-9f?a=view
http://docs.sun.com/doc/816-5180/uiomove-9f?a=view
http://docs.sun.com/doc/816-4854

Only one structure, uio_offset or uio_loffset, should be interpreted by the driver. Which
field the driver interprets is dependent upon the settings in the cb_ops(9S) structure.

Only one structure, uio_limit or uio_llimit, should be interpreted by the driver. Which
field the driver interprets is dependent upon the settings in the cb_ops(9S) structure.

When performing I/O on a seekable device, the driver should not modify either the
uio_offset or the uio_loffset field of the uio structure. I/O to such a device is constrained
by the maximum offset value. When performing I/O on a device on which the concept of
position has no relevance, the driver may preserve the uio_offset or uio_loffset, perform
the I/O operation, then restore the uio_offset or uio_loffset to the field's initial value. I/O
performed to a device in this manner is not constrained.

Notes

uio(9S)

Data Structures for Drivers 129

usb_bulk_request – USB bulk request structure

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

A bulk request (that is, a request sent through a bulk pipe) is used to transfer large amounts of
data in reliable but non-time-critical fashion. Please refer to Section 5.8 of the USB 2.0
specification for information on bulk transfers. (The USB 2.0 specification is available at
www.usb.org.)

The fields in the usb_bulk_req_t are used to format a bulk request. Please see below for
acceptable combinations of flags and attributes.

The usb_bulk_req_t fields are:

uint_t bulk_len; /* number of bytes to xfer */

/* Please see */

/* usb_pipe_get_max_bulk_xfer_size(9F) */

/* for maximum size */

mblk_t *bulk_data; /* the data for the data phase */

/* IN or OUT: allocated by client */

uint_t bulk_timeout; /* xfer timeout value in secs */

/* If set to zero, defaults to 5 sec */

usb_opaque_t bulk_client_private; /* Client specific information */

usb_req_attrs_t bulk_attributes; /* xfer-attributes */

/* Normal callback function, called upon completion. */

void (*bulk_cb)(

usb_pipe_handle_t ph, struct usb_bulk_req *req);

/* Exception callback function, for error handling. */

void (*bulk_exc_cb)(

usb_pipe_handle_t ph, struct usb_bulk_req *req);

/* set by USBA/HCD framework on completion */

usb_cr_t bulk_completion_reason; /* overall success status */

/* See usb_completion_reason(9S) */

usb_cb_flags_t bulk_cb_flags; /* recovery done by callback hndlr */

/* See usb_callback_flags(9S) */

Request attributes define special handling for transfers. The following attributes are valid for
bulk requests:

USB_ATTRS_SHORT_XFER_OK USB framework accepts transfers where less data is
received than expected.

USB_ATTRS_AUTOCLEARING USB framework resets pipe and clears functional stalls
automatically on exception.

Name

Synopsis

Interface Level

Description

usb_bulk_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004130

USB_ATTRS_PIPE_RESET USB framework resets pipe automatically on
exception.

Please see usb_request_attributes(9S) for more information.

Bulk transfers/requests are subject to the following constraints and caveats:

1) The following table indicates combinations of usb_pipe_bulk_xfer() flags argument and
fields of the usb_bulk_req_t request argument (X = don't care).

Flags Type Attributes Data Timeout Semantics

X X X ==NULL X illegal

X X ONE_XFER X X illegal

no sleep IN !SHORT_XFER_OK !=NULL 0 See note (A)

no sleep IN !SHORT_XFER_OK !=NULL > 0 See note (B)

sleep IN !SHORT_XFER_OK !=NULL 0 See note (C)

sleep IN !SHORT_XFER_OK !=NULL > 0 See note (D)

no sleep IN SHORT_XFER_OK !=NULL 0 See note (E)

no sleep IN SHORT_XFER_OK !=NULL > 0 See note (F)

sleep IN SHORT_XFER_OK !=NULL 0 See note (G)

sleep IN SHORT_XFER_OK !=NULL > 0 See note (H)

X OUT SHORT_XFER_OK X X illegal

no sleep OUT X !=NULL 0 See note (I)

no sleep OUT X !=NULL > 0 See note (J)

sleep OUT X !=NULL 0 See note (K)

sleep OUT X !=NULL > 0 See note (L)

Table notes:

A). Fill buffer, no timeout, callback when bulk_len is transferred.
B). Fill buffer, with timeout; callback when bulk_len is transferred.
C). Fill buffer, no timeout, unblock when bulk_len is transferred; no callback.

usb_bulk_request(9S)

Data Structures for Drivers 131

D). Fill buffer, with timeout; unblock when bulk_len is transferred or a timeout occurs; no
callback.
E) Fill buffer, no timeout, callback when bulk_len is transferred or first short packet is
received.
F). Fill buffer, with timeout; callback when bulk_len is transferred or first short packet is
received.
G). Fill buffer, no timeout, unblock when bulk_len is transferred or first short packet is
received; no callback.
H). Fill buffer, with timeout; unblock when bulk_len is transferred, first short packet is
received, or a timeout occurs; no callback.
I). Empty buffer, no timeout; callback when bulk_len is transferred.
J) Empty buffer, with timeout; callback when bulk_len is transferred or a timeout occurs.
K). Empty buffer, no timeout; unblock when bulk_len is transferred; no callback.
L). Empty buffer, with timeout; unblock when bulk_len is transferred or a timeout occurs; no
callback.

2) bulk_len must be > 0. bulk_data must not be NULL.

3) Bulk_residue is set for both READ and WRITE. If it is set to 0, it means that all of the data
was transferred successfully. In case of WRITE it contains data not written and in case of
READ it contains the data NOT read so far. A residue can only occur because of timeout or
bus/device error. (Note that a short transfer for a request where the
USB_ATTRS_SHORT_XFER_OK attribute is not set is considered a device error.) An
exception callback is made and completion_reason will be non-zero.

4) Splitting large Bulk xfers: Due to internal constraints, the USBA framework can only do a
limited size bulk data xfer per request. A client driver may first determine this limitation by
calling the USBA interface (usb_pipe_get_max_bulk_xfer_size(9F)) and then restrict itself to
doing transfers in multiples of this fixed size. This forces a client driver to do data xfers in a
loop for a large request, splitting it into multiple chunks of fixed size.

The bulk_completion_reason indicates the status of the transfer. See
usb_completion_reason(9S) for usb_cr_t definitions.

The bulk_cb_flags are set prior to calling the exception callback handler to summarize
recovery actions taken and errors encountered during recovery. See usb_callback_flags(9S)
for usb_cb_flags_t definitions.

--- Callback handling ---

All usb request types share the same callback handling. See usb_callback_flags(9S) for
details.

See attributes(5) for descriptions of the following attributes:Attributes

usb_bulk_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004132

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

usb_alloc_request(9F), usb_pipe_bulk_xfer(9F), usb_pipe_ctrl_xfer(9F),
usb_pipe_get_max_bulk_transfer_size(9F), usb_pipe_intr_xfer(9F),
usb_pipe_isoc_xfer(9F), usb_callback_flags(9S), usb_completion_reason(9S),
usb_ctrl_request(9S), usb_intr_request(9S), usb_isoc_request(9S),
usb_request_attributes(9S)

See Also

usb_bulk_request(9S)

Data Structures for Drivers 133

http://docs.sun.com/doc/816-5180/usb-alloc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-bulk-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-ctrl-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-get-max-bulk-transfer-size-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-intr-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-isoc-xfer-9f?a=view

usb_callback_flags – USB callback flag definitions

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

If the USB framework detects an error during a request execution, it calls the client driver's
exception callback handler to report what happened. Callback flags (which are set prior to
calling the exception callback handler) detail errors discovered during the exception recovery
process, and summarize recovery actions taken by the USBA framework.

Information from the callback flags supplements information from the original transport
error. For transfers, the original transport error status is returned to the callback handler
through the original request (whose completion reason field contains any transport error
indication). For command completion callbacks, the callback's rval argument contains the
transport error status. A completion reason of USB_CR_OK means the transfer completed with
no errors detected.

The usb_cb_flags_t enumerated type contains the following definitions:

USB_CB_NO_INFO No additional errors discovered or recovery actions
taken.

USB_CB_FUNCTIONAL_STALL A functional stall occurred during the transfer. A
functional stall is usually caused by a hardware error,
and must be explicitly cleared. A functional stall is fatal
if it cannot be cleared. The default control pipe never
shows a functional stall.

USB_CB_STALL_CLEARED A functional stall has been cleared by the USBA
framework. This can happen if
USB_ATTRS_AUTOCLEARING is set in the request's
xxxx_attributes field.

USB_CB_PROTOCOL_STALL A protocol stall has occurred during the transfer. A
protocol stall is caused usually by an invalid or
misunderstood command. It is cleared automatically
when the device is given its next command. The USBA
framework treats stalls detected on default pipe
transfers as protocol stalls.

USB_CB_RESET_PIPE A pipe with a stall has been reset automatically via
autoclearing, or via an explicit call to
usb_pipe_reset(9F). Resetting a pipe consists of
stopping all transactions on a pipe, setting the pipe to
the idle state, and if the pipe is not the default pipe,
flushing all pending requests. The request which has
the error, plus all pending requests which are flushed,

Name

Synopsis

Interface Level

Description

usb_callback_flags(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004134

http://docs.sun.com/doc/816-5180/usb-pipe-reset-9f?a=view

show USB_CB_RESET_PIPE set in the usb_cb_flags_t
when their exception callback is called.

USB_CB_ASYNC_REQ_FAILED Resources could not be allocated to process callbacks
asynchronously. Callbacks receiving this flag must not
block, since those callbacks are executing in a context
which holds resources shared by the rest of the system.
Note that exception callbacks with
USB_CB_ASYNC_REQ_FAILED set may execute out
of order from the requests which preceded them.
Normal callbacks may be already queued when an
exception hits that the USBA is unable to queue.

USB_CB_SUBMIT_FAILED A queued request was submitted to the host controller
driver and was rejected. The usb_completion_reason
shows why the request was rejected by the host
controller.

USB_CB_NO_RESOURCES Insufficient resources were available for recovery to
proceed.

USB_CB_INTR_CONTEXT Callback is executing in interrupt context and should
not block.

The usb_cb_flags_t enumerated type defines a bitmask. Multiple bits can be set, reporting
back multiple statuses to the exception callback handler.

The USBA framework supports callback handling as a way of asynchronous client driver
notification. There are three kinds of callbacks: Normal completion transfer callback,
exception (error) completion transfer callback, and command completion callback, each
described below.

Callback handlers are called whenever they are specified in a request or command, regardless
of whether or not that request or command specifies the USB_FLAGS_SLEEP flag.
(USB_FLAGS_SLEEP tells the request or command to block until completed.) Callback
handlers must be specified whenever an asynchronous transfer is requested.

Each pipe is associated with a pool of threads that are used to run callbacks associated with
requests on that pipe. All transfer completion callbacks for a particular pipe are run serially by
a single thread.

Pipes taking requests with callbacks which can block must have their pipe policy properly
initialized. If a callback blocks on a condition that is only met by another thread associated
with the same pipe, there must be sufficient threads available. Otherwise that callback thread
will block forever. Similarly, problems will ensue when callbacks overlap and there are not
enough threads to handle the number of overlapping callbacks.

CALLBACK HANDLER

PIPE POLICY

usb_callback_flags(9S)

Data Structures for Drivers 135

The pp_max_async_reqs field of the pipe_policy provides a hint of how many threads to
allocate for asynchronous processing of request callbacks on a pipe. Set this value high enough
per pipe to accommodate all of the pipe's possible asynchronous conditions. The pipe_policy
is passed to usb_pipe_open(9F).

Transfer completion callbacks (normal completion and exception):

Most transfer completion callbacks are allowed to block, but only under certain conditions:

1. No callback is allowed to block if the callback flags show USB_CB_INTR_CONTEXT set,
since that flag indicates that the callback is running in interrupt context instead of kernel
context. Isochronous normal completion callbacks, plus those with
USB_CB_ASYNC_REQ_FAILED set, execute in interrupt context.

2. Any callback except for isochronous normal completion can block for resources (for
example to allocate memory).

3. No callback can block for synchronous completion of a command (for example, a call to
usb_pipe_close(9F) with the USB_FLAGS_SLEEP flag passed) done on the same pipe.
The command could wait for all callbacks to complete, including the callback which issued
that command, causing all operations on the pipe to deadlock. Note that asynchronous
commands can start from a callback, providing that the pipe's policy pp_max_async_reqs
field is initialized to accommodate them.

4. Avoid callbacks that block for synchronous completion of commands done on other pipes.
Such conditions can cause complex dependencies and unpredictable results.

5. No callback can block waiting for a synchronous transfer request to complete. (Note that
making an asynchronous request to start a new transfer or start polling does not block, and
is OK.)

6. No callback can block waiting for another callback to complete. (This is because all
callbacks are done by a single thread.)

7. Note that if a callback blocks, other callbacks awaiting processing can backup behind it,
impacting system resources.

A transfer request can specify a non-null normal-completion callback. Such requests conclude
by calling the normal-completion callback when the transfer completes normally. Similarly, a
transfer request can specify a non-null exception callback. Such requests conclude by calling
the exception callback when the transfer completes abnormally. Note that the same callback
can be used for both normal completion and exception callback handling. A completion
reason of USB_CR_OK defines normal completion.

All request-callbacks take as arguments a usb_pipe_handle_t and a pointer to the request:

xxxx_cb(usb_pipe_handle_t ph, struct usb_ctrl_req *req);

usb_callback_flags(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004136

http://docs.sun.com/doc/816-5180/usb-pipe-open-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-close-9f?a=view

Such callbacks can retrieve saved state or other information from the private area of the pipe
handle. (See usb_pipe_set_private(9F).) Handlers also have access to the completion reason
(usb_cr_t) and callback flags (usb_cb_flags_t) through the request argument they are passed.

Request information follows. In the data below, xxxx below represents the type of request (ctrl,
intr, isoc or bulk.)

Request structure name is usb_xxxx_req_t.

Normal completion callback handler field is xxxx_cb.

Exception callback handler field is xxxx_exc_cb.

Completion reason field is xxxx_completion_reason.

Callback flags field is xxxx_cb_flags.

Calls to some non-transfer functions can be set up for callback notification. These include
usb_pipe_close(9F), usb_pipe_reset(9F), usb_pipe_drain_reqs(9F), usb_set_cfg(9F),
usb_set_alt_if(9F) and usb_clr_feature(9F).

The signature of a command completion callback is as follows:

command_cb(

usb_pipe_handle_t cb_pipe_handle,

usb_opaque_t arg,

int rval,

usb_cb_flags_t flags);

As with transfer completion callbacks, command completion callbacks take a
usb_pipe_handle_t to retrieve saved state or other information from the pipe's private area.
Also, command completion callbacks are provided with an additional user-definable
argument (usb_opaque_t arg), the return status of the executed command (int rval), and the
callback flags (usb_cb_flags_t flags).

The rval argument is roughly equivalent to the completion reason of a transfer callback,
indicating the overall status. See the return values of the relevant function for possible rval
values which can be passed to the callback.

The callback flags can be checked when rval indicates failure status. Just as for transfer
completion callbacks, callback flags return additional information on execution events.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

COMMAND
COMPLETION

CALLBACKS

Attributes

usb_callback_flags(9S)

Data Structures for Drivers 137

http://docs.sun.com/doc/816-5180/usb-pipe-set-private-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-close-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-reset-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-drain-reqs-9f?a=view
http://docs.sun.com/doc/816-5180/usb-set-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-set-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-clr-feature-9f?a=view

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

Availability SUNWusb, SUNWusbu

usb_alloc_request(9F), usb_pipe_bulk_xfer(9F), usb_pipe_ctrl_xfer(9F),
usb_pipe_intr_xfer(9F), usb_pipe_isoc_xfer(9F), usb_bulk_request(9S),
usb_ctrl_request(9S), usb_intr_request(9S), usb_isoc_request(9S)

See Also

usb_callback_flags(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004138

http://docs.sun.com/doc/816-5180/usb-alloc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-bulk-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-ctrl-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-intr-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-isoc-xfer-9f?a=view

usb_cfg_descr – USB configuration descriptor

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The usb_cfg_descr_t configuration descriptor defines attributes of a configuration. A
configuration contains one or more interfaces. A configuration descriptor acts as a header for
the group of other descriptors describing the subcomponents (for example, interfaces and
endpoints) of a configuration. Please refer to Section 9.6.3 of the USB 2.0 specification. The
USB 2.0 specification is available at www.usb.org.

One or more configuration descriptors are retrieved from a USB device during device
enumeration. They can be accessed via usb_get_dev_data(9F).

A configuration descriptor has the following fields:

uint8_t bLength Size of this descriptor

in bytes.

uint8_t bDescriptorType Set to USB_DESCR_TYPE_CFG.

uint16_t wTotalLength Total length of data returned

including this and all other

descriptors in this configuration.

uint8_t bNumInterfaces Number of interfaces in this

configuration.

uint8_t bConfigurationValue ID of this configuration

(1-based).

uint8_t iConfiguration Index of optional configuration

string. Valid if > 0.

uint8_t bmAttributes Configuration characteristics

(See below).

uint8_t bMaxPower Maximum power consumption, in

2mA units.

Configuration descriptors define the following bmAttributes:

USB_CFG_ATTR_SELFPWR - Set if config not using bus power.

USB_CFG_ATTR_REMOTE_WAKEUP - Set if config supports rem wakeup.

See attributes(5) for descriptions of the following attributes:

Name

Synopsis

Interface Level

Description

Attributes

usb_cfg_descr(9S)

Data Structures for Drivers 139

http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

attributes(5), usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F), usb_parse_data(9F), usb_ctrl_request(9S),
usb_dev_descr(9S), usb_dev_qlf_descr(9S), usb_ep_descr(9S), usb_if_descr(9S),
usb_other_speed_cfg_descr(9S), usb_string_descr(9S)

See Also

usb_cfg_descr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004140

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view

usb_client_dev_data – Device configuration information

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The usb_client_dev_data_t structure carries all device configuration information. It is
provided to a USB client driver through a call to usb_get_dev_data(9F). Most USBA
functions require information which comes from this structure.

The usb_client_dev_data_t structure fields are:

usb_pipe_handle_t dev_default_ph; /* deflt ctrl pipe handle */

ddi_iblock_cookie_t dev_iblock_cookie;/* for calls to mutex_init */

/* for mutexes used by intr */

/* context callbacks. */

usb_dev_descr_t *dev_descr; /* parsed* dev. descriptor */

char *dev_mfg; /* manufacturer’s ID string */

char *dev_product; /* product ID string */

char *dev_serial; /* serial num. string */

usb_reg_parse_lvl_t dev_parse_level; /* Parse level */

/* reflecting the tree */

/* (if any) returned through */

/* the dev_cfg array. */

usb_cfg_data_t *dev_cfg; /* parsed* descr tree.*/

uint_t dev_n_cfg; /* num cfgs in parsed descr. */

/* tree, dev_cfg array below.*/

usb_cfg_data_t *dev_curr_cfg; /* Pointer to the tree config*/

/* corresponding to the cfg */

/* active at the time of the */

/* usb_get_dev_data() call */

int dev_curr_if; /* First active interface in */

/* tree under driver’s control.*/

/* Always zero when driver */

/* controls whole device. */

* A parsed descriptor is in a struct whose fields’ have been adjusted

to the host processor. This may include endianness adjustment (the USB

Name

Synopsis

Interface Level

Description

usb_client_dev_data(9S)

Data Structures for Drivers 141

http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view

standard defines that devices report in little-endian bit order) or

structure padding as necessary.

dev_parse_level represents the extent of the device represented by the tree returned by the
dev_cfg field and has the following possible values:

USB_PARSE_LVL_NONE Build no tree. dev_n_cfg returns 0, dev_cfg and dev_curr_cfg
are returned NULL, the dev_curr_xxx fields are invalid.

USB_PARSE_LVL_IF Parse configured interface only, if configuration# and interface
properties are set (as when different interfaces are viewed by
the OS as different device instances). If an OS device instance
is set up to represent an entire physical device, this works like
USB_PARSE_LVL_ALL.

USB_PARSE_LVL_CFG Parse entire configuration of configured interface only. This is
like USB_PARSE_LVL_IF except entire configuration is
returned.

USB_PARSE_LVL_ALL Parse entire device (all configurations), even when driver is
bound to a single interface of a single configuration.

The default control pipe handle is used mainly for control commands and device setup.

The dev_iblock_cookie is used to initialize client driver mutexes which are used in
interrupt-context callback handlers. (All callback handlers called with
USB_CB_INTR_CONTEXT in their usb_cb_flags_t arg execute in interrupt context.) This
cookie is used in lieu of one returned by ddi_get_iblock_cookie(9F). Mutexes used in other
handlers or under other conditions should initialize per mutex_init(9F).

The parsed standard USB device descriptor is used for device type identification.

The several ID strings, including the manufacturer's ID, product ID, and serial number may be
used to identify the device in messages or to compare it to other devices.

The descriptor tree, returned by dev_cfg, makes a device's parsed standard USB descriptors
available to the driver. The tree is designed to be easily traversed to get any or all standard USB
2.0 descriptors. (See the "Tree Structure" section of this manpage below.) dev_n_cfg returns
the number of configurations in the tree. Note that this value may differ from the number of
configurations returned in the device descriptor.

A returned parse_level field of USB_PARSE_LVL_ALL indicates that all configurations are
represented in the tree. This results when USB_PARSE_LVL_ALL is explicitly requested by
the caller in the flags argument to usb_get_dev_data(), or when the whole device is seen by
the system for the current OS device node (as opposed to only a single configuration for that
OS device node). USB_PARSE_LVL_CFG is returned when one entire configuration is
returned in the tree. USB_PARSE_LVL_IF is returned when one interface of one
configuration is returned in the tree. In the latter two cases, the returned configuration is at

usb_client_dev_data(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004142

http://docs.sun.com/doc/816-5180/ddi-get-iblock-cookie-9f?a=view
http://docs.sun.com/doc/816-5180/mutex-init-9f?a=view

dev_cfg[USB_DEV_DEFAULT_CONFIG_INDEX]. USB_PARSE_LVL_NONE is returned
when no tree is returned. Note that the value of this field can differ from the parse_level
requested as an argument to usb_get_dev_data().

The root of the tree is dev_cfg, an array of usb_cfg_data_t configuration nodes, each
representing one device configuration. The array index does not correspond to a
configuration's value; use the bConfigurationValue field of the configuration descriptor
within to find out the proper number for a given configuration.

The size of the array is returned in dev_n_cfg. The array itself is not NULL terminated.

When USB_PARSE_LVL_ALL is returned in dev_parse_level, index 0 pertains to the first
valid configuration. This pertains to device configuration 1 as USB configuration 0 is not
defined. When dev_parse_level returns USB_PARSE_LVL_CFG or USB_PARSE_LVL_IF,
index 0 pertains to the device's one configuration recognized by the system. (Note that the
configuration level is the only descriptor level in the tree where the index value does not
correspond to the descriptor's value.)

Each usb_cfg_data_t configuration node contains a parsed usb configuration descriptor
(usb_cfg_descr_t cfg_descr) a pointer to its string description (char *cfg_str) and string size
(cfg_strsize), a pointer to an array of interface nodes (usb_if_data_t *cfg_if), and a pointer to
an array of class/vendor (cv) descriptor nodes (usb_cvs_data_t *cfg_cvs). The interface node
array size is kept in cfg_n_if, and the cv node array size is kept in cfg_n_cvs; neither array is
NULL terminated. When USB_PARSE_LVL_IF is returned in dev_parse_level, the only
interface (or alternate group) included in the tree is that which is recognized by the system for
the current OS device node.

Each interface can present itself potentially in one of several alternate ways. An alternate tree
node (usb_alt_if_data_t) represents an alternate representation. Each usb_if_data_t interface
node points to an array of alternate nodes (usb_alt_if_data_t *if_alt) and contains the size of
the array (if_n_alt).

Each interface alternate node holds an interface descriptor (usb_if_descr_t altif_descr), a
pointer to its string description (char *altif_str), and has its own set of endpoints and bound cv
descriptors. The pointer to the array of endpoints is usb_ep_data_t *altif_ep); the endpoint
array size is altif_n_ep. The pointer to the array of cv descriptors is usb_cvs_data_t *altif_cvs;
the cv descriptor array size is altif_n_cvs.

Each endpoint node holds an endpoint descriptor (usb_ep_descr_t ep_descr), a pointer to an
array of cv descriptors for that endpoint (usb_cvs_data_t *ep_cvs), and the size of that array
(ep_n_cvs). An endpoint descriptor may be passed to usb_pipe_open(9F) to establish a
logical connection for data transfer.

Class and vendor descriptors (cv descriptors) are grouped with the configuration, interface or
endpoint descriptors they immediately follow in the raw data returned by the device. Tree

TREE STRUCTURE

usb_client_dev_data(9S)

Data Structures for Drivers 143

http://docs.sun.com/doc/816-5180/usb-pipe-open-9f?a=view

nodes representing such descriptors (usb_cvs_data_t) contain a pointer to the raw data
(uchar_t *cvs_buf) and the size of the data (uint_t cvs_buf_len).

Configuration and interface alternate nodes return string descriptions. Note that all string
descriptions returned have a maximum length of USB_MAXSTRINGLEN bytes and are in
English ASCII.

In the following example, a device's configuration data, including the following descriptor
tree, is retrieved by usb_get_dev_data(9F) into usb_client_dev_data_t *reg_data:

config 1

iface 0

alt 0

endpt 0

config 2

iface 0

iface 1

alt 0

endpt 0

cv 0

alt 1

endpt 0

endpt 1

cv 0

endpt 2

alt 2

endpt 0

cv 0

and suppose that the C/V data is of the following format:

typedef struct cv_data {

char char1;

short short1;

char char2;

} cv_data_t;

Parse the data of C/V descriptor 0, second configuration

(index 1), iface 1, alt 2, endpt 0.

usb_client_dev_data_t reg_data;

usb_cvs_data_t *cv_node;

cv_data_t parsed_data;

cv_node =

®_data->dev_cfg[1].cfg_if[1].if_alt[2].altif_ep[0].ep_cvs[0];

(void)usb_parse_data("csc",
(void *)(&cv_node->cvs_buf), cv_node->cvs_buf_len,

Examples

usb_client_dev_data(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004144

http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view

&parsed_data, sizeof(cv_data_t));

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusb

usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F), usb_lookup_ep_data(9F), usb_parse_data(9F),
usb_pipe_open(9F), usb_cfg_descr(9S), usb_if_descr(9S), usb_ep_descr(9S),
usb_string_descr(9S)

Attributes

See Also

usb_client_dev_data(9S)

Data Structures for Drivers 145

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-lookup-ep-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-open-9f?a=view

usb_completion_reason – USB completion reason definitions

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

If an error occurs during execution of a USB request, the USBA framework calls a client
driver's exception callback handler to relay what happened. The host controller reports
transport errors to the exception callback handler through the handler's request argument's
completion reason (usb_cr_t) field. A completion reason of USB_CR_OK means the transfer
completed with no errors detected.

The usb_cr_t enumerated type contains the following definitions:

USB_CR_OK The transfer completed without any errors being
detected.

USB_CR_CRC CRC error was detected.

USB_CR_BITSTUFFING Bit stuffing violation was detected.

USB_CR_DATA_TOGGLE_MM Data toggle packet identifier did not match expected
value.

USB_CR_STALL The device endpoint indicated that it is stalled. If
autoclearing is enabled for the request (request
attributes has USB_ATTRS_AUTOCLEARING set),
check the callback flags (usb_cb_flags_t) in the callback
handler to determine whether the stall is a functional
stall (USB_CB_FUNCTIONAL_STALL) or a protocol
stall (USB_CB_PROTOCOL_STALL). Please see
usb_request_attributes(9S) for more information
on autoclearing.

USB_CR_DEV_NOT_RESP Host controller timed out while waiting for device to
respond.

USB_CR_PID_CHECKFAILURE Check bits on the packet identifier returned from the
device were not as expected.

USB_CR_UNEXP_PID Packet identifier received was not valid.

USB_CR_DATA_OVERRUN Amount of data returned exceeded either the
maximum packet size of the endpoint or the remaining
buffer size.

USB_CR_DATA_UNDERRUN Amount of data returned was not sufficient to fill the
specified buffer and the
USB_ATTRS_SHORT_XFER_OK attribute was not

Name

Synopsis

Interface Level

Description

usb_completion_reason(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004146

set. Please see usb_request_attributes(9S) for more
information on allowance of short transfers.

USB_CR_BUFFER_OVERRUN A device sent data faster than the system could digest it.

USB_CR_BUFFER_UNDERRUN The host controller could not get data from the system
fast enough to keep up with the required USB data rate.

USB_CR_TIMEOUT A timeout specified in a control, bulk, or one-time
interrupt request has expired.

USB_CR_NOT_ACCESSED Request was not accessed nor processed by the host
controller.

USB_CR_NO_RESOURCES No resources were available to continue servicing a
periodic interrupt or isochronous request.

USB_CR_STOPPED_POLLING Servicing of the current periodic request cannot
continue because polling on an interrupt-IN or
isochronous-IN endpoint has stopped.

USB_CR_PIPE_CLOSING Request was not started because the pipe to which it
was queued was closing or closed.

USB_CR_PIPE_RESET Request was not started because the pipe to which it
was queued was reset.

USB_CR_NOT_SUPPORTED Request or command is not supported.

USB_CR_FLUSHED Request was not completed because the pipe to which it
was queued went to an error state, became stalled, was
reset or was closed.

USB_CR_HC_HARDWARE_ERR Request could not be completed due to a general host
controller hardware error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusb, SUNWusbu

usb_alloc_request(9F), usb_pipe_bulk_xfer(9F), usb_pipe_ctrl_xfer(9F),
usb_pipe_intr_xfer(9F), usb_pipe_isoc_xfer(9F), usb_bulk_request(9S),
usb_ctrl_request(9S), usb_intr_request(9S), usb_isoc_request(9S).

Attributes

See Also

usb_completion_reason(9S)

Data Structures for Drivers 147

http://docs.sun.com/doc/816-5180/usb-alloc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-bulk-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-ctrl-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-intr-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-isoc-xfer-9f?a=view

usb_ctrl_request – USB control pipe request structure

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

A control request is used to send device commands (or requests) and to read status. Please
refer to Section 5.5 of the USB 2.0 specification for information on control pipes. For
information on formatting requests, see Section 9.3 of the USB 2.0 specification. The USB 2.0
specification is available at www.usb.org.

The fields in the usb_ctrl_req_t are used to format a control request:

uint8_t ctrl_bmRequestType; /* characteristics of request */

uint8_t ctrl_bRequest; /* specific request */

uint16_t ctrl_wValue; /* varies according to request */

uint16_t ctrl_wIndex; /* index or offset */

uint16_t ctrl_wLength; /* number of bytes to xfer */

mblk_t *ctrl_data; /* data for the data phase */

/* IN or OUT: allocated by client */

uint_t ctrl_timeout; /* time until USBA framework */

/* retires req, in seconds */

/* If set to zero, defaults to 5 sec */

usb_opaque_t ctrl_client_private; /* client private info */

usb_req_attrs_t ctrl_attributes; /* attrib. for this req */

/* Normal callback function, called upon completion. */

void (*ctrl_cb)(

usb_pipe_handle_t ph, struct usb_ctrl_req *req);

/* Exception callback function, for error handling. */

void (*ctrl_exc_cb)(

usb_pipe_handle_t ph, struct usb_ctrl_req *req);

usb_cr_t ctrl_completion_reason; /* overall success status */

/* See usb_completion_reason(9S) */

usb_cb_flags_t ctrl_cb_flags; /* recovery done by callback hndlr */

/* See usb_callback_flags(9S) */

Request attributes define special handling for transfers. The following attributes are valid for
control requests:

USB_ATTRS_SHORT_XFER_OK Accept transfers where less data is received than
expected.

USB_ATTRS_AUTOCLEARING Have USB framework reset pipe and clear functional
stalls automatically on exception.

USB_ATTRS_PIPE_RESET Have USB framework reset pipe automatically on
exception.

Please see usb_request_attributes(9S) for more information.

Name

Synopsis

Interface Level

Description

Structure
Members

usb_ctrl_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004148

The following definitions directly pertain to fields in the USB control request structure. (See
Section 9.3 of the USB 2.0 specification.)

Direction bitmasks of a control request’s ctrl_bmRequestType field

(USB 2.0 spec, section 9.3.1)

USB_DEV_REQ_HOST_TO_DEV | Host to device direction

USB_DEV_REQ_DEV_TO_HOST | Device to host direction

USB_DEV_REQ_DIR_MASK | Bitmask of direction bits

Request type bitmasks of a control request’s ctrl_bmRequestType field

(USB 2.0 spec, section 9.3.1)

USB_DEV_REQ_TYPE_STANDARD | USB 2.0 defined command

| for all USB devices

USB_DEV_REQ_TYPE_CLASS | USB 2.0 defined

| class-specific command

USB_DEV_REQ_TYPE_VENDOR | Vendor-specific command

USB_DEV_REQ_TYPE_MASK | Bitmask of request type bits

Recipient bitmasks of a control request’s ctrl_bmRequestType field

(USB 2.0 spec, section 9.3.1)

USB_DEV_REQ_RCPT_DEV | Request is for device

USB_DEV_REQ_RCPT_IF | Request is for interface

USB_DEV_REQ_RCPT_EP | Request is for endpoint

USB_DEV_REQ_RCPT_OTHER | Req is for other than above

USB_DEV_REQ_RCPT_MASK | Bitmask of request recipient bits

Standard requests (USB 2.0 spec, section 9.4)

USB_REQ_GET_STATUS | Get status of device, endpoint

|or interface (9.4.5)

USB_REQ_CLEAR_FEATURE | Clear feature specified by

|wValue field (9.4.1)

USB_REQ_SET_FEATURE | Set feature specified by

| wValue field (9.4.9)

USB_REQ_SET_ADDRESS | Set address specified by

| wValue field (9.4.6)

USB_REQ_GET_DESCR | Get descr for item/idx in

| wValue field (9.4.3)

USB_REQ_SET_DESCR | Set descr for item/idx in

| wValue field (9.4.8)

USB_REQ_GET_CFG | Get current device

| configuration (9.4.2)

USB_REQ_SET_CFG | Set current device

| configuration (9.4.7)

USB_REQ_GET_IF | Get alternate interface

| setting (9.4.4)

usb_ctrl_request(9S)

Data Structures for Drivers 149

USB_REQ_SET_IF | Set alternate interface

| setting (9.4.10)

USB_REQ_SYNC_FRAME | Set and report an endpoint’s

| sync frame (9.4.11)

Unicode language ID, used as wIndex for USB_REQ_SET/GET_DESCRIPTOR

USB_LANG_ID | Unicode English Lang ID for

| parsing str descr

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

usb_alloc_request(9F), usb_pipe_bulk_xfer(9F), usb_pipe_ctrl_xfer(9F),
usb_pipe_intr_xfer(9F), usb_pipe_isoc_xfer(9F), usb_bulk_request(9S),
usb_callback_flags(9S), usb_completion_reason(9S), usb_intr_request(9S),
usb_isoc_request(9S), usb_request_attributes(9S)

Attributes

See Also

usb_ctrl_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004150

http://docs.sun.com/doc/816-5180/usb-alloc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-bulk-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-ctrl-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-intr-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-isoc-xfer-9f?a=view

usb_dev_descr – USB device descriptor

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The usb_dev_descr_t device descriptor defines device-wide attributes. Please refer to Section
9.6.1 of the USB 2.0 specification. The USB 2.0 specification is available at www.usb.org.

The device descriptor is retrieved from a USB device during device enumeration and can be
accessed via usb_get_dev_data(9F).

A device descriptor contains the following fields:

uint8_t bLength Size of this descriptor,

in bytes.

uint8_t bDescriptorType Set to USB_DESCR_TYPE_DEV.

uint16_t bcdUSB USB specification release

number supported, in bcd.

uint8_t bDeviceClass Class code (see below).

uint8_t bDeviceSubClass Subclass code (see USB 2.0

specification of applicable

device class for information.)

uint8_t bDeviceProtocol Protocol code (see USB 2.0

specification of applicable

device class for information.)

uint8_t bMaxPacketSize0 Maximum packet size of

endpoint 0.

uint16_t idVendor vendor ID value.

uint16_t idProduct product ID value.

uint16_t bcdDevice Device release number in

binary coded decimal.

uint8_t iManufacturer Index of optional manufacturer

description string.

Valid if > 0.

uint8_t iProduct Index of optional product

description string.

Valid if > 0.

Name

Synopsis

Interface Level

Description

usb_dev_descr(9S)

Data Structures for Drivers 151

http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view

uint8_t iSerialNumber Index of optional serial

number string.

Valid if > 0.

uint8_t bNumConfigurations Number of available

configurations.

Device descriptors bDeviceClass values:

USB_CLASS_PER_INTERFACE Class information is at

interface level.

USB_CLASS_COMM CDC control device class.

USB_CLASS_DIAG Diagnostic device class.

USB_CLASS_HUB HUB device class.

USB_CLASS_MISC MISC device class.

USB_CLASS_VENDOR_SPEC Vendor-specific class.

USB_CLASS_WIRELESS Wireless controller

device class.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

attributes(5), usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F), usb_parse_data(9F), usb_cfg_descr(9S),
usb_ctrl_request(9S), usb_dev_qlf_descr(9S), usb_ep_descr(9S), usb_if_descr(9S),
usb_other_speed_cfg_descr(9S), usb_string_descr(9S)

Attributes

See Also

usb_dev_descr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004152

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view

usb_dev_qlf_descr – USB device qualifier descriptor

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The device qualifier descriptor usb_dev_qlf_descr_t defines how fields of a high speed
device's device descriptor would look if that device is run at a different speed. If a high-speed
device is running currently at full/high speed, fields of this descriptor reflect how device
descriptor fields would look if speed was changed to high/full. Please refer to section 9.6.2 of
the USB 2.0 specification. The USB 2.0 specification is available at www.usb.org.

A device descriptor contains the following fields:

uint8_t bLength Size of this descriptor.

uint8_t bDescriptorType Set to USB_DESCR_TYPE_DEV_QLF.

uint16_t bcdUSB USB specification release

number in binary coded decimal.

uint8_t bDeviceClass Device class code.

(See usb_dev_descr(9s).)

uint8_t bDeviceSubClass Device subclass code.(See

USB 2.0 specification of

applicable device class for

information.)

uint8_t bDeviceProtocol Protocol code.(See

USB 2.0 specification of

applicable device class for

information.)

uint8_t bMaxPacketSize0 Maximum packet size of

endpoint 0.

uint8_t bNumConfigurations Number of available

configurations.

uint8_t bReserved Reserved.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Name

Synopsis

Interface Level

Description

Attributes

usb_dev_qlf_descr(9S)

Data Structures for Drivers 153

http://docs.sun.com/doc/816-5175/attributes-5?a=view

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWusbu

attributes(5), usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F). usb_parse_data(9F), usb_ctrl_request(9S),
usb_cfg_descr(9S), usb_dev_descr(9S), usb_ep_descr(9S), usb_if_descr(9S),
usb_other_speed_cfg_descr(9S), usb_string_descr(9S)

See Also

usb_dev_qlf_descr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004154

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view

usb_ep_descr – USB endpoint descriptor

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The usb_ep_descr_t endpoint descriptor defines endpoint attributes. An endpoint is a
uniquely addressable portion of a USB device that is a source or sink of data.

Please refer to Section 9.6.6 of the USB 2.0 specification. The USB 2.0 specification is available
at www.usb.org.

One or more endpoint descriptors are retrieved from a USB device during device
enumeration. They can be accessed via usb_get_dev_data(9F).

A endpoint descriptor has the following fields:

uint8_t bLength Size of this descriptor

in bytes.

uint8_t bDescriptorType Set to USB_DESCR_TYPE_EP.

uint8_t bEndpointAddress Endpoint address.

uint8_t bmAttributes Endpoint attrib. (see below.)

uint16_t wMaxPacketSize Maximum pkt size.

uint8_t bInterval Polling interval for interrupt

and isochro. endpoints.

NAK rate for high-speed control

and bulk endpoints.

Endpoint descriptor bEndpointAddress bitmasks contain address number

and direction fields as follows:

USB_EP_NUM_MASK Address bits

USB_EP_DIR_MASK Direction bit

USB_EP_DIR_OUT OUT towards device

USB_EP_DIR_IN IN towards host

Endpoint descriptor transfer type bmAttributes values and mask:

USB_EP_ATTR_CONTROL Endpoint supports control transfers

USB_EP_ATTR_ISOCH Endpoint supports isochronous xfers

USB_EP_ATTR_BULK Endpoint supports bulk transfers

USB_EP_ATTR_INTR Endpoint supports interrupt transfers

USB_EP_ATTR_MASK bmAttributes transfer-type bit field

Endpoint descriptor synchronization type bmAttributes values and mask

for isochronous endpoints:

Name

Synopsis

Interface Level

Description

usb_ep_descr(9S)

Data Structures for Drivers 155

http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view

USB_EP_SYNC_NONE Endpoint supports no synchronization

USB_EP_SYNC_ASYNC Endpoint supports asynchronous sync

USB_EP_SYNC_ADPT Endpoint supports adaptive sync

USB_EP_SYNC_SYNC Endpoint supports synchronous sync

USB_EP_SYNC_MASK bmAttributes sync type bit field

Endpoint descriptor feedback type bmAttributes values and mask for

isochronous endpoints:

USB_EP_USAGE_DATA Data endpoint

USB_EP_USAGE_FEED Feedback endpoint

USB_EP_USAGE_IMPL Implicit feedback data endpoint

USB_EP_USAGE_MASK bmAttributes feedback type bit fld

Endpoint descriptor additional-transaction-opportunities-

per-microframe wMaxPacketSize values and mask for high speed

isochronous and interrupt endpoints:

USB_EP_MAX_PKTSZ_MASK Mask for packetsize bits

USB_EP_MAX_XACTS_MASK Bits for additional transfers per

microframe

USB_EP_MAX_XACTS_SHIFT Left-shift this number of bits to

get to additional-transfers-per-

microframe bitfield

Endpoint descriptor polling bInterval range values:

USB_EP_MIN_HIGH_CONTROL_INTRVL Min NAK rate for highspd ctrl e/p

USB_EP_MAX_HIGH_CONTROL_INTRVL Max NAK rate for highspd ctrl e/p

USB_EP_MIN_HIGH_BULK_INTRVL Min NAK rate for highspd bulk e/p

USB_EP_MAX_HIGH_BULK_INTRVL Max NAK rate for highspd bulk e/p

USB_EP_MIN_LOW_INTR_INTRVL Min poll interval, lowspd intr e/p

USB_EP_MAX_LOW_INTR_INTRVL Max poll interval, lowspd intr e/p

USB_EP_MIN_FULL_INTR_INTRVL Min poll interval, fullspd intr e/p

USB_EP_MAX_FULL_INTR_INTRVL Max poll interval, fullspd intr e/p

Note that for the following polling bInterval range values, the interval

is 2**(value-1). See Section 9.6.6 of the USB 2.0 specification.

USB_EP_MIN_HIGH_INTR_INTRVL Min poll interval, highspd intr e/p

USB_EP_MAX_HIGH_INTR_INTRVL Max poll interval, highspd intr e/p

USB_EP_MIN_FULL_ISOCH_INTRVL Min poll interval, fullspd isoc e/p

USB_EP_MAX_FULL_ISOCH_INTRVL Max poll interval, fullspd isoc e/p

USB_EP_MIN_HIGH_ISOCH_INTRVL Min poll interval, highspd isoc e/p

USB_EP_MAX_HIGH_ISOCH_INTRVL Max poll interval, highspd isoc e/p

usb_ep_descr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004156

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

attributes(5), usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F), usb_parse_data(9F), usb_cfg_descr(9S),
usb_ctrl_request(9S), usb_dev_descr(9S), usb_dev_qlf_descr(9S), usb_if_descr(9S),
usb_other_speed_cfg_descr(9S), usb_string_descr(9S)

Attributes

See Also

usb_ep_descr(9S)

Data Structures for Drivers 157

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view

usb_if_descr – USB interface descriptor

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The usb_if_descr_t interface descriptor defines attributes of an interface. A configuration
contains one or more interfaces. An interface contains one or more endpoints.

Please refer to Section 9.6.5 of the USB 2.0 specification. The USB 2.0 specification is available
at www.usb.org.

One or more configuration descriptors are retrieved from a USB device during device
enumeration. They can be accessed via usb_get_dev_data(9F).

A interface descriptor has the following fields:

uint8_t bLength Size of this descriptor

in bytes.

uint8_t bDescriptorType Set to USB_DESCR_TYPE_IF.

uint8_t bInterfaceNumber Interface number (0-based).

uint8_t bAlternateSetting Alternate setting number for

this interface and its

endpoints (0-based).

uint8_t bNumEndpoints Number of endpoints,

excluding endpoint 0.

uint8_t bInterfaceClass Interface Class code

(see below).

uint8_t bInterfaceSubClass Sub class code. (See USB 2.0

specification of applicable

interface class for information.)

uint8_t bInterfaceProtocol Protocol code. (See USB 2.0

specification of applicable

interface class for information.)

uint8_t iInterface Index of optional string

describing this interface

Valid if > 0. Pass to

usb_get_string_descr(9F) to

retrieve string.

USB 2.0 specification interface descriptor bInterfaceClass field

Name

Synopsis

Interface Level

Description

usb_if_descr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004158

http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view

values are as follows:

USB_CLASS_APP Application-specific interface class

USB_CLASS_AUDIO Audio interface class

USB_CLASS_CCID Chip/Smartcard interface class

USB_CLASS_CDC_CTRL CDC control interface class

USB_CLASS_CDC_DATA CDC data interface class

USB_CLASS_SECURITY Content security interface class

USB_CLASS_DIAG Diagnostic interface class

USB_CLASS_HID HID interface class

USB_CLASS_HUB HUB interface class

USB_CLASS_MASS_STORAGE Mass storage interface class

USB_CLASS_PHYSICAL Physical interface class

USB_CLASS_PRINTER Printer interface class

USB_CLASS_VENDOR_SPEC Vendor-specific interface class

USB_CLASS_WIRELESS Wireless interface class

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

attributes(5), usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F), usb_parse_data(9F), usb_cfg_descr(9S),
usb_ctrl_request(9S), usb_dev_descr(9S), usb_dev_qlf_descr(9S), usb_ep_descr(9S),
usb_other_speed_cfg_descr(9S), usb_string_descr(9S)

Attributes

See Also

usb_if_descr(9S)

Data Structures for Drivers 159

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view

usb_intr_request – USB interrupt request structure

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

An interrupt request (that is, a request sent through an interrupt pipe), is used to transfer
small amounts of data infrequently, but with bounded service periods. (Data flows in either
direction.) Please refer to Section 5.7 of the USB 2.0 specification for information on interrupt
transfers. (The USB 2.0 specification is available at www.usb.org.)

The fields in the usb_intr_req_t are used to format an interrupt request. Please see below for
acceptable combinations of flags and attributes.

The usb_intr_req_t fields are:

ushort_t intr_len; /* Size of pkt. Must be set */

/* Max size is 8K for low/full speed */

/* Max size is 20K for high speed */

mblk_t *intr_data; /* Data for the data phase */

/* IN: zero-len mblk alloc by client */

/* OUT: allocated by client */

usb_opaque_t intr_client_private; /* client specific information */

uint_t intr_timeout; /* only with ONE TIME POLL, in secs */

/* If set to zero, defaults to 5 sec */

usb_req_attrs_t intr_attributes;

/* Normal callback function, called upon completion. */

void (*intr_cb)(

usb_pipe_handle_t ph, struct usb_intr_req *req);

/* Exception callback function, for error handling. */

void (*intr_exc_cb)(

usb_pipe_handle_t ph, struct usb_intr_req *req);

/* set by USBA/HCD on completion */

usb_cr_t intr_completion_reason; /* overall completion status */

/* See usb_completion_reason(9S) */

usb_cb_flags_t intr_cb_flags; /* recovery done by callback hndlr */

/* See usb_callback_flags(9S) */

Request attributes define special handling for transfers. The following attributes are valid for
interrupt requests:

USB_ATTRS_SHORT_XFER_OK Accept transfers where less data is received than
expected.

USB_ATTRS_AUTOCLEARING Have USB framework reset pipe and clear functional
stalls automatically on exception.

Name

Synopsis

Interface Level

Description

usb_intr_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004160

USB_ATTRS_PIPE_RESET Have USB framework reset pipe automatically on
exception.

USB_ATTRS_ONE_XFER Perform a single IN transfer. Do not start periodic
transfers with this request.

Please see usb_request_attributes(9S) for more information.

Interrupt transfers/requests are subject to the following

constraints and caveats:

1) The following table indicates combinations of

usb_pipe_intr_xfer() flags argument and fields

of the usb_intr_req_t request argument (X = don’t care):

"none" as attributes in the table below indicates

neither ONE_XFER nor SHORT_XFER_OK

flags Type attributes data timeout semantics

--

X IN X !=NULL X illegal

X IN !ONE_XFER X !=0 illegal

X IN !ONE_XFER NULL 0 See table note (A)

no sleep IN ONE_XFER NULL 0 See table note (B)

no sleep IN ONE_XFER NULL !=0 See table note (C)

sleep IN ONE_XFER NULL 0 See table note (D)

sleep IN ONE_XFER NULL !=0 See table note (E)

X OUT X NULL X illegal

X OUT ONE_XFER X X illegal

X OUT SHORT_XFER_OK X X illegal

no sleep OUT none !=NULL 0 See table note (F)

no sleep OUT none !=NULL !=0 See table note (G)

sleep OUT none !=NULL 0 See table note (H)

sleep OUT none !=NULL !=0 See table note (I)

usb_intr_request(9S)

Data Structures for Drivers 161

Table notes:

A) Continuous polling, new data is returned in cloned request

structures via continous callbacks, original request is

returned on stop polling.

B) One time poll, no timeout, callback when data is

received.

C) One time poll, with timeout, callback when data

is received.

D) One time poll, no timeout, one callback, unblock

when transfer completes.

E) One time poll, timeout, one callback, unblock when

transfer completes or timeout occurs.

F) Transfer until data exhausted, no timeout, callback

when done.

G) Transfer until data exhausted, timeout, callback

when done.

H) Transfer until data exhausted, no timeout, unblock

when data is received.

I) Transfer until data exhausted, timeout, unblock

when data is received.

2) USB_FLAGS_SLEEP indicates here just to wait for

resources, except when ONE_XFER is set, in which case it

also waits for completion before returning.

3) Reads (IN):

a) The client driver does *not* provide a data buffer.

By default, a READ request would mean continuous

polling for data IN. The USBA framework allocates a

new data buffer for each poll. intr_len specifies

the amount of ’periodic data’ for each poll.

b) The USBA framework issues a callback to the client

at the end of a polling interval when there is data to

return. Each callback returns its data in a new request

cloned from the original. Note that the amount of data

usb_intr_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004162

read IN is either intr_len or "wMaxPacketSize" in length.

c) Normally, the HCD keeps polling the interrupt endpoint

forever even if there is no data to be read IN. A

client driver may stop this polling by calling

usb_pipe_stop_intr_polling(9F).

d) If a client driver chooses to pass USB_ATTRS_ONE_XFER

as ’xfer_attributes’ the HCD polls for data until

some data is received. The USBA framework reads in

the data, does a callback, and stops polling for any

more data. In this case, the client

driver need not explicitly call

usb_pipe_stop_intr_polling().

e) All requests with USB_ATTRS_ONE_XFER require callbacks

to be specified.

f) When continuous polling is stopped, the original

request is returned with USB_CR_STOPPED_POLLING.

g) If the USB_ATTRS_SHORT_XFER_OK attribute is not set

and a short transfer is received while polling,

an error is assumed and polling is stopped. In this

case or the case of other errors, the error must be cleared

and polling restarted by the client driver. Setting the

USB_ATTRS_AUTOCLEARING attribute will clear the error

but not restart polling. (NOTE: Polling can be

restarted from an exception callback corresponding to

an original request. Please see usb_pipe_intr_xfer(9F)

for more information.

4) Writes (OUT):

a) A client driver provides the data buffer, and

data, needed for intr write.

b) Unlike read (see previous section), there

is no continuous write mode.

c) The USB_ATTRS_ONE_XFER attribute is illegal.

By default USBA keeps writing intr data until

the provided data buffer has been

written out. The USBA framework does ONE

callback to the client driver.

d) Queueing is supported.

usb_intr_request(9S)

Data Structures for Drivers 163

The intr_completion_reason indicates the status

of the transfer. See usb_completion_reason(9S) for

usb_cr_t definitions.

The intr_cb_flags are set prior to calling the

exception callback handler, to summarize recovery actions

taken and errors encountered during

recovery. See usb_callback_flags(9S) for

usb_cb_flags_t definitions.

--- Callback handling ---

All usb request types share the same callback

handling. Please see usb_callback_flags(9S) for a

description of use and operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

usb_alloc_request(9F), usb_pipe_ctrl_xfer(9F), usb_pipe_bulk_xfer(9F),
usb_pipe_intr_xfer(9F), usb_pipe_isoc_xfer(9F), usb_bulk_request(9S),
usb_callback_flags(9S), usb_completion_reason(9S), usb_ctrl_request(9S),
usb_isoc_request(9S), usb_request_attributes(9S)

Attributes

See Also

usb_intr_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004164

http://docs.sun.com/doc/816-5180/usb-alloc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-ctrl-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-bulk-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-intr-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-isoc-xfer-9f?a=view

usb_isoc_request – USB isochronous request structure

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

A request sent through an isochronous pipe is used to transfer large amounts of packetized
data with relative unreliability, but with bounded service periods. A packet is guaranteed to be
tried within a bounded time period, but is not retried upon failure. Isochronous transfers are
supported on both USB 1.1 and USB 2.0 devices. For further information, see section 5.6 of the
USB 2.0 specification available at www.usb.org.

This section provides information on acceptable combinations of flags and attributes with
additional details. The following fields of the usb_isoc_req_t are used to format an
isochronous request.

usb_frame_number_t

isoc_frame_no; /* frame num to start sending req. */

ushort_t isoc_pkts_count; /* num USB pkts in this request */

/*

* The sum of all pkt lengths in an isoc request. Recommend to set it to

* zero, so the sum of isoc_pkt_length in the isoc_pkt_descr list will be

* used automatically and no check will be apply to this element.

*/

ushort_t isoc_pkts_length;

ushort_t isoc_error_count;/* num pkts completed w/errs */

usb_req_attrs_t isoc_attributes;/* request-specific attrs */

mblk_t *isoc_data; /* data to xfer */

/* IN or OUT: alloc. by client. */

/* Size=total of all pkt lengths. */

usb_opaque_t isoc_client_private; /* for client driver excl use. */

struct usb_isoc_pkt_descr /* (see below) */

*isoc_pkt_descr;

/*

* Normal callback function, called upon completion.

* This function cannot block as it executes in soft interrupt context.

*/

void (*isoc_cb)(

usb_pipe_handle_t ph, struct usb_isoc_req *req);

/* Exception callback function, for error handling. */

void (*isoc_exc_cb)(

usb_pipe_handle_t ph, struct usb_isoc_req *req);

usb_cr_t isoc_completion_reason; /* overall completion status */

/* set by USBA framework */

/* See usb_completion_reason(9S) */

usb_cb_flags_t isoc_cb_flags; /* recovery done by callback hndlr */

Name

Synopsis

Interface Level

Description

usb_isoc_request(9S)

Data Structures for Drivers 165

/* set by USBA on exception. */

/* See usb_callback_flags(9S) */

A usb_isoc_pkt_descr_t describes the status of an isochronous packet transferred within a
frame or microframe. The following fields of a usb_isoc_pkt_descr_t packet descriptor are
used within an usb_isoc_req_t. The isoc_pkt_length is set by the client driver to the
amount of data managed by the packet for input or output. The latter two fields are set by the
USBA framework to indicate status. Any packets with an isoc_completion_reason, other
than USB_CR_OK, are reflected in the isoc_error_count of the usb_isoc_req_t.

ushort_t isoc_pkt_length; /* number bytes to transfer */

ushort_t isoc_pkt_actual_length; /* actual number transferred */

usb_cr_t isoc_pkt_status; /* completion status */

If two multi-frame isoc requests that both specify the USB_ATTRS_ISOC_XFER_ASAP attribute
are scheduled closely together, the first frame of the second request is queued to start after the
last frame of the first request.

No stalls are seen in isochronous transfer exception callbacks. Because transfers are not retried
upon failure, isochronous transfers continue regardless of errors.

Request attributes define special handling for transfers. The following attributes are valid for
isochronous requests:

USB_ATTRS_ISOC_START_FRAME Start transferring at the starting frame number specified
in the isoc_frame_no field of the request.

USB_ATTRS_ISOC_XFER_ASAP Start transferring as soon as possible. The USBA
framework picks an immediate frame number to map to
the starting frame number.

USB_ATTRS_SHORT_XFER_OK Accept transfers where less data is received than expected.

The usb_isoc_req_t contains an array of descriptors that describe isochronous packets. One
isochronous packet is sent per frame or microframe. Because packets that comprise a transfer
are sent across consecutive frames or microframes, USB_ATTRS_ONE_XFER is invalid.

See usb_request_attributes(9S) for more information.

Isochronous transfers/requests are subject to the following constraints and caveats:

1) The following table indicates combinations of usb_pipe_isoc_xfer

flags argument and fields of the usb_isoc_req_t request argument

(X = don’t care). (Note that attributes considered in this table

are ONE_XFER, START_FRAME, XFER_ASAP, and SHORT_XFER, and that

some transfer types are characterized by multiple table entries.)

Flags Type Attributes Data Semantics

X X X NULL illegal

usb_isoc_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 28 Dec 2006166

X X ONE_XFER X illegal

X X ISOC_START_FRAME X illegal

& ISOC_XFER_ASAP

X X !ISOC_START_FRAME X illegal

& !ISOC_XFER_ASAP

X OUT SHORT_XFER_OK X illegal

X IN X !=NULL See table note (A)

X X ISOC_START_FRAME !=NULL See table note (B)

X X ISOC_XFER_ASAP !=NULL See table note (C)

Table notes:

A) continuous polling, new data is returned in

cloned request structures via continous callbacks,

original request is returned on stop polling

B) invalid if the current_frame number is past

"isoc_frame_no" or "isoc_frame_no" == 0

C)"isoc_frame_no" is ignored. The USBA framework

determines which frame to insert and start

the transfer.

2) USB_FLAGS_SLEEP indicates to wait for resources but

not for completion.

3) For polled reads:

A. The USBA framework accepts a request which

specifies the size and number of packets to fill

with data. The packets get filled one packet per

(1 ms) frame/(125 us) microframe. All requests

have an implicit USB_ATTRS_SHORT_XFER_OK attribute

set, since transfers continue in spite of any en-

countered. The amount of data read per packet will

match the isoc_pkt_length field of the packet

descriptor unless a short transfer occurs. The

actual size is returned in the

isoc_pkt_actual_length field of the packet

descriptor. When all packets of the request have

usb_isoc_request(9S)

Data Structures for Drivers 167

been processed, a normal callback is done to sig-

nal the completion of the original request.

B. When continuous polling is stopped, the original

request is returned in an exception callback with a

completion reason of USB_CR_STOPPED_POLLING.

(NOTE: Polling can be restarted from an exception

callback corresponding to an original request.

Please see usb_pipe_isoc_xfer(9F) for more information.

C. Callbacks must be specified.

The isoc_completion_reason indicates the status of the transfer. See

usb_completion_reason(9s) for usb_cr_t definitions.

The isoc_cb_flags are set prior to calling the exception

callback handler to summarize recovery actions taken and

errors encountered during recovery. See usb_callback_flags(9s)

for usb_cb_flags_t definitions.

--- Callback handling ---

All usb request types share the same callback handling. Please see

usb_callback_flags(9s) for a description of use and operation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

attributes(5), usb_alloc_request(9F), usb_get_current_frame_number(9F),
usb_get_max_pkts_per_isoc_request(9F), usb_pipe_bulk_xfer(9F),
usb_pipe_ctrl_xfer(9F), usb_pipe_intr_xfer(9F), usb_pipe_isoc_xfer(9F),
usb_bulk_request(9S), usb_callback_flags(9S), usb_completion_reason(9S),
usb_ctrl_request(9S), usb_intr_request(9S), usb_request_attributes(9S)

Attributes

See Also

usb_isoc_request(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 28 Dec 2006168

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-alloc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-current-frame-number-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-max-pkts-per-isoc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-bulk-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-ctrl-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-intr-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-isoc-xfer-9f?a=view

usb_other_speed_cfg_descr – USB other speed configuration descriptor

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The usb_other_speed_cfg_descr_t configuration descriptor defines how fields of a high
speed device's configuration descriptor change if that device is run at its other speed. Fields of
this descriptor reflect configuration descriptor field changes if a device's speed is changed
from full to high speed, or from high to full speed.

Please refer to Section 9.6.4 of the USB 2.0 specification. The USB 2.0 specification is available
at www.usb.org.

This descriptor has the following fields:

uint8_t bLength Size of this descriptor,

in bytes.

uint8_t bDescriptorType Set to USB_DESCR_TYPE_OTHER_SPEED_CFG.

uint16_t wTotalLength Total length of data returned */

including all descriptors in

the current other-speed

configuration.

uint8_t bNumInterfaces Number of interfaces in

the selected configuration.

uint8_t bConfigurationValue ID of the current other-speed

configuration (1-based).

uint8_t iConfiguration Configuration value.

Valid if > 0. Pass to

usb_get_string_descr(9F)

to retrieve string.

uint8_t bmAttributes Configuration characteristics

[See usb_cfg_descr(9S).]

uint8_t bMaxPower Maximum power consumption

in 2mA units.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Name

Synopsis

Interface Level

Description

Attributes

usb_other_speed_cfg_descr(9S)

Data Structures for Drivers 169

http://docs.sun.com/doc/816-5175/attributes-5?a=view

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface stability Evolving

Availability SUNWusbu

attributes(5), usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F), usb_parse_data(9F). usb_cfg_descr(9S),
usb_ctrl_request(9S), usb_dev_descr(9S), usb_dev_qlf_descr(9S)

See Also

usb_other_speed_cfg_descr(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004170

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view

usb_request_attributes – Definition of USB request attributes

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

Request attributes specify how the USBA framework handles request execution. Request
attributes are specified in the request's *_attributes field and belong to the enumerated type
usb_req_attrs_t.

Supported request attributes are:

USB_ATTRS_SHORT_XFER_OK Use this attribute when the maximum transfer size
is known, but it is possible for the request to
receive a smaller amount of data. This attribute
tells the USBA framework to accept without error
transfers which are shorter than expected.

USB_ATTRS_PIPE_RESET Have the USB framework reset the pipe
automatically if an error occurs during the
transfer. Do not attempt to clear any stall. The
USB_CB_RESET_PIPE callback flag is passed to
the client driver's exception handler to show the
pipe has been reset. Pending requests on pipes
which are reset are flushed unless the pipe is the
default pipe.

USB_ATTRS_AUTOCLEARING Have the USB framework reset the pipe and clear
functional stalls automatically if an error occurs
during the transfer. The callback flags passed to
the client driver's exception handler show the
status after the attempt to clear the stall.

USB_CB_FUNCTIONAL_STALL is set in the
callback flags to indicate that a functional stall
occurred. USB_CB_STALL_CLEARED is also set
if the stall is cleared. The default pipe never shows
a functional stall if the
USB_ATTRS_AUTOCLEARING attribute is set.
If USB_CB_FUNCTIONAL_STALL is seen when
autoclearing is enabled, the device has a fatal error.

USB_CB_PROTOCOL_STALL is set without
USB_CB_STALL_CLEARED in the callback flags
to indicate that a protocol stall was seen but was

Name

Synopsis

Interface Level

Description

usb_request_attributes(9S)

Data Structures for Drivers 171

not explicitly cleared. Protocol stalls are cleared
automatically when a subsequent command is
issued.

Autoclearing a stalled default pipe is not allowed.
The USB_CB_PROTOCOL_STALL callback flag
is set in the callback flags to indicate the default
pipe is stalled.

Autoclearing is not allowed when the request is
USB_REQ_GET_STATUS on the default pipe.

USB_ATTRS_ONE_XFER Applies only to interrupt-IN requests. Without
this flag, interrupt-IN requests start periodic
polling of the interrupt pipe. This flag specifies to
perform only a single transfer. Do not start
periodic transfers with this request.

USB_ATTRS_ISOC_START_FRAME Applies only to isochronous requests and specifies
that a request be started at a given frame number.
The starting frame number is provided in the
isoc_frame_no field of the usb_isoc_req_t. Please
see usb_isoc_request(9S) for more information
about isochronous requests.

USB_ATTRS_ISOC_START_FRAME can be used
to delay a transfer by a few frames, allowing
transfers to an endpoint to sync up with another
source. (For example, synching up audio
endpoints to a video source.) The number of a
suitable starting frame in the near future can be
found by adding an offset number of frames
(usually between four and ten) to the current
frame number returned from
usb_get_current_frame_number(9F). Note that
requests with starting frames which have passed
are rejected.

USB_ATTRS_ISOC_XFER_ASAP Applies only to isochronous requests and specifies
that a request start as soon as possible. The host
controller driver picks a starting frame number
which immediately follows the last frame of the
last queued request. The isoc_frame_no of the
usb_isoc_req_t is ignored. Please see
usb_isoc_request(9S) for more information
about isochronous requests.

usb_request_attributes(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004172

http://docs.sun.com/doc/816-5180/usb-get-current-frame-number-9f?a=view

/*

* Allocate, initialize and issue a synchronous bulk-IN request.

* Allow for short transfers.

*/

struct buf *bp;

usb_bulk_req_t bulk_req;

mblk_t *mblk;

bulk_req = usb_alloc_bulk_req(dip, bp->b_bcount, USB_FLAGS_SLEEP);

bulk_req->bulk_attributes =

USB_ATTRS_AUTOCLEARING | USB_ATTRS_SHORT_XFER_OK;

if ((rval = usb_pipe_bulk_xfer(pipe, bulk_req, USB_FLAGS_SLEEP)) !=

USB_SUCCESS) {

cmn_err (CE_WARN, "%s%d: Error reading bulk data.",
ddi_driver_name(dip), ddi_get_instance(dip));

}

mblk = bulk_req->bulk_data;

bcopy(mblk->rptr, buf->b_un.b_addr, mblk->wptr - mblk->rptr);

bp->b_resid = bp->b_count - (mblk->wptr = mblk->rptr);

...

...

usb_pipe_handle_t handle;

usb_frame_number_t offset = 10;

usb_isoc_req_t *isoc_req;

isoc_req = usb_alloc_isoc_req(...);

...

...

isoc_req->isoc_frame_no = usb_get_current_frame_number(dip) + offset;

isoc_req->isoc_attributes = USB_ATTRS_ISOC_START_FRAME;

...

...

if (usb_pipe_isoc_xfer(handle, isoc_req, 0) != USB_SUCCESS) {

...

}

See attributes(5) for descriptions of the following attributes:

Examples

Attributes

usb_request_attributes(9S)

Data Structures for Drivers 173

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusb, SUNWusbu

usb_alloc_request(9F), usb_get_current_frame_number(9F), usb_pipe_bulk_xfer(9F),
usb_pipe_ctrl_xfer(9F), usb_pipe_intr_xfer(9F), usb_pipe_isoc_xfer(9F),
usb_bulk_request(9S), usb_callback_flags(9S), usb_ctrl_request(9S),
usb_intr_request(9S), usb_isoc_request(9S), usb_completion_reason(9S)

See Also

usb_request_attributes(9S)

man pages section 9: DDI and DKI Properties and Data Structures • Last Revised 5 Jan 2004174

http://docs.sun.com/doc/816-5180/usb-alloc-request-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-current-frame-number-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-bulk-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-ctrl-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-intr-xfer-9f?a=view
http://docs.sun.com/doc/816-5180/usb-pipe-isoc-xfer-9f?a=view

usb_string_descr – USB string descriptor

#include <sys/usb/usba.h>

Solaris DDI specific (Solaris DDI)

The usb_string_descr_t string descriptor defines the attributes of a string, including size
and Unicode language ID. Other USB descriptors may have string descriptor index fields
which refer to specific string descriptors retrieved as part of a device's configuration.

Please refer to Section 9.6.7 of the USB 2.0 specification. The USB 2.0 specification is available
at www.usb.org.

A string descriptor has the following fields:

uint8_t bLength Size of this descriptor,

in bytes.

uint8_t bDescriptorType Set to USB_DESCR_TYPE_STRING.

uint16_t bString[1]; Variable length Unicode encoded

string.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture PCI-based systems

Interface stability Evolving

Availability SUNWusbu

attributes(5), usb_get_alt_if(9F), usb_get_cfg(9F), usb_get_dev_data(9F),
usb_get_string_descr(9F), usb_parse_data(9F), usb_ctrl_request(9S)

Name

Synopsis

Interface Level

Description

Attributes

See Also

usb_string_descr(9S)

Data Structures for Drivers 175

http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5175/attributes-5?a=view
http://docs.sun.com/doc/816-5180/usb-get-alt-if-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-cfg-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-dev-data-9f?a=view
http://docs.sun.com/doc/816-5180/usb-get-string-descr-9f?a=view
http://docs.sun.com/doc/816-5180/usb-parse-data-9f?a=view

176

	man pages section 9: DDI and DKI Properties and Data Structures
	Preface
	Overview

	Introduction
	Intro(9S)

	Data Structures for Drivers
	aio_req(9S)
	buf(9S)
	cb_ops(9S)
	copyreq(9S)
	copyresp(9S)
	datab(9S)
	ddi_device_acc_attr(9S)
	ddi_dma_attr(9S)
	ddi_dma_cookie(9S)
	ddi_dmae_req(9S)
	ddi_dma_lim_sparc(9S)
	ddi_dma_lim_x86(9S)
	ddi_dma_req(9S)
	ddi_fm_error(9S)
	ddi-forceattach(9P)
	ddi_idevice_cookie(9S)
	devmap_callback_ctl(9S)
	dev_ops(9S)
	fmodsw(9S)
	free_rtn(9S)
	gld_mac_info(9S)
	gld_stats(9S)
	hook_nic_event(9S)
	hook_pkt_event(9S)
	hook_t(9S)
	inquiry-device-type(9P)
	iocblk(9S)
	iovec(9S)
	kstat(9S)
	kstat_intr(9S)
	kstat_io(9S)
	kstat_named(9S)
	linkblk(9S)
	mac_callbacks(9S)
	mac_capab_lso(9S)
	mac_register(9S)
	modldrv(9S)
	modlinkage(9S)
	modlstrmod(9S)
	module_info(9S)
	msgb(9S)
	net_inject_t(9S)
	net_instance_t(9S)
	no-involuntary-power-cycles(9P)
	pm(9P)
	pm-components(9P)
	qband(9S)
	qinit(9S)
	queclass(9S)
	queue(9S)
	removable-media(9P)
	scsi_address(9S)
	scsi_arq_status(9S)
	scsi_asc_key_strings(9S)
	scsi_device(9S)
	scsi_extended_sense(9S)
	scsi_hba_tran(9S)
	scsi_inquiry(9S)
	scsi_pkt(9S)
	scsi_status(9S)
	streamtab(9S)
	stroptions(9S)
	tuple(9S)
	uio(9S)
	usb_bulk_request(9S)
	usb_callback_flags(9S)
	usb_cfg_descr(9S)
	usb_client_dev_data(9S)
	usb_completion_reason(9S)
	usb_ctrl_request(9S)
	usb_dev_descr(9S)
	usb_dev_qlf_descr(9S)
	usb_ep_descr(9S)
	usb_if_descr(9S)
	usb_intr_request(9S)
	usb_isoc_request(9S)
	usb_other_speed_cfg_descr(9S)
	usb_request_attributes(9S)
	usb_string_descr(9S)

