
Solaris X Window System
Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–0279–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 7

1 Introduction to the Solaris X Server 13

About the Solaris X Server 13
X11R6 Sample Server 14
DPS Extension 15
X Consortium Extensions 16
AccessX 18
Shared Memory Transport 18
Visual Overlay Windows 18
X11 Libraries 18
64-bit X11 Libraries 19

Applications That Run With the Solaris X Server 20
Supported X11 Applications 21
Unsupported Applications 21

OpenWindows Directory Structure 22
Notes on X11 Programming 24

Compose Key Support 24
NumLock Key Support 24
Color Name Database 25
Color Recommendations 25

Further Reading 26

2 DPS Features and Enhancements 27

About DPS 27

3

How DPS Works 28
DPS Font Enhancements in the Solaris Server 30
DPS Libraries 30

Adobe NX Agent Support 30
DPS Security Issues 31

System File Access 31
Secure Context Creation 31

When DPS Encounters Internal Errors 32
How To Access Information From Adobe 32
DPS Compositing Operators 33

Operator Descriptions 35
Implementation Notes and Limitations 40

3 Visuals on the Solaris X Server 43

About Visuals 43
Default Visual 44
Visuals on Multi-Depth Devices 44
Hints for Windows Programming With Visuals 45

Gamma-Corrected Visuals 46
Visual Selection Alternatives 46

4 Font Support 49

Font Support in the Solaris X Server 49
X Font Server 49
Available Font Formats 50
Associated Files 51

Outline and Bitmap Fonts 51
Replacing Outline Fonts With Bitmap Fonts 52

Using TrueType and F3 Fonts in DPS 53
Locating Fonts 53

Changing the Default Font Path in X11 54
Installing and Managing Fonts 55

5 Server Overlay Windows 57

Server Overlays Versus Transparent Overlays 57
Tips for Programming Overlays 58

Parent-Child Model 58

4 Solaris X Window System Developer’s Guide • May 2002

Stacking 58

Server Overlays 59

6 Transparent Overlay Windows 61

What are Transparent Overlay Windows? 61

Basic Characteristics of Transparent Overlay Windows 62

Paint Type 63

Viewability 63

More on Transparent Overlay Characteristics 64

Background 64

Window Border 65

Backing Store 65

Window Gravity 65

Colormaps 66

Input Distribution Model 66

Print Capture 66

Choosing Visuals for Overlay/Underlay Windows 67

Example Program 68

Overview of the Solaris Transparent Overlay Window API 69

Creating Transparent Overlay Windows 70

Setting the Paint Type of a Graphics Context 72

Setting the Background State of a Transparent Overlay Window 73

Rendering to a Transparent Overlay Window 73

Querying the Characteristics of a Transparent Overlay Window 74

Determining Whether a Window is an Overlay Window 74

Determining the Paint Type of a Graphics Context 74

Pixel Transfer Routines 75

Filling an Area Using the Source Area Paint Type 75

Copying an Area and Its Paint Type 77

Retrieving Overlay Color Information 81

Using Existing Xlib Pixel Transfer Routines 82

Designing an Application for Portability 83

Selecting a Visual for an Overlay/Underlay Window 83

Selecting an Optimal Overlay/Underlay Visual Pair 88

7 Security Issues 91

Access Control Mechanisms 91

Contents 5

User-Based 92

Host-Based 92

Authorization Protocols 93

MIT-MAGIC-COOKIE-1 93

SUN-DES-1 93

Changing the Default Authorization Protocol 94

Manipulating Access to the Server 94

Client Authority File 95

Allowing Access When Using MIT-MAGIC-COOKIE-1 96

Allowing Access When Using SUN-DES-1 97

Running Clients Remotely, or Locally as Another User 97

A Reference Display Devices 99

Solaris Reference Display Devices 99

Solaris Reference Devices and Visuals 99

SPARC: Supported Reference Devices 100

IA: IA Supported Reference Devices 102

Glossary 103

Index 107

6 Solaris X Window System Developer’s Guide • May 2002

Preface

The Solaris X Window System Developer’s Guide provides detailed information on the
Solaris™ X server. The guide provides an overview of the server architecture and tells
you where to look for more information.

This guide provides detailed information for software developers interested in
interfacing with the Solaris X server.

Who Should Use This Book
Programming in this environment primarily involves using a toolkit and possibly
interfacing with the server and its protocols. The protocols and toolkits are
documented elsewhere, see “Related Books” on page 8. Read this manual if you
need detailed information on the:

� Features of the Solaris X server
� Differences from and enhancements to the X Consortium sample server
� DPS imaging system
� Supported display devices
� Authorization schemes and protocols for server connections

Before You Read This Book
This manual assumes that the reader has a programming background and familiarity
with, or access to, appropriate documentation for:

� Solaris 7 and compatible versions

7

� X Window System™
� C programming language
� PostScript™
� The Display PostScript™ System (DPS)
� olwm window manager
� XView™ toolkit

How This Book Is Organized
Although you can read this book in sequence, it is designed for you to read only those
chapters of interest. This book serves both as an overview and as a reference
document.

Chapter 1 describes the architecture of the Solaris X server, the X and DPS extensions,
Sun’s enhancements to the X Consortium libraries and extensions, notes on
color-related issues, and a list of applications you can run with the server.

Chapter 2 describes the DPS features specific to Solaris and includes information on
compositing operators provided as an extension to standard DPS.

Chapter 3 describes visuals in the Solaris environment. It also provides hints for
window programming with visuals.

Chapter 4 describes the set of fonts provided and how to manage fonts.

Chapter 5 describes server overlays and contrasts them with transparent overlays.

Chapter 6 describes the Solaris Transparent Overlay Extension application
programming interface (API) for transparent overlay windows.

Chapter 7 describes the security features of the Solaris environment.

Appendix A describes the graphics devices provided as reference devices with the
Solaris environment.

Related Books
For information on how to write applications in the Solaris environment, consult the
following manuals:

� Desktop Integration Guide

8 Solaris X Window System Developer’s Guide • May 2002

� ToolTalk Reference Guide
� OpenWindows Desktop Reference Manual
� Solaris X Window System Reference Manual
� X Server Device Developer’s Guide
� XView Developer’s Notes
� OLIT Quick Start Programer’s Guide
� OLIT Reference Guide

The following X-related manuals are available through SunExpress or your local
bookstore. Contact your Sun Microsystems representative for information on ordering
any of these books.

� XView Reference Manual, O’Reilly & Associates
� XView Programming Manual, O’Reilly & Associates
� Xlib Reference Manual, O’Reilly & Associates
� Xlib Programming Manual, O’Reilly & Associates
� X Protocol Reference Manual, O’Reilly & Associates
� Programmer’s Supplement for Release 5, O’Reilly & Associates
� X Toolkit Intrinsics Reference Manual, O’Reilly & Associates
� X Window System, Third Edition, Digital Press
� The X Window System Server, X Version 11, Release 5, Digital Press

The following PostScript and DPS-related manuals are available through SunExpress
or your local bookstore. Contact your Sun Microsystems representative for
information on ordering.

� PostScript Language Reference Manual, Second Edition, Adobe® Systems Incorporated

� PostScript Language Tutorial and Cookbook, Adobe Systems Incorporated

� Programming the Display PostScript System with X, Adobe Systems Incorporated

� PostScript Language Program Design, Adobe Systems Incorporated

� Adobe Type I Font Format, Adobe Systems Incorporated

What Is Intel Architecture (IA)?

Note – In this document the term “IA” refers to the Intel 32–bit processor architecture,
which includes the Pentium, Pentium Pro, Pentium II, Pentium II Xeon, Celeron,
Pentium III, and Pentium III Xeon processors and compatible microprocessor chips
made by AMD and Cyrix.

Preface 9

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

10 Solaris X Window System Developer’s Guide • May 2002

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 11

12 Solaris X Window System Developer’s Guide • May 2002

CHAPTER 1

Introduction to the Solaris X Server

This chapter provides information on the Solaris X server. The Solaris X server
implements the X Window System client-server model for the Solaris product. The
chapter includes information on the following topics:

� Features of the Solaris X server, including supported extensions from the X
Consortium and the Display PostScript extension

� Supported and unsupported X11 applications

� OpenWindows™ directory structure

About the Solaris X Server
The Solaris X server, XSun, is composed of the X Consortium’s X11R6 sample server
with the Display PostScript (DPS) imaging system extension, additional X Consortium
X extensions, and Sun added value. The Solaris X server is the foundation for the
Common Desktop Environment (CDE) and underlies the CDE desktop. The server
handles communication between client applications, the display hardware, and input
devices. By default, the Solaris X server runs with the CDE dtlogin and window
manager (dtwm), but any X Window System manager that is ICCCM (Inter-Client
Communication Conventions Manual) compliant runs with the server. Software
developers can write applications for the Solaris environment using the Xlib library or
a variety of toolkits, including the Motif toolkit and the Xt toolkit.

Figure 1–1 illustrates the relationship between the Solaris X server, several desktop
client applications, the display, and input devices.

13

D
IS

P
LA

Y
 M

A
N

A
G

E
R

W
IN

D
O

W
 M

A
N

A
G

E
R

X
T

E
R

M

X
C

LO
C

K

M
A

IL
T

O
O

L

Y
O

U
R

 A
P

P
LI

C
A

T
IO

N X11 R6
SERVER

DPS

PostScript
fonts

bitmap fonts
mouse

keyboard

XSUNX CLIENTS HARDWARE

Xlib

requests

replies

events

to
ol

ki
t

interclient
comminication

monitor

X Extensions

Font Server

FIGURE 1–1 Solaris X Server

X11R6 Sample Server
An important component of the Solaris X server is the X11R6 sample server from the X
Consortium. The X11R6 sample server was designed and implemented to be portable; it
hides differences in the underlying hardware from client applications. The sample
server handles all drawing, interfaces with device drivers to receive input, and
manages off-screen memory, fonts, cursors, and colormaps.

The sample server contains the following parts, or layers:

� Device-Independent Layer (DIX) – Dispatches client requests, manages the event
queue, distributes events to clients, and manages visible data structures. This layer
contains functions that do not depend on graphics hardware, input devices, or the
host operating system.

� Device-Dependent Layer (DDX) – Creates and manipulates pixmaps, clipping
regions, colormaps, screens, fonts, and graphics contexts. In addition, the DDX
layer collects events from input devices and relays them to the DIX layer. This layer

14 Solaris X Window System Developer’s Guide • May 2002

contains routines that depend on graphics hardware and input devices the server
must accommodate.

� Operating System Layer (OS) – Manages client connections and connection
authorization schemes, and provides routines for memory allocation and
deallocation. The OS layer contains functions that rely on the host operating
system.

� Font Management Library – The font management library enables the server to use
font files of different formats and to load fonts from the X font server. The server’s
font features are described in detail in Chapter 4.

Figure 1–2 illustrates the structure of the server. Note that throughout this document,
server is used interchangeably with the Solaris X server, and sample server is used
interchangeably with the X Consortium’s X11R6 sample server.

OS Layer

DIX Layer

Server Architecture

DDX Layer

X Extensions

DPS Extension

Font Management
Library

FIGURE 1–2 Solaris X Server Architecture

DPS Extension
In addition to the X11R6 sample server, the Solaris X server includes the Display
PostScript system. DPS provides X applications with the PostScript imaging model
and with access to the Adobe Type Library. The Display PostScript system is
implemented as an extension to the X Window System as part of the client-server
network architecture; the extension is sometimes referred to as DPS/X1 .

In the DPS system, the PostScript interpreter is implemented as an extension to the X
server, and each application is a client. The application sends PostScript language code
to the server through single operator calls, and data can be returned from the server in

1 This section is based on Chapter 2 of Programming the Display PostScript System with X by Adobe Systems Incorporated
(Addison-Wesley Publishing Company, Inc., 1993) and is used with the permission of the copyright holder.

Chapter 1 • Introduction to the Solaris X Server 15

the form of output arguments. DPS client-server communication is implemented
transparently using the low-level communication protocols provided by the X
Window System. For more information on the DPS system, see Chapter 2.

X Consortium Extensions
The Solaris X server supports X extensions as defined by the X Consortium. These
extensions are briefly described in the sections below. The sections provide the
specification name for each extension, as well as the associated file name (on
ftp.x.org) in parentheses. For information on the standard X Extension Mechanism,
see The X Window System Server and the Xlib Programming Manual.

The X Consortium X11 standards referenced in the following sections are readily
available to systems on the World Wide Web. The URL is
http://www.rdg.opengroup.org The X11 documentation resides in the
/pub/R6untarred/mit/doc/extensions directory on the ftp.x.org machine.
Use the file transfer protocol (ftp) to download files from this system. If you need
help using ftp, refer to the ftp(1) man page. To determine if your system is
connected to the World Wide Web, see your system administrator.

X Input Extension
The X Input Extension is Sun’s implementation of the X Consortium standard, X11
Input Extension Protocol Specification
(/pub/X11/R6.1/xc/doc/specs/Xi/protocol.ms). This extension controls
access to alternate input devices (that is, other than the keyboard and pointer). It
allows client programs to select input from these devices independently of each other
and independently of the core devices.

Double Buffer Extension
The double buffer extension (DBE) is Sun’s implementation of the X Consortium
standard. Double-buffering provides flicker-free animation capabilities by allowing
applications to show the user only completely rendered frames. Frames are rendered
in a non-displayed buffer and then moved into a displayed buffer.

Shape Extension
The Shape Extension is Sun’s full implementation of the X Consortium standard, X11
Nonrectangular Window Shape Extension (shape.ms). This extension provides the
capability of creating arbitrary window and border shapes within the X11 protocol.

16 Solaris X Window System Developer’s Guide • May 2002

Shared Memory Extension
The Shared Memory extension is Sun’s full implementation of the X Consortium
experimental Shared Memory Extension (mit-shm.ms). This extension provides the
capability to share memory XImages and pixmaps by storing the actual image data in
shared memory. This eliminates the need to move data through the Xlib interprocess
communication channel; thus, for large images, system performance increases. This
extension is useful only if the client application runs on the same machine as the
server.

XTEST Extension
The XTEST extension is Sun’s full implementation of the X Consortium proposed
standard, X11 Input Synthesis Extension Proposal (xtest1.mm). This extension provides
the capability for a client to generate user input and to control user input actions
without a user being present. This extension requires modification to the DDX layer of
the server.

Miscellaneous Extension
The MIT-SUNDRY-NONSTANDARD extension was developed at MIT and does not
have a standard, or specification, on the ftp.x.org machine. This extension handles
miscellaneous erroneous protocol requests from X11R3 and earlier clients. It provides a
request that turns on bug-compatibility mode so that certain erroneous requests are
handled or turns off bug-compatibility mode so that an error for erroneous requests is
returned. The extension also provides a request that gets the current state of the mode.

This extension can be dynamically turned on or off with xset, or at server startup with
openwin. See the xset(1) and openwin(1) man pages, specifically the -bc option,
for more information.

XC-MISC
This standard X Consortium extension allows an application to recycle XIDs. Some
applications create and destroy XIDs so rapidly that they exceed the fixed range of
XIDs. Most applications do not need to use this extension. The specification is in
/pub/X11/xc/doc/specs/Xext/xc-misc.ms

X Imaging Extension
The X Imaging Extension (XIE) is Sun’s implementation of the X Consortium standard.

Chapter 1 • Introduction to the Solaris X Server 17

AccessX
The Solaris X server also supports keyboard features compliant with the American
Disabilities Act (ADA). These features are available through an extension to the server,
called AccessX. The AccessX extension provides the following capabilities: sticky keys,
slow keys, toggle keys, mouse keys, bounce keys and repeat keys. Use the client
program accessx to enable and disable these capabilities. The accessx client
controls the toggle, bounce, and repeat keys and their settings. The sticky, slow, and
mouse keys can be enabled using shift or other keys. For information on using
AccessX, see the Solaris User’s Guide.

Before running accessx, set the UIDPATH environment variable to
/usr/openwin/lib/app-defaults/accessx.uid.

The accessx client is part of the SUNWxwacx package. To install it, you need to install
the All Cluster.

Shared Memory Transport
The Solaris X server includes the Sun extension SUN_SME, Sun’s implementation of a
shared memory transport mechanism. This extension provides the capability of
sending client requests to the server via shared memory. Shared memory is used for
client requests only. Replies from the server and events are sent via the default
transport mechanism. To enable this transport mechanism, set the DISPLAY
environment variable to :x.y, where x is the display number, and y is the screen
number, and set the environment variable XSUNTRANSPORT to shmem. The size of the
segment can be set by setting the environment variable XSUNSMESIZE to the desired
size in Kbytes. By default, XSUNSMESIZE is set to 64.

Visual Overlay Windows
The Solaris X server supports two application programmer’s interfaces (APIs) that
enable use of overlay windows. An overlay is a pixel buffer (either physical or
software-simulated) into which graphics can be drawn. Applications can use overlays
to display temporary imagery in a display window. For more information on the
overlay APIs, see Chapter 5and Chapter 6.

X11 Libraries
Table 1–1 lists the X11 libraries. The .so and .a files that comprise these

libraries are in /usr/openwin/lib.

18 Solaris X Window System Developer’s Guide • May 2002

TABLE 1–1 X11 Libraries

Library Description

Available From
the X
Consortium Sun Value Added

libX11 Xlib Yes MT safe

Dynamic loading of locale

Search path includes
/usr/openwin,

New keysyms

libXau X Authorization library Yes None

libXaw Athena Widget Set library Yes None

libXext X Extensions library Yes Bug fixes, transparent overlays

libXinput Binary compatibility
library for previous input
extension

No Sun library

libXi Xinput Extension library Yes Bug fixes

Supports Solaris X extensions

libXmu X Miscellaneous Utilities
library

Yes Search path
includes/usr/openwin

libXol OLIT library No Sun product—see the preface for a
list of OLIT manuals (Available
from USL)

libXt Xt Intrinsics library Yes None

libxview XView library Yes Sun product donated to X
Consortium

Bug fixes not included in X11R6
libxview

64-bit X11 Libraries
For 64-bit Solaris installations, 64-bit versions of the following X11 shared libraries are
located in /usr/openwin/lib/sparcv9.

libX11.so.4

libXext.so.0

libICE.so.6

libSM.so.6

Chapter 1 • Introduction to the Solaris X Server 19

libXt.so.4

libXaw.so.5

libXmu.so.4

libXtst.so.1

libXi.so.5

libXinput.so.0

libdps.so.5

libdga.so.1

libowconfig.so.0

In addition, 64-bit versions of the following lint libraries for programmers are

located in /usr/openwin/lib/sparcv9

llib-lX11.ln

llib-lXaw.ln

llib-lXext.ln

llib-lXmu.ln

llib-lXt.ln

Applications That Run With the Solaris
X Server
You can run the following kinds of applications with the Solaris X server:

� Applications written with the following toolkits:

� OpenWindows toolkits: OLIT and XView
� Motif toolkit
� Xt toolkit

� Applications written for the X protocol

� SPARC OpenWindows Version 3 X11 applications compiled under SunOS 4.0/4.1
and compatible releases

20 Solaris X Window System Developer’s Guide • May 2002

Note – The OpenWindows Version 3 X11 applications must adhere to the system
Binary Compatibility Package.

� Applications written with the following interfaces are not supported:

� TNT, NeWS, and XVPS
� SunView, SunWindows, and Pixrect

Supported X11 Applications
The Solaris X server supports the following client applications available from the X
Consortium. These clients are also included as part of the Solaris environment.

� xterm terminal emulator
� twm window manager
� xdm display manager
� bitmap bitmap editor
� xfd font display utility
� xauth access control program
� xhost access control utility
� xrdb resource control program

xset user preference setting program
� xsetroot root window appearance setting utility
� xmodmap keyboard control utility
� xlsfonts server font listing utility
� xfontsel font selection utility
� xlswins window listing utility
� xwininfo window information utility
� xlsclients client applications information utility
� xdpyinfo server information display utility
� xprop window and font properties utility

Unsupported Applications
The following are some applications and libraries, all of which are available from the X
Consortium, that run on the server but are not distributed or supported by Sun:

� Andrew, InterViews

Chapter 1 • Introduction to the Solaris X Server 21

� The uwm and wm window managers
� The CLX Common Lisp interface
� contrib X Consortium clients

OpenWindows Directory Structure
The OpenWindows directory structure, which includes the Solaris X server executable
and X11 core distribution libraries, is shown in Figure 1–3. Note that /openwin/etc
is a symbolic link to /openwin/share/etc, /openwin/include is a link to
/openwin/share/include, and /openwin/man is a link to
/openwin/share/man. The /share directory contains architecture-independent
files.

For more information on the X11 libraries in /openwin/lib, see “X11 Libraries”
on page 18.

/usr

/openwin

/bin /demo /etc /man /server /lib/include /share

/man/include/etc

man pages
Xsun

xterm
xclock
xdm
xmh
xmag

etc.

/X11

OpenWindows
demonstration
programs

/keytables
/tt
/workspace

/X11
/Xau
/Xol
/config
/desktop
/dga
/help
/images
/olgx
/pixrect
/portable
/xview

OpenWindows
executables

/images /src

/Xol
/app-
defaults
/cetables
/config
/help
/libp
/locale
/xdm

/locale /xnews

OpenWindows
startup files,
X core
libraries,
rgb files

/sparcv9

FIGURE 1–3 OpenWindows Directory Structure

Table 1–2 briefly describes the contents of the top level directories in the
OpenWindows directory structure.

22 Solaris X Window System Developer’s Guide • May 2002

TABLE 1–2 OpenWindows Directories

Directory Subdirectory Content

/etc /keytables US and international keytables, and keytable.map

/tt ToolTalk® data files

/workspace /patterns (.xbm files and attributes)

/include /X11 X11 header files, /DPS, /Xaw, /Xmu, /bitmaps,
/extensions

/Xau Symbolic link to /include/X11

/Xol OLIT header files

/config generic.h header file

/desktop Classing engine header files

/dga dga.h header file

/help libhelp header files

/images Various bitmap files

/olgx olgx header file

/pixrect Pixrect header files

/portable c_varieties.h and portable.h header files

/xview XView header files

/lib /X11 Server support files, /fonts, and DPS .upr files

/Xol OLIT data files

/app-defaults X applications default files

/cetables Classing Engine tables

/config imake files

/help Symbolic link to /locale/C/help

/libp Profiles libraries

/locale Locale libraries (/C, /iso_8859_1)

/xdm Xdm configuration files

/sparcv9 64-bit X libraries

/man /man1, /man1m OpenWindows command man pages

/man3 Library man pages, for XView, OLIT, Xt, Xlib, etc.

Chapter 1 • Introduction to the Solaris X Server 23

TABLE 1–2 OpenWindows Directories (Continued)
Directory Subdirectory Content

/man4 AnswerBook man pages

/man5 File format man pages

/man6 Demos man pages

/man7 Non-command man pages

/server Server private files for internal use only

/share /etc Location of files in /etc

/images /PostScript, /fish, /raster

/include Location of files in /include

/locale Location of files in /lib/locale

/man Location of files in /man

/src /dig_samples, /extensions, /fonts, /olit,
/tooltalk, /xview

/xnews /client

Notes on X11 Programming
Common X11 programming issues are discussed in the following sections.

Compose Key Support
The OpenWindows version of Xlib supports Compose Key processing through calls to
XLookupString.

IA only – On IA keyboards, use the Control-Shift-F1 key sequence for the Compose
Key functionality.

NumLock Key Support
The OpenWindows version of Xlib supports NumLock Key processing through calls to
XLookupString. This change does not affect the NumLock processing that exists in
XView, OLIT, Motif, or X applications.

24 Solaris X Window System Developer’s Guide • May 2002

IA only – On IA keyboards, the NumLock Key resides in the top line of the keypad
section of the keyboard.

Color Name Database
The color name database provides a mapping between ASCII color names and RGB
color values. This mapping increases the portability of color programs and eases
programming. Note that this mapping is subjective and has no objective scientific
basis.

The source of the database is /usr/openwin/lib/X11/rgb.txt. This file is
identical to the one provided in X11R6 from the X Consortium. rgb.txt is compiled into
the dbm(3) database files, rgb.dir and rgb.pag. When the server starts up, it builds an
internal representation of rgb.dir and rgb.pag used to map a color name to a color
value.

X11 clients use XLookupColor or XAllocNamedColor to map a color name to a
color value. The color name string passed to these routines is converted to lowercase
before it is looked up in the database.

Color Recommendations
This section contains recommendations for using the Solaris X server color support
facilities. Use these hints to maximize portability and color sharing:

� Do not rely on the locations of black and white in the default PseudoColor
colormap. Always use XAllocColor to allocate a pixel for rendering.

Note – Do not rely on black and white being in certain pixel locations. Future
versions of the Solaris X server and the servers of other vendors may have these
colors located in different positions than the current server. For maximum
portability and compatibility, always write X11 clients so that they use the
XAllocColor function to allocate desired colors for rendering.

� Do not use a visual before you have checked on all supported visual types, using
XGetVisualInfo or XMatchVisualInfo. Note that XGetVisualInfo is the
recommended function to use because it has the ability to distinguish between
visuals of the same class and depth.

� To reduce colormap flashing, it is usually a good policy to try to first allocate colors
from the default colormap. Only when this allocation fails should you create a
private colormap.

Chapter 1 • Introduction to the Solaris X Server 25

� For more hints on writing portable X11 color clients, see “Hints for Windows
Programming With Visuals” on page 45.

Further Reading
There are numerous books on all aspects of X and the X Window System. For more
information on the X Window System, see “Related Books” on page 8of the preface for
a list of recommended books available through SunExpress and your local book store.
For more information on the Solaris X server and the X Consortium sample server, see
the following manual pages:

� Xsun(1) – Solaris X server
� Xserver(1) – the X Consortium sample server
� openwin(1) – OpenWindows startup command

26 Solaris X Window System Developer’s Guide • May 2002

CHAPTER 2

DPS Features and Enhancements

This chapter provides information on the Display PostScript (DPS) extension to the
Solaris X server. The following topics are briefly discussed:

� Overview information on the DPS system
� Solaris font enhancements to DPS
� DPS security issues
� DPS compositing operators

About DPS
The Display PostScript system displays graphical information on the computer screen
with the same PostScript language imaging model that is a standard for printers and
typesetters.1 The PostScript language makes it possible for an X application to draw
lines and curves with perfect precision, rotate and scale images, and manipulate type
as a graphic object. In addition, X applications that use the Display PostScript system
have access to the entire Adobe Type Library.

Device and resolution independence are important benefits of PostScript printers and
typesetters. The Display PostScript system extends these benefits to interactive
displays. An application that takes advantage of the DPS system will work and appear
the same on any display without modification to the application program.

1 This section is based on Chapter 4 of Programming the Display PostScript System with X by Adobe Systems Incorporated
(Addison-Wesley Publishing Company, Inc., 1993) and is used with the permission of the copyright holder.

27

How DPS Works
The DPS system has several components, including the PostScript interpreter, the
Client Library, and the pswrap translator. The Client Library is the link between an
application and the PostScript interpreter.

Each application that uses the DPS extension creates a context. A context can be
thought of as a virtual PostScript printer that sends its output to a window or an
offscreen pixmap. It has its own set of stacks, input/output facilities, and memory
space. Separate contexts enable multiple applications to share the PostScript
interpreter, which runs a single process in the server.

Although the DPS system supports multiple contexts for a single application, one
context is usually sufficient for all drawing within an application. A single context can
handle many drawing areas. There are exceptions, however, when it is preferable to
use more than one context in a client. For example, a separate context might be used
when importing Encapsulated PostScript (EPS) files. This simplifies error recovery if
an included EPS file contains PostScript errors.

An application draws on the screen by making calls to Client Library procedures.
These procedures generate PostScript language code that is sent to the PostScript
interpreter for execution. In addition to the Client Library, the DPS system provides
the pswrap translator. It takes PostScript language operators and produces a
C-language procedure–called a wrap–that can then be called from an application
program.

The PostScript interpreter handles the scheduling associated with executing contexts
in time slices. The interpreter switches among contexts, giving multiple applications
access to the interpreter. Each context has access to a private portion of PostScript
virtual memory space (VM). An additional portion of VM, called shared VM, is shared
among all contexts and holds system fonts and other shared resources. Private VM can
hold fonts private to the context.Figure 2–1 shows the components of DPS and their
relationship to X.

28 Solaris X Window System Developer’s Guide • May 2002

DPS Extension

PostScript Interpreter

Stacks

I/O

Stacks

I/O

Shared VM

(fonts, etc.)

Context Context

X protocol with
DPS extension

Client (Application)

Widget set
OSF/Motif
X Toolkit

Xlib

Display
PostScript
Client
Library

Wraps

FIGURE 2–1 DPS Extension to X

An application interacts with the DPS system in the following manner:

1. The application creates a PostScript execution context and establishes a
communication channel to the server.

2. The application sends Client Library procedures and wraps to the context and
receives responses from it.

3. When the application exits, it destroys the context and closes the communications
channel, freeing resources used during the session.

The structure of a context is the same across all DPS platforms. Creating and
managing a context, however, can differ from one platform to another. The Client
Library Reference Manual and Client Library Supplement for X contain information on
contexts and the routines that manipulate them, and Display PostScript Toolkit for X
contains utilities for Display PostScript developers.

Chapter 2 • DPS Features and Enhancements 29

DPS Font Enhancements in the Solaris
Server
The Solaris X server includes the following font enhancements to the DPS system:

� Support for F3 Latin and Asian fonts
� Support for TrueType fonts

See Chapter 4 for more information.

DPS Libraries
Table 2–1 lists the DPS libraries. The .so and .a files that comprise these libraries are
located in the /usr/openwin/lib and /usr/openwin/lib/libp directories. For
information on these libraries, see Programming the Display PostScript System with X
and PostScript Language Reference Manual.

TABLE 2–1 DPS Libraries

Library Description

libdps DPS Client library

libdpstk DPS Toolkit library

libpsres PostScript Language Resource Location library

libdpstkXm DPS Motif Toolkit library

Adobe NX Agent Support
The context creation routines (XDPSCreateSimpleContext and
XDPSCreateContext) in libdps attempt to contact the DPS NX agent if they are
unable to connect to the DPS/X extension. The NX client must be started manually,
usually during the boot or X startup process.

The Adobe DPS NX agent, which is available from Adobe Systems Inc., is a separate
process from the X server and the DPS/X client. When connected to the DPS NX
agent, the client’s DPS calls are intercepted and converted into standard X Protocol
requests. Thus, a DPS client can run on an X server that does not natively support the
DPS extension.

30 Solaris X Window System Developer’s Guide • May 2002

DPS Security Issues
The Solaris environment provides, and in some cases exceeds, the X Consortium’s
X11R5 sample server security levels. In particular, DPS programmers should be aware
of two DPS-specific security features: PostScript file operators’ inability to access
system files, and secure context creation. These features are described below.

System File Access
The PostScript language provides file operations that allow users to access system
devices such as disk files. This presents a serious security problem. In the Solaris
environment, you cannot—by default—use PostScript file operators to open or
otherwise access a system file.

For applications, the client rather than the server should perform necessary file
operations. Thus, the client does not need all the same access privileges that the server
needs. If you want PostScript file operators to access system files, start the server with
the -dpsfileops option (see the Xsun(1) man page). If you attempt to access
system files without specifying -dpsfileops, you will get a PostScript
undefinedfilename error. This issue is particularly important in the CDE or xdm
environment, as the server process is owned by a super-user.

Secure Context Creation
DPS contexts normally have access to global data. This allows a context to look into
the activities of another context. For example, one context could intercept a document
that another context is imaging. This section describes how to create secure contexts in
the Solaris environment.

Section 7.1.1 “Creating Contexts” in the PostScript Language Reference Manual, Second
Edition describes three ways that contexts can share VM:

1. “Local and global VM are completely private to the context.” This capability is new
with Level 2, and a context created this way is called a secure context.

2. “Local VM is private to the context, but global VM is shared with some other
context.” This is the normal situation for contexts created with
XDPSCreateContext and XDPSCreateSimpleContext.

3. “Local and global VM are shared with some other context.” This is the situation for
contexts created with XDPSCreateContext and XDPSCreateSimpleContext
when the space parameter is not NULL.

To create a secure context, use XDPSCreateSecureContext as shown below:

Chapter 2 • DPS Features and Enhancements 31

XDPSCreateSecureContext

DPSContext XDPSCreateSecureContext(dpy, drawable, gc, x, y, eventmask,

grayramp, ccube, actual, textProc, errorProc, space) Display *dpy;

Drawable drawable; GC gc; int x; int y; unsigned int eventmask;

XStandardColormap *grayramp; XStandardColormap *ccube; int actual;

DPSTextProc textProc; DPSErrorProc errorProc; DPSSpace

space;

All parameters have the identical meaning to those in XDPSCreateContext, but the
context being created has its own private global VM. If the space parameter is not
NULL, it must identify a space created with a secure context. A space created with a
secure context cannot be used for the creation of a nonsecure context. Specifying a
nonsecure space with a secure context or a secure space with a nonsecure context
generates an access error.

When DPS Encounters Internal Errors
DPS conducts consistency checks during execution. In the rare event that it encounters
internal errors, DPS applications will not be able to connect to the server. If this
happens, you must restart the Solaris environment. If a client tries to connect to a
server with the DPS extension in this state, the following error message sometimes
appears:

XError:

130 Request Major code 129

(Adobe-DPS_Extension)

How To Access Information From Adobe
The following information is readily available from Adobe’s public access file server:
source code examples, Adobe Metric Font (AMF) files, documentation, PostScript
printer description (PPP) files, and press releases. You can obtain this information if
you have access to the Internet or UUCP electronic mail.

32 Solaris X Window System Developer’s Guide • May 2002

If you have access to the Internet, use the file transfer protocol (ftp) program to
download files from the ftp.mv.us.adobe.com machine. Read the README.first
file for information on the archived files. For details on obtaining information from
Adobe by electronic mail, see the “Public Access File Server” section in the preface of
Programming the Display PostScript System with X.

DPS Compositing Operators

Caution – The operators defined in this section are extensions to the Display
PostScript language. They are not part of the standard DPS and thus are not available
in all DPS implementations. An application that depends on these operators is not
portable and cannot display on servers that do not support these operators.

Compositing is an OpenStep™ extension to the Display PostScript system.
Compositing enables separately rendered images to be combined into a final image. It
encompasses a wide range of imaging capabilities:

� It provides a means for simply copying an image as is from one place to another
with PostScript.

� It allows two images to be added together so that both appear in the composite
superimposed on each other.

� It defines a number of operations that take advantage of transparency in one or
both images that are combined. When the images are composited, the transparency
of one image can let parts of the other image show through.

Compositing can be used for copying within the same window, as during scrolling, or
for taking an image rendered in one drawable and transferring it to another. In
OpenStep applications, images are often stored in pixmaps and composited into
windows as they are needed.

When images are partially transparent, they can be composited so that the transparent
sections of one image determine what the viewer sees of the other. Each compositing
operation uses transparency in a different way. In a typical operation, one image
provides a background or foreground for the other. When parts of an image are
transparent, it can be composited over an opaque background, which will show
though transparent “holes” in the image on top. In other operations, transparent
sections of one image can be used to “erase” matching sections of the images it is
composited with. In most operations, the composite is calculated from the
transparency of both images.

Chapter 2 • DPS Features and Enhancements 33

Compositing with transparency can achieve a variety of interesting visual effects. A
partially transparent, uniformly gray area can be used like a pale wash to darken the
image it is composited with. Patches of partially transparent gray can add shadows to
another image. Repeated compositing while slowly altering the transparency of two
images can dissolve one into another. Or an animated figure can be composited over a
fixed background.

Before images can be composited, they must be rendered. To take advantage of
transparency when compositing, at least one of the images needs to be rendered with
transparent paint.

The following PostScript program fragment shows the use of the compositing
operators. The program creates two simple images and composites them. The first
image, the destination, is a 0.8 gray triangle on a white background; the second, the
source, is a 0.6 gray triangle on a transparent background.

%
Create the Destination triangle

% Make the background of the source transparent 0

0.8 setgray 100 100 moveto 100 0 rlineto 0 -100 rlineto fill

setalpha 0 0 100 100 rectfill % Draw the Source triangle

1 setalpha 0.6 setgray 0 0 moveto 0 100 rlineto 100 0 rlineto fill

% Compute the result

0 0 100 100 null 100 0 Sover composite

The eighth operand to the composite operator, Sover, defines how the source and
destination pixels are combined. In the example, the opaque parts of the source image
are placed over the destination image. The resulting image looks like Figure 2–2.

FIGURE 2–2 Compositing Operator Example Program

34 Solaris X Window System Developer’s Guide • May 2002

Operator Descriptions
This section describes the new DPS operators. The information is provided in the
format used in the PostScript manuals PostScript Language Reference Manual and
Programming the Display PostScript System with X.

setalpha coverage setalpha

Sets the coverage parameter in the current graphics state to coverage. coverage should be
a number between 0 and 1, with 0 corresponding to transparent, 1 corresponding to
opaque, and intermediate values corresponding to partial coverage. The default value
is 1. This establishes how much background shows through for purposes of
compositing. If the coverage value is less than 0, the coverage parameter is set to 0. If
the value is greater than 1, the coverage parameter is set to 1.

The coverage value affects the color painted by PostScript marking operations. The
current color is pre-multiplied by the alpha value before rendering. This multiplication
occurs after the current color has been transformed to RGB space.

Errors stackunderflow, typecheck

See also composite, currentalpha

currentalpha -currentalpha coverage

Returns the coverage parameter of the current graphics state.

Errors None

See also composite, setalpha

composite srcx srcy width height srcgstate destx desty op composite

Performs the compositing operation specified by op between pairs of pixels in two
images, a source and a destination. The source pixels are in the drawable referred to
by the srcgstate graphics state, and the destination pixels are in the drawable specified
by the current graphics state. If srcgstate is NULL, the current graphics state is assumed.

The rectangle specified by srcx, srcy, width, and height defines the source image. The
outline of the rectangle may cross pixel boundaries due to fractional coordinates,
scaling, or rotated axes. The pixels included in the source are all those that the outline
of the rectangle encloses or enters.

The destination image has the same size, shape, and orientation as the source; destx
and desty give destination’s location image compared to the source. Even if the two
graphic states have different orientations, the images will not; composite will not
rotate images.

Both images are clipped to the frame rectangles of the respective drawables. The
destination image is further clipped to the clipping path of the current graphics state.
The result of a composite operation replaces the destination image.

Chapter 2 • DPS Features and Enhancements 35

op specifies the compositing operation. The color of each destination image pixel
(alpha value) after the operation, dst’ (dstA’), is given by:

dst’ = src *

Fs(srcA, dstA, op) + dst * Fd(srcA, dstA, op)

dstA’ = srcA *

Fs(srcA, dstA, op) + dstA * Fs(srcA, dstA, op)

where src and srcA are the source color and alpha values, dst and dstA are the
destination color and alpha values, and Fs and Fd are the functions given in Table
2–2.

The choices for the composite op are given in Table 2–2. See Figure 2–3for the result of
each operation.

Errors rangecheck, stackunderflow, typecheck

See also compositerect, setalpha, setgray, sethsbcolor, setrgbcolor

TABLE 2–2 Factors of the Compositing Equation

Op Fs Fd

Clear 0 0

Copy 1 0

Sover 1 1 - srcA

Sin dstA 0

Sout 1 - dstA 0

Satop dstA 1 - srcA

Dover 1 - dstA 1

Din 0 srcA

Dout 0 1 - srcA

Datop 1 - dstA srcA

Xor 1 - dstA 1 - srcA

PlusD1 N/A N/A

PlusL2 1 1

1. PlusD does not follow the general equation. The equation is dst’=(1-dst)+(1-src). If the result is less than 0 (black),
then the result is 0.

2. For PlusL, the addition asturates. That is, if (src+dst) > white), the result is white.

36 Solaris X Window System Developer’s Guide • May 2002

Figure 2–3 shows the result of the compositing operations.

Chapter 2 • DPS Features and Enhancements 37

Dover

Clear

Sover

Sin

Sout

Dout

Satop

Datop

Xor

Source image wherever source image is opaque, and destination
image elsewhere.

Destination image wherever destination image is opaque, and
source image elsewhere.

Source image wherever both images are opaque, and
transparent elsewhere.

Source image wherever source image is opaque but destination
image is transparent, and transparent elsewhere.

Source image wherever both images are opaque, destination
image wherever destination image is opaque but source image
is transparent, and transparent elsewhere.

Destination image wherever both images are opaque, source
image wherever source image is opaque but destination image
is transparent, and transparent elsewhere.
Source image wherever source image is opaque but destination
image is transparent, destination image wherever destination
image is opaque but source image is transparent, and
transparent elsewhere.

Transparent.

Destination image wherever destination image is opaque but
source image is transparent, and transparent elsewhere.

Operation Destination after

Sum of source and destination images, with color values
approaching 1 as a limit.

PlusL

PlusD Sum of source and destination images, with color values
approaching 0 as a limit.

opaque

Source Destination before

opaque

transparent

Din Destination image wherever both images are opaque, and
transparent elsewhere.

Copy Source image.

transparent

FIGURE 2–3 Results of Compositing Operations

38 Solaris X Window System Developer’s Guide • May 2002

compositerect destx desty width height op compositerect -

In general, this operator is the same as the composite operator except that there is no
real source image. The destination is in the current graphics state; destx, desty, width,
and height describe the destination image in that graphics state’s current coordinate
system. The effect on the destination is as if there were a source image filled with the
color and coverage specified by the graphics state’s current color and coverage
parameters. op has the same meaning as the op operand of the composite operator;
however, one additional operation, Highlight, is allowed.

Highlight turns every white pixel in the destination rectangle to light gray and every
light gray pixel to white, regardless of the pixel’s coverage value. Light gray is defined
as 2/3. Repeating the same operation reverses the effect. (On monochrome displays,
Highlight inverts each pixel so that white becomes black, black becomes white.)

Note – The Highlight operation doesn’t change the value of a pixel’s coverage
component. To ensure that the pixel’s color and coverage combination remains valid,
Highlight operations should be temporary and should be reversed before any further
compositing.

For compositerect, the pixels included in the destination are those that the outline of
the specified rectangle encloses or enters. The destination image is clipped to the
frame rectangle and clipping path of the window in the current graphics state.

Errors rangecheck, stackunderflow, typecheck

See also composite, setalpha, setgray, sethsbcolor, setrbgcolor

dissolve srcx srcy width height srcgstate destx desty delta dissolve -

The effect of this operation is a blending of a source and a destination image. The first
seven arguments choose source and destination pixels as they do for composite. The
exact fraction of the blend is specified by delta, which is a floating-point number
between 0.0 and 1.0. The resulting image is:

delta * source + (1-delta) * destination

If srcgstate is null, the current graphics state is assumed.

Errors stackunderflow, typecheck

See also composite

The values of the composite op are available for applications in the PostScript
systemdict. The definitions are as follows:

/Clear 0 def

Chapter 2 • DPS Features and Enhancements 39

/Copy 1 def

/Sover 2 def

/Sin 3 def

/Sout 4 def

/Satop 5 def

/Dover 6 def

/Din 7 def

/Dout 8 def

/Datop 9 def

/Xor 10 def

/PlusD 11 def

/Highlight 12 def

/PlusL 13 def

Implementation Notes and Limitations

Partially Transparent Alpha
Alpha values that are not completely opaque (1) or completely transparent (0) should
be used with caution. Compositing operations with partial transparency yield the
highest image quality only when a large number of colors are available in the DPS
color cube and gray ramp. That is, image quality is best with a 24-bit TrueColor or
8-bit StaticGray visual, and image quality will be poor with an 8-bit PseudoColor
visual. In addition, the performance of compositing operations is greatly reduced for
partially transparent pixels due to the extra computation required in these cases.

Indexed Color Visuals
For best results with the Highlight op, the number of colors in the DPS context’s gray
ramp should be such that

fract(((float) numgrays - 1)* 2. / 3.) == 0

In other words, (numgrays = 4, 7, 6, 8, 16,). This ensures that the color 2/3 gray is
not halftoned.

40 Solaris X Window System Developer’s Guide • May 2002

Given the limited number of colors usually available in the DPS color cube and gray
ramp, images with alpha values that are not completely opaque (1) or completely
transparent (0) should be avoided to obtain best image quality.

Compositing operations are only defined for pixels values that are in the gray ramp or
color cube specified by the gstate. Compositing pixels with values outside the color
cube and gray ramp may not yield expected results.

Monochrome Displays
The results of compositing operations for 1-bit drawables that have alpha values that
are not equal to 0 or 1 is undefined.

The op Highlight inverts the color of the pixel on a 1-bit drawable.

Interaction with X Drawing Operations
Drawables that have been rendered to with non-opaque alpha have additional pixel
storage associated with them, called the alpha channel. X Window system operations
do not affect the alpha channel, with the following exceptions:

� When windows with alpha channel are exposed, if the window has an X
background defined (background != None), when the background is painted, the
alpha component of the exposed pixels is painted with alpha = 1.

� When a window is resized, the alpha channel storage is resized.

Destroying the Alpha Channel
The erasepage operator paints the current drawable of the graphics state with opaque
white. Thus, the alpha values for all pixels in the drawable are equal to 1, and the
alpha channel storage is destroyed.

Drawables with Unequal Depths
Compositing drawables with unequal depths is undefined.

Chapter 2 • DPS Features and Enhancements 41

42 Solaris X Window System Developer’s Guide • May 2002

CHAPTER 3

Visuals on the Solaris X Server

This chapter discusses X window visuals on the Solaris X server. The chapter includes
information on the following:

� Default visual
� Visuals on multi-depth devices
� Gamma-corrected visuals
� Hints on window programming with visuals

About Visuals
A display device can support one or more display formats. In the X window system,
the display formats supported by the window server are communicated to client
applications in the form of visuals. A visual is a data structure describing the display
format a display device supports.

When an X11 client creates a window, it specifies the window’s visual. The visual
describes the display characteristics for each pixel in the window. In other words, a
window’s visual instructs the display device’s video hardware how to interpret the
value of the window’s pixels.

For each display device configured into the system, there is an X11 screen. For each
screen, a list of supported visuals is exported by the server to client applications. This
list of visuals tells the client application which display formats are available for
creating windows.

The visuals exported by the server for a display screen are not fixed; they depend on
the screen’s device handler. Since the exporting of visuals is under the control of the
device handler, client applications must be prepared to deal with a wide variety of

43

visuals, including visuals with depths other than those that have previously been
common, such as 1, 8, and 24 bits. Visuals with depths of 4, 16, and odd depths may
not be exported, and clients must be prepared to handle them.

Client applications can query the list of supported visuals for a screen by calling the
Xlib routines XGetVisualInfo(3) or XMatchVisualInfo(3), and can query the
list of supported visuals using the utility xdpyinfo(1). For general information on
color and visuals in X11, see the X11 documentation listed in the preface to this
manual.

Default Visual
For each X11 screen, one of the exported visuals for the screen is designated the default
visual. The default visual is the visual assigned to the screen’s root window, and this
visual is the visual that most applications use to create their windows. When a client
application starts, its windows are assigned the default visual unless the application
specifies a different visual.

The built-in default visual is the visual hard-coded in the Solaris X server. For each
screen, there is a default visual that depends on the characteristics of the display
device for that screen. This is the default visual unless you specify a different default
visual when you run openwin(1).

Users can change the default visual that window server advertises in the connection
block. One reason for this is to force client programs that cannot run in the default
visual to run in a specific visual. For example, on a 24-bit device that has the
TrueColor visual as its default visual, an application that cannot run with 24-bit color
may run on a PseudoColor visual.

For developers on multi-depth devices, changing the default visual is a useful way to
test that your application works in different configurations. For information on how to
change the default visual, see the xsun(1) man page. The default visual and the list of
supported visuals exported by the server can be examined from X11 using
XGetVisualInfo(3).

Visuals on Multi-Depth Devices
The Solaris X server supports devices that can display windows of more than one
pixel depth simultaneously. These devices are called multi-depth devices. Since most of
these devices are implemented with separate groups of bit planes for each depth, the
term multiple plane group (MPG) device is often used for these devices.

For each depth, there might be one or more visuals exported. For most MPG devices,
windows can be created using any of the exported visuals. For applications that prefer
a TrueColor visual, the developer should determine whether the TrueColor visual is
available, since it may be available even if PseudoColor is the default visual.

44 Solaris X Window System Developer’s Guide • May 2002

Hints for Windows Programming With Visuals
This section discusses various issues that may arise when programming X11
applications for devices that support more than one visual.

Default Visual Assumptions
A common mistake in programming an X11 client is to assume that the default visual
has an indexed class (for example, PseudoColor or StaticColor). It is possible for the
default visual to be 24-bit TrueColor on some devices. Clients expecting to run on
these devices must be prepared to handle this type of default visual.

Other common programming mistakes with visuals are:

� Assuming the default depth is 8

� Assuming the colormap is writable

� Using a default visual that is not appropriate rather than searching for an
appropriate visual using XGetVisualInfo

If the device does not support a visual requested by a client, the following error
message is returned. In this error message, # represents the depth number requested,
and n represents the requested display device. If this message is returned for a
supported visual/device combination (as indicated in Table A–1), then an installation
problem exists.

Error:

cannot provide a default depth #for device

/dev/fbs/n

In general, client applications may need to be modified to make them more portable in
the presence of different default visual types.

Setting the Border Pixel
When creating a window with a visual that is not the default visual, applications must
set the border_pixel value in the window attribute structure, or a BadMatch error
occurs. This is a common programming error that may be difficult to debug. For
information on setting the border pixel, see the XCreateWindow man page.

Note – If you are experiencing improper graphics and double-buffering performance
(such as lack of acceleration), OpenWindows might not have been installed as root.

Chapter 3 • Visuals on the Solaris X Server 45

Gamma-Corrected Visuals
The linearity attribute of a visual describes the intensity response of colors it displays.
On a cathode ray tube (CRT) monitor, the colors displayed are actually darker than the
colors requested. This darkening is caused by the physics of monitor construction.
Some devices support visuals that compensate for this darkening effect. This is called
gamma correction.

Gamma correction is done by altering colors coming out of the frame buffer with the
inverse of the monitor’s response. Because the overall intensity of a gamma-corrected
visual is a straight line, a gamma corrected visual is called a linear visual; a visual that
is not gamma corrected is called a nonlinear visual.

Linearity is not a standard X11 attribute for visuals. However, some applications
require a linear visual to avoid visible artifacts. For example, a graphics application
using antialiased lines may produce objectionable “roping” artifacts if it does not use a
linear visual. This kind of application is called a linear application. An application
requiring a nonlinear visual for best display of colors is called a nonlinear application.
Most X11 applications are nonlinear applications.

On most devices, the linearity of default visuals is nonlinear. Therefore, linear
applications should not depend on the default and should always explicitly search for
a linear visual. Similarly, it is a good idea for nonlinear applications to explicitly search
for a nonlinear visual. Since this is typically the default on most devices, it is not as
critical, but it is still a good policy to do so.

To determine whether a visual is linear, applications can use the interface
XSolarisGetVisualGamma(3). For more information on gamma correction, refer to
Fundamentals of Computer Graphics by Foley and Van Dam.

Visual Selection Alternatives
It is recommended that applications be written to handle a wide variety of visual
configurations. Some devices, for example the GX, do not have any linear visuals.
Other devices have only a single linear 24-bit TrueColor visual. Other types of devices
may support both linear and nonlinear visuals at the same time. In general, the most
prudent way to write a portable application is to deal gracefully with all these
configurations. This may involve printing a warning message if the visual of the
desired linearity is not found. Or, if a linear application cannot find a linear visual, a
useful trick is to manually darken in the application the colors given to X11. This is
tantamount to performing your own gamma correction. The gamma value returned by
XSolarisGetVisualGamma can be used to determine how much to darken the
colors.

46 Solaris X Window System Developer’s Guide • May 2002

Note – XSolarisGetVisualGamma is a Public interface of Solaris and is fully
supported. In the future, a color management system may also provide this
functionality. When this occurs, this will become the preferred way of getting this
information. But until then, XSolarisGetVisualGamma should be used. When this
color management system is introduced, applications using
XSolarisGetVisualGamma will continue to run with no modification and will
actually benefit from the increased accuracy of the color management system.

Chapter 3 • Visuals on the Solaris X Server 47

48 Solaris X Window System Developer’s Guide • May 2002

CHAPTER 4

Font Support

This chapter provides information on font support in the Solaris X server. The chapter
includes information on the following topics:

� X font server
� Available font formats
� Outline and bitmap fonts
� Location of fonts

Font Support in the Solaris X Server
The Solaris X Window System provides font support in both the X11 server and the
Display PostScript (DPS) extension. Font formats from numerous vendors can be used
to display text in English or foreign languages, including Asian languages. Symbol
fonts can be used to display mathematical equations. The Solaris environment
provides 55 Latin fonts for west European text and two symbol fonts. Other fonts can
also be added to the system using the Font Administrator GUI or command line tools
distributed with Solaris.

X Font Server
The Solaris X server can be a client of the X font server xfs. The X font server renders
fonts for the X server. The Solaris X font server supports the same fonts as the
standard X font server, plus TrueType fonts from Sun. It does not support Sun’s
proprietary F3 font format. Support for Type 1 fonts is provided via the Type 1
interpreter donated to the X Consortium.

xfs can be started manually or automatically. For more information on this command,
see the xfs(1) man page.

49

Available Font Formats
Fonts from different vendors come in different formats. Table 4–1 and Table 4–2 list the
various font formats, their vendors, and the associated file types supported by the
Solaris environment. Table 4–1 lists outline fonts; Table 4–2 lists bitmap fonts.

TABLE 4–1 Outline Font Formats

Font Format Vendor File Type

TrueType Various foundries .ttf

Type1 (ASCII) Adobe and various foundries .pfa

Type1 (binary) Adobe and various foundries .pfb

Type 3 Adobe and various foundries .ps

Speedo Bitstream .spd

F3 SunSoft .f3b

TABLE 4–2 Bitmap Font Formats

Font Format Vendor File Type

Portable compiled format MIT .pcf

Bitmap distribution format Adobe .bdf

Big Endian prebuilt format Adobe (for sparc) .bepf

Little Endian prebuilt format Adobe (for IA and ppc) .lepf

The fonts provided by the Solaris X server are located in the
/usr/openwin/lib/X11/fonts directory. For more information on the directory
structure, see “Locating Fonts” on page 53.

The Solaris environment is configured so that most X11 fonts are also available in DPS
(see Table 4–3). DPS supports a slightly different set of fonts than those supported by
X11.

TABLE 4–3 Font File Availability

Font Format Available in X11 Available in DPS

TrueType Yes Yes

Type1 outline fonts-ASCII Yes Yes

Type1 outline fonts-binary Yes Yes

50 Solaris X Window System Developer’s Guide • May 2002

TABLE 4–3 Font File Availability (Continued)
Font Format Available in X11 Available in DPS

Type 3 Yes Yes

Speedo Yes No

F3 Yes Yes

Portable compiled format Yes Yes

Bitmap distribution format Yes No

Big Endian prebuilt format No Yes

Little Endian prebuilt format No Yes

Optional Font Package
Fonts needed by end-user applications are installed with the End-User Cluster.
However, some unusual applications may need fonts in the Developer Cluster. For
these applications, the package to add is the SUNWxwoft package. It is not necessary
to install the entire Developer Cluster.

Associated Files
The Solaris environment provides files with these extensions. They are not intended to
be edited.

� .afm Adobe Font Metrics files read by client for kerning information
� .map F3 files read by X11 and DPS for encoding purposes
� .trans F3 files read by DPS for composite font construction
� .ps PostScript Files for composite font and PostScript resource construction
� .enc Encoding files used by X11 and DPS
� .upr Display PostScript resource files
� .ttmap Encoding file for TrueType fonts

Outline and Bitmap Fonts
Solaris supports two types of font representation: outline fonts and bitmap fonts. To
display a letter from an outline font, the server scales and rotates only the outline of
the character. This repositioned outline is then rendered into pixel form (bitmap) for
display on the screen. This rendered bitmap is also stored in the glyph cache for reuse.

Chapter 4 • Font Support 51

Because certain font sizes occur frequently, they are also kept in separate files in
pre-rendered bitmap form. This saves the server from having to scale and render
them. However, the resulting bitmap fonts can be displayed in only one size and
orientation. Some of the fonts have also been hand-tuned to look better and be more
readable. As they are encountered, these bitmaps are also placed in the glyph cache.
The recommended bitmap format is the portable compiled format (.pcf).

The /usr/openwin/bin directory contains the following tools to convert fonts
between the outline and bitmap font representation, as well as between various
bitmap formats. See the corresponding man pages for more detailed information.

� makebdf Creates bitmap distribution format files (.bdf) from F3 outline font files
(.f3b)

� bdftopcf Converts a font from .bdf format to portable compiled format (.pcf)

As illustrated in Table 4–4, many bitmap font file formats are architecture-dependent
binary files. They cannot be shared between machines of different architectures (for
example, between SPARC and IA).

TABLE 4–4 Bitmap Font Binaries

Font Format Binary Architecture-Specific

Bitmap distribution format No No

Portable compiled format Yes No

Little Endian prebuilt format Yes Yes (IA and ppc)

Big Endian prebuilt format Yes Yes (SPARC)

The Solaris environment contains compressed .pcf files (files with .pcf.Z extensions).
You can uncompress these if you want. If you add fonts to your system, you can either
compress the files or not. Use uncompressed files if you want the fonts to display
somewhat faster. Leave the files compressed if you want to conserve disk space. For
more information, see the compress(1) man page.

Replacing Outline Fonts With Bitmap Fonts
The Solaris environment automatically replaces some outline fonts with bitmap fonts
when the size is appropriate. This improves performance, and in some cases improves
the aesthetics and readability of the text. There may be several sizes at which
replacement occurs for a given outline font.

52 Solaris X Window System Developer’s Guide • May 2002

Replacement Conditions
Currently in DPS, the .pcf bitmap format is substituted for F3 outline fonts, Type1
and TrueType fonts. Substitution occurs when there is no rotation, the requested pixel
size is within one half of a pixel of the .pcf font size, and the .pcf font is a resource
in a .upr (PostScript resource) file. The .pcf format can be substituted for all scalable
versions of the fonts mentioned above.

Using TrueType and F3 Fonts in DPS
TrueType and F3 fonts behave exactly like Type1 fonts, except /FontType returns 42
for TrueType and 7 for F3 fonts. For example, the following PostScript code works the
same regardless of the kind of font.

/Helvetica
findfont 50 scalefont setfont 10 10 moveto (ABC)

show

But the following code yields 42 for a TrueType font, 7 for an F3 font, and 1 for a Type1
font.

currentfont

/FontType get ==

The kind of font returned depends on the current DPS internal resource path.

Locating Fonts
By default, the Solaris server looks for fonts in directories under the
/usr/openwin/lib/X11/fonts directory. Table 4–5 shows the complete font
directory structure. The directory names are preceded by
/usr/openwin/lib/X11/fonts.

TABLE 4–5 Font Directory Structure

Directory Subdirectory File Suffixes Contents

/TrueType .ttf TrueType fonts

Chapter 4 • Font Support 53

TABLE 4–5 Font Directory Structure (Continued)
Directory Subdirectory File Suffixes Contents

/TrueType /ttmap .ttmap TrueType character set
specifications

/TTbitmaps .pcf Bitmap fonts

/100dpi .pcf Bitmap fonts

/75dpi .pcf Bitmap fonts

/F3 /afm .f3b F3 format outline fonts

/map .map F3 character set specifications

/F3bitmaps .pcf Bitmap fonts

/Speedo .spd Bitstream Speedo format outline
fonts

/Type1 .pfa, .pfb Type1 outline fonts

/afm .afm Adobe font metrics

/outline .pfa, .pfb Type1 outline fonts

/prebuilt .bepf, .lepf Bitmaps for SPARC Solaris and IA

/Xt+ .pcf Bitmap fonts

/Type3 .ps PostScript outline fonts

/encodings .enc Encodings

/misc .pcf Bitmap fonts

Changing the Default Font Path in X11
In X11, the default font path is:

/usr/openwin/lib/X11/fonts/F3,
/usr/openwin/lib/X11/fonts/F3bitmaps,
/usr/openwin/lib/X11/fonts/Type1,
/usr/openwin/lib/X11/fonts/Speedo,
/usr/openwin/lib/X11/fonts/misc,
/usr/openwin/lib/X11/fonts/75dpi,
/usr/openwin/lib/X11/fonts/100dpi

Note that the directory paths must be absolute.

To change the default font path, use the Font Administrator GUI or command-line
tools included with Solaris. For information about Font Administrator, see the Font
Administrator User’s Guide.

54 Solaris X Window System Developer’s Guide • May 2002

Installing and Managing Fonts
To install, delete, and view fonts for a workstation or NeWSprint printer, or to edit
font paths or font attributes, use the Font Administrator GUI or command-line tools
included with Solaris. For information about Font Administrator, see the Font
Administrator User’s Guide.

Chapter 4 • Font Support 55

56 Solaris X Window System Developer’s Guide • May 2002

CHAPTER 5

Server Overlay Windows

This chapter includes information on the following topics:

� Server overlays versus Solaris transparent overlays
� Suggestions for implementing overlays
� Description of server overlays

Server Overlays Versus Transparent
Overlays
There are two different APIs that may be used to render transparent pixel values to an
overlay window. The Transparent Overlay Extension is a Sun proprietary method to
provide overlay capability in the X Window System. Transparent overlays can provide
overlay functionality without hardware overlay support. Another well-known method
known as server overlays can be used if your hardware supports it.

The Transparent Overlay Extension is a full X extension which requires extension calls
to provide the transparency effect. The model is robust enough to emulate
transparency on most systems, even if the hardware does not support real overlays.
However, the operation of transparent windows is considerably slower when not
supported in hardware.

Server Overlays is not an X extension, but instead the API provides a means for the X
client to determine which visuals are overlays, and what pixel values to use for
transparency. This API requires hardware support.

57

The Transparent Overlay Extension and server overlays may both be supported on the
same screen, but they should never be used within the same window. Results are
undefined. Trying to create a transparent overlay window in a visual specifically
designed for server overlays may result in a BadMatch. Transparent overlays can
avoid this by following the proper procedure to locating a partner overlay visual, as
described in Chapter 6.

Tips for Programming Overlays
The following information may be useful when deciding which model to use, and
how to manage stacking.

Parent-Child Model
It is strongly suggested that all transparency and overlays designs follow the simple
underlay-parent overlay-child model. The desired underlay window is created first,
and then the overlay is created as a child of the underlay. The overlay window is the
only child of the underlay. This eliminates a number of odd cases for the X server, and
also helps make sure there are no incidental interfering windows between the
underlay and the overlay.

If using Xlib and/or programming your own XCreateWindow for these calls, it is
important to understand that the client must provide extra information when creating
a window that does not have the same visual as its parent. If the visual is not the
default visual, you must provide a colormap or, if the colormaps are equivalent, assign
the parent visual’s colormap to the child. If the depths are different, you must provide
a BorderPixel or BorderPixmap. Failure to do so may cause a BadMatch to return as
the result of the create window.

For information about colormap equivalence, see the X Server Device Developer’s Guide.

Stacking
When you raise a window, it does not matter if the window is an overlay window or
not, it will raise to the top of the stack. If you lower a window, it does not matter if it is
an overlay window, it will lower to the bottom of the stack.

This brings up the confusing notion of an overlay window being below an underlay
window. This actually happens all the time. This is because the X server is enforcing
the simple stacking policy, and it will do whatever is necessary to make that overlay
window appear below the other windows, even if it has to software clip it.

58 Solaris X Window System Developer’s Guide • May 2002

Problems are best avoided by using the underlay-parent overlay-child model. That
way, an underlay-overlay pair is treated as an entire application from the parent
window, and it raises and lowers together.

Server Overlays
The Server Overlays API provides a simple way for applications to find overlay
visuals and corresponding transparent pixel values. The overlay visual is used to
create an overlay window, and the transparent pixel is a special pixel value the client
may use to cause the underlays to show through. This pixel value is used in the
standard way for foreground or background of any drawing operation, or the
background of the overlay window.

The Server Overlays API specifies that the SERVER_OVERLAY_VISUALS property on
the root window shall contain the following information. The size of the information
returned by the server dictates how many instances of this structure are returned: one
instance for every visual listed.

typedef struct {

unsigned int visualid; unsigned int

trans_type; unsigned int

value; unsigned int

layer; } ServerOverlaysInfoRec;

visualid The visual ID referenced by the X server. Usually returned to
the client via XGetVisualInfo.

trans_type The transparency type: 0 None, 1 Transparent Pixel, 2
Transparent Mask

value The transparent pixel value or mask value

layer The relative hardware layer of the visual with respect to
transparent effects.

The trans_type value exists because there are provisions for other transparency types
that are uncommon in the spec. The trans_type may be zero if a transparent pixel is not
available, yet the X server wishes to advertise the visual as existing at a different set of
plane groups than the usual windows, for the purpose of preventing exposes.

Chapter 5 • Server Overlay Windows 59

The layer is usually zero for normal windows, but the layer is really a relative number,
with greater number representing plane groups above lower numbers. Negative
numbers are possible.

Visuals not listed in the SERVER_OVERLAY_VISUALS property may be assumed to
have a layer of zero and a transparency ability of none. These default values are only
applicable to server overlay operations.

The transparent pixel shows through to the first window in the next layer. Layers do
not affect stacking order in any way, but only apply to the transparency effect. It is
strongly recommended to use overlays as a direct and only child of the designated
underlay. This provides the best performance and the least confusion.

Server overlays support is device-dependent and may be a full hardware port or
partial software emulation or a combination of software and hardware.

Server overlays are specified in “Programming X Overlay Windows” by Mark J.
Kilguard, in the July/August 1993 issue of The X Journal.

60 Solaris X Window System Developer’s Guide • May 2002

CHAPTER 6

Transparent Overlay Windows

This chapter presents information on the Transparent Overlay Extension application
programming interface (API) that provides transparent overlay window capabilities in
the Solaris OpenWindows environment. The chapter includes information on the
following topics:

� How overlay windows differ from standard X windows
� How to create and draw to overlay windows
� How to ensure that applications using transparent overlay windows are portable to

a wide range of devices

Note – It is recommended that you use server overlays if supported by your
hardware. Server overlays are supported on FFB devices. For more information about
server overlays, see Chapter 5.

What are Transparent Overlay
Windows?
The transparent overlay extension allows the creation and manipulation of transparent
overlay windows. These windows are X windows that allow the user to see through to
the underlying window on a per-pixel basis. No special hardware is needed to create
and use transparent overlay windows, as this functionality has been implemented in
software. Complex transparent overlay manipulation on simple hardware may be time
consuming; however, the X server can make use of special overlay hardware if
available and the client chooses the correct visuals. Note that, depending on your
hardware and needs, you may have to adapt the client color allocations for
transparent overlay windows.

61

Overlay windows allow applications to display temporary imagery in a display
window. Users of an application that provides overlays can annotate an image with
text or graphical figures, temporarily highlight certain portions of the imagery, or
animate figures that appear to move against the background of the imagery. When
geometry in the overlay is cleared, any underlying graphics do not need to be
regenerated.

The transparent overlay extension allows the client to use standard X requests to draw
primitives in opaque paint, which is a name for the standard way of drawing, or
transparent paint, which makes affected pixels invisible. The paint type is associated
with a standard X graphics context. Window backgrounds may also be set to
transparent paint. Transparent overlay windows obey all regular window rules and
operating procedures. For example, a transparent overlay window can be positioned
anywhere in the window stacking order, regardless of what hardware the windows
are associated with. This is implemented in software with the Solaris X server multiple
plane group (MPG) functionality.

The server’s multiple plane group capability allows windows from different parts of
the hardware to coexist. Each window is associated with a visual, which in turn is
associated with hardware. Although some hardware is physically created such that
there is a definite “layering” (for example, windows created in a hardware overlay
plane might be expected to always be seen above the regular windows), MPG works
around this limitation in software. MPG allows the stacking order of the windows to
be unaffected by the physical imitations of the hardware. As a result, stacking is
simply the same as in the standard server. If overlay hardware is available and
requested, MPG takes care of minimizing the work and increasing performance.

In general, an overlay is a pixel buffer (either physical or software simulated) into
which graphics can be drawn. When the overlay is physical (that is, not simulated in
software), erasing the overlay graphics does not damage the underlying graphics. This
provides a performance advantage when the underlying graphics is complex and
requires much time to repaint. When the overlay is in software, erasing the overlay
graphics may generate an Expose event.

Basic Characteristics of Transparent
Overlay Windows
A transparent overlay window is a special class of an X InputOutput window into
which pixels can be rendered transparently. Handles to transparent overlay windows
have the X window type Window. Just like standard X windows, overlay windows are
drawables, and an overlay window handle can be passed to any Xlib drawing routine
that takes a Drawable.

62 Solaris X Window System Developer’s Guide • May 2002

Transparent overlay windows have extended the set of graphics context attributes to
include an attribute for paint type. With the transparent overlay extension, transparent
overlay windows can be rendered to with either opaque or transparent paint.

Paint Type
While standard X InputOutput windows and other drawables (such as pixmaps)
accept only opaque paint, transparent overlay windows permit pixels to be rendered
with transparent paint. Valid pixel values painted opaquely obscure pixels in
underlying windows. Such pixels have associated color values that are displayed.
Pixels rendered transparently have no intrinsic color; they derive their displayed color
from the pixels that lie beneath.

Valid pixel values for pixels painted opaquely are obtained via XAllocColor() or
another standard pixel allocation mechanism. Painting opaquely with a non-valid
pixel value, for example a value that falls outside the valid colormap entries for a
visual, produces undefined results for both transparent overlay windows and
standard X InputOutput windows.

Paint type is defined with the data structure XSolarisOvlPaintType. By default,
the paint type of a GC is opaque. The XSolarisOvlPaintType data structure is
defined as:

typedef

enum { XSolarisOvlPaintTransparent, XSolarisOvlPaintOpaque, }

XSolarisOvlPaintType;

Viewability
A transparent overlay window is considered viewable even if all its pixels are fully
transparent. For viewable pixels in a transparent overlay window that are fully
transparent, the underlying pixels in the underlay will be displayed.

If an overlay window is unmapped or moved, the underlay beneath may receive
exposure events. This, for example, is the case on devices that cannot display the
overlay window and underlay window in different plane groups.

Chapter 6 • Transparent Overlay Windows 63

More on Transparent Overlay
Characteristics
In most respects, a transparent overlay window is just like a standard X
InputOutput window. Specifically, a transparent overlay window has these
characteristics:

� It can be mapped or unmapped. The routines XMapWindow, XUnmapWindow,
XMapSubwindows, and XUnmapSubwindows apply.

� An overlay window can possess its own cursor or use its parent’s cursor. In other
words, XDefineCursor and XUndefineCursor apply to overlay windows.

� An overlay window appears in the output of XQueryTree.
� The event_mask and do_not_propagate_mask window attributes function

normally. An overlay window can express interest in any type of event.
� XTranslateCoordinates and XQueryPointer apply to overlay windows.
� save_under applies as for standard X windows.
� override_redirect applies as for standard X windows.

A transparent overlay window also has some characteristics that make it unique as a
window. The following sections describe these characteristics.

Background
As defined in the X specification, windows can have a background. The main purpose
of window background is to display something in the exposed areas of a window in
case the client is slow to repaint these areas. This background is rendered whenever
the window receives an Expose event. The background is rendered before the
Expose event is sent to the client. The background is also rendered when the client
makes an XClearArea or XClearWindow request.

Like standard X InputOutput windows, transparent overlay windows can also have
a background. The background of a transparent overlay window is rendered just like a
non-overlay window in response to Expose events, XClearArea requests, or
XClearWindow requests. In addition to the standard types of background (None,
pixmap, pixel, or parent relative), transparent overlay windows can also be assigned a
new type of background: transparent. A new routine,
XSolarisOvlSetWindowTransparent, is available to set the background type to
transparent.

The background of a transparent overlay window is transparent by default. However,
the application can still specify one of the usual X types of background: None, a
pixmap XID, a pixel value, or ParentRelative, as shown in Table 6–1 .

64 Solaris X Window System Developer’s Guide • May 2002

TABLE 6–1 Background Values for a Transparent Overlay Window

Background Description

transparent Background of transparent overlay window is transparent by default.

None No rendering is performed when the overlay window encounters a
condition that invokes background painting. Neither transparent nor
opaque paint is rendered.

Pixmap ID The background is rendered with opaque paint. The rendered pixel
values are derived from the pixmap as defined in the X specification.

Single pixel value The background is a solid color rendered with opaque paint.

ParentRelative The behavior for a ParentRelative background depends on the
parent window background and its type. If the parent window is an
underlay, the background for the overlay window child will be rendered
with opaque paint, and the rendered pixels will be as defined in the X
specification. If the parent window is an overlay, the background of the
overlay child will be the same as that of the parent, either transparent or
opaque paint will be rendered.

Attempts to set the background of a non-overlay window with
XSolarisOvlSetTransparent generates a BadMatch error. If an underlay window
has a ParentRelative background and the parent window is an overlay with a
transparent background, the underlay child is treated as if it has a background of
None.

Window Border
The border of overlay windows is opaque. It is always drawn with opaque paint. Just
like standard X InputOutput windows, the border width can be controlled with
XSetWindowBorderWidth.

Backing Store
Backing store is disabled for overlay windows.

Window Gravity
The bit and window gravity attributes (bit_gravity and win_gravity) apply to
transparent overlay windows. However, if the gravity calls for the movement of
pixels, the transparency information is moved, along with the pixel color information.

Chapter 6 • Transparent Overlay Windows 65

Colormaps
Overlay colormap installation follows the X rules. If your application uses
pixel-sharing overlay/underlay pairs, create a single colormap for both windows.
Refer to “Choosing Visuals for Overlay/Underlay Windows” on page 67 and
“Designing an Application for Portability” on page 83 for more on the subject of
pixel-sharing pairs.

If the pair is known never to share hardware color LUTs, different colormaps can be
safely assigned to the overlay and underlay window without the occurrence of
colormap flashing.

Note – To improve the portability of applications and to minimize color flashing, use
colormaps with the same colors in both the overlay and underlay window colormaps.
If this is not possible, use one of the visual inquiry routines to determine whether
different colormaps can be assigned without producing flashing.

Input Distribution Model
Overlay windows can express interest in events just like a standard X window. An
overlay window receives any event that occurs within its visible shape; the paint type
of the pixel at which the event occurs doesn’t matter. For example, if the window
expresses interest in window enter events, when the pointer enters the window’s
visible shape, the window receives a window enter event, regardless of whether the
pixel is opaque or transparent.

This has some implications for how applications should implement interactive picking
(selection) of graphical objects. Applications that draw graphical figures into an
overlay window above other graphical figures drawn into the underlay window
should express interest in events in either the overlay or underlay window, but not
both. When the application receives an input event, it must use its knowledge of the
overlay/underlay layering to determine which graphical figure has been picked.

For example, let’s say the application expresses interest in events on the underlay
window. When the application receives an event at coordinate (x, y), it should first
determine if there is a graphical figure at that coordinate in the overlay. If so, the
search is over. If not, the application should next see if there is a graphical figure at
that coordinate in the underlay.

Print Capture
After graphical imagery has been rendered to an X window, the user may want the
window contents to be captured and sent to a printer for hard copy output. The most
widespread technique for doing this is to perform a screen dump, that is, to read back

66 Solaris X Window System Developer’s Guide • May 2002

the window pixels with XGetImage, and to send the resulting image to the printer. To
fit the image to the size of the printed page, some image resampling may be necessary.
This can introduce aliasing artifacts into the image.

Another print capture technique that is growing in popularity in the X11 community is
to re-render the graphics through a special printer graphics API. This API supports the
standard Xlib graphics calls. It converts these calls into a page description language
(PDL) format and sends it to the appropriate print spooler. The advantage of this
technique is that the graphics can be scaled to fit the printed page by scaling the
coordinates themselves rather than the pixels after scan conversion has been applied.
As a result, aliasing artifacts are minimized.

The print API technique has a significant drawback when applied to an
overlay/underlay window pair. Most PDLs only support the notion of opaque paint;
they do not provide for the marking of transparent paint. In the PostScript PDL, for
example, the marked pixels always supersede what was previously marked. Given
such a limitation, it is not always possible to capture the imagery in an
overlay/underlay window pair using this technique. Certainly, in applications where
the background of the overlay is completely transparent and only opaque paint is
drawn to it, the underlay could be marked first and the overlay marked second. But if
transparent paint was drawn to the overlay, erasing other opaque paint in the overlay,
this would not work.

Until this issue is resolved, capture overlay windows and send them to the printer
using XReadScreen and resampling. Alternatively, do not use overlays to render
information that is to be printed.

Choosing Visuals for Overlay/Underlay
Windows
The Solaris transparent overlay API supports multiple plane group (MPG) and single
plane group (SPG) devices. Display devices come in a wide variety of configurations.
Some have multiple plane groups. Some have multiple hardware color lookup tables
(LUTs). Some dedicate color LUTs to particular plane groups and some share color
LUTs between plane groups. This wide variety makes it difficult for an application
writer to construct portable overlay applications.

For a given type of underlay window, some devices can provide some types of overlay
windows with high-performance rendering. Other devices provide the same type of
overlay window but with slower rendering. Some devices can support overlays with
many colors, and some devices cannot. Some devices can support simultaneous
display of both overlay and underlay colors for all types of overlays and underlays.
Others support simultaneous display of colors but not for all overlay/underlay

Chapter 6 • Transparent Overlay Windows 67

combinations. Still others support a certain degree of simultaneous color display.
These devices support more than one hardware color LUT. Hardware might not
contain enough color LUTs to enable all applications to display their colors
simultaneously.

The following routines enable an application to negotiate with the system for a
suitable overlay/underlay visual pair:

� XSolarisOvlSelectPartner
� XSolarisOvlSelectPair

These routines are described in the section “Designing an Application for Portability”
on page 83 .

The assumption is made that each application has an ideal configuration of windows
and colors. An application should start out by asking for the “best” overlay/underlay
pair. If this can be satisfied by the device, then the negotiation is complete, and the
application proceeds to create windows on the selected underlay and overlay visuals.
But if no visual pair satisfies the query, the application must relax its demands. To this
end, it should specify the “next best” pair. The application may choose to ask for less
colorful visuals, or it may accept lower rendering performance on one of the visuals.
The process continues until either a satisfactory visual is found, or the application
decides it’s not worth running in this environment without certain criteria being met.

The transparent overlay API provides routines that enable the application to conduct
such a negotiation in a single subroutine call. The application specifies criteria to be
matched for either the overlay visual, the underlay visual, or both. Application
programmers are encouraged to use these routines to ensure portability to the widest
range of graphics devices.

Example Program
The program below demonstrates a simple example of a transparent overlay. The
program creates a transparent overlay window, draws the window border in white,
displays a text string in white, and draws a white filled rectangle. The paint type is
opaque by default, and the window background is transparent by default. Use the
following Makefile to compile and link the program.

simple:

simple.c cc -I../ -I/usr/openwin/include -o simple simple.c \

-L/usr/openwin/lib -lX11 -lXext

EXAMPLE 6–1 Transparent Overlay Example Program

#include <stdio.h> #include

68 Solaris X Window System Developer’s Guide • May 2002

EXAMPLE 6–1 Transparent Overlay Example Program (Continued)

<X11/Xlib.h> #include “X11/Xmd.h” #include

<X11/extensions/transovl.h> #include

<X11/extensions/transovlstr.h> Display *display; Window

window; XSetWindowAttributes attribs; GC gc; XGCValues

gcvalues; main() { display = XOpenDisplay(““);

attribs.override_redirect = True;

attribs.border_pixel = WhitePixel(display,0);

window = XSolarisOvlCreateWindow(display, DefaultRootWindow(display),

100, 100, 500, 500, 10, CopyFromParent, InputOutput,CopyFromParent,

CWBorderPixel | CWOverrideRedirect, &attribs); gcvalues.font =

XLoadFont(display, “fixed”);

gcvalues.foreground =WhitePixel(display, 0);

gc = XCreateGC(display, window, GCFont | GCForeground,&gcvalues);

XMapWindow(display, window); XDrawString(display, window,

gc, 50, 50, “This is a test”, 14);

XFillRectangle(display,window, gc, 70, 70, 100, 100);

XFlush(display); while (1);}

Overview of the Solaris Transparent
Overlay Window API
The transparent overlay window API includes the routines listed in Table 6–2. These
routines are provided by libXext.so. To use the Solaris overlay routines, do the
following:

� Include the file /usr/openwin/include/X11/extensions/transovl.h

� Link the library device handler with the library
/usr/openwin/lib/libXext.so

Chapter 6 • Transparent Overlay Windows 69

TABLE 6–2 List of Transparent Overlay Window Routines

Name Description

XSolarisOvlCreateWindow Creates an overlay window.

XSolarisOvlIsOverlayWindow Indicates whether a window is an overlay window.

XSolarisOvlSetPaintType Specifies the type of paint rendered by subsequent
Xlib drawing.

XSolarisOvlGetPaintType Gets the current paint type.

XSolarisOvlSetWindowTransparent Sets the background state of an overlay window to
be transparent.

XSolarisOvlCopyPaintType Renders opaque and transparent paint into the
destination drawable based on the paint type
attributes of the pixels in the source drawable.

XSolarisOvlCopyAreaAndPaintType Copies the area and paint type from one pair of
drawables to another.

XReadScreen Returns the displayed colors in a rectangle of the
screen.

XSolarisOvlSelectPartner Returns the optimal overlay or underlay visual for
an existing visual.XSolarisOvlSelectPairSelects an
optimal overlay/underlay pair that best meets a set
of defined criteria for the overlay and underlay
visuals.

The remainder of this chapter discusses the transparent overlay API routines.

Creating Transparent Overlay Windows
You can create a transparent overlay using XSolarisOvlCreateWindow. This
routine behaves exactly as XCreateWindow except that the resulting window is a
transparent overlay window. The newly created window can be rendered into with
both opaque and transparent paint, and the background of the overlay window is
transparent.

The class argument to XSolarisOvlCreateWindow should be InputOutput. An
overlay window can be created as an InputOnly window but, in this case, it will
behave like a standard InputOnly window. It is only for InputOutput windows
that there is a difference between overlay and non-overlay.

The syntax and arguments for XSolarisOvlCreateWindow are shown below.

70 Solaris X Window System Developer’s Guide • May 2002

Window

XSolarisOvlCreateWindow(Display *display, Window parent, int x, int y,

unsigned int width, unsigned int height, unsigned int border_width, int

depth, unsigned int class, Visual * visual, unsigned long valuemask,

XSetWindowAttributes * attr)

The arguments for this routine are the same as those for XCreateWindow.

display Specifies the connection to the X server.

parent Specifies the parent window.

x, y Specifies the coordinates of the upper-left pixel
of this window, relative to the parent window.

width, height Specifies the width and height, in pixels, of the
window.

border_width Specifies the width, in pixels, of the window’s
borders.

depth Specifies the depth of the window.

class Specifies the class of the window. If the class is
not InputOutput, the window will not be an
overlay window.

visual Specifies a pointer to the visual structure for
this window.

valuemask Specifies which window attributes are defined
in the attr argument.

attr Specifies the attributes of the window.

You can use any visual to create the overlay. However, not all overlay/underlay visual
pairs may be optimal. Each screen defines a set of optimal overlay/underlay visual
pairs. These define the optimal visuals of the overlay windows that can be created
with a particular underlay visual. Likewise, they define the optimal visuals of
underlay windows that can be created with a particular overlay visual. You can
determine the optimal pairs using XSolarisOvlSelectPair and
XSolarisOvlSelectPartner.

The definition of optimal varies from device to device, but it will usually refer to the
ability of a device to create an overlay window in a different plane group than that of
an underlay window. See “Selecting an Optimal Overlay/Underlay Visual Pair”
on page 88 for more information on overlay/underlay visual pairs.

Chapter 6 • Transparent Overlay Windows 71

Overlay windows are destroyed with the Xlib routines XDestroyWindow or
XDestroySubwindows.

Setting the Paint Type of a Graphics
Context
You can set a GC’s paint type with the XSolarisOvlSetPaintType routine.
XSolarisOvlSetPaintType specifies the type of paint rendered by subsequent Xlib
drawing with the given GC. It controls whether Xlib drawing routines using this GC
produce opaque or transparent pixels on overlay windows. The paint type specified
applies to the GC until it is changed by another call to this routine. The paint type
attribute applies to both the foreground and background GC attributes. The syntax
and arguments are shown below.

void

XSolarisOvlSetPaintType (Display *display, GC gc, XSolarisOvlPaintType

paintType)

display Specifies the connection to the X server.

gc Specifies the affected GC.

paintType Specifies the type of paint rendered by subsequent Xlib
drawing routines using the specified GC.

The value of paintType can be XSolarisOvlPaintOpaque or
XSolarisOvlPaintTransparent.

� If the value of paintType is XSolarisOvlPaintOpaque, the pixels generated
by subsequent Xlib drawing routines with this GC will be opaque. This means the
pixels will obscure underlying pixels. This is the default.

� If the value of paintType is XSolarisOvlPaintTransparent, the pixels
generated by subsequent Xlib drawing routines with this GC will be transparent.
This means that, for these pixels, the color of the underlying pixels is displayed.

72 Solaris X Window System Developer’s Guide • May 2002

Setting the Background State of a
Transparent Overlay Window
You can set the background state of a transparent overlay window to be transparent
with the XSolarisOvlSetWindowTransparent routine. Any background
rendering that occurs after this request causes the background to be transparent. To
change background state to any other value, use XChangeWindowAttributes(),
XSetWindowBackground(), or XSetWindowBackgroundPixmap().

The syntax and arguments of XSolarisOvlSetWindowTransparent are shown
below.

void

XSolarisOvlSetWindowTransparent (Display *display, Window

w)

display Specifies the connection to the X server.

w The transparent overlay window.

Note – If w is not a transparent overlay window, a BadMatch error results.

Rendering to a Transparent Overlay
Window
Once a transparent overlay window is created, you can use all the standard Xlib
primitive rendering routines, such as XDrawLines and XFillRectangles, to draw
into the window. When drawing to transparent overlay windows, the paint type
attribute of the GC is used to control the quality of the pixels rendered. The paint type
attribute applies to both the foreground and background GC attributes. To set the
paint type, use the XSolarisOvlSetPaintType routine; for information on this
routine, see “Setting the Paint Type of a Graphics Context” on page 72.

Chapter 6 • Transparent Overlay Windows 73

The paint type of the GC also controls the type of pixels rendered with XPutImage. If
the paint type of the argument GC is XSolarisOvlPaintOpaque, the color
information from the source image is used and the pixels are rendered with opaque
paint. However, if the paint type is XSolarisOvlPaintTransparent, the source
color information is ignored, and the pixels are rendered with transparent paint.

If a GC with a paint type of XSolarisOvlPaintTransparent is used to render to a
drawable other than a transparent overlay window, such as an underlay window or
pixmap, the GC paint type is ignored, and the pixels are rendered with opaque paint.

Querying the Characteristics of a
Transparent Overlay Window
You can determine whether a window is an overlay window using the routine
XSolarisOvlIsOverlayWindow. You can also determine a GC’s current paint type
using the routine XSolarisOvlGetPaintType.

Determining Whether a Window is an Overlay
Window
You can use the routine XSolarisOvlIsOverlayWindow to determine whether a
window is an overlay window. The routine returns True if the given window w is a
transparent overlay and returns False otherwise.

Bool

XSolarisOvlIsOverlayWindow (Display *display, Window

w)

display Specifies the connection to the X server.

w Specifies the window.

Determining the Paint Type of a Graphics Context
The routine XSolarisOvlGetPaintType returns the GC’s current paint type.

XSolarisOvlPaintType

XSolarisOvlGetPaintType (Display *display, GC

74 Solaris X Window System Developer’s Guide • May 2002

gc)

display Specifies the connection to the X server.

gc The GC to be inquired about.

Pixel Transfer Routines
The transparent overlay API provides three pixel transfer routines:

� XSolarisOvlCopyPaintType – Renders opaque and transparent point into a
destination drawable based on the paint type attributes of the source drawable.

� XSolarisCopyAreaAndPaintType – Copies an area and its paint type from one
pair of drawables to another.

� XReadScreen – Returns the colors displayed in a given area of the screen.

The existing Xlib pixel transfer routines XGetImage, XCopyArea, and XCopyPlane
can also be used with overlay windows. The use of these routines is described below.

Filling an Area Using the Source Area Paint Type
The XSolarisOvlCopyPaintType routine uses the paint type information of a
specified rectangle in a source rectangle to control a fill operation in a specified
rectangle in a destination rectangle. The source rectangle and destination rectangle can
be any type of drawable. If the source rectangle is a transparent overlay, the paint type
attribute of its pixels is used as the source of the copy, and the color information is
ignored. If the source rectangle is any other type of drawable, the bit plane specified in
the routine is treated as if it were paint type data and it is used for the copy. In this
case, the bit plane must have only one bit set.

The syntax and arguments are shown below.

void

XSolarisOvlCopyPaintType(Display *display, Drawable src,

Drawable dst, GC gc, int src_x, int src_y,

unsigned int width, unsigned int height, int dest_x,

int dest_y, unsigned long action, unsigned long

Chapter 6 • Transparent Overlay Windows 75

plane)

display Specifies the connection to the X server.

src Specifies the source drawable from which to obtain the paint
type information.

dst Specifies the destination drawable.

gc Specifies the GC.

src_x, src_y Specify the x and y coordinates of the upper-left corner of the
source rectangle relative to the origin of the source drawable.

width, height Specify the width and height of both the source and
destination rectangles.

dest_x, dest_y Specify the x and y coordinates of the upper-left corner of the
destination rectangle relative to the origin of the destination
drawable.

action Specifies which paint type data is to be copied. This can be
one of XSolarisOvlCopyOpaque,
XSolarisOvlCopyTransparent, or
XSolarisOvlCopyAll.

plane Specifies the bit-plane of the src drawable to be used as paint
type information when the source is not a transparent overlay.

src and dst must have the same screen, or a BadMatch error results.

Table 6–3 summarizes the possible combinations of src and dst and their actions.
The left side of the table shows the possible src combinations. The top of the table
shows the possible dst combinations. The actions A1-A4 are explained following the
table.

TABLE 6–3 XSolarisOvlCopyPaintType Source/Destination Combinations and Actions

Source/Destination Overlay Drawable

overlay A1 A2

drawable A3 A4

� A1—Opaque pixels in the source overlay cause the corresponding pixels in the
destination to be filled with opaque color as specified by the fill attributes of the
GC. Transparent pixels in the source cause the corresponding pixels in the
destination to be filled with transparent paint.

� A2—Opaque pixels in the source overlay cause the corresponding pixels in the
destination to be filled according to the fill attributes of the GC. Transparent pixels
in the source overlay cause the corresponding pixels in the destination to be filled
according to the same fill attributes of the GC, but with the foreground and

76 Solaris X Window System Developer’s Guide • May 2002

background pixels swapped.
� A3—The pixels in the destination overlay are filled with opaque paint or made

transparent as in A1 above depending on the bit values of the source drawable’s
plane. Bit values of 1 in the source are treated as if they were opaque pixels and
bit values of 0 are treated as if they were transparent.

� A4—The pixels in the destination drawable are filled with paint as in A2 above
depending on the bit values of the source drawable’s plane. Bit values of 1 in the
source bit plane are treated as if they were opaque pixels and bit values of 0 are
treated as if they were transparent.

The action argument specifies whether opaque paint (XSolarisOvlCopyOpaque),
transparent paint (XSolarisOvlCopyTransparent), or both
(XSolarisOvlCopyAll) should be operated upon. This allows a client to accumulate
opaque or transparent paint.

If portions of the source rectangle are obscured or are outside the boundaries of the
source drawable, the server generates Expose events, using the same semantics as
XCopyArea.

This routine uses these GC components: function, plane-mask, fill-style,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask. It
might use these GC mode-dependent components: foreground, background, tile,
stipple, tile-stipple-x-origin, tile-stipple-y-origin.

XSolarisOvlCopyPaintType can generate BadDrawable, BadGC, BadMatch, and
BadValue errors.

Copying an Area and Its Paint Type
The XSolarisCopyAreaAndPaintType routine copies the specified area of source
drawable for the color information to the specified area of destination drawable for
color information. If the destination drawable is not an overlay, it also fills the
specified areas of paint type information destination drawable according to the paint
type information specified in the paint type information source drawable.

You can use XSolarisOvlCopyAreaAndPaintType to combine an image in the
client’s memory space (consisting of color and/or paint type information) with a
rectangle of the specified overlay window. To do this, first move the image and paint
type data into the server: use XPutImage to copy the data into two pixmaps of the
appropriate depths. Then call XSolarisOvlCopyAreaAndPaintType with the color
and paint type drawables to copy information to the overlay.

You can also use XSolarisOvlCopyAreaAndPaintType to retrieve pixel
information (color and/or paint type information) from a specified drawable. To do
this, call XSolarisOvlCopyAreaAndPaintType with two separable destination
drawables. To get the data from the server into the client’s memory space, call
XGetImage on each of the drawables.

Chapter 6 • Transparent Overlay Windows 77

The syntax and arguments for XSolarisCopyAreaAndPaintType are shown below.

void

XSolarisOvlCopyAreaAndPaintType(Display * display, Drawable colorsrc,

Drawable painttypesrc, Drawable colordst, Drawable painttypedst, GC

colorgc, GC painttypegc, int colorsrc_x, int colorsrc_y, int

painttypesrc_x, int painttypesrc_y, unsigned int width,

unsigned int height, int colordst_x, int colordst_y, int

painttypedst_x, int painttypedst_y, unsigned long action, unsigned long

plane)

display Specifies the connection to the X server.

colorsrc The color information source drawable. colorsrc can be any
depth drawable or an overlay window.

painttypesrc The paint type information source drawable. painttypesrc
can be any drawable or an overlay window. If
painttypesrc is not an overlay window, the bit plane of
painttypesrc specified in plane is treated as if it were
paint type data and it is used for the copy. plane must have
only one bit set in this case.

colordst The color information destination drawable.

painttypedst The paint type information destination drawable. If
colordst is an overlay, this drawable will be ignored.

colorgc The GC to use for the color information copy.

painttypegc The GC to use to fill areas in painttypedst. If
colordst/painttypedst is an overlay, this GC will be
ignored.

colorsrc_x

colorsrc_y

The X and Y coordinates of the upper-left corner of the source
rectangle for color information relative to the origin of the
color source drawable.

painttypesrc_x

painttypesrc_y

The X and Y coordinates of the upper-left corner of the source
rectangle for paint type information relative to the origin of
the paint type source drawable.

width, height The dimensions in pixels of all the source and destination
rectangles.

78 Solaris X Window System Developer’s Guide • May 2002

colordst_x

colordst_y

The X and Y coordinates of the upper-left corner of the
destination rectangle for color information relative to the
origin of the color destination drawable.

painttypedst_x

painttypedst_y

The X and Y coordinates of the upper-left corner of the
destination rectangle for paint type information relative to the
origin of the paint type destination drawable. If
colordst/painttypedst is an overlay, colordst_x and
colordst_y will be used.

action Specifies which paint type data is to be copied. This can be
one of XSolarisOvlCopyOpaque,
XSolarisOvlCopyTransparent, or XSolarisOvlCopyAll.

plane Specifies the source bit-plane in painttypesrc to be used as
paint type information when painttypesrc is not an
overlay.

colordst can be any drawable, but must be of the same depth and have the same
root as colorsrc, otherwise, a BadMatch error results. If colordst is an overlay,
then painttypedst is ignored, otherwise painttypedst can be any type of
drawable.

Table 6–4 summarizes the possible combinations of sources and destinations and their
respective actions. The left side of the table shows the possible
colorsrc/painttypesrc combinations and the top of the table shows the possible
colordst/painttypedst combinations. The actions A1-A8 are explained below the
table. An Impossible entry in the table indicates that the given combination is
impossible, since the painttypedst is ignored when the colordst is an overlay.

TABLE 6–4 XSolarisOvlCopyAreaAndPaintType Source/Destination Combinations and
Actions

Overlay/

Overlay

Overlay/

Drawable

Drawable/

Overlay

Drawable/

Drawable

overlay/overlay A1 Impossible A5 A5

overlay/drawable A2 Impossible A6 A6

drawable/overlay A3 Impossible A7 A7

drawable/drawable A4 Impossible A8 A8

� A1—The paint type information from painttypesrc is used as a mask to copy
the color information from colorsrc to colordst. Opaque pixels in
painttypesrc cause the corresponding pixel in colorsrc to be copied to
colordst, transparent pixels cause the corresponding pixel in colordst to be
made transparent. If a transparent pixel from colorsrc is copied to colordst,
the actual color transferred will be undefined.

Chapter 6 • Transparent Overlay Windows 79

� A2—Same as A1 except that the paint type information is extracted from the
bit-plane of painttypesrc specified by plane. A bit value of 1 indicates an
opaque pixel whereas a bit value of 0 indicates transparent.

� A3—Same as A1 except that a non-overlay drawable is used to obtain the color
information so there will be no undefined colors due to transparent pixels.

� A4—Same as A3 except that the paint type information is taken from the specified
bit-plane of painttypesrc as in A2.

� A5—The paint type information from painttypesrc is used as a mask to copy
the color information from colorsrc to colordst as in A1. In addition, the paint
type information controls rendering to the painttypedst drawable as in
XSolarisOvlCopyPaintType.

� A6—Same as A5 except that the paint type information is taken from the specified
bit-plane of painttypesrc as in A2.

� A7—Same as A5 except that there will be no undefined colors due to transparent
color source pixels.

� A8—Same as A7 except that the paint type information is taken from the specified
bit-plane of painttypesrc as in A2.

The action argument specifies whether opaque paint (XSolarisOvlCopyOpaque),
transparent paint (XSolarisOvlCopyTransparent), or both
(XSolarisOvlCopyAll) should be copied. This allows a client to accumulate opaque
or transparent paint.

NoExpose and GraphicsExpose events are generated in the same manner as
XSolarisOvlCopyPaintType.

If an overlay is used for the colordst argument, the painttypedst,
painttypegc, painttypedst_x and painttypedst_y arguments will all be
ignored. A NULL pointer can be used for painttypegc and a value of None can be
used for painttypedst. The overlay will have the exact paint type defined by the
pixels in the area specified in painttypesrc. The color information copy will not
affect the destination paint type.

This function uses these GC components from colorgc: function, plane-mask,
subwindow-mode, graphics-exposures, clip-x-origin, clip-y-origin, and clip-mask.

If colordst is not an overlay then this function will use these GC components from
painttypegc: function, plane-mask, fill-style, subwindow-mode, clip-x-origin,
clip-y-origin, and clip-mask. In addition, it may also use these GC mode-dependent
components: foreground, background, tile, stipple, tile-stipple-x-origin, and
tile-stipple-y-origin.

XSolarisOvlCopyAreaAndPaintType can generate BadDrawable, BadGC,
BadMatch, and BadValue errors.

80 Solaris X Window System Developer’s Guide • May 2002

Retrieving Overlay Color Information
The routine XReadScreen returns the displayed colors in a rectangle of the screen. It
thus provides access to the colors displayed on the screen of the given window.

On some types of advanced display devices, the displayed colors can be a composite
of the data contained in several different frame stores, and these frame stores can be of
different depth and visual types. In addition, there can be overlay/underlay window
pairs in which part of the underlay is visible beneath the overlay. Because the data
returned by XGetImage is undefined for portions of the rectangle that have different
depths, XGetImage is inadequate to return the picture the user is actually seeing on
the screen. In addition, XGetImage cannot composite pixel information for an
overlay/underlay window pair because the pixel information lies in different
drawables. XReadScreen addresses these problems.

Rather than returning pixel information, XReadScreen returns color
information—the actual displayed colors visible on the screen. The routine returns the
color information from any window within the boundaries of the specified rectangle.
Unlike XGetImage, the returned contents of visible regions of inferior or overlapping
windows of a different depth than the specified window’s depth are not undefined.
Instead, the actual displayed colors for these windows is returned.

Note – The colors returned are the ones that would be displayed if an unlimited
number of hardware color LUTs were available on the screen. Thus, the colors
returned are the theoretical display colors. If colormap flashing is present on the
screen because there aren’t enough hardware color LUTs to display all of the software
colormaps simultaneously, the returned colors may be different from the colors that
are actually displayed.

The syntax and arguments for this routine are shown below.

XImage

* XReadScreen (Display *display, Window w, int x, int y,

unsigned int width, unsigned int height,

Bool includeCursor)

display Specifies the connection to the X server.

w Specifies the window from whose screen the data is read.

x, y Specify the X and Y coordinates of the upper-left corner of the
rectangle relative to the origin of the window w.

width, height Specify the width and height of the rectangle.

Chapter 6 • Transparent Overlay Windows 81

includeCursor Specifies whether the cursor image is to be included in the
colors returned.

If w is an overlay window, the overlay color information is returned wherever there is
opaque paint in the specified rectangle. The color information of the underlay is
returned wherever there is transparent paint in the overlay. In general, since this
underlay can be an overlay window containing transparent paint, the color
information for a coordinate (x, y) that contains transparent paint is the youngest
non-inferior that has opaque paint at (x, y).

The color data is returned as an XImage structure. The returned image has the same
width and height as the arguments specified. The format of the image is ZPixmap.
The depth of the image is 24 and the bits_per_pixel is 32. The most significant 8 bits of
color information for each color channel (red, green, blue) are returned in the bit
positions defined by red_mask, green_mask, and blue_mask in the XImage. The
values of the following attributes of the XImage are server dependent: byte_order,
bitmap_unit, bitmap_bit_order, bitmap_pad, bytes_per_line, red_mask,
green_mask, blue_mask.

If includeCursor is True, the cursor image is included in the returned colors.
Otherwise, it is excluded.

Note that the borders of the argument window (and other windows) can be included
and read with this request.

If a problem occurs, XReadScreen returns NULL.

Using Existing Xlib Pixel Transfer Routines
The Xlib pixel transfer routines XGetImage, XCopyArea, and XCopyPlane can also
be used with transparent overlay windows.

XGetImage
On non-overlay drawables, the XGetImage routine works as defined in the X11
specification. The same is true for overlay windows, with the exception that, on these
windows, the color information returned for transparent pixels is undefined. Clients
who simply want to retrieve the display colors for a region on the screen should use
XReadScreen.

XCopyArea and XCopyPlane
When both the source and destination drawables are non-overlay, the XCopyArea and
XCopyPlane routines work as defined in the X11 specification. However, note the
following for the cases in which either the source or the destination drawable is an
overlay window.

82 Solaris X Window System Developer’s Guide • May 2002

� When the source drawable is overlay and the destination drawable is non-overlay,
only the color information is copied; the paint type information in the source is
ignored. Color information for transparent pixels is undefined.

� When the source drawable is non-overlay and the destination drawable is overlay,
the copy is performed as the paint type in the GC indicates. If the paint type is
XSolarisOvlPaintOpaque, the color information is copied into the destination
with opaque paint. If the paint type is XSolarisOvlPaintTransparent, the
color information is ignored, and the destination pixels are transparent.

� When both the source drawable and destination drawable are overlay, the paint
type of the source is ignored, and this behaves as if the source were not an overlay.
If copying both color and paint type information is the desired result, use
XSolarisOvlCopyAreaAndPaintType.

Designing an Application for Portability
The Solaris overlay API provides two routines that help ensure application portability
across devices. These routines are:

� XSolarisOvlSelectPartner – Enables the application to select the visual that
is the best partner for an existing overlay or underlay visual.

� XSolarisOvlSelectPair – Enables the application to select the optimal overlay
and underlay visual pair from the set of all visual pairs for the screen.

These routines are described below.

Selecting a Visual for an Overlay/Underlay
Window
Portable applications using overlays can search for an appropriate overlay visual to
use for a given underlay visual, or vice versa. Each X screen supporting the overlay
extension defines a set of overlay visuals whose windows are best for use as children
of underlay windows. For each underlay visual, there is a set of optimal overlay
visuals. Together, all combinations of underlay visuals and their optimal overlay
visuals form the set of optimal overlay/underlay pairs for that screen. The overlay
and underlay visuals of an optimal pair are partners of each other.

The routine XSolarisOvlSelectPartner allows the client to select, given an
underlay visual, an optimal overlay that meets certain criteria. Inversely, it also allows
the client to select an optimal underlay visual given an overlay visual. The client is
assured that, short of X errors not related to overlays, it can successfully create a
window with the returned visual.

Chapter 6 • Transparent Overlay Windows 83

This routine searches through the optimal partners of the given visual, applying the
criteria specified. It returns a success or failure status depending on whether it finds a
visual that meets the criteria. A criterion can be one of two types:

1. Hard criterion – A criterion that must be satisfied. Only visuals that meet hard
criteria are candidates for successful matches.

2. Soft criterion – A desirable criterion, but one that is not required.

The visual that matches all hard criteria and the most soft criteria is chosen, and its
attributes are returned. If two or more visuals are found that meet all of the hard
criteria and the same number of soft criteria, one of them will be chosen and returned.
It is implementation dependent which one is chosen.

The syntax and arguments for XSolarisOvlSelectPartner are shown below.

XSolarisOvlSelectStatus

XSolarisOvlSelectPartner (Display *display, int screen, VisualID vid,

XSolarisOvlSelectType seltype, int numCriteria, XSolarisOvlVisualCriteria

*pCriteria, XVisualInfo *visinfoReturn, unsigned long

*unmetCriteriaReturn)

display Specifies the connection to the X server.

screen An integer specifying the screen for the visual vid.

vid The XID of the visual to find a partner for.

seltype The type of selection that is to be done.

numCriteria The number of XSolarisOvlVisualCriteria structures in
the pCriteria array.

pCriteria An array of criteria structures in priority order from high to
low specifying the criteria to be used in selecting the visual.

visinfoReturn A pointer to a caller provided XVisualInfo structure. On
successful return, this structure contains a description of the
chosen visual.

unmetCriteriaReturn A pointer to a bitmask that describes the criteria that were not
satisfied. This return argument is meaningful only when the
routine returns a value of
XSolarisOvlQualifiedSuccess, or
XSolarisOvlCriteriaFailure.

84 Solaris X Window System Developer’s Guide • May 2002

Argument Types
XSolarisOvlSelectType is an enumeration defining two types of selections that
can be done in XSolarisOvlSelectPartner. It is defined as:

typedef

enum { XSolarisOvlSelectBestOverlay, XSolarisOvlSelectBestUnderlay, }

XSolarisOvlSelectType;

XSolarisOvlVisualCriteria is a structure defining various criteria to be used
during visual selection, along with indications of the stringency of the criteria. This
structure is defined as:

typedef

struct { unsigned long hardCriteriaMask;

unsigned long softCriteriaMask;

int c_class; unsigned int depth; unsigned

int minColors; unsigned int minRed; unsigned int minGreen;

unsigned int minBlue; unsigned int minBitsPerRGB;

unsigned int minBuffers; }

XSolarisOvlVisualCriteria;

hardCriteriaMask and softCriteriaMask are bitmasks whose values can be the
logical OR of any of the following bitmasks:

#define

XSolarisOvlVisualClass (1L<<0) #define

XSolarisOvlDepth (1L<<1) #define

XSolarisOvl MinColors (1L<<2) #define

XSolarisOvlMinRed (1L<<3) #define

XSolarisOvl MinGreen (1L<<4) #define

XSolarisOvl MinBlue (1L<<5) #define

XSolarisOvlMinBitsPerRGB (1L<<6) #define

XSolarisOvl MinBuffers (1L<<7) #define

XSolarisOvlUnsharedPixels (1L<<8) #define

XSolarisOvlUnsharedColors (1L<<9) #define

Chapter 6 • Transparent Overlay Windows 85

XSolarisOvlPreferredPartner (1L<<10)

Return Types
XSolarisOvlSelectStatus is a value that indicates whether the routine succeeded
in finding a visual and, if it failed, the reason for the failure. The return value can be
one of:

typedef

enum { XSolarisOvlSuccess, XSolarisOvlQualifiedSuccess,

XSolarisOvlCriteriaFailure, XSolarisOvlFailure, }

XSolarisOvlSelectStatus;

� XSolarisOvlSuccess is returned if the search is completely successful in finding
a visual that meets all hard and soft criteria of one of the
XSolarisOvlVisualCriteria structure.

� XSolarisOvlQualifiedSuccess is returned if the chosen visual satisfies all
hard criteria of one of the XSolarisOvlVisualCriteria structure, but doesn’t
meet all soft criteria. In this case, unmetCriteriaReturn contains the logical OR
of the soft criteria that were not met.

� XSolarisOvlCriteriaFailure indicates that no visual could be found that
meets all the hard criteria of any of the XSolarisOvlVisualCriteria
structures. In this case, unmetCriteriaReturn contains the logical OR of the
hard criteria that were not met for the XSolarisOvlVisualCriteria structure with the
fewest hard criteria not met.

� XSolarisOvlFailure is returned if some other error is encountered besides
criteria match failure.

Multiple Criteria Sets
XSolarisOvlSelectPartner supports a degradation sequence of criteria sets. This
means that multiple criteria sets can be specified in a single call. First, the routine
attempts to find a visual matching the first criteria set. If a visual is found that meets
all of the hard criteria of the first set, this visual is chosen. If no visual meets all hard
criteria of the first set, the routine performs a search using the second criteria set. This
process continues until either a visual is found that meets the hard criteria of some
criteria set, or all sets have been used to search. This degradation sequence allows
clients to specify the criteria for the most preferred visual as the first criteria set.
Visuals that are acceptable but are less desirable can be specified in criteria sets
following the first criteria set. This allows the search to proceed through a progressive
relaxation in the client’s requirements for the visual with a single subroutine call.

86 Solaris X Window System Developer’s Guide • May 2002

Any of the possible criteria can be specified either as a hard or soft criteria for a
particular criteria set. For a given set, hardCriteriaMask is the logical OR of the
criteria bitmasks that are to be applied as hard criteria during the search. Likewise,
softCriteriaMask is the logical OR of the soft criteria bitmasks.

Some criteria have values associated with them. These values are provided by other
data members in the XSolarisOvlVisualCriteria structure. In the criteria
descriptions that follow, these data members are mentioned where applicable.

� XSolarisOvlVisualClass specifies that the client wants the selected visual to
have a specific visual class. The required class is specified in c_class.

� The following criteria interact within one another: XSolarisOvlDepth,
XSolarisOvlMinColors, XSolarisOvlMinRed, XSolarisOvlMinGreen, and
XSolarisOvlMinBlue. Typically only some subset of these should be specified.

� XSolarisOvlDepth specifies that the depth of the selected visual is to be equal to
depth.

� XSolarisOvlMinColors specifies that the selected visual is to have at least
minColors number of total displayable colors.

� XSolarisOvlMinRed, XSolarisOvlMinGreen, and XSolarisOvlMinBlue
can be used to indicate more specific color requirements for DirectColor or
TrueColor visuals. Their corresponding values are specified in minRed,
minGreen, and minBlue, respectively. These indicate that the selected visual must
have at least the specified number of reds, greens, and/or blues.

� XSolarisOvlMinBitsPerRGB specifies that the selected visual is to have at least
minBitsPerRGB of color channel output from colormaps created on that visual.

� XSolarisOvlMinBuffers specifies that the client wants the selected visual to be
able to be assigned at least minBuffers number of accelerated MBX image
buffers.

� XSolarisOvlUnsharedPixels selects partner visuals whose window pixels
don’t lie in the same drawing plane groups as the window pixels of the argument
visual vid. If a visual uses the same drawing plane group as the argument visual,
it is not matched by this criterion.

� XSolarisOvlUnsharedColors selects partner visuals whose window pixel
colors can be displayed simultaneously when the overlay/underlay window pair
has the colormap focus. If a visual shares the same color LUT pool and that pool
has only one color LUT in it as the argument visual, the visual is not matched by
this criterion.

If either hardCriteriaMask of a criteria set is to 0, any visual will match that criteria
set with a hard match. Likewise, setting the softCriteriaMask of a criteria set to 0,
is sufficient to guarantee at least a soft match for that criteria set.

Chapter 6 • Transparent Overlay Windows 87

Selecting an Optimal Overlay/Underlay Visual
Pair
The XSolarisOvlSelectPair routine is similar to XSolarisOvlSelectPartner.
However, instead of selecting a partner visual given another visual, this routine
simultaneously selects both the overlay and underlay visual from the set of all visual
pairs for the given screen. The pair selected is the one that best matches the given
criteria. The client is assured that, short of X errors not related to overlays, it can
successfully create windows with the returned visuals.

This routine searches through all optimal visual pairs for a given screen, and then
through all pairs of visuals (optimal and non-optimal), applying the specified criteria.
These criteria are specified in pCriteria. Each element of pCriteria specifies
criteria for both the overlay and underlay. It returns a success or failure status
depending on whether it finds a pair that meets all the given criteria.

The selected pair has an overlay that satisfies all the hard criteria specified for the
overlay. The pair has an underlay visual that satisfies all the hard criteria for the
underlay. The attributes of the overlay visual are returned in ovVisinfoReturn.
Likewise, the attributes of the underlay visual are specified in unVisinfoReturn. If
two or more pairs are found that meet all of the hard criteria (both overlay and
underlay) and the same number of soft criteria (either overlay or underlay), one of
them will be chosen and returned. Which pair is chosen depends on the
implementation.

The syntax and arguments are shown below.

XSolarisOvlSelectStatus

XSolarisOvlSelectPair (Display *display, int screen, int numCriteria,

XSolarisOvlPairCriteria *pCriteria, XVisualInfo *ovVisinfoReturn,

XVisualInfo *unVisinfoReturn, unsigned long *unmetOvCriteriaReturn,

unsigned long *unmetUnCriteriaReturn)

display Specifies the connection to the X server.

screen An integer specifying the screen on which the visuals are to be
searched.

numCriteria The number of XSolarisOvlPairCriteria structures in
the pCriteria array.

pCriteria An array of pair criteria structures in priority order from high
to low specifying the criteria to be used in selecting the pair.

88 Solaris X Window System Developer’s Guide • May 2002

ovVisinfoReturn A pointer to a caller-provided XVisualInfo structure. On
successful return, this structure contains a description of the
chosen overlay visual.

unVisinfoReturn A pointer to a caller-provided XVisualInfo structure. On
successful return, this structure contains a description of the
chosen underlay visual.

unmetOvCriteriaReturn A pointer to a bitmask that describes the criteria that were not
satisfied for the overlay visual. This return argument is
meaningful only when the routine returns a value of
XSolarisOvlQualifiedSuccess, or
XSolarisOvlCriteriaFailure.

unmetUnCriteriaReturn A pointer to a bitmask that describes the criteria that were not
satisfied for the underlay visual. This return argument is
meaningful only when the routine returns a value of
XSolarisOvlQualifiedSuccess, or
XSolarisOvlCriteriaFailure.

Argument Types
XSolarisOvlPairCriteria is a structure defining various criteria to be used
during visual selection, along with indications of the stringency of the criteria. This
structure is defined as:

typedef

struct { XSolarisOvlVisualCriteria overlayCriteria;

XSolarisOvlVisualCriteria underlayCriteria; }

XSolarisOvlPairCriteria;

XSolarisOvlVisualCriteria is defined in the specification of
XSolarisOvlSelectPartner.

Return Types
Refer to the specification of XSolarisOvlSelectPartner for the definition of the
type XSolarisOvlSelectStatus.

� XSolarisOvlSuccess is returned if the search is completely successful in finding
a pair that meets all hard and soft criteria of one of the
XSolarisOvlPairCriteria structures.

� XSolarisOvlQualifiedSuccess is returned if the chosen pair satisfies all hard
criteria of one of the XSolarisOvlPairCriteria structures, but doesn’t meet all
soft criteria. In this case, unmetOvCriteriaReturn and
unmetUnCriteriaReturn contain the logical OR of the soft criteria that were not

Chapter 6 • Transparent Overlay Windows 89

met for the overlay and underlay, respectively.

� XSolarisOvlCriteriaFailure indicates that no pair could be found that
meets all the hard criteria of any of the XSolarisOvlPairCriteria structures.
In this case, unmetOvCriteriaReturn and unmetUnCriteriaReturn contain
the logical OR of the hard criteria that were not met by the
XSolarisOvlPairCriteria structure with the fewest hard failures, for the
overlay and underlay, respectively.

� XSolarisOvlFailure is returned if some other error is encountered besides
criteria match failure.

Criteria Sets
Like XSolarisOvlSelectPartner, XSolarisOvlSelectPair supports a
degradation sequence of criteria sets. This means that multiple criteria sets can be
specified in a single call. First, the routine attempts to find a pair matching the first
criteria set for both the overlay and the underlay. If it finds a pair that meets all of the
hard criteria of the first set, it chooses this pair. If no pair meets all hard criteria of the
first set, the routine searchs using the second criteria set. This process continues until
either a pair is found that meets all of the hard criteria of some criteria set, or all sets
have been used to search. This degradation sequence allows clients to specify the
criteria for the most preferred pair as the first criteria set. Pairs that are acceptable but
less desirable can be specified in criteria sets following the first criteria set. This allows
the search to proceed through a progressive relaxation in the client’s requirements for
the pair with a single subroutine call.

The criteria masks that can be specified are described in “Selecting a Visual for an
Overlay/Underlay Window” on page 83.

90 Solaris X Window System Developer’s Guide • May 2002

CHAPTER 7

Security Issues

The Solaris environment supports two access control mechanisms: user-based and
host-based. It also supports two authorization protocols: MIT-MAGIC-COOKIE-1 and
SUN-DES-1. This chapter discusses these access control mechanisms and authorization
protocols. It also discusses how to change the server’s access control, and how to run
clients remotely, or locally as a different user.

Notes About This Chapter

If you run applications in any of the following configurations, you need to read this
chapter:

� Linked with a version of Xlib previous to OpenWindows Version 2 or X11R4. See
“Host-Based” on page 92 for details.

� Statically linked to OpenWindows Version 2 libraries and you want to use the
SUN-DES-1 authorization protocol. See “SUN-DES-1” on page 93for details.

� On a remote server. See “Running Clients Remotely, or Locally as Another User”
on page 97for details.

If you are not using any of the configurations listed above, you do not need to change
the default security setup.

Access Control Mechanisms
An access control mechanism controls which clients or applications have access to the
OpenWindows server. Only properly authorized clients can connect to the server. All
unauthorized X clients terminate with the following error message:

Xlib:

connection to hostname refused by server Xlib:

91

Client is not authorized to connect to

server

The server console displays the following message:

AUDIT:

<Date Time Year>: X: client

6 rejected from IP

129.144.152.193 port

3485 Auth name:

MIT-MAGIC-COOKIE-1

The two types of access control mechanisms are: user-based and host-based. Unless the
-noauth option is used with openwin, both the user-based access control mechanism
and the host-based access control mechanism are active. See “Manipulating Access to
the Server” on page 94 for more information.

User-Based
A user-based, or authorization-based mechanism allows you to give access explicitly
to a particular user on any host. The user’s client passes authorization data to the
server. If the data matches the server’s authorization data, the user obtains access.

Host-Based
A host-based mechanism is a general purpose mechanism. It allows you to give access
to a particular host, such that all users on that host can connect to the server. This is a
weak form of access control; if a host has access to the server, all users on that host can
connect to the server.

The Solaris environment provides the host-based mechanism for backward
compatibility. Applications linked with a version of Xlib older than OpenWindows
Version 2 or X11R4 do not recognize the new user-based access control mechanism. To
enable these applications to connect to the server, a user must either switch to the
host-based mechanism, or relink with the newer version of Xlib.

92 Solaris X Window System Developer’s Guide • May 2002

Note – If possible, clients linked with an older version of Xlib should be relinked with
a newer version of Xlib. This enables them to connect to the server with the new
user-based access control mechanism.

Authorization Protocols
The OpenWindows environment supports two different authorization protocols:
MIT-MAGIC-COOKIE-1 and SUN-DES-1. While they differ in the authorization data
used, they are similar in the access control mechanism used.

The MIT-MAGIC-COOKIE-1 protocol, using the user-based mechanism, is the
OpenWindows environment default.

MIT-MAGIC-COOKIE-1
The MIT-MAGIC-COOKIE-1 authorization protocol was developed by the
Massachusetts Institute of Technology (MIT). A magic cookie is a long, randomly
generated binary password. At server startup, the magic cookie is created for the
server and the user who started the system. On every connection attempt, the user’s
client sends the magic cookie to the server as part of the connection packet. This magic
cookie is compared with the server’s magic cookie. The connection is allowed if the
magic cookies match, or denied if they do not match.

SUN-DES-1
The SUN-DES-1 authorization protocol was developed by Sun Microsystems. It is
based on Secure Remote Procedure Call (RPC) and requires Data Encryption Software
(DES) support. The authorization data is the machine-independent netname, or
network name, of a user. This data is encrypted and sent to the server as part of the
connection packet. The server decrypts the data, and, if the netname is known, allows
the connection.

The SUN-DES-1 authorization protocol provides a higher level of security than the
MIT-MAGIC-COOKIE-1 protocol. There is no way for another user to use your
machine-independent netname to access a server, but it is possible for another user to
use the magic cookie to access a server.

This protocol is available only in libraries in the OpenWindows Version 3 and later
environments. Any applications built with static libraries, in particular Xlib, in
environments prior to OpenWindows Version 3 cannot use this authorization protocol.

Chapter 7 • Security Issues 93

“Allowing Access When Using SUN-DES-1” on page 97describes how to allow
another user access to your server by adding their netname to your server’s access list.

Changing the Default Authorization Protocol
The default authorization protocol, MIT-MAGIC-COOKIE-1, can be changed to
another supported authorization protocol or to no user-based access mechanism at all.
The default is changed by supplying options with the openwin command. See the
openwin(1) man page for more information.

For example, to change the default from MIT-MAGIC-COOKIE-1 to SUN-DES-1, start
the OpenWindows environment as follows:

example%

openwin -auth

sun-des

If you must run OpenWindows without the user-based access mechanism, use the
-noauth command line option.

example%

openwin -noauth

Caution – Using -noauth weakens security. It is equivalent to running
OpenWindows with only the host-based access control mechanism; the server
inactivates the user-based access control mechanism. Anyone who can run
applications on your local machine will be allowed access to your server.

Manipulating Access to the Server
Unless the -noauth option is used with openwin (see “Changing the Default
Authorization Protocol” on page 94), both the user-based access control mechanism
and the host-based access control mechanism are active. The server first checks the
user-based mechanism, then the host-based mechanism. The default security
configuration uses MIT-MAGIC-COOKIE-1 as the user-based mechanism, and an
empty list for the host-based mechanism. Since the host-based list is empty, only the
user-based mechanism is effectively active. Using the -noauth option instructs the
server to inactivate the user-based access control mechanism and initializes the
host-based list by adding the local host.

94 Solaris X Window System Developer’s Guide • May 2002

You can use either of two programs to change a server’s access control mechanism:
xhost and xauth. For more information, see the man pages under xhost and
xauth. These programs access two binary files created by the authorization protocol.
These files contain session-specific authorization data. One file is for server internal
use only. The other file is located in the user’s $HOME directory:

.Xauthority (Client Authority File)

Use the xhost program to change the host-based access list in the server. You can add
hosts to, or delete hosts from the access list. If you start with the default
configuration–an empty host-based access list–and use xhost to add a machine name,
you lower the level of security. The server allows access to the host you added, as well
as to any user specifying the default authorization protocol. See “Host-Based”
on page 92 for an explanation of why the host-based access control mechanism is
considered a lower level of security.

The xauth program accesses the authorization protocol data in the .Xauthority
client file. You can extract this data from your .Xauthority file so that other users
can merge the data into their .Xauthority file, thus allowing them access to your
server, or to the server to which you connect.

See “Allowing Access When Using MIT-MAGIC-COOKIE-1” on page 96for examples
of how to use xhost and xauth.

Client Authority File
The client authority file is .Xauthority. It contains entries of the form:

connection-protocol auth-protocol auth-data

By default, .Xauthority contains MIT-MAGIC-COOKIE-1 as the auth-protocol, and
entries for the local display only as the connection-protocol and auth-data. For example,
on host anyhost, the .Xauthority file may contain the following entries:

anyhost:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

localhost:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

anyhost/unix:0 MIT-MAGIC-COOKIE-1 82744f2c4850b03fce7ae47176e75

When the client starts up, an entry corresponding to the connection-protocol is read
from .Xauthority, and the auth-protocol and auth-data are sent to the server as part
of the connection packet. In the default configuration, xhost returns an empty
host-based access list and states that the authorization is enabled.

Chapter 7 • Security Issues 95

If you have changed the authorization protocol from the default to SUN-DES-1, the
entries in .Xauthority contain SUN-DES-1 as the auth-protocol and the netname of
the user as the auth-data. The netname is in the following form:

unix.userid@NISdomainname

For example, on host, anyhost the .Xauthority file may contain the following
entries:

anyhost:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”

localhost:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”

anyhost/unix:0 SUN-DES-1 “unix.15339@EBB.Eng.Sun.COM”

where unix.15339@EBB.Eng.Sun.COM is the machine-independent netname of the
user.

Note – If you do not know your network name, or machine-independent netname, ask
your system administrator.

Allowing Access When Using
MIT-MAGIC-COOKIE-1
If you are using the MIT-MAGIC-COOKIE-1 authorization protocol, follow these steps
to allow another user access to your server.

1. On the machine running the server, use xauth to extract an entry corresponding to
hostname:0 into a file.

For this example, hostname is anyhost and the file is xauth.info.

myhost%$OPENWINHOME/bin/xauth

nextract - anyhost:0 >

$HOME/xauth.info

2. Send the file containing the entry to the user requesting access (using Mail Tool,
rcp, or some other file transfer protocol).

Note – Mailing the file containing your authorization information is a safer method
than using rcp. If you do use rcp, do not place the file in a directory that is easily
accessible by another user.

96 Solaris X Window System Developer’s Guide • May 2002

3. The other user must merge the entry into their .Xauthority file.

For this example, userhost merges xauth.info into their .Xauthority file.

userhost%$OPENWINHOME/bin/xauth nmerge - <xauth.info

Note – The auth-data is session-specific; therefore, it is valid only as long as the server
is not restarted.

Allowing Access When Using SUN-DES-1
If you are using the SUN-DES-1 authorization protocol, follow these steps to allow
another user access to your server.

1. On the machine running the server, use xhost to make the new user known to the
server.

For example, to allow new user somebody to run on myhost, type:

myhost%xhost +somebody@

2. The new user must use xauth to add the entry into their .Xauthority file.

For this example, the new user somebody’s machine-independent netname is
unix.15339@EBB.Eng.Sun.COM.

userhost%echo ’addmyhost:0SUN-DES-1

“unix.15339@EBB.Eng.Sun.COM”’

| $OPENWINHOME/bin/xauth

Running Clients Remotely, or Locally as
Another User
X clients use the value of the DISPLAY environment variable to get the name of the
server to which they should connect.

To run clients remotely, or locally as another user, follow these steps:

1. On the machine running the server, allow another user access.

Depending on which authorization protocol you use, follow the steps outlined in
either “Allowing Access When Using MIT-MAGIC-COOKIE-1” on page 96 or
“Allowing Access When Using SUN-DES-1” on page 97.

Chapter 7 • Security Issues 97

2. Set DISPLAY to the name of the host running the server.

For this example, the host is remotehost.

myhost%setenv DISPLAYremotehost:0

3. Run the client program.

The client is displayed on the remote machine, remotehost.

myhost%client_program&

98 Solaris X Window System Developer’s Guide • May 2002

APPENDIX A

Reference Display Devices

This appendix presents information on the Solaris reference display devices and the
visuals they export. For more information on visuals, see Chapter 3.

Solaris Reference Display Devices
Certain display devices are considered to be reference devices in the Solaris
environment. These devices have example device handlers provided in the Solaris
Device Developer Kit (DDK). You can use the reference device handler example code
as a template for your own device handler.

The process of writing and configuring a device handler is described in the X Server
Device Developer’s Guide. The Solaris X server supports any device for which a valid
device handler is written and configured into the system.

Solaris Reference Devices and Visuals
Table A–1 lists the reference display devices and the visuals that they export. The
device name specifies the display adapter to the server, and the product name
specifies the type of display card. Note that if there is a distinct product name for a
device, the product name is used in preference to the CGn device name (for example,
TC is used, not CG8).

Exported depths specify the depths of the visuals advertised by the server for screens
of this particular device type. MPG (Multiple Plane Group) indicates that the device
supports multiple depth visuals. For other information on terms used in this table, see
Glossary.

99

TABLE A–1 Solaris Reference Display Devices

Device Name Product Name Device Driver Bus Exported Depths

BW2 None /dev/fbs/bwtwoX SBus,
VME/obio, P4

1-bit

CG3 None /dev/fbs/cgthreeX SBus 8-bit

CG6 GX /dev/fbs/cgsixX SBus, P4 8-bit

CG6 GXplus/

TurboGXplus

/dev/fbs/cgsixX SBus 8-bit

CG8 TC /dev/fbs/cgeightX SBus, P4 1, 24-bit (MPG)

leo LEO /dev/fbs/leo0 SBus 1, 24-bit (MPG)

ffb FFB /dev/fbs/ffb0 SBus 1, 24-bit (MPG)

m64 PGX /dev/fbs/m64X PCI 8-bit

vga4 VGA Not applicable ISA, EISA,
MCA

8-bit

vga8 VGA Not applicable ISA, EISA,
MCA

8-bit

i8514 8514/A Not applicable ISA, EISA,
MCAS

8-bit

Note – The server is configured to support a maximum of 16 displays; any limitations
you might encounter are the number of frame buffers your hardware supports.

SPARC: Supported Reference Devices

BW2
The BW2 is a simple 1-bit frame buffer supporting monochrome monitors. The device
handler for this device exports the 1-bit StaticGray visual only. Therefore, this is the
built-in default visual. A variety of BW2 frame buffers are available for different buses
and screen resolutions, including third-party offerings.

100 Solaris X Window System Developer’s Guide • May 2002

CG3
The CG3 is a simple 8-bit indexed color, dumb frame buffer for SBus systems. The
device handler for this device exports several 8-bit visuals (listed in the following
sections). The built-in default visual is 8-bit PseudoColor.

GX Family of Devices
The GX is an 8-bit indexed color graphics accelerator, specializing in 2D and 3D
wireframe, flat-shaded polygon, and general window system acceleration. Window
system acceleration is automatic; you can access other acceleration features through
Solaris graphics APIs. Several 8-bit visuals are supported, and the built-in default
visual is 8-bit PseudoColor. The GX is available for SBus and P4 bus.

The GXplus device is similar to the GX with additional memory that can be used for
double buffering and expanded screen resolution on SBus systems. The Solaris X
server uses the GXplus to automatically accelerate X11 pixmaps by using offscreen
storage whenever possible.

TC (CG8)
The TC device possesses two separate memory buffers, or plane groups: 1-bit
monochrome and 24-bit color. Windows may be created in both plane groups;
therefore, it is an MPG device. All 1-bit and 24-bit visuals are supported.

Some (older) X11 client applications assume that color frame buffers use an 8-bit
built-in default visual and do not run in color on the TC. To avoid this, the built-in
default visual is 1-bit StaticGray.

The plane groups of the TC do not conflict with each other; they are completely
separate memory buffers. OpenWindows takes advantage of this to increase system
performance by not damaging 1-bit windows when they are occluded by 24-bit
windows, and vice versa. This behavior is called minimized exposure. Use the
-nominexp option of openwin(1) to disable this behavior. If this option is used,
1-bit windows will damage 24-bit windows and 24-bit windows may damage 1-bit
windows.

The Solaris X server also provides minimized exposure for other MPG devices, when
applicable. Use the -nominexp option of openwin with these devices.

Note – The X protocol states that cursor components can be arbitrarily transformed. To
enhance general system performance, the OpenWindows server always renders the
cursor in the 1-bit plane group of the TC.

Appendix A • Reference Display Devices 101

IA: IA Supported Reference Devices

VGA
The VGA is a simple color dumb frame buffer. The server supports VGA as 8-bit
indexed color with all visual types and a default of PseudoColor (vga8), or 4-bit
StaticColor (vga4). When using 8-bit mode, the resolution is most often 1024x768.
Four-bit mode is often limited to a resolution of 640x480 because this is the basic VGA
graphics mode that is available on all VGA devices. Most VGAs provide a bitsPerRGB
of 6. The vga8 server is also capable of supporting the XGA as a dumb frame buffer.

Support for VGA panning is available in modes of the 4-bit VGA. Panning mode
provides the ability to have a physical window that maps onto a larger virtual display.
Movement within the virtual display is performed by “pushing” the mouse past the
edge of the screen. The display automatically moves the physical window in the
virtual display in the direction that the mouse was pushed until the physical window
touches the edge of the virtual boundary.

Use panning only if you are an experienced OpenWindows user. Icons and pop-up
boxes (menus, dialogs, and so on) can appear off screen with no immediate visible
notification. You must be experienced enough to recognize these situations, and be
able to recover by looking for the hidden window objects. Pop-up pointer jumping is
highly recommended while using panning. Virtual window managers, such as olvwm
or tvwm, can cause additional confusion; do not use them.

8514/A
The 8514/A is an 8-bit indexed color graphics accelerator providing general window
system acceleration. This device provides substantially improved performance
compared to a VGA. The server limits its support of 8514/A to 8-bit indexed color and
a resolution of 1024x768 or 1280x1024. It supports all 8-bit visuals. The built-in visual
is 8-bit PseudoColor. Most 8514/A accelerators provide a bitsPerRGB of 6.

102 Solaris X Window System Developer’s Guide • May 2002

Glossary

Access Control
Mechanism

An access control mechanism is a means of deciding which clients or
applications have access to the OpenWindows server. There are two
different types of access control mechanisms: user-based and
host-based.

Bitmap A bitmap is a rectangular array of elements, where each element holds
either an inside value or an outside value.

Bitmap Font A bitmap font is a collection of bitmaps with additional information
(for example, character spacing) that defines how the bitmaps are to be
used.

Bus The bus is the system input/output (I/O) link. The display device is
both physically and logically connected to the system by the bus. The
SBus, VME, and P4 buses are used in SPARC systems. A third-party
system may use a bus other than one of these three buses.

Client A client is an application program that connects to the window server
by some interprocess communication. It is referred to as a client of the
window server. A client can run on the same machine as the window
server or it can connect to a server running on another machine on the
network. A client of the OpenWindows server must communicate via
the X11 protocol.

Client-Server Model The most commonly used paradigm when writing distributed
applications is the client-server model. In this scheme, clients request
services from a window server process. The client and server require a
protocol that must be implemented at both ends of a connection. The
OpenWindows server implements the X11 protocol.

Color Look-Up Table A color look-up table is a hardware device that provides a mapping
between pixel values and RGB color values. Also called a look-up table
(LUT).

Colormap Flashing Only one client colormap is installed at a given time. The windows
that are associated with the installed colormap will show their correct

103

colors. Windows that are associated with some other colormap may
show false colors. This display of false colors is referred to as colormap
flashing.

Composite Font A composite font is a collection of base fonts organized hierarchically.

Connection The communication path between a client and the server.

Default Visual The default visual is one of the visuals available on the display device.
When you start a client program, the program will usually run in the
default visual unless a different visual is specified.

Display Device Your monitor is connected to a display device that controls what is
shown on the monitor. The display device includes memory (called a
frame buffer) dedicated to storing display information. A display
device is also referred to as a graphics adapter.

Device Driver The device driver is the name of a device in the UNIX file system,
where X is the number of that particular device on your system. For
example, if a system had two CG3s, the first would be named
/dev/fbs/cgthree0, and the second would be
/dev/fbs/cgthree1. If a system had one CG3 and one GX, the CG3
would be /dev/fbs/cgthree0 and the GX /dev/fbs/cgsix0.

Event Clients are informed of information asynchronously by means of
events. Events are grouped into types. A client must express interest in
an event in order to receive that event from the server.

Extension An extension to the core protocol can be defined to extend the
functionality of the system.

Frame Buffer Pixel data is typically stored in dedicated computer memory known as
a frame buffer or video memory.

Graphics Accelerator A display device that includes circuitry to increase the rate at which
images are drawn into the frame buffer is called an accelerator, or
graphics accelerator. A graphics accelerator often includes memory
and circuitry that permits enhanced functionality, such as display of
additional colors, 3D images, and animation.

Graphics Adapter See Display Device.

Hardware Colormap A hardware colormap is a color LUT. (See also Color Look-Up Table).

Look-Up Table See Color Look-Up Table.

Multi-Depth Device The TC display device provides visuals of different depths; it is
referred to as a multiple plane group (MPG) or multi-depth device.

Multiple Plane Group A display device that can simultaneously support more than one
visual category is known as a multiple plane group (MPG) device.

Outline Font An outline font is a collection of ideal shapes of characters. Each shape
is defined numerically by continuous curve segments that separate the

104 Solaris X Window System Developer’s Guide • May 2002

inside from the outside of the shape. This method is in use on
high-resolution devices such as photo-typesetters.

Pixmap A pixmap is a block of off-screen memory in the server; it is an array of
pixel values.

Plane Group The physical memory on a display device in which the pixel data is
stored is commonly called a plane group.

Product Name The product name identifies the type of display card.

Request A request is a command to the server sent over a connection.

RGB R, G, and B are the voltage levels to drive the red, green, and blue
monitor guns, respectively.

Screen A screen is a physical monitor and hardware, which is either color or
black-and-white. A typical configuration could be a single keyboard
and mouse shared among the screens.

Software Colormap A software colormap is a software abstraction of the color mapping
process that a color LUT provides. The software colormap can be
loaded, or installed, into a hardware color LUT. Also called a
colormap.

Virtual Colormap A software colormap that is not visible until it is installed into a
hardware color LUT.

Visual A visual describes a way of interpreting a pixel value. The visual class
and the pixel size attribute collectively describe a visual.

Visual Category A visual category is a grouping of all visual classes of a given pixel
size. The following visual categories are supported by OpenWindows:
1-bit, 4-bit, 8-bit, and 24-bit.

Visual Class A visual class is how the pixel will be displayed as a color.

Window A window provides a drawing surface to clients for text and graphics.
A single client application can use multiple windows.

Window ID Table
Descriptor

A window ID (WID) table contains descriptors for visual aspects of a
pixel, such as whether it is an 8-bit pixel or a 24-bit pixel, which LUT
should be used when displaying the pixel, and whether the pixel is
double-buffered.

Window Manager Manipulation of windows on the screen and much of the user interface
(policy) is typically provided by a window manager client. The
window manager communicates only with the window server.

Window Server A window server, or display server such as the Solaris X server, is a
program that handles the display capabilities of a machine and collects
input from user devices and other clients, and sends events to clients.
The server handles all communication with the window manager.

Glossary 105

106 Solaris X Window System Developer’s Guide • May 2002

Index

A
Adobe FTP site, 33
Adobe public access file server, 32
authorization-based access control mechanism,

See security
authorization protocols, See security

B
bdftopcf, 52
bitmap distribution format, 52
bitmap fonts, 51
Black pixel location note, 25
bus, used in SPARCsystems, 103
BW2 display device, description of, 100

C
CG3 display device, description of, 101
CG6 display device, See GX display device and

GXplus display device
CG8 display device, See TC display device
client

running locally as another user, 97
running remotely, 97

client library
for DPS, 28

color
color name database, 25
recommendations, 25

compose key support, 24

compressing font files, 52
contexts

and DPS, 28
secure, 31
three ways to share VM, 31

D
DES (Data Encryption Software), with

SUN-DES-1, 93
display devices

bus, used in Sun SPARCsystems, 103
BW2

description of, 100
CG3

description of, 101
CG6

See GX and GXplus
CG8

See TC
GT

window damage note, 101
GX

description of, 101
GXplus

description of, 101
programming hints, 45
supported devices table, 100
TC

description of, 101
DISPLAY environment variable, 98
Double Buffer Extension, 16

107

DPS
client library, 28
font enhancements, 30
libraries supported, 30
PostScript interpreter, 28
pswrap translator, 28
security issues, 31

F
F3 fonts, 53
font management library, definition of, 15
fonts

.afm file, 51
default font path in X11, 54
.enc file, 51
files included in openwindows, 51
formats, 50
.map file, 51
outline and bitmap, 51
.ps file, 51
replacing outline with bitmap, 52
.trans file, 51
.ttmap file, 51
.upr file, 51
using F3 fonts, 53

ftp, accessing Adobe FTP site, 33
ftp program, 16

G
GX display device, description of, 101
GXplus display device, description of, 101

H
host-based access control mechanism, See

security

L
libraries

DPS. list of, 30
X, list of, 18

M
makebdf, 52
MIT-MAGIC-COOKIE-1 authorization protocol,

See security
MIT-SHM (Shared Memory) X extension, 17
multiple plane group, characteristics of, 44

N
NISdomainname, definition of, 96

O
openwin command

-noauth option, 92, 94
outline fonts, 51
overlay windows

advanced features
background, 64
backing store, 65
border, 65
choosing visuals, 67
colormap, 66
gravity, 65
input distribution model, 66
print capture, 66

and existing pixel transfer routines, 82
and existing primitive rendering

routines, 73
basic features

creation, 70
definition, 63, 72
viewability, 63

P
portable compiled format, 52

compressed files, 52
PostScript interpreter, 28
pswrap translator, 28

108 Solaris X Window System Developer’s Guide • May 2002

R
RPC (Remote Procedure Call), with

SUN-DES-1, 93

S
secure context creation, 31
security, 91, 98

access control mechanisms, 91, 93
how both are active, 94
definition of, 91

authorization-based
See user-based

authorization protocols, 93
default, how to change, 94
default configuration, 93

clients
running locally as another user, 97
running remotely, 97

connection attempt error message, 91
default configuration, 93
determining if configuration change is

required, 91
host-based, backward compatibility, 92
MIT-MAGIC-COOKIE-1 authorization

protocol, 93
NISdomainname, definition of, 96
-noauth option, 92

weakens security warning, 94
host-based, definition of, 92
server

allowing access with
MIT-MAGIC-COOKIE-1, 96

allowing access with SUN-DES-1, 97
manipulating access, 94, 97

SUN-DES-1 authorization protocol
definition of, 93
need to reconfigure, 91

user-based, definition of, 92
userid, definition of, 96
xauth program, 95
.Xauthority file, 95

contents with
MIT-MAGIC-COOKIE-1, 95

contents with SUN-DES-1, 96
xhost program, 97

server
applications that run with, 20
architecture diagram, 15
DIX layer, definition of, 14
font management library, definition of, 15
manipulating access control, 94, 97
OS layer, definition of, 15

server overlays, 57
SHAPE X extension, 16
SUN-DES-1 authorization protocol, See security
system file access, 31

T
TC display device, description of, 101

U
user-based access control mechanism, See

security

V
virtual memory, 28
visuals

default
get with XGetVisualInfo function, 44

gamma-corrected, 46
multiple plane group, characteristics of, 44

VM (virtual memory), 28, 31
shared, 28

W
White pixel location note, 25

X
X

applications not supported, 21
applications supported, 21
compose key, 24

Index 109

X (continued)
extensions

MIT-SHM (Shared Memory), 17
SHAPE, 16
X Input, 16
XTEST, 17

libraries supported, 18
X Consortium

extensions supported, 16
X Input extension, 16
xauth program, 95
.Xauthority file, 95
XCopyArea, and overlay windows, 82
XCopyPlane, and overlay windows, 82
XDPSCreateSecureContext, 31
XGetImage, and overlay windows, 82
XGetVisualInfo function

list default visual, 44
xhost program, 97
XOvlSelectPair, 88
XTEST X extension, 17

110 Solaris X Window System Developer’s Guide • May 2002

