
STREAMS Programming Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–4855–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, tags does not print or display in your document. Do not modify any
text except the attributions you type.--> and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and
other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.
and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040901@9495

Contents

Preface 13

Part I Application Programming Interface 17

1 Overview of STREAMS 19
What Is STREAMS? 19
STREAMS Definitions 20

Stream as a Data Path 20
Stream Head 21
STREAMS Module 21
STREAMS Device Driver 21
STREAMS Data 21
Message Queues 21
Communicating With a STREAMS Device 22
STREAMS Multiplexing 22
STREAMS Polling 23
Message Transfer Flow Control 23

When to Use STREAMS 23
How STREAMS Works—Application Interface 23

Opening a Stream 24
Closing a Stream 24
Controlling Data Flow 24
Simple Stream Example 24

How STREAMS Works at the Kernel Level 26
Creating the Stream Head 26
Message Processing 26

3

Structure of a STREAMS Device Driver 28

Message Components 28

Message Queueing Priority 29

Structure of a Message Queue 30

Configuring Multiplexed Streams 31

Multithreading the Kernel 32

Service Interfaces 32

Manipulating Modules 33

Protocol Portability 33

Protocol Substitution 34

Protocol Migration 34

Module Reusability 35

2 STREAMS Application-Level Components 37

STREAMS Interfaces 37

STREAMS System Calls 37

Action Summary 38

Opening a STREAMS Device File 39

Initializing Details 40

Queue Allocation 40

Adding and Removing Modules 40

Closing the Stream 41

Stream Construction Example 41

Inserting Modules 41

Module and Driver Control 43

3 STREAMS Application-Level Mechanisms 47

Message Handling 47

Modifying Messages 47

Message Types 48

Control of Stream Head Processing 48

Message Queueing and Priorities 49

Controlling Data Flow and Priorities 50

Accessing the Service Provider 51

Closing the Service Provider 54

Sending Data to the Service Provider 54

Receiving Data 55

4 STREAMS Programming Guide • January 2005

Input and Output Polling 57
Synchronous Input and Output 57
Asynchronous Input and Output 61
signal Message 62

Stream as a Controlling Terminal 63
Job Control 63
Allocation and Deallocation of Streams 66
Hungup Streams 66
Hangup Signals 66
Accessing the Controlling Terminal 67

4 Application Access to the STREAMS Driver and Module Interfaces 69

System Calls Used 69
Module and Driver ioctl Calls 70

General ioctl Processing 71
I_STR ioctl Processing 72
Transparent ioctl Processing 72
I_LIST ioctl 72
Other ioctl Commands 75
Message Direction 76

Flush Handling 77

5 STREAMS Administration 79

Administration Tools 79
Autopush Facility 80

Application Interface 81
Administration Tool Description 82

strace Command 83
strlog Command 83
strqget Command 83
strqset Command 83
strerr Daemon 84

6 Pipes and Queues 85

Overview of Pipes and FIFOs 85
Creating and Opening Pipes and FIFOs 86

Using Pipes and FIFOs 88

5

Flushing Pipes and FIFOs 90
Named Streams 90
Unique Connections 91

Part II Kernel Interface 93

7 STREAMS Framework – Kernel Level 95

Overview of Streams in Kernel Space 95
Stream Head 96
Kernel–Level Messages 96

Message Types 96
Message Structure 98
Message Linkage 100
Queued Messages 100
Shared Data 101
Sending and Receiving Messages 103
Message Queues and Message Priority 104

Message Queues 106
queue() Structure 106
Using Queue Information 108

Entry Points 109
open Routine 110
close Routine 113
put Procedure 115
Queue service Procedure 118
qband Structure 121
Message Processing Procedures 124

Flow Control in Service Procedures 125

8 STREAMS Kernel-Level Mechanisms 131

ioctl Processing 131
Message Allocation and Freeing 132

Recovering From No Buffers 135
Read Device Interrupt Handler 135
Write Service Procedure 136
Releasing Callback Requests 137

Extended STREAMS Buffers 138

6 STREAMS Programming Guide • January 2005

esballoc(9F) Example 139

General ioctl Processing 141

STREAMS ioctl Issues 142

I_STR ioctl Processing 143

Transparent ioctl 145

Transparent ioctl Messages 146

Transparent ioctl Examples 148

M_FLUSH Message Handling 164

Flushing According to Priority Bands 164

Driver and Module Service Interfaces 169

Service Interface Library Example 171

Message Type Change Rules 178

Common ioctl Interfaces 178

FIORDCHK 178

FIONREAD 179

I_NREAD 179

signal Message 179

9 STREAMS Drivers 181

STREAMS Device Drivers 181

Basic Driver 182

STREAMS Driver Entry Points 182

STREAMS Configuration Entry Points 183

STREAMS Initialization Entry Points 184

STREAMS Table-Driven Entry Points 184

STREAMS Queue Processing Entry Points 185

STREAMS Interrupt Handlers 186

Driver Unloading 186

STREAMS Driver Code Samples 186

Printer Driver Example 187

Cloning STREAMS Drivers 199

Loop-Around Driver 203

Summarizing STREAMS Device Drivers 216

10 STREAMS Modules 217

Module Overview 217

STREAMS Module Configuration 217

7

Module Procedures 218

Filter Module Example 221

Data Flow Control 224

Design Guidelines 226

htonl(3B) and ntohl(3B) 227

11 Configuring STREAMS Drivers and Modules 229

Kernel Data Structures 229

modlinkage 230

modldrv 230

modlstrmod 230

dev_ops 231

cb_ops 231

streamtab 232

qinit 232

STREAMS Driver Entry Points 233

pts Example 233

STREAMS Module Configuration 238

Compilation 239

Kernel Loading 239

Checking the Module Type 239

Tunable Parameters 240

STREAMS Administrative Driver 240

Application Interface 241

STREAMS Anchors 243

Anchors and Data Flow 243

Using Anchors 244

12 Multithreaded STREAMS 249

Multithreaded (MT) STREAMS Overview 249

MT STREAMS Framework 251

STREAMS Framework Integrity 251

Message Ordering 252

MT STREAMS Perimeters 252

Inner Perimeters 253

Outer Perimeters 254

PERMOD Perimeter 255

8 STREAMS Programming Guide • January 2005

Hot Perimeters 255
Defining Perimeter Types 255
Choosing a Perimeter Type 256

MT SAFE Modules and Drivers 258
MT SAFE Module 258
MT SAFE Driver 259

Routines Used Inside a Perimeter 259
qprocson/qprocsoff 259
qtimeout/qunbufcall 260
qwriter 260
qwait 261
Asynchronous Callback Functions 261
close() Race Conditions 262
Unloading a Module that Uses esballoc 262
Use of the q_next Field 262

MT SAFE Modules Using Explicit Locks 263
Constraints When Using Locks 263
Preserving Message Ordering 263

Preparing to Port 264
Porting to the SunOS 5 System 265

Sample Multithreaded Device Driver Using a Per Module Inner Perimeter 266
Sample Multithreaded Module With Outer Perimeter 273

13 STREAMS Multiplex Drivers 279

STREAMS Multiplexers 279
Building a Multiplexer 280
Dismantling a Multiplexer 284
Routing Data Through a Multiplexer 285

Connecting And Disconnecting Lower Streams 286
Connecting Lower Streams 286
Disconnecting Lower Streams 288

Multiplexer Construction Example 288
Multiplexing Driver Example 289

Upper Write put Procedure Sample 292
Upper Write service Procedure Sample 295
Lower Write service Procedure 295
Lower Read put Procedure 296

Persistent Links 298

9

Design Guidelines 300

Part III Advanced Topics 301

14 Debugging STREAMS-based Applications 303
Kernel Debug Printing 303
STREAMS Error and Trace Logging 304
Kernel Examination Tools 305

crash Command 305
adb Command 306
kadb Command 306

Part IV Appendixes 307

A Message Types 309
Ordinary Messages 309

M_BREAK 309
M_CTL 310
M_DATA 310
M_DELAY 310
M_IOCTL 310
M_PASSFP 313
M_PROTO 313
M_RSE 314
M_SETOPTS 314
M_SIG 317

High-Priority Messages 317
M_COPYIN 317
M_COPYOUT 318
M_ERROR 319
M_FLUSH 319
M_HANGUP 320
M_IOCACK 321
M_IOCDATA 321
M_IOCNAK 322
M_PCPROTO 322
M_PCRSE 323

10 STREAMS Programming Guide • January 2005

M_PCSIG 323

M_READ 323

SO_MREADOFF and M_STOP 323

SO_MREADOFFI and M_STOPI 324

M_UNHANGUP 324

B Kernel Utility Interface Summary 325

C STREAMS-Based Terminal Subsystem 329

Overview of Terminal Subsystem 329

Master Driver and Slave Driver Characteristics 330

Line-Discipline Module 331

Hardware Emulation Module 337

STREAMS-based Pseudo-Terminal Subsystem 338

Line-Discipline Module 339

Pseudo-TTY Emulation Module: ptem 339

Remote Mode 342

Packet Mode 342

Pseudo-TTY Drivers: ptm and pts 343

Pseudo-TTY Streams 346

D STREAMS FAQ 347

Glossary 351

Index 357

11

12 STREAMS Programming Guide • January 2005

Preface

The STREAMS Programming Guide describes how to use STREAMS in designing and
implementing applications and STREAMS modules and drivers, for architectures that
conform to the Solaris™ 7 DDI/DDK.

Note – This Solaris release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation
differences between the platform types.

In this document the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
This manual is a guide for application, driver, and module developers. The reader
must know C programming in a UNIX® environment, and be familiar with the system
interfaces. Driver and module developers should also be familiar with the book
Writing Device Drivers.

13

http://www.sun.com/bigadmin/hcl

How This Book Is Organized
This guide is divided into three parts. Part 1, Application Programming Interface,
describes how to use STREAMS facilities in applications. Part 2, Kernel Interface,
describes how to design STREAMS modules and STREAMS drivers. Part 3, Advanced
Topics, contains advanced topics. Every developer should read Chapter 1.

Part 1, Application Programming Interface

� Chapter 1 is a general overview of STREAMS concepts and mechanisms.
� Chapter 2 describes the basic operations to assemble, use, and dismantle streams.
� Chapter 3 details the operations of messages, the flow of streams, and how to

manipulate Steams from applications.
� Chapter 4 describes putting messages into and receiving them from a stream.
� Chapter 5 identifies and describes tools to monitor names and modules, and gather

statistics.
� Chapter 6 describes pipes and named pipes (FIFOs).

Part 2, Kernel Interface

� Chapter 7 describes STREAMS modules, drivers, and how they relate.
� Chapter 8 describes message types, structure, and linkage in detail. Flow control is

also covered.
� Chapter 9 describes specific STREAMS drivers, using code samples.
� Chapter 10 describes how specific examples of modules work based on code

samples.
� Chapter 11 describes configuring modules and drivers into the OS.
� Chapter 12 describes the multithreaded environment and how to make modules

and drivers MT- safe.
� Chapter 13 describes how to implement multiplexing in a driver.

Part 3, Advanced Topics

� Chapter 14 describes the tools available for debugging STREAMS-based
applications.

Part 4, Appendixes

� Appendix A describes STREAMS messages and their use.
� Appendix B describes STREAMS utility routines and their use.
� Appendix C explains how to set up a terminal subsystem, and how to keep track of

processes and handle interrupts.
� Appendix D contains answers to a variety of commonly asked questions about

STREAMS.

14 STREAMS Programming Guide • January 2005

� Glossary defines terms unique to STREAMS.

Related Books
You can obtain more information on STREAMS system calls and utilities from the
on-line manual pages. For more information on driver-related issues, including
autoconfiguration, see Writing Device Drivers.

You can also find STREAMS described to some extent in the System V Interface
Definition, and in the following publications:

Goodheart, Berny and Cox, James. The Magic Garden Explained. Australia, &
Englewood Cliffs, New Jersey: Prentice Hall, 1994.

Rago, Stephen A. UNIX System V Network Programming. Reading, Massachusetts:
Addison-Wesley, 1993.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

15

http://docs.sun.com

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

16 STREAMS Programming Guide • January 2005

PART I

Application Programming Interface

Part I of this manual contains:

Chapter 1, Overview of STREAMS Describes how to construct, use, and
dismantle a stream using STREAMS-related
system calls

Chapter 2, STREAMS Application-Level
Components

Describes how the kernel interprets system
calls being passed from an application

Chapter 3, STREAMS Application-Level
Mechanisms

Shows how the kernel interprets system calls
being passed from an application

Chapter 4, STREAMS Driver and Module
Interfaces

Describes communication between processes
using STREAMS-based pipes and named
pipes.

Chapter 5, STREAMS Administration Describes the tools available to administer
STREAMS.

Chapter 6, Pipes and Queues Describes communication between processes
using STREAMS-based pipes and named
pipes.

17

18 STREAMS Programming Guide • January 2005

CHAPTER 1

Overview of STREAMS

This chapter provides a foundation for later chapters. Background and simple
definitions are followed by an overview of the STREAMS mechanisms. Because the
application developer is concerned with a different subset of STREAMS interfaces than
the kernel-level developer, application and kernel levels are described separately.

� “STREAMS Definitions” on page 20
� “When to Use STREAMS” on page 23
� “How STREAMS Works—Application Interface” on page 23
� “How STREAMS Works at the Kernel Level” on page 26
� “Service Interfaces” on page 32

What Is STREAMS?
STREAMS is a general, flexible programming model for UNIX system communication
services. STREAMS defines standard interfaces for character input/output (I/O)
within the kernel, and between the kernel and the rest of the UNIX system. The
mechanism consists of a set of system calls, kernel resources, and kernel routines.

STREAMS enables you to create modules to provide standard data communications
services and then manipulate the modules on a stream. From the application level,
modules can be dynamically selected and interconnected. No kernel programming,
compiling, and link editing are required to create the interconnection.

STREAMS provides an effective environment for kernel services and drivers requiring
modularity. STREAMS parallels the layering model found in networking protocols.
For example, STREAMS is suitable for:

� Implementing network protocols
� Developing character device drivers
� Developing network controllers (for example, for an Ethernet card)

19

� I/O terminal services

The fundamental STREAMS unit is the stream. A stream is a full-duplex bidirectional
data-transfer path between a process in user space and a STREAMS driver in kernel
space. A stream has three parts: a stream head, zero or more modules, and a driver.

Process

Stream head

STREAMS module

STREAMS driver

User space
Kernel space

Device

FIGURE 1–1 Simple Stream

STREAMS Definitions
The capitalized word “STREAMS” refers to the STREAMS programming model and
facilities. The word “stream” refers to an instance of a full-duplex path using the
model and facilities between a user application and a driver.

Stream as a Data Path
A stream is a data path that passes data in both directions between a STREAMS driver
in kernel space, and a process in user space. An application creates a stream by
opening a STREAMS device (see Figure 1–1).

20 STREAMS Programming Guide • January 2005

Stream Head
A stream head is the end of the stream nearest the user process. It is the interface
between the stream and the user process. When a STREAMS device is first opened, the
stream consists of only a stream head and a STREAMS driver.

STREAMS Module
A STREAMS module is a defined set of kernel-level routines and data structures. A
module does “black-box” processing on data that passes through it. For example, a
module converts lowercase characters to uppercase, or adds network routing
information. A STREAMS module is dynamically pushed on the stream from the user
level by an application. Full details on modules and their operation are covered in
Chapter 10.

STREAMS Device Driver
A STREAMS device driver is a character device driver that implements the STREAMS
interface. A STREAMS device driver exists below the stream head and any modules. It
can act on an external I/O device, or it can be an internal software driver, called a
pseudo-device driver. The driver transfers data between the kernel and the device. The
interfaces between the driver and kernel are known collectively as the Solaris
operating environment Device Driver Interface/Driver Kernel Interface (Solaris
operating environment DDI/DKI). The relationship between the driver and the rest of
the UNIX kernel is explained in Writing Device Drivers. Details of device drivers are
explained in Chapter 9.

STREAMS Data
Data on a stream is passed in the form of messages. Messages are the means by which
all I/O is done under STREAMS. Each stream head, STREAMS module, and driver
has a read sideand a write side. When messages go from one module’s read side to the
next module’s read side, they are said to be traveling upstream. Messages passing
from one module’s write side to the next module’s write side are said to be traveling
downstream. Kernel-level operation of messages is discussed in “Message
Components” on page 28.

Message Queues
Each stream head, driver, and module has its own pair of queues, one queue for the
read side and one queue for the write side. Messages are ordered into queues,
generally on a first-in, first-out basis (FIFO), according to priorities associated with
them. Kernel-level details of queues are covered in “Structure of a Message Queue”
on page 30.

Chapter 1 • Overview of STREAMS 21

User space
Kernel space

User process

Queue
Stream head

STREAMS module

Messages

STREAMS driver

Upstream (read)Downstream (write)

Device

FIGURE 1–2 Messages Passing Using Queues

Communicating With a STREAMS Device
To communicate with a STREAMS device, an application’s process uses read(2),
write(2), getmsg(2), getpmsg(2), putmsg(2), putpmsg(2), and ioctl(2) to transmit
or receive data on a stream.

From the command line, configure a stream with autopush(1M). From within an
application, configure a stream with ioctl(2) as described in streamio(7I).

The ioctl(2) interface performs control operations on and through device drivers
that cannot be done through the read(2) and write(2) interfaces. ioctl(2)
operations include pushing and popping modules on and off the stream, flushing the
stream, and manipulating signals and options. Certain ioctl(2) commands for
STREAMS operate on the whole stream, not just the module or driver. The
streamio(7I) manual page describes STREAMS ioctl(2) commands. Chapter 4
details interstream communications.

STREAMS Multiplexing
The modularity of STREAMS allows one or more upper streams to route data into one
or more lower streams. This process is defined as multiplexing (mux). Example
configurations of multiplexers are described in “Configuring Multiplexed Streams”
on page 31.

22 STREAMS Programming Guide • January 2005

STREAMS Polling
Polling within STREAMS enables a user process to detect events occurring at the
stream head, specifying the event to look for and the amount of time to wait for it to
happen. An application might need to interact with multiple streams. The poll(2)
system call enables applications to detect events that occur at the head of one or more
streams. Chapter 3 describes polling.

Message Transfer Flow Control
Flow control regulates the rate of message transfer between the user process, stream
head, modules, and driver. With flow control, a module that cannot process data at the
rate being sent can queue the data to avoid flooding modules upstream. Flow control
is local to each module or driver, and is voluntary. Chapter 8 describes flow control.

When to Use STREAMS
The STREAMS framework is most useful when modularity and configurability are
issues. For instance, network drivers, terminal drivers, and graphics I/O device
drivers benefit from using STREAMS. Modules can be pushed (added) and popped
(removed) to create desired program behavior.

STREAMS is general enough to provide modularity between a range of protocols. It is
a major component in networking support utilities for UNIX System V because it
facilitates communication between network protocols.

How STREAMS Works—Application
Interface
An application opens a STREAMS device, which creates the stream head to access the
device driver. The stream head packages the data from the user process into
STREAMS messages, and passes it downstream into kernel space. One or more
cooperating modules can be pushed on a stream between the stream head and driver
to customize the stream and perform any of a range of tasks on the data before
passing it on. On the other hand, a stream might consist solely of the stream head and
driver, with no module at all.

Chapter 1 • Overview of STREAMS 23

Opening a Stream
To a user application, a STREAMS device resembles an ordinary character I/O device,
as it has one or more nodes associated with it in the file system, and is opened by
calling open(2).

The file system represents each device as a special file. There is an entry in the file for
the major device number, identifying the actual device driver that will activate the
device. There are corresponding separate minor device numbers for each instance of a
particular device, for example, for a particular port on a serial card, or a specific
pseudo-terminal such as those used by a windowing application.

Different minor devices of a driver cause a separate stream to be connected between a
user process and the driver. The first open call creates the stream; subsequent open
calls respond with a file descriptor referencing that stream. If the same minor device is
opened more than once, only one stream is created.

However, drivers can support a user process getting a dedicated stream without the
application distinguishing which minor device is used. In this case, the driver selects
any unused minor device to be used by the application. This special use of a minor
device is called cloning. Chapter 9 describes properties and behavior of clone devices.

Once a device is opened, a user process can send data to the device by calling
write(2), and receive data from the device by calling read(2). Access to STREAMS
drivers using read and write is compatible with the traditional character I/O
mechanism. STREAMS-specific applications also can call getmsg(2), getpmsg(2),
putmsg(2), and putpmsg(2) to pass data to and from the stream.

Closing a Stream
The close(2) interface closes a device and dismantles the associated stream when the
last open reference to the stream is closed. The exit(2) interface terminates the user
process and closes all open files.

Controlling Data Flow
If the stream exerts flow control, the write(2) call blocks until flow control has been
relieved, unless the file has been specifically advised not to. open(2) or fcntl(2) can
be used to control this nonblocking behavior.

Simple Stream Example
Example 1–1 shows how an application might use a simple stream. Here, the user
program interacts with a communications device that provides point-to-point data
transfer between two computers. Data written to the device is transmitted over the
communications line, and data arriving on the line is retrieved by reading from the
device.

24 STREAMS Programming Guide • January 2005

EXAMPLE 1–1 Simple Stream

#include <sys/fcntl.h>
#include <stdio.h>

main()
{

char buf[1024];
int fd, count;

if ((fd = open("/dev/ttya", O_RDWR)) < 0) {
perror("open failed");
exit(1);

}
while ((count = read(fd, buf, sizeof(buf))) > 0) {

if (write(fd, buf, count) != count) {
perror("write failed");
break;

}
}
exit(0);

}

In this example, /dev/ttya identifies an instance of a serial communications device
driver. When this file is opened, the system recognizes the device as a STREAMS
device and connects a stream to the driver. Figure 1–3 shows the state of the stream
following the call to open(2).

User
process

Stream head

Communications
driver

User space
Kernel space

FIGURE 1–3 Stream to Communications Driver

This example illustrates a simple loop, with the application reading data from the
communications device, then writing the input back to the same device, echoing all
input back over the communications line. The program reads up to 1024 bytes at a
time, and then writes the number of bytes just read.

read(2) returns the available data, which can contain fewer than 1024 bytes. If no data
is currently available at the stream head, read(2) blocks until data arrives.

Chapter 1 • Overview of STREAMS 25

Note – The application program must loop on read(2) until the desired number of
bytes are read. The responsibility for the application getting all the bytes it needs is
that of the application developer, not the STREAMS facilities.

Similarly, the write(2) call attempts to send the specified number of bytes to
/dev/ttya. The driver can implement a flow-control mechanism that prevents a user
from exhausting system resources by flooding a device driver with data.

How STREAMS Works at the Kernel
Level
Developers implementing STREAMS device drivers and STREAMS modules use a set
of STREAMS-specific functions and data structures. This section describes some basic
kernel-level STREAMS concepts.

Creating the Stream Head
The stream head is created when a user process opens a STREAMS device. It translates
the interface calls of the user process into STREAMS messages, which it sends to the
stream. The stream head also translates messages originating from the stream into a
form that the application can process. The stream head contains a pair of queues; one
queue passes messages upstream from the driver, and the other passes messages to the
driver. The queues are the pipelines of the stream, passing data between the stream
head, modules, and driver.

Message Processing
A STREAMS module does processing operations on messages passing from a stream
head to a driver or from a driver to a stream head. For example, a TCP module might
add header information to the front of data passing downstream through it. Not every
stream requires a module. There can be zero or more modules in a stream.

Modules are stacked (pushed) onto and unstacked (popped) from a stream. Each
module must provide open(), close(), and put() entries and provides a
service() entry if the module supports flow control.

Like the stream head, each module contains a pair of queue structures, although a
module only queues data if it is implementing flow control. Figure 1–4 shows the
queue structures Au/Ad associated with Module A (“u” for upstream “d” for
downstream) and Bu/Bd associated with Module B.

26 STREAMS Programming Guide • January 2005

The two queues operate completely independently. Messages and data can be shared
between upstream and downstream queues only if the module functions are
specifically programed to share data.

Within a module, one queue can refer to the messages and data of the opposing
queue. A queue can directly refer to the queue of the successor module (adjacent in the
direction of message flow). For example, in Figure 1–4, Au (the upstream queue from
Module A) can reference Bu (the upstream queue from Module B). Similarly Queue Bd
can reference Queue Ad.

User space
Kernel space

User process

Stream head

Message Bu

STREAMS driver

Message Au

Queue Bu

Device

Module B

Queue Au

Message Bd

Message Ad

Queue Bd

Queue Ad

Driver read queueDriver write queue

Module A

FIGURE 1–4 Stream in More Detail

Both queues in a module contain messages, processing procedures, and private data.

Messages Blocks of data that pass through, and can be operated on by,
a module.

Processing procedures Individual put and service routines on the read and
write queues process messages. The put procedure passes
messages from one queue to the next in a stream and is
required for each queue. It can do additional message
processing. The service procedure is optional and does

Chapter 1 • Overview of STREAMS 27

deferred processing of messages. These procedures can
send messages either upstream or downstream. Both
procedures can also modify the private data in their
module.

Private data Data private to the module (for example, state information
and translation tables).

Open and close Entry points must be provided. The open routine is
invoked when the module is pushed onto the stream or the
stream is reopened. The close is invoked when the
module is popped or the stream is closed.

A module is initialized by either an I_PUSH ioctl(2), or pushed automatically
during an open if a stream has been configured by the autopush(1M) mechanism, or
if that stream is reopened.

A module is disengaged by close or the I_POP ioctl(2).

Structure of a STREAMS Device Driver
STREAMS device drivers are structurally similar to STREAMS modules and character
device drivers. The STREAMS interfaces to driver routines are identical to the
interfaces used for modules. For instance they must both declare open, close, put,
and service entry points.

There are some significant differences between modules and drivers.

A driver:

� Must be able to handle interrupts from the device.

� Is represented in file system by a character-special file.

� Is initialized and disengaged using open(2) and close(2). open(2) is called when
the device is first opened and for each reopen of the device. close(2) is only called
when the last reference to the stream is closed.

Both drivers and modules can pass signals, error codes, and return values to processes
using message types provided for that purpose.

Message Components
All kernel-level input and output under STREAMS is based on messages. STREAMS
messages are built in sets of three:

� a message header structure (msgb(9S)) that identifies the message instance.

28 STREAMS Programming Guide • January 2005

� a data block structure (datab(9S)) points to the data of the message.
� the data itself

Each data block and data pair can be referenced by one or more message headers. The
objects passed between STREAMS modules are pointers to messages. Messages are
sent through a stream by successive calls to the put procedure of each module or
driver in the stream. Messages can exist as independent units, or on a linked list of
messages called a message queue. STREAMS utility routines enable developers to
manipulate messages and message queues.

All STREAMS messages are assigned message types to indicate how they will be used
by modules and drivers and how they will be handled by the stream head. Message
types are assigned by the stream head, driver, or module when the message is created.
The stream head converts the system calls read, write, putmsg, and putpmsg into
specified message types, and sends them downstream. It responds to other calls by
copying the contents of certain message types that were sent upstream.

Message Queueing Priority
Sometimes messages with urgent information, such as a break or alarm conditions,
must pass through the stream quickly. To accommodate them, STREAMS uses
message queuing priority, and high-priority message types. All messages have an
associated priority field. Normal (ordinary) messages have a priority of zero, while
priority messages have a priority band greater than zero. High-priority messages have
a high priority by virtue of their message type, are not blocked by STREAMS flow
control, and are processed ahead of all ordinary messages on the queue.

Nonpriority, ordinary messages are placed at the end of the queue following all other
messages that can be waiting. Priority messages can be either high priority or priority
band messages. High-priority messages are placed at the head of the queue but after
any other high-priority messages already in the queue. Priority band messages enable
support of urgent, expedited data. Priority band messages are placed in the queue in
the following order:

� after high-priority messages but before ordinary messages.
� below all messages that have a priority greater than or equal to their own.
� above any messages with a lesser priority.

Figure 1–5 shows the message queueing priorities.

Chapter 1 • Overview of STREAMS 29

New High-Priority
Message

Priority Band (n)
Message

High-Priority
Message

Priority Band 1
Message

Ordinary
Message

Priority Band 2
Message

upstreamHEAD

TAIL

FIGURE 1–5 Message Priorities

High-priority message types cannot be changed into normal or priority band message
types. Certain message types come in equivalent high-priority or ordinary pairs (for
example, M_PCPROTO and M_PROTO), so that a module or device driver can choose
between the two priorities when sending information.

Structure of a Message Queue
A queue is an interface between a STREAMS driver or module and the rest of the
stream (see queue(9S)). The queue structure holds the messages, and points to the
STREAMS processing routines that should be applied to a message as it travels
through a module. STREAMS modules and drivers must explicitly place messages on
a queue, for example, when flow control is used.

Each open driver or pushed module has a pair of queues allocated, one for the read
side and one for the write side. Queues are always allocated in pairs. Kernel routines
are available to access each queue’s mate. The queue’s put or service procedure can
add a message to the current queue. If a module does not need to queue messages, its
put procedure can call the neighboring queue’s put procedure.

30 STREAMS Programming Guide • January 2005

The queue’s service procedure deals with messages on the queue, usually by
removing successive messages from the queue, processing them, and calling the put
procedure of the next module in the stream to pass the message to the next queue.
Chapter 7 discusses the service and put procedures in more detail.

Each queue also has a pointer to an open and close routine. The open routine of a
driver is called when the driver is first opened and on every successive open of the
stream. The open routine of a module is called when the module is first pushed on the
stream and on every successive open of the stream. The close routine of the module
is called when the module is popped (removed) off the stream, or at the time of the
final close. The close routine of the driver is called when the last reference to the
stream is closed and the stream is dismantled.

Configuring Multiplexed Streams
Previously, streams were described as stacks of modules, with each module (except the
head) connected to one upstream module and one downstream module. While this
can be suitable for many applications, others need the ability to multiplex streams in a
variety of configurations. Typical examples are terminal window facilities, and
internetworking protocols (that might route data over several subnetworks).

An example of a multiplexer is a module that multiplexes data from several upper
streams to a single lower stream. An upper stream is one that is upstream from the
multiplexer, and a lower stream is one that is downstream from the multiplexer. A
terminal windowing facility might be implemented in this fashion, where each upper
stream is associated with a separate window.

A second type of multiplexer might route data from a single upper stream to one of
several lower streams. An internetworking protocol could take this form, where each
lower stream links the protocol to a different physical network.

A third type of multiplexer might route data from one of many upper streams to one
of many lower streams.

The STREAMS mechanism supports the multiplexing of streams through special
pseudo-device drivers. A user can activate a linking facility mechanism within the
STREAMS framework to dynamically build, maintain, and dismantle multiplexed
stream configurations. Simple configurations like those shown previously can be
combined to form complex, multilevel multiplexed stream configurations.

Chapter 1 • Overview of STREAMS 31

STREAMS multiplexing configurations are created in the kernel by interconnecting
multiple streams. Conceptually, a multiplexer can be divided into two
components—the upper multiplexer and the lower multiplexer. The lower multiplexer
acts as a stream head for one or more lower streams. The upper multiplexer acts as a
device for one or more upper streams. How data is passed between the upper and
lower multiplexer is up to the implementation. Chapter 13 covers implementing
multiplexers.

Multithreading the Kernel
The Solaris operating environment kernel is multithreaded to make effective use of
symmetric shared-memory multiprocessor computers. All parts of the kernel,
including STREAMS modules and drivers, must ensure data integrity in a
multiprocessing environment. For the most part, developers must ensure that
concurrently running kernel threads do not attempt to manipulate the same data at
the same time. The STREAMS framework provides multithreaded (MT) STREAMS
perimeters, which provides the developer with control over the level of concurrency
allowed in a module. The DDI/DKI provides several advisory locks for protecting
data. See Chapter 12 for more information.

Service Interfaces
Using STREAMS, you can create modules that present a service interface to any
neighboring module or device driver, or between the top module and a user
application. A service interface is defined in the boundary between two neighbors.

In STREAMS, a service interface is a set of messages and the rules that allow these
messages to pass across the boundary. A module using a service interface, for example,
receives a message from a neighbor and responds with an appropriate action (perhaps
sending back a request to retransmit) depending on the circumstances.

You can stack a module anywhere in a stream, but connecting sequences of modules
with compatible protocol service interfaces is better. For example, a module that
implements an X.25 protocol layer, as shown in Figure 1–6, presents a protocol service
interface at its input and output sides. In this case, other modules should be connected
to the input and output side if they have the compatible X.25 service interface only.

32 STREAMS Programming Guide • January 2005

Manipulating Modules
With STREAMS, you can manipulate modules from the user application level,
interchange modules with common service interfaces, and change the service interface
to a STREAMS user process. These capabilities yield further benefits when working
with networking services and protocols:

� User-level programs can be independent of underlying protocols and physical
communication media.

� Network architectures and higher-level protocols can be independent of
underlying protocols, drivers, and physical communication media.

� Higher-level services can be created by selecting and connecting lower-level
services and protocols.

The following examples show the benefits of STREAMS capabilities for creating
service interfaces and manipulating modules. These examples are only illustrations
and do not necessarily reflect real situations.

Protocol Portability
Figure 1–6 shows how an X.25 protocol module can work with different drivers on
different machines by using compatible service interfaces. The X.25 protocol module
interfaces are Connection Oriented Network Service (CONS) and Link Access Protocol
– Balanced (LAPB).

X.25
Protocol layer

module

MACHINE A

LAPB
driver

machine A

X.25
Protocol layer

module

MACHINE B

LAPB
driver

machine B

CONS
interface

SAME
module

LAPB
interface

DIFFERENT
driver

FIGURE 1–6 Protocol Module Portability

Chapter 1 • Overview of STREAMS 33

Protocol Substitution
You can alternate protocol modules and device drivers on a system if the alternates are
implemented to an equivalent service interface.

Protocol Migration
Figure 1–7 shows how STREAMS can move functions between kernel software and
front-end firmware. A common downstream service interface lets the transport
protocol module be independent of the number or type of modules below it. The same
transport module will connect without modification to either an X.25 module or X.25
driver that has the same service interface.

By shifting functions between software and firmware, you can produce cost-effective,
functionally equivalent systems over a wide range of configurations. This means you
can swiftly incorporate technological advances. The same transport protocol module
can be used on a lower-capacity machine, where economics preclude the use of
front-end hardware, and also on a larger scale system where a front-end is
economically justified.

LAPB
driver

SAME
modules

Class 1
transport
protocol

X.25
Packet layer

protocol

Class 1
transport
protocol

X.25
Packet layer

driver

CONS
interface

KERNEL
hardware

FIGURE 1–7 Protocol Migration

34 STREAMS Programming Guide • January 2005

Module Reusability
Figure 1–8 shows the same canonical module (for example, one that provides delete
and kill processing on character strings) reused in two different streams. This module
would typically be implemented as a filter, with no service interface. In both cases, a
TTY interface is presented to the stream’s user process because the module is nearest
the stream head.

Canonical
module

Canonical
module

LAPB
driver

Raw TTY
driver

Class 1
transport
protocol

X.25
Packet layer

protocol

Terminal
emulator
module

User
process

User
process

SAME
interface

SAME
module

FIGURE 1–8 Module Reusability

Chapter 1 • Overview of STREAMS 35

36 STREAMS Programming Guide • January 2005

CHAPTER 2

STREAMS Application-Level
Components

This chapter shows how to construct, use, and dismantle a stream using
STREAMS-related system calls. It provides a general discussion of the relationship
between STREAMS components in a simple streams example.

� “STREAMS Interfaces” on page 37
� “Opening a STREAMS Device File” on page 39
� “Queue Allocation” on page 40
� “Adding and Removing Modules” on page 40
� “Closing the Stream” on page 41
� “Stream Construction Example” on page 41

STREAMS Interfaces
The stream head provides the interface between the stream and an application
program. After a stream has been opened, STREAMS-related system calls enable a
user process to insert and delete (push and pop) modules. That process can then
communicate with and control the operation of the stream head, modules, and drivers.
The stream head handles most system calls so that the related processing does not
have to be incorporated in a module or driver.

STREAMS System Calls
Table 2-1 offers an overview of some basic STREAMS-related system calls.

37

TABLE 2–1 Summary of Basic STREAMS-related System Calls

Function Description

open(2) Opens a stream

close(2) Closes a stream

read(2) Reads data from a stream

write(2) Writes data to a stream

ioctl(2) Controls a stream

getmsg(2) Receives a message at the stream head

getpmsg(2) Receives a priority message at the stream head

putmsg(2) Sends a message downstream

putpmsg(2) Sends a priority message downstream

poll(2) Identifies files on which a user can send or receive messages, or on
which certain events have occurred (not restricted to STREAMS,
although historically it was)

pipe(2) Creates a bidirectional channel that provides a communication path
between multiple processes

Note – Sections 1, 2, 3, 7, and 9 of the online manual pages (man pages) contain all the
STREAMS information.

Action Summary
The open(2) system call recognizes a STREAMS special file and creates a stream to the
specified driver. A user process can receive and send data on STREAMS files using
read(2) and write(2) in the same way as with traditional character files. ioctl(2)
lets users perform functions specific to a particular device. STREAMS ioctl(2)
commands (see the streamio(7I) man page) support a variety of functions to access
and control streams. The final close(2) on a stream dismantles it.

The poll(2) system call provides a mechanism for multiplexing input/output over a
set of file descriptors that reference open files. putmsg(2) and getmsg(2) and the
putpmsg(2) and getpmsg(2) send and receive STREAMS messages, and can act on
STREAMS modules and drivers through a service interface.

38 STREAMS Programming Guide • January 2005

Opening a STREAMS Device File
One way to construct a stream is to callopen(2) to open a STREAMS special file. If the
open call is the initial file open, a stream is created. (There is one stream for each major
or minor device pair.) If this open is not the initial open of this stream, the open
procedures of the driver and all pushable modules on the stream are called.

Sometimes a user process needs to connect a new stream to a driver regardless of
which minor device is used to access the driver. Instead of the user process polling for
an available minor device node, STREAMS provides a facility called clone open. If a
STREAMS driver is implemented as a clone device, a single node in the file system
may be opened to access any unused device that the driver controls. This special node
guarantees that the user is allocated a separate stream to the driver for every open
call. Each stream is associated with an unused major or minor device, so the total
number of streams that can connect to a particular clone driver is limited to the
number of minor devices configured for the driver.

Clone devices are used, for example, in a networking environment where a protocol
pseudo-device driver requires each user to open a separate stream to establish
communication.

You can open a clone device in two ways. The first is to create a node with the major
number of the clone device (--) and a minor number corresponding to the major
number of the device to be cloned. For example /dev/ps0 might have a major
number of 50 and a minor number of 0 for normal opens. The clone device may have a
major number of 40. By creating a node /dev/ps with a major number of 40 and a
minor number of 50, a clonable device is created. In this case, the driver is passed a
special flag (CLONEOPEN) that tells it to return a unique minor device number.

The second way is to have the driver open itself as a clone device, that is, the driver
returns a unique minor number.

When a stream is already open, further opens of the same device call the open
routines of all modules and the driver on that stream. In this case, a driver is opened
and a module is pushed on a stream. When a push occurs, the module open routine is
called. If another open of the same device is made, the open routine of the module is
called, followed by the open routine of the driver. This is opposite to the initial order
of opens when the stream is created.

STREAMS also offers autopush. On an open(2) system call, a preconfigured list is
checked for modules to be pushed. All modules in this list are pushed before the
open(2) returns. For more information see the autopush(1M) and sad(7D) man
pages.

Chapter 2 • STREAMS Application-Level Components 39

Initializing Details
There is one stream head per stream. The stream head, which is initiated by the first
open call, is created from a data structure and a pair of queue structures. The content
of the stream head and queues is initialized with predetermined values, including the
stream head processing procedures.

Queue Allocation
STREAMS queues are allocated in pairs. One queue is always the upstream or
read-side; the other is the downstream or write-side. These queues hold the messages,
and tell the kernel which processing routines apply to each message passing through a
module. The queue structure type is queue_t. Fields in the queue data structure are
detailed in queue(9S).

Adding and Removing Modules
As part of constructing a stream, a module can be added (pushed) with an I_PUSH
ioctl(2) (see streamio(7I)) call. The push inserts a module beneath the stream head.
Because of the similarity of STREAMS components, the push operation is similar to
the driver open.

Each push of a module is independent, even in the same stream. If the same module is
pushed more than once on a stream, there are multiple occurrences of the module in
the stream. The total number of pushable modules that may be contained on any one
stream is limited by the kernel parameter nstrpush.

An I_POP ioctl(2) (see streamio(7I))) system call removes (pops) the module
immediately below the stream head. The pop calls the module close procedure. On
return from the module close, any messages left on the module’s message queues are
freed (deallocated). The stream head then connects to the component previously below
the popped module and releases the module’s queue pair.

I_PUSH and I_POP enable a user process to dynamically alter the configuration of a
stream by pushing and popping modules as required. For example, a module may be
removed and a new one inserted below the stream head. Then the original module can
be pushed back after the new module has been pushed.

You can also restrict which modules can be popped with I_POP calls by placing an
anchor in the stream at any module you want to “lock down.” The I_ANCHOR ioctl
prevents a module from being popped except by a privileged process. See “STREAMS
Anchors” on page 243 for more information about working with anchors.

40 STREAMS Programming Guide • January 2005

Closing the Stream
The last close to a STREAMS device dismantles the stream. Dismantling consists of
popping any modules on the stream and closing the driver. Before a module is
popped, the close(2) may delay to allow any messages on the write message queue
of the module to be drained by module processing. Similarly, before the driver is
closed, the close(2) may delay to allow any messages on the write message queue of
the driver to be drained by driver processing. If O_NDELAY (or O_NONBLOCK) is clear,
close(2) waits up to 15 seconds for each module to drain and up to 15 seconds for the
driver to drain, see open(2) and fcntl(2). The default close delay is 15 seconds, but
this can be changed on a per-stream basis with the I_SETCLTIME ioctl(2).

The close delay is independent of any delay that the module or driver’s close routine
itself chooses to impose. If O_NDELAY (or O_NONBLOCK) is set, the pop is performed
immediately and the driver is closed without delay.

Messages can remain queued, for example, if flow control is inhibiting execution of the
write queue service procedure. When all modules are popped and any wait for the
driver to drain is completed, the driver close routine is called. On return from the
driver close, any messages left on the driver’s queues are freed, and the queue and
stream head structures are released.

Stream Construction Example
This example extends the communications device-echoing example shown in “Simple
Stream Example” on page 24. The module in this example converts (change case,
delete, duplicate) selected alphabetic characters.

Note – The complete listing of the module is on the CD.

Inserting Modules
An application can insert various modules into a stream to process and manipulate
data that pass between a user process and the driver. In the example, the character
conversion module receives a command and a corresponding string of characters from
the user. All data passing through the module is inspected for instances of characters
in this string. Whatever operation the command requires is performed on all
characters that match the string.

Chapter 2 • STREAMS Application-Level Components 41

EXAMPLE 2–1 Module Header File Definition

#include <string.h>
#include <fcntl.h>
#include <stropts.h>
#define BUFLEN 1024
/*
* These definitions would typically be
* found in a header file for the module
*/
#define XCASE 1 /* change alphabetic case of char */
#define DELETE 2 /* delete char */
#define DUPLICATE 3 /* duplicate char */
main()
{

char buf[BUFLEN];
int fd, count;

struct strioctl strioctl;

The first step is to establish a stream to the communications driver and insert the
character conversion module. This is accomplished by first opening (fd = open) then
calling ioctl(2) to push the chconv module, as shown in the sequence of system
calls in Example 2–2.

EXAMPLE 2–2 Pushing a Module

if ((fd = open("/dev/term/a", O_RDWR)) < 0) {
perror("open failed");
exit(1);

}
if (ioctl(fd, I_PUSH, "chconv") < 0) {

perror("ioctl I_PUSH failed");
exit(2);

}

The I_PUSH ioctl(2) call directs the stream head to insert the character conversion
module between the driver and the stream head. The example illustrates an important
difference between STREAMS drivers and modules. Drivers are accessed through a
node or nodes in the file system (in this case /dev/term/a) and are opened just like
other devices. Modules, on the other hand, are not devices. Identify modules through
a separate naming convention, and insert them into a stream using I_PUSH or
autopush. Figure 2–1 shows creation of the stream.

42 STREAMS Programming Guide • January 2005

Character
conversion

module

open
ioctl
push

Stream
head

Driver

FIGURE 2–1 Pushing the Character Conversion Module

Modules are stacked onto a stream and removed from a stream in last-in, first-out
(LIFO) order. Therefore, if a second module is pushed onto this stream, it is inserted
between the stream head and the character conversion module.

Module and Driver Control
The next step in this example is to pass the commands and corresponding strings to
the character conversion module. This can be accomplished by calling ioctl(2) to
invoke the character conversion module.

Example 2–3 uses the conventional I_STR ioctl(2), an indirect way of passing
commands and data pointers. Example 2–4 shows the data structure for I_STR.

Instead of I_STR, some systems support transparent ioctls in which calls can be
made directly. For example, a module calls I_PUSH. Both modules and drivers can
process ioctls without requiring user programs to first encapsulate them with
I_STR (that is, the ioctls in the examples would look like ioctl
(fd,DELETE,"AEIOU");). This style of call works only for modules and drivers that
have been converted to use the new facilities that also accept the I_STR form.

Chapter 2 • STREAMS Application-Level Components 43

EXAMPLE 2–3 Processing ioctl(2)

/* change all uppercase vowels to lowercase */
strioctl.ic_cmd = XCASE;
strioctl.ic_timout = 0; /* default timeout (15 sec) */
strioctl.ic_dp = "AEIOU";
strioctl.ic_len = strlen(strioctl.ic_dp);
if (ioctl(fd, I_STR, &strioctl) < 0) {

perror("ioctl I_STR failed");
exit(3);

}
/* delete all instances of the chars ’x’ and ’X’ */
strioctl.ic_cmd = DELETE;
strioctl.ic_dp = "xX";
strioctl.ic_len = strlen(strioctl.ic_dp);
if (ioctl(fd, I_STR, &strioctl) < 0) {

perror("ioctl I_STR failed");
exit(4);

}

In Example 2–3, the module changes all uppercase vowels to lowercase, and deletes all
instances of either uppercase or lowercase “x”. ioctl(2) requests are issued indirectly,
using I_STR ioctl(2) (see streamio(7I)). The argument to I_STR must be a pointer
to a strioctl structure, which specifies the request to be made to a module or driver.
This structure is described in streamio(7I) and has the format shown in the
following example.

EXAMPLE 2–4 strioctl Structure

struct strioctl {
int ic_cmd; /* ioctl request */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data argument */
char *ic_dp; /* ptr to data argument */

};

where:

ic_cmd Identifies the command intended for a module or driver.

ic_timout Specifies the number of seconds an I_STR request should wait for
an acknowledgement before timing out.

ic_len The number of bytes of data to accompany the request.

ic_dp Points to the data. In the example, two separate commands are
sent to the character-conversion module:

� The first command sets ic_cmd to the command XCASE and
sends as data the string “AEIOU.” It converts all uppercase
vowels in data passing through the module to lowercase.

� The second command sets ic_cmd to the command DELETE
and sends as data the string “xX.” It deletes all occurrences of
the characters “x” and “X” from data passing through the

44 STREAMS Programming Guide • January 2005

module.

For each command, the value of ic_timout is set to zero, which specifies the system
default timeout value of 15 seconds. ic_dp points to the beginning of the data for
each command; ic_len is set to the length of the data.

I_STR is intercepted by the stream head, which packages it into a message using
information contained in the strioctl structure, then sends the message
downstream. Any module that cannot process the command in ic_cmd passes the
message further downstream. The request is processed by the module or driver closest
to the stream head that understands the command specified by ic_cmd. ioctl(2)
blocks up to ic_timout seconds, waiting for the target module or driver to respond
with either a positive or negative acknowledgement message. If an acknowledgement
is not received in ic_timout seconds, ioctl(2) fails.

Note – Only one ioctl(2) can be active on a stream at one time, regardless of whether
it is issued with I_STR. Further requests will block until the active ioctl(2) is
acknowledged and the system call concludes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR
request. If data is returned by the target module or driver, ic_dp must point to a
buffer large enough to hold that data, and ic_len is set on return to indicate the
amount of data returned. The remainder of this example is identical to Example 1–1 in
Chapter 1.

EXAMPLE 2–5 Process Input

while ((count = read(fd, buf, BUFLEN)) > 0) {
if (write(fd, buf, count) != count) {

perror("write failed");
break;

}
}
exit(0);

}

Notice that the character-conversion processing was realized with no change to the
communications driver.

exit(2) dismantles the stream before terminating the process. The character
conversion module is removed from the stream automatically when it is closed.
Alternatively, remove modules from a stream using I_POP ioctl(2) which is
described in streamio(7I). This call removes the topmost module on the stream, and
enables a user process to alter the configuration of a stream dynamically by popping
modules as needed.

Chapter 2 • STREAMS Application-Level Components 45

Several other ioctl(2) requests support STREAMS operations, such as determining if
a given module is on a stream, or flushing the data on a stream. streamio(7I)
describes these requests.

46 STREAMS Programming Guide • January 2005

CHAPTER 3

STREAMS Application-Level
Mechanisms

The previous chapters described the components of a stream from an application level.
This chapter explains how those components work together. It shows how the kernel
interprets system calls being passed from an application, so that driver and module
developers can know what structures are being passed.

� “Message Handling” on page 47
� “Message Queueing and Priorities” on page 49
� “Input and Output Polling” on page 57
� “Stream as a Controlling Terminal” on page 63

Message Handling
Messages are the communication medium between the user application process and
the various components of the stream. This chapter describes the path they travel and
the changes that occur to them. Chapter 8 covers the underlying mechanics of the
kernel.

Modifying Messages
The put(9E) and srv(9E) interfaces process messages as they pass through the queue.
Messages are generally processed by type, resulting in a modified message, one or
more new messages, or no message at all. The message usually continues in the same
direction it was passing through the queue, but can be sent in either direction. A
put(9E) procedure can place messages on its queue as they arrive, for later processing
by the srv(9E) procedure. For a more detailed explanation of put(9E) and srv(9E),
see Chapter 8.

Some kernel operations are explained here to show you how to manipulate the driver
or module appropriately.

47

Message Types
STREAMS messages differ according to their intended purpose and their queueing
priority. The contents of certain message types can be transferred between a process
and a stream using system calls. Appendix A describes message types in detail.

Control of Stream Head Processing
The stream head responds to a message by altering the processing associated with
certain system calls. Six stream head characteristics can be modified. Four
characteristics correspond to fields contained in queue (packet sizes — minimum and
maximum, and watermarks — high and low). Packet sizes are discussed in this
chapter. Watermarks are discussed in “Flush Handling” on page 77 in Chapter 4.

Read Options
The read options (so_readopt) specify two sets of three modes that can be set by the
I_SRDOPT ioctl(2) (see streamio(7I)). Byte-stream mode approximately models
pipe data transfer. Message nondiscard mode is similar to a TTY in canonical mode.

The first set of bits, RMODEMASK, deals with data and message boundaries, as shown in
Table 3–1.

TABLE 3–1 Data and Message Boundaries

RMODEMASK

RNORM RMSGN RMSGD

Byte-stream (RNORM) The read(2) call finishes when the byte count is
satisfied, the stream head read queue becomes
empty, or a zero length message is encountered. A
zero length message is put back in the queue. A
subsequent read returns 0 bytes.

Message non-discard (RMSGN) The read(2) call finishes when the byte count is
satisfied or a message boundary is found,
whichever comes first. Any data remaining in the
message is put back on the stream head read queue.

Message discard (RMSGD) The read(2) call finishes when the byte count is
satisfied or a message boundary is found. Any data
remaining in the message is discarded up to the
message boundary.

The second set of bits, RPROTMASK, specifies the treatment of protocol messages by the
read(2) system call as shown in Table 3–2.

48 STREAMS Programming Guide • January 2005

TABLE 3–2 How read(2) Treats Protocol Messages

RPROTMASK

RPROTNORM RPROTDIS RPROTDATA

Normal protocol (RPROTNORM) The read(2) call fails with EBADMSG if an M_PROTO
or M_PCPROTO message is at the front of the stream
head read queue. This is the default operation
protocol.

Protocol discard (RPROTDIS) The read(2) call discards any M_PROTO or
M_PCPROTO blocks in a message, delivering the
M_DATA blocks to the user.

Protocol data (RPROTDAT) The read(2) call converts the M_PROTO and
M_PCPROTO message blocks to M_DATA blocks,
treating the entire message as data.

Write Options
Send zero (I_SWROPT) The write(2) mode is set using the value of the argument

arg. Legal bit settings for arg are: SNDZERO—Send a
zero-length message downstream when the write of 0 bytes
occurs. To avoid sending a zero-length message when a
write of 0 bytes occurs, this bit must not be set in arg. On
failure, errno can be set to EINVAL—arg is above the legal
value.

Message Queueing and Priorities
Any delay in processing messages causes message queues to grow. Normally, queued
messages are handled in a first-in, first-out (FIFO) manner. However, certain
conditions can require that associated messages (for instance, an error message) reach
their stream destination as rapidly as possible. For this reason messages are assigned
priorities using a priority band associated with each message. Ordinary messages
have a priority of zero. High-priority messages are high priority by nature of their
message type. Their priority band is ignored. By convention, they are not affected by
flow control. Figure 3–1 shows how messages are ordered in a queue according to
priority.

Chapter 3 • STREAMS Application-Level Mechanisms 49

priority
(band 1)

messages

normal
(band 0)

messages

priority
(band 2)

messages

tail

....

head

priority
(band n)

messages

high
priority

messages

FIGURE 3–1 Message Ordering in a Queue

When a message is queued, it is placed after the messages of the same priority already
in the queue (in other words, FIFO within their order of queueing). This affects the
flow-control parameters associated with the band of the same priority. Message
priorities range from 0 (normal) to 255 (highest). This provides up to 256 bands of
message flow within a stream. Expedited data can be implemented with one extra
band of flow (priority band 1) of data. This is shown in Figure 3–2.

expedited
(band 1)

messages

normal
(band 0)

messages

high
priority

messages

tail head

FIGURE 3–2 Message Ordering With One Priority Band

Controlling Data Flow and Priorities
The I_FLUSHBAND, I_CKBAND, I_GETBAND, I_CANPUT, and I_ATMARK ioctl(2)s
support multiple bands of data flow. The I_FLUSHBAND ioctl(2) allows a user to
flush a particular band of messages. “Flush Handling” on page 77 discusses it in more
detail.

The I_CKBAND ioctl(2) checks if a message of a given priority exists on the stream
head read queue. Its interface is:

ioctl (fd, I_CKBAND, pri);

The call returns 1 if a message of priority pri exists on the stream head read queue
and 0 if no message of priority pri exists. If an error occurs, -1 is returned. Note that
pri should be of type int.

The I_GETBAND ioctl(2) checks the priority of the first message on the stream head
read queue. The interface is:

ioctl (fd, I_GETBAND, prip);

The call results in the integer referenced by prip being set to the priority band of the
message on the front of the stream head read queue.

50 STREAMS Programming Guide • January 2005

The I_CANPUT ioctl(2) checks if a certain band is writable. Its interface is:

ioctl (fd, I_CANPUT, pri);

The return value is 0 if the priority band pri is flow controlled, 1 if the band is
writable, and -1 on error.

A module or driver can mark a message. This supports the ability of the Transmission
Control Protocol (TCP) to indicate to the user the last byte of out-of-band data. Once
marked, a message sent to the stream head causes the stream head to remember the
message. A user can check whether the message on the front of its stream head read
queue is marked with the I_ATMARK ioctl(2). If a user is reading data from the
stream head, there are multiple messages on the read queue, and one of those
messages is marked, the read(2) terminates when it reaches the marked message and
returns the data only up to the marked message. Successive reads can return the rest
of the data. Chapter 4 discusses this in more detail.

The I_ATMARK ioctl(2) has the format:

ioctl (fd, I_ATMARK, flag);

where flag can be either ANYMARK or LASTMARK. ANYMARK indicates that the user
wants to check whether any message is marked. LASTMARK indicates that the user
wants to see whether the message is the one and only one marked in the queue. If the
test succeeds, 1 is returned. On failure, 0 is returned. If an error occurs, -1 is returned.

Accessing the Service Provider
The first routine presented, inter_open, opens the protocol driver device file
specified by path and binds the protocol address contained in addr so that it can
receive data. On success, the routine returns the file descriptor associated with the
open stream; on failure, it returns -1 and sets errno to indicate the appropriate UNIX
system error value. Example 3–1 shows the inter_open routine.

EXAMPLE 3–1 inter_open Routine

inter_open (char *path, oflags, addr)
{

int fd;
struct bind_req bind_req;
struct strbuf ctlbuf;
union primitives rcvbuf;
struct error_ack *error_ack;
int flags;

if ((fd = open(path, oflags)) < 0)
return(-1);

/* send bind request msg down stream */

Chapter 3 • STREAMS Application-Level Mechanisms 51

EXAMPLE 3–1 inter_open Routine (Continued)

bind_req.PRIM_type = BIND_REQ;
bind_req.BIND_addr = addr;
ctlbuf.len = sizeof(struct bind_req);

ctlbuf.buf = (char *)&bind_req;

if (putmsg(fd, &ctlbuf, NULL, 0) < 0) {
close(fd);
return(-1);

}

}

After opening the protocol driver, inter_open packages a bind request message to
send downstream. putmsg is called to send the request to the service provider. The
bind request message contains a control part that holds a bind_req structure, but it
has no data part. ctlbuf is a structure of type strbuf, and it is initialized with the
primitive type and address. Notice that the maxlen field of ctlbuf is not set before
calling putmsg. That is because putmsg ignores this field. The dataptr argument to
putmsg is set to NULL to indicate that the message contains no data part. The flags
argument is 0, which specifies that the message is not a high-priority message.

After inter_open sends the bind request, it must wait for an acknowledgement from
the service provider, as Example 3–2 shows.

EXAMPLE 3–2 Service Provider

/* wait for ack of request */

ctlbuf.maxlen = sizeof(union primitives);
ctlbuf.len = 0;
ctlbuf.buf = (char *)&rcvbuf;
flags = RS_HIPRI;

if (getmsg(fd, &ctlbuf, NULL, &flags) < 0) {
close(fd);
return(-1);

}

/* did we get enough to determine type? */
if (ctlbuf.len < sizeof(long)) {

close(fd);
errno = EPROTO;
return(-1);

}

/* switch on type (first long in rcvbuf) */
switch(rcvbuf.type) {
default:

close(fd);
errno = EPROTO;

52 STREAMS Programming Guide • January 2005

EXAMPLE 3–2 Service Provider (Continued)

return(-1);

case OK_ACK:
return(fd);

case ERROR_ACK:
if (ctlbuf.len < sizeof(struct error_ack)) {

close(fd);
errno = EPROTO;
return(-1);

}
error_ack = (struct error_ack *)&rcvbuf;
close(fd);
errno = error_ack->UNIX_error;
return(-1);

}

}

getmsg is called to retrieve the acknowledgement of the bind request. The
acknowledgement message consists of a control part that contains either an OK_ACK or
an error_ack structure, and no data part.

The acknowledgement primitives are defined as high-priority messages. Messages are
queued in a first-in, first-out (FIFO) manner within their priority at the stream head.
The STREAMS mechanism allows only one high-priority message per stream at the
stream head at one time. Any additional high-priority messages are discarded on
reaching the stream head. (There can be only one high-priority message present on the
stream head read queue at any time.) High-priority messages are particularly suitable
for acknowledging service requests when the acknowledgement should be placed
ahead of any other messages at the stream head.

Before calling getmsg, this routine must initialize the strbuf structure for the control
part. buf should point to a buffer large enough to hold the expected control part, and
maxlen must be set to indicate the maximum number of bytes this buffer can hold.

Because neither acknowledgement primitive contains a data part, the dataptr
argument to getmsg is set to NULL. The flagsp argument points to an integer
containing the value RS_HIPRI. This flag indicates that getmsg should wait for a
STREAMS high-priority message before returning. This catches the acknowledgement
primitives that are priority messages. Otherwise, if the flag is zero, the first message is
taken. With RS_HIPRI set, even if a normal message is available, getmsg blocks until
a high-priority message arrives.

Chapter 3 • STREAMS Application-Level Mechanisms 53

On return from getmsg, check the len field to ensure that the control part of the
retrieved message is an appropriate size. The example then checks the primitive type
and takes appropriate actions. An OK_ACK indicates a successful bind operation, and
inter_open returns the file descriptor of the open stream. An error_ack indicates
a bind failure, and errno is set to identify the problem with the request.

Closing the Service Provider
The next routine in the service interface library example is inter_close, which
closes the stream to the service provider.

inter_close(fd)
{

close(fd);

}

The routine closes the given file descriptor. This causes the protocol driver to free any
resources associated with that stream. For example, the driver can unbind the protocol
address that had previously been bound to that stream, thereby freeing that address
for use by another service user.

Sending Data to the Service Provider
The third routine, inter_snd, passes data to the service provider for transmission to
the user at the address specified in addr. The data to be transmitted is contained in
the buffer pointed to by buf and contains len bytes. On successful completion, this
routine returns the number of bytes of data passed to the service provider; on failure,
it returns −1.

EXAMPLE 3–3 inter_snd

inter_snd(int fd, char *buf, int len, long *addr)
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_req unitdata_req;

unitdata_req.PRIM_type = UNITDATA_REQ;
unitdata_req.DEST_addr = addr;

ctlbuf.len = sizeof(struct unitdata_req);
ctlbuf.buf = (char *)&unitdata_req;
databuf.len = len;
databuf.buf = buf;

if (putmsg(fd, &ctlbuf, &databuf, 0) < 0)
return(-1);

54 STREAMS Programming Guide • January 2005

EXAMPLE 3–3 inter_snd (Continued)

return(len);

}

In this example, the data request primitive is packaged with both a control part and a
data part. The control part contains a unitdata_req structure that identifies the
primitive type and the destination address of the data. The data to be transmitted is
placed in the data part of the request message.

Unlike the bind request, the data request primitive requires no acknowledgement from
the service provider. In the example, this choice was made to minimize the overhead
during data transfer. If the putmsg call succeeds, this routine returns the number of
bytes passed to the service provider.

Receiving Data
The final routine in Example 3–4, inter_rcv, retrieves the next available data. buf
points to a buffer where the data should be stored, len indicates the size of that buffer,
and addr points to a long integer where the source address of the data is placed. On
successful completion, inter_rcv returns the number of bytes of retrieved data; on
failure, it returns -1 and an appropriate UNIX system error value.

EXAMPLE 3–4 Receiving Data

int inter_rcv (int fd, char *buf, int len, long *addr, int *errorp)
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_ind unitdata_ind;
int retval;
int flagsp;

ctlbuf.maxlen = sizeof(struct unitdata_ind);
ctlbuf.len = 0;
ctlbuf.buf = (char *)&unitdata_ind;
databuf.maxlen = len;
databuf.len = 0;
databuf.buf = buf;
flagsp = 0;

if((retval=getmsg(fd,&ctlbuf,&databuf,&flagsp))<0) {
*errorp = EIO;
return(-1);

}
if (retval) {

*errorp = EIO;
return(-1)

Chapter 3 • STREAMS Application-Level Mechanisms 55

EXAMPLE 3–4 Receiving Data (Continued)

}
if (unitdata_ind.PRIM_type != UNITDATA_IND) {

*errorp = EPROTO;
return(-1);

}
*addr = unitdata_ind.SRC_addr;
return(databuf.len);

}

getmsg is called to retrieve the data indication primitive, where that primitive
contains both a control and data part. The control part consists of a unitdata_ind
structure that identifies the primitive type and the source address of the data sender.
The data part contains the data itself. In ctlbuf, buf points to a buffer containing the
control information, and maxlen indicates the maximum size of the buffer. Similar
initialization is done for databuf.

The integer pointed to by flagsp in the getmsg call is set to zero, indicating that the
next message should be retrieved from the stream head regardless of its priority. Data
arrives in normal priority messages. If there is no message at the stream head, getmsg
blocks until a message arrives.

The user’s control and data buffers should be large enough to hold any incoming data.
If both buffers are large enough, getmsg processes the data indication and returns 0,
indicating that a full message was retrieved successfully. However, if neither buffer is
large enough, getmsg only returns the part of the message that fits into each user
buffer. The remainder of the message is saved for subsequent retrieval (in message
non-discard mode), and a positive, nonzero value is returned to the user. A return
value of MORECTL indicates that more control information is waiting for retrieval. A
return value of MOREDATA indicates that more data is waiting for retrieval. A return
value of (MORECTL | MOREDATA) indicates that data from both parts of the message
remain. In the example, if the user buffers are not large enough (that is, getmsg
returns a positive, nonzero value), the function sets errno to EIO and fails.

The type of the primitive returned by getmsg is checked to make sure it is a data
indication (UNITDATA_IND in the example). The source address is then set and the
number of bytes of data is returned.

The example presented is a simplified service interface. It shows typical uses of
putmsg(2) and getmsg(2). The state transition rules for the interface are not presented
and this example does not handle expedited data.

56 STREAMS Programming Guide • January 2005

Input and Output Polling
This section describes the synchronous polling mechanism and asynchronous event
notification in STREAMS.

User processes can efficiently monitor and control multiple streams with two system
calls: poll(2) and the I_SETSIG ioctl(2) command. These calls enable a user
process to detect events that occur at the stream head on one or more streams,
including receipt of data or messages on the read queue and cessation of flow control
on the write queue. Note that poll(2) is usable on any character device file descriptor,
not just STREAMS.

To monitor streams with poll(2), a user process issues that system call and specifies
the streams and other files to be monitored, the events to check, and the amount of
time to wait for an event. poll(2) blocks the process until the time expires or until an
event occurs. If an event occurs, it returns the type of event and the descriptor on
which the event occurred.

Instead of waiting for an event to occur, a user process can monitor one or more
streams while processing other data. To do so, issue the I_SETSIG ioctl(2),
specifying a stream and events (as with poll(2)). This ioctl(2) does not block the
process and force the user process to wait for the event, but returns immediately and
issues a signal when an event occurs. The process calls one of sigaction(2),
signal(3c), or sigset(3C) to catch the resulting SIGPOLL signal.

If any selected event occurs on any of the selected streams, STREAMS sends SIGPOLL
to all associated requesting processes. The processes have no information on what
event occurred on what stream. A signaled process can get more information by
calling poll(2).

Synchronous Input and Output
poll(2) provides a mechanism to identify the streams over which a user can send or
receive data. For each stream of interest, users can specify one or more events about
which they should be notified. The types of events that can be polled are POLLIN,
POLLRDNORM, POLLRDBAND, POLLPRI, POLLOUT, POLLWRNORM, POLLWRBAND, which
are detailed in Table 3–3.

Chapter 3 • STREAMS Application-Level Mechanisms 57

TABLE 3–3 Events That Can Be Polled

Event Description

POLLIN A message other than high-priority data can be read without blocking.
This event is maintained for compatibility with the previous releases of
the Solaris operating environment.

POLLRDNORM A normal (nonpriority) message is at the front of the stream head read
queue.

POLLRDBAND A priority message (band > 0) is at the front of the stream head queue.

POLLPRI A high-priority message is at the front of the stream head read queue.

POLLOUT The normal priority band of the queue is writable (not flow controlled).

POLLWRNORM The same as POLLOUT.

POLLWRBAND A priority band greater than 0 of a queue downstream.

Some of the events may not be applicable to all file types. For example, the POLLPRI
event usually is not generated when polling a non-STREAMS character device.
POLLIN, POLLRDNORM, POLLRDBAND, and POLLPRI are set even if the message is of
zero length.

poll(2) checks each file descriptor for the requested events and, on return, indicates
which events have occurred for each file descriptor. If no event has occurred on any
polled file descriptor, poll(2) blocks until a requested event or timeout occurs.
poll(2) takes the following arguments:

� An array of file descriptors and events to be polled.

� The number of file descriptors to be polled.

� The number of milliseconds poll should wait for an event if no events are
pending (-1 specifies wait forever).

Example 3–5 shows the use of poll(2). Two separate minor devices of the
communications driver are opened, thereby establishing two separate streams to the
driver. The pollfd entry is initialized for each device. Each stream is polled for
incoming data. If data arrive on either stream, data is read and then written back to
the other stream.

EXAMPLE 3–5 Polling

#include <sys/stropts.h>
#include <fcntl.h>
#include <poll.h>

#define NPOLL 2 /* number of file descriptors to poll */
int
main()
{

struct pollfd pollfds[NPOLL];

58 STREAMS Programming Guide • January 2005

EXAMPLE 3–5 Polling (Continued)

char buf[1024];
int count, i;

if ((pollfds[0].fd = open("/dev/ttya", O_RDWR|O_NONBLOCK)) < 0) {
perror("open failed for /dev/ttya");
exit(1);

}
if ((pollfds[1].fd = open("/dev/ttyb", O_RDWR|O_NONBLOCK)) < 0) {

perror("open failed for /dev/ttyb");
exit(2);

}

The variable pollfds is declared as an array of the pollfd structure, defined in
<poll.h>, and has the format:

struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

}

For each entry in the array, fd specifies the file descriptor to be polled and events is a
bitmask that contains the bitwise inclusive OR of events to be polled on that file
descriptor. On return, the revents bitmask indicates which of the requested events
has occurred.

The example continues to process incoming data, as shown below:

pollfds[0].events = POLLIN; /* set events to poll */
pollfds[1].events = POLLIN; /* for incoming data */
while (1) {

/* poll and use -1 timeout (infinite) */
if (poll(pollfds, NPOLL, -1) < 0) {

perror("poll failed");
exit(3);

}
for (i = 0; i < NPOLL; i++) {

switch (pollfds[i].revents) {
default: /* default error case */

fprintf(stderr,"error event\n");
exit(4);

case 0: /* no events */
break;

case POLLIN:
/*echo incoming data on "other" Stream*/
while ((count = read(pollfds[i].fd, buf, 1024)) > 0)

/*
* write loses data if flow control
* prevents the transmit at this time

Chapter 3 • STREAMS Application-Level Mechanisms 59

*/
if (write(pollfds[(i+1) % NPOLL].fd buf,

count) != count)
fprintf(stderr,"writer lost data");

break;
}

}

}

The user specifies the polled events by setting the events field of the pollfd
structure to POLLIN. This request tells poll(2) to notify the user of any incoming data
on each stream. The bulk of the example is an infinite loop, where each iteration polls
both streams for incoming data.

The second argument of poll(2) specifies the number of entries in the pollfds array
(2 in this example). The third argument indicates the number of milliseconds poll(2)
waits for an event if none has occurred. On a system where millisecond accuracy is not
available, timeout is rounded up to the nearest value available on that system. If the
value of timeout is 0, poll(2) returns immediately. Here, timeout is set to -1,
specifying that poll(2) blocks until a requested event occurs or until the call is
interrupted.

If poll(2) succeeds, the program checks each entry in the pollfds array. If revents
is set to 0, no event has occurred on that file descriptor. If revents is set to POLLIN,
incoming data is available, so all available data is read from the polled minor device
and written to the other minor device.

If revents is set to a value other than 0 or POLLIN, an error event must have
occurred on that stream because POLLIN was the only requested event. Table 3–4
shows poll error events.

TABLE 3–4 poll Error Events

Error Description

POLLERR A fatal error has occurred in a module or driver on the stream associated
with the specified file descriptor. Further system calls fail.

POLLHUP A hangup condition exists on the stream associated with the specified
file descriptor. This event and POLLOUT are mutually exclusive; a stream
is not writable if a hangup has occurred.

POLLNVAL The specified file descriptor is not associated with an open stream.

These events cannot be polled for by the user but are reported in revents when they
occur. They are only valid in the revents bitmask.

The example attempts to process incoming data as quickly as possible. However, when
writing data to a stream, write(2) can block if the stream is exerting flow control. To
prevent the process from blocking, the minor devices of the communications driver are
opened with the O_NDELAY (or O_NONBLOCK) flag set, see note. write(2) cannot send

60 STREAMS Programming Guide • January 2005

all the data if flow control is on and O_NDELAY (O_NONBLOCK) is set. This can happen
if the communications driver processes characters slower than the user transmits. If
the stream becomes full, the number of bytes write(2) sends is less than the requested
count. For simplicity, the example ignores the data if the stream becomes full, and a
warning is printed to stderr.

Note – To conform with the IEEE operating system interface standard, POSIX, new
applications should use the O_NONBLOCK flag. Its behavior is the same as that of
O_NDELAY unless otherwise noted.

This program continues until an error occurs on a stream, or until the process is
interrupted.

Asynchronous Input and Output
poll(2) enables a user to monitor multiple streams synchronously. poll(2) normally
blocks until an event occurs on any of the polled file descriptors. In some applications,
however, you want to process incoming data asynchronously. For example, an
application can attempt to do some local processing and be interrupted when a
pending event occurs. Some time-critical applications must not block, and must have
immediate success or failure indication.

The I_SETSIG ioctl(2) (see streamio(7I)) is used to request that a SIGPOLL signal
be sent to a user process when a specific event occurs. Table 3–5 lists events for
I_SETSIG. These are similar to those described for poll(2).

TABLE 3–5 I_SETSIG ioctl(2) Events

Event Description

S_INPUT A message other than a high-priority message has arrived on a stream
head read queue. This event is maintained for compatibility with the
previous releases of the Solaris operating environment.

S_RDNORM A normal (nonpriority) message has arrived on the stream head read
queue.

S_RDBAND A priority message (band > 0) has arrived on the stream head read
queue.

S_HIPRI A high-priority message has arrived on the stream head read queue.

S_OUTPUT A write queue for normal data (priority band = 0) is no longer full (not
flow controlled). This notifies a user that there is space on the queue for
sending or writing normal data downstream.

Chapter 3 • STREAMS Application-Level Mechanisms 61

TABLE 3–5 I_SETSIG ioctl(2) Events (Continued)
Event Description

S_WRNORM The same as S_OUTPUT.

S_WRBAND A priority band greater than 0 of a queue downstream exists and is
writable. This notifies a user that there is space on the queue for sending
or writing priority data downstream.

S_MSG A signal message sent from a module or driver has arrived on the stream
head read queue.

S_ERROR An error message reaches the stream head.

S_HANGUP A hangup message sent from a module or driver has arrived at the
stream head.

S_BANDURG When used with S_RDBAND, SIGURG is generated instead of SIGPOLL
when a priority message reaches the front of the stream head read
queue.

S_INPUT, S_RDNORM, S_RDBAND, and S_HIPRI are set even if the message is of zero
length. A user process can handle only high-priority messages by setting the arg to
S_HIPRI.

signal Message
STREAMS enables modules and drivers to send a signal to user processes through a
special signal message. If the signal specified by the module or driver is not SIGPOLL
(see signal(3C)), the signal is sent to the process group associated with the stream. If
the signal is SIGPOLL, the signal is only sent to processes that have registered for the
signal by using the I_SETSIG ioctl(2).

Extended Signals
So that a process can obtain the band and event associated with SIGPOLL more
readily, STREAMS supports extended signals. For the given events, a special code is
defined in <sys/siginfo.h> that describes the reason SIGPOLL was generated.
Table 3–6 describes the data available in the siginfo_t structure passed to the signal
handler.

62 STREAMS Programming Guide • January 2005

TABLE 3–6 Data in siginfo_t Structure

Event si_signo si_code si_band si_errno

S_INPUT SIGPOLL POLL_IN Band readable Unused

S_OUTPUT SIGPOLL POLL_OUT Band writable Unused

S_MSG SIGPOLL POLL_MSG Band signaled Unused

S_ERROR SIGPOLL POLL_ERR Unused stream error

S_HANGUP SIGPOLL POLL_HUP Unused Unused

S_HIPRI SIGPOLL POLL_PRI Unused Unused

Stream as a Controlling Terminal
The controlling terminal can receive signals and send signals. If a foreground process
group has the stream as a controlling terminal stream, drivers and modules can use
M_SIG messages to send signals to processes.

Job Control
An overview of Job Control is provided here because it interacts with the
STREAMS-based terminal subsystem. You can obtain more information on Job Control
from the following manual pages: exit(2), getpgid(2), getpgrp(2), getsid(2),
kill(2), setpgid(2), setpgrp(2), setsid(2), sigaction(2), signal(3C),
sigsend(2), termios(3C), waitid(2), and termio(7I).

Job Control breaks a login session into smaller units called jobs. Each job consists of
one or more related and cooperating processes. The foreground job, is given complete
access to the controlling terminal. The other background jobs are denied read access to
the controlling terminal and given conditional write and ioctl(2) access to it. The
user can stop the executing job and resume the stopped job either in the foreground or
in the background.

Under Job Control, background jobs do not receive events generated by the terminal
and are not informed with a hangup indication when the controlling process exits.
Background jobs that linger after the login session has been dissolved are prevented
from further access to the controlling terminal, and do not interfere with the creation
of new login sessions.

The following list defines terms associated with Job Control:

Chapter 3 • STREAMS Application-Level Mechanisms 63

Background process group A process group that is a member of a session that
established a connection with a controlling terminal
and is not the foreground process group.

Controlling process A session leader that established a connection to a
controlling terminal.

Controlling terminal A terminal that is associated with a session. Each
session can have at most one controlling terminal
associated with it, and a controlling terminal can be
associated with at most one session. Certain input
sequences from the controlling terminal cause signals
to be sent to the process groups in the session
associated with the controlling terminal.

Foreground process group Each session that establishes a connection with a
controlling terminal distinguishes one process group of
the session as a foreground process group. The
foreground process group has certain privileges that
are denied to background process groups when
accessing its controlling terminal.

Orphaned process group A process group in which the parent of every member
in the group is either a member of the group, or is not a
member of the process group’s session.

Process group Each process in the system is a member of a process
group that is identified by a process group ID. Any
process that is not a process group leader can create a
new process group and become its leader. Any process
that is not a process group leader can join an existing
process group that shares the same session as the
process. A newly created process joins the process
group of its creator.

Process group leader A process whose process ID is the same as its process
group ID.

Process group lifetime A time period that begins when a process group is
created by its process group leader and ends when the
last process that is a member in the group leaves the
group.

Process ID A positive integer that uniquely identifies each process
in the system. A process ID cannot be reused by the
system until the process lifetime, process group
lifetime, and session lifetime end for any process ID,
process group ID, and session ID sharing that value.

64 STREAMS Programming Guide • January 2005

Process lifetime A period that begins when the process is forked and
ends after the process exits, when its termination has
been acknowledged by its parent process.

Session Each process group is a member of a session that is
identified by a session ID.

Session ID A positive integer that uniquely identifies each session
in the system. It is the same as the process ID of its
session leader (POSIX).

Session leader A process whose session ID is the same as its process
and process group ID.

Session lifetime A period that begins when the session is created by its
session leader and ends when the lifetime of the last
process group that is a member of the session ends.

The following signals manage Job Control: (see also signal(3C)) :

SIGCONT Sent to a stopped process to continue it.

SIGSTOP Sent to a process to stop it. This signal cannot be caught or ignored.

SIGTSTP Sent to a process to stop it. It is typically used when a user requests to
stop the foreground process.

SIGTTIN Sent to a background process to stop it when it attempts to read from the
controlling terminal.

SIGTTOU Sent to a background process to stop it when a user attempts to write to
or modify the controlling terminal.

A session can be allocated a controlling terminal. For every allocated controlling
terminal, Job Control elevates one process group in the controlling process’s session to
the status of foreground process group. The remaining process groups in the
controlling process’s session are background process groups. A controlling terminal
gives a user the ability to control execution of jobs within the session. Controlling
terminals are critical in Job Control. A user can cause the foreground job to stop by
typing a predefined key on the controlling terminal. A user can inhibit access to the
controlling terminal by background jobs. Background jobs that attempt to access a
terminal that has been so restricted is sent a signal that typically causes the job to stop.
(See “Accessing the Controlling Terminal” on page 67.)

Job Control requires support from a line-discipline module on the controlling
terminal’s stream. The TCSETA, TCSETAW, and TCSETAF commands of termio(7I)
allow a process to set the following line discipline values relevant to Job Control:

Chapter 3 • STREAMS Application-Level Mechanisms 65

SUSP character A user-defined character that, when typed, causes the line
discipline module to request that the stream head send a SIGTSTP
signal to the foreground process, which by default stops the
members of that group. If the value of SUSP is zero, the SIGTSTP
signal is not sent, and the SUSP character is disabled.

TOSTOP flag If TOSTOP is set, background processes are inhibited from writing
to their controlling terminal. A line discipline module must record
the SUSP suspend character and notify the stream head when the
user has typed it, and record the state of the TOSTOP bit and notify
the stream head when the user has changed it.

Allocation and Deallocation of Streams
A stream is allocated as a controlling terminal for a session if it:

� Is acting as a terminal.

� Is not already allocated as a controlling terminal.

� Is opened by a session leader that does not have a controlling terminal.

Controlling terminals are allocated with open(2). The device must inform the
stream head that it is acting as a terminal.

Hungup Streams
When a stream head receives a hangup message from a device or module, it is
marked as hung up. A stream that is marked as hung up is allowed to be reopened by
its session leader if it is allocated as a controlling terminal, and by any process if it is
not allocated as a controlling terminal. This way, the hangup error can be cleared
without forcing all file descriptors to be closed first.

If the reopen is successful, the hangup condition is cleared.

Hangup Signals
When the SIGHUP signal is generated by a hangup message instead of a signal
message, the signal is sent to the controlling process instead of the foreground process
group. The allocation and deallocation of controlling terminals to a session is the
responsibility of that process group.

66 STREAMS Programming Guide • January 2005

Accessing the Controlling Terminal
If a process attempts to access its controlling terminal after it has been deallocated,
access is denied. If the process is not holding or ignoring SIGHUP, it is sent a SIGHUP
signal. Otherwise, the access fails with an EIO error.

Members of background process groups have limited access to their controlling
terminals:

� If the background process is ignoring or holding the SIGTTIN signal or is a
member of an orphaned process group, an attempt to read from the controlling
terminal fails with an EIO error. Otherwise, the process is sent a SIGTTIN signal,
which by default stops the process.

� If the process is attempting to write to the terminal and if the terminal’s TOSTOP
flag is clear, the process is allowed access.

� If the terminal’s TOSTOP flag is set and a background process is attempting to write
to the terminal, the write succeeds if the process is ignoring or holding SIGTTOU.
Otherwise, the process stops except when it is a member of an orphaned process
group, in which case it is denied access to the terminal and it is returned an EIO
error.

If a background process is attempting to perform a destructive ioctl(2) (one that
modifies terminal parameters), the ioctl(2) call succeeds if the process is ignoring
or holding SIGTTOU. Otherwise, the process stops except when the process is a
member of the orphaned process group. In that case the access to the terminal is
denied and an EIO error is returned.

Chapter 3 • STREAMS Application-Level Mechanisms 67

68 STREAMS Programming Guide • January 2005

CHAPTER 4

Application Access to the STREAMS
Driver and Module Interfaces

This chapter describes getting messages into and out of the driver from an application
level. It shows the relationship between messages overall and the specific ioctl(2)
calls that pertain to application-level operations.

� “System Calls Used” on page 69
� “Module and Driver ioctl Calls” on page 70
� “Flush Handling” on page 77

System Calls Used
Table 4-1 summarizes the system calls commonly used in controlling and transferring
data and messages within a stream.

TABLE 4–1 System Calls Used

System Call Description

read(2) Reads data from a stream

write(2) Writes data to a stream

ioctl(2) Controls a stream

getmsg(2) Receives a message at the stream head

getpmsg(2) Receives a priority message at the stream head

putmsg(2) Sends a message downstream

putpmsg(2) Sends a priority message downstream

69

TABLE 4–1 System Calls Used (Continued)
System Call Description

poll(2) Identifies files on which a user can send or receive messages, or on
which certain events have occurred (historically, it was unnecessarily
restricted to streams)

pipe(2) Creates a bidirectional channel that provides a communication path
between multiple processes

Module and Driver ioctl Calls
STREAMS is a special type of character device driver that is different from the
historical character input/output (I/O) mechanism. In this section, the phrases
character I/O mechanism and I/O mechanism refer only to that part of the mechanism that
existed before STREAMS.

The character I/O mechanism handles all ioctl(2) calls transparently. That is, the
kernel expects all ioctl(2) to be handled by the device driver associated with the
character special file on which the call is sent. All ioctl(2) calls are sent to the driver,
which is expected to perform all validation and processing other than file descriptor
validity checking. The operation of any specific ioctl(2) is dependent on the device
driver. If the driver requires data to be transferred in from user space, it will use the
kernel ddi_copyin function. It may also use ddi_copyout to transfer any data
results to user space.

With STREAMS, there are a number of differences from the character I/O mechanism
that impart ioctl(2) processing.

First, there is a set of generic STREAMS ioctl(2) command values recognized and
processed by the stream head. This is described in streamio(7I). The operation of the
generic STREAMS ioctl(2) is generally independent of the presence of any specific
module or driver on the stream.

The second difference is the absence of user context in a module and driver when the
information associated with the ioctl(2) is received. This prevents use of
ddi_copyin(9F) or ddi_copyout(9F) by the module. This also prevents the module
and driver from associating any kernel data with the currently running process. (By
the time the module or driver receives the ioctl(2), the process generating it
probably will no longer be running.)

A third difference is that for the character I/O mechanism, all ioctl(2) are handled
by the single driver associated with the file. In STREAMS, there can be multiple
modules on a stream and each one can have its own set of ioctl(2) calls. That is, the
ioctl(2) that can be used on a stream can change as modules are pushed and
popped.

70 STREAMS Programming Guide • January 2005

STREAMS provides the capability for user processes to perform control functions on
specific modules and drivers in a stream with ioctl(2) calls. Most streamio(7I)
ioctl(2) commands go no further than the stream head. They are fully processed
there and no related messages are sent downstream. However, certain commands and
all unrecognized commands cause the stream head to create an M_IOCTL
</function> message, which includes the ioctl(2) arguments, and send the
message downstream to be received and processed by a specific module or driver. The
M_IOCTL </function> message is the initial message type that carries ioctl(2)
information to modules. Other message types are used to complete the ioctl(2)
processing in the stream. In general, each module must uniquely recognize and act on
specific M_IOCTL </function> messages.

STREAMS ioctl(2) handling is equivalent to the transparent processing of the
character I/O mechanism. STREAMS modules and drivers can process ioctl(2)
generated by applications that are implemented for a non-STREAMS environment.

General ioctl Processing
STREAMS blocks a user process that issues an ioctl(2) and causes the stream head to
generate an M_IOCTL </function> message. The process remains blocked until one
of the following occurs:

� A module or a driver responds with an M_IOCACK (ack, positive
acknowledgement) message or an M_IOCNAK (nak, negative acknowledgement)
message.

� No message is received and the request times out.

� The ioctl(2) is interrupted by the user process.

� An error condition occurs. For the I_STR ioctl(2), the timeout period can be a
user-specified interval or a default. For the other ioctl(2) calls, the default value
(infinite) is used.

For an I_STR, the STREAMS module or driver that generates a positive
acknowledgement message can also return data to the process in the message. An
alternate means to return data is provided with transparent ioctl(2). If the stream
head does not receive a positive or negative acknowledgement message in the
specified time, the ioctl(2) call fails.

A module that receives an unrecognized M_IOCTL message must pass it on
unchanged. A driver that receives an unrecognized M_IOCTL must produce a negative
acknowledgement.

The two STREAMS ioctl(2) mechanisms, I_STR and transparent, are described next.
(Here, I_STR means the streamio(7I) I_STR command and implies the related
STREAMS processing unless noted otherwise.) I_STR has a restricted format and
restricted addressing for transferring ioctl(2)-related data between user and kernel
space. It requires only a single pair of messages to complete ioctl(2) processing. The

Chapter 4 • Application Access to the STREAMS Driver and Module Interfaces 71

transparent mechanism is more general and has almost no restrictions on ioctl(2)
data format and addressing. The transparent mechanism generally requires that
multiple pairs of messages be exchanged between the stream head and module to
complete the processing.

This is a rather simplistic view. Nothing prevents a given ioctl(2) from being issued
either directly (transparent) or by means of I_STR. Furthermore, ioctl(2) calls issued
through I_STR potentially can require further processing of the form typically
associated with transparent ioctl(2).

I_STR ioctl Processing
The I_STR ioctl(2) provides a capability for user applications to perform module
and driver control functions on STREAMS files. I_STR allows an application to
specify the ioctl(2) timeout. It encourages that all user ioctl(2) data (to be received
by the destination module) be placed in a single block that is pointed to from the user
strioctl structure. The module can also return data to this block.

Transparent ioctl Processing
The transparent STREAMS ioctl(2) mechanism enables application programs to
perform module and driver control functions with ioctl(2) calls other than I_STR. It
transparently supports applications developed prior to the introduction of STREAMS.
It alleviates the need to recode and recompile the user-level software to run over
STREAMS files. More importantly, applications do not have to package their ioctl(2)
requests into the form demanded by I_STR.

The mechanism extends the data transfer capability for STREAMS ioctl(2) calls
beyond those provided in the I_STR form. Modules and drivers can transfer data
between their kernel space and user space in any ioctl(2) that has a value of the
command argument not defined in streamio(7I). These ioctl(2) are known as
transparent ioctl(2) to differentiate them from the I_STR form. Existing applications
that use non-STREAMS character devices require transparent processing for ioctl(2)
if the device driver is converted to STREAMS. The ioctl(2) data can be in any format
mutually understood by the user application and module.

The transparent mechanism also supports STREAMS applications that send ioctl(2)
data to a driver or module in a single call, where the data may not be in a form readily
embedded in a single user block. For example, the data may be contained in nested
structures and different user space buffers.

I_LIST ioctl
The I_LIST ioctl(2) supports the strconf(1) and strchg(1) commands that are
used to query or change the configuration of a stream. Only the root user or an owner
of a STREAMS device can alter the configuration of that stream.

72 STREAMS Programming Guide • January 2005

strchg(1) does the following:

� Pushes one or more modules on the stream.
� Pops the topmost module off the stream.
� Pops all the modules off the stream.
� Pops all modules up to but not including a specified module.

strconf(1) does the following:

� Checks if the specified module is present on the stream.

� Prints the topmost module of the stream.

� Prints a list of all modules and the topmost driver on the stream. If the stream
contains a multiplexing driver, the strchg and strconf commands will not
recognize any modules below that driver.

The I_LIST ioctl(2), illustrated in Example 4–1, performs two functions. When the
third argument of the ioctl(2) call is NULL,

if ((mods = ioctl(s, I_LIST, 0)) < 0) {

the return value of the call indicates the number of modules, plus the driver, present
on the stream. For example, if there are two modules above the driver, 3 is returned.
On failure, errno may be set to a value specified in streamio(7I). The second
function of the I_LIST ioctl(2) is to copy the module names found on the stream to
the user-supplied buffer. The address of the buffer in user space and the size of the
buffer are passed to the ioctl(2) through a structure str_mlist that is defined as:

struct str_mlist {
char l_name[FMNAMESZ+1]; /* space for holding a module name*/

};

struct str_list {
int sl_nmods; /* #of modules for which space is allocated */
struct str_mlist *sl_modlist; /*addr of buf for names*/

};

Here sl_nmods is the number of modules in the sl_modlist array that the user has
allocated. Each element in the array must be at least FMNAMESZ+1 bytes long. The
array is FMNAMESZ+1 so the extra byte can hold the NULL character at the end of the
string. FMNAMESZ is defined by <sys/conf.h>.

The amount of space to allocate for module names is indicated by the number of
modules in the STREAM. This is not completely reliable because another module
might be pushed onto the stream after the application invokes the I_LIST ioctl(2)
with the NULL argument and before it invokes the I_LIST ioctl(2) with the
structure argument.

Chapter 4 • Application Access to the STREAMS Driver and Module Interfaces 73

The I_LIST call with arg pointing to the str_list structure returns the number of
entries that have been filled into the sl_modlist array (the number represents the
number of modules including the driver). If there is not enough space in the
sl_modlist array or sl_nmods is less than 1, the I_LIST call fails and errno is set
to EINVAL. If arg or the sl_modlist array points outside the allocated address
space, EFAULT is returned.

EXAMPLE 4–1 I_LIST ioctl

#include <stdio.h>
#include <string.h>
#include <stropts.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/socket.h>

main(int argc, const char **argv)
{

int s, i;
unsigned int mods;
struct str_list mod_list;struct str_mlist *mlist;
/* Get a socket... */

if ((s = socket(AF_INET, SOCK_STREAM, 0)) <= 0) {
perror("socket: ");
exit(1);

}

/* Determine the number of modules in the stream */
if ((mods = ioctl(s, I_LIST, 0)) < 0) {

perror("I_LIST ioctl");
}
if (mods == 0) {

printf("No modules\n");
exit(1);

} else {
printf("%d modules\n", mods);

}

/* Allocate memory for all of the module names */
mlist = (struct str_mlist *)
calloc(mods, sizeof (struct str_mlist));
if (mlist == 0) {

perror("malloc failure");
exit(1);

}
mod_list.sl_modlist = mlist;
mod_list.sl_nmods = mods;
/* Do the ioctl and get the module names... */
if (ioctl(s, I_LIST, &mod_list) < 0) {

exit(1);
}

74 STREAMS Programming Guide • January 2005

EXAMPLE 4–1 I_LIST ioctl (Continued)

/* Print out the name of the modules... */
for (i = 0; i < mods; i++) {

printf("s: %s\n", mod_list.sl_modlist[i].l_name);
}

/* Free the calloc’d structures... */
free(mlist);
return(0);

}

Other ioctl Commands
streamio(7I) details the ioctl(2) commands shown in Table 4–2.

TABLE 4–2 Other ioctl Commands

ioctl Calls Description

I_ANCHOR Prevents the removal of a STREAMS module with an I_POP call. Any
process can place an anchor on a stream, but once placed, an anchor can
only be removed by a privileged process.

I_LOOK Retrieves the name of the module just below the stream head

I_FLUSH Flushes all input or output queues

I_FLUSHBAND Flushes a band of messages

I_FIND Compares the names of all modules present in the stream to a specific
name

I_PEEK Enables the user to look at information in the first message on the stream
head read queue without taking the message off the queue

I_SRDOPT Sets the read mode using a series of flag options in the argument

I_GRDOPT Indicates the read mode in an int

I_NREAD Counts the data bytes in data blocks in the first message on the stream
head read queue

I_FDINSERT Creates a message from a user buffer, adds information about another
stream, and sends the message downstream

I_SWROPT Sets the write mode using the value of the argument

I_GWROPT Returns the current write mode setting

I_SENDFD Requests that the stream send a message with file pointer to the stream
head at the other end of a STREAMS pipe

Chapter 4 • Application Access to the STREAMS Driver and Module Interfaces 75

TABLE 4–2 Other ioctl Commands (Continued)
ioctl Calls Description

I_RECVFD Retrieves the file descriptor of the message sent by an I_SENDFD
ioctl(2) over a STREAMS pipe

I_ATMARK Lets the application see if the current message on the stream head read
queue is marked by a module downstream

I_CKBAND Checks if the message of a given priority band exists on the stream head
read queue

I_GETBAND Returns the priority band of the first message on the stream head read
queue

I_CANPUT Checks if a certain band is writable

I_SETCLTIME Enables the user to set the time the stream head will delay when a
stream is closing if data exists on the write queues

I_GETCLTIME Returns the close time delay

I_LINK Connects two streams

I_UNLINK Disconnects two streams

I_PLINK Connects two streams with a persistent link below a multiplexing driver

I_PUNLINK Disconnects two streams that have been connected with a persistent link

Message Direction
Various system calls let the user create messages and send them downstream and
prioritize the messages.

TABLE 4–3 Send and Receive Messages

putmsg(2) Creates a message from the caller supplied control and data buffers and
sends the message downstream

putpmsg(2) Does the same as putmsg(2) and enables the caller to specify a priority
band for the message

getmsg(2) Retrieves M_DATA, M_PROTO, or M_PCPROTO or high priority messages
from the stream head, and places the contents into two user buffers

getpmsg(2) Does the same as getmsg(2) and enables the caller to specify a priority
band for the message

The stream head guarantees that the control part of a message generated by
putmsg(2) is at least 64 bytes long. This promotes reusability of the buffer. When the
buffer is a reasonable size, modules and drivers may reuse the buffer for other
headers.

76 STREAMS Programming Guide • January 2005

stropts.h contains the specification of strbuf, which describes the control and
data buffers.

Flush Handling
All modules and drivers are expected to handle the flushing of messages. The user
may cause data to be flushed of queued messages from a stream by the submission of
an I_FLUSH ioctl(2). Data may be flushed from the read side, write side, or both
sides of a stream.

ioctl (fd, I_FLUSH, arg);

Table 4–4 describes the arguments that may be passed to M_FLUSH.

TABLE 4–4 M_FLUSH Arguments and bi_flag values

Flag Description

FLUSHR Flushes read side of stream

FLUSHW Flushes write queue

FLUSHRW Flushes both read and write queues

In addition to being able to flush all the data from a queue, a specific band may be
flushed using the I_FLUSHBAND ioctl(2).

ioctl (fd, I_FLUSHBAND, bandp);

The ioctl(2) is passed a pointer to a bandinfo structure. The bi_pri field indicates
the band priority to be flushed (values from 0 to 255). The bi_flag field indicates the
type of flush to do. The legal values for bi_flag are defined in Table 4–4. bandinfo
has the following format:

struct bandinfo {
unsigned char bi_pri;
int bi_flag;

};

See “Flushing Priority Band” on page 167, which describes M_FLUSHBAND processing,
for details on how modules and drivers should handle flush band requests.

Chapter 4 • Application Access to the STREAMS Driver and Module Interfaces 77

78 STREAMS Programming Guide • January 2005

CHAPTER 5

STREAMS Administration

This chapter describes the tools available to administer STREAMS. It shows how to
keep track of names, where to find modules, and how to monitor statistics. Kernel
debugging is covered in Chapter 14.

� “Administration Tools” on page 79
� “Autopush Facility” on page 80
� “Administration Tool Description” on page 82

Administration Tools
Table 5-1 identifies some common tools available for monitoring, logging, and
administering STREAMS.

TABLE 5–1 Tools Available for STREAMS Administration

Tool Description

autopush(1M) Configures list of modules to be automatically pushed

crash Examines system memory images

Note – crash has reached EOL and is not supported in the Solaris 9
operating environment. For information about how to transition from
crash to mdb, see the Solaris Modular Debugger Guide.

fdetach(1M) Detaches a name from a file descriptor

strchg(1) Prints STREAMS trace messages

strchg(1),
strconf(1)

Changes or queries a stream configuration

79

TABLE 5–1 Tools Available for STREAMS Administration (Continued)
Tool Description

strerr(1M) Logs STREAMS errors

modload(1M) Loads a kernel module

modunload(1M) Unloads a kernel module

modinfo(1M) Displays information about loaded kernel modules

Autopush Facility
The autopush facility (see autopush(1M)) enables administrators to specify a list of
modules to be automatically pushed onto the stream whenever a STREAMS device is
opened. A prespecified list (/etc/iu.ap) of modules can be pushed onto the stream
if the STREAMS device is not already open.

The STREAMS Administrative Driver (SAD) (see sad(7D)) provides an interface to the
autopush mechanism. System administrators can open the SAD and set or get
autopush information on other drivers. The SAD caches the list of modules to push for
each driver. When the driver is opened, if not already open, the stream head checks
the SAD’s cache to determine if the device is configured to have modules
automatically pushed. If an entry is found, the modules are pushed. If the device is
open, another open does not cause the list of the prespecified modules to be pushed
again.

The autopush SAD_SAP command ap_cmd field specifies the configuration options:

SAP_ONE Configure each minor device (that is, a specific major and minor
device number).

SAP_RANGE Configure a range of minor devices within a major device.

SAP_ALL Configure all minor devices within a major device.

SAP_CLEAR Undo configuration information for a driver.

In addition, when configuring the module list, an optional anchor can be placed
within the list. (See “STREAMS Anchors” on page 243 for more information.)

When the configuration list is cleared, a range of minor devices has to be cleared as a
range and not in parts.

80 STREAMS Programming Guide • January 2005

Application Interface
The SAD is accessed through /dev/sad/admin or /dev/sad/user. After the device
is initialized, a program can be run to perform any needed autopush configuration.
The program should open the SAD, read a configuration file to find out what modules
must be configured for which devices, format the information into strapush
structures, and perform the necessary SAD_SAP ioctl(2)s. See sad(7D) for more
information.

All autopush operations are performed through an ioctl(2) command to set or get
autopush information. Only the root user can set autopush information, but any user
can get the autopush information for a device.

In the ioctl(2) call, the parameters are the file descriptor of the SAD, either SAD_SAP
(set autopush information) or SAD_GAP (get autopush information), and a pointer to a
strapush structure.

strapush is defined as:

/*
* maximum number of modules that can be pushed on a
* Stream using the autopush feature should be no greater
* than nstrpush
*/
#define MAXAPUSH 8

/* autopush information common to user and kernel */

struct apcommon {
uint apc_cmd; /* command - see below */
major_t apc_major; /* major device number */
minor_t apc_minor; /* minor device number */
minor_t apc_lastminor; /* last minor dev # for range */
uint apc_npush; /* number of modules to push */

};

/* ap_cmd - various options of autopush */
#define SAP_CLEAR 0 /* remove configuration list */
#define SAP_ONE 1 /* configure one minor device*/
#define SAP_RANGE 2 /* config range of minor devices */
#define SAP_ALL 3 /* configure all minor devices */

/* format of autopush ioctls */
struct strapush {

struct apcommon sap_common;
char sap_list[MAXAPUSH] [FMNAMESZ + 1]; /* module list */

};

#define sap_cmd sap_common.apc_cmd
#define sap_major sap_common.apc_major
#define sap_minor sap_common.apc_minor
#define sap_lastminor sap_common.apc_lastminor

Chapter 5 • STREAMS Administration 81

#define sap_npush sap_common.apc_npush

A device is identified by its major device number, sap_major. A SAD_CMD ioctl(2)
is one of the following commands:

SAP_CLEAR Clears the previous settings by removing the entry
with the matching sap_major and sap_minor fields

SAP_ONE Configures a single minor device, sap_minor, of a
driver

SAP_RANGE Configures a range of minor devices from sap_minor
to sap_lastminor, inclusive

SAP_ALL Configures all minor devices of a device

The list of modules is specified as a list of module names in sap_list. The maximum
number of modules to push automatically is defined by MAXAPUSH.

A user can query the current configuration status of a given major or minor device by
issuing the SAD_GAP ioctl(2) with sap_major and sap_minor values of the device
set. On successful return from this system call, the strapush structure will be filled in
with the corresponding information for that device. The maximum number of entries
the SAD driver can cache is determined by the tunable parameter NAUTOPUSH found
in the SAD driver’s master file.

The following is an example of an autopush configuration file in /etc/iu.ap:

major minor lastminor modules
wc 0 0 ldterm ttcompat
zs 0 1 ldterm ttcompat
ptsl 0 15 ldterm ttcompat

The first line is the configuration of a single minor device whose major name is wc and
minor numbers start at 0 and end at 0, creating only one minor number. The modules
automatically pushed are ldterm and ttcompat. The second line represents the
configuration of the zs driver. The minor device numbers are 0 and 1. The last line
allows minor device numbers from 0 to 15 for the ptsl driver.

Administration Tool Description
STREAMS error and trace loggers are provided for debugging and for administering
STREAMS modules and drivers. This facility consists of log(7D), strace(1M),
strclean(1M), strerr(1M), and the strlog(9F) function.

82 STREAMS Programming Guide • January 2005

strace Command
strace(1M) is a utility that displays the messages in a specified STREAMS log. The
log to display is identified by STREAMS module ID number, a sub-ID number, and the
priority level.

strlog Command
strlog(9F) sends formatted text to log(7D) driver. Required definitions are
contained in <sys/strlog.h> and <sys/log.h>. The call specifies the STREAMS
module ID number, a sub-ID number, and the priority level. A flag parameter can
specify any combination of:

SL_ERROR The message is for the error logger

SL_TRACE The message is for the tracer

SL_FATAL Advisory notification of a fatal error

SL_NOTIFY Modifies the SL_ERROR flag to request that a copy of the message be
mailed to the system administrator

SL_CONSOLE Log the message to the console

SL_WARN Warning message

SL_NOTE Notice the message

The flags are followed by a printf(3C)-style format string, but %s, %e, %E, %g, and %G
conversion specifications are not recognized. Up to NLOGARGS of numeric or character
arguments can be specified.

strqget Command
strqget(9F) gets information about a queue or band of a queue. The information is
returned in a long. The stream must be frozen by the caller when calling strqget.

strqset Command
strqset(9F) changes information about a queue or band of the queue. The updated
information is provided in an int. If the field is read-only, EPERM is returned and the
field is left unchanged. See <sys/stream.h> for valid values. The stream must be
frozen by the caller when calling strqset(9F).

Chapter 5 • STREAMS Administration 83

strerr Daemon
strerr(1M) is the STREAMS error logger daemon.

84 STREAMS Programming Guide • January 2005

CHAPTER 6

Pipes and Queues

This chapter covers communication between processes using STREAMS-based pipes
and named pipes. Discussion is limited to communications between applications.

� “Overview of Pipes and FIFOs” on page 85
� “Creating and Opening Pipes and FIFOs” on page 86

Overview of Pipes and FIFOs
A pipe in the SunOS 5.6 system provides a communication path between multiple
processes. Prior to the SunOS 5.0 release, SunOS had standard pipes and named pipes
(also called FIFOs). With standard pipes, one end was opened for reading and the
other end for writing, so data flow was unidirectional. FIFOs had only one end and
typically one process opened the file for reading and another process opened the file
for writing. Data written into the FIFO by the writer could then be read by the reader.

To provide greater support and development flexibility for networked applications,
pipes and FIFOs are STREAMS-based in the SunOS 5 software. The interface is
unchanged but the underlying implementation is changed. When a pipe is created
through the pipe(2) interface, two streams are opened and connected. Data flow is
serial.

The remainder of this chapter uses the terms pipe and STREAMS-based pipe
interchangeably to mean a STREAMS-based pipe.

85

Note – After both ends of a FIFO have been opened, there is no guarantee that further
calls to open O_RDONLY (O_WRONLY) will synchronize with later calls to open
O_WRONLY (O_RDONLY) until both ends of the FIFO have been closed by all readers
and writers. Any data written into a FIFO will be lost if both ends of the FIFO are
closed before the data is read.

Creating and Opening Pipes and FIFOs
A named pipe, also called a FIFO, is a pipe identified by an entry in a file system’s
name space. FIFOs are created using mknod(2), mkfifo(1M), or the mknod(1M)
command. They are removed using unlink(2) or the rm(1) command.

FIFOs look like regular file system nodes, but are distinguished from them by a p in
the first column when the ls -l command is run.

/usr/sbin/mknod xxx pls -l xxx
prw-r--r-- 1 guest other 0 Aug 26 10:55 xxx
echoput> hello.world>xxx &put>
[1] 8733
cat xxx
hello world
[1] + Done

rm xxx

FIFOs are unidirectional: that is, one end of the FIFO is used for writing data, the other
for reading data. FIFOs allow simple one-way interprocess communication between
unrelated processes. Modules may be pushed onto a FIFO. Data written to the FIFO is
passed down the write side of the module and back up the read side as shown in
Figure 6–1.

86 STREAMS Programming Guide • January 2005

User
process

Stream head

Module

Write side Read side

FIGURE 6–1 Pushing Modules on a STREAMS-based FIFO

FIFOs are opened in the same manner as other file system nodes with open(2). Any
data written to the FIFO can be read from the same file descriptor in the first-in,
first-out manner (serial, sequentially). Modules can also be pushed on the FIFO. See
open(2) for the restrictions that apply when opening a FIFO. If O_NDELAY or
O_NONBLOCK is not specified, an open on a FIFO blocks until both a reader and a
writer are present.

Named or mounted streams provide a more powerful interface for interprocess
communications than does a FIFO. See “Named Streams” on page 90 for details.

A STREAMS-based pipe, also referred to as an anonymous pipe, is created using
pipe(2), which returns two file descriptors, fd[0] and fd[1], each with its own
stream head. The ends of the pipe are constructed so that data written to either end of
a pipe may be read from the opposite end.

STREAMS modules can be added to a pipe with I_PUSH ioctl(2). A module can be
pushed onto one or both ends of the pipe (see Figure 6–2). However, if a module is
pushed onto one end of the pipe, that module cannot be popped from the other end.

Chapter 6 • Pipes and Queues 87

Module

Stream head

Module

Stream head

User
process

User space
Kernel space

FIGURE 6–2 Pushing Modules on a STREAMS-based Pipe

Using Pipes and FIFOs
Pipes and FIFOs can be accessed through the operating system routines read(2),
write(2), ioctl(2), close(2), putmsg(2), putpmsg(2), getmsg(2), getpmsg(2), and
poll(2). For FIFOs, open(2) is also used.

Reading From a Pipe or FIFO
read(2) or getmsg(2)) are used to read from a pipe or FIFO. Data can be read from
either end of a pipe. On success, the read(2) returns the number of bytes read and
buffered. When the end of the data is reached, read(2) returns 0.

When a user process attempts to read from an empty pipe (or FIFO), the following
happens:

� If one end of the pipe is closed, 0 is returned, indicating the end of the file.

� If the write side of the FIFO has closed, read(2) returns 0 to indicate the end of
the file.

� If some process has the FIFO open for writing, or both ends of the pipe are open,
and O_NDELAY is set, read(2) returns 0.

� If some process has the FIFO open for writing, or both ends of the pipe are open,
and O_NONBLOCK is set, read(2) returns -1 and sets errno to EAGAIN.

� If O_NDELAY and O_NONBLOCK are not set, the read call blocks until data is
written to the pipe, until one end of the pipe is closed, or the FIFO is no longer
open for writing.

88 STREAMS Programming Guide • January 2005

Writing to a Pipe or FIFO
When a user process calls write(2), data is sent down the associated stream. If the
pipe or FIFO is empty (no modules pushed), the data that is written is placed on the
read queue of the other stream for pipes, and on the read queue of the same stream for
FIFOs. Since the size of a pipe is the number of unread data bytes, the written data is
reflected in the size of the other end of the pipe.

Zero-Length Writes

If a user process issues write(2) with 0 as the number of bytes to send a pipe or FIFO,
0 is returned, and, by default, no message is sent down the stream. However, if a user
must send a zero-length message downstream, SNDZERO ioctl(2) can be used to
change this default behavior. If SNDZERO is set in the stream head, write(2) requests
of 0 bytes generate a zero-length message and send the message down the stream. If
SNDZERO is not set, no message is generated and 0 is returned to the user.

The SNDZERO bit may be changed by the I_SWROPT ioctl(2). If the arg in the
ioctl(2) has SNDZERO set, the bit is turned on. If the arg is set to 0, the SNDZERO bit
is turned off.

The I_GWROPT ioctl(2) is used to get the current write settings.

Atomic Writes

If multiple processes simultaneously write to the same pipe, data from one process can
be interleaved with data from another process, if modules are pushed on the pipe or
the write is greater than PIPE_BUF. The order of data that is written is not necessarily
the order of data that is read. To ensure that writes of less than PIPE_BUF bytes are
not interleaved with data written by other processes, any modules pushed on the pipe
should have a maximum packet size of at least PIPE_BUF.

Note – PIPE_BUF is an implementation-specific constant that specifies the maximum
number of bytes that are atomic when writing to a pipe. When writing to a pipe, write
requests of PIPE_BUF or fewer bytes are not interleaved with data from other
processes doing writes to the same pipe. However, write requests of more than
PIPE_BUF bytes may have data interleaved on arbitrary byte boundaries with writes
by other processes whether or not the O_NONBLOCK or O_NDELAY flag is set.

If the module packet size is at least the size of PIPE_BUF, the stream head packages
the data in such a way that the first message is at least PIPE_BUF bytes. The
remaining data may be packaged into smaller or equal-sized blocks depending on
buffer availability. If the first module on the stream cannot support a packet of
PIPE_BUF, atomic writes on the pipe cannot be guaranteed.

Chapter 6 • Pipes and Queues 89

Closing a Pipe or FIFO
close(2) closes a pipe or FIFO and dismantles its associated streams. On the last close
of one end of a pipe, an M_HANGUP message is sent to the other end of the pipe.
Subsequent read(2) or getmsg(2) calls on that stream head return the number of
bytes read and zero when there are no more data. Subsequent write(2) or putmsg(2)
requests fail with errno set to EPIPE. If the other end of the pipe is mounted, the last
close of the pipe forces it to be unmounted.

Flushing Pipes and FIFOs
When the flush request is initiated from an ioctl(2) or from flushq(9F), the FLUSHR
or the FLUSHW bits of an M_FLUSH message must be switched. Bits are switched at the
point where the M_FLUSH message is passed from a write queue to a read queue. This
point is also known as the midpoint of the pipe.

The midpoint of a pipe is not always easily detectable, especially if there are numerous
modules pushed on either end of the pipe. In that case, some mechanism needs to
intercept all messages passing through the stream. If the message is an M_FLUSH
message and it is at the stream midpoint, the flush bits need to be switched.

This bit switching is handled by the pipemod module. pipemod should be pushed
onto a pipe or FIFO where flushing of any kind will take place. The pipemod(7M)
module can be pushed on either end of the pipe. The only requirement is that it is
pushed onto an end that previously did not have modules on it. That is, pipemod(7M)
must be the first module pushed onto a pipe so that it is at the midpoint of the pipe
itself.

The pipemod(7M) module handles only M_FLUSH messages. All other messages are
passed to the next module using the putnext(9F) utility routine. If an M_FLUSH
message is passed to pipemod(7M) and the FLUSHR and FLUSHW bits are set, the
message is not processed but is passed to the next module using putnext(9F). If only
the FLUSHR bit is set, it is turned off and the FLUSHW bit is set. The message is then
passed to the next module, using putnext(9F). Similarly, if the FLUSHW bit was the
only bit set in the M_FLUSH message, it is turned off and the FLUSHR bit is turned on.
The message is then passed to the next module on the stream.

The pipemod(7M) module can be pushed on any stream if it requires the bit
switching.

Named Streams
The name of a stream or STREAMS–based pipe often associates the stream with an
existing node in the file system name space. This allows unrelated processes to open
the pipe and exchange data with the application. The following interfaces support
naming a stream or STREAMS–based pipe.

90 STREAMS Programming Guide • January 2005

fattach(3C) Attaches a stream file descriptor to a node in the file system name
space, thus naming the stream.

fdetach(3C) Detaches a named stream file descriptor from its node in the file
system name space, thus unnaming the stream.

isastream(3C) Tests whether a file descriptor is associated with a stream.

Named streams are useful for passing file descriptors between unrelated processes on
the same machine. A user process can send a file descriptor to another process by
invoking the I_SENDFD ioctl(2) on one end of a named stream. This sends a
message containing a file pointer to the stream head at the other end of the pipe.
Another process can retrieve the message containing the file pointer by an I_RECVFD
ioctl(2) call on the other end of the pipe.

Unique Connections
With named pipes, client processes may communicate with a server process using the
connld module which lets a client process get a unique, non-multiplexed connection
to a server. connld(7M) is a STREAMS-based module that has open, close, and put
procedures.

When the named stream is opened, the open routine of connld(7M) is called. The
open fails if:

� The pipe ends cannot be created.
� A file pointer and file descriptor cannot be allocated.
� The stream head cannot stream the two pipe ends.

The open is not complete and will block until the server process has received the file
descriptor using the I_RECVFD ioctl. The setting of the O_NDELAY or O_NONBLOCK
flag has no impact on the open routine.

connld(7M) does not process messages. All messages are passed to the next object in
the stream. The read, write, and put routines call putnext(9F) to send the message
up or down the stream.

The connld(7M) module can be pushed onto the named end of the pipe. If the named
end of the pipe is then opened by a client, a new pipe is created. One file descriptor for
the new pipe is passed back to a client (named stream) as the file descriptor from
open(2) and the other file descriptor is passed to the server using I_RECUFD
ioctl(2). The server and the client may then communicate through a new pipe.

Figure 6–3 shows a server process that has created a pipe and pushed the connld
module on the other end. The server then invokes the fattach(3C) routine to name
the other end /usr/toserv.

Chapter 6 • Pipes and Queues 91

connld

/usr/toserv /fd0

Server

FIGURE 6–3 Server Sets Up a Pipe

connld

/usr/toserv
fd0 fdx fdy

Server

procy procx

FIGURE 6–4 Processes X and Y Open /usr/toserv

When process X (procx) opens /usr/toserv, it gains a unique connection to the
server process that was at one end of the original STREAMS-based pipe. When process
Y (procy) does the same, it also gains a unique connection to the server. As shown in
Figure 6–4, the server process has access to three separate pipes through three file
descriptors.

92 STREAMS Programming Guide • January 2005

PART II

Kernel Interface

Chapter 7, STREAMS Framework –Kernel
Level

Describes the STREAMS components from the
kernel developer’s perspective.

Chapter 8, Messages - Kernel Level Describes the structure and use of each
STREAMS message type.

Chapter 9, STREAMS Drivers Discusses several topics specific to STREAMS
device drivers.

Chapter 10, Modules Provides specific examples of how modules
work.

Chapter 11, Configuration Describes how to configure STREAMS drivers
and modules into the Solaris operating
environment.

Chapter 12, MultiThreaded STREAMS Describes how to multithread a STREAMS
driver or module.

Chapter 13, Multiplexing Describes how STREAMS multiplexing
configurations are created and also discusses
multiplexing drivers.

93

94 STREAMS Programming Guide • January 2005

CHAPTER 7

STREAMS Framework – Kernel Level

Because the STREAMS subsystem of UNIX® provides a framework on which
communications services can be built, it is often called the STREAMS framework. This
framework consists of the stream head and a series of utilities (put, putnext), kernel
structures (mblk, dblk), and linkages (queues) that facilitate the interconnections
between modules, drivers, and basic system calls. This chapter describes the
STREAMS components from the kernel developer’s perspective.

� “Overview of Streams in Kernel Space” on page 95
� “Stream Head” on page 96
� “Kernel–Level Messages” on page 96
� “Message Queues” on page 106
� “Entry Points” on page 109
� “Flow Control in Service Procedures” on page 125

Overview of Streams in Kernel Space
Chapter 1 describes a stream as a full-duplex processing and data transfer path
between a STREAMS driver in kernel space and a process in user space. In the kernel,
a stream consists of a stream head, a driver, and zero or more modules between the
driver and the stream head.

The stream head is the end of the stream nearest the user process. All system calls
made by user-level applications on a stream are processed by the stream head.

Messages are the containers in which data and control information is passed between
the stream head, modules, and drivers. The stream head is responsible for translating
the appropriate messages between the user application and the kernel. Messages are
simply pointers to structures (mblk, dblk) that describe the data contained in them.
Messages are categorized by type according to the purpose and priority of the
message.

95

Queues are the basic elements by which the stream head, modules, and drivers are
connected. Queues identify the open, close, put, and service entry points.
Additionally, queues specify parameters and private data for use by modules and
drivers, and are the repository for messages destined for deferred processing.

In the rest of this chapter, the word “modules” refers to modules, drivers, or
multiplexers, except where noted.

Stream Head
The stream head interacts between applications in the user space and the rest of the
stream in kernel space. The stream head is responsible for configuring the plumbing of
the stream through open, close, push, pop, link, and unlink operations. It also
translates user data into messages to be passed down the stream, and translates
messages that arrive at the stream head into user data. Any characteristics of the
stream that can be modified by the user application or the underlying stream are
controlled by the stream head, which also informs users of data arrival and events
such as error conditions.

If an application makes a system call with a STREAMS file descriptor, the stream head
routines are invoked, resulting in data copying, message generation, or control
operations. Only the stream head can copy data between the user space and kernel
space. All other parts of the stream pass data by way of messages and are thus isolated
from direct interaction with users of the stream.

Kernel–Level Messages
Chapter 3 discusses messages from the application perspective. The following sections
discuss message types, message structure and linkage; how messages are sent and
received; and message queues and priority from the kernel perspective.

Message Types
Several STREAMS messages differ in their purpose and queueing priority. The
message types are briefly described and classified, according to their queueing
priority, in Table 7–1 and Table 7–2. A detailed discussion of message types is in
Chapter 8.

Some message types are defined as high-priority types. Ordinary or normal messages
can have a normal priority of 0, or a priority (also called a band) from 1 to 255.

96 STREAMS Programming Guide • January 2005

TABLE 7–1 Ordinary Messages, Description of Communication Flow

Ordinary Messages Direction

M_BREAK Request to a stream driver to send a “break” Upstream

M_CTL Control or status request used for intermodule
communication

Bidirectional

M_DATA User data message for I/O system calls Bidirectional

M_DELAY Request for a real-time delay on output Downstream

M_IOCTL Control/status request generated by a stream head Downstream

M_PASSFP File pointer-passing message Bidirectional

M_PROTO Protocol control information Bidirectional

M_SETOPTS Sets options at the stream head; sends upstream Upstream

M_SIG Signal sent from a module or driver Upstream

TABLE 7–2 High-Priority Messages, Description of Communication Flow

High-Priority
Messages Direction

M_COPYIN Copies in data for transparent ioctls Upstream

M_COPYOUT Copies out data for transparent ioctls Upstream

M_ERROR Reports downstream error condition Upstream

M_FLUSH Flushes module queue Bidirectional

M_HANGUP Sets a stream head hangup condition Upstream

M_UNHANGUP Reconnects line, sends upstream when hangup
reverses

Upstream

M_IOCACK Positive ioctl acknowledgement Upstream

M_IOCDATA Data for transparent ioctls, sent downstream Downstream

M_IOCNAK Negative ioctl acknowledgement Upstream

M_PCPROTO Protocol control information Bidirectional

M_PCSIG Sends signal from a module or driver Upstream

M_READ Read notification; sends downstream Downstream

M_START Restarts stopped device output Downstream

M_STARTI Restarts stopped device input Downstream

M_STOP Suspends output Downstream

Chapter 7 • STREAMS Framework – Kernel Level 97

TABLE 7–2 High-Priority Messages, Description of Communication Flow (Continued)
High-Priority
Messages Direction

M_STOPI Suspends input Downstream

Message Structure
A STREAMS message in its simplest form contains three elements—a message block, a
data block, and a data buffer. The data buffer is the location in memory where the
actual data of the message is stored. The data block (datab(9S) describes the data
buffer—where it starts, where it ends, the message types, and how many message
blocks reference it. The message block (msgb(9S)) describes the data block and how
the data is used.

The data block has a typedef of dblk_t and has the following public elements:

struct datab {
unsigned char *db_base; /* first byte of buffer */
unsigned char *db_lim; /* last byte+1 of buffer */
unsigned char db_ref; /* msg count ptg to this blk */
unsigned char db_type; /* msg type */

};

typedef struct datab dblk_t;

The datab structure specifies the data buffers’ fixed limits (db_base and db_lim), a
reference count field (db_ref), and the message type field (db_type). db_base
points to the address where the data buffer starts, db_lim points one byte beyond
where the data buffer ends, and db_ref maintains a count of the number of message
blocks sharing the data buffer.

Caution – db_base, db_lim, and db_ref should not be modified directly. db_type
is modified under carefully monitored conditions, such as changing the message type
to reuse the message block.

In a simple message, the message block references the data block, identifying for each
message the address where the message data begins and ends. Each simple message
block refers to the data block to identify these addresses, which must be within the
confines of the buffer such that db_base ≥ b_rptr ≥≥ b_wptr ≥ db_lim. For
ordinary messages, a priority band can be indicated, and this band is used if the
message is queued.

Figure 7–1 shows the linkages between msgb, datab, and the data buffer in a simple
message.

98 STREAMS Programming Guide • January 2005

msgb

datab

data buffer

db_base

db_lim

b_rptr

b_datap

b_wptr

FIGURE 7–1 Simple Message Referencing the Data Block

The message block (see msgb(9S)) has a typedef of mblk_t and has the following
public elements:

struct msgb {
struct msgb *b_next; /*next msg in queue*/
struct msgb *b_prev; /*previous msg in queue*/
struct msgb *b_cont; /*next msg block of message*/
unsigned char *b_rptr; /*1st unread byte in bufr*/
unsigned char *b_wptr; /*1st unwritten byte in bufr*/
struct datab *b_datap; /*data block*/
unsigned char b_band; /*message priority*/
unsigned short b_flag; /*message flags*/

};

The STREAMS framework uses the b_next and b_prev fields to link messages into
queues. b_rptr and b_wptr specify the current read and write pointers respectively,
in the data buffer pointed to by b_datap. The fields b_rptr and b_wptr are
maintained by drivers and modules.

The field b_band specifies a priority band where the message is placed when it is
queued using the STREAMS utility routines. This field has no meaning for
high-priority messages and is set to zero for these messages. When a message is
allocated using allocb(9F), the b_band field is initially set to zero. Modules and
drivers can set this field to a value from 0 to 255 depending on the number of priority
bands needed. Lower numbers represent lower priority. The kernel incurs overhead in
maintaining bands if nonzero numbers are used.

Chapter 7 • STREAMS Framework – Kernel Level 99

Caution – Message block data elements must not modify b_next, b_prev, or
b_datap. The first two fields are modified by utility routines such as putq(9F) and
getq(9F). Message block data elements can modify b_cont, b_rptr, b_wptr,
b_band (for ordinary messages types), and b_flag.

The SunOS environment places b_band in the msgb structure. Some other STREAMS
implementations place b_band in the datab structure. The SunOS implementation is
more flexible because each message is independent. For shared data blocks, the
b_band can differ in the SunOS implementation, but not in other implementations.

Message Linkage
A complex message can consist of several linked message blocks. If buffer size is
limited or if processing expands the message, multiple message blocks are formed in
the message, as shown in Figure 7–2. When a message is composed of multiple
message blocks, the type associated with the first message block determines the
overall message type, regardless of the types of the attached message blocks.

mblk

buffer

b_cont
mblk

b_cont
mblk

dblk

buffer

dblk

buffer

dblk

FIGURE 7–2 Linked Message Blocks

Queued Messages
A put procedure processes single messages immediately and can pass the message to
the next module’s put procedure using put or putnext. Alternatively, the message is
linked on the message queue for later processing, to be processed by a module’s
service procedure (putq(9F)). Note that only the first module of a set of linked
modules is linked to the next message in the queue.

Think of linked message blocks as a concatenation of messages. Queued messages are
a linked list of individual messages that can also be linked message blocks.

100 STREAMS Programming Guide • January 2005

mblk

Message 1

buffer

b_next

b_cont

dblk

mblk

Message 2
b_next

mblk

buffer

dblk buffer

dblk

mblk

Message 3

buffer

dblk

FIGURE 7–3 Queued Messages

In Figure 7–3 messages are queued: Message 1 being the first message on the queue,
followed by Message 2 and Message 3. Notice that Message 1 is a linked message
consisting of more than one mblk.

Caution – Modules or drivers must not modify b_next and b_prev. These fields are
modified by utility routines such as putq(9F) and getq(9F).

Shared Data
In Figure 7–4, two message blocks are shown pointing to one data block. db_ref
indicates that there are two references (mblks) to the data block. db_base and
db_lim point to an address range in the data buffer. The b_rptr and b_wptr of both
message blocks must fall within the assigned range specified by the data block.

Chapter 7 • STREAMS Framework – Kernel Level 101

msgb

datab
db_ref=2

data buffer

db_base

b_rptr

b_wptr

db_lim

b_rptr

b_datap
msgb

b_datap

b_wptr

FIGURE 7–4 Shared Data Block

Data blocks are shared using utility routines (see dupmsg(9F) or dupb(9F)). STREAMS
maintains a count of the message blocks sharing a data block in the db_ref field.

These two mblks share the same data and datablock. If a module changes the contents
of the data or message type, it is visible to the owner of the message block.

When modifying data contained in the dblk or data buffer, if the reference count of
the message is greater than one, the module should copy the message using
copymsg(9F), free the duplicated message, and then change the appropriate data.

Note – Hardening Information. At Sun, it is assumed that a message with a db_ref > 1
is a “read-only” message and can be read but not modified. If the module wishes to
modify the data, it should first copy the message, and free the original:

if (dbp->db_ref > 1) {
dblk_t *newdbp;

/* Get a copy of the message */
newdbp = copymsg(dbp);

/* Free the original */
freemsg(dbp);

/* make sure that we are now using the new dbp */
dbp = newdbp;

}

102 STREAMS Programming Guide • January 2005

STREAMS provides utility routines and macros (identified in Appendix B) to assist in
managing messages and message queues, and in other areas of module and driver
development. Always use utility routines to operate on a message queue or to free or
allocate messages. If messages are manipulated in the queue without using the
STREAMS utilities, the message ordering can become confused and cause inconsistent
results.

Caution – Not adhering to the DDI/DKI can result in panics and system crashes.

Sending and Receiving Messages
Among the message types, the most commonly used messages are M_DATA, M_PROTO,
and M_PCPROTO. These messages can be passed between a process and the topmost
module in a stream, with the same message boundary alignment maintained between
user and kernel space. This allows a user process to function, to some degree, as a
module above the stream and maintain a service interface. M_PROTO and M_PCPROTO
messages carry service interface information among modules, drivers, and user
processes.

Modules and drivers do not interact directly with any interfaces except open(2) and
close(2). The stream head translates and passes all messages between user processes
and the uppermost STREAMS module. Message transfers between a process and the
stream head can occur in different forms. For example, M_DATA and M_PROTO
messages can be transferred in their direct form by getmsg(2) and putmsg(2).
Alternatively, write(2) creates one or more M_DATA messages from the data buffer
supplied in the call. M_DATA messages received at the stream head are consumed by
read(2) and copied into the user buffer.

Any module or driver can send any message in either direction on a stream. However,
based on their intended use in STREAMS and their treatment by the stream head,
certain messages can be categorized as upstream, downstream, or bidirectional. For
example, M_DATA, M_PROTO, or M_PCPROTO messages can be sent in both directions.
Other message types such as M_IOACK are sent upstream to be processed only by the
stream head. Messages to be sent downstream are silently discarded if received by the
stream head. Table 7–1 and Table 7–2 indicate the intended direction of message types.

STREAMS enables modules to create messages and pass them to neighboring
modules. read(2) and write(2) are not enough to enable a user process to generate
and receive all messages. In the first place, read(2) and write(2) are byte-stream
oriented with no concept of message boundaries. The message boundary of each
service primitive must be preserved so that the start and end of each primitive can be
located in order to support service interfaces. Furthermore, read(2) and write(2)
offer only one buffer to the user for transmitting and receiving STREAMS messages. If

Chapter 7 • STREAMS Framework – Kernel Level 103

control information and data is placed in a single buffer, the user has to parse the
contents of the buffer to separate the data from the control information. Furthermore,
read(2) and write(2) offer only one buffer to the user for transmitting and receiving
STREAMS messages. If control information and data is placed in a single buffer, the
user has to parse the contents of the buffer to separate the data from the control
information.

getmsg(2) and putmsg(2) enable a user process and the stream to pass data and
control information between one another while maintaining distinct message
boundaries.

Data Alignment

Note – Hardening Information. There is no guarantee in STREAMS that a b_rptr or
b_wptr will fall on a proper bit alignment. Most modules that pass data structures
with pointers try to retain the desired bit alignment. If the module is in a stream where
this is reasonably guaranteed, it does not need to check data alignment. However, for
the purpose of hardening, modules that are concerned about data alignment should
verify that pointers are properly aligned, or copy data in mblks to local structures that
are properly aligned (see bcopy(3C)).

Note – Hardening Information. Ensure that the changing of pointers is uniform (b_rptr
<= b_rptr). Keep pointers inside db_base and db_lim. It is easier to recover from
an error if b_rptr and b_wptr are inside db_base and db_lim.

When a module changes the b_rptr and/or the b_wptr, it should verify the
following relationship:

db_base <= b_rptr <= b_wptr <= db_lim

and

db_base < db_lim

Message Queues and Message Priority
Message queues grow when the STREAMS scheduler is delayed from calling a service
procedure by system activity, or when the procedure is blocked by flow control. When
called by the scheduler, a module’s service procedure processes queued messages in a
FIFO manner (getq(9F)). However, some messages associated with certain conditions,
such as M_ERROR, must reach their stream destination as rapidly as possible. This is
accomplished by associating priorities with the messages. These priorities imply a
certain ordering of messages in the queue, as shown in Figure 7–5.

104 STREAMS Programming Guide • January 2005

Each message has a priority band associated with it. Ordinary messages have a
priority band of zero. The priority band of high-priority messages is ignored since
they are high priority and thus not affected by flow control. putq(9F) places
high-priority messages at the head of the message queue, followed by priority band
messages (expedited data) and ordinary messages.

priority
(band 1)

messages

normal
(band 0)

messages

priority
(band 2)

messages

tail

....

head

priority
(band n)

messages

high
priority

messages

FIGURE 7–5 Message Ordering in a Queue

When a message is queued, it is placed after the messages of the same priority already
in the queue (in other words, FIFO within their order of queueing). This affects the
flow-control parameters associated with the band of the same priority. Message
priorities range from 0 (normal) to 255 (highest). This provides up to 256 bands of
message flow within a stream. An example of how to implement expedited data
would be with one extra band of data flow (priority band 1), is shown in the following
figure. Queues are explained in detail in the next section.

expedited
(band 1)

messages

normal
(band 0)

messages

high
priority

messages

tail head

FIGURE 7–6 Message Ordering with One Priority Band

High-priority messages are not subject to flow control. When they are queued by
putq(9F), the associated queue is always scheduled, even if the queue has been
disabled (noenable(9F)). When the service procedure is called by the stream’s
scheduler, the procedure uses getq(9F) to retrieve the first message on queue, which
is a high-priority message. Service procedures must be implemented to act on
high-priority messages immediately. The mechanisms just mentioned—priority
message queueing, absence of flow control, and immediate processing by a
procedure—result in rapid transport of high-priority messages between the
originating and destination components in the stream.

In general, high-priority messages should be processed immediately by the module’s
put procedure and not placed on the service queue.

Chapter 7 • STREAMS Framework – Kernel Level 105

Caution – A service procedure must never queue a high-priority message on its own
queue because an infinite loop results. The enqueuing triggers the queue to be
immediately scheduled again.

Message Queues
The queue is the fundamental component of a stream. It is the interface between a
STREAMS module and the rest of the stream, and is the repository for deferred
message processing. For each instance of an open driver or pushed module or stream
head, a pair of queues is allocated, one for the read side of the stream and one for the
write side.

The RD(9F), WR(9F), and otherq(9F) routines allow reference of one queue from the
other. Given a queue, RD(9F) returns a pointer to the read queue, WR(9F) returns a
pointer to the write queue and otherq(9F) returns a pointer to the opposite queue of
the pair (see queue(9S)).

By convention, queue pairs are depicted graphically as side- by-side blocks, with the
write queue on the left and the read queue on the right (see following figure).

WQ RQ

FIGURE 7–7 Queue Pair Allocation

queue() Structure
As previously discussed, messages are ordered in message queues. Message queues,
message priority, service procedures, and basic flow control all combine in STREAMS.
A service procedure processes the messages in its queue. If there is no service
procedure for a queue, putq(9F) does not schedule the queue to be run. The module
developer must ensure that the messages in the queue are processed. Message priority
and flow control are associated with message queues.

The queue structure is defined in stream.h as a typedef queue_t, and has the
following public elements:

struct qinit *q_qinfo; /* procs and limits for queue */
struct msgb *q_first; /* first data block */
struct msgb *q_last; /* last data block */

106 STREAMS Programming Guide • January 2005

struct queue *q_next; /* Q of next stream */
struct queue *q_link; /* to next Q for scheduling */
void *q_ptr; /* to private data structure */
size_t q_count; /* number of bytes on Q */
uint q_flag; /* queue state */
ssize_t q_minpsz; /* min packet size accepted by this module */
ssize_t q_maxpsz; /* max packet size accepted by this module */
size_t q_hiwat; /* queue high–water mark */

size_t q_lowat; /* queue low–water mark */

q_first points to the first message on the queue, and q_last points to the last
message on the queue. q_count is used in flow control and contains the total number
of bytes contained in normal and high-priority messages in band 0 of this queue. Each
band is flow controlled individually and has its own count. For more details, see
“qband Structure” on page 121. qsize(9F) can be used to determine the total number
of messages on the queue. q_flag indicates the state of the queue. See Table 7–3 for
the definitions of these flags.

q_minpsz contains the minimum packet size accepted by the queue, and q_maxpsz
contains the maximum packet size accepted by the queue. These are suggested limits,
and some implementations of STREAMS may not enforce them. The SunOS stream
head enforces these values but they are voluntary at the module level. You should
design modules to handle messages of any size.

q_hiwat indicates the limiting maximum number of bytes that can be put on a queue
before flow control occurs. q_lowat indicates the lower limit where STREAMS flow
control is released.

q_ptr is the element of the queue structure where modules can put values or
pointers to data structures that are private to the module. This data can include any
information required by the module for processing messages passed through the
module, such as state information, module IDs, routing tables, and so on. Effectively,
this element can be used any way the module or driver writer chooses. q_ptr can be
accessed or changed directly by the driver, and is typically initialized in the open(9E)
routine.

When a queue pair is allocated, streamtab initializes q_qinfo, and module_info
initializes q_minpsz, q_maxpsz, q_hiwat, and q_lowat. Copying values from the
module_info structure enables them to be changed in the queue without modifying
the streamtab and module_info values.

The following table lists the queue(9S) flags.

TABLE 7–3 Queue Flags

Flag Description

QENAB The queue is enabled to run the service procedure

QWANTR Someone wants to read queue

Chapter 7 • STREAMS Framework – Kernel Level 107

TABLE 7–3 Queue Flags (Continued)
Flag Description

QWANTW Someone wants to write to queue

QFULL The queue is full

QREADR Set for all read queues

QUSE This queue in use (allocation)

QNOENB Do not enable the queue when data is placed on it

Using Queue Information
The q_first, q_last, q_count, and q_flags components must not be modified by
the module, and should be accessed using strqget(9F). The values of q_minpsz,
q_maxpsz, q_hiwat, and q_lowat are accessed through strqget(9F), and are
modified by strqset(9F). q_ptr can be accessed and modified by the module and
contains data private to the module.

All other accesses to fields in the queue(9S) structure should be made through
STREAMS utility routines (see Appendix B, “STREAMS Utilities”). Modules and
drivers should not change any fields not explicitly listed previously.

strqget(9F) enables modules and drivers to get information about a queue or
particular band of the queue. This insulates the STREAMS data structures from the
modules and drivers. The prototype for the strqget(9F) routine is:

int

strqget(queue_t *q, qfields_t what, unsigned char pri, void *valp)

q specifies from which queue the information is to be retrieved; what defines the
queue_t field value to obtain (see the following structure fields). pri identifies a
specific priority band. The value of the field is returned in valp. The fields that can be
obtained are defined in <sys/stream.h> and shown here as:

QHIWAT /* high–water mark */
QLOWAT /* low–water mark */
QMAXPSZ /* largest packet accepted */
QMINPSZ /* smallest packet accepted */
QCOUNT /* approx. size (in bytes) of data */
QFIRST /* first message */
QLAST /* last message */

QFLAG /* status */

strqset(9F) enables modules and drivers to change information about a queue or a
band of the queue. This also insulates the STREAMS data structures from the modules
and drivers. Its prototype is:

int

strqset(queue_t *q. qfields_t what, unsigned char pri, intptr_t val)

108 STREAMS Programming Guide • January 2005

The q, what, and pri fields are the same as in strqget(9F), but the information to be
updated is provided in val instead of through a pointer. If the field is read-only, EPERM
is returned and the field is left unchanged. The following fields are read-only: QCOUNT,
QFIRST, QLAST, and QFLAG.

Note – Hardening Information. Access queue structure information, through
strqget() and strqset() only. Do not access the queue structure directly.

Entry Points
The q_qinfo component points to a qinit structure. This structure defines the
module’s entry point procedures for each queue, which include the following:

int (*qi_putp)(); /* put procedure */
int (*qi_srvp)(); /* service procedure */
int (*qi_qopen)(); /* open procedure */
int (*qi_qclose)(); /* close procedure */

struct module_info *qi_minfo; /* module information structure */

There is generally a unique q_init structure associated with the read queue and the
write queue. qi_putp identifies the put procedure for the module. qi_srvp
identifies the optional service procedure for the module.

The open and close entry points are required for the read-side queue. The put
procedure is generally required on both queues and the service procedure is
optional.

Note – Hardening Information. If the put procedure is not defined and a subsequent
put is done to the module, a panic occurs. As a precaution, putnext should be
declared as the module’s put procedure.

If a module only requires a service procedure, putq(9F) can be used as the
module’s put procedure. If the service procedure is not defined, the module’s put
procedure must not queue data (putq).

The qi_qopen member of the read-side qinit structure identifies the open(9E) entry
point of the module. The qi_qclose member of the read-side qinit structure
identifies the close(9E) entry point of the module.

The qi_minfo member points to the module_info(9S) structure.

struct module_info {
ushort mi_idnum; /* module id number */

Chapter 7 • STREAMS Framework – Kernel Level 109

char *mi_idname; /* module name */
ssize_t mi_minpsz; /* min packet size accepted */
ssize_t mi_maxpsz; /* max packet size accepted */
size_t mi_hiwat; /* hi-water mark */
size_t mi_lowat; /* lo-water mark */

};

mi_idnum is the module’s unique identifier defined by the developer and used in
strlog(9F). mi_idname is an ASCII string containing the name of the module.
mi_minpsz is the initial minimum packet size of the queue. mi_maxpsz is the initial
maximum packet size of the queue. mi_hiwat is the initial high–water mark of the
queue. mi_lowat is the initial low–water mark of the queue.

open Routine
The open(9E) routine of a device is called once for the initial open of the device, then
is called again on subsequent reopens of the stream. Module open routines are called
once for the initial push onto the stream and again on subsequent reopens of the
stream.

Stream head

Module C

Module B

Module A

FIGURE 7–8 Order of a Module’s open Procedure

The stream is analogous to a stack. Initially the driver is opened and as modules are
pushed onto the stream, their open routines are invoked. Once the stream is built, this
order reverses if a reopen of the stream occurs. For example, while building the stream
shown in Figure 7–8, device A’s open routine is called, followed by B’s and C’s when
they are pushed onto the stream. If the stream is reopened, Module C’s open routine
is called first, followed by B’s, and finally by A’s.

Usually the module or driver does not check this, but the issue is raised so that
dependencies on the order of open routines are not introduced by the programmer.
Note that although an open can happen more than once, close is only called once.
See the next section on the close routine for more details. If a file is duplicated (dup(2))
the stream is not reopened.

110 STREAMS Programming Guide • January 2005

The prototype for the open entry point is:

int prefix_open(queue_t *q, dev_t *devp, int oflag, int sflag,

cred_t *cred_p)

q Pointer to the read queue of this module.

devp Pointer to a device number that is always associated with the device at the
end of the stream. Modules cannot modify this value, but drivers can, as
described in Chapter 9.

oflag For devices, oflag can contain the following bit mask values: FEXCL,
FNDELAY, FREAD, and FWRITE. See Chapter 9 for more information on
drivers.

sflag When the open is associated with a driver, sflag is set to 0 or CLONEOPEN,
see Chapter 9, “Cloning STREAMS Drivers” on page 199 for more details. If
the open is associated with a module, sflag contains the value MODOPEN.

cred_p Pointer to the user credentials structure.

The open routines to devices are serialized . If more than one process attempts to open
the device, only one proceeds and the others wait until the first finishes. Interrupts are
not blocked during an open. The driver’s interrupt routine must continue to handle
interrupts when multiple processes are opening the same device. See Chapter 9 for
more information.

The open routines for both drivers and modules have user context. For example, they
can do blocking operations, but the blocking routine should return in the event of a
signal. In other words, q_wait_sig is allowed, but q_wait is not.

If the module or driver is to allocate a controlling terminal, it should send an
M_SETOPTS message with SO_ISTTY set to the stream head.

The open routine usually initializes the q_ptr member of the queue. q_ptr is
generally initialized to some private data structure that contains various state
information private to the module or driver. The module’s close routine is
responsible for freeing resources allocated by the module including q_ptr. The
following example shows a simple open routine.

EXAMPLE 7–1 A Simple open Routine

/* example of a module open */
int xx_open(queue_t *q, dev_t *devp, int oflag, int sflag, cred_t *crp)
{

struct xxstr *xx_ptr;

xx_ptr = kmemzalloc(sizeof(struct xxstr), KM_SLEEP);
xx_ptr->xx_foo = 1;
q->q_ptr = WR(q)->q_ptr = xx_ptr;
qprocson(q);
return (0);

}

Chapter 7 • STREAMS Framework – Kernel Level 111

In a multithreaded environment, data can flow up the stream during the open. A
module receiving this data before its open routine finishes initialization can panic. To
eliminate this problem, modules and drivers are not linked into the stream until
qprocson(9F) is called (messages flow around the module). The following figure
illustrates this process. See Chapter 12 for more information on the multithreaded
environment and the use of perimeters.

Stream head

Before qprocson()

Stream head

ModuleModule

After qprocson()

FIGURE 7–9 Messages Flowing Around the Module Before qprocson

The module or driver instance is guaranteed to be single-threaded before
qprocson(9F) is called, except for interrupts or callbacks that must be handled
separately.

Note – Hardening Information. qprocson must be called before calling qbufcall(9F),
qtimeout(9F), qwait(9F), or qwait_sig(9F).

Before a module calls qprocson, it must be ready to accept data via the module’s put
procedure so all data structures must be fully initialized (see “put Procedure”
on page 115). The most common method for calling qprocson is to call this function
just before returning from a successful open (see Example 7–1).

Note – For a multithreaded environment, verify you are using the correct perimeter
before accessing data. See Chapter 12 for more information on the multithreaded
environment and the use of perimeters.

112 STREAMS Programming Guide • January 2005

close Routine
The close routine of devices is called only during the last close of the device.
Module close routines are called during the last close or if the module is popped.

The prototype for the close entry point is:

int prefix_close (queue *q, int flag, cred_t * cred_p)

q is a pointer to the read queue of the module.

flag is analogous to the oflag parameter of the open entry point. If FNBLOCK or
FNDELAY is set, then the module should attempt to avoid blocking during
the close.

cred_p is a pointer to the user credential structure.

Like open, the close entry point has user context and can block. The blocking
routines should return in the event of a signal. Device drivers must take into
consideration that interrupts are not blocked during close.

close might be called in a context where a thread cannot receive signals, such as
calling close during exit closure of open file descriptors. The system does not
reawaken the thread when a user-level process attempts to send a signal, including
SIGKILL, to the process.

Use ddi_can_receive_sig to determine whether a thread can receive user-level
signals. ddi_can_receive_sig returns B_TRUE if the current thread can receive
user-level signals, and B_FALSE if the thread cannot. In this case, qwait_sig behaves
exactly like qwait. Use qtimeout or other facilities to prevent close from blocking
indefinitely when a thread cannot receive signals.

In particular, asynchronous serial drivers should use caution when draining output
data after calling close. Under most conditions, the driver must attempt to wait as
long as possible to drain all output data and to discard the data only when a signal is
received. However, if ddi_can_receive_sig returns B_FALSE and output flow
control is asserted indefinitely by the peer, the driver must abort the drain operation
after a reasonable time period has elapsed. Otherwise, the device could remain
unusable until the next system boot.

The close routine must cancel all pending and qbufcall callbacks, and process any
remaining messages on its service queue. In Example 7–2, the open and close
procedures are only used on the read side of the queue and can be set to NULL in the
write-side qinit structure initialization.

EXAMPLE 7–2 Example of a Module Close

/* example of a module close */
static int
xx_close(queue_t *, *rq, int flag, cred_t *credp)
{

Chapter 7 • STREAMS Framework – Kernel Level 113

EXAMPLE 7–2 Example of a Module Close (Continued)

struct xxstr *xxp;

/*
* Disable xxput() and xxsrv() procedures on this queue.
*/

qprocsoff(rq);
xxp = (struct xxstr *) rq->q_ptr;

/*
* Cancel any pending timeout.
* This example assumes that the timeout was issued
* against the write queue.
*/

if (xxp->xx_timeoutid != 0) {
(void) quntimeout(WR(rq), xxp->xx_timeoutid);
xxp->xx_timeoutid=0;

}
/*
* Cancel any pending bufcalls.
* This example assumes that the bufcall was issued
* against the write queue.
*/

if (xxp->xx_bufcallid !=0) {
(void) qunbufcall(WR(rq), xxp->xx_bufcallid);

xxp->xx_bufcallid = 0;
}
rq->q_ptr = WR(rq)->q_ptr = NULL;

/*
* Free resources allocated during open
*/

kmem_free (xxp, sizeof (struct xxstr));
return (0);

}

qprocsoff does the inverse operation shown in Figure 7–9. This supports the need
for cancelling callbacks before a qprocsoff.

qprocsoff is typically called at the begining of the close routine. The module can
no longer receive messages from adjoining modules. The queue, however, still has
pointers to it’s adjoining modules and can putnext. However, as the queue is no
longer inserted into the stream, these messages may be out of order from other
messages in the stream, so it is best to process these messages before qprocsoff.

114 STREAMS Programming Guide • January 2005

qwait is used because a module needs to get some response from another module or
driver in the STREAM (i.e. a DLPI disconnect message sent downstream). qwait and
qwait_sig must also be called before qprocsoff because once the queue is
removed from the stream, there will be no way for the reply message to reach the
queue.

put Procedure
The put procedure is the mechanism that other modules use to pass messages into
this module. This procedure is called via the putor putnext routines on behalf of
other modules. The queue’s put procedure is invoked by the preceding module to
process a message immediately (see put(9F) and putnext(9F)). Most modules will
have a put routine. The common exception is on the read-side of drivers because there
will not typically be a module downstream to the driver.

Note – Hardening Information. putnext is used by adjoining modules to ensure that the
next module’s queue is intact. Use of put cannot guarantee that the queue being
called is currently valid and inserted into a stream; you must ensure that the queue is
valid when using put.

A driver’s put procedure must do one of the following:

� Process and free the message.
� Process and route the message back upstream.
� Queue the message to be processed by the driver’s service procedure.

All M_IOCTL type messages must be acknowledged through M_IOACK or rejected
through M_IOCNACK. M_IOCTL messages should not be freed. Drivers must free any
unrecognized message.

A module’s put procedure must do one of the following as shown in Figure 7–10:

� Process and free the message.
� Process the message and pass it to the next module or driver.
� Queue the message to be processed later by the module’s service procedure.

Unrecognized messages are passed to the next module or driver. The stream operates
more efficiently when messages are processed in the put procedure. Processing a
message with the service procedure imposes some latency on the message.

Chapter 7 • STREAMS Framework – Kernel Level 115

Message
received from

previous module

putq() putnext()

return

Process
message

No

Yescanputnext?

FIGURE 7–10 Flow of put Procedure

If the next module is flow controlled (see canput(9F) and canputnext(9F)), the put
procedure can queue the message for processing by the next service procedure (see
putq(9F)). The put routine is always called before the component’s corresponding
srv(9E) service routine, so always use put for immediate message processing.

Note – Hardening Information. canput and canputnext operate similar to put and
putnext; that is the next functions verify the integrity of the next queue. Not using
the next functions can cause panics as the queue being referenced might have already
been closed.

The preferred naming convention for a put procedure reflects the direction of the
message flow. The read put procedure is suffixed by r (rput), and the write
procedure by w (wput). For example, the read-side put procedure for module xx is
declared as int xxrput (queue_t *q, mblk_t *mp). The write-side put
procedure is declared as int xxwput(queue_t *q, mblk_t *mp), where q points
to the corresponding read or write queue and mp points to the message to be
processed.

116 STREAMS Programming Guide • January 2005

Although high-priority messages can be placed on the service queue, processing
them immediately in the put procedure is better. (See the stub code in Example 7–3.)
Place ordinary or priority-band messages on the service queue (putq(9F)) if:

� The stream has been flow controlled; that is, canput fails.
� There are already messages on the service queue, that is, q_first is not NULL.
� Deferred processing is desired.

If other messages already exist on the queue and the put procedure does not queue
new messages (provided they are not high-priority), messages are reordered. If the
next module is flow controlled (see canput(9F) and canputnext(9F)), the put
procedure can queue the message for processing by the service procedure (see
putq(9F)).

EXAMPLE 7–3 Example of a Module put Procedure

/*example of a module put procedure */
int
xxrput(queue_t *,mblk_t, *mp)
{

/*
* If the message is a high-priority message or
* the next module is not flow controlled and we have not
* already deferred processing, then:
*/

if (mp->b_datap->db_type >= QPCTL ||
(canputnext(q) && q->q_first == NULL)) {

/*
* Process message
*/

.

.

.
putnext(q,mp);

} else {
/*
* put message on service queue
*/
putq(q,mp);

}
return (0);

}

Put procedures must never call putq, putbq, or qenable if the module does not
have a service procedure.

Chapter 7 • STREAMS Framework – Kernel Level 117

Note – Hardening Information. Once a message is passed using a putq, put, putnext,
as well as the perimeter function qwriter, it cannot be accessed again because the
use of this message has been given to the new routine. If a reference needs to be
retained by the module, it should copy it by using copyb, copymsg, dupb, or
dupmsg.

A module need not process the message immediately, and can queue it for later
processing by the service procedure (see putq(9F)).

The SunOS STREAMS framework is multithreaded. Unsafe (nonmultithreaded)
modules are not supported. To make multithreading of modules easier, the SunOS
STREAMS framework uses perimeters (see “MT STREAMS Perimeters” on page 252 for
more information).

Caution – Mutex locks must not be held across a call to put(9F), putnext(9F), or
qreply(9F).

Because of the asynchronous nature of STREAMS, do not assume that a module’s put
procedure has been called just because put(9F), putnext(9F), or qreply(9F) has
returned.

Queue service Procedure
A queue’s service procedure is invoked to process messages on the queue. It
removes successive messages from the queue, processes them, and calls the put
procedure of the next module in the stream to give the processed message to the next
queue.

The service procedure is optional. A module or driver can use a service procedure
for the following reasons:

� Streams flow control is implemented by service procedures. If the next
component on the stream has been flow controlled, the put procedure can queue
the message. (See “Flow Control in Service Procedures” on page 125 in Chapter 7 for
more on flow control.)

� Resource allocation recovery. If a put or service procedure cannot allocate a
resource, such as memory, the message is usually queued to process later.

� A device driver can queue a message and get out of interrupt context.

� To combine multiple messages into larger messages.

118 STREAMS Programming Guide • January 2005

The service procedure is invoked by the STREAMS scheduler. A STREAMS
service procedure is scheduled to run if:

� The queue is not disabled (noenable(9F)) and the message being queued is either
the first message on the queue, or a priority band message.

� The message being queued (putq(9F) or putbq(9F)) is a high-priority message,

� The queue has been back-enabled because flow control has been relieved,

� The queue has been explicitly enabled (qenable(9F)).

A service procedure usually processes all messages on its queue (getq(9F)) or takes
appropriate action to ensure it is re-enabled (qenable(9F)) at a later time. Figure 7–11
shows the flow of a service procedure.

Caution – High-priority messages (db_type and MSG_HIPRI) must never be placed
back on a service queue (putbq(9F)). Placing these messages in a service queue can
cause an infinite loop.

Put procedures must never call putq, putbq, or qenable if the module does not
have a service procedure.

Chapter 7 • STREAMS Framework – Kernel Level 119

Enter
service

procedure

putbq()

return

Process
message

No

Yes
Message
on queue

(get!=NULL)

putnextcanputnext()

No

FIGURE 7–11 Flow of service Procedure

The following example shows the stub code for a module service procedure.

EXAMPLE 7–4 Module service Procedure

/*example of a module service procedure */
int
xxrsrv(queue_t *q)
{

mblk_t *mp;
/*
* While there are still messages on our service queue
*/

while ((mp = getq(q) != NULL) {
/*

* We check for high priority messages, but
* none is ever seen since the put procedure
* never queues them.
* If the next module is not flow controlled, then
*/
if (mp->b_datap->db_type >= QPCTL || (canputnext (q)) {

120 STREAMS Programming Guide • January 2005

EXAMPLE 7–4 Module service Procedure (Continued)

/*
* process message
*/
.
.
.
putnext (q, mp);

} else {
/*

* put message back on service queue
*/

putbq(q,mp);
break;

}
}
return (0);

}

qband Structure
The queue flow information for each band, other than band 0, is contained in a
qband(9S) structure. This structure is not visible to other modules. For accessible
information see strqget(9F) and strqset(9F). qband is defined as follows:

typedef struct qband {
struct qband *qb_next; /* next band’s info */
size_t qb_count; /* number of bytes in band */
struct msgb *qb_first; /* beginning of band’s data */
struct msgb *qb_last; /* end of band’s data */
size_t qb_hiwat; /* high-water mark for band */
size_t qb_lowat; /* low–water mark for band */
uint qb_flag; /* see below */

} qband_t;

The structure contains pointers to the linked list of messages in the queue. These
pointers, qb_first and qb_last, denote the beginning and end of messages for the
particular band. The qb_count field is analogous to the queue’s q_count field.
However, qb_count only applies to the messages in the queue in the band of data
flow represented by the corresponding qband structure. In contrast, q_count only
contains information regarding normal and high-priority messages.

Each band has a separate high and low watermark, qb_hiwat and qb_lowat. These
are initially set to the queue’s q_hiwat and q_lowat respectively. Modules and
drivers can change these values through the strqset(9F) function. The QB_FULL flag
for qb_flag denotes that the particular band is full.

Chapter 7 • STREAMS Framework – Kernel Level 121

The qband(9S) structures are not preallocated per queue. Rather, they are allocated
when a message with a priority greater than zero is placed in the queue using
putq(9F), putbq(9F), or insq(9F). Since band allocation can fail, these routines return
0 on failure and 1 on success. Once a qband(9S) structure is allocated, it remains
associated with the queue until the queue is freed. strqset(9F) and strqget(9F)
cause qband(9S) allocation. Sending a message to a band causes all bands up to and
including that one to be created.

Using qband Information
The STREAMS utility routines should be used when manipulating the fields in the
queue and qband(9S) structures. strqget(9F) and strqset(9F) are used to access
band information.

Drivers and modules can change the qb_hiwat and qb_lowat fields of the qband
structure. Drivers and modules can only read the qb_count, qb_first, qb_last,
and qb_flag fields of the qband structure. Only the fields listed previously can be
referenced.

Caution – There are fields in the qband structure that are reserved and are not
documented. These fields are subject to undocumented, unnotified change at any time.

The following figure shows a queue with two extra bands of flow.

122 STREAMS Programming Guide • January 2005

band 1 band 2

queue
structure

qband
structures

priority
(band 1)

messages

normal
(band 0)

messages

priority
(band 2)

messages

tail

high
priority

messages

head

q_bandp

qb_next

q_first

q_last

qb_first

qb_last

qb_next

qb_first

qb_last

FIGURE 7–12 Data Structure Linkage

Several routines are provided to aid you in controlling each priority band of data flow.
These routines are

� flushband(9F)
� bcanputnext(9F)
� strqget(9F)
� strqset(9F)

flushband(9F) is discussed in “Flushing Priority Band” on page 167.
bcanputnext(9F) is discussed in “Flow Control in Service Procedures” on page 125,
and the other two routines are described in the following section. Appendix B also has
a description of these routines.

Chapter 7 • STREAMS Framework – Kernel Level 123

Message Processing Procedures
Typically, put procedures are required in pushable modules, but service procedures
are optional. If the put routine queues messages, a corresponding service routine
must be present to handle the queued messages. If the put routine does not queue
messages, the service routine is not required.

Figure 7–10 shows typical processing flow for a put procedure which works as
follows:

� A message is received by the put procedure associated with the queue, where
some processing can be performed on the message.

� The put procedure determines if the message can be sent to the next module by
the use of canput(9F) or canputnext(9F).

� If the next module is flow controlled, the put procedure queues the message using
putq(9F).

� putq(9F) places the message in the queue based on its priority.

� Then, putq(9F) makes the queue ready for execution by the STREAMS scheduler,
following all other queues currently scheduled.

� If the next module is not flow controlled, the put procedure does any processing
needed on the message and sends it to the next module using putnext(9F). Note
that if the module does not have a service procedure it cannot queue the
message, and must process and send the message to the next module.

Figure 7–11 shows typical processing flow for a service procedure that works as
follows:

� When the system goes from kernel mode to user mode, the STREAMS scheduler
calls the service procedure.

� The service procedure gets the first message (q_first) from the message queue
using the getq(9F) utility.

� The put procedure determines if the message can be sent to the next module using
canput(9F) or canputnext(9F).

� If the next module is flow controlled, the put procedure requeues the message
with putbq(9F), and then returns.

� If the next module is not flow controlled, the service procedure processes the
message and passes it to the put procedure of the next queue with putnext(9F).

� The service procedure gets the next message and processes it. This processing
continues until the queue is empty or flow control blocks further processing. The
service procedure returns to the caller.

124 STREAMS Programming Guide • January 2005

Caution – A service or put procedure must never block since it has no user context.
It must always return to its caller.

If no processing is required in the put procedure, the procedure does not have to be
explicitly declared. Rather, putq(9F) can be placed in the qinit(9S) structure
declaration for the appropriate queue side to queue the message for the service
procedure. For example:

static struct qinit winit = { putq, modwsrv, };

More typically, put procedures process high-priority messages to avoid queueing
them.

Device drivers associated with hardware are examples of STREAMS devices that
might not have a put procedure. Since there are no queues below the hardware level,
another module does not call the module’s put procedure. Data comes into the stream
from an interrupt routine, and is either processed or queued for the service
procedure.

A STREAMS filter is an example of a module without a service
procedure—messages passed to it are either passed or filtered. Flow control is
described in “Flow Control in Service Procedures” on page 125.

The key attribute of a service procedure in the STREAMS architecture is delayed
processing. When a service procedure is used in a module, the module developer is
implying that there are other, more time-sensitive activities to be performed elsewhere
in this stream, in other streams, or in the system in general.

Note – The presence of a service procedure is mandatory if the flow control
mechanism is to be utilized by the queue. If you do not implement flow control,
queues can overflow and hang the system.

Flow Control in Service Procedures
The STREAMS flow control mechanism is voluntary and operates between the two
nearest queues in a stream containing service procedures (see Figure 7–13). Messages
are held on a queue only if a service procedure is present in the associated queue.

Chapter 7 • STREAMS Framework – Kernel Level 125

Messages accumulate on a queue when the queue’s service procedure processing does
not keep pace with the message arrival rate, or when the procedure is blocked from
placing its messages on the following STREAMS component by the flow control
mechanism. Pushable modules can contain independent upstream and downstream
limits. The stream head contains a preset upstream limit (which can be modified by a
special message sent from downstream) and a driver can contain a downstream limit.
See M_SETOPTS for more information.

Flow control operates as follows:

� Each time a STREAMS message-handling routine (for example, putq(9F)) adds or
removes a message from a message queue, the limits are checked. STREAMS
calculates the total size of all message blocks (bp->b_wptr - bp->b_rptr) on
the message queue.

Note – bp is a pointer to the buffer header structure allocated by bp_mapin(),
b_wptr is the first unwritten byte in the buffer, and b_rptr is the first unread byte
in the buffer. See msgb(9S) STREAMS message block structure.

� The total is compared to the queue high and low watermark values. If the total
exceeds the high watermark value, an internal full indicator is set for the queue.
The operation of the service procedure in this queue is not affected if the indicator
is set, and the service procedure continues to be scheduled.

� The next part of flow control processing occurs in the nearest preceding queue that
contains a service procedure. In the following figure, if D is full and C has no
service procedure, then B is the nearest preceding queue.

Queue
B

Message
queue

Message
queue

Queue
D

Queue
C

FIGURE 7–13 Flow Control Mechanism

� The service procedure in B uses canputnext(9F) to check if a queue ahead is
marked full. If messages cannot be sent, the scheduler blocks the service procedure
in B from further execution. B remains blocked until the low watermark of the full
queue, D, is reached.

� While B is blocked, any messages except high-priority messages arriving at B
accumulate on its message queue. High-priority messages are not subject to flow
control. Eventually, B can reach a full state and the full condition propagates back
to the preceding module in the stream.

126 STREAMS Programming Guide • January 2005

� When the service procedure processing on D causes the message block total to fall
below the low watermark, the full indicator is turned off. STREAMS then schedules
the nearest preceding blocked queue (B in this case). This automatic scheduling is
called back-enabling a queue.

Modules and drivers need to observe the message priority. High-priority messages,
determined by the type of the first block in the message,

mp->b_datap->db_type >= QPCTL

are not subject to flow control. They should be processed immediately and forwarded,
as appropriate.

For ordinary messages, flow control must be tested before any processing is
performed. canputnext(9F) determines if the forward path from the queue is blocked
by flow control.

This is the general flow control processing of ordinary messages:

� Retrieve the message at the head of the queue with getq(9F).

� Determine if the message type is high priority and not to be processed here.

� If so, pass the message to the put procedure of the following queue with
putnext(9F).

� Use canputnext(9F) to determine if messages can be sent onward.

� If messages cannot be forwarded, put the message back in the queue with
putbq(9F) and return from the procedure.

Caution – High-priority messages must be processed and not placed back on the
queue.

� Otherwise, process the message.

The canonical representation of this processing within a service procedure is:

while (getq() != NULL)
if (high priority message || no flow control) {

process message
putnext()

} else {
putbq()
return

}

Chapter 7 • STREAMS Framework – Kernel Level 127

Expedited data has its own flow control with the same processing method as that of
ordinary messages. bcanputnext(9F) provides modules and drivers with a test of
flow control in a priority band. It returns 1 if a message of the given priority can be
placed in the queue. It returns 0 if the priority band is flow controlled. If the band does
not exist in the queue in question, the routine returns 1.

If the band is flow controlled, the higher bands are not affected. However, lower bands
are also stopped from sending messages. Without this, lower priority messages can be
passed along ahead of the flow-controlled higher priority messages.

The call bcanputnext(q, 0); is equivalent to the call canputnext(q);.

Note – A service procedure must process all messages in its queue unless flow
control prevents this.

A service procedure must continue processing messages from its queue until
getq(9F) returns NULL. When an ordinary message is queued by putq(9F), the
service procedure is scheduled only if the queue was previously empty, and a
previous getq(9F) call returns NULL (that is, the QWANTR flag is set). If there are
messages in the queue, putq(9F) presumes the service procedure is blocked by flow
control and the procedure is automatically rescheduled by STREAMS when the block
is removed. If the service procedure cannot complete processing as a result of
conditions other than flow control (for example, no buffers), it must ensure a later
return (for example, by bufcall(9F)) or discard all messages in the queue. If this is
not done, STREAMS never schedules the service procedure to be run unless the
queue’s put procedure queues a priority message with putq(9F).

Note – High-priority messages are discarded only if there is already a high-priority
message on the stream head read queue. That is, there can be only one high-priority
message (PC_PROTO) present on the stream head read queue at any time.

putbq(9F) replaces a message at the beginning of the appropriate section of the
message queue according to its priority. This might not be the same position at which
the message was retrieved by the preceding getq(9F). A subsequent getq(9F) might
return a different message.

putq(9F) checks only the priority band in the first message. If a high-priority message
is passed to putq with a nonzero b_band value, b_band is reset to 0 before placing
the message in the queue. If the message is passed to putq(9F) with a b_band value
that is greater than the number of qband(9S)structures associated with the queue,
putq(9F) tries to allocate a new qband(9S) structure for each band, up to and
including the band of the message.

128 STREAMS Programming Guide • January 2005

rmvq and insq work similarly. If you try to insert a message out of order in a queue
with insq(9F), the message is not inserted and the routine fails.

putq(9F) does not schedule a queue if noenable(9F) was previously called for the
queue. noenable(9F) forces putq(9F) to queue the message when called by this
queue, but not to schedule the service procedure. noenable(9F) does not prevent the
queue from being scheduled by a flow control back-enable. The inverse of
noenable(9F) is enableok(9F).

The service procedure is written using the following algorithm:

while ((bp = getq(q)) != NULL) {
if (queclass (bp) == QPCTL) {

/* Process the message */
putnext(q, bp);

} else if (bcanputnext(q, bp->b_band)) {
/* Process the message */
putnext(q, bp);

} else {
putbq(q, bp);
return;

}

}

If the module or driver ignores priority bands, the algorithm is the same as described
in the previous paragraphs, except that canputnext(q) is substituted for
bcanputnex(q, bp->b_band).

qenable(9F), another flow-control utility, enables a module or driver to cause one of
its queues, or another module’s queues, to be scheduled. qenable(9F) can also be
used to delay message processing. An example of this is a buffer module that gathers
messages in its message queue and forwards them as a single, larger message. This
module uses noenable(9F) to inhibit its service procedure and queues messages
with its put procedure until a certain byte count or “in queue” time has been reached.
When either of these conditions is met, the module calls qenable(9F) to cause its
service procedure to run.

Another example is a communication line discipline module that implements
end-to-end (for example, to a remote system) flow control. Outbound data is held on
the write side message queue until the read side receives a transmit window from the
remote end of the network.

Note – STREAMS routines are called at different priority levels. Interrupt routines are
called at the interrupt priority of the interrupting device. Service routines are called
with interrupts enabled (so that service routines for STREAMS drivers can be
interrupted by their own interrupt routines).

Chapter 7 • STREAMS Framework – Kernel Level 129

130 STREAMS Programming Guide • January 2005

CHAPTER 8

STREAMS Kernel-Level Mechanisms

This chapter describes the STREAMS kernel-level mechanisms:

� “ioctl Processing” on page 131
� “Message Allocation and Freeing” on page 132
� “Extended STREAMS Buffers” on page 138
� “General ioctl Processing” on page 141
� “M_FLUSH Message Handling” on page 164
� “Driver and Module Service Interfaces” on page 169
� “Common ioctl Interfaces” on page 178
� “signal Message” on page 179

ioctl Processing
STREAMS is a special type of character device driver that is different from the
historical character input/output (I/O) mechanism in several ways.

In the classical device driver, all ioctl(2) calls are processed by the single device
driver, which is responsible for their resolution. The classical device driver has user
context, that is, all data can be copied directly to and from user space.

By contrast, the stream head itself can process some ioctl(2) calls (defined in
streamio(7I)). Generally, STREAMS ioctl(2) calls operate independently of any
particular module or driver on the stream. This means the valid ioctl(2) calls that
are processed on a stream change over time, as modules are pushed and popped on
the stream. The stream modules have no user context and must rely on the stream
head to perform copyin and copyout requests.

131

There is no user context in a module or driver when the information associated with
the ioctl(2) call is received. This prevents use of ddi_copyin(9F) or
ddi_copyout(9F) by the module. No user context also prevents the module and
driver from associating any kernel data with the currently running process. In any
case, by the time the module or driver receives the ioctl(2) call, the process
generating can have exited.

STREAMS enables user processes to control functions on specific modules and drivers
in a stream using ioctl(2) calls. In fact, many streamio(7I) ioctl(2) commands go
no further than the stream head. They are fully processed there and no related
messages are sent downstream. For an I_STR ioctl(2) or an unrecognized ioctl(2)
command, the stream head creates an M_IOCTL message, which includes the ioctl(2)
argument. This is then sent downstream to be processed by the pertinent module or
driver. STREAMS ensures that there is only one user-driven M_IOCTL operating on a
stream at a time. The M_IOCTL message is the precursor message type carrying
ioctl(2) information to modules. Other message types are used to complete the
ioctl processing in the stream. Each module has its own set of M_IOCTL messages it
must recognize.

Caution – Hardening Information. Modules and drivers should never assume that user
data is correct. Users might be able to pass offsets that exceed the buffers supplied, or
data that might be in kernel space. Values should always be checked against the range
of data that is requested or supplied. Otherwise, panics or data corruption may occur.

Message Allocation and Freeing
The allocb(9F) utility routine allocates a message and the space to hold the data for
the message. allocb(9F) returns a pointer to a message block containing a data buffer
of at least the size requested, providing there is enough memory available. The routine
returns NULL on failure. allocb(9F) always returns a message of type M_DATA. The
type can then be changed if required. b_rptr and b_wptr are set to db_base (see
msgb(9S) and datab(9S)), which is the start of the memory location for the message
buffer.

Note – STREAMS often provides buffers that are bit aligned, but there is no guarantee
that db_base or db_lim reside on bit-aligned boundaries. If bit or page alignment is
required on module-supplied buffers use esballoc For more information about
esballoc see “Extended STREAMS Buffers” on page 138.

132 STREAMS Programming Guide • January 2005

allocb(9F) can return a buffer larger than the size requested. If allocb(9F) indicates
that buffers are not available (allocb(9F) fails), the put or service procedure
cannot block to wait for a buffer to become available. Instead, bufcall(9F) defers
processing in the module or the driver until a buffer becomes available.

If message space allocation is done by the put procedure and allocb(9F) fails, the
message is usually discarded. If the allocation fails in the service routine, the
message is returned to the queue. bufcall(9F) is called to set a call to the service
routine when a message buffer becomes available, and the service routine returns.

freeb(9F) releases the message block descriptor and the corresponding data block, if
the reference count (see datab(9S)) is equal to 1. If the reference count exceeds 1, the
data block is not released.

freemsg(9F) releases all message blocks in a message. It uses freeb(9F) to free all
message blocks and corresponding data blocks.

In Example 8–1, allocb(9F) is used by the bappend subroutine that appends a
character to a message block.

EXAMPLE 8–1 Use of allocb

/*
* Append a character to a message block.
* If (*bpp) is null, it will allocate a new block
* Returns 0 when the message block is full, 1 otherwise
*/
#define MODBLKSZ 128 /* size of message blocks */

static int bappend(mblk_t **bpp, int ch)
{

mblk_t *bp;

if ((bp = *bpp) != NULL) {
if (bp->b_wptr >= bp->b_datap->db_lim)

return (0);
} else {

if ((*bpp = bp = allocb(MODBLKSZ, BPRI_MED)) == NULL)
return (1);

}
*bp->b_wptr++ = ch;
return 1;

}

bappend receives a pointer to a message block and a character as arguments. If a
message block is supplied (*bpp != NULL), bappend checks if there is room for more
data in the block. If not, it fails. If there is no message block, a block of at least
MODBLKSZ is allocated through allocb(9F).

If allocb(9F) fails, bappend returns success and discards the character. If the original
message block is not full or the allocb(9F) is successful, bappend stores the
character in the block.

Chapter 8 • STREAMS Kernel-Level Mechanisms 133

Example 8–2 shows the processing of all the message blocks in any downstream data
(type M_DATA) messages. freemsg(9F) frees messages.

EXAMPLE 8–2 Subroutine modwput

/* Write side put procedure */
static int modwput(queue_t *q, mblk_t *mp)
{

switch (mp->b_datap->db_type) {
default:

putnext(q, mp); /* Don’t do these, pass along */
break;

case M_DATA: {
mblk_t *bp;
struct mblk_t *nmp = NULL, *nbp = NULL;

for (bp = mp; bp != NULL; bp = bp->b_cont) {
while (bp->b_rptr < bp->b_wptr) {

if (*bp->b_rptr == ’\n’)
if (!bappend(&nbp, ’\r’))

goto newblk;
if (!bappend(&nbp, *bp->b_rptr))

goto newblk;

bp->b_rptr++;
continue;

newblk:
if (nmp == NULL)

nmp = nbp;
else { /* link msg blk to tail of nmp */

linkb(nmp, nbp);
nbp = NULL;

}
}

}
if (nmp == NULL)

nmp = nbp;
else

linkb(nmp, nbp);
freemsg(mp); /* de-allocate message */
if (nmp)

putnext(q, nmp);
break;

}
}

}

Data messages are scanned and filtered. modwput copies the original message into
new blocks, modifying as it copies. nbp points to the current new message block. nmp
points to the new message being formed as multiple M_DATA message blocks. The
outer for loop goes through each message block of the original message. The inner

134 STREAMS Programming Guide • January 2005

while loop goes through each byte. bappend is used to add characters to the current
or new block. If bappend fails, the current new block is full. If nmp is NULL, nmp is
pointed at the new block. If nmp is not NULL, the new block is linked to the end of nmp
by use of linkb(9F).

At the end of the loops, the final new block is linked to nmp. The original message (all
message blocks) is returned to the pool by freemsg(9F). If a new message exists, it is
sent downstream.

Recovering From No Buffers
bufcall(9F) can be used to recover from an allocb(9F) failure. The call syntax is as
follows:

bufcall_id_t bufcall(int size, int pri, void(*func)(), long arg);

Note – qbufcall(9F) and qunbufcall(9F) must be used with perimeters.

bufcall(9F) calls (*func)(arg) when a buffer of size bytes is available. When func is
called, it has no user context and must return without blocking. Also, there is no
guarantee that when func is called, a buffer will still be available.

On success, bufcall returns a nonzero identifier that can be used as a parameter to
unbufcall(9F) to cancel the request later. On failure, 0 is returned and the requested
function is never called.

Caution – Care must be taken to avoid deadlock when holding resources while waiting
for bufcall to call (*func(arg). bufcall should be used sparingly.

Read Device Interrupt Handler
Example 8–3 is an example of a read device interrupt handler.

EXAMPLE 8–3 Device Interrupt Handler

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
buffcall_id_t id; /* hold id val for unbufcall */

dev_rintr(dev)
{

Chapter 8 • STREAMS Kernel-Level Mechanisms 135

EXAMPLE 8–3 Device Interrupt Handler (Continued)

/* process incoming message ... */
/* allocate new buffer for device */
dev_re_load(dev);

}

/*
* Reload device with a new receive buffer
*/
dev_re_load(dev)
{

mblk_t *bp;
id = 0; /* begin with no waiting for buffers */
if ((bp = allocb(DEVBLKSZ, BPRI_MED)) == NULL) {

cmn_err(CE_WARN,"dev:allocbfailure(size%d)\n",
DEVBLKSZ);

/*
* Allocation failed. Use bufcall to
* schedule a call to ourselves.
*/
id = bufcall(DEVBLKSZ,BPRI_MED,dev_re_load,dev);
return;

}

/* pass buffer to device ... */

}

See Chapter 12 for more information on the uses of unbufcall(9F). These references
to unbufcall are protected by MT locks.

Because bufcall(9F) can fail, there is still a chance that the device will hang. A better
strategy if bufcall(9F) fails is to discard the current input message and resubmit that
buffer to the device. Losing input data is preferable to the device hanging.

Write Service Procedure
Example 8–4 is an example of a write service procedure.

EXAMPLE 8–4 Write Service Procedure

static int mod_wsrv(queue_t *q)
{

extern int qenable();
mblk_t *mp, *bp;

while (mp = getq(q)) {
/* check for priority messages and canput ... */

/* Allocate a header to prepend to the message.
* If the allocb fails, use bufcall to reschedule.
*/

136 STREAMS Programming Guide • January 2005

EXAMPLE 8–4 Write Service Procedure (Continued)

if ((bp = allocb(HDRSZ, BPRI_MED)) == NULL) {
if (!(id=bufcall(HDRSZ,BPRI_MED,qenable, q))) {

timeout(qenable, (caddr_t)q,
drv_usectohz());

/*
* Put the msg back and exit, we will be
* re-enabled later

*/
putbq(q, mp);
return;

}
/* process message */

}
}

}

mod_wsrv prefixes each output message with a header.

In this example, mod_wsrv illustrates a potential deadlock case. If allocb(9F) fails,
mod_wsrv tends to recover without loss of data and calls bufcall(9F). In this case,
the routine passed to bufcall(9F) is qenable(9F). When a buffer is available, the
service procedure is automatically re-enabled. Before exiting, the current message is
put back in the queue. Example 8–4 deals with bufcall(9F) failure by calling
timeout(9F).

timeout(9F) schedules the given function to be run with the given argument in the
given number of clock cycles. In this example, if bufcall(9F) fails, the system runs
qenable(9F) after two seconds have passed.

Releasing Callback Requests
When allocb(9F) fails and bufcall(9F) is called, a callback is pending until a buffer
is actually returned. Because this callback is asynchronous, it must be released before
all processing is complete. To release this queued event, use unbufcall(9F).

Pass the id returned by bufcall(9F) to unbufcall(9F). Then close the driver in the
normal way. If this sequence of unbufcall(9F) and xxclose is not followed, the
callback can occur when the driver is already closed. This is one of the most difficult
types of problems to find and debug.

Caution – All bufcall(9F) and timeouts must be canceled in the close routine.

Chapter 8 • STREAMS Kernel-Level Mechanisms 137

Extended STREAMS Buffers
Some hardware using the STREAMS mechanism supports memory-mapped I/O (see
mmap(2)) which allows the sharing of buffers between users, the kernel, and the I/O
card. Modules and drivers that need bit-aligned or page-aligned buffers should use
extended STREAMS buffers by calling esballoc (also see ddi_umem_alloc).

If the hardware supports memory-mapped I/O, data received from the hardware is
placed in the DARAM (dual-access RAM) section of the I/O card. Since DARAM is
memory that is shared between the kernel and the I/O card, coordinated data transfer
between the kernel and the I/O card is eliminated. Once in kernel space, the data
buffer is manipulated as if it were a kernel resident buffer. Similarly, data sent
downstream is placed in the DARAM and forwarded to the network.

In a typical network arrangement, data is received from the network by the I/O card.
The controller reads the block of data into the card’s internal buffer. It interrupts the
host computer to notify that data have arrived. The STREAMS driver gives the
controller the kernel address where the data block is to go and the number of bytes to
transfer. After the controller has read the data into its buffer and verified the
checksum, it copies the data into main memory to the address specified by the DMA
(direct memory access) memory address. Once in the kernel space, the data is
packaged into message blocks and processed in the usual manner.

When data is transmitted from a user process to the network, it is copied from the user
space to the kernel space, packaged as a message block, and sent to the downstream
driver. The driver interrupts the I/O card, signaling that data is ready to be
transmitted to the network. The controller copies the data from the kernel space to the
internal buffer on the I/O card, and from there it is placed on the network.

The STREAMS buffer allocation mechanism enables the allocation of message and
data blocks to point directly to a client-supplied (non-STREAMS) buffer. Message and
data blocks allocated this way are indistinguishable from the normal data blocks. The
client-supplied buffers are processed as if they were normal STREAMS data buffers.

Drivers can attach non-STREAMS data buffers and also free them. This is done as
follows:

� Allocation - If the drivers use DARAM without using STREAMS resources and
without depending on upstream modules or need to use privately allocated
buffers, a data and message block can be allocated without an allocated data buffer.
Use esballoc(9F). This returns a message block and data block without an
associated STREAMS buffer. The buffer used is the one supplied by the caller in the
calling sequence.

� Freeing - Each driver using non-STREAMS resources in a STREAMS environment
must manage those resources completely, including freeing them. To make this as
transparent as possible, a driver-dependent routine is executed if freeb(9F) is

138 STREAMS Programming Guide • January 2005

called to free a message and data block with an attached non-STREAMS buffer.

freeb(9F) detects when a buffer is a client supplied, non-STREAMS buffer. If it is,
freeb(9F) finds the free_rtn(9S) structure associated with the buffer. After calling
the driver-dependent routine (defined in free_rtn(9S)) to free the buffer, freeb(9F)
frees the message and data block.

The free routine should not reference any dynamically allocated data structures that
are freed when the driver is closed, as messages can exist in a stream after the driver is
closed. For example, when a stream is closed, the driver close routine is called and
its private data structure can be deallocated. If the driver sends a message created by
esballoc upstream, that message can still be on the stream head read queue. When
the stream head read queue is flushed, the message is freed and a call is made to the
driver’s free routine after the driver has been closed.

The format of the free_rtn(9S) structure is as follows:

void (*free_func)(); /*driver dependent free routine*/

char *free_arg; /* argument for free_rtn */

The structure has two fields: a pointer to a function and a location for any argument
passed to the function. Instead of defining a specific number of arguments, free_arg
is defined as a char *. This way, drivers can pass pointers to structures if more than
one argument is needed.

The method by which free_func is called is implementation-specific. Do not assume
that free_func is called directly from STREAMS utility routines like freeb(9F). The
free_func function must not call another module’s put procedure nor try to acquire
a private module lock that can be held by another thread across a call to a STREAMS
utility routine that could free a message block. Otherwise, lock recursion and deadlock
could occur.

esballoc(9F), provides a common interface for allocating and initializing data
blocks. It makes the allocation as transparent to the driver as possible and provides a
way to modify the fields of the data block, since modification should only be
performed by STREAMS. The driver calls this routine to attach its own data buffer to a
newly allocated message and data block. If the routine successfully completes the
allocation and assigns the buffer, it returns a pointer to the message block. The driver
is responsible for supplying the arguments to esballoc(9F), a pointer to its data
buffer, the size of the buffer, the priority of the data block, and a pointer to the
free_rtn structure. All arguments should be non-NULL. See Appendix B, for a
description of esballoc(9F).

esballoc(9F) Example
Example 8–5 (which will not compile) shows how extended buffers are managed in
the multithreaded environment. The driver maintains a pool of special memory that is
allocated by esballoc(9F). The allocator free routine uses the queue struct assigned

Chapter 8 • STREAMS Kernel-Level Mechanisms 139

to the driver or other queue private data, so the allocator and the close routine need to
coordinate to ensure that no outstanding esballoc(9F) memory blocks remain after
the close. The special memory blocks are of type ebm_t, the counter is ebm, and the
mutex mp and the condition variable cvp are used to implement the coordination.

EXAMPLE 8–5 esballoc Example

ebm_t *
special_new()
{

mutex_enter(&mp);
/*
* allocate some special memory
*/
esballoc();
/*
* increment counter
*/
ebm++;
mutex_exit(&mp);

}

void
special_free()
{

mutex_enter(&mp);
/*
* de-allocate some special memory
*/
freeb();

/*
* decrement counter
*/
ebm--;
if (ebm == 0)

cv_broadcast(&cvp);
mutex_exit(&mp);

}

open_close(q,)
....

{
/*
* do some stuff
*/
/*
* Time to decommission the special allocator. Are there
* any outstanding allocations from it?
*/
mutex_enter(&mp);
while (ebm > 0)

cv_wait(&cvp, &mp);

mutex_exit(&mp);

140 STREAMS Programming Guide • January 2005

EXAMPLE 8–5 esballoc Example (Continued)

}

Caution – The close routine must wait for all esballoc(9F) memory to be freed.

General ioctl Processing

Note – Please see the ioctl() section in the Writing Device Drivers for information on
the 64–bit data structure macros.

When the stream head is called to process an ioctl(2) that it does not recognize, it
creates an M_IOCTL message and sends it down the stream. An M_IOCTL message is a
single M_IOCTL message block followed by zero or more M_DATA blocks. The
M_IOCTL message block has the form of an iocblk(9S) structure. This structure
contains the following elements.

int ioc_cmd; /* ioctls command type */
cred_t *ioc_cr; /* full credentials */
uint ioc_id; /* ioctl id */
uint ioc_count; /* byte cnt in data field */
int ioc_error; /* error code */
int ioc_rval; /* return value */

For an I_STR ioctl(2), ioc_cmd contains the command supplied by the user in the
ic_cmd member of the strioctl structure defined in streamio(7I). For others,
ioc_cmd contains the value of the cmd argument in the call to ioctl(2). The ioc_cr
field contains the credentials of the user process.

The ioc_id field is a unique identifier used by the stream head to identify the ioctl
and its response messages.

The ioc_count field indicates the number of bytes of data associated with this
ioctl request. If the value is greater than zero, there will be one or more M_DATA
mblks linked to the M_IOCTL mblkb_cont field. If the value of the ioc_count field
is zero, there will be no M_DATA mblk associated with the M_IOCTL mblk. If the value
of ioc_count is equal to the special value TRANSPARENT, then there is one M_DATA
mblk linked to this mblk and its contents will be the value of the argument passed to
ioctl(2). This can be a user address or numeric value. (see “Transparent ioctl
Processing” on page 72).

Chapter 8 • STREAMS Kernel-Level Mechanisms 141

An M_IOCTL message is processed by the first module or driver that recognizes it. If a
module does not recognize the command, it should pass it down. If a driver does not
recognize the command, it should send a negative acknowledgement or M_IOCNAK
message upstream. In all circumstances, a module or driver processing an M_IOCTL
message must acknowledge it.

Modules must always pass unrecognized messages on. Drivers should negatively
acknowledge unrecognized ioctl(2) messages and free any other unrecognized
message.

If a module or driver finds an error in an M_IOCTL message for any reason, it must
produce a negative acknowledgement message. To do this, set the message type to
M_IOCNAK and send the message upstream. No data or return value can be sent. If
ioc_error is set to 0, the stream head causes the ioctl(2) to fail with EINVAL.
Optionally, the module can set ioc_error to an alternate error number.

ioc_error can be set to a nonzero value in both M_IOCACK and M_IOCNAK. This
causes the value to be returned as an error number to the process that sent the
ioctl(2).

If a module checks what the ioctl(2) of other modules below it are doing, the
module should not just search for a specific M_IOCTL on the write side, but also look
for M_IOCACK or M_IOCNAK on the read side. For example, suppose the module’s
write side sees TCSETA (see termio(7I)) and records what is being set. The read-side
processing knows that the module is waiting for an answer for the ioctl(2). When
the read-side processing sees an ack or nak, it checks for the same ioctl(2) by
checking the command (here TCSETA) and the ioc_id. If these match, the module
can use the information previously saved.

If you have the module check, for example, the TCSETA/TCGETA group of ioctl(2)
calls as they pass up or down a stream, you must never assume that because TCSETA
comes down it actually has a data buffer attached to it. The user can form TCSETA as
an I_STR call and accidentally give a NULL data buffer pointer. Always check b_cont
to see if it is NULL before using it as an index to the data block that goes with
M_IOCTL messages.

The TCGETA call, if formed as an I_STR call with a data buffer pointer set to a value
by the user, always has a data buffer attached to b_cont from the main message
block. Do not assume that the data block is missing and allocate a new buffer, then
assign b_cont to point to it, because the original buffer will be lost.

STREAMS ioctl Issues
Regular device drivers have user context in the ioctl(9E) call. However, in a
STREAMS driver or module, the only guarantee of user context is in the open(9E) and
close(9E) routines. Some indication of the calling context where data is used is
therefore necessary.

142 STREAMS Programming Guide • January 2005

Note – The notion of data models as well as new macros for handling data structure
access are discussed in Writing Device Drivers. A STREAMS driver or module writer
should use these flags and macros when dealing with structures that change size
between data models.

A flag value that represents the data model of the entity invoking the operation has
been added to the ioc_flag field of the iocblk(9S) structure, the cq_flag of the
copyreq(9S) structure, and the cp_flag of the copyresp(9S) structure.

The data model flag is one of these possibilities:

IOC_ILP32
IOC_LP64

In addition, IOC_NATIVE is conditionally defined to match the data model of the
kernel implementation.

By looking at the data model flag field of the relevant iocblk(9S), copyreq(9S), or
copyresp(9S) structures, the STREAMS module can determine the best method of
handling the data.

Caution – The layout of the iocblk, copyreq, and copyresp structures is different
between the 32-bit and 64-bit kernels. Be cautious of any data structure overloading in
the cp_private, cq_private, or cq_filler fields because alignment has changed.

I_STR ioctl Processing
The transparent and nontransparent methods implement ioctl(2) in the STREAMS
driver or module itself, rather than in the stream head. I_STR ioctl(2) (also referred
to as nontransparent ioctl(2)) is created when a user requests an I_STR ioctl(2)
and specifies a pointer to a strioctl structure as the argument. For example,
assuming that fd is an open lp STREAMS device and LP_CRLF is a valid option, the
user could make a request by issuing the struct in the following example:

EXAMPLE 8–6 Struct for Nontransparent ioctl

struct strioctl *str;
short lp_opt = LP_CRLF;

str.ic_cmd = SET_OPTIONS;
str.ic_timout = -1;
str.ic_dp = (char *)&lp_opt;
str.ic_len = sizeof (lp_opt)

ioctl(fd, I_STR, &str);

Chapter 8 • STREAMS Kernel-Level Mechanisms 143

On receipt of the I_STR ioctl(2) request, the stream head creates an M_IOCTL
message. ioc_cmd is set to SET_OPTIONS, ioc_count is set to the value contained
in ic_len (in this example sizeof (short)). An M_DATA mblk is linked to the
M_IOCTL mblk and the data pointed to by ic_dp is copied into it (in this case
LP_CRLF).

Example 8–7 illustrates processing associated with an I_STR ioctl(2). lpdoioctl
illustrates driver M_IOCTL processing, which also applies to modules. lpdoioctl is
called by lp write-side put or service procedure to process M_IOCTL messages.
This example is for a driver.

EXAMPLE 8–7 I_STR ioctl(2) Driver

static void
lpdoioctl (queue_t *q, mblk_t *mp)
{

struct iocblk *iocp;
struct lp *lp;

lp = (struct lp *)q->q_ptr;

/* 1st block contains iocblk structure */
iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmd) {
case SET_OPTIONS:

/* Count should be exactly one short’s worth
* (for this example) */
if (iocp->ioc_count != sizeof(short))

goto iocnak;
if (mp->b_cont == NULL)

goto lognak; /* not shown in this example */
/* Actual data is in 2nd message block */
iocp->ioc_error = lpsetopt (lp, *(short *)mp->b_cont->b_rptr)

/* ACK the ioctl */
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

default:
iocnak:
/* NAK the ioctl */
mp->b_datap->db_type = M_IOCNAK;
qreply(q, mp);

}

}

This example recognizes only one command, SET_OPTIONS. The ioc_count
contains the number of user-supplied data bytes. ioc_count must equal the size of a
short.

switch (iocp->ioc_cmd) {
case SET_OPTIONS:

144 STREAMS Programming Guide • January 2005

/* Count should be exactly one short’s worth
* (for this example) */
if (iocp->ioc_count != sizeof(short))

goto iocnak;
if (mp->b_cont == NULL)

goto lognak; /* not shown in this example */

Once the command has been verified, lpsetopt is called to process the request.
lpsetopt returns 0 if the request is satisfied, otherwise an error number is returned.
If ioc_error is nonzero, on receipt of the acknowledgement the stream head returns
-1 to the application’s ioctl(2) request and sets errno to the value of ioc_error.

/* Actual data is in 2nd message block */

iocp->ioc_error = lpsetopt (lp, *(short *)mp->b_cont->b_rptr)

The ioctl(2) is acknowledged. This includes changing the M_IOCTL message type to
M_IOCACK and setting the ioc_count field to zero to indicate that no data is to be
returned to the user. Finally, the message is sent upstream using qreply(9F).

If ioc_count was left nonzero, the stream head would copy that many bytes from the
second through the nth message blocks into the user buffer. You must set ioc_count
if you want to pass any data back to the user.

/* ACK the ioctl */
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);

break;

In the default case for unrecognized commands or malformed requests, a nak is
generated. This is done by changing the message type to an M_IOCNAK and sending it
back upstream.

default:
iocnak:
/* NAK the ioctl */
mp->b_datap->db_type = M_IOCNAK;

qreply(q, mp);

A module does not acknowledge (nak) an unrecognized command, but passes the
message on. A module does not acknowledge (nak) a malformed request.

Transparent ioctl
Transparent ioctls are used from within a module to tell the stream head to perform
a copyin or copyout on behalf of the module. The stream head must have
knowledge of the data model of the caller in order to process the copyin and
copyout properly. The user should use the ioctl macros as described in Writing
Device Drivers when coding a STREAMS module that uses Transparent ioctls.

Chapter 8 • STREAMS Kernel-Level Mechanisms 145

Transparent ioctl Messages
The transparent STREAMS ioctl(2) mechanism is needed because user context does
not exist in modules and drivers when an ioctl(2) is processed. This prevents them
from using the kernel ddi_copyin/ddi_copyout functions.

Transparent ioctl(2) enable you to write an application using conventional ioctl(2)
semantics instead of the I_STR ioctl(2) and an strioctl structure. The difference
between transparent and nontransparent ioctl(2) processing in a STREAMS driver
and module is the way data is transferred from user to kernel space.

The transparent ioctl(2) mechanism allows backward compatibility for older
programs. This transparency only works for modules and drivers that support
transparent ioctl(2). Trying to use transparent ioctl(2) on a stream that does not
support them makes the driver send an error message upstream, causing the ioctl to
fail.

The following example illustrates the semantic difference between a nontransparent
and transparent ioctl(2). A module that translates arbitrary character is pushed on
the stream The ioctl(2) specifies the translation to do (in this case all uppercase
vowels are changed to lowercase). A transparent ioctl(2) uses XCASE instead of
I_STR to inform the module directly.

Assume that fd points to a STREAMS device and that the conversion module has
been pushed onto it. The semantics of a nontransparent I_STR command to inform
the module to change the case of AEIOU are:

strioctl.ic_cmd = XCASE;
strioctl.ic_timout = 0;
strioctl.ic_dp = "AEIOU"
strioctl.ic_len = strlen(strioctl.ic_dp);

ioctl(fd,I_STR, &strioctl);

When the stream head receives the I_STR ioctl(2) it creates an M_IOCTL message
with the ioc_cmd set to XCASE and the data specified by ic_dp. AEIOU is copied into
the first mblk following the M_IOCTL mblk.

The same ioctl(2) specified as a transparent ioctl(2) is called as follows:

ioctl(fd, XCASE, "AEIOU");

The stream head creates an M_IOCTL message with the ioc_cmd set to XCASE, but the
data is not copied in. Instead, ioc_count is set to TRANSPARENT and the address of
the user data is placed in the first mblk following the M_IOCTL mblk. The module
then requests the stream head to copy in the data ("AEIOU") from user space.

Unlike the nontransparent ioctl(2), which can specify a timeout parameter,
transparent ioctl(2)s block until processing is complete.

146 STREAMS Programming Guide • January 2005

Caution – Incorrectly written drivers can cause applications using transparent
ioctl(2) to block indefinitely.

Even though this process is simpler in the application, transparent ioctl adds
considerable complexity to modules and drivers, and additional overhead to the time
required to process the request.

The form of the M_IOCTL message generated by the stream head for a transparent
ioctl(2) is a single M_IOCTL message block followed by one M_DATA block. The form
of the iocblk(9S) structure in the M_IOCTL block is the same as described under
general ioctl(2) processing. However, ioc_cmd is set to the value of the command
argument in ioctl(2) and ioc_count is set to the special value of TRANSPARENT.
The value TRANSPARENT distinguishes when an I_STR ioctl(2) can specify a value
of ioc_cmd that is equivalent to the command argument of a transparent ioctl(2).
The b_cont block of the message contains the value of the arg parameter in the call.

Caution – If a module processes a specific ioc_cmd and does not validate the
ioc_count field of the M_IOCTL message, the module breaks when transparent
ioctl(2) is performed with the same command.

Note – Write modules and drivers to support both transparent and I_STR ioctl(2).

All M_IOCTL message types (M_COPYIN, M_COPYOUT, M_IOCDATA,M_IOCACK and
M_IOCNACK) have some similar data structures and sizes. You can reuse these
structures instead of reallocating them. Note the similarities in the command type,
credentials, and id.

The iocblk(9S) structure is contained in M_IOCTL, M_IOCACK and M_IOCNAK
message types. For the transparent case, M_IOCTL has one M_DATA message linked to
it. This message contains a copy of the argument passed to ioctl(2). Transparent
processing of M_IOCACK and M_IONAK does not allow any messages to be linked to
them.

The copyreq(9S) structure is contained in M_COPYIN and M_COPYOUT message types.
The M_COPYIN message type must not have any other message linked to it (that is,
b_cont == NULL). The M_COPYOUT message type must have one or more M_DATA
messages linked to it. These messages contain the data to be copied into user space.

The copyresp(9S) structure is contained in M_IOCDATA response message types.
These messages are generated by the stream head in response to an M_COPYIN or
M_COPYOUT request. If the message is in response to an M_COPYOUT request, the

Chapter 8 • STREAMS Kernel-Level Mechanisms 147

message has no messages attached to it (b_cont is NULL). If the response is to an
M_COPYIN, then zero or more M_DATA message types are attached to the M_IOCDATA
message. These attached messages contain a copy of the user data requested by the
M_COPYIN message.

The iocblk(9S), copyreq(9S), and copyresp(9S) structures contain a field
indicating the type of ioctl(2) command, a pointer to the user’s credentials, and a
unique identifier for this ioctl(2). These fields must be preserved.

The structure member cq_private is reserved for use by the module. M_COPYIN and
M_COPYOUT request messages contain a cq_private field that can be set to contain
state information for ioctl(2) processing (which identifies what the subsequent
M_IOCDATA response message contains). This state is returned in cp_private in the
M_IOCDATA message. This state information determines the next step in processing
the message. Keeping the state in the message makes the message self-describing and
simplifies the ioctl(2) processing.

For each piece of data that the module copies from user space, an M_COPYIN message
is sent to the stream head. The M_COPYIN message specifies the user address
(cq_addr) and number of bytes (cq_size) to copy from user space. The stream head
responds to the M_COPYIN request with a M_IOCDATA message. The b_cont field of
the M_IOCDATA mblk contains the contents pointed to by the M_COPYIN request.
Likewise, for each piece of data that the module copies to user space, an M_COPYOUT
message is sent to the stream head. Specify the user address (cq_addr) and number
of bytes to copy (cq_size). The data to be copied is linked to the M_COPYOUT
message as one or more M_DATA messages. The stream head responds to M_COPYOUT
requests with an M_IOCDATA message, but b_cont is null.

After the module has finished processing the ioctl (that is, all M_COPYIN and
M_COPYOUT requests have been processed), the ioctl(2) must be acknowledged with
an M_IOCACK to indicate successful completion of the command or an M_IOCNAK to
indicate failure.

If an error occurs when attempting to copy data to or from user address space, the
stream head will set cp_rval in the M_IOCDATA message to the error number. In the
event of such an error, the M_IOCDATA message should be freed by the module or
driver. No acknowledgement of the ioctl(2) is sent in this case.

Transparent ioctl Examples
Following are three examples of transparent ioctl(2) processing. Example 8–8 and
Example 8–9 illustrate how to use M_COPYIN to copy data from user space. Example
8–10 illustrates how to use M_COPYOUT to copy data to user space. Example 8–11 is a
more complex example showing state transitions that combine M_COPYIN and
M_COPYOUT.

In these examples the message blocks are reused to avoid the overhead of allocating,
copying, and releasing messages. This is standard practice.

148 STREAMS Programming Guide • January 2005

The stream head guarantees that the size of the message block containing an
iocblk(9S) structure is large enough to also hold the copyreq(9S) and
copyresp(9S) structures.

M_COPYIN Example

Note – Please see the copyin section in Writing Device Drivers for information on the
64–bit data structure macros.

Example 8–8 illustrates the processing of a transparent ioctl(2) request only
(nontransparent request processing is not shown). In this example, the contents of a
user buffer are to be transferred into the kernel as part of an ioctl call of the form

ioctl(fd, SET_ADDR, (caddr_t) &bufadd);

where bufadd is a struct address whose elements are:

struct address {
int ad_len;; /* buffer length in bytes */
caddr_t ad_addr; /* buffer address */

};

This requires two pairs of messages (request and response) following receipt of the
M_IOCTL message: the first copyin(9F), shown in Example 8–8, copies the structure
(address) , and the second copyin(9F), shown in Example 8–9, copies the buffer
(address.ad.addr). Two states are maintained and processed in this example:
GETSTRUCT is for copying the address structure and GETADDR for copying the
ad_addr of the structure.

The transparent part of the SET_ADDR M_IOCTL message processing requires that the
address structure be copied from user address space. To accomplish this, the
M_IOCTL message processing issues an M_COPYIN request to the stream head.

EXAMPLE 8–8 M_COPYIN: Copy the address Structure

struct address { /* same members as in user space */
int ad_len; /* length in bytes */
caddr_t ad_addr; /* buffer address */

};

/* state values (overloaded in private field) */
#define GETSTRUCT 0 /* address structure */
#define GETADDR 1 /* byte string from ad_addr */

static void xxioc(queue_t *q, mblk_t *mp);

static int
xxwput(q, mp)

Chapter 8 • STREAMS Kernel-Level Mechanisms 149

EXAMPLE 8–8 M_COPYIN: Copy the address Structure (Continued)

queue_t *q; /* write queue */
mblk_t *mp;

{
struct iocblk *iocbp;
struct copyreq *cqp;

switch (mp->b_datap->db_type) {
.
.
.
case M_IOCTL:

/* Process ioctl commands */
iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {

case SET_ADDR;
if (iocbp->ioc_count != TRANSPARENT) {
/* do non-transparent processing here
* (not shown here) */

} else {
/* ioctl command is transparent
* Reuse M_IOCTL block for first M_COPYIN
* request of address structure */
cqp = (struct copyreq *)mp->b_rptr;
/* Get user space structure address from linked
* M_DATA block */
cqp->cq_addr = *(caddr_t *) mp->b_cont->b_rptr;
cqp->cq_size = sizeof(struct address);
/* MUST free linked blks */
freemsg(mp->b_cont);
mp->b_cont = NULL;

/* identify response */
cqp->cq_private = (mblk_t *)GETSTRUCT;

/* Finish describing M_COPYIN message */
cqp->cq_flag = 0;
mp->b_datap->db_type = M_COPYIN;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);
qreply(q, mp);

break;
default: /* M_IOCTL not for us */
/* if module, pass on */
/* if driver, nak ioctl */
break;

} /* switch (iocbp->ioc_cmd) */
break;

case M_IOCDATA:
/* all M_IOCDATA processing done here */
xxioc(q, mp);
break;

}
return (0);

}

150 STREAMS Programming Guide • January 2005

xxwput() verifies that the SET_ADDR is TRANSPARENT to avoid confusion with an
I_STR ioctl(2), which uses a value of ioc_cmd equivalent to the command
argument of a transparent ioctl(2).

The if else statement checks whether the size count is equal to TRANSPARENT. If it
is equal, the message was not generated from an I_STR ioctl(2) and the else clause
of the if else executes.

if (iocbp->ioc_count != TRANSPARENT) {
/* do non-transparent processing here (not shown here) */

} else {

The mblk is reused and mapped into a copyreq(9S) structure. The user space address
of bufadd is contained in the b_cont of the M_IOCTL mblk. This address and its size
are copied into the copyreq(9S) message. The b_cont of the copy request mblk is not
needed, so it is freed and then filled with NULL.

cqp = (struct copyreq *)mp->b_rptr;
/* Get user space structure address from linked M_DATA block */
cqp->cq_addr = *(caddr_t *) mp->b_cont->b_rptr;
cqp->cq_size = sizeof(struct address);
/* MUST free linked blks */
freemsg(mp->b_cont);

mp->b_cont = NULL;

Caution – The layout of the iocblk, copyreq, and copyresp structures is different
between 32–bit and 64–bit kernels. Be careful not to overload any data structure in the
cp_private or the cq_filler fields because alignment has changed.

EXAMPLE 8–9 M_COPYIN: Copy the Buffer Address

xxioc(queue_t *q, mblk_t *mp) /* M_IOCDATA processing */
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
struct address *ap;

csp = (struct copyresp *)mp->b_rptr;
iocbp = (struct iocblk *)mp->b_rptr;

/* validate this M_IOCDATA is for this module */
switch (csp->cp_cmd) {

case SET_ADDR:
if (csp->cp_rval){ /* GETSTRUCT or GETADDR fail */

freemsg(mp);
return;

}
switch ((int)csp->cp_private){ /* determine state */

case GETSTRUCT: /* user structure has arrived */
/* reuse M_IOCDATA block */

Chapter 8 • STREAMS Kernel-Level Mechanisms 151

EXAMPLE 8–9 M_COPYIN: Copy the Buffer Address (Continued)

mp->b_datap->db_type = M_COPYIN;
mp->b_wptr = mp->b_rptr + sizeof (struct copyreq);
cqp = (struct copyreq *)mp->b_rptr;
/* user structure */
ap = (struct address *)mp->b_cont->b_rptr;
/* buffer length */
cqp->cq_size = ap->ad_len;
/* user space buffer address */
cqp->cq_addr = ap->ad_addr;
freemsg(mp->b_cont);
mp->b_cont = NULL;
cqp->cq_flag = 0;
cqp->cp_private=(mblk_t *)GETADDR; /*nxt st*/
qreply(q, mp);
break;

case GETADDR: /* user address is here */
/* hypothetical routine */
if (xx_set_addr(mp->b_cont) == FAILURE) {

mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EIO;

} else {
mp->b_datap->db_type=M_IOCACK;/*success*/
/* can have been overwritten */
iocbp->ioc_error = 0;
iocbp->ioc_count = 0;
iocbp->ioc_rval = 0;

}
mp->b_wptr=mp->b_rptr + sizeof (struct ioclk);
freemsg(mp->b_cont);
mp->b_cont = NULL;
qreply(q, mp);
break;

default: /* invalid state: can’t happen */
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCNAK;
mp->b_wptr = mp->rptr + sizeof(struct iocblk);
/* can have been overwritten */
iocbp->ioc_error = EINVAL;
qreply(q, mp);
break;

}
break; /* switch (cp_private) */

default: /* M_IOCDATA not for us */
/* if module, pass message on */
/* if driver, free message */

break;

152 STREAMS Programming Guide • January 2005

cq_private of the copy request is returned in cp_private of the copy response
when the M_IOCDATA message is returned. This value is set to GETSTRUCT to indicate
that the address structure is contained in the b_cont of the M_IOCDATA message
mblk. The copy request message is then sent back to the stream head. xxwput then
returns and is called again when the stream head responds with an M_IOCDATA
message, which is processed by the xxioc routine

On receipt of the M_IOCDATA message for the SET_ADDR command, xxioc() checks
cp_rval. If an error occurred during the copyin operation, cp_rval is set. The
mblk is freed and, if necessary, xxioc() cleans up from previous M_IOCTL requests,
freeing memory, resetting state variables, and so on. The stream head returns the
appropriate error to the user.

if (csp->cp_rval){ /* GETSTRUCT or GETADDR fail */
freemsg(mp);
return;

If no error occurred during the copyin operation, the switch statement determines
whether to process the user structure, GETSTRUCT, or user address, GETADDR.

switch ((int)csp->cp_private){ /*determine state*/

The cp_private field set to GETSTRUCT indicates that the linked b_cont mblk
contains a copy of the user’s address structure. The example then copies the actual
address specified in address.ad_addr. The program issues another M_COPYIN
request to the stream head, but this time cq_private contains GETADDR to indicate
that the M_IOCDATA response will contain a copy of address.ad_addr. The stream
head copies the information at the requested user address and sends it downstream in
another, final M_IOCDATA message.

case GETSTRUCT: /* user structure has arrived */
/* reuse M_IOCDATA block */
mp->b_datap->db_type = M_COPYIN;
mp->b_wptr = mp->b_rptr + sizeof (struct copyreq);
cqp = (struct copyreq *)mp->b_rptr;
/* user structure */
ap = (struct address *)mp->b_cont->b_rptr;
/* buffer length */
cqp->cq_size = ap->ad_len;
/* user space buffer address */
cqp->cq_addr = ap->ad_addr;
freemsg(mp->b_cont);
mp->b_cont = NULL;
cqp->cq_flag = 0;
cqp->cp_private=(mblk_t *)GETADDR; /*nxt st*/
qreply(q, mp);
break;

The final M_IOCDATA message arrives from the stream head. cp_private contains
GETADDR. The ad_addr data is contained in the b_cont link of the mblk. If the
address is successfully processed by xx_set_addr() (not shown here), the message
is acknowledged with an M_IOCACK message. If xx_set_addr() fails, the message is
rejected with an M_IOCNAK message,xx_set_addr() processes the user address from
the ioctl(2).

Chapter 8 • STREAMS Kernel-Level Mechanisms 153

After the final M_IOCDATA message is processed, the module acknowledges the
ioctl(2) to let the stream head know that processing is complete. This is done by
sending an M_IOCACK message upstream if the request was successfully processed.
Always set ioc_error to zero, otherwise an error code could be passed to the user
application. Set ioc_rval and ioc_count to zero to reflect that a return value of 0
and no data is to be passed upstream. If the request cannot be processed, either an
M_IOCNAK or M_IOCACK can be sent upstream with an appropriate error number.
When sending an M_IOCNAK or M_IOCACK, freeing the linked M_DATA block is not
mandatory. It is more efficient to use the stream head handle to free the linked M_DATA
block.

If ioc_error is set in an M_IOCNAK or M_IOCNACK message, this error code will be
returned to the user. If no error code is set in an M_IOCNAK message, EINVAL will be
returned to the user.

case GETADDR: /* user address is here */
/* hypothetical routine */
if (xx_set_addr(mp->b_cont) == FAILURE) {

mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EIO;

} else {
mp->b_datap->db_type=M_IOCACK;/*success*/
/* can have been overwritten */
iocbp->ioc_error = 0;
iocbp->ioc_count = 0;
iocbp->ioc_rval = 0;

}
mp->b_wptr=mp->b_rptr + sizeof (struct ioclk);
freemsg(mp->b_cont);
mp->b_cont = NULL;
qreply(q, mp);

break;

M_COPYOUT Example

Note – Please see the copyout section in Writing Device Drivers for information on the
64–bit data structure macros.

The following code excerpts return option values for the STREAMS device by placing
them in the user’s options structure. This is done by a transparent ioctl(2) call of
the form

struct options optadd;

ioctl(fd, GET_OPTIONS,(caddr_t) &optadd)

or by a nontransparent I_STR call

struct strioctl opts_strioctl;
structure options optadd;

154 STREAMS Programming Guide • January 2005

opts_strioctl.ic_cmd = GET_OPTIONS;
opts_strioctl.ic_timeout = -1
opts_strioctl.ic_len = sizeof (struct options);
opts_strioctl.ic_dp = (char *)&optadd;

ioctl(fd, I_STR, (caddr_t) &opts_strioctl)

In the nontransparent I_STR case, opts_strioctl.ic_dp points to the options
structure optadd.

Example 8–7 illustrates support of both the I_STR and transparent forms of ioctl(2).
The transparent form requires a single M_COPYOUT message following receipt of the
M_IOCTL to copy out the contents of the structure. xxwput() is the write-side put
procedure of module or driver xx.

EXAMPLE 8–10 M_COPYOUT

struct options { /* same members as in user space */
int op_one;
int op_two;
short op_three;
long op_four;

};

static int
xxwput (queue_t *q, mblk_t *mp)
{

struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
int transparent = 0;

switch (mp->b_datap->db_type) {
.
.
.
case M_IOCTL:

iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {

case GET_OPTIONS:
if (iocbp->ioc_count == TRANSPARENT) {
transparent = 1;
cqp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = sizeof(struct options);
/* Get struct address from

linked M_DATA block */
cqp->cq_addr = (caddr_t)

*(caddr_t *)mp->b_cont->b_rptr;
cqp->cq_flag = 0;
/* No state necessary - we will only ever
* get one M_IOCDATA from the Stream head
* indicating success or failure for
* the copyout */

}

Chapter 8 • STREAMS Kernel-Level Mechanisms 155

EXAMPLE 8–10 M_COPYOUT (Continued)

if (mp->b_cont)
freemsg(mp->b_cont);

if ((mp->b_cont =
allocb(sizeof(struct options),

BPRI_MED)) == NULL) {
mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EAGAIN;
qreply(q, mp);
break;

}
/* hypothetical routine */
xx_get_options(mp->b_cont);
if (transparent) {
mp->b_datap->db_type = M_COPYOUT;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);

} else {
mp->b_datap->db_type = M_IOCACK;
iocbp->ioc_count = sizeof(struct options);

}
qreply(q, mp);
break;

default: /* M_IOCTL not for us */
/*if module, pass on;if driver, nak ioctl*/
break;

} /* switch (iocbp->ioc_cmd) */
break;

case M_IOCDATA:
csp = (struct copyresp *)mp->b_rptr;
/* M_IOCDATA not for us */
if (csp->cmd != GET_OPTIONS) {

/*if module/pass on, if driver/free message*/
break;

}
if (csp->cp_rval) {

freemsg(mp); /* failure */
return (0);

}
/* Data successfully copied out, ack */

/* reuse M_IOCDATA for ack */
mp->b_datap->db_type = M_IOCACK;
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
/* can have been overwritten */
iocbp->ioc_error = 0;
iocbp->ioc_count = 0;
iocbp->ioc_rval = 0;
qreply(q, mp);
break;
.
.
.

156 STREAMS Programming Guide • January 2005

EXAMPLE 8–10 M_COPYOUT (Continued)

} /* switch (mp->b_datap->db_type) */

return (0);

xxwput() first checks whether the ioctl(2) command is transparent. If it is, the
message is reused as an M_COPYOUT copy request message. The pointer to the
receiving buffer is in the linked message and is copied into cq_addr. Because only a
single copy out is being done, no state information needs to be stored in cq_private.
The original linked message is freed, in case it isn’t big enough to hold the request.

if (iocbp->ioc_count == TRANSPARENT) {
transparent = 1;
cqp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = sizeof(struct options);
/* Get struct address from linked M_DATA block */
cqp->cq_addr = (caddr_t)

*(caddr_t *)mp->b_cont->b_rptr;
cqp->cq_flag = 0;
/* No state necessary - we will only ever get one
* M_IOCDATA from the Stream head indicating
* success or failure for the copyout */
}
if (mp->b_cont)

freemsg(mp->b_cont);

As an optimization, the following code checks the size of the message for reuse:

mp->b_cont->b_datap->db_lim

- mp->b_cont->b_datap->db_base >= sizeof (struct options)

Note – Hardening Information. After message reuse, make sure to retain the relation:

db_base <= b_rptr <= b_wptr <= db_lim

A new linked message is allocated to hold the option request. When using the
transparent ioctl(2) M_COPYOUT command, data contained in the linked message is
passed to the stream head. The stream head will copy the data to the user’s address
space and issue an M_IOCDATA in response to the M_COPYOUT message, which the
module must acknowledge in an M_IOCACK message.

/* hypothetical routine */
xx_get_options(mp->b_cont);
if (transparent) {

mp->b_datap->db_type = M_COPYOUT;
mp->b_wptr = mp->b_rptr + sizeof(struct copyreq);

} else {
mp->b_datap->db_type = M_IOCACK;
iocbp->ioc_count = sizeof(struct options);

}

Chapter 8 • STREAMS Kernel-Level Mechanisms 157

If the message is not transparent (is issued through an I_STR ioctl(2)), the data is
sent with the M_IOCACK acknowledgement message and copied into the buffer
specified by the strioctl data structure. ioc_error, ioc_count, and ioc_rval
are cleared to prevent any stale data from being passed back to the stream head.

/* reuse M_IOCDATA for ack */
mp->b_datap->db_type = M_IOCACK;
mp->b_wptr = mp->b_rptr + sizeof(struct iocblk);
/* can have been overwritten */
iocbp->ioc_error = 0;
iocbp->ioc_count = 0;
iocbp->ioc_rval = 0;
qreply(q, mp);

break;

Bidirectional Data Transfer Example
Example 8–11 illustrates bidirectional data transfer between the kernel and application
during transparent ioctl(2) processing. It also shows how to use more complex state
information.

The user wants to send and receive data from user buffers as part of a transparent
ioctl(2) call of the form:

ioctl(fd, XX_IOCTL, (caddr_t) &addr_xxdata)

EXAMPLE 8–11 Bidirectional Data Transfer

struct xxdata { /* same members in user space */
int x_inlen; /* number of bytes copied in */
caddr_t x_inaddr; /* buf addr of data copied in */
int x_outlen; /* number of bytes copied out */
caddr_t x_outaddr; /* buf addr of data copied out */

};
/* State information for ioctl processing */
struct state {

int st_state; /* see below */
struct xxdata st_data; /* see above */

};
/* state values */

#define GETSTRUC 0 /* get xxdata structure */
#define GETINDATA 1 /* get data from x_inaddr */
#define PUTOUTDATA 2 /* get response from M_COPYOUT */

static void xxioc(queue_t *q, mblk_t *mp);

static int
xxwput (queue_t *q, mblk_t *mp) {

struct iocblk *iocbp;
struct copyreq *cqp;
struct state *stp;
mblk_t *tmp;

158 STREAMS Programming Guide • January 2005

EXAMPLE 8–11 Bidirectional Data Transfer (Continued)

switch (mp->b_datap->db_type) {
.
.
.
case M_IOCTL:

iocbp = (struct iocblk *)mp->b_rptr;
switch (iocbp->ioc_cmd) {
case XX_IOCTL:
/* do non-transparent processing. (See I_STR ioctl
* processing discussed in previous section.)
*/
/*Reuse M_IOCTL block for M_COPYIN request*/

cqp = (struct copyreq *)mp->b_rptr;

/* Get structure’s user address from
* linked M_DATA block */

cqp->cq_addr = (caddr_t)
*(long *)mp->b_cont->b_rptr;
freemsg(mp->b_cont);
mp->b_cont = NULL;

/* Allocate state buffer */

if ((tmp = allocb(sizeof(struct state),
BPRI_MED)) == NULL) {

mp->b_datap->db_type = M_IOCNAK;
iocbp->ioc_error = EAGAIN;
qreply(q, mp);
break;

}
tmp->b_wptr += sizeof(struct state);
stp = (struct state *)tmp->b_rptr;
stp->st_state = GETSTRUCT;
cqp->cq_private = tmp;

/* Finish describing M_COPYIN message */

cqp->cq_size = sizeof(struct xxdata);
cqp->cq_flag = 0;
mp->b_datap->db_type = M_COPYIN;
mp->b_wptr=mp->b_rptr+sizeof(struct copyreq);
qreply(q, mp);
break;

default: /* M_IOCTL not for us */
/* if module, pass on */
/* if driver, nak ioctl */
break;

} /* switch (iocbp->ioc_cmd) */

Chapter 8 • STREAMS Kernel-Level Mechanisms 159

EXAMPLE 8–11 Bidirectional Data Transfer (Continued)

break;

case M_IOCDATA:
xxioc(q, mp); /*all M_IOCDATA processing here*/
break;
.
.
.

} /* switch (mp->b_datap->db_type) */

}

Three pairs of messages are required following the M_IOCTL message:

1. case GETSTRUCT copies the structure into the message buffer.
2. case GETINDATA copies the user buffer into the message buffer.
3. case PUTOUTDATA copies the second message buffer into the user buffer.

xxwput() is the write-side put procedure for module or driver xx. xxwput allocates
a message block to contain the state structure and reuses the M_IOCTL to create an
M_COPYIN message to read in the xxdata structure.

M_IOCDATA processing is done in xxioc() as shown in the following example:

EXAMPLE 8–12 M_IOCDATA Processing

xxioc(/* M_IOCDATA processing */
queue_t *q,
mblk_t *mp)

{
struct iocblk *iocbp;
struct copyreq *cqp;
struct copyresp *csp;
struct state *stp;
mblk_t *xx_indata();

csp = (struct copyresp *)mp->b_rptr;
iocbp = (struct iocblk *)mp->b_rptr;
switch (csp->cp_cmd) {

case XX_IOCTL:
if (csp->cp_rval) { /* failure */

if (csp->cp_private) /* state structure */
freemsg(csp->cp_private);

freemsg(mp);
return;

}
stp = (struct state *)csp->cp_private->b_rptr;
switch (stp->st_state) {

case GETSTRUCT: /* xxdata structure copied in */
/* save structure */

160 STREAMS Programming Guide • January 2005

EXAMPLE 8–12 M_IOCDATA Processing (Continued)

stp->st_data =
*(struct xxdata *)mp->b_cont->b_rptr;
freemsg(mp->b_cont);
mp->b_cont = NULL;
/* Reuse M_IOCDATA to copyin data */
mp->b_datap->db_type = M_COPYIN;
cqp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = stp->st_data.x_inlen;
cqp->cq_addr = stp->st_data.x_inaddr;
cqp->cq_flag = 0;
stp->st_state = GETINDATA; /* next state */
qreply(q, mp);
break;

case GETINDATA: /* data successfully copied in */
/* Process input, return output */
if ((mp->b_cont = xx_indata(mp->b_cont))
== NULL) { /* hypothetical */

/* fail xx_indata */
mp->b_datap->db_type = M_IOCNAK;
mp->b_wptr = mp->b_rptr +

sizeof(struct iocblk);
iocbp->ioc_error = EIO;
qreply(q, mp);
break;

}
mp->b_datap->db_type = M_COPYOUT;
cqp = (struct copyreq *)mp->b_rptr;
cqp->cq_size = min(msgdsize(mp->b_cont),
stp->st_data.x_outlen);
cqp->cq_addr = stp->st_data.x_outaddr;
cqp->cq_flag = 0;
stp->st_state = PUTOUTDATA; /* next state */
qreply(q, mp);
break;

case PUTOUTDATA: /* data copied out, ack ioctl */
freemsg(csp->cp_private); /*state structure*/
mp->b_datap->db_type = M_IOCACK;
mp->b_wtpr = mp->b_rptr + sizeof (struct iocblk);

/* can have been overwritten */
iocbp->ioc_error = 0;
iocbp->ioc_count = 0;
iocbp->ioc_rval = 0;
qreply(q, mp);
break;

default: /* invalid state: can’t happen */
freemsg(mp->b_cont);
mp->b_cont = NULL;
mp->b_datap->db_type = M_IOCNAK;
mp->b_wptr=mp->b_rptr + sizeof (struct iocblk);

Chapter 8 • STREAMS Kernel-Level Mechanisms 161

EXAMPLE 8–12 M_IOCDATA Processing (Continued)

iocbp->ioc_error = EINVAL;
qreply(q, mp);
break;

} /* switch (stp->st_state) */
break;

default: /* M_IOCDATA not for us */
/* if module, pass message on */
/* if driver, free message */
break;

} /* switch (csp->cp_cmd) */

}

At case GETSTRUCT, the user xxdata structure is copied into the module’s state
structure (pointed to by cp_private in the message) and the M_IOCDATA message is
reused to create a second M_COPYIN message to read the user data.

At case GETINDATA, the input user data is processed by xx_indata (not supplied
in the example), which frees the linked M_DATA block and returns the output data
message block. The M_IOCDATA message is reused to create an M_COPYOUT message
to write the user data.

At case PUTOUTDATA, the message block containing the state structure is freed and
an acknowledgement is sent upstream.

Care must be taken at the “can’t happen” default case since the message block
containing the state structure (cp_private) is not returned to the pool because it
might not be valid. This might result in a lost block. The ASSERT helps find errors in
the module if a “can’t happen” condition occurs.

I_LIST ioctl(2)Example
The I_LIST ioctl(2) lists the drivers and module in a stream.

EXAMPLE 8–13 List a Stream’s Drivers and Modules

#include <stdio.h>
#include <string.h>
#include <stropts.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/socket.h>

main(int argc, const char **argv)
{

int s, i;
int mods;
struct str_list mod_list;

162 STREAMS Programming Guide • January 2005

EXAMPLE 8–13 List a Stream’s Drivers and Modules (Continued)

struct str_mlist *mlist;

/* Get a socket... */
if((s = socket(AF_INET, SOCK_STREAM, 0)) <= 0) {

perror("socket: ");
exit(1);

}

/* Determine the number of modules in the stream. */
if((mods = ioctl(s, I_LIST, 0)) < 0){

perror("I_LIST ioctl");
}
if(mods == 0) {

printf("No modules\n");
exit(1);

} else {
printf("%d modules\n", mods);

}
/* Allocate memory for all of the module names... */
mlist = (struct str_mlist *) calloc(mods, sizeof(struct str_mlist));
if(mlist == 0){

perror("malloc failure");
exit(1);

}
mod_list.sl_modlist = mlist;
mod_list.sl_nmods = mods;

/* Do the ioctl and get the module names. */
if(ioctl(s, I_LIST, &mod_list) < 0){

perror("I_LIST ioctl fetch");
exit(1);

}

/* Print out the name of the modules */
for(i = 0; i < mods; i++) {

printf("s: %s\n", mod_list.sl_modlist[i].l_name);
}

free(mlist);

exit(0);

}

Chapter 8 • STREAMS Kernel-Level Mechanisms 163

M_FLUSH Message Handling
All modules and drivers are expected to handle M_FLUSH messages. An M_FLUSH
message can originate at the stream head or from a module or a driver. The user can
cause data to be flushed from queued messages of a stream by submiting an I_FLUSH
ioctl(2). Data can be flushed from the read side, write side, or both sides of a stream.

ioctl(fd,I_FLUSH, arg);

The first byte of the M_FLUSH message is an option flag. The following table describes
the possible values for this flag.

TABLE 8–1 M_FLUSH Arguments and bi_flag Values

Flag Description

FLUSHR Flush read side of stream

FLUSHW Flush write queue

FLUSHRW Flush both, read and write, queues

FLUSHBAND Flush a specified priority band only

Flushing According to Priority Bands
In addition to being able to flush all the data from a queue, a specific band can be
flushed using the I_FLUSHBAND ioctl(2).

ioctl(fd, I_FLUSHBAND, bandp);

The ioctl(2) is passed a pointer to a bandinfo structure. The bi_pri field indicates
the band priority to be flushed (from 0 to 255). The bi_flag field indicates the type of
flushing to be done. The legal values for bi_flag are defined in Table 8–1. bandinfo
has the following format:

struct bandinfo {
unsigned char bi_pri;
in bi_flag;

};

See “M_FLUSH” on page 319 for details on how modules and drivers should handle
flush band requests.

Figure 8–1 and Figure 8–2 further demonstrate flushing the entire stream due to a line
break. Figure 8–1 shows the flushing of the write side of a stream, and Figure 8–2
shows the flushing of the read side of a stream.

164 STREAMS Programming Guide • January 2005

WRSTREAM
HEAD

MODULE

DRIVER WR

WR

RD

RD

RD6

5

8

7

FLUSHW

FLUSHW 3 FLUSHW

2 M_BREAK

1 BREAK

4

FLUSHW

FIGURE 8–1 Flushing the Write Side of a Stream

The following discussion describes the sequence of events shown in Figure 8–1 (dotted
lines mean flushed queues):

1. A break is detected by a driver.

2. The driver generates an M_BREAK message and sends it upstream.

3. The module translates the M_BREAK into an M_FLUSH message with FLUSHW set,
then sends it upstream.

4. The stream head does not flush the write queue (no messages are ever queued
there).

5. The stream head turns the message around (sends it down the write side).

6. The module flushes its write queue.

7. The message is passed downstream.

8. The driver flushes its write queue and frees the message.

Figure 8–2 shows flushing the read side of a stream.

Chapter 8 • STREAMS Kernel-Level Mechanisms 165

WRSTREAM
HEAD

MODULE

DRIVER WR

WR

RD

RD

RD

1

6

4

2

FLUSHR

FLUSHR5

FLUSHR3

FIGURE 8–2 Flushing the Read Side of a Stream

The following discussion describes the sequence of events.

1. After generating the first M_FLUSH message, the module generates an M_FLUSH
with FLUSHR set and sends it downstream.

2. The driver flushes its read queue.

3. The driver turns the message around (sends it up the read side).

4. The module flushes its read queue.

5. The message is passed upstream.

6. The stream head flushes the read queue and frees the message.

The following code shows line discipline module for flush handling.

EXAMPLE 8–14 Line Discipline Module for Flush Handling

static int
ld_put(

queue_t *q, /* pointer to read/write queue */
mblk_t *mp) /* pointer to message being passed */

{
switch (mp->b_datap->db_type) {

default:
putq(q, mp); /* queue everything */
return (0); /* except flush */

case M_FLUSH:
if (*mp->b_rptr & FLUSHW) /* flush write q */

flushq(WR(q), FLUSHDATA);

if (*mp->b_rptr & FLUSHR) /* flush read q */
flushq(RD(q), FLUSHDATA);

putnext(q, mp); /* pass it on */
return(0);

}

166 STREAMS Programming Guide • January 2005

EXAMPLE 8–14 Line Discipline Module for Flush Handling (Continued)

}

The above example uses FLUSHDATA as the argument to flushq. This code will flush
data type messages (M_DATA, M_DELAY, M_PROTO and M_PCPROTO) only. Flushing
non-data messages, such as M_IOCTL, M_IOCACK, and M_IOCNAK, might flush
messages that contain critical state in the stream. If an M_IOCACK message is flushed, a
thread waiting at the stream head for a non-data message response will never receive
it. Care should be taken when using flushq.

The stream head turns around the M_FLUSH message if FLUSHW is set (FLUSHR is
cleared). A driver turns around M_FLUSH if FLUSHR is set (should mask off FLUSHW).

Flushing Priority Band
The bi_flag field is one of FLUSHR, FLUSHW, or FLUSHRW.

The following example shows flushing according to the priority band.

EXAMPLE 8–15 Priority Band Data Flush Handling

queue_t *rdq; /* read queue */
queue_t *wrq; /* write queue */

case M_FLUSH:
if (*bp->b_rptr & FLUSHBAND) {

if (*bp->b_rptr & FLUSHW)
flushband(wrq, FLUSHDATA, *(bp->b_rptr + 1));

if (*bp->b_rptr & FLUSHR)
flushband(rdq, FLUSHDATA, *(bp->b_rptr + 1));

} else {
if (*bp->b_rptr & FLUSHW)

flushq(wrq, FLUSHDATA);
if (*bp->b_rptr & FLUSHR)

flushq(rdq, FLUSHDATA);
}
/*
* modules pass the message on;
* drivers shut off FLUSHW and loop the message
* up the read-side if FLUSHR is set; otherwise,
* drivers free the message.
*/

break;

Note that modules and drivers are not required to treat messages as flowing in
separate bands. Modules and drivers can view the queue as having only two bands of
flow, normal and high priority. However, the latter alternative flushes the entire queue
whenever an M_FLUSH message is received.

Chapter 8 • STREAMS Kernel-Level Mechanisms 167

The field b_flag of the msgb structure provides a way for the stream head to stop
M_FLUSH messages from being reflected forever when the stream is used as a pipe.
When the stream head receives an M_FLUSH message, it sets the MSGNOLOOP flag in
the b_flag field before reflecting the message down the write side of the stream. If
the stream head receives an M_FLUSH message with this flag set, the message is freed
rather than reflected.

Kernel

Hardware

boot/autoconfig.
software

Driver

Hardware access functions
device register

Interrupts
device register

Utility
functions

Driver
 entry

 points

Device
 information

Hooks in
driver for
boot/autoconfig.

FIGURE 8–3 Interfaces Affecting Drivers

The set of STREAMS utilities available to drivers are listed in Appendix B. No
system-defined macros that manipulate global kernel data or introduce structure-size
dependencies are permitted in these utilities. So, some utilities that have been
implemented as macros in the prior Solaris operating environment releases are
implemented as functions in the SunOS 5 system. This does not preclude the existence
of both macro and function versions of these utilities. Driver source code should
include a header file that picks up function declarations while the core operating
system source should include a header file that defines the macros. With the DKI
interface, the following STREAMS utilities are implemented as C programming
language functions: datamsg(9F), otherq(9F), putnext(9F), RD(9F), and WR(9F).

168 STREAMS Programming Guide • January 2005

Replacing macros such as RD with function equivalents in the driver source code
allows driver objects to be insulated from changes in the data structures and their size,
increasing the useful lifetime of driver source code and objects. Multithreaded drivers
are also protected against changes in implementation-specific STREAMS
synchronization.

The DKI defines an interface suitable for drivers and there is no need for drivers to
access global kernel data structures directly. The kernel function drv_getparm(9F)
fetches information from these structures. This restriction has an important
consequence. Because drivers are not permitted to access global kernel data structures
directly, changes in the contents/offsets of information within these structures will not
break objects.

Driver and Module Service Interfaces
STREAMS provides the means to implement a service interface between any two
components in a stream, and between a user process and the topmost module in the
stream. A service interface is a set of primitives defined at the boundary between a
service user and a service provider (see Figure 8–5). Rules define a service and the
allowable state transitions that result as these primitives are passed between the user
and the provider. These rules are typically represented by a state machine. In
STREAMS, the service user and provider are implemented in a module, driver, or user
process. The primitives are carried bidirectionally between a service user and provider
in M_PROTO and M_PCPROTO messages.

PROTO messages (M_PROTO and M_PCPROTO) can be multiblock. The second through
last blocks are of type M_DATA. The first block in a PROTO message contains the
control part of the primitive in a form agreed upon by the user and provider. The
block is not intended to carry protocol headers. (Upstream PROTO messages can have
multiple PROTO blocks at the start of the message, although its use is not
recommended. getmsg(2) compacts the blocks into a single control part when sending
to a user process.) The M_DATA block contains any data part associated with the
primitive. The data part can be processed in a module that receives it, or it can be sent
to the next stream component, along with any data generated by the module. The
contents of PROTO messages and their allowable sequences are determined by the
service interface specification.

PROTO messages can be sent bidirectionally (upstream and downstream) on a stream
and between a stream and a user process. putmsg(2) and getmsg(2) system calls are
analogous to write(2) and read(2) except that the former allow both data and control
parts to be (separately) passed, and they retain the message boundaries across the
user-stream interface. putmsg(2) and getmsg(2) separately copy the control part
(M_PROTO or M_PCPROTO block) and data part (M_DATA blocks) between the stream
and user process.

Chapter 8 • STREAMS Kernel-Level Mechanisms 169

An M_PCPROTO message normally is used to acknowledge primitives composed of
other messages. M_PCPROTO ensures that the acknowledgement reaches the service
user before any other message. If the service user is a user process, the stream head
will only store a single M_PCPROTO message, and discard subsequent M_PCPROTO
messages until the first one is read with getmsg(2).

User space

Service interface

Kernel space

TCP
transport
protocol

Application
A

Lower layer
protocol
Suite A

ISO
transport
protocol

Application
A

Lower layer
protocol
Suite B

FIGURE 8–4 Protocol Substitution

By defining a service interface through which applications interact with a transport
protocol, you can substitute a different protocol below the service interface that is
completely transparent to the application. In Figure 8–4, the same application can run
over the Transmission Control Protocol (TCP) and the ISO transport protocol. Of
course, the service interface must define a set of services common to both protocols.

The three components of any service interface are the service user, the service
provider, and the service interface itself, as seen in Figure 8–5.

170 STREAMS Programming Guide • January 2005

Service user

Service
provider

Service interface

Request
primitives

Responce and
event primitives

FIGURE 8–5 Service Interface

Typically, an application makes requests of a service provider using some well-defined
service primitive. Responses and event indications are also passed from the provider
to the user using service primitives.

Each service interface primitive is a distinct STREAMS message that has two parts, a
control part and a data part. The control part contains information that identifies the
primitive and includes all necessary parameters. The data part contains user data
associated with that primitive.

An example of a service interface primitive is a transport protocol connect request.
This primitive requests the transport protocol service provider to establish a
connection with another transport user. The parameters associated with this primitive
can include a destination protocol address and specific protocol options to be
associated with that connection. Some transport protocols also allow a user to send
data with the connect request. A STREAMS message is used to define this primitive.
The control part identifies the primitive as a connect request and includes the protocol
address and options. The data part contains the associated user data.

Service Interface Library Example
The service interface library example presented here includes four functions that
enable a user do the following:

� Establish a stream to the service provider and bind a protocol address to the stream

� Send data to a remote user

� Receive data from a remote user

Chapter 8 • STREAMS Kernel-Level Mechanisms 171

� Close the stream connected to the provider

First, the structure and constant definitions required by the library are shown in the
following code. These typically reside in a header file associated with the service
interface.

The defined structures describe the contents of the control part of each service
interface message passed between the service user and service provider. The first field
of each control part defines the type of primitive being passed.

EXAMPLE 8–16 Service Interface Library Header File

/*
* Primitives initiated by the service user.
*/
#define BIND_REQ 1 /* bind request */
#define UNITDATA_REQ 2 /* unitdata request */

/*
* Primitives initiated by the service provider.
*/
#define OK_ACK 3 /* bind acknowledgement */
#define ERROR_ACK 4 /* error acknowledgement */
#define UNITDATA_IND 5 /* unitdata indication */

/*
* The following structure definitions define the format
* of the control part of the service interface message
* of the above primitives.
*/
struct bind_req { /* bind request */

t_scalar_t PRIM_type; /* always BIND_REQ */
t_uscalar_t BIND_addr; /* addr to bind */

};
struct unitdata_req { /* unitdata request */

t_scalar_t PRIM_type; /* always UNITDATA_REQ */
t_scalar_t DEST_addr; /* destination addr */

};

struct ok_ack { /* positiv acknowledgement*/
t_scalar_t PRIM_type; /* always OK_ACK */

};

struct error_ack { /* error acknowledgement */
t_scalar_t PRIM_type; /* always ERROR_ACK */
t_scalar_t UNIX_error; /* UNIX systemerror code */

};

struct unitdata_ind { /* unitdata indication */
t_scalar_t PRIM_type; /* always UNITDATA_IND */
t_scalar_t SRC_addr; /* source addr */

};

/* union of all primitives */

172 STREAMS Programming Guide • January 2005

EXAMPLE 8–16 Service Interface Library Header File (Continued)

union primitives {
t_scalar_t type;
struct bind_req bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;
struct unitdata_ind unitdata_ind;

};

/* header files needed by library */
#include <stropts.h>
#include <stdio.h>

#include <errno.h>

Five primitives are defined. The first two represent requests from the service user to
the service provider.

BIND_REQ Asks the provider to bind a specified protocol address. It requires
an acknowledgement from the provider to verify that the contents
of the request were syntactically correct.

UNITDATA_REQ Asks the provider to send data to the specified destination
address. It does not require an acknowledgement from the
provider.

The three other primitives represent acknowledgements of requests, or indications of
incoming events, and are passed from the service provider to the service user.

OK_ACK Informs the user that a previous bind request was received
successfully by the service provider.

ERROR_ACK Informs the user that a nonfatal error was found in the previous
bind request. It indicates that no action was taken with the
primitive that caused the error.

UNITDATA_IND Indicates that data destined for the user has arrived.

Module Service Interface Example
The following code is part of a module that illustrates the concept of a service
interface. The module implements a simple service interface and mirrors the service
interface library example. The following rules pertain to service interfaces.

� Modules and drivers that support a service interface must act upon all PROTO
messages and not pass them through.

� Modules can be inserted between a service user and a service provider to
manipulate the data part as it passes between them. However, these modules
cannot alter the contents of the control part (PROTO block, first message block) nor

Chapter 8 • STREAMS Kernel-Level Mechanisms 173

alter the boundaries of the control or data parts. That is, the message blocks
comprising the data part can be changed, but the message cannot be split into
separate messages nor combined with other messages.

In addition, modules and drivers must observe the rule that high-priority messages
are not subject to flow control and forward them accordingly.

Service Primitive Declarations

The service interface primitives are defined in the declarations shown in the following
example:

EXAMPLE 8–17 Service Primitive Declarations

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/errno.h>

/* Primitives initiated by the service user */

#define BIND_REQ 1 /* bind request */
#define UNITDATA_REQ 2 /* unitdata request */

/* Primitives initiated by the service provider */

#define OK_ACK 3 /* bind acknowledgement */
#define ERROR_ACK 4 /* error acknowledgement */
#define UNITDATA_IND 5 /* unitdata indication */
/*
* The following structures define the format of the
* stream message block of the above primitives.

*/
struct bind_req { /* bind request */

t_scalar_t PRIM_type; /* always BIND_REQ */
t_uscalar_t BIND_addr; /* addr to bind */

};
struct unitdata_req { /* unitdata request */

t_scalar_t PRIM_type; /* always UNITDATA_REQ */
t_scalar_t DEST_addr; /* dest addr */

};
struct ok_ack { /* ok acknowledgement */

t_scalar_t PRIM_type; /* always OK_ACK */
};
struct error_ack { /* error acknowledgement */

t_scalar_t PRIM_type; /* always ERROR_ACK */
t_scalar_t UNIX_error; /* UNIX system error code*/

};
struct unitdata_ind { /* unitdata indication */

t_scalar_t PRIM_type; /* always UNITDATA_IND */
t_scalar_t SRC_addr; /* source addr */

174 STREAMS Programming Guide • January 2005

EXAMPLE 8–17 Service Primitive Declarations (Continued)

};

union primitives { /* union of all primitives */
long type;
struct bind_req bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;
struct unitdata_ind unitdata_ind;

};
struct dgproto { /* structure minor device */

short state; /* current provider state */
long addr; /* net address */

};

/* Provider states */
#define IDLE 0

#define BOUND 1

In general, the M_PROTO or M_PCPROTO block is described by a data structure
containing the service interface information in this example, union primitives.

The module recognizes two commands:

BIND_REQ Give this stream a protocol address (for example, give it a name
on the network). After a BIND_REQ is completed, data from other
senders will find their way through the network to this particular
stream.

UNITDATA_REQ Send data to the specified address.

The module generates three messages:

OK_ACK A positive acknowledgement (ack) of BIND_REQ.

ERROR_ACK A negative acknowledgement (nak) of BIND_REQ.

UNITDATA_IND Data from the network has been received.

The acknowledgement of a BIND_REQ informs the user that the request was
syntactically correct (or incorrect if ERROR_ACK). The receipt of a BIND_REQ is
acknowledged with an M_PCPROTO to ensure that the acknowledgement reaches the
user before any other message. For example, if a UNITDATA_IND comes through
before the bind is completed, the application cannot send data to the proper address

The driver uses a per-minor device data structure, dgproto, which contains the
following:

state Current state of the service provider IDLE or BOUND.

addr Network address that has been bound to this stream.

Chapter 8 • STREAMS Kernel-Level Mechanisms 175

The module open procedure is assumed to have set the write queue q_ptr to point at
the appropriate private data structure, although this is not shown explicitly.

Service Interface Procedure

The write put procedure, protowput(), is shown in the following example:

EXAMPLE 8–18 Service Interface protoput Procedure

static int protowput(queue_t *q, mblk_t *mp)
{

union primitives *proto;
struct dgproto *dgproto;
int err;
dgproto = (struct dgproto *) q->q_ptr; /* priv data struct */
switch (mp->b_datap->db_type) {
default:

/* don’t understand it */
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);
break;

case M_FLUSH: /* standard flush handling goes here ... */
break;

case M_PROTO:
/* Protocol message -> user request */
proto = (union primitives *) mp->b_rptr;
switch (proto->type) {
default:

mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);
return;

case BIND_REQ:
if (dgproto->state != IDLE) {

err = EINVAL;
goto error_ack;

}
if (mp->b_wptr - mp->b_rptr !=
sizeof(struct bind_req)) {

err = EINVAL;
goto error_ack;

}
if (err = chkaddr(proto->bind_req.BIND_addr))

goto error_ack;
dgproto->state = BOUND;
dgproto->addr = proto->bind_req.BIND_addr;
mp->b_datap->db_type = M_PCPROTO;
proto->type = OK_ACK;
mp->b_wptr=mp->b_rptr+sizeof(structok_ack);

176 STREAMS Programming Guide • January 2005

EXAMPLE 8–18 Service Interface protoput Procedure (Continued)

qreply(q, mp);
break;

error_ack:
mp->b_datap->db_type = M_PCPROTO;
proto->type = ERROR_ACK;
proto->error_ack.UNIX_error = err;
mp->b_wptr = mp->b_rptr+sizeof(structerror_ack);
qreply(q, mp);
break;

case UNITDATA_REQ:
if (dgproto->state != BOUND)

goto bad;
if (mp->b_wptr - mp->b_rptr !=

sizeof(struct unitdata_req))
goto bad;

if(err=chkaddr(proto->unitdata_req.DEST_addr))
goto bad;

putq(q, mp);
/* start device or mux output ... */
break;

bad:
freemsg(mp);
break;

}
}

return(0);

}

The write put procedure, protowput(), switches on the message type. The only
types accepted are M_FLUSH and M_PROTO. For M_FLUSH messages, the driver
performs the canonical flush handling (not shown). For M_PROTO messages, the driver
assumes that the message block contains a union primitive and switches on the type
field. Two types are understood: BIND_REQ and UNITDATA_REQ.

For a BIND_REQ, the current state is checked; it must be IDLE. Next, the message size
is checked. If it is the correct size, the passed-in address is verified for legality by
calling chkaddr. If everything checks, the incoming message is converted into an
OK_ACK and sent upstream. If there was any error, the incoming message is converted
into an ERROR_ACK and sent upstream.

For UNITDATA_REQ, the state is also checked; it must be BOUND. As above, the
message size and destination address are checked. If there is any error, the message is
discarded. If all is well, the message is put in the queue, and the lower half of the
driver is started.

If the write put procedure receives a message type that it does not understand, either
a bad b_datap->db_type or bad proto->type, the message is converted into an
M_ERROR message and is then sent upstream.

Chapter 8 • STREAMS Kernel-Level Mechanisms 177

The generation of UNITDATA_IND messages (not shown in the example) would
normally occur in the device interrupt if this is a hardware driver or in the lower read
put procedure if this is a multiplexer. The algorithm is simple: the data part of the
message is prefixed by an M_PROTO message block that contains a unitdata_ind
structure and is sent upstream.

Message Type Change Rules
To change a message type, use the following rules:

� You can only change the M_IOCTL family of message types to other M_IOCTL
message types.

� M_DATA, M_PROTO, and M_PCPROTO are dependent on the modules, driver and
service provider interfaces defined.

� A message type should not be changed if the reference count > 1.

� The data of a message should not be modified if the reference count > 1.

� All other message types are interchangeable as long as sufficient space has been
allocated in the data buffer of the message.

Common ioctl Interfaces
Many ioctl operations are common to a class of STREAMS drivers or STREAMS
modules. Modules that deal with terminals usually implement a subset of the
termio(7I) ioctls. Similarly, drivers that deal with audio devices usually implement
a subset of the audio(7I) interfaces.

Because no data structures have changed size as a result of the LP64 data model for
either termio(7I) or audio(7I), you do no need to use any of the structure macros to
decode any of these ioctls.

FIORDCHK
The FIORDCHK ioctl returns a count (in bytes) of the number of bytes to be read as
the return value. Although FIORDCHK should be able to return more than MAXINT
bytes, it is constrained to returning an int by the type of the ioctl(2) function.

178 STREAMS Programming Guide • January 2005

FIONREAD
The FIONREAD ioctl returns the number of data bytes (in all data messages queued)
in the location pointed to by the arg parameter. The ioctl returns a 32-bit quantity
for both 32-bit and 64-bit application., Therefore, code that passes the address of a
long variable needs to be changed to pass an int variable for 64–bit applications.

I_NREAD
The I_NREAD ioctl (streamio(7I)) is an informational ioctl that counts the data
bytes as well as the number of messages in the stream head read queue. The number
of data bytes is returned in the location pointed to by the arg parameter of the ioctl.
The number of messages in the stream head read queue is returned as the return value
of the ioctl.

Like FIONREAD, the arg parameter to the I_NREAD ioctl should be a pointer to an
int, not a long. And, like FIORDCHK, the return value is constrained to be less than
or equal to MAXINT bytes, even if more data is available.

signal Message
STREAMS modules and drivers send signals to application processes through a
special signal message. If the signal specified by the module or driver is not SIGPOLL
(see signal(3C)), the signal is delivered to the process group associated with the
stream. If the signal is SIGPOLL, the signal is only sent to processes that have
registered for the signal by using the I_SETSIG ioctl(2).

Modules or drivers use an M_SIG message to insert an explicit in-band signal into a
message stream. For example, a message can be sent to the application process
immediately before a particular service interface message. When the M_SIG message
reaches the head of the stream read queue, a signal is generated and the M_SIG
message is removed. The service interface message is the next message to be processed
by the user. (The M_SIG message is usually defined as part of the service interface of
the driver or module.)

Chapter 8 • STREAMS Kernel-Level Mechanisms 179

180 STREAMS Programming Guide • January 2005

CHAPTER 9

STREAMS Drivers

This chapter describes the operation of STREAMS drivers and some of the processing
typically required in the drivers.

� “STREAMS Device Drivers” on page 181
� “STREAMS Driver Entry Points” on page 182
� “STREAMS Driver Code Samples” on page 186

STREAMS Device Drivers
STREAMS drivers can be considered a subset of device drivers in general and
character device drivers in particular. While there are some differences between
STREAMS drivers and non-STREAMS drivers, much of the information contained in
Writing Device Drivers also applies to STREAMS drivers.

Note – The word module is used differently when talking about drivers. A device driver
is a kernel-loadable module that provides the interface between a device and the
Device Driver Interface, and is linked to the kernel when it is first invoked.

STREAMS drivers share a basic programming model with STREAMS modules.
Information common to both drivers and modules is discussed in Chapter 10. After
summarizing some basic device driver concepts, this chapter discusses several topics
specific to STREAMS device drivers (and not covered elsewhere) and then presents
code samples illustrating basic STREAMS driver processing.

181

Basic Driver
A device driver is a loadable kernel module that translates between an I/O device and
the kernel to operate the device.

Device drivers can also be software-only, implementing a pseudo-device such as RAM
disk or a pseudo-terminal that only exists in software.

In the Solaris operating environment, the interface between the kernel and device
drivers is called the Device Driver Interface (DDI/DKI). This interface is specified in
the Section 9E manual pages that specify the driver entry points. Section 9 also details
the kernel data structures (9S) and utility functions (9F) available to drivers.

The DDI protects the kernel from device specifics. Application programs and the rest
of the kernel need little (if any) device-specific code to use the device. The DDI makes
the system more portable and easier to maintain.

There are three basic types of device drivers corresponding to the three basic types of
devices. Character devices handle data serially and transfer data to and from the
processor one character at a time, the same as keyboards and low performance
printers. Serial block devices and drivers also handle data serially, but transfer data to
and from memory without processor intervention, the same as tape drives. Direct
access block devices and drivers also transfer data without processor intervention and
blocks of storage on the device can be addressed directly, the same as disk drives.

There are two types of character device drivers: standard character device drivers and
STREAMS device drivers. STREAMS is a separate programming model for writing a
character driver. Devices that receive data asynchronously (such as terminal and
network devices) are suited to a STREAMS implementation.

STREAMS drivers share some kinds of processing with STREAMS modules. Important
differences between drivers and modules include how the application manipulates
drivers and modules and how interrupts are handled. In STREAMS, drivers are opened
and modules are pushed. A device driver has an interrupt routine to process hardware
interrupts.

STREAMS Driver Entry Points
STREAMS drivers have five different points of contact with the kernel:

182 STREAMS Programming Guide • January 2005

TABLE 9–1 Kernel Contact Points

Kernel Contact Point Description

Configuration entry points These kernel (dynamically loading) routines enable the kernel to
find the driver binary in the file system and load it into, or
unload it from, the running kernel. The entry points include
_init(9E), _info(9E), and _fini(9E).

Initialization entry points Enable the driver to determine a device’s presence and initialize
its state. These routines are accessed through the dev_ops(9S)
data structure during system initialization. They include
getinfo(9E), probe(9E), attach(9E), and detach(9E).

Table-driven entry points Accessed through cb_ops(9S), the character and block access
table, when an application calls the appropriate interface. The
members of the cb_ops(9S) structure include pointers to entry
points that perform the device’s functions, such as read(9E),
write(9E), ioctl(9E). The cb_ops(9S) table contains a pointer
to the streamtab(9S)structure.

STREAMS queue processing
entry points

Contained in the streamtab, read and process the STREAMS
messages that travel through the queue structures. Examples of
STREAMS queue processing entry points are put(9E) and
srv(9E).

Interrupt routines Handle the interrupts from the device (or software interrupts).
It is added to the kernel by ddi_add_intr(9F) when the kernel
configuration software calls attach(9E).

STREAMS Configuration Entry Points
As with other SunOS 5 drivers, STREAMS drivers are dynamically linked and loaded
when referred to for the first time. For example, when the system is initially booted,
the STREAMS pseudo-tty slave pseudo-driver (pts(7D)) is loaded automatically into
the kernel when it is first opened.

In STREAMS, the header declarations differ between drivers and modules. The word
“module” is used in two different ways when talking about drivers. There are
STREAMS modules, which are pushable nondriver entities, and there are
kernel-loadable modules, which are components of the kernel. See the appropriate
chapters in Writing Device Drivers.

The kernel configuration mechanism must distinguish between STREAMS devices and
traditional character devices because system calls to STREAMS drivers are processed
by STREAMS routines, not by the system driver routines. The streamtab pointer in
the cb_ops(9S) structure provides this distinction. If it is NULL, there are no
STREAMS routines to execute; otherwise, STREAMS drivers initialize streamtab
with a pointer to a streamtab(9S) structure containing the driver’s STREAMS queue
processing entry points.

Chapter 9 • STREAMS Drivers 183

STREAMS Initialization Entry Points
The initialization entry points of STREAMS drivers must perform the same tasks as
those of non-STREAMS drivers. See Writing Device Drivers for more information.

STREAMS Table-Driven Entry Points
In non-STREAMS drivers, most of the driver’s work is accomplished through the
entry points in the cb_ops(9S) structure. For STREAMS drivers, most of the work is
accomplished through the message-based STREAMS queue processing entry points.

Figure 9–1 shows multiple streams (corresponding to minor devices) connecting to a
common driver. There are two distinct streams opened from the same major device.
Consequently, they have the same streamtab and the same driver procedures.

Port
0

Stream Head

Queue Pair

Driver Procedures and
Interrupt Code

Module(s)

major/dev0
vnode

Port
1

Stream Head

Queue Pair

Module(s)

major/dev1
vnode

FIGURE 9–1 Device Driver Streams

Multiple instances (minor devices) of the same driver are handled during the initial
open for each device. Typically, a driver stores the queue address in a driver-private
structure that is uniquely identified by the minor device number. (The DDI/DKI
provides a mechanism for uniform handling of driver-private structures; see
ddi_soft_state(9F)). The q_ptr of the queue points to the private data structure
entry. When the messages are received by the queue, the calls to the driver put and
service procedures pass the address of the queue, enabling the procedures to
determine the associated device through the q_ptr field.

184 STREAMS Programming Guide • January 2005

STREAMS guarantees that only one open or close can be active at a time per
major/minor device pair.

STREAMS Queue Processing Entry Points
STREAMS device drivers have processing routines that are registered with the
framework through the streamtab structure. The put procedure is a driver’s entry
point, but it is a message (not system) interface. STREAMS drivers and STREAMS
modules implement these entry points similarly, as described in “Entry Points”
on page 109.

The stream head translates write(2) and ioctl(2) calls into messages and sends
them downstream to be processed by the driver’s write queue put(9E) procedure.
read is seen directly only by the stream head, which contains the functions required
to process system calls. A STREAMS driver does not check system interfaces other
than open and close, but it can detect the absence of a read indirectly if flow control
propagates from the stream head to the driver and affects the driver’s ability to send
messages upstream.

For read-side processing, when the driver is ready to send data or other information to
a user process, it prepares a message and sends it upstream to the read queue of the
appropriate (minor device) stream. The driver’s open routine generally stores the
queue address corresponding to this stream.

For write-side (or output) processing, the driver receives messages in place of a write
call. If the message cannot be sent immediately to the hardware, it may be stored on
the driver’s write message queue. Subsequent output interrupts can remove messages
from this queue.

A driver is at the end of a stream. As a result, drivers must include standard
processing for certain message types that a module might be able to pass to the next
component. For example, a driver must process all M_IOCTL messages; otherwise, the
stream head blocks for an M_IOCNAK, M_IOCACK, or until the timeout (potentially
infinite) expires. If a driver does not understand an ioctl(2), an M_IOCNAK message
is sent upstream.

Messages that are not understood by the drivers should be freed.

The stream head locks up the stream when it receives an M_ERROR message, so driver
developers should be careful when using the M_ERROR message.

Chapter 9 • STREAMS Drivers 185

STREAMS Interrupt Handlers
Most hardware drivers have an interrupt handler routine. You must supply an
interrupt routine for the device’s driver. The interrupt handling for STREAMS drivers
is not fundamentally different from that for other device drivers. Drivers usually
register interrupt handlers in their attach(9E)entry point, using
ddi_add_intr(9F). Drivers unregister the interrupt handler at detach time using
ddi_remove_intr(9F).

The system also supports software interrupts. The routines ddi_add_softintr(9F)
and ddi_remove_softintr(9F) register and unregister (respectively)
soft-interrupt handlers. A software interrupt is generated by calling
ddi_trigger_softintr(9F).

See Writing Device Drivers for more information.

Driver Unloading
STREAMS drivers can prevent unloading through the standard driver detach(9E)
entry point.

STREAMS Driver Code Samples
The following discussion describes characteristics of a STREAMS driver:

� Basic hardware/pseudo drivers

This type of driver communicates with a specific piece of hardware (or simulated
hardware). The lp example simulates a simple printer driver.

� Clonable drivers

The STREAMS framework supports a CLONEOPEN facility, which allows multiple
streams to be opened from a single special file. If a STREAMS device driver
chooses to support CLONEOPEN, it can be referred to as a clonable device. The
attach(9E) routines from two Solaris drivers, ptm(7D) and log(7D), illustrate two
approaches to cloning.

� Multiple instances in drivers

A multiplexer driver is a regular STREAMS driver that can handle multiple
streams connected to it instead of just one stream. Multiple connections occur
when more than one minor device of the same driver is in use. See “Cloning
STREAMS Drivers” on page 199 for more information.

186 STREAMS Programming Guide • January 2005

Printer Driver Example
Example 9–1 is a sample print driver for an interrupt-per-character line printer. The
driver is unidirectional—it has no read-side processing. It demonstrates some
differences between module and driver programming, including the following:

� Declarations for driver configuration
� Open handling
� A driver is passed a device number
� Flush handling
� A driver must loop M_FLUSH messages back upstream
� Interrupt routine
� A driver registers interrupt handler and processes interrupts

Most of the STREAMS processing in the driver is independent of the actual printer
hardware; in this example, actual interaction with the printer is limited to the
lpoutchar function, which prints one character at a time. For purposes of
demonstration, the “printer hardware” is actually the system console, accessed
through cmn_err(9F). Since there’s no actual hardware to generate a genuine
hardware interrupt, lpoutchar simulates interrupts using
ddi_trigger_softintr(9F). For a real printer, the lpoutchar function is
rewritten to send a character to the printer, which should generate a hardware
interrupt.

The driver declarations follow. After specifying header files (include <sys/ddi.h>
and <sys/sunddi.h> as the last two header files), the driver declares a per-printer
structure, struct lp. This structure contains members that enable the driver to keep
track of each instance of the driver, such as flags (what the driver is doing), msg (the
current STREAMS print message), qptr (pointer to the stream’s write queue), dip
(the instance’s device information handle), iblock_cookie (for registering an
interrupt handler), siid (the handle of the soft interrupt), and lp_lock (a mutex to
protect the data structure from multithreaded race conditions). The driver next defines
the bits for the flags member of struct lp; the driver defines only one flag, BUSY.

Following function prototypes, the driver provides some standard STREAMS
declarations: a module_info(9S) structure (minfo), a qinit(9S) structure for the
read side (rinit) that is initialized by the driver’s open and close entry points, a
qinit(9S) structure for the write side (winit) that is initialized by the write put
procedure, and a streamtab(9S) that points to rinit and winit. The values in the
module name and ID fields in the module_info(9S) structure must be unique in the
system. Because the driver is unidirectional, there is no read side put or service
procedure. The flow control limits for use on the write side are 50 bytes for the
low-watermark and 150 bytes for the high-watermark.

The driver next declares lp_state. This is an anchor on which the various
“soft-state” functions provided by the DDK operate. The ddi_soft_state(9F)
manual page describes how to maintain multiple instances of a driver.

Chapter 9 • STREAMS Drivers 187

The driver next declares acb_ops(9S) structure, which is required in all device
drivers. In non-STREAMS device drivers, cb_ops(9S) contains vectors to the
table-driven entry points. For STREAMS drivers, however, cb_ops(9S) contains
mostly nodev entries. The cb_stream field, however, is initialized with a pointer to
the driver’s streamtab(9S) structure. This indicates to the kernel that this driver is a
STREAMS driver.

Next, the driver declares a dev_ops(9S) structure, which points to the various
initialization entry points as well as to the cb_ops(9S) structure. Finally, the driver
declares a struct moldrv and a struct modlinkage for use by the kernel linker
when the driver is dynamically loaded. struct moldrv contains a pointer to
mod_driverops (a significant difference between a STREAMS driver and a
STREAMS module—a STREAMS module would contain a pointer to mod_strops
instead).

EXAMPLE 9–1 Simple Line Printer Driver

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/signal.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/stat.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

/* This is a private data structure, one per minor device number */

struct lp {
short flags; /* flags -- see below */
mblk_t *msg; /* current message being output */
queue_t *qptr; /* back pointer to write queue */
dev_info_t *dip; /* devinfo handle */
ddi_iblock_cookie_t iblock_cookie;
ddi_softintr_t siid;
kmutex_t lp_lock; /* sync lock */

};

/* flags bits */

#define BUSY 1 /* dev is running, int is forthcoming */

/*
* Function prototypes.
*/
static int lpattach(dev_info_t *, ddi_attach_cmd_t);
static int lpdetach(dev_info_t *, ddi_detach_cmd_t);
static int lpgetinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int lpidentify(dev_info_t *);

188 STREAMS Programming Guide • January 2005

EXAMPLE 9–1 Simple Line Printer Driver (Continued)

static uint lpintr(caddr_t lp);
static void lpout(struct lp *lp);
static void lpoutchar(struct lp *lp, char c);
static int lpopen(queue_t*, dev_t*, int, int, cred_t*);
static int lpclose(queue_t*, int, cred_t*);
static int lpwput(queue_t*, mblk_t*);

/* Standard Streams declarations */

static struct module_info minfo = {
0xaabb,
"lp",
0,
INFPSZ,
150,
50

};

static struct qinit rinit = {
(int (*)()) NULL,
(int (*)()) NULL,
lpopen,
lpclose,
(int (*)()) NULL,
&minfo,
NULL

};

static struct qinit winit = {
lpwput,
(int (*)()) NULL,
(int (*)()) NULL,
(int (*)()) NULL,
(int (*)()) NULL,
&minfo,
NULL

};

static struct streamtab lpstrinfo = { &rinit, &winit, NULL, NULL };

/*
* An opaque handle where our lp lives
*/
static void *lp_state;

/* Module Loading/Unloading and Autoconfiguration declarations */

static struct cb_ops lp_cb_ops = {
nodev, /* cb_open */
nodev, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */

Chapter 9 • STREAMS Drivers 189

EXAMPLE 9–1 Simple Line Printer Driver (Continued)

nodev, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
&lpstrinfo, /* cb_stream */
D_MP | D_NEW, /* cb_flag */

};

static struct dev_ops lp_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
lpgetinfo, /* devo_getinfo */
lpidentify, /* devo_identify */
nulldev, /* devo_probe */
lpattach, /* devo_attach */
lpdetach, /* devo_detach */
nodev, /* devo_reset */
&lp_cb_ops, /* devo_cb_ops */
(struct bus_ops *)NULL /* devo_bus_ops */

};

/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {

&mod_driverops,
"Simple Sample Printer Streams Driver", /* Description */
&lp_ops, /* driver ops */

};

static struct modlinkage modlinkage = {
MODREV_1, &modldrv, NULL

};

Example 9–2 shows the required driver configuration entry points _init(9E),
_fini(9E), and _info(9E). In addition to installing the driver using
mod_install(9F), the _init entry point also initializes the per-instance driver
structure using ddi_soft_state_init(9F). _fini(9E) performs the
complementary calls to mod_remove(9F) and ddi_soft_state_fini(9F) to unload
the driver and release the resources used by the soft-state routines.

EXAMPLE 9–2 Configuration Entry Points

int
_init(void)
{

int e;

190 STREAMS Programming Guide • January 2005

EXAMPLE 9–2 Configuration Entry Points (Continued)

if ((e = ddi_soft_state_init(&lp_state,
sizeof (struct lp), 1)) != 0) {

return (e);
}

if ((e = mod_install(&modlinkage)) != 0) {
ddi_soft_state_fini(&lp_state);

}

return (e);
}

int
_fini(void)
{

int e;

if ((e = mod_remove(&modlinkage)) != 0) {
return (e);

}
ddi_soft_state_fini(&lp_state);
return (e);

}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));

}

Example 9–3 shows the lp driver’s implementation of the initialization entry points.
In lpidentify, the driver ensures that the name of the device being attached is “lp”.

lpattach first uses ddi_soft_state_zalloc(9F) to allocate a per-instance
structure for the printer being attached. Next it creates a node in the device tree for the
printer using ddi_create_minor_node(9F); user programs use the node to access
the device. lpattach then registers the driver interrupt handler because the sample is
driver pseudo-hardware, the driver uses soft interrupts. A driver for a real printer
would use ddi_add_intr(9F) instead of ddi_add_softintr(9F). A driver for a real
printer would also need to perform any other required hardware initialization in
lpattach. Finally, lpattach initializes the per-instance mutex.

In lpdetach, the driver undoes everything it did in lpattach.

lpgetinfo uses the soft-state structures to obtain the required information.

EXAMPLE 9–3 Initialization Entry Points

static int
lpidentify(dev_info_t *dip)

Chapter 9 • STREAMS Drivers 191

EXAMPLE 9–3 Initialization Entry Points (Continued)

{
if (strcmp(ddi_get_name(dip), "lp") == 0) {

return (DDI_IDENTIFIED);
} else

return (DDI_NOT_IDENTIFIED);
}

static int
lpattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

int instance;
struct lp *lpp;

switch (cmd) {

case DDI_ATTACH:

instance = ddi_get_instance(dip);

if (ddi_soft_state_zalloc(lp_state, instance) != DDI_SUCCESS) {
cmn_err(CE_CONT, "%s%d: can’t allocate state\n",
ddi_get_name(dip), instance);
return (DDI_FAILURE);

} else
lpp = ddi_get_soft_state(lp_state, instance);

if (ddi_create_minor_node(dip, "strlp", S_IFCHR,
instance, NULL, 0) == DDI_FAILURE) {

ddi_remove_minor_node(dip, NULL);
goto attach_failed;

}

lpp->dip = dip;
ddi_set_driver_private(dip, (caddr_t)lpp);

/* add (soft) interrupt */

if (ddi_add_softintr(dip, DDI_SOFTINT_LOW, &lpp->siid,
&lpp->iblock_cookie, 0, lpintr, (caddr_t)lpp)
!= DDI_SUCCESS) {

ddi_remove_minor_node(dip, NULL);
goto attach_failed;

}

mutex_init(&lpp->lp_lock, "lp lock", MUTEX_DRIVER,
(void *)lpp->iblock_cookie);

ddi_report_dev(dip);
return (DDI_SUCCESS);

192 STREAMS Programming Guide • January 2005

EXAMPLE 9–3 Initialization Entry Points (Continued)

default:
return (DDI_FAILURE);

}

attach_failed:
/*
* Use our own detach routine to toss
* away any stuff we allocated above.
*/
(void) lpdetach(dip, DDI_DETACH);
return (DDI_FAILURE);

}

static int
lpdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

int instance;
struct lp *lpp;

switch (cmd) {

case DDI_DETACH:
/*
* Undo what we did in lpattach, freeing resources
* and removing things we installed. The system
* framework guarantees we are not active with this devinfo
* node in any other entry points at this time.
*/
ddi_prop_remove_all(dip);
instance = ddi_get_instance(dip);
lpp = ddi_get_soft_state(lp_state, instance);
ddi_remove_minor_node(dip, NULL);
ddi_remove_softintr(lpp->siid);
ddi_soft_state_free(lp_state, instance);
return (DDI_SUCCESS);

default:
return (DDI_FAILURE);

}
}

/*ARGSUSED*/
static int
lpgetinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,

void **result)
{

struct lp *lpp;
int error = DDI_FAILURE;

switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:

if ((lpp = ddi_get_soft_state(lp_state,
getminor((dev_t)arg))) != NULL) {

Chapter 9 • STREAMS Drivers 193

EXAMPLE 9–3 Initialization Entry Points (Continued)

*result = lpp->dip;
error = DDI_SUCCESS;

} else
*result = NULL;

break;

case DDI_INFO_DEVT2INSTANCE:
*result = (void *)getminor((dev_t)arg);
error = DDI_SUCCESS;
break;

default:
break;

}

return (error);

}

The STREAMS mechanism allows only one stream per minor device. The driver open
routine is called whenever a STREAMS device is opened. open matches the correct
private data structure with the stream using ddi_get_soft_state(9F). The driver
open, lpopen in Example 9–4, has the same interface as the module open.

The stream flag, sflag, must have the value 0, indicating a normal driver open. devp
pointers to the major/minor device number for the port. After checking sflag,
lpopen uses devp to find the correct soft-state structure.

The next check, if (q->q_ptr)..., determines if the printer is already open. q_ptr
is a driver or module private data pointer. It can be used by the driver for any purpose
and is initialized to zero by STREAMS before the first open. In this example, the
driver sets the value of q_ptr, in both the read and write queue structures, to point
to the device’s per-instance data structure. If the pointer is non-NULL, it means the
printer is already open, so lpopen returns EBUSY to avoid merging printouts from
multiple users.

The driver close routine is called by the stream head. Any messages left in the queue
are automatically removed by STREAMS. The stream is dismantled and data
structures are released.

EXAMPLE 9–4 Queue Processing Entry Points

/*ARGSUSED*/
static int
lpopen(

queue_t *q, /* read queue */
dev_t *devp,
int flag,
int sflag,
cred_t *credp)

194 STREAMS Programming Guide • January 2005

EXAMPLE 9–4 Queue Processing Entry Points (Continued)

{

struct lp *lp;

if (sflag) /* driver refuses to do module or clone open */
return (ENXIO);

if ((lp = ddi_get_soft_state(lp_state, getminor(*devp))) == NULL)
return (ENXIO);

/* Check if open already. Can’t have multiple opens */

if (q->q_ptr) {
return (EBUSY);

}

lp->qptr = WR(q);
q->q_ptr = (char *) lp;
WR(q)->q_ptr = (char *) lp;
qprocson(q);
return (0);

}

/*ARGSUSED*/
static int
lpclose(

queue_t *q, /* read queue */
int flag,
cred_t *credp)

{

struct lp *lp;

qprocsoff(q);
lp = (struct lp *) q->q_ptr;

/*
* Free message, queue is automatically
* flushed by STREAMS
*/
mutex_enter(&lp->lp_lock);

if (lp->msg) {
freemsg(lp->msg);
lp->msg = NULL;

}

lp->flags = 0;
mutex_exit(&lp->lp_lock);

return (0);

}

Chapter 9 • STREAMS Drivers 195

There are no physical pointers between the read and write queue of a pair. WR(9F) is a
queue pointer function. WR(9F) generates the write pointer from the read pointer.
RD(9F) and otherq(9F) are additional queue pointer functions. RD(9F) generates the
read pointer from the write pointer, and otherq(9F) generates the mate pointer from
either.

Driver Flush Handling
The write put procedure in Example 9–5, lpwput, illustrates driver M_FLUSH
handling. Note that all drivers are expected to incorporate flush handling.

If FLUSHW is set, the write message queue is flushed, and (in this example) the leading
message (lp->msg) is also flushed. lp_lock protects the driver’s per-instance data
structure.

In most drivers, if FLUSHR is set, the read queue is flushed. However, in this example,
no messages are ever placed on the read queue, so flushing it is not necessary. The
FLUSHW bit is cleared and the message is sent upstream using qreply(9F). If FLUSHR
is not set, the message is discarded.

The stream head always performs the following actions on flush requests received on
the read side from downstream. If FLUSHR is set, messages waiting to be sent to user
space are flushed. If FLUSHW is set, the stream head clears the FLUSHR bit and sends
the M_FLUSH message downstream. In this manner, a single M_FLUSH message sent
from the driver can reach all queues in a stream. A module must send two M_FLUSH
messages to have the same effect.

lpwput queues M_DATA and M_IOCTL messages and if the device is not busy, starts
output by calling lpout. Message types that are not recognized are discarded (in the
default case of the switch).

EXAMPLE 9–5 Driver Flush Handling

static int lpwput(
queue_t *q, /* write queue */
mblk_t *mp) /* message pointer */

{
struct lp *lp;

lp = (struct lp *)q->q_ptr;

switch (mp->b_datap->db_type) {
default:

freemsg(mp);
break;

case M_FLUSH: /* Canonical flush handling */
if (*mp->b_rptr & FLUSHW) {

flushq(q, FLUSHDATA);
mutex_enter(&lp->lp_lock); /* lock any access to lp */

196 STREAMS Programming Guide • January 2005

EXAMPLE 9–5 Driver Flush Handling (Continued)

if (lp->msg) {
freemsg(lp->msg);
lp->msg = NULL;

}

mutex_exit(&lp->lp_lock);

}

if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
qreply(q, mp);

} else
freemsg(mp);

break;

case M_IOCTL:
case M_DATA:

(void) putq(q, mp);
mutex_enter(&lp->lp_lock);

if (!(lp->flags & BUSY))
lpout(lp);

mutex_exit(&lp->lp_lock);

}
return (0);

}

Print Driver Interrupt
Example 9–6 shows the interrupt handling for the printer driver.

lpintr is the driver-interrupt handler registered by the attach routine.

lpout takes a single character from the queue and sends it to the printer. For
convenience, the message currently being output is stored in lp->msg in the
per-instance structure. This assumes that the message is called with the mutex held.

lpoutchar sends a single character to the printer (in this case the system console
using cmn_err(9F)) and interrupts when complete. Of course, hardware would
generate a hard interrupt, so the call to ddi_trigger_softintr(9F) would be
unnecessary.

EXAMPLE 9–6 Driver Interrupt Handling

/* Device interrupt routine */static uint
lpintr(caddr_t lp) /* minor device number of lp */

Chapter 9 • STREAMS Drivers 197

EXAMPLE 9–6 Driver Interrupt Handling (Continued)

{

struct lp *lpp = (struct lp *)lp;

mutex_enter(&lpp->lp_lock);

if (!(lpp->flags & BUSY)) {
mutex_exit(&lpp->lp_lock);
return (DDI_INTR_UNCLAIMED);

}

lpp->flags &= ~BUSY;
lpout(lpp);
mutex_exit(&lpp->lp_lock);

return (DDI_INTR_CLAIMED);
}

/* Start output to device - used by put procedure and driver */

static void
lpout(

struct lp *lp)
{

mblk_t *bp;
queue_t *q;

q = lp->qptr;

loop:
if ((bp = lp->msg) == NULL) { /*no current message*/

if ((bp = getq(q)) == NULL) {
lp->flags &= ~BUSY;
return;

}
if (bp->b_datap->db_type == M_IOCTL) {

/* lpdoioctl(lp, bp); */
goto loop;

}

lp->msg = bp; /* new message */

}

if (bp->b_rptr >= bp->b_wptr) { /* validate message */

bp = lp->msg->b_cont;
lp->msg->b_cont = NULL;
freeb(lp->msg);
lp->msg = bp;
goto loop;

}

198 STREAMS Programming Guide • January 2005

EXAMPLE 9–6 Driver Interrupt Handling (Continued)

lpoutchar(lp, *bp->b_rptr++); /*output one character*/
lp->flags |= BUSY;

}

static void
lpoutchar(

struct lp *lp,
char c)

{
cmn_err(CE_CONT, “%c”, c);
ddi_trigger_softintr(lp->siid);

}

Driver Flow Control
The same utilities (described in Chapter 10) and mechanisms used for module flow
control are used by drivers.

When the message is queued, putq(9F) increments the value of q_count by the size
of the message and compares the result to the driver’s write high-watermark
(q_hiwat) value. If the count reaches q_hiwat, putq(9F) sets the internal FULL
indicator for the driver write queue. This causes messages from upstream to be halted
(canputnext(9F) returns FALSE) until the write queue count drops below q_lowat.
The driver messages waiting to be output through lpout are dequeued by the driver
output interrupt routine with getq(9F), which decrements the count. If the resulting
count is below q_lowat, getq(9F) back-enables any upstream queue that had been
blocked.

For priority band data, qb_count, qb_hiwat, and qb_lowat are used.

STREAMS with flow control can be used on the driver read side to handle temporary
upstream blocks.

To some extent, a driver or a module can control when its upstream transmission
becomes blocked. Control is available through the M_SETOPTS message (see
Appendix A) to modify the stream head read-side flow control limits.

Cloning STREAMS Drivers
To eliminate polling, STREAMS drivers can be made clonable. If a STREAMS driver is
implemented as a clonable device, a single node in the file system can be opened to
access any unused device that the driver controls. This special node guarantees that
each user is allocated a separate stream to the driver for each open call. Each stream is
associated with an unused minor device, so the total number of streams that may be
connected to a particular clonable driver is limited only by the number of minor
devices configured for that driver.

Chapter 9 • STREAMS Drivers 199

In previous examples, each user process connected a stream to a driver by explicitly
opening a particular minor device of the driver. Each minor device had its own node
in the device tree file system. Often, there is a need for a user process to connect a new
stream to a driver regardless of which minor device is used to access the driver. In the
past, this forced the user process to poll the various minor device nodes of the driver
for an available minor device.

The clone model is useful, for example, in a networking environment where a protocol
pseudo-device driver requires each user to open a separate stream over which it
establishes communication. (The decision to implement a STREAMS driver as a
clonable device is made by the designers of the device driver. Knowledge of the clone
driver implementation is not required to use it.)

There are two ways to open as a clone device. The first is to use the STREAMS
framework-provided clone device, which arranges to open the device with the
CLONEOPEN flag passed in. This method is demonstrated in Example 9–7, which
shows the attach and open routines for the pseudo-terminal master ptm(7D) driver.
The second way is to have the driver open itself as a clone device, without
intervention from the system clone device. This method is demonstrated in the
attach and open routines for the log(7D) device in Example 9–8.

The ptm(7D) device, which uses the system-provided clone device, sets up two nodes
in the device file system. One has a major number of 23 (ptm’s assigned major
number) and a minor number of 0. The other node has a major number of 11 (the clone
device’s assigned major number) and a minor number of 23 (ptm’s assigned major
number). The driver’s attach routine (see Example 9–7) calls to
ddi_create_minor_node(9F) twice. First, to set up the “normal” node (major
number 23); second, to specify CLONE_DEV as the last parameter, making the system
create the node with major 11.

crw-rw-rw- 1 sys 11, 23 Mar 6 02:05 clone:ptmx

crw------- 1 sys 23, 0 Mar 6 02:05 ptm:ptmajor

When the special file /devices/pseudo/clone@0:ptmx is opened, the clone driver
code in the kernel (accessed by major 11) passes the CLONEOPEN flag in the sflag
parameter to the ptm(7D) open routine. ptm’s open routine checks sflag to make
sure it is being called by the clone driver. The open routine next attempts to find an
unused minor device for the open by searching its table of minor devices.
(PT_ENTER_WRITE and PT_EXIT_WRITE are driver-defined macros for entering and
exiting the driver’s mutex.) If it succeeds (and following other open processing), the
open routine constructs a new dev_t with the new minor number, which it passes
back to its caller in the devp parameter. (The new minor number is available to the
user program that opened the clonable device through an fstat(2) call.)

EXAMPLE 9–7 Opening a System Clone Device

static int
ptm_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{

if (cmd != DDI_ATTACH)
return (DDI_FAILURE);

200 STREAMS Programming Guide • January 2005

EXAMPLE 9–7 Opening a System Clone Device (Continued)

if (ddi_create_minor_node(devi, "ptmajor", S_IFCHR, 0, NULL, 0)
== DDI_FAILURE) {

ddi_remove_minor_node(devi, NULL);
return (DDI_FAILURE);

}
if (ddi_create_minor_node(devi, "ptmx", S_IFCHR, 0, NULL, CLONE_DEV)

== DDI_FAILURE) {
ddi_remove_minor_node(devi, NULL);
return (DDI_FAILURE);

}
ptm_dip = devi;
return (DDI_SUCCESS);

}

static int
ptmopen(

queue_t *rqp, /* pointer to the read side queue */
dev_t *devp, /* pointer to stream tail’s dev */
int oflag, /* the user open(2) supplied flags */
int sflag, /* open state flag */
cred_t *credp) /* credentials */

{
struct pt_ttys *ptmp;
mblk_t *mop; /* ptr to a setopts message block */
minor_t dev;

if (sflag != CLONEOPEN) {
return (EINVAL);

}

for (dev = 0; dev < pt_cnt; dev++) {
ptmp = &ptms_tty[dev];
PT_ENTER_WRITE(ptmp);
if (ptmp->pt_state & (PTMOPEN | PTSOPEN | PTLOCK)) {

PT_EXIT_WRITE(ptmp);
} else

break;
}

if (dev >= pt_cnt) {
return (ENODEV);

}

... <other open processing> ...

/*
* The input, devp, is a major device number, the output is put into
* into the same parm as a major,minor pair.
*/
*devp = makedevice(getmajor(*devp), dev);
return (0);

}

Chapter 9 • STREAMS Drivers 201

The log(7D) driver uses the second method; it clones itself without intervention from
the system clone device. The log(7D) driver’s attach routine (in Example 9–8) is
similar to the one in ptm(7D). It creates two nodes using
ddi_create_minor_node(9F), but neither specifies CLONE_DEV as the last
parameter. Instead, one of the devices has minor 0, the other minor CLONEMIN. These
two devices provide log(7D) two interfaces: the first write-only, the second read-write
(see the man page log(7D) for more information). Users open one node or the other. If
they open the CONSWMIN (clonable, read-write) node, the open routine checks its table
of minor devices for an unused device. If it is successful, it (like the ptm(7D) open
routine) returns the new dev_t to its caller in devp.

EXAMPLE 9–8 Opening the log Driver

static int
log_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{

if (ddi_create_minor_node(devi, "conslog", S_IFCHR, 0, NULL, NULL)
== DDI_FAILURE ||
ddi_create_minor_node(devi, "log", S_IFCHR, 5, NULL, NULL)
== DDI_FAILURE) {

ddi_remove_minor_node(devi, NULL);
return (-1);

}
log_dip = devi;
return (DDI_SUCCESS);

}

static int
logopen(

queue_t *q,
dev_t *devp,
int flag,
int sflag,
cred_t *cr)

{
int i;
struct log *lp;

/*
* A MODOPEN is invalid and so is a CLONEOPEN.
* This is because a clone open comes in as a CLONEMIN device open!!
*/
if (sflag)

return (ENXIO);

mutex_enter(&log_lock);
switch (getminor(*devp)) {

case CONSWMIN:
if (flag & FREAD) { /* you can only write to this minor */

mutex_exit(&log_lock);
return (EINVAL);

}
if (q->q_ptr) { /* already open */

202 STREAMS Programming Guide • January 2005

EXAMPLE 9–8 Opening the log Driver (Continued)

mutex_exit(&log_lock);
return (0);

}
lp = &log_log[CONSWMIN];
break;

case CLONEMIN:
/*
* Find an unused minor > CLONEMIN.
*/

i = CLONEMIN + 1;
for (lp = &log_log[i]; i < log_cnt; i++, lp++) {

if (!(lp->log_state & LOGOPEN))
break;

}
if (i >= log_cnt) {

mutex_exit(&log_lock);
return (ENXIO);

}
*devp = makedevice(getmajor(*devp), i); /* clone it */
break;

default:
mutex_exit(&log_lock);
return (ENXIO);

}

/*
* Finish device initialization.
*/
lp->log_state = LOGOPEN;
lp->log_rdq = q;
q->q_ptr = (void *)lp;
WR(q)->q_ptr = (void *)lp;
mutex_exit(&log_lock);
qprocson(q);
return (0);

}

Loop-Around Driver
The loop-around driver is a pseudo-driver that loops data from one open stream to
another open stream. The associated files are almost like a full-duplex pipe to user
processes. The streams are not physically linked. The driver is a simple multiplexer
that passes messages from one stream’s write queue to the other stream’s read queue.

To create a connection, a process opens two streams, obtains the minor device number
associated with one of the returned file descriptors, and sends the device number in an
ioctl(2) to the other stream. For each open, the driver open places the passed queue

Chapter 9 • STREAMS Drivers 203

pointer in a driver interconnection table, indexed by the device number. When the
driver later receives an M_IOCTL message, it uses the device number to locate the
other stream’s interconnection table entry, and stores the appropriate queue pointers
in both of the streams’ interconnection table entries.

Subsequently, when messages other than M_IOCTL or M_FLUSH are received by the
driver on either stream’s write side, the messages are switched to the read queue
following the driver on the other stream’s read side. The resultant logical connection is
shown in Figure 9–2. Flow control between the two streams must be handled
explicitly, since STREAMS do not automatically propagate flow control information
between two streams that are not physically connected.

Stream head

Queue pair

Loop-around driver

Module(s)

CLONE/
loop/dev3

Stream head

Queue pair

Module(s)

CLONE/
loop/dev7

FIGURE 9–2 Loop-Around Streams

Example 9–9 shows the loop-around driver code. The loop structure contains the
interconnection information for a pair of streams. loop_loop is indexed by the minor
device number. When a stream is opened to the driver, the driver places the address of
the corresponding loop_loop element in the q_ptr (private data structure pointer)
of the read-side and write-side queues. Since STREAMS clears q_ptr when the queue
is allocated, a NULL value of q_ptr indicates an initial open. loop_loop verifies that
this stream is connected to another open stream.

The code presented here for the loop-around driver represents a single-threaded,
uniprocessor implementation. Chapter 12 presents multiprocessor and multithreading
issues such as locking to prevent race conditions and data corruption.

Example 9–9 contains the declarations for the driver.

EXAMPLE 9–9 Declarations for the Loop-Around Driver

/* Loop-around driver */

204 STREAMS Programming Guide • January 2005

EXAMPLE 9–9 Declarations for the Loop-Around Driver (Continued)

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/signal.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/stat.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static int loop_identify(dev_info_t *);
static int loop_attach(dev_info_t *, ddi_attach_cmd_t);
static int loop_detach(dev_info_t *, ddi_detach_cmd_t);
static int loop_devinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int loopopen (queue_t*, dev_t*, int, int, cred_t*);
static int loopclose (queue_t*, int, cred_t*);
static int loopwput (queue_t*, mblk_t*);
static int loopwsrv (queue_t*);
static int looprsrv (queue_t*);

static dev_info_t *loop_dip; /* private devinfo pointer */

static struct module_info minfo = {
0xee12,
“loop”,
0,
INFPSZ,
512,
128

};

static struct qinit rinit = {
(int (*)()) NULL,
looprsrv,
loopopen,
loopclose,
(int (*)()) NULL,
&minfo,
NULL

};

static struct qinit winit = {
loopwput,
loopwsrv,
(int (*)()) NULL,
(int (*)()) NULL,
(int (*)()) NULL,
&minfo,
NULL

};

Chapter 9 • STREAMS Drivers 205

EXAMPLE 9–9 Declarations for the Loop-Around Driver (Continued)

static struct streamtab loopinfo= {
&rinit,
&winit,
NULL,
NULL

};

struct loop {
queue_t *qptr; /* back pointer to write queue */
queue_t *oqptr; /* pointer to connected read queue */

};

#define LOOP_CONF_FLAG (D_NEW | D_MP)

static struct cb_ops cb_loop_ops = {
nulldev, /* cb_open */
nulldev, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
(&loopinfo), /* cb_stream */
(int)(LOOP_CONF_FLAG) /* cb_flag */

};

static struct dev_ops loop_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
(loop_devinfo), /* devo_getinfo */
(loop_identify), /* devo_identify */
(nulldev), /* devo_probe */
(loop_attach), /* devo_attach */
(loop_detach), /* devo_detach */
(nodev), /* devo_reset */
&(cb_loop_ops), /* devo_cb_ops */
(struct bus_ops *)NULL, /* devo_bus_ops */
(int (*)()) NULL /* devo_power */

};

#define LOOP_SET ((‘l’<<8)|1) /* in a .h file */
#define NLOOP 64
static struct loop loop_loop[NLOOP];
static int loop_cnt = NLOOP;

/*

206 STREAMS Programming Guide • January 2005

EXAMPLE 9–9 Declarations for the Loop-Around Driver (Continued)

* Module linkage information for the kernel.
*/
extern struct mod_ops mod_strmodops;

static struct modldrv modldrv = {
&mod_driverops, "STREAMS loop driver", &loop_ops

};

static struct modlinkage modlinkage = {
MODREV_1, &modldrv, NULL

};

_init()
{

return (mod_install(&modlinkage));
}

_info(modinfop)
struct modinfo *modinfop;

{
return (mod_info(&modlinkage, modinfop));

}

_fini(void)
{

return (mod_remove(&modlinkage));

}

Example 9–10 contains the initialization routines.

EXAMPLE 9–10 Initialization Routines for the Loop-around Driver

static int
loop_identify(dev_info_t *devi)
{

if (strcmp(ddi_get_name(devi), "loop") == 0)
return (DDI_IDENTIFIED);

else
return (DDI_NOT_IDENTIFIED);

}

static int
loop_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{

if (cmd != DDI_ATTACH)
return (DDI_FAILURE);

if (ddi_create_minor_node(devi, "loopmajor", S_IFCHR, 0, NULL, 0)
== DDI_FAILURE) {

ddi_remove_minor_node(devi, NULL);
return (DDI_FAILURE);

}

Chapter 9 • STREAMS Drivers 207

EXAMPLE 9–10 Initialization Routines for the Loop-around Driver (Continued)

if (ddi_create_minor_node(devi, "loopx", S_IFCHR, 0, NULL, CLONE_DEV)
== DDI_FAILURE) {

ddi_remove_minor_node(devi, NULL);
return (DDI_FAILURE);

}

loop_dip = devi;

return (DDI_SUCCESS);
}

static int
loop_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{

if (cmd != DDI_DETACH)
return (DDI_FAILURE);

ddi_remove_minor_node(devi, NULL);
return (DDI_SUCCESS);

}

/*ARGSUSED*/
static int
loop_devinfo(

dev_info_t *dip,
ddi_info_cmd_t infocmd,
void *arg,
void **result)

{
int error;

switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:

if (loop_dip == NULL) {
error = DDI_FAILURE;

} else {
*result = (void *) loop_dip;
error = DDI_SUCCESS;

}
break;

case DDI_INFO_DEVT2INSTANCE:
*result = (void *)0;
error = DDI_SUCCESS;
break;

default:
error = DDI_FAILURE;

}
return (error);

}

208 STREAMS Programming Guide • January 2005

The open procedure (in Example 9–11) includes canonical clone processing that
enables a single file system node to yield a new minor device/vnode each time the
driver is opened. In loopopen, sflag can be CLONEOPEN, indicating that the driver
picks an unused minor device. In this case, the driver scans its private loop_loop
data structure to find an unused minor device number. If sflag is not set to
CLONEOPEN, the passed-in minor device specified by getminor(*devp) is used.

EXAMPLE 9–11 Opening the Loop-Around Driver

/*ARGSUSED*/
static int loopopen(

queue_t *q,
dev_t *devp,
int flag,
int sflag,
cred_t *credp)

{
struct loop *loop;
minor_t newminor;

if (q->q_ptr) /* already open */
return(0);

/*
* If CLONEOPEN, pick a minor device number to use.
* Otherwise, check the minor device range.
*/

if (sflag == CLONEOPEN) {
for (newminor = 0; newminor < loop_cnt; newminor++) {

if (loop_loop[newminor].qptr == NULL)
break;

}
} else

newminor = getminor(*devp);

if (newminor >= loop_cnt)
return(ENXIO);

/*
* construct new device number and reset devp
* getmajor gets the major number
*/

*devp = makedevice(getmajor(*devp), newminor);
loop = &loop_loop[newminor];
WR(q)->q_ptr = (char *) loop;
q->q_ptr = (char *) loop;
loop->qptr = WR(q);
loop->oqptr = NULL;

qprocson(q);

return(0);

Chapter 9 • STREAMS Drivers 209

EXAMPLE 9–11 Opening the Loop-Around Driver (Continued)

}

Because the messages are switched to the read queue following the other stream’s read
side, the driver needs a put procedure only on its write side. loopwput (in Example
9–12) shows another use of an ioctl(2). The driver supports the ioc_cmd value
LOOP_SET in the iocblk(9S) of the M_IOCTL message. LOOP_SET makes the driver
connect the current open stream to the stream indicated in the message. The second
block of the M_IOCTL message holds an integer that specifies the minor device
number of the stream to which to connect.

The LOOP_SET ioctl(2) processing involves several checks:

� Does the second block have the proper amount of data?
� Is the “to” device in range?
� Is the “to” device open?
� Is the current stream disconnected?
� Is the “to” stream disconnected?

If these checks pass, the read queue pointers for the two streams are stored in the
respective oqptr fields. This cross-connects the two streams indirectly, through
loop_loop.

The put procedure incorporates canonical flush handling.

loopwput queues all other messages (for example, M_DATA or M_PROTO) for
processing by its service procedure. A check is made that the stream is connected. If
not, M_ERROR is sent to the stream head. Certain message types can be sent upstream
by drivers and modules to the stream head where they are translated into actions
detectable by user processes. These messages may also modify the state of the stream
head:

M_ERROR Causes the stream head to lock up. Message transmission
between stream and user processes is terminated. All subsequent
system calls except close(2) and poll(2) fail. Also causes
M_FLUSH, clearing all message queues, to be sent downstream
by the stream head.

M_HANGUP Terminates input from a user process to the stream. All
subsequent system calls that would send messages downstream
fail. Once the stream head read message queue is empty, EOF is
returned on reads. This can also result in SIGHUP being sent to
the process group’s session leader.

M_SIG/M_PCSIG Causes a specified signal to be sent to the process group
associated with the stream.

210 STREAMS Programming Guide • January 2005

putnextctl(9F) and putnextctl1(9F) allocate a nondata (that is, not M_DATA,
M_DELAY, M_PROTO, or M_PCPROTO) type message, place one byte in the message (for
putnextctl1(9F)), and call the put(9E) procedure of the specified queue.

EXAMPLE 9–12 Use of ioctl to Copy Data From User Space to Kernel Space

static int loopwput(queue_t *q, mblk_t *mp)
{

struct loop *loop;
int to;

loop = (struct loop *)q->q_ptr;

switch (mp->b_datap->db_type) {
case M_IOCTL: {

struct iocblk *iocp;
int error=0;

iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmd) {

case LOOP_SET: {
/*
* if this is a transparent ioctl return an error;
* the complete solution is to convert the message
* into an M_COPYIN message so that the data is
* ultimately copied from user space
* to kernel space.
*/

if (iocp->ioc_count == TRANSPARENT) {
error = EINVAL;
goto iocnak;

}

/* fetch other minor device number */

to = *(int *)mp->b_cont->b_rptr;

/*
* Sanity check. ioc_count contains the amount
* of user supplied data which must equal the
* size of an int.
*/

if (iocp->ioc_count != sizeof(int)) {
error = EINVAL;
goto iocnak;

}

/* Is the minor device number in range? */

if (to >= loop_cnt || to < 0) {

Chapter 9 • STREAMS Drivers 211

EXAMPLE 9–12 Use of ioctl to Copy Data From User Space to Kernel Space (Continued)

error = ENXIO;
goto iocnak;

}

/* Is the other device open? */

if (!loop_loop[to].qptr) {
error = ENXIO;
goto iocnak;

}

/* Check if either dev is currently connected */

if (loop->oqptr || loop_loop[to].oqptr) {
error = EBUSY;
goto iocnak;

}

/* Cross connect the streams through
* the loopstruct
*/

loop->oqptr = RD(loop_loop[to].qptr);
loop_loop[to].oqptr = RD(q);

/*
* Return successful ioctl. Set ioc_count
* to zero, since no data is returned.
*/

mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

}

default:
error = EINVAL;
iocnak:

/*
* Bad ioctl. Setting ioc_error causes
* the ioctl call to return that particular errno.
* By default, ioctl returns EINVAL on failure.
*/

mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = error;
qreply(q, mp);
break;

}

212 STREAMS Programming Guide • January 2005

EXAMPLE 9–12 Use of ioctl to Copy Data From User Space to Kernel Space (Continued)

break;
}

case M_FLUSH: {

if (*mp->b_rptr & FLUSHW) {
flushq(q, FLUSHALL); /* write */
if (loop->oqptr)

flushq(loop->oqptr, FLUSHALL);
/* read on other side equals write on this side */

}

if (*mp->b_rptr & FLUSHR) {
flushq(RD(q), FLUSHALL);
if (loop->oqptr != NULL)

flushq(WR(loop->oqptr), FLUSHALL);
}

switch(*mp->b_rptr) {

case FLUSHW:
*mp->b_rptr = FLUSHR;
break;

case FLUSHR:
*mp->b_rptr = FLUSHW;
break;

}

if (loop->oqptr != NULL)
(void) putnext(loop->oqptr, mp);

break;
}

default: /* If this Stream isn’t connected, send
* M_ERROR upstream.
*/

if (loop->oqptr == NULL) {
freemsg(mp);
(void) putnextctl1(RD(q), M_ERROR, ENXIO);
break;

}
(void) putq(q, mp);

}

return (0);

}

Chapter 9 • STREAMS Drivers 213

Service procedures are required in this example on both the write side and read side
for flow control (see Example 9–13). The write service procedure, loopwsrv, takes
on the canonical form. The queue being written to is not downstream, but upstream
(found through oqptr) on the other stream.

In this case, there is no read-side put procedure so the read service procedure,
looprsrv, is not scheduled by an associated put procedure, as has been done
previously. looprsrv is scheduled only by being back-enabled when its upstream
flow control blockage is released. The purpose of the procedure is to re-enable the
writer (loopwsrv) by using oqptr to find the related queue. loopwsrv cannot be
directly back-enabled by STREAMS because there is no direct queue linkage between
the two streams. Note that no message is queued to the read service procedure.
Messages are kept on the write side so that flow control can propagate up to the
stream head. qenable(9F) schedules the write-side service procedure of the other
stream.

EXAMPLE 9–13 Loop-Around Driver Flow Control

staticintloopwsrv (queue_t*q)
{

mblk_t *mp;
structloop *loop;
loop = (structloop*) q->q_ptr;

while ((mp = getq (q)) != NULL){
/* Check if we can put the message up
* the other Stream read queue
*/
if (mp->b_datap->db_type <= QPCTL && !canputnext (loop->oqptr)) {

(void) putbq (q,mp); /*read-side is blocked*/
break;

}

/* send message to queue following other Stream read queue */

(void) putnext (loop->oqptr, mp);
}
return (0);

}

staticintlooprsrv (queue_t*q)
{

/* Enter only when "backenabled" by flow control */
structloop *loop;
loop = (structloop*) q->q_ptr;
if (loop->oqptr == NULL)

return (0);

/*manually enable write service procedure*/
qenable (WR (loop->oqptr));
return (0);

}

214 STREAMS Programming Guide • January 2005

loopclose breaks the connection between the streams, as shown in Example 9–14.
loopclose sends an M_HANGUP message up the connected stream to the stream head.

EXAMPLE 9–14 Breaking Stream Connections for Loop-Around Device

/*ARGSUSED*/
static int loopclose (

queue_t *q,
int flag,
cred_t *credp)

{
struct loop *loop;

loop = (struct loop *)q->q_ptr;
loop->qptr = NULL;

/*
* If we are connected to another stream, break the linkage, and
* send a hangup message. The hangup message causes the stream head
* to reject writes, allow the queued data to be read completely,
* and then return EOF on subsequent reads.
*/

if (loop->oqptr) {
(void) putnextctl(loop->oqptr, M_HANGUP);
((struct loop *)loop->oqptr->q_ptr)->oqptr = NULL;
loop->oqptr = NULL;

}

qprocsoff(q);
return (0);

}

An application using this driver would first open the clone device node created in the
attach routine (/devices/pseudo/clone@0:loopx) two times to obtain two
streams. The application can determine the minor numbers of the devices by using
fstat(2). Next, it joins the two streams by using the STREAMS I_STR ioctl(2)
(see streamio(7I)) to pass the LOOP_SET ioctl(2) with one of the stream’s minor
numbers as an argument to the other stream. Once this is completed, the data sent to
one stream using write(2) or putmsg(2) can be retrieved from the other stream with
read(2) or getmsg(2). The application also can interpose STREAMS modules between
the stream heads and the driver using the I_PUSH ioctl(2).

Chapter 9 • STREAMS Drivers 215

Summarizing STREAMS Device Drivers
STREAMS device drivers are in many ways similar to non-STREAMS device drivers.
The following points summarize the differences between STREAMS drivers and other
drivers:

� Drivers must have attach(9E) and probe(9E) entry points to initialize the driver.
The attach routine initializes the driver. Software drivers usually have little to
initialize, because there is no hardware involved.

� Drivers have open(9E) and close(9E) routines.

� Most drivers have an interrupt handler routine. The driver developer is responsible
for supplying an interrupt routine for the device’s driver. In addition to hardware
interrupts, the system also supports software interrupts. A software interrupt is
generated by calling ddi_trigger_softintr(9F).

� All minor nodes are generated by ddi_create_minor_node(9F).

STREAMS device drivers also are similar to STREAMS modules. The following points
summarize some of the differences between STREAMS modules and drivers.

� Messages that are not understood by the drivers should be freed.

� A driver must process all M_IOCTL messages. Otherwise, the stream head blocks
for an M_IOCNAK, M_IOCACK, or until the timeout (potentially infinite) expires.

� If a driver does not understand an ioctl(2), an M_IOCNAK message must be sent
upstream.

� The stream head locks up the stream when it receives an M_ERROR message, so
driver developers should be careful when using the M_ERROR message.

� A hardware driver must provide an interrupt routine.

� Multithreaded drivers must protect their own data structures.

For more information on global driver issues and non-STREAMS drivers, see Writing
Device Drivers.

216 STREAMS Programming Guide • January 2005

CHAPTER 10

STREAMS Modules

This chapter provides specific examples of how modules work, including code
samples.

� “Module Overview” on page 217
� “Data Flow Control” on page 224
� “Design Guidelines” on page 226

Module Overview
STREAMS modules process messages as they flow through the stream between an
application and a character device driver. A STREAMS module is a pair of initialized
queue structures and the specified kernel-level procedures that process data, status,
and control information for the two queues. A stream can contain zero or more
modules. Application processes push (stack) modules on a stream using the I_PUSH
ioctl(2) and pop (unstack) them using the I_POP ioctl(2).

STREAMS Module Configuration
Like device drivers, STREAMS modules are dynamically linked and can be loaded
into and unloaded from the running kernel.

Note – The word module is used differently when talking about drivers. A device driver
is a kernel-loadable module that provides the interface between a device and the
Device Driver Interface, and is linked to the kernel when it is first invoked.

A loadable module must provide linkage information to the kernel in an initialized
modlstrmod(9S) and three entry points: _init(9E), _info(9E), and _fini(9E).

217

STREAMS modules can be unloaded from the kernel when not pushed onto a stream.
A STREAMS module can prevent itself from being unloaded by returning an error
(selected from errno.h) from its _fini(9E) routine (EBUSY is a good choice).

Module Procedures
STREAMS module procedures (open, close, put, service) have already been
described in the previous chapters. This section shows some examples and further
describes attributes common to module put and service procedures.

A module’s put procedure is called by the preceding module, driver, or stream head,
and always before that queue’s service procedure. The put procedure does any
immediate processing (for example, high-priority messages), while the corresponding
service procedure performs deferred processing.

The service procedure is used primarily for performing deferred processing, with a
secondary task to implement flow control. Once the service procedure is enabled, it
can start but not finish before running user-level code. The put and service
procedures must not block because there is no thread synchronization being done.

Example 10–1 shows a STREAMS module read-side put procedure.

EXAMPLE 10–1 Read-side put Procedure

static int
modrput (queue_t *q, mblk_t *mp)
{

struct mod_prv *modptr;

modptr = (struct mod_prv *) q->q_ptr; /*state info*/

if (mp->b_datap->db_type >= QPCTL){ /*proc pri msg*/
putnext(q, mp); /* and pass it on */
return (0);

}

switch(mp->b_datap->db_type) {
case M_DATA: /* can process message data */

putq(q, mp); /* queue msg for service procedure */
return (0);

case M_PROTO: /* handle protocol control message */
.
.
.

default:
putnext(q, mp);
return (0);

}

}

218 STREAMS Programming Guide • January 2005

The preceding code does the following:

� A pointer to a queue defining an instance of the module and a pointer to a message
are passed to the put procedure.

� The put procedure performs a switch on the type of the message. For each
message type, the put procedure either enqueues the message for further
processing by the module service procedure, or passes the message to the next
module in the stream.

� High-priority messages are typically processed immediately. Immediate processing
is not required by the put procedure and the message is passed to the next
module.

� Ordinary (or normal) messages are either queued or passed along the stream.

Example 10–2 shows a module write-side put procedure.

EXAMPLE 10–2 Write-side put Procedure

static int
modwput (queue_t *q, mblk_t *mp)
{

struct mod_prv *modptr;

modptr = (struct mod_prv *) q->q_ptr; /*state info*/

if (mp->b_datap->db_type >= QPCTL){ /* proc pri msg and pass it on */
putnext(q, mp);
return (0);

}

switch(mp->b_datap->db_type) {
case M_DATA: /* can process message data queue msg */

putq(q, mp); /* for service procedure or pass message */
/* along with putnext(q,mp) */

return (0);

case M_PROTO:
.
.
.

case M_IOCTL: /* if cmd in msg is recognized */
/* process message and send reply back */
/* else pass message downstream */

default:
putnext(q, mp);
return (0);

}

}

The write-side put procedure, unlike the read side, can be passed M_IOCTL messages.
The module must recognize and process the ioctl(2) command, or pass the message
downstream if it does not recognize the command.

Chapter 10 • STREAMS Modules 219

Example 10–3 shows a general scenario employed by the module’s service
procedure.

EXAMPLE 10–3 STREAMS Module Service Procedure

static int
modrsrv (queue_t *q)
{

mblk_t *mp;

while ((mp = getq(q)) != NULL) {
/* flow control check */
if (!(mp->b_datap->db_type >= QPCTL) && !canputnext(q)) {

putbq(q, mp); /* return message */
return (0);

}
/* process the message */

.

.

.
putnext(q, mp); /* pass the result */

}
return (0);

}

The steps are:

1. Retrieve the first message from the queue using getq(9F).

2. If the message is high priority, process it immediately and pass it along the stream.

Otherwise, the service procedure should use canputnext(9F) to determine if
the next module or driver that enqueues messages is within acceptable
flow-control limits. canputnext(9F) searches the stream for the next module,
driver, or the stream head with a service procedure. When it finds one, it looks at
the total message space currently allocated to the queue for messages. If the
amount of space currently used at that queue reaches the high-water mark,
canputnext(9F) returns false (zero). If the next queue with a service procedure
is within acceptable flow-control limits, canputnext(9F) returns true (nonzero).

3. If canputnext(9F) returns false, the service procedure returns the message to
its own queue with putbq(9F). The service procedure can do no further
processing at this time, and it returns to the caller.

If canputnext(9F) returns true, the service procedure completes any processing
of the message. This can involve retrieving more messages from the queue,
allocating and deallocating header and trailer information, and performing control
functions for the module.

4. When the service procedure is finished processing the message, it calls
putnext(9F) to pass the resulting message to the next queue.

These steps are repeated until getq(9F) returns NULL (the queue is empty) or
canputnext(9F) returns false.

220 STREAMS Programming Guide • January 2005

Filter Module Example
The module shown next, crmod in Example 10–4, is an asymmetric filter. On the write
side, a newline is changed to a carriage return followed by a newline. On the
read side, no conversion is done.

EXAMPLE 10–4 Filter Module

/* Simple filter
* converts newline -> carriage return, newline
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static struct module_info minfo =
{ 0x09, "crmod", 0, INFPSZ, 512, 128 };

static int modopen (queue_t*, dev_t*, int, int, cred_t*);
static int modrput (queue_t*, mblk_t*);
static int modwput (queue_t*, mblk_t*);
static int modwsrv (queue_t*);
static int modclose (queue_t*, int, cred_t*);

static struct qinit rinit = {
modrput, NULL, modopen, modclose, NULL, &minfo, NULL};

static struct qinit winit = {
modwput, modwsrv, NULL, NULL, NULL, &minfo, NULL};

struct streamtab crmdinfo={ &rinit, &winit, NULL, NULL};

stropts.h includes definitions of flush message options common to user
applications. modrput is like modput from the null module.

In contrast to the null module example, a single module_info structure is shared by
the read side and write side. The module_info includes the flow control high-water
and low-water marks (512 and 128) for the write queue. (Though the same
module_info is used on the read queue side, the read side has no service
procedure so flow control is not used.) The qinit contains the service procedure
pointer.

The write-side put procedure, the beginning of the service procedure, and an
example of flushing a queue are shown in Example 10–5.

EXAMPLE 10–5 Flushing a Queue

static int
modwput(queue_t *q, mblk_t *mp)
{

Chapter 10 • STREAMS Modules 221

EXAMPLE 10–5 Flushing a Queue (Continued)

if (mp->b_datap->db_type >= QPCTL && mp->b_datap->db_type != M_FLUSH)
putnext(q, mp);

else
putq(q, mp); /* Put it on the queue */

return (0);
}
static int
modwsrv(queue_t *q)
{

mblk_t *mp;

while ((mp = getq(q)) != NULL) {
switch (mp->b_datap->db_type) {

default:
if (canputnext(q)) {

putnext(q, mp);
break;

} else {
putbq(q, mp);
return (0);

}

case M_FLUSH:
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
putnext(q, mp);
break;

case M_DATA: {
mblk_t *nbp = NULL;
mblk_t *next;
if (!canputnext(q)) {

putbq(q, mp);
return (0);

}
/* Filter data, appending to queue */
for (; mp != NULL; mp = next) {

while (mp->b_rptr < mp->b_wptr) {
if (*mp->b_rptr == ’\n’)

if (!bappend(&nbp, ’\r’))
goto push;

if (!bappend(&nbp, *mp->b_rptr))
goto push;

mp->b_rptr++;
continue;

push:
if (nbp)

putnext(q, nbp);
nbp = NULL;
if (!canputnext(q)) {

if (mp->b_rptr>=mp->b_wptr){
next = mp->b_cont;
freeb(mp);

222 STREAMS Programming Guide • January 2005

EXAMPLE 10–5 Flushing a Queue (Continued)

mp=next;
}
if (mp)

putbq(q, mp);
return (0);

}
} /* while */
next = mp->b_cont;
freeb(mp);
if (nbp)

putnext(q, nbp);
} /* for */

}
} /* switch */

}
return (0);

}

modwsrv() is the write service procedure. It takes a single argument, which is a
pointer to the write queue. modwsrv() switches on the message type, M_FLUSH or
M_DATA. modwsrv() processes only one high-priority message, M_FLUSH. No other
high-priority messages should reach modwsrv. High-priority messages other than
type M_FLUSH use putnext(9F) to avoid scheduling. The others are queued for the
service procedure. An M_FLUSH message is a request to remove messages on one or
both queues. It can be processed in the put or service procedure.

For an M_FLUSH message, modwsrv() checks the first data byte. If FLUSHW is set, the
write queue is flushed by flushq(9F), which takes two arguments, the queue pointer
and a flag. The flag indicates what should be flushed, data messages (FLUSHDATA) or
everything (FLUSHALL). Data includes M_DATA, M_DELAY, M_PROTO, and M_PCPROTO
messages. The choice of what types of messages to flush is specific to each module.

Ordinary messages are returned to the queue if canputnext(9F) returns false,
indicating the downstream path is blocked.

The differences in M_DATA processing between this and the example in “Message
Allocation and Freeing” on page 132 relate to the manner in which the new messages
are forwarded and flow controlled. For the purpose of demonstrating alternative
means of processing messages, this version creates individual new messages rather
than a single message containing multiple message blocks. When a new message block
is full, it is immediately forwarded with putnext(9F) rather than being linked into a
single large message. This alternative is not desirable because message boundaries are
altered, and because of the additional overhead of handling and scheduling multiple
messages.

Chapter 10 • STREAMS Modules 223

When the filter processing is performed (following push), flow control is checked
(with canputnext(9F)) after each new message is forwarded. This is necessary
because there is no provision to hold the new message until the queue becomes
unblocked. If the downstream path is blocked, the remaining part of the original
message is returned to the queue. Otherwise, processing continues.

Data Flow Control
To support the STREAMS flow control mechanism, modules that use service
procedures must invoke canputnext(9F) before calling putnext(9F), and use
appropriate values for the high-water and low-water marks. If your module has a
service procedure, you manage the flow control. If you don’t have a service
procedure, then there is no need to do anything.

The queue hiwat and lowat values limit the amount of data that can be placed on a
queue. These limits prevent depletion of buffers in the buffer pool. Flow control is
advisory in nature and can be bypassed. It is managed by high-water and low-water
marks and regulated by the utility routines getq(9F), putq(9F), putbq(9F), insq(9F),
rmvq(9F), and canputnext(9F).

The following scenario takes place normally in flow control:

A driver sends data to a module using putnext(9F), and the module’s put procedure
queues data using putq(9F). Calling putq(9F) enables the service procedure and
executes it at some indeterminate time in the future. When the service procedure
runs, it retrieves the data by calling getq(9F).

If the module cannot process data at the rate at which the driver is sending the data,
the following happens:

When the message is queued, putq(9F) increments the value of q_count by the size
of the message and compares the result to the module’s high-water limit (q_hiwat)
value for the queue. If the count reaches q_hiwat, putq(9F) sets the internal FULL
indicator for the queue. This causes messages from upstream in the case of a
write-side queue or downstream in the case of a read-side queue to be halted
(canputnext(9F) returns FALSE) until the queue count drops below q_lowat.
getq(9F) decrements the queue count. If the resulting count is below q_lowat,
getq(9F) back-enables and causes the service procedure to be called for any
blocked queue. (Flow control does not prevent reaching q_hiwat on a queue. Flow
control can exceed its maximum value before canputnext(9F) detects QFULL and
flow is stopped.)

The next example show a line discipline module’s flow control. Example 10–6 shows a
read-side line discipline module and a write-side line discipline module. Note that the
read side is the same as the write side but without the M_IOCTL processing.

224 STREAMS Programming Guide • January 2005

EXAMPLE 10–6 Read-side Line Discipline Module

/* read side line discipline module flow control */
static mblk_t *read_canon(mblk_t *);

static int
ld_read_srv(

queue_t *q) /* pointer to read queue */
{

mblk_t *mp; /* original message */
mblk_t *bp; /* canonicalized message */

while ((mp = getq(q)) != NULL) {
switch (mp->b_datap->db_type) { /* type of msg */
case M_DATA: /* data message */

if (canputnext(q)) {
bp = read_canon(mp);
putnext(q, bp);

} else {
putbq(q, mp); /* put messagebackinqueue */
return (0);

}
break;

default:
if (mp->b_datap->db_type >= QPCTL)

putnext(q, mp); /* high-priority message */
else { /* ordinary message */

if (canputnext(q))
putnext(q, mp);

else {
putbq(q, mp);
return (0);

}
}
break;

}
}

return (0);
}

/* write side line discipline module flow control */
static int
ld_write_srv(

queue_t *q) /* pointer to write queue */
{

mblk_t *mp; /* original message */
mblk_t *bp; /* canonicalized message */

while ((mp = getq(q)) != NULL) {
switch (mp->b_datap->db_type) { /* type of msg */
case M_DATA: /* data message */

if (canputnext(q)) {
bp = write_canon(mp);
putnext(q, bp);

Chapter 10 • STREAMS Modules 225

EXAMPLE 10–6 Read-side Line Discipline Module (Continued)

} else {
putbq(q, mp);
return (0);

}
break;

case M_IOCTL:
ld_ioctl(q, mp);
break;

default:
if (mp->b_datap->db_type >= QPCTL)

putnext(q, mp); /* high priority message */
else { /* ordinary message */

if (canputnext(q))
putnext(q, mp);

else {
putbq(q, mp);
return (0);

}
}
break;

}
}

return (0);

}

Design Guidelines
Module developers should follow these guidelines:

� If a module cannot process the message types, the message types must be passed to
the next module.

� The module that acts on an M_IOCTL message should send an M_IOCACK or
M_IOCNAK message in response to the ioctl(2). If the module cannot process the
ioctl(2), it should pass the M_IOCTL message to the next module.

� Modules should not pertain to any particular driver but should be compatible with
all drivers.

� In general, modules should not require the data in an M_DATA message to follow a
particular format, such as a specific alignment. This means modules can be
arbitrarily pushed on top of each other in a sensible fashion. Not following this
rule can limit module usability.

� Filter modules pushed between a service user and a service provider should
not alter the contents of the M_PROTO or M_PCPROTO block in messages. The
contents of the data blocks can be changed, but the message boundaries must be

226 STREAMS Programming Guide • January 2005

preserved.

htonl(3B) and ntohl(3B)
The htonl(3SOCKET) and ntohl(3SOCKET) conversion routines follow the XNS5
publications. The functions continue to convert 32-bit quantities between network byte
order and host byte order.

Chapter 10 • STREAMS Modules 227

228 STREAMS Programming Guide • January 2005

CHAPTER 11

Configuring STREAMS Drivers and
Modules

This chapter contains information about configuring STREAMS drivers and modules
into the Solaris operating environment. It describes how to configure a driver and a
module for the STREAMS framework only. For more in-depth information on the
general configuration mechanism, see Writing Device Drivers.

This chapter has the following organization:

� “Kernel Data Structures” on page 229
� “STREAMS Driver Entry Points” on page 233
� “Tunable Parameters” on page 240
� “STREAMS Administrative Driver” on page 240

Kernel Data Structures
The following sections contain descriptions of the pointer relationships maintained by
the kernel and the various data structures used in STREAMS drivers. When the kernel
accesses a driver, it uses a sequence of pointers in various data structures. It looks first
at the data structure relationship, and then the entry point interface for loading the
driver into the kernel and accessing the driver from the application level.

The order of data structures the kernel uses to get to a driver is as follows:

modlinkage(9S) Contains the revision number and a list of drivers to
dynamically load. It is used by mod_install in the _init
routine to load the module into the kernel. Points to a
modldrv(9S) or modlstrmod(9S).

modldrv(9S) Contains information about the driver being loaded and points
to the devops structure.

modlstrmod(9S) Points to an fmodsw(9S) structure (which points to a
streamtab(9S)). Only used by STREAMS modules.

229

dev_ops(9S) Contains list of entry points for a driver, such as attach, and
info. Also points to a cb_ops(9S) structure.

cb_ops(9S) Points to list of threadable entry points to driver, like open,
close, read, write, ioctl. Also points to the streamtab.

streamtab(9S) Points to the read and write queue init structures.

qinit(9S) Points to the entry points of the STREAMS portion of the driver,
such as put, srv, open, close, as well as the mod_info
structure. These entry points only process messages.

Each STREAMS driver or module contains the linkage connections for the various
data structures which is a list of pointers to dev_ops(9S) structures. In each
dev_ops(9S) structure is a pointer to the cb_ops(9S) structure. In the cb_ops(9S)
structure contains a pointer to the streamtab struct. If the driver is not a
STREAMS driver, streamtab is NULL. If the driver is a STREAMS driver,
streamtab contains initialization routines for the driver.

modlinkage
The definition of modlinkage(9S) is:

struct modlinkage {
int ml_rev; /* rev of loadable modules system */
void *ml_linkage[4]; /* NULL terminated list of linkage

* structures */

};

modldrv
The definition of modldrv(9S) is:

struct modldrv {
struct mod_ops *drv_modops;
char *drv_linkinfo;
struct dev_ops *drv_dev_ops;

};

modlstrmod
The definition of modlstrmod(9S) is below. It does not point to dev_ops(9S)
structures because modules can only be pushed onto an existing stream.

230 STREAMS Programming Guide • January 2005

struct modlstrmod {
struct mod_ops *strmod_modops;
char *strmod_linkinfo;
struct fmodsw *strmod_fmodsw;

};

dev_ops
The dev_ops(9S) structure represents a specific class or type of device. Each
dev_ops(9S) structure represents a unique device to the operating system. Each
device has its own dev_ops(9S) structure, which in turn contains a cb_ops(9S)
structure.

struct dev_ops {
int devo_rev; /* Driver build version */
int devo_refcnt; /* device reference count */
int (*devo_getinfo)(dev_info_t *dip, ddi_info_cmd_t infocmd,

void *arg, void **result);
int (*devo_identify)(dev_info_t *dip);
int (*devo_probe)(dev_info_t *dip);
int (*devo_attach)(dev_info_t *dip, ddi_attach_cmd_t cmd);
int (*devo_detach)(dev_info_t *dip, ddi_detach_cmd_t cmd);
int (*devo_reset)(dev_info_t *dip, ddi_reset_cmd_t cmd);
struct cb_ops *devo_cb_ops; /* cb_ops ptr for leaf driver*/
struct bus_ops *devo_bus_ops; /* ptr for nexus drivers */

};

cb_ops
The cb_ops(9S) structure is the SunOS 5 version of the cdevsw and bdevsw tables of
previous versions of UNIX System V. It contains character and block device
information and the driver entry points for non-STREAMS drivers.

struct cb_ops {
int *cb_open)(dev_t *devp, int flag, int otyp,

cred_t *credp);
int (*cb_close)(dev_t dev, int flag, int otyp,

cred_t *credp);
int (*cb_strategy)(struct buf *bp);
int (*cb_print)(dev_t dev, char *str);
int (*cb_dump)(dev_t dev, caddr_t addr,daddr_t blkno,

int nblk);
int (*cb_read)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_write)(dev_t dev, struct uio *uiop, cred_t *credp);
int (*cb_ioctl)(dev_t dev, int cmd, int arg, int mode,

cred_t *credp, int *rvalp);
int (*cb_devmap)(dev_t dev, dev_info_t *dip,

ddi_devmap_data_t *dvdp, ddi_devmap_cmd_t cmd,

Chapter 11 • Configuring STREAMS Drivers and Modules 231

off_t offset, unsigned int len, unsigned int prot,
cred_t *credp);

int (*cb_mmap)(dev_t dev, off_t off, int prot);
int (*cb_segmap)(dev_t dev, off_t off, struct as *asp,

caddr_t *addrp, off_t len, unsigned int prot,
unsigned int maxprot, unsigned int flags,
cred_t *credp);

int (*cb_chpoll)(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp);

int (*cb_prop_op)(dev_t dev, dev_info_t *dip,
ddi_prop_op_t prop_op, int mod_flags, char *name,
caddr_t valuep, int *length);

struct streamtab *cb_str; /* streams information */

/*
* The cb_flag fields are here to tell the system a bit about
* the device. The bit definitions are in <sys/conf.h>.
*/

int cb_flag; /* driver compatibility flag */

};

streamtab
The streamtab(9S) structure contains pointers to the structures that hold the routines
that actually initialize the reading and writing for a module.

If streamtab is NULL, there are no STREAMS routines and the entire driver is
treated as though it was a non-STREAMS driver. The streamtab(9S) indirectly
identifies the appropriate open, close, put, service, and administration
routines. These driver and module routines should generally be declared static.

struct streamtab {
struct qinit *st_rdinit; /* defines read queue */
struct qinit *st_wrinit; /* defines write queue */
struct qinit *st_muxrinit; /* for multiplexing */
struct qinit *st_muxwinit; /* drivers only */

};

qinit
The qinit(9S) structure (also shown in Appendix A) contains pointers to the
STREAMS entry points. These routines are called by the module-loading code in the
kernel.

struct qinit {
int (*qi_putp)(); /* put procedure */
int (*qi_srvp)(); /* service procedure */

232 STREAMS Programming Guide • January 2005

int (*qi_qopen)(); /* called on each open or push*/
int (*qi_qclose)(); /* called on last close or pop*/
int (*qi_qadmin)(); /* reserved for future use */
struct module_info *qi_minfo; /* info struct */
struct module_stat *qi_mstat; /* stats struct (opt)*/

};

STREAMS Driver Entry Points
As described in Chapter 9 and as seen in the previous data structures, there are four
STREAMS driver entry points:

load kernel module _init(9E), _fini(9E), _info(9E)

dev_ops attach(9E), getinfo(9E)

cb_ops open(9E), close(9E), read(9E), write(9E), ioctl(9E)

streamtab put(9E), srv(9E)

pts Example
The following real example was taken from the Solaris operating environment. The
driver pts(7D) is the pseudo terminal slave driver.

EXAMPLE 11–1 Stream Pseudo Terminal Module

/*
* Slave Stream Pseudo Terminal Module
*/

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <sys/debug.h>
#include <sys/cmn_err.h>
#include <sys/modctl.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static int ptsopen (queue_t*, dev_t*, int, int, cred_t);
static int ptsclose (queue_t*, int, cred_t*);

Chapter 11 • Configuring STREAMS Drivers and Modules 233

EXAMPLE 11–1 Stream Pseudo Terminal Module (Continued)

static int ptswput (queue_t*, mblk_t*);
static int ptsrsrv (queue_t*);
static int ptswsrv (queue_t*);

static int pts_devinfo(dev_info_t *dip, ddi_info_cmd_t infocmd,
void *arg,void **result);

static struct module_info pts_info = {
0xface,
"pts",
0,
512,
512,
128

};

static struct qinit ptsrint = {
NULL,
ptsrsrv,
ptsopen,
ptsclose,
NULL,
&pts_info,
NULL

};

static struct qinit ptswint = {
ptswput,
ptswsrv,
NULL,
NULL,
NULL,
&pts_info,
NULL

};

static struct streamtab ptsinfo = {
&ptsrint,
&ptswint,
NULL,
NULL

};

static int pts_identify(dev_info_t *devi);
static int pts_attach(dev_info_t *devi, ddi_attach_cmd_t cmd);
static int pts_detach(dev_info_t *devi, ddi_detach_cmd_t cmd);
static dev_info_t *pts_dip; /* private copy of devinfo ptr */

extern kmutex_t pt_lock;
extern pt_cnt;
static struct cb_ops cb_pts_ops = {

nulldev, /* cb_open */

234 STREAMS Programming Guide • January 2005

EXAMPLE 11–1 Stream Pseudo Terminal Module (Continued)

nulldev, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
&ptsinfo, /* cb_stream */
D_MP /* cb_flag */

};

static struct dev_ops pts_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
pts_devinfo, /* devo_getinfo */
pts_identify, /* devo_identify */
nulldev, /* devo_probe */
pts_attach, /* devo_attach */
pts_detach, /* devo_detach */
nodev, /* devo_reset */
&cb_pts_ops, /* devo_cb_ops */
(struct bus_ops*) NULL /* devo_bus_ops */

};

/*
* Module linkage information for the kernel.
*/

static struct modldrv modldrv = {
&mod_driverops, /* Type of module: a pseudo driver */
"Slave Stream Pseudo Terminal driver’pts’",
&pts_ops, /* driver ops */

};

static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL

};

int
_init(void)
{

return (mod_install(&modlinkage));
}

int

Chapter 11 • Configuring STREAMS Drivers and Modules 235

EXAMPLE 11–1 Stream Pseudo Terminal Module (Continued)

_fini(void)
{

return (mod_remove(&modlinkage));
}

int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}

static int
pts_identify(dev_info_t *devi)
{

if (strcmp(ddi_get_name(devi), "pts") == 0)
return (DDI_IDENTIFIED);

else
return (DDI_NOT_IDENTIFIED);

}

static int
pts_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{

int i;
char name[5];

if (cmd != DDI_ATTACH)
return (DDI_FAILURE);

for (i = 0; i < pt_cnt; i++) {
(void) sprintf(name, "%d", i);
if (ddi_create_minor_node(devi, name, S_IFCHR, i, NULL, 0)

== DDI_FAILURE) {
ddi_remove_minor_node(devi, NULL);
return (DDI_FAILURE);

}
}
return (DDI_SUCCESS);

}

static int
pts_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{

ddi_remove_minor_node(devi, NULL);
return (DDI_SUCCESS);

}

static int
pts_devinfo (dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,

void **result)
{

int error;

236 STREAMS Programming Guide • January 2005

EXAMPLE 11–1 Stream Pseudo Terminal Module (Continued)

switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:

if (pts_dip == NULL) {
error = DDI_FAILURE;

} else {
*result = (void *) pts_dip;
error = DDI_SUCCESS;

}
break;

case DDI_INFO_DEVT2INSTANCE:
*result = (void *) 0;
error = DDI_SUCCESS;
break;

default:
error = DDI_FAILURE;

}
return (error);

}

/* the open, close, wput, rsrv, and wsrv routines are presented
* here solely for the sake of showing how they interact with the
* configuration data structures and routines. Therefore, the
* bulk of their code is not included.
*/
static int
ptsopen(rqp, devp, oflag, sflag, credp)

queue_t *rqp; /* pointer to the read side queue */
dev_t *devp; /* pointer to stream tail’s dev */
int oflag; /* the user open(2) supplied flags */
int sflag; /* open state flag */
cred_t *credp; /* credentials */

{
qprocson(rqp);
return (0);

}

static int
ptsclose(rqp, flag, credp)

queue_t *rqp;
int flag;
cred_t *credp;

{
qprocsoff(rqp);
return (0);

}

static int
ptswput(qp, mp)

queue_t *qp;
mblk_t *mp;

{

Chapter 11 • Configuring STREAMS Drivers and Modules 237

EXAMPLE 11–1 Stream Pseudo Terminal Module (Continued)

return (0);
}

static int
ptsrsrv(qp)

queue_t *qp;
{

return (0);
}

static int
ptswsrv(qp)

queue_t *qp;
{

return (0);

}

STREAMS Module Configuration
The following example shows the structures you need if you are working with a
module instead of a driver. Notice that a modlstrmod(9S) is used in
modlinkage(9S), and fmodsw(9S) points to streamtab(9S) instead of going through
dev_ops(9S).

EXAMPLE 11–2 Module Structures

extern struct streamtab pteminfo;

static struct fmodsw fsw = {
"ptem",
&pteminfo,
D_NEW | D_MP

};

/*
* Module linkage information for the kernel.
*/
extern struct mod_ops mod_strmodops;

static struct modlstrmod modlstrmod = {
&mod_strmodops,
"pty hardware emulator",
&fsw

};

static struct modlinkage modlinkage = {

238 STREAMS Programming Guide • January 2005

EXAMPLE 11–2 Module Structures (Continued)

MODREV_1,
(void *)&modlstrmod,
NULL

};

Compilation
Below are some compile, assemble, and link lines for an example driver with two C
source files (example_one.c and example_two.c) and an assembly language
source file (example_asm.s).

cc -D_KERNEL -c example_one.c
cc -D_KERNEL -c example_two.c
as -P -D_ASM -D_KERNEL -I. -o example_asm.o example_asm.s

ld -r -o example example_one.o example_two.o example_asm.o

Kernel Loading
See Writing Device Drivers for more information on the sequence of installing and
loading device drivers. The basic procedure is to copy your driver to /kernel/drv
and your module to /kernel/strmod. For drivers run add_drv(1M).

Note – The autoload facility looks for modules to reside in /kernel/strmod. If the
object resides elsewhere the module will not be loaded.

Checking the Module Type
Below is sample code that enables a driver to determine if it is running as a regular
driver, a module, or a cloneable driver. The open routine returns sflag, which is
checked.

Chapter 11 • Configuring STREAMS Drivers and Modules 239

if (sflag == MODOPEN)
/* then the module is being pushed */

else if (sflag == CLONEOPEN)
/* then its being opened as a clonable driver */

else

/* its being opened as a regular driver */

Tunable Parameters
Certain system parameters referred to by STREAMS are configurable when building a
new operating system (see the file /etc/system and the SunOS User’s Guide to
System Administration for further details). These parameters are:

nstrpush Maximum number (should be at least 8) of modules that can be pushed
onto a single stream.

strmsgsz Maximum number of bytes of information that a single system call can
pass to a stream to be placed into the data part of a message (in
M_DATA blocks). Any write(2) exceeding this size is broken into
multiple messages. A putmsg(2) with a data part exceeding this size
fails with ERANGE. If STRMSGSZ is set to 0, the number of bytes passed
to a stream is infinite.

strctlsz Maximum number of bytes of information that a single system call can
pass to a stream to be placed into the control part of a message (in an
M_PROTO or M_PCPROTO block). A putmsg(2) with a control part that
exceeds this size fails with ERANGE.

STREAMS Administrative Driver
The autopush(1M) facility configures the list of modules for a STREAMS device. It
automatically pushes a prespecified list (/etc/iu.ap) of modules onto the stream
when the STREAMS device is opened and the device is not already open.

240 STREAMS Programming Guide • January 2005

The STREAMS Administrative Driver (SAD) (see the sad(7D) man page) provides an
interface to the autopush mechanism. System administrators can open the SAD
driver and set or get autopush information on other drivers. The SAD driver caches
the list of modules to push for each driver. When the driver is opened the stream head
checks the SAD’s cache to determine if the device is configured to have modules
pushed automatically. If an entry is found, the modules are pushed. If the device has
been opened but not closed, another open does not cause the list of the prespecified
modules to be pushed again.

Three options configure the module list:

� Configure for each minor device (that is, a specific major and minor device
number)

� Configure for a range of minor devices within a major device

� Configure for all minor devices within a major device

In addition, when configuring the module list, an optional anchor can be placed
within the module list. See “STREAMS Anchors” on page 243 for more information.

When the module list is cleared, a range of minor devices has to be cleared as a range
and not in parts.

Application Interface
The SAD driver is accessed through the /dev/sad/admin or /dev/sad/user node.
After the device is initialized, a program can perform any autopush configuration. The
program should open the SAD driver, read a configuration file to find out what
modules need to be configured for which devices, format the information into
strapush structures, and make the SAD_SAP ioctl(2) calls. See the sad(7D) man
page for more information.

All autopush operations are performed through SAD_SAP ioctl(2) commands to set
or get autopush information. Only the root user can set autopush information, but
any user can get the autopush information for a device.

The SAD_SAP ioctl is a form of ioctl(fd, cmd, arg), where fd is the file
descriptor of the SAD driver, cmd is either SAD_SAP (set autopush information) or
SAD_GAP (get autopush information), and arg is a pointer to the structure strapush.

The strapush structure is shown in the following example:

EXAMPLE 11–3 strapush Structure

/*
* maximum number of modules that can be pushed on a
* stream using the autopush feature should be no greater
* than nstrpush

Chapter 11 • Configuring STREAMS Drivers and Modules 241

EXAMPLE 11–3 strapush Structure (Continued)

*/
#define MAXAPUSH 8

/* autopush information common to user and kernel */

struct apcommon {
uint apc_cmd; /* command - see below */
major_t apc_major; /* major device number */
minor_t apc_minor; /* minor device number */
minor_t apc_lastminor; /* last minor dev # for range */
uint apc_npush; /* number of modules to push */

};

/* ap_cmd - various options of autopush */
#define SAP_CLEAR 0 /* remove configuration list */
#define SAP_ONE 1 /* configure one minor device */
#define SAP_RANGE 2 /* config range of minor devices */
#define SAP_ALL 3 /* configure all minor devices */

/* format of autopush ioctls */
struct strapush {

struct apcommon sap_common;
char sap_list[MAXAPUSH] [FMNAMESZ + 1]; /* module list */

};

#define sap_cmd sap_common.apc_cmd
#define sap_major sap_common.apc_major
#define sap_minor sap_common.apc_minor
#define sap_lastminor sap_common.apc_lastminor

#define sap_npush sap_common.apc_npush

A device is identified by its major device number, sap_major. The SAD_SAP
ioctl(2) has the following options:

SAP_ONE Configures a single minor device, sap_minor, of a driver

SAP_RANGE Configures a range of minor devices from sap_minor to
sap_lastminor, inclusive

SAP_ALL Configures all minor devices of a device

SAP_CLEAR Clears the previous settings by removing the entry with the matching
sap_major and sap_minor fields

The list of modules is specified as a list of module names in sap_list. MAXAPUSH
defines the maximum number of modules to push automatically.

242 STREAMS Programming Guide • January 2005

A user can query the current configuration status of a given major/minor device by
issuing the SAD_GAP ioctl(2) with sap_major and sap_minor values of the device
set. On successful return from this system call, the strapush structure is filled in with
the corresponding information for the device. The maximum number of entries that
the SAD driver can cache is determined by the tunable parameter NAUTOPUSH which
is found in the SAD driver’s master file.

The following is an example of an autopush configuration file in /etc/iu.ap:

major minor lastminor modules

wc 0 0 ldterm ttcompat
zs 0 1 ldterm ttcompat

ptsl 0 15 ldterm ttcompat

The first line configures a single minor device whose major name is wc. Minor
numbers start and end at 0, creating only one minor number. The modules
automatically pushed are ldterm and ttcompat. The second line configures the zs
driver whose minor device numbers are 0 and 1, and automatically pushes the same
modules. The last line configures the ptsl driver whose minor device numbers are
from 0 to 15, and automatically pushes the same modules.

STREAMS Anchors
An anchor is a lock that prevents the removal of a STREAMS module with an I_POP
call. You place an anchor in a stream on the module you want to lock. All modules at
or below the anchor are locked, and can only be popped by a privileged process.

prevents the removal of a STREAMS module with an I_POP call. You place an anchor
in a stream on the module you want to lock. All modules at or below the anchor are
locked, and can only be popped by a privileged process.

Anchors and Data Flow

Note – Hardening Information. Anchors do not affect the flow of data in the stream or
any other properties of the stream other than to lock down its plumbing. Any process
can place an anchor on a stream, but once placed, it can only be removed by a
privileged process.

Chapter 11 • Configuring STREAMS Drivers and Modules 243

An anchor is a per-stream entity; that is, there is exactly one per stream, and the
anchor is moved upstream or downstream as needed. When a stream is created, the
anchor is conceptually at the driver and therefore has no effect on the stream. By
issuing the I_ANCHOR ioctl on a stream, a process places the anchor at the
STREAMS module directly below the stream head. This means that a process can
move an existing anchor upstream by pushing additional STREAMS modules and
calling I_ANCHOR again.

Although anchors conceptually exist at a specific location in the stream, they are not a
data processing element and therefore do not physically exist in the stream (for
example, you will not find them parsing q_next pointers.) This means that anchors
will not appear in ioctls such as I_LOOK, and they are not included in the module
count on the stream.

To remove an anchor, a process pops the module at which the anchor was placed. The
anchor will only allow a privileged process to pop modules at or below it, which
provides security. Once an anchor has been removed, the anchor is not reset to its
previous location in the stream, but rather positioned at the STREAMS driver again.
When an unprivileged process attempts to pop an anchored module, the ioctl
returns with EPERM.

The I_ANCHOR ioctl is processed completely in the stream head, and is never sent
downstream. If a module or driver sends an I_ANCHOR to the stream head, the anchor
is silently discarded.

Using Anchors
An anchor can be placed on a STREAMS module by adding an [anchor] flag to an
autopush configuration file or by directly calling the I_ANCHOR ioctl.

For example, this configuration file specifies that autopush should place an anchor
between foo and babar in the bb stream:

major minor lastminor modules

aa 0 0 foo babar
bb 0 1 foo [anchor] babar

bb 131072 131073 foo [anchor] babar

The following two examples illustrate the use of anchors in a client/server setting in
which file descriptors are being passed. They call the I_ANCHOR ioctl directly.

In this example, the server program, fd_server.c, opens a stream, pushes modules
on to it, and places an anchor on rlmod. The client program, fd_client.c attempts
to pop modules, but can only pop rlmod or any modules below it if the client is run
as root. That is, if the client is run as non-root, the I_POP fails.

244 STREAMS Programming Guide • January 2005

This example also shows that once the module with the anchor on it is popped by the
privileged root process, the anchor is destroyed (technically, it is moved back to the
driver, where it has no effect). Subsequent attempts by the client to pop modules will
succeed, even if the client is run as non-root.

Finally, this example also illustrates the effect of passing file descriptors, rather than
copying modules or the stream as a whole. Specifically, because the stream is not
duplicated, all instances of the client operate on the same stream. In this case, running
the client repeatedly causes it to work down the list of modules, popping each one off
in turn, until all modules have been removed from the stream.

EXAMPLE 11–4 STREAMS Anchors fd_server.c

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <fcntl.h>
#include <stdio.h>
#include <stropts.h>
#include <sys/conf.h>
#include <sys/stat.h>
#include <unistd.h>
#include <stdlib.h>

#define SPIPE_PATH "/tmp/mypipe"

int
main(void)
{

int pipefd[2];
struct strrecvfd strrecvfd;
int streamfd;

/*
* Open a stream to hand back to the client. Since this
* is just an example, we don’t really care what we open;
* make a rlmod<->udp<->ip stream. Stick an anchor above
* rlmod so the client cannot I_POP rlmod unless it’s root.
*/
streamfd = open("/dev/udp", O_RDWR);
if (streamfd == -1) {

perror("open");
return (EXIT_FAILURE);

}

if (ioctl(streamfd, I_PUSH, "rlmod") == -1) {
perror("ioctl (I_PUSH) rlmod");
return (EXIT_FAILURE);

}

if (ioctl(streamfd, I_ANCHOR, 0) == -1) {
perror("ioctl (I_ANCHOR)");
return (EXIT_FAILURE);

Chapter 11 • Configuring STREAMS Drivers and Modules 245

EXAMPLE 11–4 STREAMS Anchors fd_server.c (Continued)

}

/*
* Open ourselves for business by making a mounted stream.
*/
if (pipe(pipefd) == -1) {

perror("pipe");
return (EXIT_FAILURE);

}

if (ioctl(pipefd[1], I_PUSH, "connld") == -1) {
perror("ioctl (I_PUSH) connld");
return (EXIT_FAILURE);

}

(void) umask(0);
(void) close(creat(SPIPE_PATH, 0666));

if (fattach(pipefd[1], SPIPE_PATH) == -1) {
perror("fattach");
return (EXIT_FAILURE);

}

/*
* Accept clients (iterative server)
*/
for (;;) {

if (ioctl(pipefd[0], I_RECVFD, &strrecvfd) == -1) {
perror("ioctl (I_RECVFD)");
return (EXIT_FAILURE);

}

/*
* Send the STREAMS descriptor back to the client.
*/
if (ioctl(strrecvfd.fd, I_SENDFD, streamfd) == -1) {

perror("ioctl (I_SENDFD)");
return (EXIT_FAILURE);

}
}

}

EXAMPLE 11–5 STREAMS Anchors fd_client.c

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <fcntl.h>
#include <stdio.h>
#include <stropts.h>

246 STREAMS Programming Guide • January 2005

EXAMPLE 11–5 STREAMS Anchors fd_client.c (Continued)

#include <sys/conf.h>
#include <unistd.h>
#include <stdlib.h>

#define SPIPE_PATH "/tmp/mypipe"

int
main(void)
{

int serverfd;
struct strrecvfd strrecvfd;

/*
* Open a connection to the server.
*/
serverfd = open(SPIPE_PATH, O_RDWR);
if (serverfd == -1) {

perror("open");
return (EXIT_FAILURE);

}

/*
* Receive the STREAMS descriptor from the server.
*/
if (ioctl(serverfd, I_RECVFD, &strrecvfd) == -1) {

perror("ioctl (I_RECVFD)");
return (EXIT_FAILURE);

}

(void) printf("received the STREAMS descriptor; attempting to pop "
"the top module\n");

/*
* Try to remove the top module from the stream.
*/
if (ioctl(strrecvfd.fd, I_POP, 0) == -1)

perror("ioctl (I_POP)");

(void) printf("modules on the stream: ");
(void) fflush(stdout);

/*
* Print out what the stream currently looks like.
*/
(void) dup2(strrecvfd.fd, 0);
(void) system("strconf | paste -s -d’ ’ -");

return (EXIT_SUCCESS);

}

Chapter 11 • Configuring STREAMS Drivers and Modules 247

248 STREAMS Programming Guide • January 2005

CHAPTER 12

Multithreaded STREAMS

This chapter describes how to write a multithreaded STREAMS driver or module. It
covers the necessary conversion topics so that new and existing STREAMS modules
and drivers run in the multithreaded kernel. It describes STREAMS-specific
multithreading issues and techniques. For general information, see Writing Device
Drivers.

This chapter contains the following information:

� “Multithreaded (MT) STREAMS Overview” on page 249
� “MT STREAMS Framework” on page 251
� “MT STREAMS Perimeters” on page 252
� “MT SAFE Modules and Drivers” on page 258
� “Routines Used Inside a Perimeter” on page 259
� “MT SAFE Modules Using Explicit Locks” on page 263
� “Preparing to Port” on page 264
� “Sample Multithreaded Device Driver Using a Per Module Inner Perimeter”

on page 266
� “Sample Multithreaded Module With Outer Perimeter” on page 273

Multithreaded (MT) STREAMS
Overview
The SunOS 5 operating system is fully multithreaded, which means that it can make
effective use of the available parallelism of a symmetric shared-memory
multiprocessor computer. All kernel subsystems are multithreaded: scheduler, virtual
memory, file systems, block/character/STREAMS I/O, networking protocols, and
device drivers.

249

MT STREAMS requires you to use some different concepts and terminology. These
concepts apply not only to STREAMS drivers, but to all device drivers in the Solaris
operating environment. For a more complete description of these terms, see Writing
Device Drivers. Additionally, see Chapter 1 of this guide for definitions and Chapter 8
for elements of MT drivers.

Some of the multithreaded terms and ideas are.

Thread Sequence of instructions executed within context of a
process.

Lock Mechanism to restrict access to data structures.

Single Threaded Restricting access to a single thread.

Multithreaded Allowing two or more threads access to a data element.

Multiprocessing Two or more CPUs concurrently executing the Operating
System.

Concurrency Simultaneous execution.

Preemption Suspending execution for the next thread to run.

Monitor Portion of code that is single-threaded.

Mutual Exclusion Exclusive access to a data element by a single thread at one
time.

Condition Variables Kernel event synchronization primitives.

Counting Semaphores Memory-based synchronization mechanism.

Readers/Writer Locks Data lock allowing one writer or many readers at one time.

Callback On occurrence of a specific event, call a module function.

Synchronous Access Only one thread is allowed in the perimeter. Upon return
from a call the action is complete; when the thread is done,
the job is done.

Asynchronous Access Multiple threads are allowed in the perimeter. Upon return
form a call there is no guarantee that the job is complete.

Perimeter Claim A thread has synchronous access in the perimeter. The claim
prevents subsequent synchronous access until the claim is
released.

Exclusive Access Calling a synchronous entry point in the perimeter.

Writer A thread that has exclusive access to a perimeter.

250 STREAMS Programming Guide • January 2005

MT STREAMS Framework
The STREAMS framework consists of the stream head, documented STREAMS data
structures (such as queue_t, mblk_t) and STREAMS utility routines including
STREAMS facilities documented in the Device Driver Interface (DDI). The STREAMS
framework enables multiple kernel threads to concurrently enter and execute code
defined by each module, including the open, close, put, and service procedures
of each queue within the system.

The first goal of the SunOS 5 system is to preserve the interface and flavor of
STREAMS and to shield module code as much as possible from the impact of
migrating to the multithreaded kernel. Most of the locking is hidden from the
programmer and performed by the STREAMS kernel framework. As long as module
code uses the standard, documented programmatic interfaces to shared kernel data
structures (such as queue_t, mblk_t, and dblk_t), and adheres to the DDI/DKI, the
user does not have to explicitly lock these framework data structures.

The second goal is to make writing MT SAFE modules simple. One of the ways that
the framework accomplishes this is by using the MT STREAMS perimeter mechanisms
for controlling and restricting concurrent access to a STREAMS module. STREAMS
perimeters allow the module writer to select the level of concurrency that a module
can tolerate.

STREAMS Framework Integrity
The STREAMS framework ensures the integrity of the STREAMS data structures, such
as queue_t, mblk_t, and dblk_t as long as the module conforms to the DDI/DKI,
and does not directly access global operating system data structures or facilities not
described in the DDI/DKI.

The q_next fields of the queue_t structure are not modified by the framework while
a thread is actively executing within a synchronous entry point. However the q_next
field might change while a thread is executing within an asynchronous entry point.

The q_ptr field is considered private to the module and the framework will not
manipulate its value. When making a module MT Safe, the integrity of the
module-private data structures must be ensured by the module itself. This integrity
can be guaranteed by creating private locks, or by the control of concurrency within
the module by the use of STREAMS perimeters. Knowing what the framework
supports is critical in deciding what the module writer must provide.

Chapter 12 • Multithreaded STREAMS 251

Note – Hardening Information. As in previous Solaris operating environment releases, a
module must not call another module’s put or service procedures directly. The
DDI/DKI routines putnext(9F), put(9F), and other routines in Section 9F must be
used to pass a message to another queue. Calling another module’s routines directly
circumvents the design of the MT STREAMS framework and can yield unknown
results.

Note – Hardening Information. Once a message is passed using a putq, put, putnext,
as well as the perimeter function qwriter, it cannot be accessed again because the
use of this message has been given to the new routine. If a reference needs to be
retained by the module, it should copy it by using copyb, copymsg, dupb, or
dupmsg.

Message Ordering
The STREAMS framework guarantees the ordering of messages along a stream if all
the modules in the stream preserve message ordering internally. This ordering
guarantee only applies to messages that are sent along the same stream and produced
by the same source.

The STREAMS framework does not guarantee that a message has been seen by the
next put procedure when the call to putnext(9F) or qreply(9F) returns.

MT STREAMS Perimeters
Solaris STREAMS uses a facility known as perimeters for handling thread concurrency
in STREAMS modules. Perimeters allow the module writer to select conditions that
will result in exclusive access to a queue, a pair of queues, or all the queues in a
module. This makes multithreading issues easier to work with in STREAMS.

252 STREAMS Programming Guide • January 2005

Perimeters work somewhat like reader/writer locks, where there can be many readers,
but only one writer. A synchronous access to the perimeter is similar to holding the
writer lock, in that only one thread can be in the perimeter at a time. Synchronous
entry will hold a perimeter exclusively until the thread eventually unwinds out of the
perimeter (usually when it returns from a put/putnext or a qwriter call that
initially invoked the synchronous behavior). While a thread has synchronous access to
the perimeter, all other access (synchronous or asynchronous) will be deferred.

An asynchronous access is similar to the reader lock, where many threads can be in the
perimeter at a time, including the possible recursive entry of a thread previously
entering the perimeter. The asynchronous “claim” is not released until the thread
winds out of the put/putnext. Because asynchronous access is similar to the reader
lock, any synchronous access will be deferred or blocked until all asynchronous claims
are released.

Caution – Hardening Information. The perimeter data is private to the STREAMS
framework, and should not be modified by the module itself.

STREAMS enables the definition of two synchronous perimeters. One is an inner
perimeter, and is used to define synchronous entry points on a queue or a queue pair
(the read and write queue’s for a specific module instance). It also identifies an outer
perimeter, which is made up of all the inner perimeters for all the queues for a specific
module.

There is also a special inner perimeter, PERMOD, that is similar to the outer perimeter,
but does not have the overhead of the outer perimeter. PERMOD identifies a single
synchronous entry point for all queues for this module. Because PERMOD is like a
hybrid of an inner perimeter and outer perimeter, the PERMOD perimeter cannot have
an outer perimeter.

Inner Perimeters
For the most part, the module writer does not need to specify an inner perimeter, as
the STREAMS framework automatically creates it for the module. What needs to be
specified is the type of perimeter, and the concurrency of the perimeter.

Inner perimeters come in two types:

D_PERQ Enables synchronous entry to be different between the read queue and
the write queue. Therefore, if a synchronous putnext is occurring on
the read queue, a synchronous or asynchronous putnext can occur on
the write queue (or other (a)synchronous access on the write queue).

Chapter 12 • Multithreaded STREAMS 253

D_QPAIR Protects both the read queue and the write queue, so synchronous access
to one queue will prevent synchronous or asynchronous access to the
other queue.

Another perimeter, D_PERMOD is slightly different, and is discussed in “PERMOD
Perimeter” on page 255.

An inner perimeter becomes exclusive (writer) whenever an inner synchronous entry
point is encountered. By default all the entry points are considered to be synchronous
until enabled as “shared” entry points. As previously stated, synchronous entry points
remain exclusive until the thread returns to the caller of the synchronous entry point.
If the synchronous function calls putnext, the perimeter remains exclusive across the
putnext, up till the synchronous function can return to its caller, and subsequent
entries into the perimeter will be deferred.

Inner perimeters can specify additional concurrency on the STREAMS entry points for
open/close, put/putnext, service, and callbacks as shown in Table 12–4.

Outer Perimeters
The module writer can also specify an outer perimeter. An outer perimeter is the
linked list of all inner perimeters for all queues associated with the specified module.
Entering the outer perimeter is equivalent to entering each of the inner perimeters. As
this can also be an expensive operation, the outer perimeter is only entered
synchronously, and upon successful completion of a qwriter(PERIM_OUTER) makes
the outer perimeter exclusive. This also has the effect of making each of the inner
perimeters exclusive.

Use of outer perimeters is reserved for module data that has an effect on all queue
instances of the module, such as module state that might allow messages to pass
between other instances of the module, information that allows a driver to configure
shared hardware, or at open/close time when information is needed for all open
instances for a module.

Outer perimeters, at this time, have only one concurrency modifier. This is
D_MTOCEXCL, and instructs the framework to enter the outer perimeter on each open
and close of queues for the module.

254 STREAMS Programming Guide • January 2005

PERMOD Perimeter
The PERMOD perimeter is a hybrid of the inner and outer perimeter. It is implemented
primarily for modules that might have a large number of queue instances, and cannot
afford the latency for entering the outer perimeter. Because it is a hybrid, PERMOD
perimeters cannot have an outer perimeter, and modules that have D_MTPERMOD and
D_MTOUTPERIM defined will fail at open. As PERMOD perimeters are implemented as
inner perimeters, they share all the concurrency states as the inner perimeter, see Table
12–2.

Hot Perimeters
All STREAMS modules and drivers in the Solaris operating environment must be
D_MTSAFE, and must account for multithreading. Specifying an inner and/or outer
perimeter will handle concurrency issues that the module writer may encounter while
developing the module or driver. Experienced STREAMS programmers might decide
that the perimeter should not have any synchronous entry points, and should run
fully hot. To define a fully-hot perimeter, the module writer need only specify the
D_MTSAFE flag without an inner perimeter type (D_MTPERQ, D_MTQPAIR,
D_MTPERMOD) and without an outer perimeter (D_MTOUTPERIM).

Caution – Hardening Information. All STREAMS entry points run concurrently, and in a
multiprocessor environment, there can be a put procedure running simultaneously
with a service procedure or even a close procedure. So the writer must take
precautions against kernel panics by making sure that other concurrent threads will
not reference data the current thread is trying to change or remove.

Defining Perimeter Types
To configure a module with perimeter types and concurrency types, use the f_flag
field in fmodsw(9s) with D_MTSAFE or’d with the appropriate perimeter type flags.
See Table 12–1.

The easiest method is to initially implement your module and configure it to be
per-module single threaded, and increase the level of concurrency as needed. “Sample
Multithreaded Device Driver Using a Per Module Inner Perimeter” on page 266
provides a complete example of using a per-module perimeter, and “Sample
Multithreaded Module With Outer Perimeter” on page 273 provides a complete
example with a higher level of concurrency.

Chapter 12 • Multithreaded STREAMS 255

To configure a driver with perimeter and concurrency types, put MT_SAFE and the
appropriate perimeter flags in the cb_flag field of the cb_ops structure for the
driver.

Choosing a Perimeter Type
Table 12–1 summarizes examples of when to use an inner perimeter, or both an inner
and outer perimeter for a STREAMS module.

TABLE 12–1 Choosing a Perimeter Type

Module Description Perimeter Type

A module where the put procedure reads as well as modifies module global
data. Use a per-module inner perimeter on the single-threaded module.

inner

A module where all the module private data associated with a queue (or a
read/write pair of queues) can be configured to be single-threaded. Use an
inner perimeter for each corresponding queue (or queue pair) .

inner

A module where most of the module private data is associated with a queue
(or a queue pair); but has some module global data that is mostly read. Use
an inner perimeter for the queue (or queue pair) plus an outer perimeter for
global data. Use qwriter to protect the sections where it modifies the
module’s global data (see “qwriter” on page 260).

inner and outer

A module that requires higher concurrency for certain message types while
not requiring message ordering. Use an inner perimeter for shared access to
the put procedures. Use an outer perimeter for put procedures that require
exclusive access. Use qwriter when messages are handled in the put
procedures that require exclusive access (see “qwriter” on page 260).

inner and outer

A hardware driver can use an appropriate set of inner and outer perimeters
to restrict the concurrency in the open, close, put, and service
procedures. With explicit synchronization primitives (mutex, condition
variables, readers/writer, semaphore), these drivers restrict the concurrency
when accessing the hardware registers in interrupt handlers. When
designing such drivers, you need to be aware of the issues listed in “MT
SAFE Modules Using Explicit Locks” on page 263.

inner and outer

Several flags specify the inner and outer perimeters (see Table 12–2 and Table 12–3).
These flags fall into three categories:

� Define the presence and scope of the inner perimeter
� Define the presence of the outer perimeter (which can have only one scope)
� Modify the default concurrency for the different entry points

You configure the inner perimeter by choosing one of the mutually exclusive flags
shown in Table 12–2.

256 STREAMS Programming Guide • January 2005

TABLE 12–2 Inner Perimeter Flags

Flag Description

D_MTPERMOD The module has an inner perimeter that encloses all the
module’s queues

D_MTAPAIR The module has an inner perimeter around each read/write
pair of queues

D_MTPERQ The module has an inner perimeter around each queue

none The module has no inner perimeter

Configure the outer perimeter using the flag shown in Table 12–3.

TABLE 12–3 Outer Perimeter Flag

Flag Description

D_MTOUTEPERIM In addition to an inner perimeter (or none), the module has an
outer perimeter that encloses all the module’s queues. This
can be combined with all the inner perimeter options except
D_MTPERMOD.

By default all synchronous entry points enter the inner perimeter exclusively and
enter the outer perimeter shared. To modify this behavior use the flags shown in Table
12–4.

TABLE 12–4 Modify Exclusive/Shared Access Flags

Flag Description

D_MTOCEXCL open/close entry points are synchronous.

D_MTPUTSHARED put/putnext entry points are asynchronous

_D_MTOCSHARED open/close entry points are asynchronous (experimental)

_D_MTCBSHARED callbacks (via qtimeout, qbufcall) are asynchronous
(experimental)

_D_MTSVCSHARED service procedures are asynchronous (experimental)

Caution – Hardening Information. Concurrency flags designated with a preceding
underbar “_” are experimental, and their behavior might change in the future and
should not be relied upon.

Chapter 12 • Multithreaded STREAMS 257

MT SAFE Modules and Drivers
A module or a driver can be either MT SAFE or MT UNSAFE. A module or driver is
MT SAFE when its data values are correct regardless of the order that multiple threads
access and modify the data. For MT SAFE mode, use MT STREAMS perimeters to
restrict the concurrency in a module or driver to:

� Per-module single threading
� Per queue-pair single threading
� Per queue single threading
� Per queue or per queue-pair single threading of the put and service procedures

with per module single threading of the open and close routines
� Unrestricted concurrency in the put and service procedures with the ability to

restrict the concurrency when handling messages that modify data
� Completely unrestricted concurrency

MT SAFE Module
To configure a module as being MT SAFE, use the f_flag field in fmodsw(9S).

The easiest method is to initially implement your module and configure it to be
per-module single threaded, and increase the level of concurrency as needed. “Sample
Multithreaded Device Driver Using a Per Module Inner Perimeter” on page 266
provides a complete example of using a per-module perimeter, and “Sample
Multithreaded Module With Outer Perimeter” on page 273 provides a complete
example with a higher level of concurrency.

MT SAFE modules can use different MT STREAMS perimeters to restrict the
concurrency in the module to a concurrency that is natural given the data structures
that the module contains, thereby removing the need for module private locks (see
“MT STREAMS Perimeters” on page 252 for information on perimeters). A module
that requires unrestricted concurrency can be configured to have no perimeters. Such
modules have to use explicit locking primitives to protect their data structures. While
such modules can exploit the maximum level of concurrency allowed by the
underlying hardware platform, they are more complex to develop and support. See
“MT SAFE Modules Using Explicit Locks” on page 263.

Independent of the perimeters, there will be at most one thread allowed within any
given queue’s service procedure.

Your MT SAFE modules should use perimeters and avoid using module private locks
(mutex, condition variables, readers/writer, or semaphore). Should you opt to use
module private locks, you need to read “MT SAFE Modules Using Explicit Locks”
on page 263 along with this section.

258 STREAMS Programming Guide • January 2005

Note – MT UNSAFE mode for STREAMS modules was temporarily supported as an
aid in porting SVR4 modules; however, MT UNSAFE is not supported after SVR4.
Beginning with the release of the Solaris 7 operating environment, no MT UNSAFE
module or driver has been supported.

Note – Upper and lower multiplexors share the same perimeter type and concurrency
level.

MT SAFE Driver
To configure a driver as being MT SAFE, initialize the cb_ops(9S) and dev_ops(9S)
data structures. This code must be in the header section of your module. For more
information, see Example 12–1, and dev_ops(9S).

The driver is configured to be MT SAFE by setting the cb_flag to D_MP. It also
specifies any MT STREAMS perimeters by setting flags in the cb_flag field. (See
mt-streams(9F).)

Routines Used Inside a Perimeter
This section describes the routines and data fields used after you enter a perimeter.

qprocson/qprocsoff
The routines qprocson(9F) and qprocsoff(9F) respectively enable and disable the
put and service procedures of the queue pair. Before calling qprocson(9F) and
after calling qprocsoff(9F), the module’s put and service procedures are
disabled; messages flow around the module as if it were not present in the stream.

Call qprocson(9F) in the first open of a module, but only after allocating and
initializing any module resources on which the put and service procedures depend.
Call the qprocsoff routine in the close routine of the module before deallocating
any resources on which the put and service procedures depend.

Chapter 12 • Multithreaded STREAMS 259

Note – To avoid deadlocks, modules must not hold private locks across the calls to
qprocson(9F) or qprocsoff(9F).

qtimeout/qunbufcall
The timeout(9F) and bufcall(9F) callbacks are asynchronous. For a module using
MT STREAMS perimeters, the timeout(9F) and bufcall(9F) callback functions
execute outside the scope of the perimeters. This makes synchronization of callbacks
with the rest of the module complex.

To make timeout(9F) and bufcall(9F) functionality easier to use for modules with
perimeters, there are additional interfaces that use synchronous callbacks. These
routines are qtimeout(9F), quntimeout(9F), qbufcall(9F), and qunbufcall(9F).
When using these routines, the callback functions are executed inside the perimeters,
and hence have the same concurrency restrictions as the put and service
procedures.

qwriter
Modules can use the qwriter(9F) function to upgrade from shared to exclusive
access at a perimeter. For example, a module with an outer perimeter can use
qwriter(9F) in the put procedure to upgrade to exclusive access at the outer
perimeter. A module where the put procedure runs with shared access at the inner
perimeter (D_MTPUTSHARED) can use qwriter(9F) in the put procedure to upgrade
to exclusive access at the inner perimeter.

Returning from a qwriter call does not mean that the callback function has
executed. If the framework can become exclusive in the qwriter call, it will enter the
perimeter synchronously, and execute the callback. If it cannot, the callback will
be deferred. It is a good idea for any caller of qwriter to immediately return to its
caller as there is little that can be accomplished in this thread of execution.

Caution – Hardening Information. Do not call qwriter with another queue, as qwriter
assumes that the caller has already made a claim to the perimeter that the queue is
associated with (asynchronous entry), and calling another perimeter will cause
problems.

260 STREAMS Programming Guide • January 2005

Note – qwriter(9F) cannot be used in the open or close procedures. If a module
needs exclusive access at the outer perimeter in the open and/or close procedures, it
has to specify that the outer perimeter should always be entered exclusively for open
and close (using D_MTOCEXCL).

The STREAMS framework guarantees that all deferred qwriter(9F) callbacks
associated with a queue have executed before the module’s close routine is called for
that queue.

For an example of a driver using qwriter(9F) see Example 12–2.

qwait
A module that uses perimeters and must wait in its open or close procedure for a
message from another STREAMS module has to wait outside the perimeters;
otherwise, the message would never be allowed to enter its put and service
procedures. This is accomplished by using the qwait(9F) interface. See qwriter(9F)
man page for an example. For information about signal reception during a close, see
“close Routine” on page 113

Asynchronous Callback Functions
Interrupt handlers and other asynchronous callback functions require special care by
the module writer, because they can execute asynchronously to threads executing
within the module open, close, put, and service procedures.

For modules using perimeters, use qtimeout(9F) and qbufcall(9F) instead of
timeout(9F) and bufcall(9F). The qtimeout and qbufcall callbacks are
synchronous and consequently introduce no special synchronization requirements.

Because a thread can enter the module at any time, you must ensure that the
asynchronous callback function acquires the proper private locks before accessing
private module data structures, and releases these locks before returning. You must
cancel any outstanding registered callback routines before the data structures on
which the callback routines depend are deallocated and the module closed.

� For hardware device interrupts, this involves disabling the device interrupts.

� Outstanding callbacks from timeout(9F) and bufcall(9F) must be canceled by
calling untimeout(9F) and unbufcall(9F).

The module cannot hold certain private locks across calls to untimeout(9F) or
unbufcall(9F). These locks are those that the module’s timeout(9F) or
bufcall(9F) callback functions acquire. See “MT SAFE Modules Using Explicit
Locks” on page 263.

Chapter 12 • Multithreaded STREAMS 261

� If outstanding callbacks from esballoc(9F) are associated with a particular
stream, they must be allowed to complete before the module close routine
deallocates the private data structures on which they depend.

close() Race Conditions
Because the callback functions are by nature asynchronous, they can be executing or
about to execute at the time the module close routine is called. You must cancel all
outstanding callback and interrupt conditions before deallocating those data structures
or returning from the close routine.

The callback functions scheduled with timeout(9F) and bufcall(9F) are guaranteed
to have been canceled by the time untimeout(9F) and unbufcall(9F) return. The
same is true for qtimeout(9F) and qbufcall(9F) by the time quntimeout(9F) and
qunbufcall(9F) return. You must also take responsibility for other asynchronous
routines, including esballoc(9F) callbacks and hardware, as well as software
interrupts.

Unloading a Module that Uses esballoc
The STREAMS framework prevents a module or driver text from being unloaded
while there are open instances of the module or driver. If a module does not cancel all
callbacks in the last close routine, it should not be allowed to be unloaded.

This is an issue mainly for modules and drivers using esballoc because esballoc
callbacks cannot be canceled. Thus, modules and drivers using esballoc have to be
prepared to handle calls to the esballoc callback free function after the last instance
of the module or driver has been closed.

Modules and drivers can maintain a semaphore count of outstanding callbacks. They
can deny an unload by making the _fini(9E) routine return EBUSY if there are
outstanding callbacks.

Use of the q_next Field
The q_next field in the queue_t structure can be referenced in open, close, put,
and service procedures as well as the synchronous callback procedures (scheduled
with qtimeout(9F), qbufcall(9F), and qwriter(9F)). However, the value in the
q_next field should not be trusted. It is relevant to the STREAMS framework, but
may not be relevant to a specific module.

All other module code, such as interrupt routines, timeout(9F) and esballoc(9F)
callback routines, cannot dereference q_next. Those routines have to use the “next”
version of all functions. For instance, use canputnext(9F) instead of dereferencing
q_next and using canput(9F).

262 STREAMS Programming Guide • January 2005

MT SAFE Modules Using Explicit Locks
Although the result is not reliable, you can use explicit locks either instead of
perimeters or to augment the concurrency restrictions provided by the perimeters.

Caution – Explicit locks cannot be used to preserve message ordering in a module
because of the risk of re-entering the module. Use MT STREAMS perimeters to
preserve message ordering.

All four types of kernel synchronization primitives are available to the module writer:
mutexes, readers/writer locks, semaphores, and condition variables. Because
cv_wait implies a context switch, it can only be called from the module’s open and
close procedures, which are executed with valid process context. You must use the
synchronization primitives to protect accesses and ensure the integrity of private
module data structures.

Constraints When Using Locks
When adding locks in a module, observe these constraints:

� Avoid holding module private locks across calls to putnext(9F). The module
might be re-entered by the same thread that called putnext(9F), causing the
module to try to acquire a lock that it already holds. This can cause kernel panic.

� Do not hold module private locks, acquired in put or service procedures, across
the calls to qprocson(9F) or qprocsoff(9F). Doing this causes deadlock, since
qprocson(9F) and qprocsoff(9F) wait until all threads leave the inner perimeter.

� Similarly, do not hold locks, acquired in the timeout(9F) and bufcall(9F)
callback procedures, across the calls to untimeout(9F) or unbufcall(9F). Doing
this causes deadlock, because untimeout(9F)and unbufcall(9F) wait until an
already executing callback has completed.

The first restriction deters using module private locks to preserve message ordering.
The preferred mechanism is to use MT STREAMS perimeters to preserve message
ordering.

Preserving Message Ordering
Module private locks cannot be used to preserve message ordering because they
cannot be held across calls to putnext(9F) and the other messages that pass routines
to other modules. The alternatives for preserving message ordering are:

Chapter 12 • Multithreaded STREAMS 263

� Use MT STREAMS perimeters.
� Pass all messages through the service procedures. The service procedure can

drop the locks before calling putnext(9F) or qreply(9F), without reordering
messages, because the framework guarantees that at most, one thread will execute
in the service procedure for a given queue.

Use perimeters to avoid the performance penalty for using service procedures.

Preparing to Port
When modifying a STREAMS driver to take advantage of the multithreaded kernel, a
level of MT safety is selected according to:

� The desired degree of concurrency
� The natural concurrency of the underlying module
� The amount of effort or complexity required

Much of the effort in conversion is simply determining the appropriate degree of data
sharing and the corresponding granularity of locking (see Table 12–1). The actual time
spent configuring perimeters and/or installing locks should be much smaller than the
time spent in analysis.

To port your module, you must understand the data structures used within your
module, as well as the accesses to those data structures. You must fully understand the
relationship between all portions of the module and private data within that module,
and to use the MT STREAMS perimeters (or the synchronization primitives available)
to maintain the integrity of these private data structures.

You must explicitly restrict access to private module data structures as appropriate to
ensure the integrity of these data structures. You must use the MT STREAMS
perimeters to restrict the concurrency in the module so that the parts of the module
that modify private data are single-threaded with respect to the parts of the module
that read the same data. (For more information about perimeters, see “MT STREAMS
Perimeters” on page 252.) Besides perimeters, you can use the synchronization
primitives available (mutex, condition variables, readers/writer, semaphore) to
explicitly restrict access to module private data appropriate for the operations within
the module on that data.

The first step in multithreading a module or driver is to analyze the module, breaking
the entire module up into a list of individual operations and the private data
structures referenced in each operation. Part of this first step is deciding upon a level
of concurrency for the module. Ask yourself which of these operations can be
multithreaded and which must be single-threaded. Try to find a level of concurrency
that is “natural” for the module and matches one of the available perimeters (or,
alternatively, requires the minimal number of locks) , and has a simple and
straightforward implementation. Avoid additional unnecessary complexity.

264 STREAMS Programming Guide • January 2005

Typical questions to ask are:

� What data structures are maintained within the module?

� What types of accesses are made to each field of these data structures?

� When is each data structure accessed destructively (written) and when is it
accessed non-destructively (read)?

� Which operations within the module should be allowed to execute concurrently?

� Is per module single-threading appropriate for the module?

� Is per queue-pair or per queue single-threading appropriate?

� What are the message ordering requirements?

Porting to the SunOS 5 System
When porting a STREAMS module or driver from the SunOS 4 system to the SunOS 5
system, the module should be examined with respect to the following areas:

� The SunOS 5 Device Driver Interface (DDI/DKI)
� The SunOS 5 MT design

For portability and correct operation, each module must adhere to the SunOS
DDI/DKI. Several facilities available in previous releases of the SunOS system have
changed and can take different arguments, or produce different side effects, or no
longer exist in the SunOS 5 system. The module writer should carefully review the
module with respect to the DDI/DKI.

Each module that accesses underlying Sun-specific features included in the SunOS 5
system should conform to the Device Driver Interface. The SunOS 5 DDI defines the
interface used by the device driver to register device hardware interrupts, access
device node properties, map device slave memory, and establish and synchronize
memory mappings for DVMA (Direct Virtual Memory Access). These areas are
primarily applicable to hardware device drivers. Refer to the Device Driver Interface
Specification within the Writing Device Drivers for details on the SunOS 5 DDI and
DVMA.

The kernel networking subsystem in the SunOS 5 system is based on STREAMS.
Datalink drivers that used the ifnet interface in the SunOS 4 system must be
converted to use DLPI for the SunOS 5 system. Refer to the Data Link Provider
Interface, Revision 2 specification.

After reviewing the module for conformance to the SunOS 5 DKI and DDI
specifications, you should be able to consider the impact of multithreading on the
module.

Chapter 12 • Multithreaded STREAMS 265

Sample Multithreaded Device Driver
Using a Per Module Inner Perimeter
Example 12–1 is a sample multithreaded, loadable, STREAMS pseudo-driver. The
driver MT design is the simplest possible based on using a per module inner
perimeter. Thus, only one thread can execute in the driver at any time. In addition, a
quntimeout(9F) synchronous callback routine is used. The driver cancels an
outstanding qtimeout(9F) by calling quntimeout(9F) in the close routine. See
“close() Race Conditions” on page 262.

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver

/*
* Example SunOS 5 multithreaded STREAMS pseudo device driver.
* Using a D_MTPERMOD inner perimeter.
*/

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/cmn_err.h>
#include <sys/modctl.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/ksynch.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

/*
* Function prototypes.
*/
static int xxidentify(dev_info_t *);
static int xxattach(dev_info_t *, ddi_attach_cmd_t);
static int xxdetach(dev_info_t *, ddi_detach_cmd_t);
static int xxgetinfo(dev_info_t *,ddi_info_cmd_t,void *,void**);
static int xxopen(queue_t *, dev_t *, int, int, cred_t *);
static int xxclose(queue_t *, int, cred_t *);
static int xxwput(queue_t *, mblk_t *);
static int xxwsrv(queue_t *);
static void xxtick(caddr_t);

/*
* Streams Declarations
*/
static struct module_info xxm_info = {

99, /* mi_idnum */
"xx", /* mi_idname */

266 STREAMS Programming Guide • January 2005

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver (Continued)

0, /* mi_minpsz */
INFPSZ, /* mi_maxpsz */
0, /* mi_hiwat */
0 /* mi_lowat */

};

static struct qinit xxrinit = {
NULL, /* qi_putp */
NULL, /* qi_srvp */
xxopen, /* qi_qopen */
xxclose, /* qi_qclose */
NULL, /* qi_qadmin */
&xxm_info, /* qi_minfo */
NULL /* qi_mstat */

};

static struct qinit xxwinit = {
xxwput, /* qi_putp */
xxwsrv, /* qi_srvp */
NULL, /* qi_qopen */
NULL, /* qi_qclose */
NULL, /* qi_qadmin */
&xxm_info, /* qi_minfo */
NULL /* qi_mstat */

};

static struct streamtab xxstrtab = {
&xxrinit, /* st_rdinit */
&xxwinit, /* st_wrinit */
NULL, /* st_muxrinit */
NULL /* st_muxwrinit */

};

/*
* define the xx_ops structure.
*/

static struct cb_ops cb_xx_ops = {
nodev, /* cb_open */
nodev, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
nodev, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
&xxstrtab, /* cb_stream */
(D_NEW|D_MP|D_MTPERMOD) /* cb_flag */

Chapter 12 • Multithreaded STREAMS 267

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver (Continued)

};

static struct dev_ops xx_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
xxgetinfo, /* devo_getinfo */
xxidentify, /* devo_identify */
nodev, /* devo_probe */
xxattach, /* devo_attach */
xxdetach, /* devo_detach */
nodev, /* devo_reset */
&cb_xx_ops, /* devo_cb_ops */
(struct bus_ops *)NULL /* devo_bus_ops */

};

/*
* Module linkage information for the kernel.
*/
static struct modldrv modldrv = {

&mod_driverops, /* Type of module. This one is a driver */
"xx", /* Driver name */
&xx_ops, /* driver ops */

};

static struct modlinkage modlinkage = {
MODREV_1,
&modldrv,
NULL

};

/*
* Driver private data structure. One is allocated per Stream.
*/
struct xxstr {

struct xxstr *xx_next; /* pointer to next in list */
queue_t *xx_rq; /* read side queue pointer */
minor_t xx_minor; /* minor device # (for clone) */
int xx_timeoutid; /* id returned from timeout() */

};

/*
* Linked list of opened Stream xxstr structures.
* No need for locks protecting it since the whole module is
* single threaded using the D_MTPERMOD perimeter.
*/
static struct xxstr *xxup = NULL;

/*
* Module Config entry points
*/

268 STREAMS Programming Guide • January 2005

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver (Continued)

_init(void)
{

return (mod_install(&modlinkage));
}

_fini(void)
{

return (mod_remove(&modlinkage));
}

_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}

/*
* Auto Configuration entry points
*/

/* Identify device. */
static int
xxidentify(dev_info_t *dip)
{

if (strcmp(ddi_get_name(dip), "xx") == 0)
return (DDI_IDENTIFIED);

else
return (DDI_NOT_IDENTIFIED);

}

/* Attach device. */
static int
xxattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{

/* This creates the device node. */
if (ddi_create_minor_node(dip, "xx", S_IFCHR, ddi_get_instance(dip),

DDI_PSEUDO, CLONE_DEV) == DDI_FAILURE) {
return (DDI_FAILURE);

}
ddi_report_dev(dip);
return (DDI_SUCCESS);

}

/* Detach device. */
static int
xxdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{

ddi_remove_minor_node(dip, NULL);
return (DDI_SUCCESS);

}

/* ARGSUSED */
static int
xxgetinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,

Chapter 12 • Multithreaded STREAMS 269

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver (Continued)

void **resultp)
{

dev_t dev = (dev_t) arg;
int instance, ret = DDI_FAILURE;

devstate_t *sp;
state *statep;
instance = getminor(dev);

switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:

if ((sp = ddi_get_soft_state(statep,
getminor((dev_t) arg))) != NULL) {

*resultp = sp->devi;
ret = DDI_SUCCESS;

} else
*result = NULL;

break;

case DDI_INFO_DEVT2INSTANCE:
*resultp = (void *)instance;
ret = DDI_SUCCESS;
break;

default:
break;

}
return (ret);

}

static
xxopen(rq, devp, flag, sflag, credp)

queue_t *rq;
dev_t *devp;
int flag;
int sflag;
cred_t *credp;

{
struct xxstr *xxp;
struct xxstr **prevxxp;
minor_t minordev;

/* If this stream already open - we’re done. */
if (rq->q_ptr)

return (0);

/* Determine minor device number. */
prevxxp = & xxup;
if (sflag == CLONEOPEN) {

minordev = 0;
while ((xxp = *prevxxp) != NULL) {

if (minordev < xxp->xx_minor)
break;

270 STREAMS Programming Guide • January 2005

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver (Continued)

minordev++;
prevxxp = &xxp->xx_next;

}
*devp = makedevice(getmajor(*devp), minordev)

} else
minordev = getminor(*devp);

/* Allocate our private per-Stream data structure. */
if ((xxp = kmem_alloc(sizeof (struct xxstr), KM_SLEEP)) == NULL)

return (ENOMEM);

/* Point q_ptr at it. */
rq->q_ptr = WR(rq)->q_ptr = (char *) xxp;

/* Initialize it. */
xxp->xx_minor = minordev;
xxp->xx_timeoutid = 0;
xxp->xx_rq = rq;

/* Link new entry into the list of active entries. */
xxp->xx_next = *prevxxp;
*prevxxp = xxp;

/* Enable xxput() and xxsrv() procedures on this queue. */
qprocson(rq);

return (0);
}

static
xxclose(rq, flag, credp)

queue_t *rq;
int flag;
cred_t *credp;

{
struct xxstr *xxp;
struct xxstr **prevxxp;

/* Disable xxput() and xxsrv() procedures on this queue. */
qprocsoff(rq);
/* Cancel any pending timeout. */

xxp = (struct xxstr *) rq->q_ptr;
if (xxp->xx_timeoutid != 0) {

(void) quntimeout(rq, xxp->xx_timeoutid);
xxp->xx_timeoutid = 0;

}
/* Unlink per-stream entry from the active list and free it. */
for (prevxxp = &xxup; (xxp = *prevxxp) != NULL;

prevxxp = &xxp->xx_next)
if (xxp == (struct xxstr *) rq->q_ptr)

break;
*prevxxp = xxp->xx_next;

Chapter 12 • Multithreaded STREAMS 271

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver (Continued)

kmem_free (xxp, sizeof (struct xxstr));

rq->q_ptr = WR(rq)->q_ptr = NULL;

return (0);
}

static
xxwput(wq, mp)

queue_t *wq;
mblk_t *mp;

{
struct xxstr *xxp = (struct xxstr *)wq->q_ptr;

/* write your code here */
/* *** Sacha’s Comments *** broken */

freemsg(mp);
mp = NULL;

if (mp != NULL)
putnext(wq, mp);

}

static
xxwsrv(wq)

queue_t *wq;
{

mblk_t *mp;
struct xxstr *xxp;

xxp = (struct xxstr *) wq->q_ptr;

while (mp = getq(wq)) {
/* write your code here */
freemsg(mp);

/* for example, start a timeout */
if (xxp->xx_timeoutid != 0) {

/* cancel running timeout */
(void) quntimeout(wq, xxp->xx_timeoutid);

}
xxp->xx_timeoutid = qtimeout(wq, xxtick, (char *)xxp, 10);

}
}

static void
xxtick(arg)

caddr_t arg;
{

struct xxstr *xxp = (struct xxstr *)arg;

xxp->xx_timeoutid = 0; /* timeout has run */
/* write your code here */

272 STREAMS Programming Guide • January 2005

EXAMPLE 12–1 Multithreaded, Loadable, STREAMS Pseudo-Driver (Continued)

}

Sample Multithreaded Module With
Outer Perimeter
Example 12–2 is a sample multithreaded, loadable STREAMS module. The module
MT design is a relatively simple one, based on a per queue-pair inner perimeter plus
an outer perimeter. The inner perimeter protects per-instance data structure (accessed
through the q_ptr field) and the module global data is protected by the outer
perimeter. The outer perimeter is configured so that the open and close routines
have exclusive access to the outer perimeter. This is necessary because they both
modify the global-linked list of instances. Other routines that modify global data are
run as qwriter(9F) callbacks, giving them exclusive access to the whole module.

EXAMPLE 12–2 Multithread Module with Outer Perimeter

/*
* Example SunOS 5 multi-threaded STREAMS module.
* Using a per-queue-pair inner perimeter plus an outer perimeter.
*/

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/stropts.h>
#include <sys/stream.h>
#include <sys/strlog.h>
#include <sys/cmn_err.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/ksynch.h>
#include <sys/modctl.h>
#include <sys/stat.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

/*
* Function prototypes.
*/
static int xxopen(queue_t *, dev_t *, int, int, cred_t *);
static int xxclose(queue_t *, int, cred_t *);
static int xxwput(queue_t *, mblk_t *);
static int xxwsrv(queue_t *);
static void xxwput_ioctl(queue_t *, mblk_t *);
static int xxrput(queue_t *, mblk_t *);

Chapter 12 • Multithreaded STREAMS 273

EXAMPLE 12–2 Multithread Module with Outer Perimeter (Continued)

static void xxtick(caddr_t);

/*
* Streams Declarations
*/
static struct module_info xxm_info = {

99, /* mi_idnum */
“xx”, /* mi_idname */
0, /* mi_minpsz */
INFPSZ, /* mi_maxpsz */
0, /* mi_hiwat */
0 /* mi_lowat */

};
/*
* Define the read-side qinit structure
*/
static struct qinit xxrinit = {

xxrput, /* qi_putp */
NULL, /* qi_srvp */
xxopen, /* qi_qopen */
xxclose, /* qi_qclose */
NULL, /* qi_qadmin */
&xxm_info, /* qi_minfo */
NULL /* qi_mstat */

};
/*
* Define the write-side qinit structure
*/
static struct qinit xxwinit = {

xxwput, /* qi_putp */
xxwsr, /* qi_srvp */
NULL, /* qi_qopen */
NULL, /* qi_qclose */
NULL, /* qi_qadmin */
&xxm_info, /* qi_minfo */
NULL /* qi_mstat */

};

static struct streamtab xxstrtab = {
&xxrini, /* st_rdinit */
&xxwini, /* st_wrinit */
NULL, /* st_muxrinit */
NULL /* st_muxwrinit */

};

/*
* define the fmodsw structure.
*/

static struct fmodsw xx_fsw = {
“xx”, /* f_name */
&xxstrtab, /* f_str */
(D_NEW|D_MP|D_MTQPAIR|D_MTOUTPERIM|D_MTOCEXCL) /* f_flag */

274 STREAMS Programming Guide • January 2005

EXAMPLE 12–2 Multithread Module with Outer Perimeter (Continued)

};

/*
* Module linkage information for the kernel.
*/
static struct modlstrmod modlstrmod = {

&mod_strmodops, /* Type of module; a STREAMS module */
“xx module”, /* Module name */
&xx_fsw, /* fmodsw */

};

static struct modlinkage modlinkage = {
MODREV_1,
&modlstrmod,
NULL

};

/*
* Module private data structure. One is allocated per stream.
*/
struct xxstr {

struct xxstr *xx_next; /* pointer to next in list */
queue_t *xx_rq; /* read side queue pointer */
int xx_timeoutid; /* id returned from timeout() */

};

/*
* Linked list of opened stream xxstr structures and other module
* global data. Protected by the outer perimeter.
*/
static struct xxstr *xxup = NULL;
static int some_module_global_data;

/*
* Module Config entry points
*/
int
_init(void)
{

return (mod_install(&modlinkage));
}
int
_fini(void)
{

return (mod_remove(&modlinkage));
}
int
_info(struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}

Chapter 12 • Multithreaded STREAMS 275

EXAMPLE 12–2 Multithread Module with Outer Perimeter (Continued)

static int
xxopen(queue_t *rq,dev_t *devp,int flag,int sflag, cred_t *credp)
{

struct xxstr *xxp;
/* If this stream already open - we’re done. */
if (rq->q_ptr)

return (0);
/* We must be a module */
if (sflag != MODOPEN)

return (EINVAL);

/*
* The perimeter flag D_MTOCEXCL implies that the open and
* close routines have exclusive access to the module global
* data structures.
*
* Allocate our private per-stream data structure.
*/
xxp = kmem_alloc(sizeof (struct xxstr),KM_SLEEP);

/* Point q_ptr at it. */
rq->q_ptr = WR(rq)->q_ptr = (char *) xxp;

/* Initialize it. */
xxp->xx_rq = rq;
xxp->xx_timeoutid = 0;

/* Link new entry into the list of active entries. */
xxp->xx_next = xxup;
xxup = xxp;

/* Enable xxput() and xxsrv() procedures on this queue. */
qprocson(rq);
/* Return success */
return (0);

}

static int
xxclose(queue_t,*rq, int flag,cred_t *credp)
{

struct xxstr *xxp;
struct xxstr **prevxxp;

/* Disable xxput() and xxsrv() procedures on this queue. */
qprocsoff(rq);
/* Cancel any pending timeout. */
xxp = (struct xxstr *) rq->q_ptr;
if (xxp->xx_timeoutid != 0) {

(void) quntimeout(WR(rq), xxp->xx_timeoutid);
xxp->xx_timeoutid = 0;

}
/*

276 STREAMS Programming Guide • January 2005

EXAMPLE 12–2 Multithread Module with Outer Perimeter (Continued)

* D_MTOCEXCL implies that the open and close routines have
* exclusive access to the module global data structures.
*
* Unlink per-stream entry from the active list and free it.
*/
for (prevxxp = &xxup; (xxp = *prevxxp) != NULL;

prevxxp = &xxp->xx_next) {
if (xxp == (struct xxstr *) rq->q_ptr)

break;
}
*prevxxp = xxp->xx_next;
kmem_free (xxp, sizeof (struct xxstr));
rq->q_ptr = WR(rq)->q_ptr = NULL;
return (0);

}

static int
xxrput(queue_t, *wq, mblk_t *mp)
{

struct xxstr *xxp = (struct xxstr *)wq->q_ptr;

/*
* Write your code here. Can read “some_module_global_data”
* since we have shared access at the outer perimeter.
*/
putnext(wq, mp);

}

/* qwriter callback function for handling M_IOCTL messages */
static void
xxwput_ioctl(queue_t, *wq, mblk_t *mp)
{

struct xxstr *xxp = (struct xxstr *)wq->q_ptr;

/*
* Write your code here. Can modify “some_module_global_data”
* since we have exclusive access at the outer perimeter.
*/
mp->b_datap->db_type = M_IOCNAK;
qreply(wq, mp);

}

static
xxwput(queue_t *wq, mblk_t *mp)
{

struct xxstr *xxp = (struct xxstr *)wq->q_ptr;

if (mp->b_datap->db_type == M_IOCTL) {
/* M_IOCTL will modify the module global data */
qwriter(wq, mp, xxwput_ioctl, PERIM_OUTER);
return;

}
/*

Chapter 12 • Multithreaded STREAMS 277

EXAMPLE 12–2 Multithread Module with Outer Perimeter (Continued)

* Write your code here. Can read “some_module_global_data”
* since we have exclusive access at the outer perimeter.
*/
putnext(wq, mp);

}

static
xxwsrv(queue_t wq)
{

mblk_t *mp;
struct xxstr *xxp= (struct xxstr *) wq->q_ptr;

while (mp = getq(wq)) {
/*
* Write your code here. Can read “some_module_global_data”
* since we have exclusive access at the outer perimeter.
*/

freemsg(mp);

/* for example, start a timeout */
if (xxp->xx_timeoutid != 0) {

/* cancel running timeout */
(void) quntimeout(wq, xxp->xx_timeoutid);

}
xxp->xx_timeoutid = qtimeout(wq, xxtick, (char *)xxp, 10);

}
}

static void
xxtick(arg)

caddr_t arg;
{

struct xxstr *xxp = (struct xxstr *)arg;

xxp->xx_timeoutid = 0; /* timeout has run */
/*
* Write your code here. Can read “some_module_global_data”
* since we have shared access at the outer perimeter.
*/

}

278 STREAMS Programming Guide • January 2005

CHAPTER 13

STREAMS Multiplex Drivers

This chapter describes how STREAMS multiplexing configurations are created and
also discusses multiplexing drivers. A STREAMS multiplexer is a driver with multiple
streams connected to it. The primary function of the multiplexing driver is to switch
messages among the connected streams. Multiplexer configurations are created from
the user level by system calls.

This chapter contains the following information:

� “STREAMS Multiplexers” on page 279
� “Connecting And Disconnecting Lower Streams” on page 286
� “Multiplexer Construction Example” on page 288
� “Multiplexing Driver Example” on page 289
� “Persistent Links” on page 298
� “Design Guidelines” on page 300

STREAMS Multiplexers
STREAMS-related system calls are used to set up the “plumbing,” or stream
interconnections, for multiplexing drivers. The subset of these calls that allows a user
to connect (and disconnect) streams below a driver is referred to as multiplexing. This
type of connection is referred to as a one-to-M, or lower, multiplexer configuration.
This configuration must always contain a multiplexing driver, which is recognized by
STREAMS as having special characteristics.

Multiple streams can be connected above a driver by open(2) calls. This
accommodates the loop-around driver and the driver that handled multiple minor
devices in Chapter 9. There is no difference between the connections to these drivers.
Only the functions performed by the driver are different. In the multiplexing case, the

279

driver routes data between multiple streams. In the device driver case, the driver
routes data between user processes and associated physical ports. Multiplexing with
streams connected above is referred to as an N-to-1, or upper, multiplexer. STREAMS
does not provide any facilities beyond open and close to connect or disconnect upper
streams for multiplexing.

From the driver’s perspective, upper and lower configurations differ only in the way
they are initially connected to the driver. The implementation requirements are the
same: route the data and handle flow control. All multiplexer drivers require special
developer-provided software to perform the multiplexing data routing and to handle
flow control. STREAMS does not directly support flow control among multiplexed
streams. M-to-N multiplexing configurations are implemented by using both of these
mechanisms in a driver.

As discussed in Chapter 9, the multiple streams that represent minor devices are
actually distinct streams in which the driver keeps track of each stream attached to it.
The STREAMS subsystem does not recognize any relationship between the streams.
The same is true for STREAMS multiplexers of any configuration. The multiplexed
streams are distinct and the driver must be implemented to do most of the work.

In addition to upper and lower multiplexers, more complex configurations can be
created by connecting streams containing multiplexers to other multiplexer drivers.
With such a diversity of needs for multiplexers, providing general-purpose
multiplexer drivers is not possible. Rather, STREAMS provides a general purpose
multiplexing facility. The facility enables you to set up the intermodule or driver
plumbing to create multiplexer configurations of generally unlimited interconnection.

Building a Multiplexer
The example in this section builds a protocol multiplexer with the multiplexing
configuration shown in Figure 13–1. To free users from the need to know about the
underlying protocol structure, a user-level daemon process is built to maintain the
multiplexing configuration. Users can then access the transport protocol directly by
opening the transport protocol (TP) driver device node.

An internetworking protocol driver (IP) routes data from a single upper stream to one
of two lower streams. This driver supports two STREAMS connections beneath it.
These connections are to two distinct networks; one for the IEEE 802.3 standard
through the 802.3 driver, and another to the IEEE 802.4 standard through the 802.4
driver. The TP driver multiplexes upper streams over a single stream to the IP driver.

280 STREAMS Programming Guide • January 2005

Port
0

Stream Head

Queue Pair

Driver Procedures and
Interrupt Code

Module(s)

major/dev0
vnode

Port
1

Stream Head

Queue Pair

Module(s)

major/dev1
vnode

FIGURE 13–1 Protocol Multiplexer

Example 13–1 shows how this daemon process sets up the protocol multiplexer. The
necessary declarations and initialization for the daemon program follow.

EXAMPLE 13–1 Protocol Daemon

#include <fcntl.h>
#include <stropts.h>
void
main()
{

int fd_802_4,
fd_802_3,
fd_ip,
fd_tp;

/* daemon-ize this process */

switch (fork()) {
case 0:

break;
case -1:

perror("fork failed");
exit(2);

default:
exit(0);

}

(void)setsid();

Chapter 13 • STREAMS Multiplex Drivers 281

This multilevel multiplexed stream configuration is built from the bottom up. The
example begins by first constructing the IP multiplexer. This multiplexing device
driver is treated like any other software driver. It owns a node in the Solaris file
system and is opened just like any other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, thus creating
separate streams above each driver as shown in Figure 13–2. The stream to the 802.4
driver may now be connected below the multiplexing IP driver using the I_LINK
ioctl(2).

Stream head

Queue pair

Loop-around driver

Module(s)

CLONE/
loop/dev3

Stream head

Queue pair

Module(s)

CLONE/
loop/dev7

FIGURE 13–2 Streams Before Link

The sequence of instructions to this point is:

if ((fd_802_4 = open("/dev/802_4", O_RDWR)) < 0) {
perror("open of /dev/802_4 failed");
exit(1);

}
if ((fd_ip = open("/dev/ip", O_RDWR)) < 0) {

perror("open of /dev/ip failed");
exit(2);

}
/* now link 802.4 to underside of IP */
if (ioctl(fd_ip, I_LINK, fd_802_4) < 0) {

perror("I_LINK ioctl failed");
exit(3);

}

I_LINK takes two file descriptors as arguments. The first file descriptor, fd_ip, is the
stream connected to the multiplexing driver, and the second file descriptor, fd_802_4,
is the stream to be connected below the multiplexer. The complete stream to the 802.4
driver is connected below the IP driver. The stream head’s queues of the 802.4 driver
are used by the IP driver to manage the lower half of the multiplexer.

282 STREAMS Programming Guide • January 2005

I_LINK returns an integer value, muxid, which is used by the multiplexing driver to
identify the stream just connected below it. muxid is ignored in the example, but it is
useful for dismantling a multiplexer or routing data through the multiplexer. Its
significance is discussed in “Dismantling a Multiplexer” on page 284.

The following sequence of system calls continues building the Internetworking
Protocol multiplexer (IP):

if ((fd_802_3 = open("/dev/802_3", O_RDWR)) < 0) {
perror("open of /dev/802_3 failed");
exit(4);

}
if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) {

perror("I_LINK ioctl failed");
exit(5);

}

The stream above the multiplexing driver used to establish the lower connections is
the controlling stream and has special significance when dismantling the multiplexing
configuration. This is illustrated in “Dismantling a Multiplexer” on page 284. The stream
referenced by fd_ip is the controlling stream for the IP multiplexer.

The order in which the streams in the multiplexing configuration are opened is
unimportant. If intermediate modules in the stream are necessary between the IP
driver and media drivers, these modules must be added to the streams associated with
the media drivers (using I_PUSH) before the media drivers are attached below the
multiplexer.

The number of streams that can be linked to a multiplexer is restricted by the design of
the particular multiplexer. The manual page describing each driver describes such
restrictions (see SunOS Reference Manual, Intro(7)). However, only one I_LINK
operation is allowed for each lower stream; a single stream cannot be linked below
two multiplexers simultaneously.

Continuing with the example, the IP driver is now linked below the transport protocol
(TP) multiplexing driver. As seen in Figure 13–1, only one link is supported below the
transport driver. This link is formed by the following sequence of system calls:

if ((fd_tp = open("/dev/tp", O_RDWR)) < 0) {
perror("open of /dev/tp failed");
exit(6);

}
if (ioctl(fd_tp, I_LINK, fd_ip) < 0) {

perror("I_LINK ioctl failed");
exit(7);

}

Because the controlling stream of the IP multiplexer has been linked below the TP
multiplexer, the controlling stream for the new multilevel multiplexer configuration is
the stream above the TP multiplexer.

Chapter 13 • STREAMS Multiplex Drivers 283

At this point, the file descriptors associated with the lower drivers can be closed
without affecting the operation of the multiplexer. If these file descriptors are not
closed, all subsequent read(2), write(2), ioctl(2), poll(2), getmsg(2), and
putmsg(2) calls issued to them fail. That is because I_LINK associates the stream head
of each linked stream with the multiplexer, so the user may not access that stream
directly for the duration of the link.

The following sequence of system calls completes the daemon example:

close(fd_802_4);
close(fd_802_3);
close(fd_ip);
/* Hold multiplexer open forever or at least til this process

is terminated by an external UNIX signal */
pause();

}

The transport driver supports several simultaneous streams. These streams are
multiplexed over the single stream connected to the IP multiplexer. The mechanism for
establishing multiple streams above the transport multiplexer is actually a by-product
of the way in which streams are created between a user process and a driver. By
opening different minor devices of a STREAMS driver, separate streams will be
connected to that driver. The driver must be designed with the intelligence to route
data from the single lower stream to the appropriate upper stream.

The daemon process maintains the multiplexed stream configuration through an open
stream (the controlling stream) to the transport driver. Meanwhile, other users can
access the services of the transport protocol by opening new streams to the transport
driver; they are freed from the need for any unnecessary knowledge of the underlying
protocol configurations and subnetworks that support the transport service.

Multilevel multiplexing configurations should be assembled from the bottom up. That
is because the passing of ioctl(2) through the multiplexer is determined by the
nature of the multiplexing driver and cannot generally be relied on.

Dismantling a Multiplexer
Streams connected to a multiplexing driver from above with open(2), can be
dismantled by closing each stream with close(2). The mechanism for dismantling
streams that have been linked below a multiplexing driver is less obvious, and is
described in “Disconnecting Lower Streams” on page 288.

I_UNLINK ioctl(2) disconnects each multiplexer link below a multiplexing driver
individually. This command has the form:

ioctl(fd, I_UNLINK, muxid);

284 STREAMS Programming Guide • January 2005

where fd is a file descriptor associated with a stream connected to the multiplexing
driver from above, and muxid is the identifier that was returned by I_LINK when a
driver was linked below the multiplexer. Each lower driver may be disconnected
individually in this way, or a special muxid value of MUXID_ALL can be used to
disconnect all drivers from the multiplexer simultaneously.

In the multiplexing daemon program, the multiplexer is never explicitly dismantled.
That is because all links associated with a multiplexing driver are automatically
dismantled when the controlling stream associated with that multiplexer is closed.
Because the controlling stream is open to a driver, only the final call of close for that
stream will close it. In this case, the daemon is the only process that has opened the
controlling stream, so the multiplexing configuration will be dismantled when the
daemon exits.

For the automatic dismantling mechanism to work in the multilevel, multiplexed
stream configuration, the controlling stream for each multiplexer at each level must be
linked under the next higher-level multiplexer. In the example, the controlling stream
for the IP driver was linked under the TP driver. This resulted in a single controlling
stream for the full, multilevel configuration. Because the multiplexing program relied
on closing the controlling stream to dismantle the multiplexed stream configuration
instead of using explicit I_UNLINK calls, the muxid values returned by I_LINK could
be ignored.

An important side effect of automatic dismantling on the close is that a process cannot
build a multiplexing configuration with I_LINK and then exit. exit(2) closes all files
associated with the process, including the controlling stream. To keep the
configuration intact, the process must exist for the life of that multiplexer. That is the
motivation for implementing the multiplexer as a daemon processs, see “Multiplexing
Driver Example” on page 289.

If the process uses persistent links through I_PLINK ioctl(2), the multiplexer
configuration remains intact after the process exits. These links are described in
“Persistent Links” on page 298.

Routing Data Through a Multiplexer
As demonstrated, STREAMS provides a mechanism for building multiplexed stream
configurations. However, the criteria by which a multiplexer routes data are driver
dependent. For example, the protocol multiplexer might use address information
found in a protocol header to determine the subnetwork over which data should be
routed. You must define its routing criteria.

One routing option available to the multiplexer is to use the muxid value to determine
the stream to which data is routed (remember that each multiplexer link has a muxid).
I_LINK passes the muxid value to the driver and returns this value to the user. The
driver can therefore specify that the muxid value accompany data routed through it.
For example, if a multiplexer routed data from a single upper stream to one of several

Chapter 13 • STREAMS Multiplex Drivers 285

lower streams (as did the IP driver), the multiplexer can require the user to insert the
muxid of the desired lower stream into the first four bytes of each message passed to
it. The driver can then match the muxid in each message with the muxid of each
lower stream, and route the data accordingly.

Connecting And Disconnecting Lower
Streams
Multiple streams are created above a driver/multiplexer by use of the open system
call on either different minor device, or on a cloneable device file. Note that any driver
that handles more than one minor device is considered an upper multiplexer.

To connect streams below a multiplexer requires additional software in the
multiplexer. The main difference between STREAMS lower multiplexers and
STREAMS device drivers is that multiplexers are pseudo-devices and multiplexers
have two additional qinit structures, pointed to by fields in streamtab(9S): the
lower half read-side qinit(9S) and the lower half write-side qinit(9S).

The multiplexer is divided into two parts: the lower half and the upper half. The
multiplexer queue structures allocated when the multiplexer was opened use the
usual qinit entries from the multiplexer’s streamtab(9S). This is the same as any
open of the STREAMS device. When a lower stream is linked beneath the multiplexer,
the qinit structures at the stream head are substituted by the lower half qinit(9S)
structures identified in the streamstab for the multiplexers. Once the linkage is
made, the multiplexer switches messages between upper and lower streams. When
messages reach the top of the lower stream, they are handled by put and service
routines specified in the bottom half of the multiplexer.

Connecting Lower Streams
A lower multiplexer is connected as follows: the initial open to a multiplexing driver
creates a stream, as in any other driver. open uses the st_rdinit and st_wrinit
elements of the streamtab structure to initialize the driver queues.. At this point, the
only distinguishing characteristics of this stream are non-NULL entries in the
streamtab(9S) st_muxrinit and st_muxwinit fields.

These fields are ignored by open. Any other stream subsequently opened to this
driver will have the same streamtab and thereby the same mux fields.

Next, another file is opened to create a (soon-to-be) lower stream. The driver for the
lower stream is typically a device driver This stream has no distinguishing
characteristics. It can include any driver compatible with the multiplexer. Any
modules required on the lower stream must be pushed onto it now.

286 STREAMS Programming Guide • January 2005

Next, this lower stream is connected below the multiplexing driver with an I_LINK
ioctl(2) (see streamio(7I)). The stream head points to the stream head routines as
its procedures (through its queue). An I_LINK to the upper stream, referencing the
lower stream, causes STREAMS to modify the contents of the stream head’s queues in
the lower stream. The pointers to the stream head routines, and other values, in the
stream head’s queues are replaced with those contained in the mux fields of the
multiplexing driver’s streamtab. Changing the stream head routines on the lower
stream means that all subsequent messages sent upstream by the lower stream’s
driver are passed to the put procedure designated in st_muxrinit, the multiplexing
driver. The I_LINK also establishes this upper stream as the control stream for this
lower stream. STREAMS remembers the relationship between these two streams until
the upper stream is closed or the lower stream is unlinked.

Finally, the stream head sends an M_IOCTL message with ioc_cmd set to I_LINK to
the multiplexing driver. The M_DATA part of the M_IOCTL contains a linkblk(9S)
structure. The multiplexing driver stores information from the linkblk(9S) structure
in private storage and returns an M_IOCACK acknowledgement. l_index is returned
to the process requesting the I_LINK. This value is used later by the process to
disconnect the stream.

An I_LINK is required for each lower stream connected to the driver. Additional
upper streams can be connected to the multiplexing driver by open calls. Any message
type can be sent from a lower stream to user processes along any of the upper streams.
The upper streams provide the only interface between the user processes and the
multiplexer.

No direct data structure linkage is established for the linked streams. The read queue’s
q_next is NULL and the write queue’s q_next points to the first entity on the lower
stream. Messages flowing upstream from a lower driver (a device driver or another
multiplexer) will enter the multiplexing driver put procedure with the queue
represented in l_qbot as the queue_t for the put procedure. The multiplexing
driver has to route the messages to the appropriate upper (or lower) stream. Similarly,
a message coming downstream from user space on any upper stream has to be
processed and routed, if required, by the driver.

Note – It is the responsibility of the driver to handle routing of messages between the
upper and lower streams, or between any lateral stream that is part of the multiplexer.
This operation is not handled by the STREAMS framework.

In general, multiplexing drivers should be implemented so that new streams can be
dynamically connected to (and existing streams disconnected from) the driver without
interfering with its ongoing operation. The number of streams that can be connected to
a multiplexer is implementation dependent.

Chapter 13 • STREAMS Multiplex Drivers 287

Disconnecting Lower Streams
Dismantling a lower multiplexer is accomplished by disconnecting (unlinking) the
lower streams. Unlinking can be initiated in three ways:

� An I_UNLINK ioctl(2) referencing a specific stream
� An I_UNLINK indicating all lower streams
� The last close of the control stream

As in the link, an unlink sends a linkblk(9S) structure to the driver in an M_IOCTL
message. The I_UNLINK call, which unlinks a single stream, uses the l_index value
returned in the I_LINK to specify the lower stream to be unlinked. The latter two calls
must designate a file corresponding to a control stream, which causes all the lower
streams that were previously linked by this control stream to be unlinked. However,
the driver sees a series of individual unlinks.

If no open references exist for a lower stream, a subsequent unlink will automatically
close the stream. Otherwise, the lower stream must be closed by close(2) following
the unlink. STREAMS automatically dismantles all cascaded multiplexers (below other
multiplexing streams) if their controlling stream is closed. An I_UNLINK leaves lower,
cascaded multiplexing streams intact unless the stream file descriptor was previously
closed.

Multiplexer Construction Example
This section describes an example of multiplexer construction and usage. Multiple
upper and lower streams interface to the multiplexer driver.

The Ethernet, LAPB, and IEEE 802.2 device drivers terminate links to other nodes. The
multiplexer driver is an Internet Protocol (IP) multiplexer that switches data among
the various nodes or sends data upstream to users in the system. The net modules
typically provide a convergence function that matches the multiplexer driver and
device driver interface.

Streams A, B, and C are opened by the process, and modules are pushed as needed.
Two upper streams are opened to the IP multiplexer. The rightmost stream represents
multiple streams, each connected to a process using the network. The stream second
from the right provides a direct path to the multiplexer for supervisory functions. The
control stream, leading to a process, sets up and supervises this configuration. It is
always directly connected to the IP driver. Although not shown, modules can be
pushed on the control stream.

After the streams are opened, the supervisory process typically transfers routing
information to the IP drivers (and any other multiplexers above the IP), and initializes
the links. As each link becomes operational, its stream is connected below the IP
driver. If a more complex multiplexing configuration is required, the IP multiplexer
stream with all its connected links can be connected below another multiplexer driver.

288 STREAMS Programming Guide • January 2005

Multiplexing Driver Example
This section contains an example of a multiplexing driver that implements an N-to-1
configuration. This configuration might be used for terminal windows, where each
transmission to or from the terminal identifies the window. This resembles a typical
device driver, with two differences: the device-handling functions are performed by a
separate driver, connected as a lower stream, and the device information (that is,
relevant user process) is contained in the input data rather than in an interrupt call.

Each upper stream is created by open(2). A single lower stream is opened and then it
is linked by use of the multiplexing facility. This lower stream might connect to the
TTY driver. The implementation of this example is a foundation for an M-to-N
multiplexer.

As in the loop-around driver (Chapter 9), flow control requires the use of standard
and special code because physical connectivity among the streams is broken at the
driver. Different approaches are used for flow control on the lower stream, for
messages coming upstream from the device driver, and on the upper streams, for
messages coming downstream from the user processes.

Note – The code presented here for the multiplexing driver represents a
single-threaded, uniprocessor implementation. See Chapter 12 for details on
multiprocessor and multithreading issues such as locking for data corruption and to
prevent race conditions.

Example 13–2 is of multiplexer declarations:

EXAMPLE 13–2 Multiplexer Declarations

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>

static int muxopen (queue_t*, dev_t*, int, int, cred_t*);
static int muxclose (queue_t*, int, cred_t*);
static int muxuwput (queue_t*, mblk_t*);
static int muxlwsrv (queue_t*);
static int muxlrput (queue_t*, mblk_t*);
static int muxuwsrv (queue_t*);

static struct module_info info = {

Chapter 13 • STREAMS Multiplex Drivers 289

EXAMPLE 13–2 Multiplexer Declarations (Continued)

0xaabb, "mux", 0, INFPSZ, 512, 128 };

static struct qinit urinit = { /* upper read */
NULL, NULL, muxopen, muxclose, NULL, &info, NULL };

static struct qinit uwinit = { /* upper write */
muxuwput, muxuwsrv, NULL, NULL, NULL, &info, NULL };

static struct qinit lrinit = { /* lower read */
muxlrput, NULL, NULL, NULL, NULL, &info, NULL };

static struct qinit lwinit = { /* lower write */
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL };

struct streamtab muxinfo = {
&urinit, &uwinit, &lrinit, &lwinit };

struct mux {
queue_t *qptr; /* back pointer to read queue */
int bufcid; /* bufcall return value */

};
extern struct mux mux_mux[];
extern int mux_cnt; /* max number of muxes */

static queue_t *muxbot; /* linked lower queue */
static int muxerr; /* set if error of hangup on

lower strm */

The four streamtab entries correspond to the upper read, upper write, lower read,
and lower write qinit structures. The multiplexing qinit structures replace those in
each lower stream head (in this case there is only one) after the I_LINK has concluded
successfully. In a multiplexing configuration, the processing performed by the
multiplexing driver can be partitioned between the upper and lower queues. There
must be an upper-stream write put procedure and lower-stream read put procedure.
If the queue procedures of the opposite upper/lower queue are not needed, the queue
can be skipped, and the message put to the following queue.

In the example, the upper read-side procedures are not used. The lower-stream read
queue put procedure transfers the message directly to the read queue upstream from
the multiplexer. There is no lower write put procedure because the upper write put
procedure directly feeds the lower write queue downstream from the multiplexer.

The driver uses a private data structure, mux. mux_mux[dev] points back to the
opened upper read queue. This is used to route messages coming upstream from the
driver to the appropriate upper queue. It is also used to find a free major or minor
device for a CLONEOPEN driver open case.

Example 13–3, the upper queue open, contains the canonical driver open code.

290 STREAMS Programming Guide • January 2005

EXAMPLE 13–3 Upper Queue Open

static int
muxopen(queue_t *q, dev_t *devp, int flag,

int sflag, cred_t *credp)
{

struct mux *mux;
minor_t device;

if (q->q_ptr)
return(EBUSY);

if (sflag == CLONEOPEN) {
for (device = 0; device < mux_cnt; device++)

if (mux_mux[device].qptr == 0)
break;

*devp=makedevice(getmajor(*devp), device);
}
else {

device = getminor(*devp);
if (device >= mux_cnt)

return ENXIO;
}

mux = &mux_mux[device];
mux->qptr = q;
q->q_ptr = (char *) mux;
WR(q)->q_ptr = (char *) mux;
qprocson(q);
return (0);

}

muxopen checks for a clone or ordinary open call. It initializes q_ptr to point at the
mux_mux[] structure.

The core multiplexer processing is as follows: downstream data written to an upper
stream is queued on the corresponding upper write message queue if the lower stream
is flow controlled. This allows flow control to propagate toward the stream head for
each upper stream. A lower write service procedure, rather than a write put
procedure, is used so that flow control, coming up from the driver below, may be
handled.

On the lower read side, data coming up the lower stream are passed to the lower read
put procedure. The procedure routes the data to an upper stream based on the first
byte of the message. This byte holds the minor device number of an upper stream. The
put procedure handles flow control by testing the upper stream at the first upper read
queue beyond the driver.

Chapter 13 • STREAMS Multiplex Drivers 291

Upper Write put Procedure Sample
muxuwput, the upper-queue write put procedure, traps ioctl calls, in particular
I_LINK and I_UNLINK:

EXAMPLE 13–4 bufcall Callback Routine

static int
/*
* This is our callback routine used by bufcall() to inform us
* when buffers become available
*/
static void mux_qenable(long ql)
{

queue_t *q = (queue_t *ql);
struct mux *mux;

mux = (struct mux *)(q->q_ptr);
mux->bufcid = 0;
qenable(q);

}
muxuwput(queue_t *q, mblk_t *mp)
{

struct mux *mux;

mux = (struct mux *)q->q_ptr;
switch (mp->b_datap->db_type) {
case M_IOCTL: {

struct iocblk *iocp;
struct linkblk *linkp;
/*
* ioctl. Only channel 0 can do ioctls. Two
* calls are recognized: LINK, and UNLINK
*/
if (mux != mux_mux)

goto iocnak;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cmd) {
case I_LINK:

/*
*Link. The data contains a linkblk structure
*Remember the bottom queue in muxbot.
*/
if (muxbot != NULL)

goto iocnak;

linkp=(struct linkblk *) mp->b_cont->b_rptr;
muxbot = linkp->l_qbot;
muxerr = 0;

mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

292 STREAMS Programming Guide • January 2005

EXAMPLE 13–4 bufcall Callback Routine (Continued)

case I_UNLINK:
/*
* Unlink. The data contains a linkblk struct.
* Should not fail an unlink. Null out muxbot.
*/
linkp=(struct linkblk *) mp->b_cont->b_rptr;
muxbot = NULL;
mp->b_datap->db_type = M_IOCACK;
iocp->ioc_count = 0;
qreply(q, mp);
break;

default:
iocnak:

/* fail ioctl */
mp->b_datap->db_type = M_IOCNAK;
qreply(q, mp);

}
break;

}
case M_FLUSH:

if (*mp->b_rptr & FLUSHW)
flushq(q, FLUSHDATA);

if (*mp->b_rptr & FLUSHR) {
*mp->b_rptr &= ~FLUSHW;
qreply(q, mp);

} else
freemsg(mp);

break;

case M_DATA:{
*/
* Data. If we have no lower queue --> fail
* Otherwise, queue the data and invoke the lower
* service procedure.

mblk_t *bp;
if (muxerr || muxbot == NULL)

goto bad;
if ((bp = allocb(1, BPRI_MED)) == NULL) {

putbq(q, mp);
mux->bufcid = bufcall(1, BPRI_MED,

mux_qenable, (long)q);
break;

}
*bp->b_wptr++ = (struct mux *)q->ptr - mux_mux;
bp->b_cont = mp;
putq(q, bp);
break;

}
default:

Chapter 13 • STREAMS Multiplex Drivers 293

EXAMPLE 13–4 bufcall Callback Routine (Continued)

bad:
/*
* Send an error message upstream.
*/
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EINVAL;
qreply(q, mp);

}

}

First, there is a check to enforce that the stream associated with minor device 0 will be
the single, controlling stream. The ioctls are only accepted on this stream. As
described previously, a controlling stream is the one that issues the I_LINK. There
should be only a single control stream. I_LINK and I_UNLINK include a linkblk
structure containing the following fields:

l_qtop is the upper write queue from which the ioctl(2) comes. It always equals q
for an I_LINK, and NULL for I_PLINK.

l_qbot is the new lower write queue. It is the former stream head write queue and is
where the multiplexer gets and puts its data.

l_index is a unique (system-wide) identifier for the link. It can be used for routing or
during selective unlinks. Since the example only supports a single link, l_index is
not used.

For I_LINK, l_qbot is saved in muxbot and a positive acknowledgement is
generated. From this point on, until an I_UNLINK occurs, data from upper queues will
be routed through muxbot. Note that when an I_LINK, is received, the lower stream
has already been connected. This enables the driver to send messages downstream to
perform any initialization functions. Returning an M_IOCNAK message (negative
acknowledgement) in response to an I_LINK causes the lower stream to be
disconnected.

The I_UNLINK handling code nulls out muxbot and generates a positive
acknowledgement. A negative acknowledgement should not be returned to an
I_UNLINK. The stream head ensures that the lower stream is connected to a
multiplexer before sending an I_UNLINK M_IOCTL.

Drivers can handle the persistent link requests I_PLINK and I_PUNLINK ioctl(2) in
the same manner, except that l_qtop in the linkblk structure passed to the put
routine is NULL instead of identifying the controlling stream.

muxuwput handles M_FLUSH messages as a normal driver does, except that there are
no messages queued on the upper read queue, so there is no need to call flushq if
FLUSHR is set.

294 STREAMS Programming Guide • January 2005

M_DATA messages are not placed on the lower write message queue. They are queued
on the upper write message queue. When flow control subsides on the lower stream,
the lower service procedure, muxlwsrv, is scheduled to start output. This is similar to
starting output on a device driver.

Upper Write service Procedure Sample
The following example shows the code for the upper multiplexer write service
procedure:

EXAMPLE 13–5 Upper Multiplexer Write Service Procedure

static int muxuwsrv(queue_t *q)
{

mblk_t *mp;
struct mux *muxp;
muxp = (struct mux *)q->q_ptr;

if (!muxbot) {
flushq(q, FLUSHALL);
return (0);

}
if (muxerr) {

flushq(q, FLUSHALL);
return (0);

}
while (mp = getq(q)) {

if (canputnext(muxbot))
putnext(muxbot, mp);

else {
putbq(q, mp);
return(0);

}
}
return (0);

}

As long as there is a stream still linked under the multiplexer and there are no errors,
the service procedure will take a message off the queue and send it downstream, if
flow control allows.

Lower Write service Procedure
muxlwsrv, the lower (linked) queue write service procedure is scheduled as a
result of flow control subsiding downstream (it is back-enabled).

static int muxlwsrv(queue_t *q)
{

int i;

Chapter 13 • STREAMS Multiplex Drivers 295

for (i = 0; i < mux_cnt; i++)
if (mux_mux[i].qptr && mux_mux[i].qptr->q_first)

qenable(mux_mux[i].qptr);
return (0);

}

muxlwsrv steps through all possible upper queues. If a queue is active and there are
messages on the queue, then its upper write service procedure is enabled through
qenable.

Lower Read put Procedure
The lower (linked) queue read put procedure is shown in the following example:

EXAMPLE 13–6 Lower Read put Procedure

static int
muxlrput(queue_t *q, mblk_t *mp)
{

queue_t *uq;
int device;

if(muxerr) {
freemsg(mp);
return (0);

}

switch(mp->b_datap->db_type) {
case M_FLUSH:

/*
* Flush queues. NOTE: sense of tests is reversed
* since we are acting like a "stream head"
*/
if (*mp->b_rptr & FLUSHW) {

*mp->b_rptr &= ~FLUSHR;
qreply(q, mp);

} else
freemsg(mp);

break;
case M_ERROR:
case M_HANGUP:

muxerr = 1;
freemsg(mp);
break;

case M_DATA:
/*
* Route message. First byte indicates
* device to send to. No flow control.
*
* Extract and delete device number. If the
* leading block is now empty and more blocks

296 STREAMS Programming Guide • January 2005

EXAMPLE 13–6 Lower Read put Procedure (Continued)

* follow, strip the leading block.
*/
device = *mp->b_rptr++;

/* Sanity check. Device must be in range */
if (device < 0 || device >= mux_cnt) {

freemsg(mp);
break;

}
/*
* If upper stream is open and not backed up,
* send the message there, otherwise discard it.
*/
uq = mux_mux[device].qptr;
if (uq != NULL && canputnext(uq))

putnext(uq, mp);
else

freemsg(mp);
break;

default:
freemsg(mp);

}
return (0);

}

muxlrput receives messages from the linked stream. In this case, it is acting as a
stream head and handles M_FLUSH messages. The code is the reverse of a driver,
handling M_FLUSH messages from upstream. There is no need to flush the read queue
because no data is ever placed in it.

muxlrput also handles M_ERROR and M_HANGUP messages. If one is received, it locks
up the upper streams by setting muxerr.

M_DATA messages are routed by checking the first data byte of the message. This byte
contains the minor device of the upper stream. Several checks examine whether:

� The device is in range
� The upper stream is open
� The upper stream is full

This multiplexer does not support flow control on the read side; it is merely a router. If
the message passes all checks, it is put to the proper upper queue. Otherwise, the
message is discarded.

The upper stream close routine clears the mux entry so this queue will no longer be
found. Outstanding bufcalls are not cleared.

/*
* Upper queue close
*/

Chapter 13 • STREAMS Multiplex Drivers 297

static int
muxclose(queue_t *q, int flag, cred_t *credp)
{

struct mux *mux;

mux = (struct mux *) q->q_ptr;
qprocsoff(q);
if (mux->bufcid != 0)

unbufcall(mux->bufcid);
mux->bufcid = 0;
mux->ptr = NULL;
q->q_ptr = NULL;
WR(q)->q_ptr = NULL;
return(0);

}

Persistent Links
Keeping a process running merely to hold the multiplexer configuration together is
not always desirable, so, “free standing” links below a multiplexer are needed. A
persistent link is such a link. It is similar to a STREAMS multiplexer link except that a
process is not needed to hold the links together. After the multiplexer has been set up,
the process may close all file descriptors and exit, and the multiplexer remains intact.

With I_LINK and I_UNLINK ioctl(2) the file descriptor associated with the stream
above the multiplexer used to set up the lower multiplexer connections must remain
open for the duration of the configuration. Closing the file descriptor associated with
the controlling stream dismantles the whole multiplexing configuration.

Two ioctl(2)s, I_PLINK and I_PUNLINK, are used to create and remove persistent
links that are associated with the stream above the multiplexer. close(2) and
I_UNLINK are not able to disconnect the persistent links (see strconf(1) and
strchg(1)).

The format of I_PLINK is:

ioctl(fd0, I_PLINK, fd1)

The first file descriptor, fd0, must reference the stream connected to the multiplexing
driver and the second file descriptor, fd1, must reference the stream to be connected
below the multiplexer. The persistent link can be created as follows:

upper_stream_fd = open("/dev/mux", O_RDWR);
lower_stream_fd = open("/dev/driver", O_RDWR);
muxid = ioctl(upper_stream_fd, I_PLINK, lower_stream_fd);
/*
* save muxid in a file
*/

298 STREAMS Programming Guide • January 2005

exit(0);

The persistent link can still exist even if the file descriptor associated with the upper
stream to the multiplexing driver is closed. The I_PLINK ioctl(2) returns an integer
value, muxid, that can be used for dismantling the multiplexing configuration. If the
process that created the persistent link still exists, it may pass the muxid value to
some other process to dismantle the link, if the dismantling is desired, or it can leave
the muxid value in a file so that other processes may find it later.

Several users can open the MUX driver and send data to Driver1 since the persistent
link to Driver1 remains intact.

The I_PUNLINK ioctl(2) is used to dismantle the persistent link. Its format is:

ioctl(fd0, I_PUNLINK, muxid)

where fd0 is the file descriptor associated with stream connected to the multiplexing
driver from above. The muxid is returned by the I_PLINK ioctl(2) for the stream
that was connected below the multiplexer. I_PUNLINK removes the persistent link
between the multiplexer referenced by fd0 and the stream to the driver designated by
the muxid. Each of the bottom persistent links can be disconnected individually. An
I_PUNLINK ioctl(2) with the muxid value of MUXID_ALL will remove all persistent
links below the multiplexing driver referenced by fd0.

The following code example shows how to dismantle the previously given
configuration:

fd = open("/dev/mux", O_RDWR);
/*
* retrieve muxid from the file
*/
ioctl(fd, I_PUNLINK, muxid);

exit(0);

Do not use the I_PLINK and I_PUNLINK ioctls with I_LINK and I_UNLINK. Any
attempt to unlink a regular link with I_PUNLINK or to unlink a persistent link with
the I_UNLINK ioctl(2) causes the errno value of EINVAL to be returned.

Because multilevel multiplexing configurations are allowed in STREAMS, persistent
links could exist below a multiplexer whose stream is connected to the above
multiplexer by regular links. Closing the file descriptor associated with the controlling
stream will remove the regular link but not the persistent links below it. On the other
hand, regular links are allowed to exist below a multiplexer whose stream is
connected to the above multiplexer with persistent links. In this case, the regular links
will be removed if the persistent link above is removed and no other references to the
lower streams exist.

The construction of cycles is not allowed when creating links. A cycle could be
constructed by:

1. Creating a persistent link of multiplexer 2 below multiplexer 1
2. Closing the controlling file descriptor associated with the multiplexer 2

Chapter 13 • STREAMS Multiplex Drivers 299

3. Reopening the file descriptor again
4. Linking the multiplexer 1 below the multiplexer 2

This is not allowed. The operating system prevents a multiplexer configuration from
containing a cycle to ensure that messages cannot be routed infinitely, which would
create an infinite loop or overflow the kernel stack.

Design Guidelines
The following are general multiplexer design guidelines:

� The upper half of the multiplexer acts like the end of the upper stream. The lower
half of the multiplexer acts like the head of the lower stream. Service procedures
are used for flow control.

� Message routing is based on multiplexer-specific criteria.

� When one stream is being fed by many streams, flow control may have to take
place. Then all feeding streams on the other end of the multiplexer have to be
enabled when the flow control is relieved.

� When one stream is feeding many streams, flow control may also have to take
place. Be careful not to starve other streams when one becomes flow controlled.

� Upper and lower multiplexers share the same perimeter type and concurrency
level. (See “MT STREAMS Perimeters” on page 252 for information about
perimeters.)

300 STREAMS Programming Guide • January 2005

PART III

Advanced Topics

Chapter 14, Debugging Describes the tools available for debugging
STREAMS-based applications.

301

302 STREAMS Programming Guide • January 2005

CHAPTER 14

Debugging STREAMS-based
Applications

This chapter describes some of the tools available to assist in debugging
STREAMS-based applications. It contains the following information:

� “Kernel Debug Printing” on page 303
� “STREAMS Error and Trace Logging” on page 304
� “Kernel Examination Tools” on page 305

Kernel Debug Printing
The kernel routine cmn_err(9F) enables printing of formatted strings on a system
console. It displays a specified message on the console and can also store it in the
msgbuf that is a circular array in the kernel. The format of cmn_err(9F) is:

#include <sys/cmn_err.h>

void cmn_err (int level, char *fmt, int args)

where level can take the following values:

� CE_CONT — may be used as simple printf(3C). It is used to continue another
message or to display an informative message not associated with an error.

� CE_NOTE — reports system events. It is used to display a message preceded by
NOTICE:. This message is used to report system events that do not necessarily
require user action, but may interest the system administrator. An example is a
sector on a disk needing to be accessed repeatedly before it can be accessed
correctly.

� CE_WARN — reports system events that require user action. This is used to display
a message preceded by WARNING:. This message is used to report system events
that require immediate attention, such as those where, if an action is not taken, the
system may panic. For example, when a peripheral device does not initialize

303

correctly, this level should be used.

� CE_PANIC — reports system panic. This is used to display a message preceded
with PANIC:. Drivers should specify this level only under the most severe
conditions. A valid use of this level is when the system cannot continue to function.
If the error is recoverable and not essential to continued system operation, do not
panic the system. This level halts all processing.

fmt and args are passed to the kernel routine printf that runs at splhi and should
be used sparingly. If the first character of fmt is ! (an exclamation point), output is
directed to msgbuf. msgbuf can be accessed with the crash command. If the
destination character begins with ^ (a caret) output goes to the console. If no
destination character is specified, the message is directed to both the msgbuf array
and the console.

cmn_err(9F) appends each fmt with “\n”, except for the CE_CONT level, even when
a message is sent to the msgbuf array. args specifies a set of arguments passed when
the message is displayed. Valid specifications are %s (string), %u (unsigned decimal),
%d (decimal), %o (octal), and %x (hexadecimal). cmn_err(9F) does not accept length
specifications in conversion specifications. For example, %3d is ignored.

Note – crash has reached EOL and is not supported in the Solaris 9 operating
environment. For information about how to transition from crash to mdb, see the
Solaris Modular Debugger Guide.

STREAMS Error and Trace Logging
STREAMS error and trace loggers are provided for debugging and for administering
STREAMS modules and drivers. This facility consists of log(7D), strace(1M),
strclean(1M), strerr(1M), and strlog(9F).

Any module or driver in any stream can call the STREAMS logging function
strlog(9F) (see also log(7D)). strlog(9F) sends formatted text to the error logger
strerr(1M), the trace logger strace(1M), or the console logger.

strerr(1M) runs as a daemon process initiated at system startup. A call to
strlog(9F) requesting an error to be logged causes an M_PROTO message to be sent to
strerr(1M), which formats the contents and places them in a daily file.
strclean(1M) purges daily log files that have not been modified for three days.

strlog(9F) also sends a similar M_PROTO message to strace(1M), which places it in
a user-designated file. strace(1M) is initiated by a user. The user designates the
modules and drivers and the severity level of the messages accepted for logging by
strace(1M).

304 STREAMS Programming Guide • January 2005

A user process can submit its own M_PROTO messages to the log driver for inclusion in
the logger of its choice through putmsg(2). The messages must be in the same format
required by the logging processes and are switched to the loggers requested in the
message.

The output to the log files is formatted ASCII text. The files can be processed by
standard system commands such as grep(1) or by developer-provided routines.

Kernel Examination Tools
Use crash, adb, and kadb(1M) to examine the kernel.

crash Command
crash examines kernel structures interactively. It can be used on a system dump and
on an active system.

Note – crash has reached EOL and is not supported in the Solaris 9 operating
environment. For information about how to transition from crash to mdb, see the
Solaris Modular Debugger Guide.

The following crash functions are related to STREAMS:

� dbfree — Print data block header free list.

� dblock — Print allocated STREAMS data block headers.

� linkblk — Print the linkblk(9S) table.

� mbfree — Print free STREAMS message block headers.

� mblock — Print allocated STREAMS message block headers.

� pty — Print pseudo-TTYs now configured. The l option gives information on the
line discipline module. ldterm(7M), the h option provides information on the
pseudo-TTY emulation module ptem(7M). The s option gives information on the
packet module pckt(7M).

� qrun — Print a list of scheduled queues.

� queue — Print the STREAMS queues.

� stream — Print the stdata table.

� strstat — Print STREAMS statistics.

� tty — Print the tty table. The l option prints details about the line-discipline
module.

Chapter 14 • Debugging STREAMS-based Applications 305

The crash functions dblock, linkblk, mblock, queue, and stream take an
optional table entry argument or address that is the address of the data structure.
The strstat command gives information about STREAMS event cells and
linkblks in addition to message blocks, data blocks, queues, and streams. On the
output report, the CONFIG column represents the number of structures currently
configured. It may change because resources are allocated as needed.

adb Command
adb is an interactive general-purpose debugger. It can be used to examine files and
provides a controlled environment for the execution of programs. It has no support
built in for any STREAMS functionality.

Note – adb has reached EOL and is not supported in the Solaris 9 operating
environment. For information about how to transition from adb to mdb, see the Solaris
Modular Debugger Guide.

kadb Command
kadb(1M) is an interactive debugger with a user interface similar to adb(1), but it runs
in the same virtual address space as the program begin debugged. It also has no
specific STREAMS support.

306 STREAMS Programming Guide • January 2005

PART IV

Appendixes

Part IV of this manual contains appendixes that summarize message types, kernel
utility interfaces, the STREAMS-based terminal subsystem, and frequently asked
questions.

Appendix A, MESSAGE Types Provides a summary of ordinary and
high-priority messages.

Appendix B, Kernel Utility Interface Summary Provides a summary of the kernel utility
interfaces.

Appendix C, STREAMS-Based Terminal
Subsystem

Describes how a terminal subsystem is set up
and how interrupts are handled.

Appendix D, STREAMS FAQ Provides a collection of frequently asked
questions.

307

308 STREAMS Programming Guide • January 2005

APPENDIX A

Message Types

STREAMS message types differ in their intended purposes, their treatment at the
stream head, and their message-queueing priority.

STREAMS does not prevent a module or driver from generating any message type
and sending it in any direction on the stream. However, established processing and
direction rules should be observed. Stream head processing according to message type
is fixed, although certain parameters can be altered.

� “Ordinary Messages” on page 309
� “High-Priority Messages” on page 317

Ordinary Messages
The message types found in sys/stream.h are described in this appendix, classified
according to their message queueing priority. Ordinary messages are described first,
with high-priority messages following. In certain cases, two message types may
perform similar functions, differing only in priority. Message construction is described
in Chapter 3. The use of the word module generally implies module or driver.

Ordinary messages are also called normal or nonpriority messages. Ordinary
messages are subject to flow control whereas high-priority messages are not.

M_BREAK
Sent to a driver to request that BREAK be transmitted on whatever media the driver is
controlling.

309

The message format is not defined by STREAMS and its use is developer dependent.
This message may be considered a special case of an M_CTL message. An M_BREAK
message cannot be generated by a user-level process and is always discarded if passed
to the stream head.

M_CTL
Generated by modules that send information to a particular module or type of
module. M_CTL messages are typically used for intermodule communication, as when
adjacent STREAMS protocol modules negotiate the terms of their interface. An M_CTL
message cannot be generated by a user-level process and is always discarded if passed
to the stream head.

M_DATA
Contains ordinary data. Messages allocated by allocb(9F) are M_DATA type by
default. M_DATA messages are generally sent bidirectionally on a stream and their
contents can be passed between a process and the stream head. In the getmsg(2) and
putmsg(2) system calls, the contents of M_DATA message blocks are referred to as the
data part. Messages composed of multiple message blocks typically have M_DATA as
the message type for all message blocks following the first.

M_DELAY
Sent to a media driver to request a real-time delay on output. The data buffer
associated with this message is expected to contain an integer to indicate the number
of machine cycles of delay desired. M_DELAY messages are typically used to prevent
transmitted data from exceeding the buffering capacity of slower terminals.

The message format is not defined by STREAMS and its use is developer dependent.
Not all media drivers may understand this message. This message may be considered
a special case of an M_CTL message. An M_DELAY message cannot be generated by a
user-level process and is always discarded if passed to the stream head.

M_IOCTL
Generated by the stream head in response to I_STR, I_LINK, I_UNLINK, I_PLINK,
and I_PUNLINK ioctls (see streamio(7I)). This message is also generated in
response to ioctl calls that contain a command argument value not defined in
streamio(7I). When one of these ioctl(2) is received from a user process, the stream
head uses values supplied in the call and values from the process to create an
M_IOCTL message containing them, then sends the message downstream. M_IOCTL
messages perform the general ioctl(2) functions of character device drivers.

310 STREAMS Programming Guide • January 2005

For an I_STR ioctl(2), the user values are supplied in a structure of the following
form, provided as an argument to the ioctl(2) call (see I_STR in streamio(7I)):

struct strioctl
{

int ic_cmd; /* downstream request */
int ic_timout; /* ACK/NAK timeout */
int ic_len; /* length of data arg */
char *ic_dp; /* ptr to data arg */

};

where ic_cmd is the request (or command) defined by a downstream module or
driver, ic_timout is the time the stream head waits for acknowledgement to the
M_IOCTL message before timing out, and ic_dp points to an optional data buffer. On
input, ic_len contains the length of the data in the buffer that was passed in. On
return from the call, it contains the length of the data, if any, being returned to the user
in the same buffer.

The M_IOCTL message format is one M_IOCTL message block followed by zero or
more M_DATA message blocks. STREAMS constructs an M_IOCTL message block by
placing an iocblk(9S) structure, defined in <sys/stream.h>, in its data buffer. The
iocblk(9S) structure differs for 64–bit and 32–bit architectures.

#if defined(_LP64)
struct iocblk {

int ioc_cmd; /* ioctl command type */
cred_t *ioc_cr; /* full credentials */
uint ioc_id; /* ioctl id */
uint ioc_flag; /* see below */
size_t ioc_count; /* count of bytes in data field */
int ioc_rval; /* return value */
int ioc_error; /* error code */

};
#else
struct iocblk {

int ioc_cmd; /* ioctl command type */
cred_t *ioc_cr; /* full credentials */
uint ioc_id; /* ioctl id */
size_t ioc_count; /* count of bytes in data field */
int ioc_error; /* error code */
int ioc_rval; /* return value */
intt ioc_fill1;
uint ioc_flag; /* see below */
int ioc_filler[2]; /* reserved for future use */

};

#endif /* _LP64 */

For an I_STR ioctl(2), ioc_cmd corresponds to ic_cmd of the strioctl structure.
ioc_cr points to a credentials structure defining the user process’s permissions (see
cred.hfile).. Its contents can be tested to determine whether the user issuing the
ioctl(2) call is authorized to do so. For an I_STR ioctl(2), ioc_count is the
number of data bytes, if any, contained in the message and corresponds to ic_len.

Appendix A • Message Types 311

ioc_id is an identifier generated internally, and is used by the stream head to match
each M_IOCTL message sent downstream with response messages sent upstream to
the stream head. The response message that completes the stream-head processing for
the ioctl(2) is an M_IOCACK (positive acknowledgement) or an M_IOCNAK (negative
acknowledgement) message.

For an I_STR ioctl(2), if a user supplies data to be sent downstream, the stream
head copies the data (pointed to by ic_dp in the strioctl structure) into M_DATA
message blocks and links the blocks to the initial M_IOCTL message block.
ioc_count is copied from ic_len. If there are no data, ioc_count is zero.

If the stream head does not recognize the command argument of an ioctl(2), the
head creates a transparent M_IOCTL message. The format of a transparent M_IOCTL
message is one M_IOCTL message block followed by one M_DATA block. The form of
the iocblk structure is the same as above. However, ioc_cmd is set to the value of
the command argument in the ioctl(2) and ioc_count is set to TRANSPARENT,
defined in <sys/stream.h>. TRANSPARENT distinguishes the case where an I_STR
ioctl(2) specifies a value of ioc_cmd equivalent to the command argument of a
transparent ioctl(2). The M_DATA block of the message contains the value of the arg
parameter in the ioctl(2).

The first module or driver that understands the ioc_cmd request contained in the
M_IOCTL acts on it. For an I_STR ioctl(2), this action generally includes an
immediate upstream transmission of an M_IOCACK message. For transparent
M_IOCTLs, this action generally includes the upstream transmission of an M_COPYIN
or M_COPYOUT message.

Intermediate modules that do not recognize a particular request must pass the
message on. If a driver does not recognize the request, or the receiving module can not
acknowledge it, an M_IOCNAK message must be returned.

M_IOCACK and M_IOCNAK message types have the same format as an M_IOCTL
message and contain an iocblk structure in the first block. An M_IOCACK block may
be linked to following M_DATA blocks. If one of these messages reaches the stream
head with an identifier that does not match that of the currently outstanding M_IOCTL
message, the response message is discarded. A common means of ensuring that the
correct identifier is returned is for the replying module to convert the M_IOCTL
message into the appropriate response type and set ioc_count to 0 if no data is
returned. Then, qreply(9F) is used to send the response to the stream head.

In an M_IOCACK or M_IOCNAK message, ioc_error holds any return error condition
set by a downstream module. If this value is non-zero, it is returned to the user in
errno. Note that both an M_IOCNAK and an M_IOCACK can return an error. However,
only an M_IOCACK can have a return value. For an M_IOCACK, ioc_rval holds any
return value set by a responding module. For an M_IOCNAK, ioc_rval is ignored by
the stream head.

312 STREAMS Programming Guide • January 2005

If a module processing an I_STR ioctl(2) is sending data to a user process, it must
use the M_IOCACK message that it constructs such that the M_IOCACK block is linked
to one or more following M_DATA blocks containing the user data. The module must
set ioc_count to the number of data bytes sent. The stream head places the data in
the address pointed to by ic_dp in the user I_STR strioctl structure.

A module processing a transparent ioctl(2) that is sending data to a user process can
use only an M_COPYOUT message. For a transparent ioctl(2), no data can be sent to
the user process in an M_IOCACK message. All data must be sent in a preceding
M_COPYOUT message. The stream head ignores any data contained in an M_IOCACK
message (in M_DATA blocks) and frees the blocks.

No data can be sent with an M_IOCNAK message for any type of M_IOCTL. The stream
head ignores and frees any M_DATA blocks.

The stream head blocks the user process until an M_IOCACK or M_IOCNAK response to
the M_IOCTL (same ioc_id) is received. For an M_IOCTL generated from an I_STR
ioctl(2), the stream head times out if no response is received in ic_timout interval
(the user can specify an explicit interval or specify use of the default interval). For
M_IOCTL messages generated from all other ioctl(2)s, the default (infinite) is used.

M_PASSFP
The M_PASSFP message passes a file pointer from the stream head at one end of a
stream pipe to the stream head at the other end of the same stream pipe.

The message is generated as a result of an I_SENDFD ioctl(2) (see streamio(7I))
issued by a process to the sending stream head. STREAMS places the M_PASSFP
message directly on the destination stream head’s read queue to be retrieved by an
_RECVFD ioctl(2) (see streamio(7I)). The message is placed without passing it
through the stream (that is, it is not seen by any modules or drivers in the stream).
This message should never be present on any queue except the read queue of a stream
head. Consequently, modules and drivers do not need to recognize this message, and
it can be ignored by module and driver developers.

M_PROTO
The M_PROTO message contains control information and associated data. The message
format is one or more M_PROTO message blocks followed by zero or more M_DATA
message blocks. The semantics of the M_DATA and M_PROTO message blocks are
determined by the STREAMS module that receives the message.

Appendix A • Message Types 313

Note – On the write side, the user can only generate M_PROTO messages containing
one M_PROTO message block.

The M_PROTO message block typically contains implementation dependent control
information. M_PROTO messages are generally sent bidirectionally on a stream, and
their contents can be passed between a process and the stream head. The contents of
the first message block of an M_PROTO message is generally referred to as the control
part, and the contents of any following M_DATA message blocks are referred to as the
data part. In the getmsg(2) and putmsg(2), the control and data parts are passed
separately.

The format of M_PROTO and M_PCPROTO (generically PROTO) messages sent upstream
to the stream head allows multiple PROTO blocks at the beginning of the message
although its use is not recommended. getmsg(2)) compacts the blocks into a single
control part when passing them to the user process.

M_RSE
This message is reserved for internal use. Modules that do not recognize this message
must pass it on. Drivers that do not recognize it must free it.

M_SETOPTS
This message is used to alter some characteristics of the stream head. It is generated by
any downstream module, and is interpreted by the stream head. The data buffer of the
message has the following structure, as defined in stream.h:

struct stroptions {
uint so_flags; /* options to set */
shor so_readopt; /* read option */
ushort so_wroff; /* write offset */
ssize_t so_minpsz; /* minimum read packet size */
ssize_t so_maxpsz; /* maximum read packet size */
size_t so_hiwat; /* read queue high–water mark */
size_t so_lowat; /* read queue low–water mark */
unsigned char so_band; /* band for water marks */
ushort so_erropt; /* error option */
ssize_t so_maxblk; /* maximum message block size */
ushort so_copyopt; /* copy options (see stropts.h) */

};

where so_flags specifies which options are to be altered, and can be any
combination of the following:

� SO_ALL — Update all options according to the values specified in the remaining
fields of the stroptions structure.

314 STREAMS Programming Guide • January 2005

� SO_READOPT — Set the read mode (see read(2)) as specified by the value of
so_readopt to:

� RNORM — Byte stream

� RMSGD — Message discard

� RMSGN — Message non-discard

� RPROTNORM — Normal protocol

� RPROTDAT — Turn M_PROTO and M_PCPROTO msgs into M_DATA msgs

� RPROTDIS — Discard M_PROTO and M_PCPROTO blocks in a msg and retain any
linked M_DATA blocks

� SO_WROFF — Direct the stream head to insert an offset (unwritten area), specified
by so_wroff into the first message block of all M_DATA messages created as a
result of a write(2). The same offset is inserted into the first M_DATA message
block, if any, of all messages created by a putmsg system call. The default offset is
zero.

The offset must be less than the maximum message buffer size (system dependent).
Under certain circumstances, a write offset may not be inserted. A module or driver
must test that b_rptr in the msgb(9S)structure is greater than db_base in the
datab(9S) structure to determine that an offset has been inserted in the first message
block.

� SO_MINPSZ — Change the minimum packet size value associated with the stream
head read queue to so_minpsz. This value is advisory for the module
immediately below the stream head. It should limit the size of M_DATA messages
that the module should put to the stream head. There is no intended minimum size
for other message types. The default value in the stream head is zero.

� SO_MAXPSZ — Change the maximum packet size value associated with the stream
head read queue to so_maxpsz. This value is advisory for the module
immediately below the stream head. It should limit the size of M_DATA messages
that the module should put to the stream head. There is no intended maximum
size for other message types. The default value in the stream head is INFPSZ, the
maximum STREAMS allows.

� SO_HIWAT — Change the flow control high–water mark (q_hiwat in the
queue(9S) structure, qb_hiwat in the qband(9S) structure) on the stream-head
read queue to the value specified in so_hiwat.

� SO_LOWAT — Change the flow control low–water mark (q_lowat in the
queue(9S) structure, qb_lowat in the qband(9S) structure) on the stream-head
read queue to the value specified in so_lowat.

� SO_MREADON — Enable the stream head to generate M_READ messages when
processing a read(2) system call. If both SO_MREADON and SO_MREADOFF are set
in so_flags, SO_MREADOFF takes precedence.

� SO_MREADOFF — Disable the stream head generation of M_READ messages when
processing a read(2) system call. This is the default. If both SO_MREADON and
SO_MREADOFF are set in so_flags, SO_MREADOFF takes precedence.

Appendix A • Message Types 315

� SO_NDELON — Set non-STREAMS TTY semantics for O_NDELAY(or O_NONBLOCK)
processing on read(2) and write(2). If O_NDELAY(or O_NONBLOCK) is set, a
read(2) returns 0 if no data is waiting to be read at the stream head. If
O_NDELAY(or O_NONBLOCK) is clear, a read(2) blocks until data become available
at the stream head. (See note below.)

Regardless of the state of O_NDELAY (or O_NONBLOCK), a write(2) blocks on flow
control and blocks if buffers are not available.

If both SO_NDELON and SO_NDELOFF are set in so_flags, SO_NDELOFF takes
precedence.

Note – For conformance with the POSIX standard, new applications should use the
O_NONBLOCK flag whose behavior is the same as that of O_NDELAY unless otherwise
noted.

� SO_NDELOFF — Set STREAMS semantics for O_NDELAY (or O_NONBLOCK)
processing on read(2) and write(2) system calls. If O_NDELAY(or O_NONBLOCK) is
set, a read(2) will return -1 and set EAGAIN if no data is waiting to be read at the
stream head. If O_NDELAY (or O_NONBLOCK) is clear, a read(2) blocks until data
become available at the stream head. (See note above.)

If O_NDELAY (or O_NONBLOCK) is set, a write(2) returns -1 and sets EAGAIN if
flow control is in effect when the call is received. It blocks if buffers are not
available. If O_NDELAY (or O_NONBLOCK) is set, part of the buffer has been written,
and a flow control or “buffers not available” condition is encountered, write(2)
terminates and returns the number of bytes written.

If O_NDELAY (or O_NONBLOCK) is clear, a write(2) will block on flow control and
will block if buffers are not available.

This is the default. If both SO_NDELON and SO_NDELOFF are set in so_flags,
SO_NDELOFF takes precedence.

In the STREAMS-based pipe mechanism, the behavior of read(2) and write(2) is
different for the O_NDELAY and O_NONBLOCK flags.

� SO_BAND — Set watermarks in a band. If the SO_BAND flag is set with the
SO_HIWAT or SO_LOWAT flag, the so_band field contains the priority band
number related to the so_hiwat and so_lowat fields.

If the SO_BAND flag is not set and the SO_HIWAT and SO_LOWAT flags are on, the
normal high-water and low-water marks are affected. The SO_BAND flag has no
effect if SO_HIWAT and SO_LOWAT flags are off.

Only one band’s water marks can be updated with a single M_SETOPTS message.
� SO_ISTTY — Inform the stream head that the stream is acting like a controlling

terminal.
� SO_ISNTTY — Inform the stream head that the stream is no longer acting like a

controlling terminal.

For SO_ISTTY, the stream may be allocated as a controlling terminal via an
M_SETOPTS message arriving upstream during open processing. If the stream head
is opened before receiving this message, the stream will not be allocated as a

316 STREAMS Programming Guide • January 2005

controlling terminal until it is queued again by a session leader.
� SO_TOSTOP — Stop on background writes to the stream.
� SO_TONSTOP — Do not stop on background writes to the stream. SO_TOSTOP and

SO_TONSTOP are used in conjunction with job control.
� SO_DELIM — Messages are delimited.
� SO_NODELIM — Messages are not delimited.
� SO_STRHOLD — Enable strwrite message coalescing.

M_SIG
The M_SIG message is sent upstream by modules or drivers to post a signal to a
process. When the message reaches the front of the stream-head read queue, it
evaluates the first data byte of the message as a signal number, defined in
<sys/signal.h>. (The signal is not generated until it reaches the front of the
stream-head read queue.) The associated signal will be sent to processes under the
following conditions:

� If the signal is SIGPOLL, it is sent only to those processes that have explicitly
registered to receive the signal (see I_SETSIG in streamio(7I)).

� If the signal is not SIGPOLL and the stream containing the sending module or
driver is a controlling TTY, the signal is sent to the associated process group. A
stream becomes the controlling TTY for its process group if, on open(2) a module
or driver sends an M_SETOPTS message to the stream head with the SO_ISTTY
flag set.

� If the signal is not SIGPOLL and the stream is not a controlling TTY, no signal is
sent, except in case of SIOCSPGRP and TIOCSPGRP. These two ioctls set the
process group field in the stream head so the stream can generate signals even if it
is not a controlling TTY.

High-Priority Messages
High-priority messages are particularly suitable for acknowledging service requests
when the acknowledgement should be placed ahead of any other messages at the
stream head. High-priority messages are not subject to flow control.

M_COPYIN
The M_COPYIN message is generated by a module or driver and sent upstream to
request that the stream head perform a copyin(9F) on behalf of the module or driver.
It is valid only after receiving an M_IOCTL message and before an M_IOCACK or
M_IOCNAK.

Appendix A • Message Types 317

The message format is one M_COPYIN message block containing a copyreq(9S)
structure, defined in <sys/stream.h>. Different structures are defined for 64–bit and
32–bit architectures.

#if defined(_LP64)
struct copyreq {

int cq_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cq_cr; /* full credentials (from ioc_cmd) */
uint cq_id; /* ioctl id (from ioc_id) */
uint cq_flag; /* see below */
mblk_t *cq_private; /* private state information */
caddr_t cq_addr; /* address to copy data to/from */
size_t cq_size; /* number of bytes to copy */

};
#else
struct copyreq {

int cq_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cq_cr; /* full credentials */
uint cq_id; /* ioctl id (from ioc_id) */
caddr_t cq_addr; /* address to copy data to/from */
size_t cq_size; /* number of bytes to copy */
uint cq_flag; /* see below */
mblk_t *cq_private; /* private state information */
int cq_filler[4]; /* reserved for future use */

};

#endif /* _LP64 */

The first four members of the structure correspond to those of the iocblk(9S)
structure in the M_IOCTL message that allows the same message block to be reused for
both structures. The stream head guarantees that the message block allocated for the
M_IOCTL message is large enough to contain a copyreq(9S). The cq_addr field
contains the user space address from which the data is to be copied. The cq_size
field is the number of bytes to copy from user space. The cq_flag field is reserved for
future use and should be set to zero.

This message should not be queued by a module or driver unless it intends to process
the data for the ioctl(2).

M_COPYOUT
The M_COPYOUT message is generated by a module or driver and sent upstream to
request that the stream head perform a copyout(9F) on behalf of the module or
driver. It is valid only after receiving an M_IOCTL message and before an M_IOCACK
or M_IOCNAK.

The message format is one M_COPYOUT message block followed by one or more
M_DATA blocks. The M_COPYOUT message block contains a copyreq(9S) as described
in the M_COPYIN message with the following differences: the cq_addr field contains
the user space address to which the data is to be copied. The cq_size field is the
number of bytes to copy to user space.

318 STREAMS Programming Guide • January 2005

Data to be copied to user space is contained in the linked M_DATA blocks.

This message should not be queued by a module or driver unless it processes the data
for the ioctl in some way.

Note – For more information, see copyin and copyout in the Writing Device Drivers
manual.

M_ERROR
The M_ERROR message is sent upstream by modules or drivers to report a downstream
error condition. When the message reaches the stream head, the stream is marked so
that all subsequent system calls issued to the stream, excluding close(2) and poll(2),
fail with errno set to the first data byte of the message. POLLERR is set if the stream is
being polled. All processes sleeping on a system call to the stream are awakened. An
M_FLUSH message with FLUSHRW is sent downstream.

The stream head maintains two error fields, one for the read side and one for the write
side. The one-byte format M_ERROR message sets both of these fields to the error
specified by the first byte in the message.

There is also a two-byte format of the M_ERROR message. The first byte is the read
error and the second byte is the write error. This enables modules to set a different
error on the read side and write side. If one of the bytes is set to NOERROR, then the
field for the corresponding side of the stream is unchanged. The module can then
ignore an error on one side of the stream. For example, if the stream head was not in
an error state and a module sent an M_ERROR message upstream with the first byte set
to EPROTO and the second byte set to NOERROR, all subsequent read-like system calls
(such as read(2)and getmsg(2)) fail with EPROTO, but all write-like system calls (such
as write(2) and putmsg(2)) still succeed. If a byte is set to 0, the error state is cleared
for the corresponding side of the stream. The values NOERROR and 0 are not valid for
the one-byte form of the M_ERROR message.

M_FLUSH
The M_FLUSH message requests all modules and drivers that receive it to flush their
message queues (discard all messages in those queues) as indicated in the message.
An M_FLUSH can originate at the stream head, or in any module or driver. The first
byte of the message contains flags that specify one of the following actions:

� FLUSHR — Flush the read queue of the module
� FLUSHW — Flush the write queue of the module
� FLUSHRW — Flush both the read queue and the write queue of the module

Appendix A • Message Types 319

� FLUSHBAND — Flush the message according to the priority associated with the
band

Each module passes this message to its neighbor after flushing its appropriate queues
until the message reaches one of the ends of the stream.

Drivers are expected to include the following processing for M_FLUSH messages.
When an M_FLUSH message is sent downstream through the write queues in a stream,
the driver at the stream end discards it if the message action indicates that the read
queues in the stream are not to be flushed (only FLUSHW set). If the message indicates
that the read queues are to be flushed, the driver shuts off the FLUSHW flag, and sends
the message up the stream’s read queues.

When a flush message is sent up a stream’s read side, the stream head checks to see if
the write side of the stream is to be flushed. If only FLUSHR is set, the stream head
discards the message. However, if the write side of the stream is to be flushed, the
stream head sets the M_FLUSH flag to FLUSHW and sends the message down the
stream’s write side. All modules that queue messages must identify and process this
message type.

If FLUSHBAND is set, the second byte of the message contains the value of the priority
band to flush.

M_HANGUP
The M_HANGUP message is sent upstream by a driver to report that it can no longer
send data upstream. For example, this might be due to an error, or to a remote line
connection being dropped. When the message reaches the stream head, the stream is
marked so that all subsequent write(2) and putmsg(2) calls issued to the stream will
fail and return an ENXIO error. Those ioctls that cause messages to be sent
downstream are also failed. POLLHUP is set if the stream is being polled.

Subsequent read(2) or getmsg(2) calls to the stream will not generate an error. These
calls will return any messages (according to their function) that were on, or in transit
to, the stream-head read queue before the M_HANGUP message was received. When all
such messages have been read, read(2) returns 0 and getmsg(2) will set each of its
two length fields to 0.

This message also causes a SIGHUP signal to be sent to the controlling process instead
of the foreground process group, as the allocation and deallocation of controlling
terminals to a session is the responsibility of the controlling process.

320 STREAMS Programming Guide • January 2005

M_IOCACK
The M_IOCACK message signals the positive acknowledgement of a previous M_IOCTL
message. The message format is one M_IOCACK block (containing an iocblk(9S)
structure, see M_IOCTL) followed by zero or more M_DATA blocks. The iocblk(9S)
may contain a value in ioc_rval to be returned to the user process. It may also
contain a value in ioc_error to be returned to the user process in errno.

If this message is responding to an I_STR ioctl (see streamio(7I)), it may contain
data from the receiving module or driver to be sent to the user process. In this case,
message format is one M_IOCACK block followed by one or more M_DATA blocks
containing the user data. The stream head returns the data to the user if there is a
corresponding outstanding M_IOCTL request. Otherwise, the M_IOCACK message is
ignored and all blocks in the message are freed.

Data cannot be returned in an M_IOCACK message responding to a transparent
M_IOCTL. The data must have been sent with preceding M_COPYOUT messages. If any
M_DATA blocks follow the M_IOCACK block, the stream head ignores and frees them.

The format and use of this message type is described further under M_IOCTL.

M_IOCDATA
The M_IOCDATA message is generated by the stream head and sent downstream as a
response to an M_COPYIN or M_COPYOUT message. The message format is one
M_IOCDATA message block followed by zero or more M_DATA blocks. The M_IOCDATA
message block contains a copyresp(9S), defined in sys/stream.h.

#if defined(_LP64)
struct copyresp {

int cp_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cp_cr; /* full credentials (from ioc_cmd) */
uint cp_id; /* ioctl id (from ioc_id) */
uint cp_flag; /* see above */
mblk_t *cp_private; /* private state information */
caddr_t cp_rval; /* status of request: 0 -> success */

/* non-zero -> failure */
};
#else
struct copyresp {

int cp_cmd; /* ioctl command (from ioc_cmd) */
cred_t *cp_cr; /* full credentials */
uint cp_id; /* ioctl id (from ioc_id) */
caddr_t cp_rval /* status of request: 0 -> success */

/* non-zero -> failure */
size_t cp_pad1;
uint cp_pad2;
mblk_t *cp_private; /* private state information */
uint cp_flag; /* see above */
int cp_filler[3];

Appendix A • Message Types 321

};

#endif /* _LP64 */

The first three members of the structure correspond to those of the iocblk(9S) in the
M_IOCTL message that allows the same message blocks to be reused for all of the
related transparent messages (M_COPYIN, M_COPYOUT, M_IOCACK, M_IOCNAK). The
cp_rval field contains the result of the request at the stream head. Zero indicates
success and non-zero indicates failure. If failure is indicated, the module should not
generate an M_IOCNAK message. It must abort all ioctl(2) processing, clean up its
data structures, and return.

The cp_private field is copied from the cq_private field in the associated
M_COPYIN or M_COPYOUT message. It is included in the M_IOCDATA message so the
message can be self-describing. This is intended to simplify ioctl(2) processing by
modules and drivers.

If the message is in response to an M_COPYIN message and success is indicated, the
M_IOCDATA block is followed by M_DATA blocks containing the data copied in.

If an M_IOCDATA block is reused, any unused fields defined for the resultant message
block should be cleared (particularly in an M_IOCACK or M_IOCNAK).

This message should not be queued by a module or driver unless it processes the data
for the ioctl in some way.

M_IOCNAK
The M_IOCNAK message signals the negative acknowledgement (failure) of a previous
M_IOCTL message. Its form is one M_IOCNAK block containing an iocblk(9S). The
iocblk(9S) can contain a value in ioc_error to be returned to the user process in
errno. Unlike the M_IOCACK, no user data or return value can be sent with this
message. If any M_DATA blocks follow the M_IOCNAK block, the stream head ignores
and frees them. When the stream head receives an M_IOCNAK, the outstanding
ioctl(2) request, if any, fails. The format and use of this message type is described
further under M_IOCTL.

M_PCPROTO
The M_IOCPROTO message is the same as the M_PROTO message type, except for the
priority and the following additional attributes. When an M_PCPROTO message is
placed on a queue, its service procedure is always enabled. The stream head allows
only one M_PCPROTO message to be placed in its read queue at a time. If an
M_PCPROTO message is already in the queue when another arrives, the second
message is discarded and its message blocks freed.

This message is intended to allow data and control information to be sent outside the
normal flow control constraints.

322 STREAMS Programming Guide • January 2005

getmsg(2) and putmsg(2) refer to messages as high priority messages.

M_PCRSE
The M_PCRSE message is reserved for internal use. Modules that do not recognize this
message must pass it on. Drivers that do not recognize it must free it.

M_PCSIG
The M_PCSIG message is the same as the M_SIG message, except for the priority.
M_PCSIG is often preferable to M_SIG especially in TTY applications, because M_SIG
may be queued while M_PCSIG is more likely to get through quickly. For example, if
an M_SIG message is generated when the DEL (delete) key is pressed on the terminal
and the user has already typed ahead, the M_SIG message becomes queued and the
user does not get the call until too late, becoming impossible to kill or interrupt a
process by pressing a delete key.

M_READ
The M_READ message is generated by the stream head and sent downstream for a
read(2) if no messages are waiting to be read at the stream head and if read
notification has been enabled. Read notification is enabled with the SO_MREADON flag
of the M_SETOPTS message and disabled by use of the SO_MREADOFF flag.

The message content is set to the value of the nbyte parameter (the number of bytes
to be read) in read(2).

M_READ notifies modules and drivers of the occurrence of a read. It also supports
communication between streams that reside in separate processors. The use of the
M_READ message is developer dependent. Modules may take specific action and pass
on or free the M_READ message. Modules that do not recognize this message must pass
it on. All other drivers may or may not take action and then free the message.

This message cannot be generated by a user-level process and should not be generated
by a module or driver. It is always discarded if passed to the stream head.

SO_MREADOFF and M_STOP
The SO_MREADOFF and M_STOP messages request devices to start or stop their output.
They are used to produce momentary pauses in a device’s output, not to turn devices
on or off.

Appendix A • Message Types 323

The message format is not defined by STREAMS and its use is developer dependent.
These messages may be considered special cases of an M_CTL message. These
messages cannot be generated by a user-level process and each is always discarded if
passed to the stream head.

SO_MREADOFFI and M_STOPI
The SO_MREADOFFI and M_STOPI messages are the same as SO_MREADOFF and
M_STOP except that SO_MREADOFFI and M_STOPI are used to start and stop input.

M_UNHANGUP
The M_UNHANGUP message reconnects the carrier after it has been dropped.

324 STREAMS Programming Guide • January 2005

APPENDIX B

Kernel Utility Interface Summary

Use the following kernel utilities to develop and maintain drivers.

TABLE B–1 Kernel Utility Interfaces

Routine Description

adjmsg(9F) Trim bytes in a message

allocb(9F) Allocate a message block

backq(9F) Get pointer to the queue behind a given queue

bcanput(9F) Test for flow control in a given priority band

bufcall(9F) Recover from failure of allocballocb(9F)

canput(9F) Test for room in a queue

copymsg(9F) Copy a message

datamsg(9F) Test whether message is a data message

dupb(9F) Test whether thread can receive user-level
signal

dupb(9F) Duplicate a message block descriptor

dupmsg(9F) Duplicate a message

enableok(9F) Re-allow a queue to be scheduled for service

esballoc(9F) Allocate message and data blocks

flushband(9F) Flush messages in a given priority band

flushq(9F) Flush a queue

freeb(9F) Free a message block

freemsg(9F) Free all message blocks in a message

325

TABLE B–1 Kernel Utility Interfaces (Continued)
Routine Description

freezestr(9F) Disable changes to the state of the stream

getq(9F) Get a message from a queue

insq(9F) Put a message at a specific place in a queue

linkb(9F) Concatenate two messages into one

msgdsize(9F) Get the number of data bytes in a message

noenable(9F) Prevent a queue from being scheduled

otherq(9F) Get pointer to the queue’s partner queue

pullupmsg(9F) Concatenate and align bytes in a message

putbq(9F) Return a message to the beginning of a queue

putctl(9F) Put a control message

putctl1(9F) Put a control message with a one-byte
parameter

putnext(9F) Put a message to the next queue

putq(9F) Put a message on a queue

qbufcall(9F) Call a function when a buffer becomes
available

qprocsoff(9F) Turn off queue processing

qprocson(9F) Turn on queue processing

qreply(9F) Send a message on a stream in the reverse
direction

qsize(9F) Find the number of messages on a queue

qtimeout(9F) Execute a function after a specified length of
time

qunbufcall(9F) Cancel a pending qbufcall request

quntimeout(9F) Cancel a pending qtimeout request

qwait(9F) Perimeter wait routine

qwait_sig(9F) Perimeter wait routine

qwriter(9F) Asynchronous perimeter upgrade

RD(9F) Get pointer to the read queue

rmvb(9F) Remove a message block from a message

326 STREAMS Programming Guide • January 2005

TABLE B–1 Kernel Utility Interfaces (Continued)
Routine Description

rmvq(9F) Remove a message from a queue

strlog(9F) Submit messages for logging

strqget(9F) Obtain information on a queue or a band of
the queue

strqset(9F) Change information on a queue or a band of
the queue

testb(9F) Check for an available buffer

testb(9F) Cancel bufcall request

unfreezestr(9F) Enable changes to the state of the stream

unlinkb(9F) Remove a message block from the head of a
message

WR(9F) Get pointer to the write queue

Appendix B • Kernel Utility Interface Summary 327

328 STREAMS Programming Guide • January 2005

APPENDIX C

STREAMS-Based Terminal Subsystem

This chapter describes how a terminal subsystem is set up and how interrupts are
handled. Different protocols are addressed, as well as canonical processing and line
discipline substitution.

� “Overview of Terminal Subsystem” on page 329
� “STREAMS-based Pseudo-Terminal Subsystem” on page 338

Overview of Terminal Subsystem
STREAMS provides a uniform interface for implementing character I/O devices and
networking protocols in the kernel. The SunOS 5.6 software implements the terminal
subsystem in STREAMS. The STREAMS-based terminal subsystem (Figure C–1)
provides many benefits:

� Reusable line discipline modules. The same module can be used in many streams
where the configuration of these streams may be different.

� Line-discipline substitution. Although the Solaris operating environment provides
a standard terminal line-discipline module, another one conforming to the interface
can be substituted. For example, a remote login feature may use the terminal
subsystem line discipline module to provide a terminal interface to the user.

� Internationalization. The modularity and flexibility of the STREAMS-based
terminal subsystem enables an easy implementation of a system that supports
multiple-byte characters for internationalization. This modularity also allows easy
addition of new features to the terminal subsystem.

� Easy customizing. Users may customize their terminal subsystem environment by
adding and removing modules of their choice.

� The pseudo-terminal subsystem. The pseudo-terminal subsystem can be easily
supported (this is discussed in more detail in the section “STREAMS-based
Pseudo-Terminal Subsystem” on page 338).

329

� Merge with networking. By pushing a line discipline module on a network line,
you can make the network look like a terminal line.

User
process

Stream head

Line
discipline

TTY
driver

User space
Kernel space

Downstream

Upstream

FIGURE C–1 STREAMS-based Terminal Subsystem

The initial setup of the STREAMS-based terminal subsystem is handled with the
ttymon(1M) command within the framework of the Service Access Facility (autopush
feature). See “STREAMS Administrative Driver” on page 240 for more information.

The STREAMS-based terminal subsystem supports termio(7I), the termios(3C)
specification of the POSIX standard, multiple-byte characters for internationalization,
the interface to asynchronous hardware flow control and peripheral controllers for
asynchronous terminals. XENIX™ and BSD compatibility can also be provided by
pushing the ttcompat module.

To use shl with the STREAMS-based terminal subsystem, the sxt driver is
implemented as a STREAMS-based driver. The sxt feature is being discontinued and
might not be available, so try to use the job-control mechanism instead of sxt. Note
that both shl and job control should not be run simultaneously.

Master Driver and Slave Driver Characteristics
The master driver and slave driver have the following characteristics:

� Each master driver has one-to-one relationship with a slave device based on
major/minor device numbers.

� Only one open is allowed on a master device. Multiple opens are allowed on the
slave device according to standard file mode and ownership permissions.

� Each slave driver minor device has a node in the file system.
� An open on a master device automatically locks out an open on the corresponding

slave driver.

330 STREAMS Programming Guide • January 2005

� A slave cannot be opened unless the corresponding master is open and has
unlocked the slave.

� To provide a TTY interface to the user, the ldterm and ptem modules are pushed
on the slave side.

� A close on the master sends a hang up to the slave and renders both streams
unusable, after all data have been consumed by the process on the slave side.

� The last close on the slave side sends a zero-length message to the master but does
not sever the connection between the master and slave drivers.

Line-Discipline Module
A STREAMS line-discipline module called ldterm is a key part of the
STREAMS-based terminal subsystem. Throughout this chapter, the terms line discipline
and ldterm are used interchangeably and refer to the STREAMS version of the
standard line discipline and not the traditional character version. ldterm performs
the standard terminal I/O processing traditionally done through the linesw
mechanism.

The termio(7I) and termios(3C) specifications describe four flags that are used to
control the terminal:

� c_iflag defines input modes
� c_oflag defines output modes
� c_cflag defines hardware control modes
� c_lflag defines terminal functions used by ldterm(7M)

To process these flags elsewhere (for example, in the firmware or in another process), a
mechanism is in place to turn the processing of these flags on and off. When
ldterm(7M) is pushed, it sends an M_CTL message downstream that asks the driver
which flags the driver will process. The driver sends back that message in response if
it needs to change the ldterm default processing. By default, ldterm(7M) assumes
that it must process all flags except c_cflag unless it receives a message indicating
otherwise.

Default Settings
When ldterm is pushed on the stream, the open routine initializes the settings of the
termio flags. The default settings are:

c_iflag = BRKINT|ICRNL|IXON|IMAXBEL
c_oflag = OPOST|ONLCR|TAB3
c_cflag = CREAD|CS8|B9600

c_lflag = ISIG|ICANON|ECHO|ECHOK|IEXTEN|ECHOE|ECHOKE | ECHOCTL

Appendix C • STREAMS-Based Terminal Subsystem 331

In canonical mode (ICANON flag in c_lflag is turned on), read from the terminal file
descriptor is in message non-discard (RMSGN) mode (see streamio(7I)). This implies
that in canonical mode, read on the terminal file descriptor always returns at most
one line, regardless of how many characters have been requested. In non-canonical
mode, read is in byte-stream (RNORM) mode. The flag ECHOCTL has been added for
SunOS 4.1 compatibility.

For information on user-configurable settings, see termio(7I).

Module open and close Routines
The open routine of the ldterm(7M) module allocates space for holding the TTY
structure (see ldtermstd_state_t in ldterm.h) by allocating a buffer from the
STREAMS buffer pool. The number of modules that can be pushed on one stream, as
well as the number of TTYs in use, is limited. The number of instances of ldterm that
have been pushed is limited only by available memory. The open also sends an
M_SETOPTS message upstream to set the stream head high-water and low-water
marks to 1024 and 200, respectively. These are the current values.

The ldterm module identifies itself as a TTY to the stream head by sending an
M_SETOPTS message upstream with the SO_ISTTY bit of so_flags set. The stream
head allocates the controlling TTY on the open, if one is not already allocated.

To maintain compatibility with existing applications that use the O_NDELAY flag, the
open routine sets the SO_NDELON flag on in the so_flags field of the
stroptions(9S) structure in the M_SETOPTS message.

The open routine fails if there are no buffers available (so it cannot allocate the
internal state structure) or when an interrupt occurs while waiting for a buffer to
become available.

The close routine frees all the outstanding buffers allocated by this stream. It also
sends an M_SETOPTS message to the stream head to undo the changes made by the
open routine. The ldterm(7M) module also sends M_START messages downstream to
undo the effect of any previous M_STOP messages.

Read-Side Processing
The ldterm(7M) module’s read-side processing has put and service procedures.
High-water and low-water marks for the read queue are 1024 and 200, respectively.
These are the current values.

ldterm(7M) can send the following messages upstream:

M_DATA, M_BREAK, M_PCSIG, M_SIG, M_FLUSH, M_ERROR, M_IOCACK, M_IOCNAK,
M_HANGUP, M_CTL, M_SETOPTS, M_COPYOUT, and M_COPYIN.

332 STREAMS Programming Guide • January 2005

The ldterm(7M) module’s read side processes M_BREAK, M_DATA, M_CTL, M_FLUSH,
M_HANGUP, M_IOCACK and M_IOCNAK messages. All other messages are sent
upstream unchanged.

The put procedure scans the message for flow-control characters (IXON),
signal-generating characters, and, after (possible) transformation of the message,
queues the message for the service procedure. Echoing is handled completely by the
service procedure.

If the ICANON flag is on in c_lflag, canonical processing is performed. If the ICANON
flag is off, non-canonical processing is performed (see termio(7I) for more details).
Handling of VMIN/VTIME in the STREAMS environment is somewhat complicated,
because read needs to activate a timer in the ldterm module in some cases; hence,
read notification becomes necessary. When a user issues an ioctl(2) to put
ldterm(7M) in non-canonical mode, the module sends an M_SETOPTS message to the
stream head to register read notification. Further reads on the terminal file descriptor
will cause the stream head to issue an M_READ message downstream and data will be
sent upstream in response to the M_READ message. With read notification, buffering
of raw data is performed by ldterm(7M). Canonizing the raw data when the user has
switched from raw to canonical mode is possible. However, the reverse is not possible.

To summarize, in non-canonical mode, the ldterm(7M) module buffers all data until
VMIN or VTIME criteria are met. For example, if VMIN=3 and VTIME=0, and three bytes
have been buffered, these characters are sent to the stream head regardless of whether
there is a pending M_READ, and no M_READ needs to be sent downstream. If an
M_READ message is received, the number of bytes sent upstream is the argument of
the M_READ message unless VTIME is satisfied before VMIN (for example. the timer has
expired) , in which case whatever characters are available will be sent upstream.

The service procedure of ldterm(7M) handles STREAMS-related flow control.
Because the read side high-water and low-water marks are 1024 and 200 respectively,
placing 1024 characters or more on the read queue causes the QFULL flag be turned
on, indicating that the module below should not send more data upstream.

Input flow control is regulated by the line-discipline module which generates
M_STARTI and M_STOPI high priority messages. When sent downstream, receiving
drivers or modules take appropriate action to regulate the sending of data upstream.
Output flow control is activated when ldterm(7M) receives flow control characters in
its data stream. The module then sets an internal flag indicating that output processing
is to be restarted/stopped and sends an M_START/M_STOP message downstream.

Write-Side Processing
Write-side processing of the ldterm(7M) module is performed by the write-side put
and service procedures.

The ldterm module supports the following ioctls:

TCSETA, TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA, TCGETS,
TCXONC, TCFLSH, and TCSBRK.

Appendix C • STREAMS-Based Terminal Subsystem 333

All ioctls not recognized by the ldterm(7M) module are passed downstream to the
neighboring module or driver.

The following messages can be received on the write side:

M_DATA, M_DELAY, M_BREAK, M_FLUSH, M_STOP, M_START, M_STOP, M_START,
M_READ, M_IOCDATA, M_CTL, and M_IOCTL.

On the write side, the ldterm module processes M_FLUSH, M_DATA, M_IOCTL, and
M_READ messages, and all other messages are passed downstream unchanged.

An M_CTL message is generated by ldterm(7M) as a query to the driver for an
intelligent peripheral and to decide on the functional split for termio(7I) processing.
If all or part of termio(7I) processing is done by the intelligent peripheral,
ldterm(7M) can turn off this processing to avoid computational overhead. This is
done by sending an appropriate response to the M_CTL message, as follows:

� If all of the termio(7I) processing is done by the peripheral hardware, the driver
sends an M_CTL message back to ldterm(7M) with ioc_cmd of the structure
iocblk(9S) set to MC_NO_CANON. If ldterm(7M) is to handle all termio(7I)
processing, the driver sends an M_CTL message with ioc_cmd set to
MC_DO_CANON. The default is MC_DO_CANON.

� If the peripheral hardware handles only part of the termio(7I) processing, it
informs ldterm(7M) in the following way:

The driver for the peripheral device allocates an M_DATA message large enough to
hold atermios(3C) structure. The driver then turns on those c_iflag, c_oflag,
and c_lflag fields of the termios(3C) structure that are processed on the
peripheral device by executing an OR operation on the flag values. The M_DATA
message is then attached to the b_cont field of the M_CTL message it received. The
message is sent back to ldterm(7M) with ioc_cmd in the data buffer of the M_CTL
message set to MC_PART_CANON.

One difference between AT&T STREAMS and SunOS 5 STREAMS is that AT&T’s line
discipline module does not check whether write-side flow control is in effect before
forwarding data downstream. It expects the downstream module or driver to add the
messages to its queue until flow control is lifted. This is not true in SunOS 5
STREAMS.

EUC Handling in ldterm
Post-processing (the o_flags) should not be handled by the host processor unless the
board software is prepared to deal with international (EUC) character sets properly
because that post-processing must take the EUC information into account.
ldterm(7M) allots the appropriate screen width of characters (that is, how many
columns are taken by characters from each given code set on the current physical
display) and it takes this width into account when calculating tab expansions. When
using multi-byte characters or multi-column characters ldterm automatically handles
tab expansion (when TAB3 is set) and does not leave this handling to a lower module
or driver.

334 STREAMS Programming Guide • January 2005

By default, multi-byte handling by ldterm is turned off. When ldterm receives an
EUC_WSET ioctl(2), it turns multi-byte processing on if it is essential to properly
handle the indicated code set. Thus, if you use single byte 8-bit codes and have no
special multi-column requirements, the special multi-column processing is not used at
all. This means that multi-byte processing does not reduce the processing speed or
efficiency of ldterm unless it is actually used.

The following describes how the EUC handling in ldterm works:

First, the multi-byte and multi-column character handling is only enabled when the
EUC_WSET ioctl indicates that one of the following conditions is met:

� Code set consists of more than one byte (including the SS2 and/or SS3) of
characters

� Code set requires more than one column to display on the current device, as
indicated in the EUC_WSET structure

Assuming that one or more of the previous conditions exists, EUC handling is
enabled. At this point, a parallel array (see ldterm_mod structure) used for other
information is allocated and a pointer to it is stored in t_eucp_mp. The parallel array
that it holds is pointed to by t_eucp. The t_codeset field holds the flag that
indicates which of the code sets is currently being processed on the read side. When a
byte with the high bit arrives, ldterm checks to see if it is SS2 or SS3. If yes, it
belongs to code set 2 or 3. Otherwise, it is a byte that comes from code set 1.

Once the extended code set flag has been set, the input processor retrieves the
subsequent bytes, as they arrive, to build one multi-byte character. The counter field
t_eucleft tells the input processor how many bytes remain to be read for the
current character. The parallel array t_eucp holds its display width for each logical
character in the canonical buffer. During erase processing, positions in the parallel
array are consulted to determine how many backspaces need to be send to erase each
logical character. (In canonical mode, one backspace of input erases one logical
character, no matter how many bytes or columns that character consumes.) This
greatly simplifies erase processing for EUC.

The t_maxeuc field holds the maximum length, in memory bytes, of the EUC
character mapping currently in use. The eucwioc field is a substructure that holds
information about each extended code set.

The t_eucign field aids in output post-processing (tab expansion). When characters
are output, ldterm(7M) keeps a column to indicate what the current cursor column is
supposed to be. When it sends the first byte of an extended character, it adds the
number of columns required for that character to the output column. It then subtracts
one from the total width in memory bytes of that character and stores the result in
t_eucign. This field tells ldterm(7M) how many subsequent bytes to ignore for the
purposes of column calculation. (ldterm(7M) calculates the appropriate number of
columns when it sees the first byte of the character.)

Appendix C • STREAMS-Based Terminal Subsystem 335

The field t_eucwarn is a counter for occurrences of bad extended characters. It is
mostly useful for debugging. After receiving a certain number of illegal EUC
characters (perhaps because of some problem on the line or with declared values), a
warning is given on the system console.

There are two relevant files for handling multi-byte characters: euc.h and
eucioctl.h. eucioctl.h contains the structure that is passed with EUC_WSET and
EUC_WGET calls. The normal way to use this structure is to get CSWIDTH from the
locale using a mechanism such as getwidth(3C) or setlocale(3C), copy the values
into the structure in eucioctl.h, and send the structure using an I_STR ioctl(2).
The EUC_WSET call informs the ldterm(7M) module about the number of bytes in
extended characters and how many columns the extended characters from each set
consume on the screen. This enables ldterm(7M) to treat multi-byte characters as
single units for the purpose of erase processing and to correctly calculate tab
expansions for multi-byte characters.

Note – LC_CTYPE (instead of CSWIDTH) should be used in SunOS 5 systems.

The file euc.h has fields for EUC width, screen width, and wide-character width. The
functions in Example C–1 are used to set and get EUC widths (these functions assume
the environment where the eucwidth_t structure is needed and available).

EXAMPLE C–1 EUC Header File

#include <eucioctl.h> /* need others,like stropts.h*/

struct eucioc eucw; /*for EUC_WSET/WGET to line disc*/
eucwidth_t width; /* ret struct from _getwidth() */
/*
* set_euc Send EUC code widths to line discipline.
*/
set_euc(struct eucioc *e)
{

struct strioctl sb;

sb.ic_cmd = EUC_WSET;
sb.ic_timout = 15;
sb.ic_len = sizeof(struct eucioc);
sb.ic_dp = (char *) e;

if (ioctl(0, I_STR, &sb) < 0)
fail();

}
/*
* euclook. Get current EUC code widths from line discipline.
*/
euclook(struct eucioc *e)
{

struct strioctl sb;

336 STREAMS Programming Guide • January 2005

EXAMPLE C–1 EUC Header File (Continued)

sb.ic_cmd = EUC_WGET;
sb.ic_timout = 15;
sb.ic_len = sizeof(struct eucioc);
sb.ic_dp = (char *) e;

if (ioctl(0, I_STR, &sb) < 0)
fail();

printf("CSWIDTH=%d:%d,%d:%d,%d:%d",
e->eucw[1], e->scrw[1],
e->eucw[2], e->scrw[2],
e->eucw[3], e->scrw[3]);

}

Hardware Emulation Module
If a stream supports a terminal interface, a driver or module that understands all
ioctls is needed to support terminal semantics (specified by termio(7I) and
termiox(7I). If there is no hardware driver that understands all ioctl commands
downstream from the ldterm module, a hardware emulation module must be placed
downstream from the line-discipline module. The function of the hardware emulation
module is to understand and acknowledge the ioctls that may be sent to the process
at the stream head and to mediate the passage of control information downstream.
Together, the line-discipline module and the hardware emulation module behave as if
there was an actual terminal on that stream.

The hardware emulation module is necessary whenever there is no TTY driver at the
end of the stream. For example, the module is necessary in a pseudo-TTY situation
where there is process-to-process communication on one system (discussed in
“STREAMS-based Pseudo-Terminal Subsystem” on page 338), or in a network situation
where a termio interface is expected (for example, remote login) but there is no TTY
driver on the stream.

Most of the actions taken by the hardware emulation module are the same regardless
of the underlying architecture. However, there are some actions that are different,
depending on whether the communication is local or remote and whether the
underlying transport protocol is used to support the remote connection.

Each hardware emulation module has an open, close, read queue put procedure,
and write queue put procedure.

The hardware emulation module does the following:

� Processes, if appropriate, and acknowledges receipt of the following ioctls on its
write queue by sending an M_IOCACK message back upstream: TCSETA, TCSETAW,
TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA, TCGETS, and TCSBRK.

� Acknowledges the Extended UNIX Code (EUC) ioctl(2).

Appendix C • STREAMS-Based Terminal Subsystem 337

� If the environment supports windowing, it acknowledges the windowing
TIOCSWINSZ, TIOCGWINSZ, and JWINSIZE ioctl(2)s. If the environment does
not support windowing, an M_IOCNAK message is sent upstream.

� If another ioctl(2) is received on its write queue, it sends an M_IOCNAK message
upstream. It doesn’t pass any unrecognized ioctls to the slave driver.

� When the hardware emulation module receives an M_IOCTL message of type
TCSBRK on its write queue, it sends an M_IOCACK message upstream and the
appropriate message downstream. For example, an M_BREAK message could be
sent downstream.

� When the hardware emulation module receives an M_IOCTL message on its write
queue to set the baud rate to 0 (TCSETAW with CBAUD set to B0), it sends an
M_IOCACK message upstream and an appropriate message downstream; for
networking situations this will probably be an M_PROTO message, which is a TPI
T_DISCON_REQ message requesting the transport provider to disconnect.

� All other messages (M_DATA, for instance) not mentioned here are passed to the
next module or driver in the stream.

The hardware emulation module processes messages in a way consistent with the
driver that exists.

STREAMS-based Pseudo-Terminal
Subsystem
The STREAMS-based pseudo-terminal subsystem provides the user with an interface
that is identical to the STREAMS-based terminal subsystem described earlier in this
chapter. The pseudo-terminal subsystem (pseudo-TTY) supports a pair of
STREAMS-based devices called the master device and slave device. The slave device
provides processes with an interface that is identical to the terminal interface.
However, where devices that provide the terminal interface have some kind of
hardware device behind them, the slave device has another process manipulating it
through the master half of the pseudo-terminal. Anything written on the master
device is given to the slave as an input, and anything written on the slave device is
presented as an input on the master side.

Figure C–2 illustrates the architecture of the STREAMS-based pseudo-terminal
subsystem. The master driver (called ptm) is accessed through the clone driver and is
the controlling part of the system. The slave driver (called pts) works with the line
discipline module and the hardware emulation module to provide a terminal interface
to the user process. An optional packetizing module (called pckt) is also provided. It
can be pushed on the master side to support packet mode (this is discussed in “Packet
Mode” on page 342).

The number of pseudo-TTY devices that can be installed on a system depends on
available memory.

338 STREAMS Programming Guide • January 2005

Line-Discipline Module
In the pseudo-TTY subsystem, the line discipline module is pushed on the slave side
to present the user with the terminal interface.

ldterm(7M) can turn off the processing of the c_iflag, c_oflag, and c_lflag
fields to allow processing to take place elsewhere. The ldterm(7M) module can also
turn off all canonical processing when it receives an M_CTL message with the
MC_NO_CANON command to support remote mode. Although ldterm(7M) passes
through messages without processing them, the appropriate flags are set when an
ioctl(2), such as TCGETA or TCGETS, is issued to indicate that canonical processing
is being performed.

Client
process

Stream head

Line
discipline

Hardware
emulation
module

Slave
PTS

Server
process

Stream head

PCKT
module

Master
PTM

User space
Kernel space

FIGURE C–2 Pseudo-TTY Subsystem Architecture

Pseudo-TTY Emulation Module: ptem
Because the pseudo-TTY subsystem has no hardware driver downstream from the
ldterm(7M) module to process the terminal ioctl(2) calls, another module that
understands the ioctl commands is placed downstream from the ldterm(7M). This
module, ptem(7M), processes all of the terminal ioctl(2)calls and mediates the
passage of control information downstream.

ldterm(7M) and ptem(7M) together behave like a real terminal. Since there is no real
terminal or modem in the pseudo-TTY subsystem, some of the ioctl(2) commands
are ignored and cause only an acknowledgment of the command. ptem(7M) keeps

Appendix C • STREAMS-Based Terminal Subsystem 339

track of the terminal parameters set by the various set commands such as TCSETA or
TCSETAW but does not usually perform any action. For example, if a “set” ioctl is
called, none of the bits in the c_cflag field of termio(7I) has any effect on the
pseudo-terminal unless the baud rate is set to 0. Setting the baud rate to 0 has the
effect of hanging up the pseudo-terminal.

The pseudo-terminal does not recognize parity, so none of the flags in the c_iflag
that control the processing of parity errors have any effect. The delays specified in the
c_oflag field are also not supported.

ptem(7M) does the following:

� Processes, if appropriate, and acknowledges receipt of the following ioctls on its
write queue by sending an M_IOCACK message back upstream: TCSETA, TCSETAW,
TCSETAF, TCSETS, TCSETSW, TCSETSF, TCGETA, TCGETS, and TCSBRK.

� Keeps track of the window size; information needed for the TIOCSWINSZ,
TIOCGWINSZ, and JWINSIZE ioctl.

� When it receives an ioctl, other than for TIOCSWINSZ, TIOCGWINSZ, or
JWINSIZE on its write queue, it sends an M_IOCNAK message upstream.

� It passes downstream the following ioctls after processing them: TCSETA,
TCSETAW, TCSETAF, TCSETS, TCSETSW, TCSETSF, TCSBRK, and TIOCSWINSZ.

� Frees any M_IOCNAK messages it receives on its read queue in case the pckt
module (pckt(7M) (described in the section “Packet Mode” on page 342) is not on
the pseudo-terminal subsystem and the TCSETA, TCSETAW, TCSETAF, TCSETS,
TCSETSW, TCSETSF, TCSBRK, or TIOCSWINSZioctls get to the master’s stream
head which then sends an M_IOCNAK message.

� In its open routine, ptem sends an M_SETOPTS message upstream requesting
allocation of a controlling TTY.

� When ptem receives an M_IOCTL message of type TCSBRK on its read queue, it
sends an M_IOCACK message downstream and an M_BREAK message upstream.

� When ptem receives an ioctl(2) message on its write queue to set the baud rate
to 0 (TCSETAW with CBAUD set to B0), it sends an M_IOCACK message upstream
and a zero-length message downstream.

� When ptem receives an M_IOCTL of type TIOCSIGNAL on its read queue, it sends
an M_IOCACK downstream and an M_PCSIG upstream, where the signal number is
the same as in the M_IOCTL message.

� When ptem receives an M_IOCTL of type TIOCREMOTE on its read queue, it sends
an M_IOCACK message downstream and the appropriate M_CTL message upstream
to enable or disable canonical processing.

� When ptem receives an M_DELAY message on its read or write queue, it discards
the message and does not act on it.

� When ptem receives an M_IOCTL of type JWINSIZE on its write queue, and if the
values in its jwinsize structure are not zero, it sends an M_IOCACK message
upstream with the jwinsize structure. If the values are zero, it sends an
M_IOCNAK message upstream.

340 STREAMS Programming Guide • January 2005

� When ptem receives an M_IOCTL message of type TIOCGWINSZ on its write queue
and the values in the winsize structure are not zero, it sends an M_IOCACK
message upstream with the winsize structure. If the values are zero, it sends an
M_IOCNAK message upstream. It also saves the information passed to it in the
winsize structure and sends a STREAMS signal message for signal SIGWINCH
upstream to the slave process if the size changed.

� When ptem(7M) receives an M_IOCTL message with type TIOCGWINSZ on its read
queue and the values in the winsize structure are not zero, it sends an M_IOCACK
message downstream with the winsize structure. If the values are zero, it sends
an M_IOCNAK message downstream. It also saves the information passed to it in
the winsize structure and sends a STREAMS signal message for signal SIGWINCH
upstream to the slave process if the size changed.

� All other messages are passed to the next module or driver.

ptem Data Structure
Each instantiation of ptem(7M) is associated with a local area. These data are held in a
structure called ptem that has the following format:

struct ptem
{

long cflags; /* copy of c_flags */
mblk_t *dack_ptr; /* pointer to preallocated msg blk

used to send disconnect */
queue_t *q_ptr; /* pointer to ptem’s read queue */
struct winsize wsz; /*struct to hold windowing info*/
unsigned short state; /* state of ptem entry */

};

When ptem(7M) is pushed onto the slave side stream, a search of the ptem structure is
made for a free entry (state is not set to INUSE). The c_cflags of the termio(7I)
structure and the windowing variables are stored in cflags and wsz respectively.
The dack_ptr is a pointer to a message block used to send a zero-length message
whenever a hang-up occurs on the slave side.

Note – ptem(7M) internal implementation might change. This structure should be
relevant only to people wanting to change the module.

open and close Routines

Caution – The following information is implementation-dependent.

Appendix C • STREAMS-Based Terminal Subsystem 341

In the open routine of ptem(7M) a STREAMS message block is allocated for a
zero-length message for delivering a hangup message. This allocation of a buffer is
done before it is needed to ensure that a buffer is available. An M_SETOPTS message is
sent upstream to set the read-side stream head queues, to assign high-water and
low-water marks (1024 and 256 respectively), and to establish a controlling terminal.

The same default values as for the line-discipline module are assigned to cflags, and
INUSE to the state field.

Note – These default values are currently being examined and may change in the
future.

The open routine fails if:

� No free entries are found when the ptem(7M) structure is searched
� sflag is not set to MODOPEN
� A zero-length message cannot be allocated (no buffer is available)
� A stroptions(9S) structure cannot be allocated

The close routine is called on the last close of the slave-side stream. Pointers to read
and write queues are cleared and the buffer for the zero-length message is freed.

Remote Mode
Remote mode available with the pseudo-TTY subsystem, is used for applications that
perform the canonical function normally done by ldterm(7M) and the TTY driver.
The remote mode enables applications on the master side to turn off the canonical
processing. An TIOCREMOTE ioctl(2) with a nonzero parameter (ioctl(fd,
TIOCREMOTE, 1)) is issued on the master side to enter the remote mode. When this
occurs, an M_CTL message with the command MC_NO_CANON is sent to ldterm(7M),
indicating that data should be passed when received on the read side and that no
canonical processing is to take place. The remote mode may be disabled by
ioctl(fd, TIOCREMOTE, 0).

Packet Mode
In the STREAMS-based pseudo-terminal subsystem packet mode is used to inform the
process on the master side when state changes have occurred in the pseudo-TTY.
Packet mode is enabled by pushing the pckt module on the master side. Data written
on the master side is processed normally. When data is written on the slave side, or
when other messages are encountered by the pckt module, a header is added to the
message so it can be subsequently retrieved by the master side with a getmsg
operation.

342 STREAMS Programming Guide • January 2005

pckt(7M) does the following:

� When a message is passed to this module on its write queue, the module does no
processing and passes the message to the next module or driver.

� pckt creates an M_PROTO message when one of the following messages is passed
to it: M_DATA, M_IOCTL, M_PROTO/M_PCPROTO, M_FLUSH, M_READ,
M_START/M_STOP, and M_STARTI/M_STOPI.

All other messages are passed through. The M_PROTO message is passed upstream
and retrieved when the user issues getmsg(2).

� If the message is an M_FLUSH message, pckt(7M) does the following:

� If the flag is FLUSHW, it is changed to FLUSHR (because FLUSHR was the original
flag before the pts(7D) driver changed it), changed into an M_PROTO message,
and passed upstream. To prevent the stream head’s read queue from being
flushed, the original M_FLUSH message must not be passed upstream.

� If the flag is FLUSHR, it is changed to FLUSHW, packetized into an M_PROTO
message, and passed upstream. To flush both of the write queues properly, an
M_FLUSH message with the FLUSHW flag set is also sent upstream.

� If the flag is FLUSHRW, the message with both flags set is packetized and passed
upstream. An M_FLUSH message with the FLUSHW flag set is also sent upstream.

Pseudo-TTY Drivers: ptm and pts
To use the pseudo-TTY subsystem, a node for the master side driver /dev/ptmx and
N number of slave drivers must be installed (N is determined at installation). The
names of the slave devices are /dev/pts/M where M has the values 0 through N-1.
A user accesses a pseudo-TTY device through the master device (called ptm) that in
turn is accessed through the clone driver. The master device is set up as a clone device
where its major device number is the major for the clone device and its minor device
number is the major for the ptm(7D) driver.

The master pseudo driver is opened by calling open(2) with /dev/ptmx as the device
to be opened. The clone open finds the next available minor device for that major
device. A master device is available only if it, and its corresponding slave device, are
not already open. There are no nodes in the file system for master devices.

When the master device is opened, the corresponding slave device is automatically
locked out. No user may open that slave device until it is unlocked. A user may invoke
a function grantpt to change the owner of the slave device to that of the user who is
running this process, change the group ID to TTY, and change the mode of the device
to 0620. Once the permissions have been changed, the device may be unlocked by the
user. Only the owner or the root user can access the slave device. The user must then
invoke the unlockpt function to unlock the slave device. Before opening the slave
device, the user must call the ptsname function to obtain the name of the slave
device. The functions grantpt, unlockpt, and ptsname are called with the file
descriptor of the master device. The user may then invoke the open system call with
the name that was returned by the ptsname function to open the slave device.

Appendix C • STREAMS-Based Terminal Subsystem 343

The following example shows how a user may invoke the pseudo-TTY subsystem:

int fdm fds;
char *slavename;
extern char *ptsname();

fdm = open("/dev/ptmx", O_RDWR); /* open master */
grantpt(fdm); /* change permission of slave */
unlockpt(fdm); /* unlock slave */
slavename = ptsname(fdm); /* get name of slave */
fds = open(slavename, O_RDWR); /* open slave */
ioctl(fds, I_PUSH, "ptem"); /* push ptem */

ioctl(fds, I_PUSH, "ldterm"); /* push ldterm */

Unrelated processes may open the pseudo device. The initial user may pass the master
file descriptor using a STREAMS-based pipe or a slave name to another process to
enable it to open the slave. After the slave device is open, the owner is free to change
the permissions.

Note – Certain programs such as write and wall are set group ID (setgid(2)) to
TTY and are also able to access the slave device.

After both the master and slave have been opened, the user has two file descriptors
that provide full-duplex communication using two streams. The two streams are
automatically connected. The user may then push modules onto either side of the
stream. The user also needs to push the ptem and ldterm modules onto the slave
side of the pseudo-terminal subsystem to get terminal semantics.

The master and slave drivers pass all STREAMS messages to their adjacent queues.
Only the M_FLUSH needs some processing. Because the read queue of one side is
connected to the write queue of the other, the FLUSHR flag is changed to FLUSHW and
vice versa.

When the master device is closed, an M_HANGUP message is sent to the slave device to
render the device unusable. The process on the slave side gets the errno ENXIO when
attempting to write on that stream, but it will be able to read any data remaining on
the stream head read queue. When all the data has been read, read(2) returns 0,
indicating that the stream can no longer be used.

On the last close of the slave device, a zero-length message is sent to the master
device. When the application on the master side issues a read or getmsg and 0 is
returned, the user of the master device decides whether to issue a close that
dismantles the pseudo-terminal subsystem. If the master device is not closed, the
pseudo-TTY subsystem is available to another user to open the slave device.

Since zero-length messages are used to indicate that the process on the slave side has
closed (and should be interpreted that way by the process on the master side),
applications on the slave side should not write zero-length messages. If that occurs,
the write returns 0, and the zero-length message is discarded by the ptem module.

344 STREAMS Programming Guide • January 2005

The standard STREAMS system calls can access the pseudo-TTY devices. The slave
devices support the O_NDELAY and O_NONBLOCK flags. Because the master side does
not act like the terminal, if O_NONBLOCK or O_NDELAY is set, read on the master side
returns -1 with errno set to EAGAIN if no data is available, and write(2) returns -1
with errno set to EAGAIN if there is internal flow control.

The master driver supports the ISPTM and UNLKPT ioctl(2) that are used by the
functionsgrantpt(3C)unlockpt(3C), , and ptsname(3C). The ISPTM ioctl(2)
determines whether the file descriptor is that of an open master device. On success, it
returns the major/minor number (type dev_t) of the master device which can be
used to determine the name of the corresponding slave device. The UNLKPT ioctl(2)
unlocks the master and slave devices. It returns 0 on success. On failure, the errno is
set to EINVAL indicating that the master device is not open.

The format of these commands is:

int ioctl (int fd, int command, int arg)

where command is either ISPTM or UNLKPT and arg is 0. On failure, -1 is returned.

When data is written to the master side, the entire block of data written is treated as a
single line. The slave-side process reading the terminal receives the entire block of
data. Data is not edited by the ldterm module at input, regardless of the terminal
mode. The master-side application is responsible for detecting an interrupt character
and sending an interrupt signal SIGINT to the process in the slave side. This can be
done as follows:

ioctl (fd, TIOCSIGNAL, SIGINT)

where SIGINT is defined in the file signal.h. When a process on the master side
issues this ioctl(2), the argument is the number of the signal that should be sent. The
specified signal is then sent to the process group on the slave side.

grantpt

grantpt(3C) changes the mode and the ownership of the slave device that is
associated with the given master device. Given a file descriptor fd, grantpt(3C) first
checks that the file descriptor is that of the master device. If so, it obtains the name of
the associated slave device and sets the user ID to that of the user running the process
and the group ID to TTY. The mode of the slave device is set to 0620.

If the process is already running as root, the permission of the slave can be changed
directly without invoking this function. grantpt(3C) returns 0 on success and -1 on
failure. It fails if one or more of the following occurs: fd is not an open file descriptor,
fd is not associated with a master device, the corresponding slave could not be
accessed, or a system call failed because no more processes could be created.

Appendix C • STREAMS-Based Terminal Subsystem 345

unlockpt

unlockpt(3C) clears a lock flag associated with a master/slave device pair.
unlockpt(3C) returns 0 on success and -1 on failure. It fails if one or more of the
following occurs: fd is not an open file descriptor or fd is not associated with a
master device.

ptsname

ptsname(3C) returns the name of the slave device that is associated with the given
master device. It first checks that the file descriptor is that of the master. If it is, it then
determines the name of the corresponding slave device /dev/pts/M and returns a
pointer to a string containing the null-terminated path name. The return value points
to static data whose content is overwritten by each call. ptsname(3C) returns a
non-NULL path name upon success and a NULL pointer upon failure. It fails if one or
more of the following occurs: fd is not an open file descriptor or fd is not associated
with the master device.

Pseudo-TTY Streams
Drivers and modules can make the stream head act as a terminal stream by sending an
M_SETOPTS message with the SO_ISTTY flag set upstream. This state may be
changed by sending an M_SETOPTS message with the SO_ISNTTY flag set upstream.

Controlling terminals are allocated with the open(2) interface. The device must tell the
stream head that it is acting as a terminal.

The TOSTOP flag is set on reception of an M_SETOPTS message with the SO_TOSTOP
flag set in the so_flags field. It is cleared on reception of an M_SETOPTS message
with the SO_TONSTOP flag set.

Stream head processing is isolated from modules and drivers by using several
message types, such as M_ERROR, M_HANGUP and M_SETOPS, which only affect the
stream in which they are sent.

346 STREAMS Programming Guide • January 2005

APPENDIX D

STREAMS FAQ

This appendix provides answers to frequently asked questions (FAQs).

A source of information on STREAMS performance is the paper “The BSD Packet
Filter: A New Architecture for User-level Packet Capture” by McCanne & Van
Jacobson in the 1993 Winter USENIX proceedings (also available as
ftp://ftp.ee.lbl.gov/papers/bpf-usenix93.ps.Z). It includes detailed NIT
vs. in-kernel BPF performance measurements and some explanation of results
obtained.

With decent code in the kernel (not STREAMS) an in-kernel filter is much faster.

The following discussion provides answers to frequently asked IP interface questions.

What are the rules for naming a Network Interface Card (NIC) device driver?
Naming of the NIC device driver has the following constraints:

� The name can contain alphanumeric and underscore (_) characters only
� The first and last characters of the name cannot be a number
� The name length cannot exceed 16 characters. The recommended length is 3–8

characters

What is the buffer reclaim policy for Network Interface (NIC) drivers?
Network Interface (NIC) drivers on the transmit side need to reclaim transmit
buffers placed to the DMA hardware after the DMA operation has been completed.
Because the reclaim operation is expensive, drivers often employ some
“lazy-reclaim” scheme to either delay the buffer reclaim, coalesce many completed
buffers together in one reclaim call, or both. The most aggressive scheme causes the
handling of IO completion and buffer reclaiming to be postponed until a new
transmit request is made but no empty slot is left on the DMA hardware.

Until recently in the Solaris operating environment, the network transmit buffers
have been allocated from the kernel memory heap. The only detrimental effect from
lazy reclaim is a waste of kernel memory that could have been freed up sooner.

347

The Solaris operating environment will employ a “zero-copy” scheme whenever
possible. Under “zero-copy”, the stack will attempt to use client-supplied buffers
through esballoc(9f) directly for network transmit, rather than allocating kernel
heap. The “zero-copy” eliminates an expensive copy operation when moving data
from a client supplied buffer to a kernel buffer.

Lazy reclaim on a client-supply transmit buffer can seriously impact the operation
of the client subsystem or application that relies on a buffer to be released from the
networking subsystem expediently. For this reason, NIC drivers employing any
lazy reclaim scheme must ensure that buffer reclaim is not held up indefinitely. This
requirement can be easily satisfied by ensuring that the driver uses a reclaim timer
of tens of seconds or less.

Is there documentation that describes the interface between IP and network drivers,
namely, the Sun-specific requirements not outlined in the DLPI Version 2 specification?

IP is a STREAMS module in the Solaris operating environment. Any module or
driver interface with IP should follow the STREAMS mechanism. There are no
specific requirements for the interface between IP and network drivers.

When an ifconfig device0 plumb is issued, the driver immediately receives a
DL_INFO_REQ. Exactly what is required in the DL_INFO_ACK from a DLPI Style 2
provider?

Look at the dl_info_ack_t struct in /usr/include/sys/dlpi.h.

Can a driver be a clone driver and also a DLPI Style 2 provider? If so, how do I map
the minor number selected in the open routine to an instance prior to a
DL_ATTACH_REQ? The technique of using the minor number to obtain the instance in
the getinfo routine is not valid prior to the DL_ATTACH_REQ.

Yes, it is possible for the driver to be a CLONE driver and also a DLPI Style 2
provider. The DL_ATTACH_REQ request assigns a physical point of attachment
(PPA) to a stream. The DL_ATTACH_REQ request can be issued any time after a file
or stream being opened. The DL_ATTACH_REQ request does not have anything to
do with assigning, retrieving or mapping minor/instance number. Of course, you
can issue a DL_ATTACH_REQ request for a file or stream with desired major/minor
number. As for the question of mapping minor number to instance, usually the
minor number (getminor(9F)) is the instance number.

In the examples, a minor node is created each time the driver’s attach routine is called.
How would a clone driver attach to multiple boards; that is, have multiple instances,
and still only create one minor node?

For the clone driver, this might not be possible. A non-clone driver, it can use the
bits information in a particular minor number, for example FF, to map all other
minor nodes.

Do Solaris 2.1 Ethernet drivers support LLI 2.0 interfaces?
Do you mean DLPI (Data Link Provider interfaces) ? The Solaris 2.1 ethernet
drivers, le and ie. both support DLPI. See the le(7D) man page.

348 STREAMS Programming Guide • January 2005

Does Solaris 2.1 DLPI provide both connection-oriented services and connectionless
services? Also, is your DLPI Version 2.0, which includes multicast facilities?

Yes and yes. Please see the dlpi(7P) man page. TCP and IP are STREAMS modules
in the Solaris operating environment. The command strconf < /dev/tcp lists
all the modules. STREAMS is not supported in SunOS 4 system TCP/IP.

Is multicasting supported on SunOS 4? If not, how can the customer obtain this
feature?

IP multicast is a standard supported feature in the Solaris operating environment,
but it is not supported in the SunOS 4 environment. If customers want to run an
unsupported IP multicast on their SunOS 4 machines, it is available via anonymous
FTP from gregorio.stanford.edu in the file
vmtp-ip/ipmulti-sunos41x.tar.Z.

Appendix D • STREAMS FAQ 349

350 STREAMS Programming Guide • January 2005

Glossary

anchor A STREAMS locking mechanism that prevents the removal of
STREAMS modules with the I_POP ioctl. Anchors are placed on
STREAMS modules by adding the [anchor] flag to autopush
configuration files or by directly calling the I_ANCHOR ioctl.

autopush A STREAMS mechanism that enables a prespecified list of modules to
be pushed automatically onto the stream when a STREAMS device is
opened. This mechanism is used only for administrative purposes.

back-enable To enable (by STREAMS) a preceding blocked queue’s service
procedure when STREAMS determines that a succeeding queue has
reached its low-water mark.

blocked A queue’s service procedure that cannot be enabled due to flow
control.

clone device A STREAMS device that returns an unused major/minor device when
initially opened, rather than requiring the minor device to be specified
by name in the open call.

close routine A procedure that is called when a module is popped from a stream or
when a driver is closed.

controlling stream A stream above the multiplexing driver used to establish the lower
connections. Multiplexed stream configurations are maintained
through the controlling stream to a multiplexing driver.

DDI Device Driver Interface. An interface that facilitates driver portability
across different UNIX system versions.

device driver A stream component whose principle functions are handling an
associated physical device and transforming data and information
between the external interface and stream.

351

DKI Driver–Kernel Interface. An interface between the UNIX system kernel
and different types of drivers. It consists of a set of driver-defined
functions that are called by the kernel. These functions are entry points
into a driver.

downstream A direction of data flow going from the stream head toward a driver.
Also called write side and output side.

driver A module that forms the stream end. It can be a device driver or a
pseudo-device driver. It is a required component in STREAMS (except
in STREAMS-based pipe mechanism), and physically identical to a
module. It typically handles data transfer between the kernel and a
device and does little or no processing of data.

enable A term used to describe scheduling of a queue’s service procedure.

FIFO First in, first out. A term used in STREAMS for named pipes. This term
is also used in queue scheduling.

flow control A STREAMS mechanism that regulates the rate of message transfer
within a stream and from user space into a stream.

hardware emulation
module

A module required when the terminal line discipline is on a stream but
there is no terminal driver at the end of the stream. This module
recognizes all ioctls necessary to support terminal semantics
specified by termio and termios.

input side A direction of data flow going from a driver toward the stream head.
Also called read side and upstream.

line discipline A STREAMS module that performs termio canonical and
non-canonical processing. It shares some termio processing with a
driver in a STREAMS terminal subsystem.

lower stream A stream connected below a multiplexer pseudo-device driver, by
means of an I_LINK or I_PLINK ioctl. The far end of a lower
stream terminates at a device driver or another multiplexer driver.

master driver A STREAMS-based device supported by the pseudo-terminal
subsystem. It is the controlling part of the pseudo-terminal subsystem
(also called ptm).

message One or more linked message blocks. A message is referenced by its first
message block and its type is defined by the message type of that
block.

message block A triplet consisting of a data buffer and associated control structures,
an msgb structure and a datab structure. It carries data or
information, as identified by its message type, in a stream.

message queue A linked list of zero or more messages connected together.

message type A defined set of values identifying the contents of a message.

352 STREAMS Programming Guide • January 2005

module A defined set of kernel-level routines and data structures used to
process data, status, and control information on a stream. It is an
optional element, but there can be many modules in one stream. It
consists of a pair of queues (read queue and write queue), and it
communicates to other components in a stream by passing messages.

multiplexer A STREAMS mechanism that enables messages to be routed among
multiple streams in the kernel. A multiplexing configuration includes
at least one multiplexing pseudo-device driver connected to one or
more upper streams and one or more lower streams.

named stream A stream, typically a pipe, with a name associated with it by way of a
call to fattach (that is, a mount operation). This is different from a
named pipe (FIFO) in two ways: a named pipe (FIFO) is unidirectional
while a named stream is bidirectional; a named stream need not refer
to a pipe but can be another type of a stream.

open routine A procedure in each STREAMS driver and module called by
STREAMS on each open system call made on the stream. A module’s
open procedure is also called when the module is pushed.

packet mode A feature supported by the STREAMS-based pseudo-terminal
subsystem. It is used to inform a process on the master side when state
changes occur on the slave side of a pseudo-TTY. It is enabled by
pushing a module called pckt on the master side.

persistent link A connection below a multiplexer that can exist without having an
open controlling stream associated with it.

pipe See STREAMS-based pipe.

pop A term used when a module that is immediately below the stream
head is removed.

pseudo-device driver A software driver, not directly associated with a physical device, that
performs functions internal to a stream such as a multiplexer or log
driver.

pseudo-terminal
subsystem

A user interface identical to a terminal subsystem except that there is a
process in place of a hardware device. It consists of at least a master
device, slave device, line-discipline module, and hardware emulation
module.

push A term used when a module is inserted in a stream immediately below
the stream head.

pushable module A module put between the stream head and driver. It performs
intermediate transformations on messages flowing between the stream
head and driver. A driver is a non-pushable module.

put procedure A routine in a module or driver associated with a queue that receives
messages from the preceding queue. It is the single entry point into a
queue from a preceding queue. It may perform processing on the

353

message and will then generally either queue the message for
subsequent processing by this queue’s service procedure, or will pass
the message to the put procedure of the following queue.

queue A data structure that contains status information, a pointer to routines
processing messages, and pointers for administering a stream. It
typically contains pointers to a put and service procedure, a
message queue, and private data.

read side A direction of data flow going from a driver towards the stream head.
Also called upstream and input side.

read queue A message queue in a module or driver containing messages moving
upstream. Associated with the read system call and input from a
driver.

remote mode A feature available with the pseudo-terminal subsystem. It is used for
applications that perform the canonical and echoing functions
normally done by the line discipline module and TTY driver. It enables
applications on the master side to turn off the canonical processing.

SAD A STREAMS Administrative Driver that provides an interface to the
autopush mechanism.

schedule To place a queue on the internal list of queues that will subsequently
have their service procedure called by the STREAMS scheduler.
STREAMS scheduling is independent of the Solaris operating
environment process scheduling.

service interface A set of primitives that define a service at the boundary between a
service user and a service provider and the rules (typically represented
by a state machine) for allowable sequences of the primitives across
the boundary. At a stream/user boundary, the primitives are typically
contained in the control part of a message; within a stream, in
M_PROTO or M_PCPROTO message blocks.

service procedure A routine module or driver associated with a queue that receives
messages queued for it by the put procedure of that queue. The
procedure is called by the STREAMS scheduler. It may perform
processing on the message and generally passes the message to the
put procedure of the following queue.

service provider An entity in a service interface that responds to request primitives
from the service user with response and event primitives.

service user An entity in a service interface that generates request primitives for the
service provider and consumes response and event primitives.

slave driver A STREAMS-based device supported by the pseudo-terminal
subsystem. It is also called pts and works with a line discipline
module and hardware emulation module to provide an interface to a
user process.

354 STREAMS Programming Guide • January 2005

standard pipe A mechanism for the unidirectional flow of data between two
processes where data written by one process becomes data read by the
other process.

stream A kernel aggregate created by connecting STREAMS components,
resulting from an application of the STREAMS mechanism. The
primary components are the stream head, the driver, and zero or more
pushable modules between the stream head and driver.

stream end A stream component furthest from the user process that contains a
driver.

stream head A stream component closest to the user process. It provides the
interface between the stream and the user process.

STREAMS A kernel mechanism that provides the framework for network services
and data communication. It defines interface standards for character
input/output within the kernel, and between the kernel and user level.
The STREAMS mechanism includes integral functions, utility routines,
kernel facilities, and a set of structures.

STREAMS-based pipe A mechanism used for bidirectional data transfer implemented using
STREAMS, and sharing the properties of STREAMS-based devices.

TTY driver A STREAMS-based device used in a terminal subsystem.

upper stream A stream that terminates above a multiplexer. The beginning of an
upper stream originates at the stream head or another multiplexer
driver.

upstream A direction of data flow going from a driver towards the stream head.
Also called read-side and input side.

water mark A limit value used in flow control. Each queue has a high-water mark
and a low-water mark. The high-water mark value indicates the upper
limit related to the number of bytes contained on the queue. When the
queued character reaches its high-water mark, STREAMS causes
another queue that attempts to send a message to this queue to
become blocked. When the characters in this queue are reduced to the
low-water mark value, the other queue is unblocked by STREAMS.

write queue A message queue in a module or driver containing messages moving
downstream. Associated with the write system call and output from
a user process.

write side A direction of data flow going from the stream head toward a driver.
Also called downstream and output side.

355

356 STREAMS Programming Guide • January 2005

Index

A
accessing queue information, strqget, 108
adb, 306
adjmsg, 325
administration tools

strace, 83
strerr, 84
strlog, 83
strqget, 83
strqset, 83

allocate header for output message,
example, 136-137

allocb, 325
example, 133

anchor, 351
anchors, 40, 75-76, 243

client, 245-246
lock, 243
privilege, 244
server, 245-246

append a character to a message block,
example, 133

asynchronous callback functions,
perimeter, 261

asynchronous input/output, in polling, 61
AT&T STREAMS, 334
autopush, 80, 240
autopush configuration file, example, 82

B
b_band, 99

b_band (Continued)
placement, 100

b_next, 99
b_prev, 99
b_rptr, 99
b_wptr, 99
back-enable of a queue, 127
background job, in job control, 63
backq, 325
bandinfo structure

example, 77
flush band priority, 164

bcanput, 325
bidirectional transfer

example, 158
boundary, data and message, 48
bp, 126
bp->b_rptr, 126
bp->b_wptr, 126
breaking stream connections for loop-around

device, example, 211-213
bufcall, 135, 325

releasing callback requests, 137

C
canput, 325
cb_ops structure

character and block device information, 231
driver entry point, 233
driver entry points for non-STREAMS

drivers, 231

357

check module type, regular driver, module, or
cloneable driver, 239

check/print module list, 73
cloning (STREAMS), 199
close, dismantling the stream, 41
close a module, example, 113-114
cmn_err, message strings, 303
compile, assemble and link commands,

example, 239
configuration entry point

STREAMS driver, 183
connld, 91
controlling terminal, 67
copy data from user space to kernel space,

example, 211-213
copymsg, 325
crash, 305

dbfree, 305
dblock, 305
linkblk, 305
mbfree, 305
mblock, 305
pty, 305
qrun, 305
queue, 305
stream, 305
strstat, 305
tty, 305

create priority band message, 76

D
DARAM

allocation, 138
freeing, 138
memory shared by kernel and I/O card, 138

data and message boundaries
RMODEMASK, 48
RMSGD, 48
RMSGN, 48
RNORM, 48

Data Link Provider Interfaces, 348
datab structure, 98

example, 98
datamsg, 325
db_base, 98
DDI, Device Driver Interface, 182

ddi_copyin, 70
ddi_copyout, 70
declarations for the loop-around driver,

example, 204-207
definitions of priority band fields, example, 108
dev_ops structure

driver entry point, 233
represents a specific class or type of

device, 231
device driver

character device, 182
definition, 182
device types, 182
STREAMS driver characteristics, 182

device interrupt handler, example, 135-136
difference between driver and a module, 42
DLPI, 348
driver

ioctl control, 43
STREAMS, 28, 183

driver configuration entry points,
example, 188-190

driver entry point
cb_ops structure, 233
dev_ops structure, 233
load kernel module, 233
streamtab, 233

driver entry points, 233
driver flush handling, example, 196-197
driver interrupt, STREAMS driver, 183
driver interrupt handling, example, 197-199
dupb, 325
dupmsg, 325

E
ECHOCTL, 332
empty pipe

user process attempts read, 88
user process attempts write, 89

enableok, 325
entry point

close, 28
open, 28

error event
POLLERR, 60
POLLHUP, 60

358 STREAMS Programming Guide • January 2005

error event (Continued)
POLLNVAL, 60

error events, polling, 60
esballoc, 139, 325

example, 140-141
esballoc(9F), outstanding callbacks

from, 262
EUC handling in ldterm, 334
EUC header file, example, 336-337
event polling, 57

example, 58-59
explicit locks

message ordering, 263
module, 263

explicit locks, constraints, module, 263
extended STREAMS buffers, 138, 139

allocation, 138
freeing, 138

F
fattach, 91
fdetach, 91
FIFO (STREAMS), 85

basic operations, 90
flush, 90

file descriptor passing, 91
filter module, example, 221
flow control, 125-129, 129, 352

check existence of message of particular
priority, 50

check if certain band is writable, 51
check if message is marked, 51
expedited data, 128
get priority of first message, 50
in line discipline module, 224
in module, 224
processing of ordinary message, 127
routines, 125, 129
test for, 127

flush handling
description, 164, 166
flags, 77, 164, 319
in driver, 196
line discipline, 166
pipes and FIFOs, 90

flush handling, priority band data,
example, 167

flush handling, read side, example, 165
flush handling, write side, example, 165
flushband, 325
flushing a queue, part 1, example, 221-223
flushing priority band data, 77

description, 77
flushing stream data

arguments passed to M_FLUSH, 77
description, 77

flushq, 90, 325
fmodsw structure, 258
foreground job, in job control, 63
free routine, 139
freeb, 325
freemsg, 325
freezestr, 326
frequently asked IP interface questions, 347
full-duplex processing, 20

G
get stream module list, example, 74-75
getq, 326
grantpt, 345

with pseudo-tty driver, 343

H
hardening advice

canputnext, 116
copyb, 118
copymsg, 118
db_ref > 1, 102
dupb, 118
dupmsg, 118
ensure uniform changing of pointers, 104
incorrect user data, 132
proper bit alignment, 104
putnext, 109, 115
qprocson, 112
removing an anchor, 243
retain db_base <= b_rptr <= b_wptr

<= db_lim, 157
strqget, 109

359

hardening advice (Continued)
strqset, 109

hardware emulation module, 337, 338, 352
high-priority message, 105, 127

M_COPYIN, 317
M_COPYOUT, 318
M_ERROR, 319
M_FLUSH, 319
M_HANGUP, 320
M_IOCACK, 321
M_IOCDATA, 321
M_IOCNAK, 322
M_PCPROTO, 322
M_PCRSE, 323
M_PCSIG, 323
M_READ, 323
M_STOP, 323
M_STOPI, 324
M_UNHANGUP, 324
SO_MREADOFF, 323
SO_MREADOFI, 324

I
I_ANCHOR, 40, 75-76, 243, 244
I_LIST ioctl, example, 162
I_SETSIG event

S_BANDURG, 62
S_ERROR, 62
S_HANGUP, 62
S_HIPRI, 61
S_INPUT, 61
S_MSG, 62
S_OUTPUT, 61
S_RDBAND, 61
S_RDNORM, 61
S_WRBAND, 62
S_WRNORM, 62

infinite loop, service procedure, 106
initialization entry point, STREAMS driver, 184
initialization entry points, example, 188-190
initialization routines for the loop-around

driver, example, 204-207
input/output polling, 57, 62
insq, insq, 326
inter_rcv, example, 55

inter_snd, send data to service provider,
example, 54

interrupt handler, STREAMS driver, 186
iocblk structure, 143

example, 141
with M_IOCTL, 311

ioctl, 144
command summary, 75
EUC_WSET, 335
general processing, 71
handled by ptem, 340
hardware emulation module, 337
I_ANCHOR, 40, 75-76, 243, 244
I_ATMARK, 51, 75-76
I_CANPUT, 51, 75-76
I_CKBAND, 50, 75-76
I_FDINSERT, 75-76
I_FIND, 75-76
I_FLUSH, 75-76, 77
I_FLUSHBAND, 50, 75-76, 77
I_GETBAND, 50, 75-76
I_GETCLTIME, 75-76
I_GRDOPT, 75-76
I_GWROPT, 75-76, 89
I_LINK, 75-76, 283, 294, 310
I_LIST, 72
I_LOOK, 75-76
I_NREAD, 75-76
I_PEEK, 75-76
I_PLINK, 75-76, 294, 299, 310
I_POP, 28, 40, 217
I_PUNLINK, 75-76, 294, 299, 310
I_PUSH, 28, 40, 217
I_RECVFD, 75-76, 91
I_SENDFD, 75-76, 91, 313
I_SETCLTIME, 75-76
I_SETSIG, 57
I_SETSIG events, 61
I_SRDOPT, 48, 75-76
I_STR, 310
I_STR processing, 72
I_SWROPT, 75-76, 89
I_UNLINK, 75-76, 284, 294, 310
ISPTM, 345
_RECVFD, 313
SAD_GAP, 243
SAD_SAP, 242
SAP_ALL, 82

360 STREAMS Programming Guide • January 2005

ioctl (Continued)
SAP_CLEAR, 82
SAP_ONE, 82
SAP_RANGE, 82
SIOCSPGRP, 317
supported by ldterm, 333
supported by master driver, 345
TIOCREMOTE, 342
TIOCSIGNAL, 345
TIOCSPGRP, 317
transparent, 145, 148, 162
transparent processing, 72
UNLKPT, 345
user context, 142

isastream, 91

J
job control, 63, 66

background process group, 63
controlling process, 64
controlling terminal, 64
foreground process group, 64
orphaned process group, 64
process group, 64
process group leader, 64
process group lifetime, 64
process ID, 64
process lifetime, 64
session, 65
session ID, 65
session leader, 65
session lifetime, 65
SUSP character, 66
terminology, 63, 65
TOSTOP flag, 66

K
kadb, 306
kernel data structures

ch_ops, 230
dev_ops, 230
modldrv, 229
modlinkage, 229
modlstrmod, 229

kernel data structures (Continued)
qinit, 230
streamtab, 230

/kernel/drv, loading device drivers, 239
/kernel/strmod, loading module, 239
kernel utilities, 325

adjmsg, 325
allocb, 325
backq, 325
bcanput, 325
bufcall, 325
canput, 325
copymsg, 325
datamsg, 325
dupb, 325
dupmsg, 325
enableok, 325
esballoc, 325
flushband, 325
flushq, 325
freeb, 325
freemsg, 325
freezestr, 326
getq, 326
linkb, 326
msgdsize, 326
noenable, 326
otherq, 326
pullupmsg, 326
putbq, 326
putctl, 326
putctl1, 326
putnext, 326
putq, 326
qbufcall, 326
qprocsoff, 326
qprocson, 326
qreply, 326
qsize, 326
qtimeout, 326
qunbufcall, 326
quntimeout, 326
qwait, 326
qwait_sig, 326
qwriter, 326
RD, 326
rmvb, 326
rmvq, 327

361

kernel utilities (Continued)
strlog, 327
strqget, 327
strqset, 327
testb, 327
unbufcall, 327
unfreezestr, 327
unlinkb, 327
WR, 327

L
ldterm, 331, 332

M_SETOPTS, 332
read-side messages, 332
write side, 334

LIFO, module add/remove, 43
line discipline module

close, 332
description, 331
in job control, 65
in pseudo-tty subsystem, 339
ioctl, 333

line discipline module for flush handling,
example, 166-167

line printer driver
example, 188-190
header file declarations, 187

linkb, 326
linking messages, 99
list a stream’s drivers and modules,

example, 162
load kernel module, driver entry point, 233
loop-around driver flow control,

example, 211-213

M
M_BREAK, 309
M_COPYIN, 317
M_COPYOUT, 318

transparent ioctl example, 158
with M_IOCTL, 313

M_COPYOUT using transparent ioctl,
example, 155-157

M_CTL, 310

M_CTL (Continued)
M_STOP, 323
SO_MREADOFF, 323
with line discipline module, 331

M_DATA, 310
M_DELAY, 310
M_ERROR, 319
M_FLUSH, 319

flags, 319
flush read and write queues, 77
flush read side of stream, 77
flush write side of stream, 77
FLUSHR, 77
FLUSHRW, 77
FLUSHW, 77
in module example, 223
packet mode, 343

M_FLUSH message handling, description, 164
M_HANGUP, 320
M_IOCACK, 321

with M_COPYOUT, 318
with M_IOCTL, 312

M_IOCDATA, 321
M_IOCDATA processing

example, 151, 160
M_IOCNAK, 322

with M_COPYOUT, 318
with M_IOCTL, 312

M_IOCTL, 310, 313
transparent, 312
with M_COPYOUT, 318

M_PASSFP, 313
M_PCPROTO, 322
M_PCRSE, 323
M_PCSIG, 323
M_PROTO, 313, 314
M_READ, 323
M_RSE, 314
M_SETOPTS, 314

SO_FLAG, 314
SO_ISTTY, 317
so_readopt options, 48

M_SIG, 317
in signaling, 179

M_STOP, 323
M_STOPI, 324
M_UNHANGUP, 324

362 STREAMS Programming Guide • January 2005

managing extended buffers in multithreaded
environment, example, 140-141

manipulating modules, 33
master driver

in pseudo-tty subsystem, 338
open, 343

mdb, 306
memory-mapped I/O, 138
message, 27

accessing queue information, 108
allocation, 132
container for data and control

information, 95
create priority band message, 76
data alignment, 104
definitions of priority band fields, 108
flow control, 50
freeing, 133
getmsg, 76
getpmsg, 76
high-priority, 105, 127
linking, 100
M_BREAK, 97, 309
M_COPYIN, 97, 317
M_COPYOUT, 97, 318
M_CTL, 97, 310, 323
M_DATA, 97, 310
M_DELAY, 97, 310
M_ERROR, 97, 319
M_FLUSH, 97, 319
M_HANGUP, 97, 320
M_IOCACK, 97, 321
M_IOCDATA, 97, 321
M_IOCNAK, 97, 322
M_IOCTL, 97, 310
M_PASSFP, 97, 313
M_PCPROTO, 97, 322
M_PCRSE, 323
M_PCSIG, 97, 323
M_PROTO, 97, 313
M_READ, 97, 323
M_RSE, 314
M_SETOPTS, 97, 314
M_SIG, 97
M_START, 97
M_STARTI, 97
M_STOP, 97
M_STOPI, 98, 324

message (Continued)
M_UNHANGUP, 97, 324
msgb structure, 98, 99
priority, 105
putmsg, 76
putpmsg, 76
qband structure, 121
qinit structure, 109
queue, 105, 106
queue priority, 50
queue structure, 106
queues, 49, 100
read options, 48
recovering from allocation failure, 135
recovering from no buffers, 135
retrieve priority band message, 76
service interface, 169
shared data, 101
SO_MREADOFI, 324
translation between user application and

kernel, 95
types, 48
using qband information, 122
write option, 49

message (STREAMS)
direction, 103
flow, 124
handled by pckt, 343
handled by ptem, 340
high-priority, 98, 317
ldterm read side, 332
ldterm write side, 334
linking into queues, 99
M_DATA, 103
M_PCPROTO, 103
M_PROTO, 103
ordinary, 97, 309, 317
processing, 124
sending/receiving, 103
structures, 98
types, 96

message block, 352
message block structure, example, 99
message ordering, 103
message priorities, 105
message queue, 352

priority, 51
priority levels, 29

363

message types, rules for changing, 178
messages, kernel, 96
messages sent by driver to stream head

M_ERROR, 210
M_HANGUP, 210
M_SIG/M_PCSIG, 210

modldrv structure, driver operations and
linkage information, 230

modlinkage structure
module link information, 230
revision level of loadable modules, 230

modlstrmod structure, module operations and
linkage information, 230

module, 353
difference with driver, 42
draining, 41
ioctl control, 43
line discipline, 352
manipulation, 33
pushable, 353
reusability, 35

module entry point structure, example, 109
module_info structure, example, 109
module information structure, example, 109
module put, example, 117
module service procedure, example, 120-121
module unloading, outstanding esballoc

callback, 262
monitor streams events, 57
msgb structure, 99
msgdsize, 326
MT SAFE

cb_flag for driver, 259
driver, 259
f_flag for module, 258
module, 258

multiple process write, same pipe, 89
multiplexer, 353

building, 280, 284
controlling stream, 283
data routing, 285
declarations, 289
definition, 31
design guidelines, 300
dismantling, 284
driver, 289, 297
example, 288
lower, 279

multiplexer (Continued)
lower connection, 286, 287
lower disconnection, 288
lower read put procedure, 296, 297
lower stream, 31, 352
lower write service procedure, 295
lower write service procedure, 296
minor device connect, 286
minor device disconnect, 288
pseudo-device driver, 31
upper, 279
upper-queue write put procedure, 292
upper stream, 31, 355
upper write service procedure, 295

multiplexer ID
in multiplexer building, 283
in multiplexer dismantling, 285

multiplexing STREAMS, 31
multithread framework

MT SAFE, 258
perimeters, 258

multithreaded kernel, 32
porting to, 264

multithreaded module
explicit locks, 263
explicit locks, constraints, 263
preserving message ordering, 263

multithreaded perimeter
choosing a type, 256
defining a type, 255
description, 252
exclusive/shared access flags, 257
flags, 256
fully-hot, 255
inner, 253
inner perimeter flags, 256
outer, 254
outer perimeter flags, 257
PERMOD, 255
routines used inside a perimeter, 259

multithreaded STREAMS, concepts and
terminology, 250

multithreaded STREAMS module with outer
perimeter, example, 273-278

multithreaded STREAMS pseudo-driver using
an inner perimeter, example, 266-273

muxuwput, upper-queue write put
procedure, 292

364 STREAMS Programming Guide • January 2005

N
named pipe (see FIFO), 85
named stream

description, 90
file descriptor passing, 91

noenable, 326
nontransparent ioctl using I_STR,

example, 146
NSTRPUSH

kernel parameter, 40
tunable parameter, 240

O
O_NDELAY, with M_SETOPTS, 316
O_NONBLOCK, with M_SETOPTS, 316
open, 346

device file, 39
open a module, example, 111
open a stream, 39
open and request bind to the driver device,

example, 51-52
opening a system clone device,

example, 200-201
opening the log driver, example, 200-201
opening the loop-around driver, 204-207
ordinary message

M_BREAK, 309
M_CTL, 310
M_DATA, 310
M_DELAY, 310
M_IOCTL, 310
M_PASSFP, 313
M_PROTO, 313
M_RSE, 314
M_SETOPTS, 314

otherq, 326

P
packet mode, 353

description, 342
messages, 343

panic, 103
pckt, 342, 343

perimeter
asynchronous access, 253
asynchronous callback functions, 261
choosing a type, 256
defining a type, 255
description, 252
exclusive/shared access flags, 257
flags, 256
fully-hot, 255
inner, 253
inner perimeter flags, 256
outer, 254
outer perimeter flags, 257
PERMOD, 255
routines, 259
synchronous access, 253

persistent link, 298, 353
create, 298
dismantle, 299

PIPE_BUF, 89
pipe or FIFO

read from, 88
write to, 89

pipemod, module, 90
pipemod STREAMS module, 90
pipes, STREAMS (see STREAMS-based

pipe), 85
poll, 60
poll event

POLLIN, 57
POLLOUT, 57
POLLRDBAND, 57
POLLRDNORM, 57
POLLWRBAND, 57
POLLWRNORM, 57

pollfd structure, 59
polling

asynchronous input/output, 61
error events, 60
event, 57
example, 58, 61

porting from SunOS 4 to SunOS 5,
considerations, 265

priority band data
ioctl, 50
routines, 123

priority band data flush handling,
example, 167

365

private data, 28
private locks across calls, module, 261
process incoming data, example, 59
process write message blocks, example, 133
processing an ioctl, example, 44
processing an ioctl message, example, 144
processing input, example, 45
protocol

migration, 34
portability, 33
substitution, 34

protocol daemon, example, 281
protocol messages, read, 48
pseudo-device, driver, 353
pseudo-terminal, subsystem, 353
pseudo-terminal subsystem, remote mode, 354
pseudo-tty emulation module, 339, 342
pseudo-tty subsystem, 338

description, 338, 346
drivers, 331, 343
ldterm, 339
messages, 340
packet mode, 342
remote mode, 342

ptem, 339, 342
ptem structure, example, 341
ptm (see master driver), 338
pts, example, 233
pts (see slave driver), 338
ptsname, 346

with pseudo-tty driver, 343
pullupmsg, 326
push/pop modules on/off the stream, 73
pushing a module, example, 42
pushing modules on a STREAMS-based

FIFO, 86
pushing modules on a STREAMS-based

pipe, 87
put procedure, 31, 115, 118
putbq, 326
putctl, 326
putctl1, 326
putnext, 90, 326
putq, 326

Q
q_next field, 262

qband structure, example, 121
qbufcall, 260, 326
qinit structure

example, 109
pointers to STREAMS entry points, 232

qprocsoff, 259, 326
qprocson, 259, 326
qreply, 326
qsize, 326
qtimeout, 260, 326
queue, 30, 96, 354

flags, 107-108
put, 353
read, 354
read side, 354
schedule, 354
using qband information, 122
water mark, 355
write, 355
write side, 355

queue allocation, 40
queue flags

QENAB, 107
QFULL, 108
QNOENB, 108
QREADR, 108
QUSE, 108
QWANTR, 107
QWANTW, 108

queue processing entry point
STREAMS driver, 183, 185

queue processing entry points,
example, 188-190

queue processing procedure
put, 27
service, 27

queue structure, example, 106
qunbufcall, 260, 326
quntimeout, 260, 326
qwait, 261, 326
qwait_sig, 326
qwriter, 260, 326

R
RD, 326
read side, ldterm processing, 332

366 STREAMS Programming Guide • January 2005

read-side, put procedure, 218
read-side line discipline module,

example, 225-226
read-side put procedure, example, 218
receive data from service provider

example, 55
releasing callback requests, 137
retrieve priority band message, 76
revents, bitmask, 60
rmvb, 326
rmvq, 327
routines used inside a perimeter, 259

S
sad, 241
SAD (see STREAMS Administrative Driver), 81,

241
SAD_GAP ioctl, 243
SAD_SAP ioctl

SAP_ALL option, 242
SAP_CLEAR option, 242
SAP_ONE option, 242
SAP_RANGE option, 242

sap_lastminor device, 242
sap_major device, 242
sap_minor device, 242
send data to service provider, example, 54-55
service

interface, 354
procedure, 354
provider, 354
user, 354

service interface, 32
service interface, 171

definition, 169
rules, 173

service interface library
example, 171
primitives, 173

service interface library header file,
example, 172

service interface protoput procedure,
example, 176

service primitive, 171
BIND_REQ, 173
ERROR_ACK, 173

service primitive (Continued)
in service procedure, 173
OK_ACK, 173
UNITDATA_IND, 173
UNITDATA_REQ, 173

service primitive declarations, example, 174
service procedure, 31
service procedure, 118, 129

back-enable, 351
blocked, 351

service provider, 171
accessing, 51
closing, 54
receiving data, 55
sending data, 54

signal, 179
extended, 62
in job control management, 65
in STREAMS, 62, 179
M_SIG, 179
SIGCONT, 65
SIGHUP, 66
SIGPOLL, 317
SIGSTOP, 65
SIGTSTP, 65
SIGTTIN, 65
SIGTTOU, 65

SIGPOLL, signal, 317
SIGTTIN, 67
SIGTTOU, 67
simple stream, example, 25
slave driver, 354

in pseudo-tty subsystem, 338
open, 343

slave driver open, example, 343
SO_FLAG, in M_SETOPTS, 314
SO_MREADOFF, 323
SO_MREADOFI, 324
standard pipe, 355
str_mlist structure, example, 73
strace, 83
strapush structure, example, 241
strchg, 72
strconf command, 72
STRCTLSZ, tunable parameter, 240
stream

controlling terminal, 66
general definition, 20

367

stream (Continued)
hung-up, 66

stream autopush structure, example, 81
stream construction

add/remove modules, 40
close a stream, 41
example, 41, 46
open a stream, 39

stream head
copy data between the user space and kernel

space, 96
intercepting I_STR, 45
kernel space interaction, 96

stream pseudo terminal module,
example, 233-238

streamio ioctl commands, streams control, 75
STREAMS, 355

administration tools, 79
application interface, 23
asynchronous callback functions, 261
closing a device, 24
configuration, 82, 243
considerations when porting from SunOS 4

to SunOS 5, 265
data path, 20
data transfer, 24
definition, 19
definition of functionality, 19
determining when to use, 23
device driver, 21
driver, 28
flow control, 23, 24
frequently asked IP interface questions, 347
hardened, 188-190, 266-273, 273-278
hardening advice, 132, 157
head, 21, 26
interface, 37
kernel-level, 26
message components, 28
message data structures, 28
message queue priority, 29
message queues, 21
message types, 29
messages, 21
module, 21, 26
module multiplexing, 31
multiplexing, 22, 279
multithread framework, 251

STREAMS (Continued)
multithread framework integrity, 251
opening a device, 24
polling, 23
programming model, 19
queue overview, 30
tunable parameters, 240

STREAMS administration modules, 82
autopush facility, 82

STREAMS Administrative Driver, 81, 82, 241,
243

STREAMS anchors client, example, 245-246
STREAMS anchors server, example, 245-246
STREAMS-based pipe, 355

atomic write, 89
basic operations, 90
definition, 85
PIPE_BUF, 89

STREAMS-based pseudo-terminal subsystem
(see pseudo-tty subsystem), 338

STREAMS-based terminal subsystem (see tty
subsystem), 329

streams control, streamio ioctl commands, 75
STREAMS debugging, 305

error and trace logging, 82, 304, 305
kernel debug printing, 303
kernel examination tools, 305

STREAMS driver
cloning, 199
configuration, 229
configuration entry point, 183
design guidelines, 216
driver interrupt, 183
Ethernet drivers, 348
flush handling, 196
initialization entry point, 184
interrupt handler, 186
ioctl, 70, 131
loop-around, 203
porting to multithreaded kernel, 264
pseudo-tty, 331, 343
pseudo-tty subsystem master, 338
pseudo-tty subsystem slave, 338
queue processing entry point, 183, 185
table-driven entry point, 184

STREAMS module, 217, 224
adding an anchor, 244
anchor lock, 243

368 STREAMS Programming Guide • January 2005

STREAMS module (Continued)
autopush facility, 240, 243
autopush facility, 80
connld, 91
design guidelines, 226
filter, 221
flow control, 224, 226-227
ioctl, 70
line discipline, 331
ptem, 339
read-side put procedure, 218
routines, 218, 220
service interface example, 173, 178
service procedure, 220
service procedure example, 220
write-side put procedure, 219

STREAMS queue
qband structure, 121
using qband information, 122
using queue information, 122

streamtab structure
driver entry point, 233
example, 238-239
pointers to structures for inititializing

reading and writng a module, 232
strerr, 84
strioctl structure, 44

example, 143
ic_cmd, 44
ic_dp, 44
ic_len, 44
ic_timout, 44

strlog, 83, 327
flag parameter, 83

STRMSGSZ, tunable parameter, 240
stropts.h, strbuf, 77
strqget, 83, 108, 327
strqset, 83, 108, 327
structure for M_IOCTL unrecognized message,

example, 141
structure for nontransparent ioctl,

example, 143
synchronous input/output, in polling, 57
system crash, 103

T
table-driven entry point, STREAMS driver, 184

termio
default flag values, 331
TCSETA, 65
TCSETAF, 65
TCSETAW, 65

termios, terminal control flags, 331
testb, 327
timeout, 260
transferring user buffer into the kernel,

example, 151
transparent ioctl, 148

example, 146
M_COPYOUT example, 158
messages, 147
processing, 72

transparent ioctl processing, 162
treatment of protocol messages

RPROTDAT, 49
RPROTDIS, 49
RPROTMASK, 48
RPROTNORM, 49

tty subsystem
benefits, 329
description, 329, 338
hardware emulation module, 337, 338
ldterm, 331
setup, 330

ttymon, 330
tunable parameters, STREAMS, 240

U
unbufcall, 327
unfreezestr, 327
unique connection (STREAMS), 91
unlinkb, 327
unlockpt, 346

with pseudo-tty driver, 343
upstream, 355
user process write, 0 byte pipe, 89
user’s options structure, example, 154

W
wait for bind request acknowledgement,

example, 51-52

369

WR, 327
write side, ldterm, 333
write-side, put procedure, 219
write-side put procedure, example, 219

370 STREAMS Programming Guide • January 2005

	STREAMS Programming Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Typographic Conventions
	Shell Prompts in Command Examples

	Application Programming Interface
	Overview of STREAMS
	What Is STREAMS?
	STREAMS Definitions
	Stream as a Data Path
	Stream Head
	STREAMS Module
	STREAMS Device Driver
	STREAMS Data
	Message Queues
	Communicating With a STREAMS Device
	STREAMS Multiplexing
	STREAMS Polling
	Message Transfer Flow Control

	When to Use STREAMS
	How STREAMS Works—Application Interface
	Opening a Stream
	Closing a Stream
	Controlling Data Flow
	Simple Stream Example

	How STREAMS Works at the Kernel Level
	Creating the Stream Head
	Message Processing
	Structure of a STREAMS Device Driver
	Message Components
	Message Queueing Priority
	Structure of a Message Queue
	Configuring Multiplexed Streams
	Multithreading the Kernel

	Service Interfaces
	Manipulating Modules
	Protocol Portability
	Protocol Substitution
	Protocol Migration
	Module Reusability

	STREAMS Application-Level Components
	STREAMS Interfaces
	STREAMS System Calls
	Action Summary

	Opening a STREAMS Device File
	Initializing Details

	Queue Allocation
	Adding and Removing Modules
	Closing the Stream
	Stream Construction Example
	Inserting Modules
	Module and Driver Control

	STREAMS Application-Level Mechanisms
	Message Handling
	Modifying Messages
	Message Types
	Control of Stream Head Processing
	Read Options
	Write Options

	Message Queueing and Priorities
	Controlling Data Flow and Priorities
	Accessing the Service Provider
	Closing the Service Provider
	Sending Data to the Service Provider
	Receiving Data

	Input and Output Polling
	Synchronous Input and Output
	Asynchronous Input and Output
	signal Message
	Extended Signals

	Stream as a Controlling Terminal
	Job Control
	Allocation and Deallocation of Streams
	Hungup Streams
	Hangup Signals
	Accessing the Controlling Terminal

	Application Access to the STREAMS Driver and Module Interfaces
	System Calls Used
	Module and Driver ioctl Calls
	General ioctl Processing
	I_STR ioctl Processing
	Transparent ioctl Processing
	I_LIST ioctl
	Other ioctl Commands
	Message Direction

	Flush Handling

	STREAMS Administration
	Administration Tools
	Autopush Facility
	Application Interface

	Administration Tool Description
	strace Command
	strlog Command
	strqget Command
	strqset Command
	strerr Daemon

	Pipes and Queues
	Overview of Pipes and FIFOs
	Creating and Opening Pipes and FIFOs
	Using Pipes and FIFOs
	Reading From a Pipe or FIFO
	Writing to a Pipe or FIFO
	Zero-Length Writes
	Atomic Writes

	Closing a Pipe or FIFO

	Flushing Pipes and FIFOs
	Named Streams
	Unique Connections

	Kernel Interface
	STREAMS Framework – Kernel Level
	Overview of Streams in Kernel Space
	Stream Head
	Kernel–Level Messages
	Message Types
	Message Structure
	Message Linkage
	Queued Messages
	Shared Data
	Sending and Receiving Messages
	Data Alignment

	Message Queues and Message Priority

	Message Queues
	queue() Structure
	Using Queue Information

	Entry Points
	open Routine
	close Routine
	put Procedure
	Queue service Procedure
	qband Structure
	Using qband Information

	Message Processing Procedures

	Flow Control in Service Procedures

	STREAMS Kernel-Level Mechanisms
	ioctl Processing
	Message Allocation and Freeing
	Recovering From No Buffers
	Read Device Interrupt Handler
	Write Service Procedure
	Releasing Callback Requests

	Extended STREAMS Buffers
	esballoc(9F) Example

	General ioctl Processing
	STREAMS ioctl Issues
	I_STR ioctl Processing
	Transparent ioctl
	Transparent ioctl Messages
	Transparent ioctl Examples
	M_COPYIN Example
	M_COPYOUT Example
	Bidirectional Data Transfer Example
	I_LIST ioctl(2)Example

	M_FLUSH Message Handling
	Flushing According to Priority Bands
	Flushing Priority Band

	Driver and Module Service Interfaces
	Service Interface Library Example
	Module Service Interface Example
	Service Primitive Declarations
	Service Interface Procedure

	Message Type Change Rules

	Common ioctl Interfaces
	FIORDCHK
	FIONREAD
	I_NREAD

	signal Message

	STREAMS Drivers
	STREAMS Device Drivers
	Basic Driver

	STREAMS Driver Entry Points
	STREAMS Configuration Entry Points
	STREAMS Initialization Entry Points
	STREAMS Table-Driven Entry Points
	STREAMS Queue Processing Entry Points
	STREAMS Interrupt Handlers
	Driver Unloading

	STREAMS Driver Code Samples
	Printer Driver Example
	Driver Flush Handling
	Print Driver Interrupt
	Driver Flow Control

	Cloning STREAMS Drivers
	Loop-Around Driver

	Summarizing STREAMS Device Drivers

	STREAMS Modules
	Module Overview
	STREAMS Module Configuration
	Module Procedures
	Filter Module Example

	Data Flow Control
	Design Guidelines
	htonl(3B) and ntohl(3B)

	Configuring STREAMS Drivers and Modules
	Kernel Data Structures
	modlinkage
	modldrv
	modlstrmod
	dev_ops
	cb_ops
	streamtab
	qinit

	STREAMS Driver Entry Points
	pts Example

	STREAMS Module Configuration
	Compilation
	Kernel Loading
	Checking the Module Type
	Tunable Parameters
	STREAMS Administrative Driver
	Application Interface

	STREAMS Anchors
	Anchors and Data Flow
	Using Anchors

	Multithreaded STREAMS
	Multithreaded (MT) STREAMS Overview
	MT STREAMS Framework
	STREAMS Framework Integrity
	Message Ordering

	MT STREAMS Perimeters
	Inner Perimeters
	Outer Perimeters
	PERMOD Perimeter
	Hot Perimeters
	Defining Perimeter Types
	Choosing a Perimeter Type

	MT SAFE Modules and Drivers
	MT SAFE Module
	MT SAFE Driver

	Routines Used Inside a Perimeter
	qprocson/qprocsoff
	qtimeout/qunbufcall
	qwriter
	qwait
	Asynchronous Callback Functions
	close() Race Conditions
	Unloading a Module that Uses esballoc
	Use of the q_next Field

	MT SAFE Modules Using Explicit Locks
	Constraints When Using Locks
	Preserving Message Ordering

	Preparing to Port
	Porting to the SunOS 5 System

	Sample Multithreaded Device Driver Using a Per Module Inner Perimeter
	Sample Multithreaded Module With Outer Perimeter

	STREAMS Multiplex Drivers
	STREAMS Multiplexers
	Building a Multiplexer
	Dismantling a Multiplexer
	Routing Data Through a Multiplexer

	Connecting And Disconnecting Lower Streams
	Connecting Lower Streams
	Disconnecting Lower Streams

	Multiplexer Construction Example
	Multiplexing Driver Example
	Upper Write put Procedure Sample
	Upper Write service Procedure Sample
	Lower Write service Procedure
	Lower Read put Procedure

	Persistent Links
	Design Guidelines

	Advanced Topics
	Debugging STREAMS-based Applications
	Kernel Debug Printing
	STREAMS Error and Trace Logging
	Kernel Examination Tools
	crash Command
	adb Command
	kadb Command

	Appendixes
	Message Types
	Ordinary Messages
	M_BREAK
	M_CTL
	M_DATA
	M_DELAY
	M_IOCTL
	M_PASSFP
	M_PROTO
	M_RSE
	M_SETOPTS
	M_SIG

	High-Priority Messages
	M_COPYIN
	M_COPYOUT
	M_ERROR
	M_FLUSH
	M_HANGUP
	M_IOCACK
	M_IOCDATA
	M_IOCNAK
	M_PCPROTO
	M_PCRSE
	M_PCSIG
	M_READ
	SO_MREADOFF and M_STOP
	SO_MREADOFFI and M_STOPI
	M_UNHANGUP

	Kernel Utility Interface Summary
	STREAMS-Based Terminal Subsystem
	Overview of Terminal Subsystem
	Master Driver and Slave Driver Characteristics
	Line-Discipline Module
	Default Settings
	Module open and close Routines
	Read-Side Processing
	Write-Side Processing
	EUC Handling in ldterm

	Hardware Emulation Module

	STREAMS-based Pseudo-Terminal Subsystem
	Line-Discipline Module
	Pseudo-TTY Emulation Module: ptem
	ptem Data Structure
	open and close Routines

	Remote Mode
	Packet Mode
	Pseudo-TTY Drivers: ptm and pts
	grantpt
	unlockpt
	ptsname

	Pseudo-TTY Streams

	STREAMS FAQ

	Glossary
	Index

