
Solaris Common Desktop
Environment: Advanced User’s and

System Administrator’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 806–7492–10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. The code and documentation for the DtComboBox and DtSpinBox widgets were contributed by Interleaf, Inc. Copyright 1993,
Interleaf, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Le code et la documentation pour les produits DtComboBox et
DtSpinBox ont e’te’ fournis par Interleaf, Inc. Copyright 1993, Interleaf, Inc

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

020115@3062

Contents

Preface 15

1 Configuring Login Manager 19

Starting the Login Server 20
Managing Local and Network Displays 20

Finding the Login Server Process ID 21
Displaying a Login Screen on a Local Display 22
Running the Login Server without a Local Display 22
Accessing Command Line Login on a Local Display 23
Accommodating a Character Display Console 23
Displaying a Login Screen on a Network Display 24
Controlling Access to the Login Server 25

Checking for Errors 26
Stopping the Login Server 27
The Login Screen 28
Changing the Login Screen Appearance 28

� To Change the Logo 29

� To Change the Welcome Message 29

� To Change the Fonts 30

� To Provide Alternate Text to Display for Each Language 30

Changing the Login Screen Behavior Per Display 31

Changing the X Server Access 32

Issuing Commands Before the Login Screen Appears 33

Starting a Failsafe Session 34

After the User’s Session Ends 34

The Login Server Environment 34

3

Changing the User or System Path 35
� To Change the System Shell 36
� To Change the Time Zone 36

Administering Login Manager 36
Login Manager Files 37

2 Configuring Session Manager 39

What Is a Session? 39
The Initial Session 40
Current Session 40
Home Session 40
Display-Specific Sessions 40

Starting a Session 40
When a Session Starts 41

Sourcing the .dtprofile Script 41
Sourcing Xsession.d Scripts 42
Displaying the Welcome Message 42
Setting Up the Desktop Search Paths 43
Gathering Available Applications 43
Optionally Sourcing the .profile or .login Script 44
Starting the ToolTalk Messaging Daemon 44
Starting the Session Manager Client 45
Loading the Session Resources 45
Starting the Color Server 46
Starting Workspace Manager 47
Starting the Session Applications 47

Additional Session Startup Customizations 47
� To Set Environment Variables 48
� To Set Resources 48
� To Set Display-Specific Resources 49
� To Change Applications for the Initial Session 49
� To Set Up a Display-Specific Session 50
Executing Additional Commands at Session Startup and Logout 50
� To Execute Additional Commands at Session Startup 50
� To Execute Additional Commands at Logout 51
� To Recover a Session from Backup 51
� To Investigate Session Startup Problems 51

4 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Session Manager Files and Directories 52

3 Troubleshooting Login and Session Startup Problems 53

Login Startup Files 53
Error Log Locations 54
User Startup Files 54
Solaris CDE Startup Examples 55

4 Adding and Administering Applications 57

Structure of Application Manager 57
Directory Location of Application Manager 58
How Application Manager Finds and Gathers Applications 58
Precedence Rules in Gathering Applications 59
Application Groups Provided with the Default Desktop 59
Example of How Application Groups Are Gathered 60

Adding Applications to Application Manager 61
Ways to Add Applications to Application Manager 61
� To Add a Desktop-Smart Application to Application Manager 62
� To Register an Existing or Non-Desktop Smart Application 62
� To Add an Application Icon to an Existing Application Group 63

Creating and Administering General Application Groups 63
� To Create a System-Wide General Application Group 64
� To Create a Personal General Application Group 64
� To Customize a Built-In Application Group 64

Modifying the Search Path Used To Locate Applications 64
The Default Search Path 65
Adding an Application Server to the Application Search Path 65

General Application Manager Administration 66
� To Remove an Application 66
� To Update Application Manager During a Session 66

Changing the Text Editor and Terminal Emulator 67
� To Change the Default Text Editor or Terminal Emulator 67

5 Registering an Application 71

Overview of Application Registration 72
Features Provided by Application Registration 72
The Purpose of Application Registration 74

Contents 5

General Steps for Registering an Application 75
Step 1: Modifying Font and Color Resources 75
Step 2: Creating the Desktop Application Root 77
Step 3: Creating the Registration Package Directories 77
Step 4: Creating the Actions and Data Types for the Application 79
Step 5: Putting the Help Files in the Registration Package 82
Step 6: Creating Icons for the Application 83
Step 7: Creating the Application Group 84
Step 8: Registering the Application Using dtappintegrate 89

Example of Creating a Registration Package 92
Information You Need to Know About ‘‘BestTextEditor’’ 92
Steps to Registering ‘‘BestTextEditor’’ 93

6 Miscellaneous Configurations 99

Solaris CDE Directory Structure 99
/usr/dt 99
/etc/dt 100
/var/dt 100
$HomeDirectory 100

Key Configuration Files 101
Xconfig 101
Xservers 101

Starting the Login Server 102
Mounting an Installed CDE from Another Workstation or Network Server Installation
Location 104

� To Mount an Installed CDE 104
� To Unmount a Mounted CDE Directory 104

Configuring Your Desktop To Use Multiple Screens 105
� To Make the Desktop Start on Multiple Screens 105

Networked Desktops 106
Using XTerminals 108
Login Locale and Font Path 109
Using Workstations as XTerminals 109

� To Use Chooser To Select a Host CDE Login 110
� To Use a Specific Host CDE Login 110
� To Use the First Available Host Login 110

Special CDE Configurations 111
Customizing Mail Printing 111

6 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Converting Calendars to New Data Format 112
Adding the AnswerBook Package from the Network 112
Setting Up the CDE Environment Outside the CDE Desktop 113
Desktop Environment File 113
Using Floppy and CD Media with the Apple Macintosh Application Environment

114

7 Configuring the Desktop in a Network 117

Overview of Desktop Networking 117
Types of Networked Desktop Services 118
Typical Network Situations 118
Other Networking Situations 120
Summary—Types of Servers 120

General Steps for Configuring Desktop Networking 121
Configuring Base Operating System Networking for the Desktop 121

Providing Login Accounts to Users 122
Configuring Distributed File System Access 122
Configuring Access to Remote Printers 124
Configuring Electronic Mail 124
Configuring X Authorization 124

Configuring Desktop Clients and Servers 124
Configuring Login and Session Services 125
Configuring Other Application-Related Services 125

Administering Application Services 129
Search Path Environment Variables 130
Configuring an Application Server and Its Clients 130
Configuring Database, Icon, and Help Services 131
Special Networked Application Configurations 133

8 Configuring and Administering Printing from the Desktop 137

Adding and Deleting Printers 137
� To Add a Printer to the Desktop 137
� To Delete a Printer from the Desktop 138
Modifying the Job Update Interval 138

Printer Icon Images 139
Icon File Names and Sizes 139
� To Globally Change the Icon, Printer Label, or Description of a Printer 139

Contents 7

Configuring the Default Printer 140
� To Change the Destination for Default Printing 140

Printing Concepts 141

9 Desktop Search Paths 143

Desktop Search Paths and Their Environment Variables 144
Setting the Value of a Search Path 144

� To See the Current Value for a Search Path (Output Variable) 145
� To Make Personal Modifications to a Search Path 145
� To Make System-Wide Modifications to a Search Path 145

Application Search Path 146
Default Application Search Path 146
Application Search Path Environment Variables 146
Syntax for the Application Search Path Input Variables 147
How the Value of the Application Search Path Is Assembled 147
Changing the Precedence of the System-Wide Local Location 148
How the Application Search Path Affects the Database, Icon, and Help Search
Paths 148

Database (Action/Data Types) Search Path 149
Default Database Search Path 149
How the Application Search Path Affects the Database Search Path 150
Database Search Path Environment Variables 150
Syntax for the Database Search Path Input Variables 150
How the Database Search Path Is Assembled 151

Icon Search Path 151
Default Icon Search Path 151
How the Application Search Path Affects the Icon Search Path 152
Icon Search Path Environment Variables 152
Syntax for the Icon Search Path Input Variables 152
How the Icon Search Path Is Assembled 152

Help Search Path 153
Default Help Search Path 153
How the Application Search Path Affects the Help Search Path 153
Help Search Path Environment Variables 154
Syntax for the Help Search Path Input Variables 154
How the Help Search Path Is Assembled 154

Localized Search Paths 155

8 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

10 Introduction to Actions and Data Types 157

Introduction To Actions 157

How Actions Create Icons for Applications 159

How Actions Use Data Files as Arguments 162

Additional Uses for Actions 162

Introduction to Data Types 163

What Is a Data Type? 163

How Data Types Connect Data Files to Actions 164

Creating Desktop Printing for a Data Type 166

11 Creating Actions and Data Types Using Create Action 169

What Create Action Does 169

Limitations of Create Action 170

Action Limitations 170

Data Type Limitations 171

Creating an Action and Data Type for an Application with Create Action 171

� To Create an Action for an Application 172

� To Create One or More Data Types for an Application 174

Using the Find Set Dialog Box To Specify an Icon 178

12 Creating Actions Manually 181

Reasons You Must Create an Action Manually 182

COMMAND Actions 182

MAP Actions 182

TT_MSG (ToolTalk Message) Actions 183

Creating an Action Manually: General Steps 183

Configuration Files for Actions 183

� To Create an Action Manually 183

Example of Creating a COMMAND Action 184

Example of Creating a MAP Action 185

� To Reload the Actions/Data Types Database 186

Creating an Action File (Icon) for an Action 186

Specifying the Icon Image Used by an Action 188

� To Modify an Existing Action Definition 189

Precedence in Action Definitions 190

Building the Execution String for a COMMAND Action 191

General Features of Execution Strings 191

Contents 9

Creating an Action that Uses No Arguments 192
Creating an Action that Accepts a Dropped File 192
Creating an Action that Prompts for a File Argument 193
Creating an Action that Accepts a Dropped File or Prompts for One 194
Creating an Action that Prompts for a Non-File Argument 194
Interpreting a File Argument as a String 194
Providing Shell Capabilities in an Action 195
Creating COMMAND Actions for Multiple File Arguments 195

Windowing Support and Terminal Emulators for COMMAND Actions 197
Specifying the Window Support for the Action 198
Specifying Command-Line Options for the Terminal Emulator 198
Specifying a Different Default Terminal Emulator 199

Restricting Actions to Certain Arguments 199
Restricting an Action to a Specified Data Type 200
Restricting an Action Based on the Number of Arguments 200
� To Provide Different Double-Click and Drop Behavior 200
Restricting an Action Based on the Mode of the Argument 201

Creating Actions that Run Applications on Remote Systems 202
Creating an Action that Runs a Remote Application 202

Using Variables in Action and Data Type Definitions 203
Using String Variables in an Action 203
Using Environment Variables in Actions and Data Types 204

Invoking Actions from a Command Line 204
Syntax of dtaction 204
Creating an Action that Runs Another Action 205
Creating an Action that Runs as a Different User 205

Creating Localized Actions 206
Locations for Localized Actions 206
� To Localize an Existing Action 206

Creating Actions for ToolTalk Applications 207
addressing and disposition Fields 207
Unsupported Messages 207

13 Creating Data Types Manually 209

Reasons You Must Create a Data Type Manually 209
Components of a Data Type Definition: Criteria and Attributes 210
Creating a Data Type Manually: General Steps 210

10 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Configuration Files for Data Types 211

� To Create a Data Type Definition 211

Example of Creating a Personal Action and Data Type 212

Defining the Data Attributes of a Data Type 213

Specifying the Icon Image Used for a Data Type 213

Associating Data Types with Actions 214

Hiding Files Based on Data Type 215

Specifying Behaviors When the File Is Manipulated 215

Defining the Data Criteria for a Data Type 216

Name-Based Data Types 216

Location-Based Data Types 217

Data Types Based on Name and Location 218

Using File Modes as a Typing Criteria 218

Content-Based Data Typing 220

� To Create a Data Type with Several Independent Criteria 221

Creating Localized Data Types 221

Locations for Localized Data Types 222

� To Localize a Data Type 222

14 Creating Icons for the Desktop 223

Icon Image Files 223

Icon File Formats 224

Icon File Names 224

Icon Size Conventions 224

Icon Search Path 225

Accessing Icons across the Network 225

Icon Associations 226

Specifying Icon Files 226

� To Associate an Icon with an Action or Data Type 226

� To Display an Icon in a Front Panel Control 227

� To Associate an Icon with an Application Window 227

� To Use File Manager as an Icon Browser 228

Icon Design Recommendations 229

Color Usage 229

15 Advanced Front Panel Customization 231

Front Panel Configuration Files 231

Contents 11

Default Front Panel Configuration File 232
Search Path for Front Panel Configuration Files 232
How the Front Panel Is Assembled: Precedence Rules 233
Dynamically Created Front Panel Files 233

Administering User Interface Customizations 234
� To Prevent Personal Customizations 234
� To Restore a Deleted Control or Subpanel 234

Organization of the Front Panel Definition 235
Front Panel Components 235
General Syntax of the Front Panel Definition 236

Modifying the Main Panel 238
� To Add a Control to the Main Panel 239
� To Remove a Control 239
� To Modify a Control 240
� To Interchange the Position of Controls 240
� To Replace a Front Panel Control 241
Specifying the Icon Used by a Control 242

Creating and Modifying Subpanels 242
� To Create a New System-Wide Subpanel 243
Customizing the Built-in Subpanels 244
� To Change the Auto-Close Behavior of Subpanels 245

Defining Front Panel Controls 246
Front Panel Control Definitions 246
Control Types 246
� To Create a New Control 247

Customizing the Workspace Switch 253
� To Change the Default Number of Workspaces 253
� To Change the Number of Switch Rows 253
� To Change or Add Controls in the Workspace Switch 253

General Front Panel Configuration 254
General Steps 254
� To Change the Default Front Panel Location 255
� To Label Controls in the Main Panel 255
� To Change the Click Behavior of Controls 255
� To Create an Entirely New Front Panel 255
Example of Creating a Personal Front Panel with Three Rows 256

12 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

16 Customizing the Workspace Manager 259

Workspace Manager Configuration Files 260
� To Create or Modify a Personal Configuration File 260
� To Create a System-Wide Configuration File 261
� To Include (Source In) Other Files 261
� To Restart the Workspace Manager 262

Customizing Workspaces 262
� To Change the Number of Workspaces on a System-Wide Basis 262
� To Provide System-Wide Workspace Names 263
� To Create Additional Backdrops 263
� To Replace the Backdrop With a Graphics Image 263

Workspace Manager Menus 264
Workspace Manager Menu Syntax 264
� To Add a New Menu Item to the Workspace Menu 265
� To Modify the Workspace Menu 266
� To Create a New Workspace (Root) Menu 267
� To Create a New Window Menu 267

Customizing Button Bindings 268
Button Binding Syntax 268
� To Add a Button Binding 269
� To Create a New Button Binding Set 269

Customizing Key Bindings 270
Default Desktop Key Bindings 270
Key Binding Syntax 270
� To Create a Custom Key Binding Set 271

Switching Between Default and Custom Behavior 272

17 Administering Application Resources, Fonts, and Colors 273

Setting Application Resources 273
� To Set System-Wide Resources 274
� To Set Personal Resources 274
How the Desktop Loads Resources 274
Process Manager Resources 274

Defining UNIX Bindings 275
� To Specify-EMACS Style Translations 275
� To Modify the EMACS-Style Translations 275
UNIX Bindings Provided by the UNIXbindings File 275

Contents 13

Administering Fonts 279

Setting Desktop Font Resources 279

� To List Available Fonts 280

� To Specify Fonts on the Command Line 281

X Logical Font Description (XLFD) 281

User’s Font Group Filesystem Storage 283

System Administrator Font Group Creation 283

Administering Colors 283

Color Palettes 283

Color Sets 284

Controlling Color with Style Manager 287

Number of Colors Used by Style Manager 287

Setting Shadow Thicknesses for Application Windows 290

18 Configuring Localized Desktop Sessions 293

Managing the LANG Environment Variable 293

Setting the Language for Multiple Users 294

Setting the Language for One Session 295

Setting the Language for One User 295

LANG Environment Variable and Session Configuration 295

Setting Other NLS Environment Variables 296

Finding Fonts 296

Localizing app-defaults Resource Files 296

Localizing Actions and Data Types 297

Localizing Icons and Bitmaps 297

Localizing Backdrop Names 298

Localizing Palette Names 298

Localizing Help Volumes 299

Localizing Message Catalogs 299

Executing Localized Desktop Applications Remotely 300

Resetting Your Keyboard Map 300

A dtconfig(1) Man Page 301

Index 303

14 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Preface

This manual covers advanced tasks in customizing the appearance and behavior of the
Solaris Common Desktop Environment (CDE). It includes chapters on:

� Customizing system initialization, login, and session initiation

� Adding applications and providing interface representations for applications and
their data

� Configuring desktop processes, applications, and data across the network

� Customizing desktop services such as window management, printing, colors, and
fonts

Note – In this document the term “IA” refers to the Intel 32–bit processor architecture,
which includes the Pentium, Pentium Pro, Pentium II, Pentium II Xeon, Celeron,
Pentium III, and Pentium III Xeon processors and compatible microprocessor chips
made by AMD and Cyrix.

Who Should Use This Book
The audiences for this book include:

� System administrators. Many of the tasks in this book require root permission.

� Advanced users who want to perform customizations that cannot be accomplished
using the desktop user interface. The desktop provides user-specific locations for
many of its configuration files.

15

Before You Read This Book
Users should be familiar with the following books:

� Solaris Common Desktop Environment: User’s Guide
� Solaris Common Desktop Environment: User’s Transition Guide

How This Book Is Organized
This manual includes the following chapters:

Chapter 1 covers how to configure the appearance and behavior of the desktop Login
Manager.

Chapter 2 covers how the desktop stores and retrieves sessions, and how to customize
session startup.

Chapter 3 describes Solaris CDE startup files, possible Solaris CDE startup problems,
and suggests solutions to startup problems.

Chapter 4 covers how Application Manager gathers applications, and explains how to
add applications.

Chapter 5 covers how to create a registration package for an application.

Chapter 6 addresses advanced configuration topics such as custom login
configurations, setting up multiple screens, networked desktops and X terminals,
modifying user dot files, mail printing customization, desktop environment setup, and
types of error logs.

Chapter 7 covers how to distribute desktop services, applications, and data across a
network.

Chapter 8 covers how to add and remove desktop printers, and how to specify the
default printer.

Chapter 9 covers how the desktop finds applications, help files, icons, and other
desktop data across the network.

Chapter 10 introduces the concepts of actions and data types, and explains how they
are used to provide a user interface for applications.

Chapter 11 covers how to use the Create Action application to create actions and data
types.

16 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Chapter 12 covers how to create action definitions by editing a database configuration
file.

Chapter 13 covers how to create data type definitions by editing a database
configuration file.

Chapter 14 covers how to use the Icon Editor, and naming conventions, sizes, and
search paths for desktop icons.

Chapter 15 covers creating new system-wide controls and subpanels, and other panel
customizations.

Chapter 16 covers customizing windows, mouse button bindings, keyboard bindings,
and Workspace Manager menus.

Chapter 17 covers how to set application resources, and how the desktop uses fonts
and colors.

Chapter 18 covers system administration tasks for systems running international
sessions.

Appendix A is a copy of the dtconfig(1) man page.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

Preface 17

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

18 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 1

Configuring Login Manager

The Login Manager is a server responsible for displaying a login screen,
authenticating users, and starting a user session. The graphical login is an attractive
alternative to the traditional character mode login for bitmap displays. Displays
managed by the login server can be directly attached to the login server or attached to
an X terminal or workstation on the network.

Note – You must be a root user to start, stop, or customize the login server.

� “Starting the Login Server” on page 20
� “Managing Local and Network Displays” on page 20
� “Checking for Errors” on page 26
� “Stopping the Login Server” on page 27
� “Changing the Login Screen Appearance” on page 28
� “Administering Login Manager” on page 36
� “Login Manager Files” on page 37

The login server:

� Can display a login screen on bitmap displays unconditionally or by request on
local and network bitmap displays

� Accommodates directly attached character console displays

� Can display a chooser screen that enables users to display login screens from other
login servers on the network

� Allows controlled access to the login server

� Provides access to the traditional character-mode login

Displays managed by the Login Manager can be directly attached to the Login
Manager server or attached to an X terminal or workstation on the network. For local
displays, the login server will automatically start an X server and display a login

19

screen. For network displays, such as X terminals, the login server supports the X
Display Manager Protocol (XDMCP) 1.0, which allows displays to request that the
login server display a login screen on the display.

Starting the Login Server
The login server is usually started when the system is booted. You can also start the
login server from a command line.

� To set the login server to start when the system is booted, type
/usr/dt/bin/dtconfig -e

The login server will then start automatically when you reboot.

For more information about the desktop configuration utility, dtconfig, see
Appendix A. It provides a copy of the dtconfig.1 man page.

� To start the login server from a command line, type /usr/dt/bin/dtlogin
-daemon; exit

Note – Although starting the login server from the command line is available for
temporary configuration testing, you should normally start the login server when the
system is booted.

Managing Local and Network Displays
Figure 1-1 shows a possible login server configuration.

20 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Character Display

 Login Server

 Bitmap

Network

XDMCP Workstation

XDMCP X terminal

Workstation

X terminal

Default Configuration

FIGURE 1–1 Possible login server configuration

Finding the Login Server Process ID
By default, the login server stores its process ID in /var/dt/Xpid.

To change this, you can set the Dtlogin.pidFile resource in the Xconfig file. If
changed, the directory specified must exist when the login server is started.

To modify Xconfig, copy Xconfig from /usr/dt/config to /etc/dt/config.
After modifying /etc/dt/config/Xconfig, tell the login server to reread Xconfig
by typing:

/usr/dt/bin/dtconfig -reset

This issues the command kill -HUP login_server_process_ID.

For example, to store the login server process ID in /var/myservers/Dtpid, set the
following in the Xconfig file:

Dtlogin.pidFile: /var/myservers/Dtpid

When the login server is restarted, the login server will store its process ID in
/var/myservers/Dtpid. The /var/myservers directory must exist when the
login server is started.

Chapter 1 • Configuring Login Manager 21

Displaying a Login Screen on a Local Display
Upon startup, the login server checks the Xservers file to determine if an X server
needs to be started and to determine if and how login screens should be displayed on
local or network displays.

To modify Xservers, copy Xservers from /usr/dt/config to /etc/dt/config.
After modifying /etc/dt/config/Xservers, tell the login server to reread
Xservers by typing:

/usr/dt/bin/dtconfig -reset

This issues the command kill -HUP login_server_process_ID

The format of an Xservers line is:

display_name display_class display_type X_server_command

where

display_name—tells the login server the connection name to use when connecting to
the X server (:0 in the following example). A value of * (asterisk) is expanded to host
name:0. The number specified must match the number specified in the
X_server_command connection number.

display_class—identifies resources specific to this display (Local in the following
example).

display_type—tells the login server whether the display is local or a network display,
and how to manage the Command Line Login option on the login screen
(local@console in the following example).

X_server_command—identifies the command line, connection number, and other
options the login server will use to start the X server (/usr/bin/X11/X: 0 in the
following example). The connection number specified must match the number
specified in the display_name.

The default Xservers line is similar to:

:0 Local local@console /usr/bin/X11/X :0

Running the Login Server without a Local Display
If your login server system has no bitmap display, run the login server without a local
display by commenting out the Xservers line for the local display using a # (pound
sign). For example,

:0 Local local@console /usr/bin/X11/X :0

When the login server starts, it runs in the background waiting for requests from
network displays.

22 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Accessing Command Line Login on a Local
Display
When the user selects Command Line Login on the login screen, the login server
temporarily terminates the X server, allowing access to the traditional command-line
login running on the bitmap display terminal device. After the user has logged in and
then out, or after a specified time-out, the login server will restart the X server.

Note – The Command Line Login option is unavailable on network displays.

The display_type controls the behavior of Command Line Login. The format of
display_type is:

� local@display_ terminal_device
� local
� foreign

When local@display_terminal_device is specified, the login server assumes that the X
server and /dev/display_terminal_device are on the same physical device, and that a
command line login (usually getty) is running on the device. When the user selects
Command Line Login, the X server is terminated, allowing access to the running
command-line login (getty) running on the /dev/display_terminal_device.

To disable the Command Line Login option on a display, specify none as the
display_terminal_device. The default display_terminal_device is console. When local is
specified, display_terminal_device defaults to console. When foreign is specified,
Command Line Login is disabled.

Note – The Command Line Login option will be disabled on the local display when
the login server is started from the command line.

Accommodating a Character Display Console
If your login server system has a directly attached character display serving as a
console, you may also want to set display_terminal_device to none to disable Command
Line Login on the bitmap display login screen.

Alternatively, if a command-line login (getty) is running on both the character
display console and the bitmap display, you can change display_terminal_device to the
command line login (getty) device on the bitmap display.

For example, if the bitmap display command-line login (getty) is on device
/dev/tty01, change the display_type to local@tty01.

Chapter 1 • Configuring Login Manager 23

Displaying a Login Screen on a Network Display
The login server can accept requests from network displays to display a login screen
on that particular display. The network display is usually an X terminal but can also
be a workstation.

To manage requests from network displays, the login server supports the X Display
Manager Protocol (XDMCP) 1.0. This protocol enables the login server to negotiate
and accept or reject requests from network displays. Most X terminals have XDMCP
built in.

XDMCP Direct Requests from Network Displays
When you configure your X terminal to use XDMCP direct (query mode), you tell
your X terminal the host name of the login server host. When the X terminal is booted,
it automatically contacts the login server, and the login server displays a login screen
on the X terminal. See your X terminal documentation for information describing how
to configure your X terminal for XDMCP direct mode.

Most X servers also support the -query option. In this mode, your X server behaves
as if it were an X terminal, contacting the login server host directly and requesting that
it display a login screen on the X server. For example, starting the X server on a bitmap
display on workstation bridget will have login server anita display a login screen
on the X server:

X -query anita

XDMCP Indirect Requests from Network Display
When you configure your X terminal to use XDMCP indirect mode, you tell your X
terminal the host name of the login server host. When the X terminal is booted, it will
contact the login server, and the login server will present a list, through a chooser
screen, of other login server hosts on the network. From this list, the user can select a
host, and that host will display a login screen on the user’s X terminal. See your X
terminal documentation for information describing how to configure your X terminal
for XDMCP indirect mode.

As with direct mode, most X servers support the -indirect option, which causes
your X server to contact the login server in XDMCP indirect mode.

Managing Non-XDMCP Network Displays
Older X terminals may not support XDMCP. For the login server to display a login
screen on this type of X terminal, list the X terminal name in the Xservers file.

24 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Since the display is on the network, display_name includes the host name as part of the
name. The display class can be used to specify resources specific to a particular class of
X terminals. (Your X terminal documentation should tell you the display class of your
X terminal.) The display_type of foreign tells the login server to connect to an existing
X server rather than to start its own. In this case, an X_server_command is not specified.

Example

The following lines in the Xservers file direct the login server to display a login
screen on two non-XDMCP X terminals, ruby and wolfie:

ruby.blackdog.com:0 AcmeXsta foreign

wolfie:0 PandaCo foreign

Controlling Access to the Login Server
By default, any host on your network that has access to your login server host can
request a login screen be displayed. You can limit access to the login server by
modifying the Xaccess file.

To modify Xaccess, copy Xaccess from /usr/dt/config to /etc/dt/config.
After modifying /etc/dt/config/Xaccess, tell the login server to reread Xaccess
by typing:

/usr/dt/bin/dtconfig -reset

This issues the command kill -HUP login server process ID.

XDMCP Direct
When a host attempts to connect to the login server via XDMCP-direct, the host name
is compared to the Xaccess entries to determine whether the host is allowed access to
the login server. Each Xaccess entry is a host name including the wildcards *
(asterisk) and ? (question mark). An * (asterisk) matches zero or more characters and
a ? (question mark) matches any one character. An ! (exclamation point) prefacing an
entry disallows access, while no preface allows access.

For example, say Xaccess contains the following three entries:

amazon.waterloo.com
*.dept5.waterloo.com

!*

The first entry allows access to the login server from host amazon.waterloo.com,
the second entry allows access from any host whose full domain name ends in
dept5.waterloo.com, and the last entry disallows access from any other host.

Chapter 1 • Configuring Login Manager 25

XDMCP Indirect
When a host attempts to connect to the login server via XDMCP-indirect, the host
name is compared to the Xaccess entries to determine whether the host is allowed
access to the login server. Each Xaccess entry is similar to the XDMCP-direct entries,
including wildcards, except that each entry is marked with a CHOOSER string. For
example:

amazon.waterloo.com CHOOSER BROADCAST
*.dept5.waterloo.com CHOOSER BROADCAST

!* CHOOSER BROADCAST

Again, the first entry allows access to the login server from host
amazon.waterloo.com, the second entry allows access from any host whose full
domain name ends in dept5.waterloo.com, and the last entry disallows access
from any other host.

One of the following can be listed after the CHOOSER.

� BROADCAST
� list of host names

BROADCAST tells the login server to broadcast to the login server sub-network to
generate a list of available login server hosts. A list of host names tells the login server
to use that list for the list of available login hosts. For example:

amazon.waterloo.com CHOOSER shoal.waterloo.com alum.waterloo.com
*.dept5.waterloo.com CHOOSER BROADCAST

!* CHOOSER BROADCAST

If amazon.waterloo.com connects via XDMCP-indirect, it will be presented a list
containing shoal and alum. If alice.dept5.waterloo.com connects, it will be
presented with a list of all available login server hosts on the login server
sub-network. Other XDMCP-indirect requests will be denied.

An alternative to specifying a list of host names is to define one or more macros
containing the list of host names. For example:

%list1 shoal.waterloo.com alum.waterloo.com

amazon.waterloo.com CHOOSER %list1

Checking for Errors
By default, the login server logs errors in the /var/dt/Xerrors file. To change this,
you can set the Dtlogin.errorLogFile resource in the Xconfig file. The directory
specified must exist when the login server is started.

26 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For example, to have the login server log errors in the /var/mylogs/Dterrors file,
set the following in the Xconfig file:

Dtlogin.errorLogFile: /var/mylogs/Dterrors

When the login server is restarted, the login server will log errors to the
/var/mylogs/Dterrors file. The /var/mylogs directory must exist when the
login server is started.

Stopping the Login Server
� To disable login server startup when the system is booted, type:

/usr/dt/bin/dtconfig -d

This will tell the system not to start the login server when you next reboot.

� To stop the login server by killing the process ID, type:

/usr/dt/bin/dtconfig -kill

This issues the command kill login_server_process_ID)

Note – Killing the login server process terminates all user sessions managed by the
login server.

You can also stop the login server by killing the process ID. The login server process
ID is stored in /var/dt/Xpid or in the file specified in Xconfig by the
Dtlogin.pidFile resource.

If you are logged in to the desktop at the time you kill the login server, your desktop
session will immediately terminate.

Chapter 1 • Configuring Login Manager 27

The Login Screen
The login screen displayed by the login server is an attractive alternative to the
traditional character-mode login screen and provides capabilities beyond those
provided by a character-mode login.

FIGURE 1–2 Desktop login screen

As with a character mode login, the user enters a user name followed by a password.
If authenticated, the login server starts a desktop session for the user. When the user
exits the desktop session, the login server displays a new login screen, and the process
begins again.

To customize the login screen, you can:

� Change the login screen appearance
� Configure X server authority
� Change the default language
� Issue commands prior to display of the login screen
� Change the contents of the login screen Language menu
� Specify the command to start the user’s session
� Issue commands prior to the start of the user’s desktop session
� Issue commands after the user’s session ends

Each of these can be done for all displays or on a per-display basis.

Changing the Login Screen Appearance
To customize the login screen appearance, you can change the logo or graphic, the
welcome messages, and the fonts.

28 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

To modify Xresources, copy Xresources from /usr/dt/config/language to
/etc/dt/config/language. The login screen will reflect any changes the next time
the login screen is displayed. To force a redisplay of a login screen, select Reset Login
Screen from the login screen Options menu.

Attributes of the login screen that can be determined by resource specifications in the
Xresources file include:

Dtlogin*logo*bitmapFile—bitmap or pixmap file to display as logo image

Dtlogin*greeting*persLabelString—personalized welcome message

Dtlogin*greeting*labelString—welcome message

Dtlogin*greeting*fontList Font for welcome messages

Dtlogin*labelFont Font for push buttons and labels

Dtlogin*textFont Font for help and error messages

Dtlogin*language*languageName Alternate text for locale name language

� To Change the Logo
� Set the Dtlogin*logo*bitmapFile resource in Xresources.

The logo can be a color pixmap or a bitmap file.

The following example uses the Mylogo bitmap as the logo:

Dtlogin*logo*bitmapFile: /usr/local/lib/X11/dt/bitmaps/Mylogo.bm

� To Change the Welcome Message
By default, the login server displays the message Welcome to host name on the login
screen. To change this message:

� Set the Dtlogin*greeting*labelString resource in Xresources.

The value of the labelString resource can contain %LocalHost%, which will be
replaced by the login server host name, and %DisplayName%, which will be replaced
by the X server display name.

The following example changes the welcome message to Here’s host name!:

Dtlogin*greeting*labelString: Here’s %LocalHost%!

Chapter 1 • Configuring Login Manager 29

Once the user name has been entered, the login server displays the message Welcome
username by default. You can change this message by setting the
Dtlogin*greeting*persLabelString resource in Xresources. The value of the
persLabelString can contain %s, which will be replaced by the username.

The following example changes the personalized welcome message to Hello
username.

Dtlogin*greeting*persLabelString: Hello %s

� To Change the Fonts
You can change the fonts used on the login screen by setting one of the following font
resources in Xresources:

Dtlogin*greeting*fontList—font for welcome messages

Dtlogin*labelFont—font for push buttons and labels

Dtlogin*textFont—font for help and error messages

To list the available fonts, type:

xlsfonts [-options] [-fn pattern]

The following example uses a large font for the welcome message (the value you
specify must be contained on one line):

Dtlogin*greeting*fontList: -dt-interface \

system-medium-r-normal-xxl*-*-*-*-*-*-*-*-*:

� To Provide Alternate Text to Display for Each
Language
To display per-locale text on the login screen Language menu instead of the default
display of the locale name, modify the Dtlogin*language*languageName resource
name resource in Xresources:

Dtlogin*En_US*languageName: American

The text American will now be displayed rather than the locale name En_US.

Changing the Login Screen Behavior
To customize the login screen behavior, you can modify resources specified in the
Xconfig file.

30 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

To modify Xconfig, copy Xconfig from /usr/dt/config to /etc/dt/config.
After modifying /etc/dt/config/Xconfig, tell the login server to reread Xconfig
by typing:

/usr/dt/bin/dtconfig -reset

This which issues the command kill -HUP login server process ID)

Resources specified in the Xconfig file include:

Dtlogin*authorize—Xaccess file specification

Dtlogin*environment—X server environment

Dtlogin*language—default language

Dtlogin*languageList—language list for login screen Language menu

Dtlogin*resources—Xresources specification

Dtlogin*setup—Xsetup file specification

Dtlogin*startup—Xstartup file specification

Dtlogin*session—Xsession file specification

Dtlogin*failsafeClient—Xfailsafe script specification

Dtlogin*reset—Xreset script specification

Dtlogin*userPath—PATH for Xsession and Xfailsafe

Dtlogin*systemPath—PATH for Xsetup, Xstartup, and Xfailsafe

Dtlogin*systemShell—SHELL for Xsetup, Xstartup, and Xfailsafe

Dtlogin.timeZone—TZ for all scripts

Changing the Login Screen Behavior Per Display
In the examples below, changing an Xconfig resource changes the login screen
behavior for all displays. The resources listed with an * (asterisk) can be specified on a
per-display basis. This enables you to specify custom login screen behavior for certain
displays. To specify a resource for a particular display, the resource is specified as
Dtlogin*displayName*resource. For example, if you would like to turn off user based
access control for display expo:0 but leave it on for other displays, you would
specify:

Dtlogin*expo_0*authorize: False

Chapter 1 • Configuring Login Manager 31

Note – Any special character in the display name, such as a : (colon) or . (period), is
replaced by an _ (underbar).

Changing the X Server Access
By default, the login server allows X server access control on a per user basis and is
based on authorization data stored and protected in the HomeDirectory/.Xauthority
file. Only users who can read this file are allowed to connect to the X server. Generally,
this is the preferred method of X server access control.

An alternative to user-based access control is host-based access control. Using this
method, if a host is granted access to the X server, any user on that host is allowed to
connect to the X server. Reasons to use host-based control include:

� Older R2 and R3 X clients will not be able to connect to an X server using
user-based access control.

� On unsecured networks, a snooper may be able to intercept the authorization data
passed between the X client and X server on the network.

The Xconfig Dtlogin*authorize resource tells the login server to use
user-based X server access control. To use host-based access control, change the
authorize resource value to False, for example:

Dtlogin*authorize: False

� To Change the X Server Environment
If you want to provide the X server with one or more environment variables and
values when started by the login server, you can specify them using the
Dtlogin*environment resource in Xconfig. For example:

Dtlogin*environment: VAR1=foo VAR2=bar

will make the variables VAR1 and VAR2 available to the local X server process. These
variables will also be exported to the Xsession and Xfailsafe scripts.

� To Change the Default Language
When the user logs in to the desktop from the login screen, the user session is run
under the locale selected from the Language submenu of the Options menu. If the user
does not select a language, the login server default language is used. You can control
the value of the default language by setting the Dtlogin*language resource in
Xconfig. For example:

32 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Dtlogin*language: Ja_JP

Check your system documentation to determine the languages installed on your
system.

� To Change the Content of the Login Screen Language
Menu
By default the login server creates the login screen Language menu containing a list of
all locales installed on the system. When the user selects a locale from the login screen
language list, the login server will redisplay the login screen in the selected locale.
When the user subsequently logs in, the login server will start a desktop session for
the user in that locale.

You can specify your own list of languages by modifying the
Dtlogin*languageList resource in Xconfig:

Dtlogin*languageList: En_US De_DE

The login server now displays only En_US and De_DE in the login screen Language
menu.

Issuing Commands Before the Login Screen
Appears
After the X server has started but before the login screen appears, the login server runs
the Xsetup script. Xsetup runs with root authority and issues commands needing to
be run before the display of the login screen.

To modify Xsetup, copy Xsetup from /usr/dt/config to /etc/dt/config. The
next time the login screen is displayed, the modified Xsetup will be run.

Issuing Commands Before Starting the User Session
After the user enters the user name and password and they are authenticated, but
before the user session is started, the login server runs the Xstartup script.
Xstartup runs with root authority and issues commands needing to be run as root
prior to the user session start.

To modify Xstartup, copy Xstartup from /usr/dt/config to /etc/dt/config.
The next time the user logs in, the modified Xstartup will be run.

Chapter 1 • Configuring Login Manager 33

Starting a Desktop Session
By default, the login server starts the user session by running the Xsession script.
Xsession runs with the user’s authority and issues commands needed to start the
desktop.

Note – Do not directly update the Xsession script.

See Chapter 2, for information on how to customize the user’s desktop session startup.

Starting a Failsafe Session
If the user selects Failsafe Session from the Sessions submenu of the login screen
Options menu, the login server runs the Xfailsafe script. Xfailsafe runs with the
user’s authority and issues commands needed to start a minimal windowing
environment, usually a Terminal window and an optional window manager.

To modify Xfailsafe, copy Xfailsafe from /usr/dt/config to
/etc/dt/config. The next time the user logs in, the modified Xfailsafe will be
run.

After the User’s Session Ends
After the user exits the desktop or failsafe session, the login server runs the Xreset
script. Xreset runs with root authority and issues commands needing to be run as
root after the end of the user’s session.

If you wish to modify Xreset, copy Xreset from /usr/dt/config to
/etc/dt/config. The next time the user logs in, the modified Xreset will be run.

The Login Server Environment
The login server provides an environment that it exports to the Xsetup, Xstartup,
Xsession, Xfailsafe and Xreset scripts. This environment is described in Table
1–1. Additional variables may also be exported by the login server.

34 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

TABLE 1–1 Login Server Environments

Environment

Variable Xsetup Xstartup Xsession Xreset Description

LANG X X X X Default or selected language

XAUTHORITY X X X X Alternate X authority file
(optional)

PATH X X X X Value of the
Dtlogin*userPath resource
(Xsession, Xfailsafe) or
Dtlogin*systemPath
resource (Xsetup, Xstartup,
Xreset)

DISPLAY X X X X X server connection number

SHELL X X X X Shell specified in /etc/passwd
(Xsession, Xfailsafe) or
Dtlogin*systemShell
resource (Xsetup, Xstartup,
Xreset)

TZ X X X X Value of Dtlogin.timeZone
resource or timezone
determined from system

USER X X X User name

HOME X X X Home directory specified in
/etc/passwd

LOGNAME X X X User name

Changing the User or System Path
The login server sets the PATH environment variable when it runs the Xsession and
Xfailsafe scripts. You can provide an alternate path to these scripts

� To Change the User Path
� Set the Dtlogin*userPath resource in Xconfig. For example:

Dtlogin*userPath:/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11

Chapter 1 • Configuring Login Manager 35

� To Change the System Path
� Set the Dtlogin*systemPath resource in Xconfig. For example:

Dtlogin*systemPath: /usr/bin/X11:/etc:/bin:/usr/bin:/usr/ucb

� To Change the System Shell
The login server sets the SHELL environment variable when it runs the Xsetup,
Xstartup and Xfailsafe scripts. The default is /bin/sh. If you wish to provide an
alternate shell to these scripts, you can set the Dtlogin*systemShell resource in
Xconfig. For example:

Dtlogin*systemShell: /bin/ksh

� To Change the Time Zone
The login server sets the TZ environment variable when it runs the Xsetup,
Xstartup, Xsession, Xfailsafe, and Xreset scripts. The default value is derived
from the system so usually you will not need to change this behavior. To provide an
alternate time zone to these scripts, set the Dtlogin.timeZone resource in Xconfig.
For example:

Dtlogin.timeZone: CST6CDT

Administering Login Manager
When the login server starts, one dtlogin process is started. The dtlogin process
reads the Xconfig file to determine the initial login server configuration and locate
other login server configuration files. The login server then reads the Xservers file to
see if it has any displays to explicitly manage, and also reads the Xaccess file to
control access to the login server.

If the login server finds from the Xservers file that it needs to manage a local display,
it will start an X server as instructed in the Xservers file and then display a login
screen on that display.

If the login server finds from the Xservers file that it needs to manage a network
display, it will assume an X server is already running with the specified display name
and display a login screen on that display.

The login server will then wait for XDMCP requests from the network.

36 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For each display managed, the login server first creates a new dtlogin process for
that display. This means if the login server is managing n displays, there will be n+1
dtlogin processes. The login server will run the Xsetup script, load the
Xresources file, then run dtgreet to display the login screen. Once the user has
entered a username and password and has been authenticated, the login server will
run the Xstartup script and then the Xsession or Xfailsafe script. When the
user has exited the session, the login server will run the Xreset script.

If the login server gets an XDMCP-indirect request, it will run dtchooser to present a
list of login server hosts on the display. When the user selects a host from the list, the
login server on that host will manage the display.

For the Xaccess, Xconfig, Xfailsafe, Xreset, language/Xresources,
Xservers, Xsetup, and Xstartup configuration files, the login server will by
default look first in /etc/dt/config, then /usr/dt/config, and use the first file
found.

Login Manager Files
The default locations of the Login Manager files are:

/usr/dt/bin/dtlogin—the login server and display manager

/usr/dt/bin/dtgreet—displays a login screen for a display

/usr/dt/bin/dtchooser—displays a chooser screen for a display

/usr/dt/bin/Xsession—starts a desktop session

/usr/dt/config/Xfailsafe—starts a failsafe session

/usr/dt/config/Xconfig—login server configuration file

/usr/dt/config/Xservers—login server display description file

/usr/dt/config/Xaccess—login server access description file

/usr/dt/config/language/Xresources—display layout resources

/usr/dt/config/Xsetup—display setup file

/usr/dt/config/Xstartup—pre-session startup file

/usr/dt/config/Xreset—post-session reset file

/var/dt/Xpid—process ID of the login server

Chapter 1 • Configuring Login Manager 37

/var/dt/Xerrors—error log file of the login server

38 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 2

Configuring Session Manager

Session Manager is responsible for starting the desktop and automatically saving and
restoring running applications, colors, fonts, mouse behavior, audio volume, and
keyboard click.

� “What Is a Session?” on page 39
� “Starting a Session” on page 40
� “When a Session Starts” on page 41
� “Additional Session Startup Customizations” on page 47
� “Session Manager Files and Directories” on page 52

Using Session Manager, you can:

� Customize the initial session for all desktop users
� Customize the environment and resources for all desktop users
� Change the session startup message
� Change parameters for session startup tools and daemons
� Customize desktop color usage for all users

What Is a Session?
A session is the collection of applications, settings, and resources present on the user’s
desktop. Session management is a set of conventions and protocols that enables
Session Manager to save and restore a user’s session. A user is able to log in to the
system and be presented with the same set of running applications, settings, and
resources as were present when the user logged off. When a user logs in to the desktop
for the first time, a default initial session is loaded. Afterward, Session Manager
supports the notion of a current and a home session.

39

The Initial Session
When a user logs in to the desktop for the first time, Session Manager will generate
the user’s initial session using system default values. By default, the File Manager and
Introduction to the Desktop, a help volume, will start.

Current Session
The user’s running session is always considered the current session, whether restored
upon login from a saved home session, a saved current session, or the system default
initial session. Based on the user’s Style Manager Startup settings, when the user exits
the session, Session Manager automatically saves the current session. When the user
next logs in to the desktop, Session Manager restarts the previously saved current
session, meaning that the desktop will be restored to same state as when the user last
logged out.

Home Session
You can also have the desktop restored to the same state every time the user logs in,
regardless of its state when the user logged out. The user can save the state of the
current session and then, using the Style Manager Startup settings, have Session
Manager start that session every time the user logs in.

Display-Specific Sessions
To run a specific session for a specific display, a user can create a display-specific
session. To do this, the user can copy the HomeDirectory/.dt/sessions directory to
HomeDirectory/.dt/display, where display is the real, unqualified host name (for
example, pablo:0 is valid, pablo.gato.com:0 or unix:0 is not). When the user
logs in on display pablo:0, Session Manager will start that display-specific session.

Starting a Session
Session Manager is started through /usr/dt/bin/Xsession. When the user logs in
using the Login Manager, Xsession is started by default.

Optionally, the user can log in using the traditional character mode (getty) login, and
start Session Manager manually using tools that start an X server, such as xinit. For
example: xinit /usr/dt/bin/Xsession.

40 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

When a Session Starts
When Session Manager is started, it goes through the following steps to start the
user’s session:

1. Sources the HomeDirectory/.dtprofile script

2. Sources the Xsession.d scripts

3. Displays a welcome message

4. Sets up desktop search paths

5. Gathers available applications

6. Optionally sources HomeDirectory/.profile or HomeDirectory/.login

7. Starts the ToolTalk® messaging daemon

8. Loads session resources

9. Starts the color server

10. Starts the Workspace Manager

11. Starts the session applications

The following sections describe the steps listed above.

Sourcing the .dtprofile Script
At session startup, the Xsession script sources the user’s
HomeDirectory/.dtprofile script. The HomeDirectory/.dtprofile script is a
/bin/sh or /bin/ksh script that enables users to set up environment variables for
their sessions. For more information on setting up environment variables, see
“Additional Session Startup Customizations” on page 47.

If the HomeDirectory/.dtprofile script does not exist, such as when a user is
logging in to the desktop for the first time, Xsession will copy the desktop default
sys.dtprofile to HomeDirectory/.dtprofile.

The desktop default is /usr/dt/config/sys.dtprofile. To customize the
sys.dtprofile script, copy sys.dtprofile from /usr/dt/config to
/etc/dt/config and edit the new file.

Chapter 2 • Configuring Session Manager 41

Sourcing Xsession.d Scripts
After sourcing the HomeDirectory/.dtprofile script, the Xsession script sources
the Xsession.d scripts. These scripts are used to set up additional environment
variables and start optional daemons for the user’s session. The default Xsession.d
scripts are:

0010.dtpaths—documents customizable desktop search paths

0020.dtims—starts optional input method server

0030.dttmpdir—creates per-user, per-session temporary directory

0040.xmbind—sets up $XMBINDDIR to desktop default

There may be additional vendor-specific scripts in Xsession.d.

Xsession first sources all files in the /etc/dt/config/Xsession.d directory,
followed by those in the /usr/dt/config/Xsession.d directory.

The desktop default Xsession.d scripts are located in the
/usr/dt/config/Xsession.d directory. To customize an Xsession.d script,
copy the script from /usr/dt/config/Xsession.d to
/etc/dt/config/Xsession.d and edit the new file. You must have execute
permission to perform this task.

Also, to have Xsession automatically source a script of your own, copy it to
/etc/dt/config/Xsession.d.

Note – When you modify or create an Xsession.d script, make sure that any
foreground commands you issue are of short duration, as the time taken by the
command will directly affect session startup time. If a foreground command does not
exit, the session startup will hang. Commands run in an Xsession.d script that you
want to remain running for the duration of the session should be run in the
background.

Displaying the Welcome Message
After sourcing HomeDirectory/.dtprofile and the Xsession.d scripts, Xsession
displays a welcome message that covers the screen. You can customize the welcome
message displayed, or turn off the message entirely. The dthello client is used to
display the message.

To alter the message text, change the dthello options by modifying the
dtstart_hello[0] variable.

42 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

To change dtstart_hello[0], create an /etc/dt/config/Xsession.d script
that sets the new value. To display the message of the day for all users, create an
executable sh or ksh script, for example /etc/dt/config/Xsession.d/myvars,
and set dtstart_hello[0] as follows:

dtstart_hello[0]="/usr/dt/bin/dthello -file /etc/motd &"

Similarly, users can change the welcome message for their sessions by setting
dtstart_hello[0] in HomeDirectory/.dtprofile.

To turn off the welcome message, set dtstart_hello[0]=" ".

For more information about dthello, see the dthello man page.

Setting Up the Desktop Search Paths
The desktop search paths are created at login by dtsearchpath. There are two
categories of environment variables used by dtsearchpath:

Input Variables—System-wide and personal environment variables whose values are
set by the system administrator or end user.

Output Variables—Variables created and assigned values by dtsearchpath. The
value of each variable is the search path for the desktop session.

To alter the command-line options of dtsearchpath, modify the
dtstart_searchpath variable. To change the dtstart_searchpath variable for
all users, create an executable sh or ksh script (for example
/etc/dt/config/Xsession.d/myvars), and set dtstart_searchpath as
follows:

dtstart_searchpath="/usr/dt/bin/dtsearchpath"

Users can similarly change the dtsearchpath options for only their own sessions by
setting dtstart_searchpath in HomeDirectory/.dtprofile.

For more information about dtsearchpath, see Chapter 9. For more information
about dtsearchpath options, see the dtsearchpath man page.

Gathering Available Applications
The next step after setting up the desktop search paths is to gather available
applications using dtappgather. To alter the command-line options of
dtappgather, modify the dtstart_appgather variable. To change the
dtstart_appgather variable for all users, create an executable sh or ksh script (for
example /etc/dt/config/Xsession.d/myvars), and set dtstart_appgather
as follows:

Chapter 2 • Configuring Session Manager 43

dtstart_appgather="/usr/dt/bin/dtappgather &"

Users can similarly change the dtappgather options for only their own sessions by
setting dtstart_appgather in HomeDirectory/.dtprofile.

For more information about dtappgather options, see the dtappgather(4) man page.

Optionally Sourcing the .profile or .login Script
Xsession is able to source a user’s traditional HomeDirectory/.profile or
HomeDirectory/.login scripts. By default this capability is disabled. To tell
Xsession to source the .profile or .login script, set DTSOURCEPROFILE to
true.

To change DTSOURCEPROFILE for all users, create an
/etc/dt/config/Xsession.d script that sets the new value. To set
DTSOURCEPROFILE to true for all users, create an executable sh or ksh script, for
example /etc/dt/config/Xsession.d/myvars, and set DTSOURCEPROFILE as
follows:

DTSOURCEPROFILE=true

Users can similarly change DTSOURCEPROFILE for their own sessions by setting
DTSOURCEPROFILE to true in HomeDirectory/.dtprofile.

Starting the ToolTalk Messaging Daemon
The ToolTalk messaging daemon, ttsession, enables independent applications to
communicate with each other without having direct knowledge of each other.
Applications create and send ToolTalk messages to communicate with each other.
ttsession communicates on the network to deliver messages.

To alter the command-line options of ttsession, modify the dtstart_ttsession
variable. To change the dtstart_ttsession variable for all users, create an
executable sh or ksh script (for example /etc/dt/config/Xsession.d/myvars),
and set dtstart_ttsession as follows:

dtstart_ttsession="/usr/dt/bin/ttsession -s"

Users can similarly change the ttsession options for their own sessions by setting
dtstart_ttsession in HomeDirectory/.dtprofile.

For more information about ttsession options, see the ttsession man page. For more
information on ttsession, see Common Desktop Environment: ToolTalk Messaging
Overview.

44 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Starting the Session Manager Client
At this point, Xsession starts /usr/dt/bin/dtsession, which continues the
session startup process.

Loading the Session Resources
Session Manager uses the X server RESOURCE_MANAGER property to make desktop
resources available to all applications. Session Manager loads the
RESOURCE_MANAGER by:

� Loading the system default resources

� Merging any system-wide resources specified by the system administrator

� Merging any user-specified resources

The desktop default resources can be found in
/usr/dt/config/language/sys.resources. These resources will be made
available to each user’s session via the RESOURCE_MANAGER property. This file should
not be edited, as it is overwritten upon subsequent desktop installations.

You can augment the system default resources by creating
/etc/dt/config/language/sys.resources. In this file, you can override default
resources or specify additional resources for all desktop users. Since this file is merged
into the desktop default resources during session startup, only new or updated
resource specifications should be placed in this file. Resources specified in this file will
be made available to each user’s session through the RESOURCE_MANAGER property.
Resources specified in this file take precedence over those specified in the desktop
default resource file.

Users can augment the desktop default and system-wide resources using their
HomeDirectory/.Xdefaults file. Resources specified in this file will be made
available to that user’s session through the RESOURCE_MANAGER property. Resources
specified in this file take precedence over those specified in the desktop default or
system administrator resource files.

Chapter 2 • Configuring Session Manager 45

Note – The X Toolkit Intrinsics utility specifies that it will load resources for an
application from either RESOURCE_MANAGER or from HomeDirectory/.Xdefaults,
but not both. Ordinarily, this would mean that the user’s HomeDirectory/.Xdefaults
file would be ignored. However, Session Manager accommodates
HomeDirectory/.Xdefaults by merging it into the RESOURCE_MANAGER at session
startup as described above. If a user changes HomeDirectory/.Xdefaults, the
changes will not be visible to new applications until the user invokes the Reload
Resources action. The Reload Resources action will instruct Session Manager to reload
the RESOURCE_MANAGER with the default, system-wide, and user-specified resources.
This makes changes to the system-wide and personal resource files available to
applications.

For more information see:

� “Setting Application Resources” on page 273
� The dtresourcesfile(4) man page

Starting the Color Server
Session Manager serves as the color server for the desktop and provides the following
set of dtsession resources that can be used to configure it.

foregroundColor—controls whether a pixel is allocated for the foreground color

dynamicColor—specifies whether read-only colors are allocated

shadowPixmaps—specifies whether colors are allocated for top shadow or bottom
shadow

colorUse—limits color allocation

writeXrdbColors—specifies whether the *background and *foreground
resources are placed in the resource database

You can set color server resources for all users by creating
/etc/dt/config/language/sys.resources and specifying the color server
resources in that file.

Users can similarly set color server resources for their own sessions by specifying
color server resources in HomeDirectory/.Xdefaults.

For more information about setting color server resources, see “Administering Colors”
on page 283.

46 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Starting Workspace Manager
Session Manager is responsible for starting Workspace Manager. By default
/usr/dt/bin/dtwm is started. An alternate window manager can be specified with
the wmStartupCommand resource.

You can specify an alternate window manager for all users by creating
/etc/dt/config/language/sys.resources and specifying the full path name and
options for the window manager with the Dtsession*wmStartupCommand resource
in that file.

Users can similarly specify an alternate window manager for their own sessions only
by specifying the Dtsession*wmStartupCommand resource in
HomeDirectory/.Xdefaults.

For more information about the Window Manager, see Chapter 16.

Starting the Session Applications
At session startup, Session Manager will restart any applications that were saved as
part of the session. The system default set of applications to be restored as part of the
user’s initial session can be found in /usr/dt/config/language/sys.session.
This file should not be edited as it will be unconditionally overwritten upon
subsequent desktop installations.

For more information, see the dtsessionfile(4) man page.

A system administrator can replace the set of applications that are started as part of
the user’s initial session by copying /usr/dt/config/language/sys.session to
/etc/dt/config/language/sys.session and modifying the latter file. Unlike the
resource files, this file will be used as a complete replacement for the desktop default
file, so you can make a copy of the system default file and make any necessary
modifications.

Additional Session Startup
Customizations
This section covers:

� Setting environment variables
� Setting resources
� Using display-dependent sessions

Chapter 2 • Configuring Session Manager 47

� Running scripts at login
� Recovering a back-up session

� To Set Environment Variables
� To set system-wide environment variables, create a file in the

/etc/dt/config/Xsession.d directory that sets and exports the variable.

For example, if you create an executable ksh script,
/etc/dt/config/Xsession.d/myvars, containing:

export MYVARIABLE="value"

then the variable MYVARIABLE will be set in each user’s environment at the next login.

� To set personal environment variables, set the variable in
HomeDirectory/.dtprofile.

For example:

export MYVARIABLE="value"

sets the variable MYVARIABLE in each user’s environment at the next login.

Note – Session Manager does not automatically read the .profile or .login file.
However, it can be configured to use these files; see “Optionally Sourcing the .profile
or .login Script” on page 44.

� To Set Resources
� To set system-wide resources, add the resources to the file

/etc/dt/config/language/sys.resources. (You may have to create the file.)

Note – .dtprofile only supports /bin/sh or /bin/ksh syntax.

For example, if in /etc/dt/config/C/sys.resources you specify:

AnApplication*resource: value

then the resource AnApplication*resource will be set in each user’s
RESOURCE_MANAGER property at the next login.

� To set personal resources, add the resources to the file HomeDirectory/.Xdefaults.

48 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� To Set Display-Specific Resources
You can set display-specific resources for all desktop users on the system. Also, users
can set display-specific resources limited to their own session. This enables you to
specify resources depending upon which display the user uses to log in to the
desktop.

� To set display-specific resources for all desktop users on the system, create the file
/etc/dt/config/language/sys.resources that specifies the display-specific
resources.

� To set personal display-specific resources, specify the resource in
HomeDirectory/.Xdefaults.

You delimit these resources by enclosing them in cpp conditional statements. A
DISPLAY_displayname macro is defined depending upon the value of the $DISPLAY
variable. This is done by converting all . (period) and : (colon) characters to _
(underscores), stripping off any screen specification, and finally prefixing DISPLAY_
to the result.

For example, a $DISPLAY of :0 would be DISPLAY_0, and a $DISPLAY of
blanco.gato.com:0.0 would be DISPLAY_blanco_gato_com_0. The resulting
value can be used as part of a cpp test in a session resource file. For example, if in
/etc/dt/config/C/sys.resources you specify:

Myapp*resource: value

#ifdef DISPLAY_blanco_gato_com_0
Myapp*resource: specialvalue1

#endif

#ifdef DISPLAY_pablo_gato_com_0
Myapp*resource: specialvalue2

#endif

the resource MyApp*resource will be set in RESOURCE_MANAGER to
specialvalue1 when the user logs in on display blanco.gato.com:0;
specialvalue2 when the user logs in on pablo.gato.com:0; and value when
the user logs in on another display.

� To Change Applications for the Initial Session
You can specify alternate applications to start as part of a user’s initial session.

1. Copy /usr/dt/config/language/sys.session to
/etc/dt/config/language/sys.session.

2. Modify the new sys.session file.

Each entry in sys.session appears as:

dtsmcmd -cmd command_and_options

Chapter 2 • Configuring Session Manager 49

To start an additional application as part of a user’s initial session, specify a new
sys.session entry with a full path name. For example, to start
/usr/bin/X11/xclock as part of a user’s initial session, add an xclock entry to
/etc/dt/config/C/sys.session:

#
Start up xclock...
#

dtsmcmd -cmd "/usr/bin/X11/xclock -digital"

� To Set Up a Display-Specific Session
A user can set up a display-specific session to tune a session to a particular display.

� Copy the HomeDirectory/.dt/sessions directory to HomeDirectory/.dt/display
where display is the real, unqualified host name (pablo:0 is valid,
pablo.gato.com:0 or unix:0 is not).

For example, to create a display-specific session for display pablo.gato.com:0:

cp -r HomeDirectory/.dt/sessions HomeDirectory/.dt/pablo:0

When the user next logs in on display pablo.gato.com:0, the Session Manager will
start that display-specific session.

Executing Additional Commands at Session
Startup and Logout
Users can specify that additional commands be started when they log in to their
desktop sessions. This is useful for setting up X settings that are not saved by Session
Manager. For example, the user can use xsetroot to customize the root (workspace)
pointer. Another use would be to start applications that are unable to be saved and
restored by Session Manager. If an application will not restart when the session is
restored, the user can start the client using this method.

� To Execute Additional Commands at Session
Startup

� Create the file HomeDirectory/.dt/sessions/sessionetc containing the
commands.

Generally this file is a script and must have execute permission. Processes started in
sessionetc should be run in the background.

50 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Note – Do not use sessionetc to start clients that are automatically restored by
Session Manager. Doing so can cause multiple copies of the application to be started.
You may not be able to see the copies immediately because the windows may be
stacked on top of one another.

� To Execute Additional Commands at Logout
A companion file to sessionetc is sessionexit. Use sessionexit to perform
some operation at session exit that is not handled by Session Manager.

� Create the file HomeDirectory/.dt/sessions/sessionexit containing the
commands.

Like sessionetc, this file is usually a script with execute permission.

� To Recover a Session from Backup
When Session Manager saves a session, the session information is stored in the
HomeDirectory/.dt/sessions directory or in the HomeDirectory/.dt/display
directory if using a display-specific session. In these directories, Session Manager
creates a subdirectory named current or home to store information for the respective
current or home session. Before the session information is stored, Session Manager
makes a backup of the prior session with that name and stores it in current.old or
home.old.

1. Log in using the Failsafe Session or Command Line Login from the login screen.

2. Copy the backup session directory to the active name. For example, to recover the
backup home session:

cp -r HomeDirectory/.dt/sessions/home.old \

HomeDirectory/.dt/sessions/home

Display-specific sessions can be recovered in the same manner.

� To Investigate Session Startup Problems
� Check the file HomeDirectory/.dt/startlog.

Session Manager logs each user’s session startup progress in this file.

Chapter 2 • Configuring Session Manager 51

Session Manager Files and Directories
� /usr/dt/bin/Xsession
� /usr/dt/config/Xsession.d/*
� /usr/dt/bin/dtsession
� /usr/dt/bin/dtsession_res
� HomeDirectory/.dt/sessions/current
� HomeDirectory/.dt/sessions/home
� HomeDirectory/.dt/display/current
� HomeDirectory/.dt/display/home

52 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 3

Troubleshooting Login and Session
Startup Problems

This chapter describes the Solaris CDE startup files and possible Solaris CDE startup
problems, and suggests solutions to startup problems.

� “Login Startup Files” on page 53
� “Error Log Locations” on page 54
� “User Startup Files” on page 54
� “Solaris CDE Startup Examples” on page 55

Login Startup Files
When the Solaris CDE Login Manager authenticates the user, it calls the following
script to start the desktop:

/usr/dt/bin/Xsession

The first user-specific file that Xsession calls is HomeDirectory/.dtprofile.

The first time a new user logs into Solaris CDE, a .dtprofile file is copied into the
user’s home directory. By default, the file does nothing. However, it does contain
many comments on how it might be edited. The user can edit this file to add
user-specific environment variables.

Note – Like the Xsession script that calls .dtprofile, this file uses the ksh syntax.

One useful edit is to uncomment the last line of the .dtprofile file:

DTSOURCEPROFILE=true

53

This line allows the user’s HomeDirectory/.login (for csh users) or the
HomeDirectory/.profile (for other shell users) to be sourced as part of the startup
process.

Error Log Locations
Choose Failsafe Session from the Solaris CDE Login screen’s Option menu to bypass
the normal Xsession startup to look at error logs and fix possible user dot file
problems. Table 3–1 shows the error logs and their locations.

TABLE 3–1 Error Log Locations

Location Error Log

/var/dt/Xerrors Solaris CDE login window system errors prior
to user login

HomeDirectory/.dt/startlog Solaris CDE startup errors during Xsession,
.dtprofile, .login, or .profile

HomeDirectory/.dt/errorlog Solaris CDE errors after Xsession startup

HomeDirectory/.dt/sessionlogs Directory of session logs for Session Manager
and Window Manager errors

Some errors are also displayed in the System Console window. If the System Console
window is not running, the fallback console log file name is wscon with the
time/display code concatenated. For example:

/usr/tmp/wsconAAAa004EE:0.0

User Startup Files
To source the .login (for csh users) or the .profile (for sh or ksh users) file,
uncomment the last line in the .dtprofile file to read:

DTSOURCEPROFILE=true

In most cases this is all that is necessary. However, in some cases you need to modify
the .login or .profile file because it may contain commands that will not work
with the Solaris CDE Login Manager. If there is a problem with one of the commands,
it usually relates to the file expecting a terminal keyboard input source such as stty,
tset, or any “wait for input” commands.

54 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Caution – If .dtprofile is set to source a .login or .profile file that has
problem commands in it that crash the shell, desktop startup will fail. Consequently,
no desktop will appear. Instead, you will see the Solaris CDE login screen redisplay.
Startup errors from .login or .profile will usually be noted in
HomeDirectory/.dt/startlog. Use a failsafe login session or a command line login
to debug problem commands in .login or .profile.

For more information on problems and their possible solutions, review the
.dtprofile file. In general, problem commands are related to terminal information
and control.

Solaris CDE Startup Examples
This section provides examples of how you might edit the following user startup files:

� .login (for csh users)
� .profile (for sh or ksh users)
� .Xdefaults

The Solaris CDE startup process defines a shell variable named DT in the .login
or.profile script so that checking can be done during the Solaris CDE startup
process. This prevents terminal-related commands such as tty and stty from
executing. Refer to the following script examples:

.login (C shell)

if (! ${?DT}) then

stty erase ‘^h‘

endif

.profile (sh or ksh)

if [! “$DT”]; then

stty erase ‘^h‘

fi

The extra syntax around DT prevents warnings from the C shell when DT is not
defined. DT is not defined when the user logs in from a conventional text-based
console login prompt. See the HomeDirectory/.dtprofile file for more information
about setting up dot files.

Chapter 3 • Troubleshooting Login and Session Startup Problems 55

Note – You specify Solaris CDE tty settings in .Xdefaults.

The user’s .Xdefaults file is sourced for user-specific resources during the Solaris
CDE startup. For example, ttyModes ensures that the user’s favorite tty settings are
used in terminal emulation windows like dtterm and xterm. The following line
shows a typical ttyModes setting in the .Xdefaults file:

*ttyModes: erase ^H intr ^C kill ^U start ^Q stop ^S susp ^Z‘

Note – Favorite Solaris CDE resources differ from default settings.

The Desktop Window Manager’s placement of icons is an example of default settings.
In this case the following line in the .Xdefaults file shows the default icon
placement setting:

Dtwm*iconPlacement: right top

56 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 4

Adding and Administering
Applications

Application Manager is the desktop container for applications available to the user.

� “Structure of Application Manager” on page 57
� “Adding Applications to Application Manager” on page 61
� “Creating and Administering General Application Groups” on page 63
� “Modifying the Search Path Used To Locate Applications” on page 64
� “General Application Manager Administration” on page 66
� “Changing the Text Editor and Terminal Emulator” on page 67

Structure of Application Manager
The top level of Application Manager generally contains directories. Each of these
directories, and its contents, is called an application group.

57

FIGURE 4–1 Application groups in Application Manager

The application groups and their contents are gathered from multiple locations locally
and throughout the network.

Directory Location of Application Manager
In the file system, Application Manager is the directory
/var/dt/appconfig/appmanager/login-hostname-display. The directory is created
dynamically each time the user logs in.

For example, if user ronv logs in from display wxyz:0, the Application Manager
directory /var/dt/appconfig/appmanager/ronv-wxyz-0 is created.

How Application Manager Finds and Gathers
Applications
Application Manager is built by gathering local and remote application groups. The
application groups are gathered from directories located along the application search
path.

The default application search path consists of the locations shown in Table 4–1.

58 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

TABLE 4–1 Default Application Search Path Locations

Scope Location

Built-in /usr/dt/appconfig/appmanager/language

System-wide /etc/dt/appconfig/appmanager/language

Personal HomeDirectory/.dt/appmanager

To create the top level of Application Manager, links are created at login time from the
application groups (directories) located in directories on the application search path to
the Application Manager directory
/var/dt/appconfig/appmanager/login-hostname-display. The gathering operation
is done by the desktop utility dtappgather, which is automatically run by Login
Manager after the user has successfully logged in.

For example, the desktop provides the built-in application group:

/usr/dt/appconfig/appmanager/language/Desktop_Tools

At login time, a symbolic link is created to:

/var/dt/appconfig/appmanager/login-hostname-display/Desktop_Tools

The application search path can include remote directories. This provides a way to
gather application groups from systems located throughout the network. For more
information, see “Adding an Application Server to the Application Search Path”
on page 65.

Precedence Rules in Gathering Applications
Where duplicates exist along the search path, personal application groups have
precedence over system-wide groups, and system-wide groups have precedence over
built-in groups. For example, if both
/usr/dt/appconfig/appmanager/C/Desktop_Tools and
/etc/dt/appconfig/appmanager/C/Desktop_Tools exist, the application
group under /etc will be the one used.

Application Groups Provided with the Default
Desktop
The uncustomized desktop provides four application groups.

� Desktop_Apps
� Desktop_Tools
� Desktop_Controls

Chapter 4 • Adding and Administering Applications 59

� Information
� System_Admin

Example of How Application Groups Are Gathered
Figure 4–2 shows an Application Manager window containing a variety of application
groups. Table 4–2 shows the directories from which the application groups were
gathered.

FIGURE 4–2 A Typical Application Manager Window

TABLE 4–2 Source of Application Groups for a Typical Application Manager Window

Name Directory Gathered

CAD_App /net/ApServA/etc/dt/appconfig/appmanager/C/CAD_App

DrawingApp /etc/dt/appconfig/appmanager/C/DrawingApp

Desktop_Apps /usr/dt/appconfig/appmanager/C/Desktop_Apps

Desktop_Tools /usr/dt/appconfig/appmanager/C/Desktop_Tools

Information /usr/dt/appconfig/appmanager/C/Information

OpenWindows /usr/dt/appconfig/appmanager/C/Information

System_Admin /etc/dt/appconfig/appmanager/C/System_Admin

MySpreadSheet /users/anna/.dt/appmanager/MySpreadSheet

Media_Tools /etc/dt/appconfig/appmanager/C/Media_Tools

If the Information or System_Admin application groups have been customized, they
will be gathered from /etc/dt/appconfig/appmanager/C instead.

60 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

The CAD_App group is gathered because a system named ApServA has been added
to the application search path (see “Adding an Application Server to the Application
Search Path” on page 65). MySpreadSheet is a personal application group, available
only to user anna.

Adding Applications to Application
Manager
When an application has been added to Application Manager, there is an icon in an
application group that starts that application.

Many applications provide an application group. The application group is a directory
at the top level of Application Manager that contains the application icon and other
files related to the application.

Some applications may not have their own application group. Instead, the icon to start
the application is located in a general application group. For example, you could
create an empty application group named “Games” that you use as a container for all
the games you install on the system.

Ways to Add Applications to Application Manager
There are two ways to add an application to Application Manager:

� Registering the application
� Adding an application icon without registering the application

Registering the Application
Application registration provides full application integration.

A registered application:

� Has its own application group.
� Has its desktop configuration files gathered under a single location. This group of

desktop configuration files is called the registration package.
� May have a registered help volume.

There are two ways an application can become registered:

� When you install a desktop-smart application, registration occurs automatically.
See “To Add a Desktop-Smart Application to Application Manager” on page 62.

Chapter 4 • Adding and Administering Applications 61

� An existing application can be registered by creating a registration package. See
“To Register an Existing or Non-Desktop Smart Application” on page 62.

The use of a registration package makes the application easier to administer on the
desktop. The registration package is created somewhere in the file system other than
the locations used for desktop configuration files.

Adding the Application without Using a Registration
Package
This is the preferred way to add application when you want Application Manager to
contain only an icon to start the application.

An application added without using a registration package:

� May have its own application group, but usually has its icon placed in an existing
application group.

� Has its desktop configuration files placed directly in locations along the desktop’s
search paths.

See “To Add an Application Icon to an Existing Application Group” on page 63.

� To Add a Desktop-Smart Application to
Application Manager
A desktop-smart application is an application that is automatically registered into
Application Manager when the application is installed. The application’s filesets
include the registration package required by the desktop.

1. Install the application using instructions provided with the application.

2. When installation is complete, double-click Reload Applications in the
Desktop_Tools application group.

3. Verify that installation is complete:

a. Open Application Manager and check for the presence of the new application
group.

b. To open the application, open the application group and double-click the
application’s icon.

� To Register an Existing or Non-Desktop Smart
Application
This is the preferred way to fully integrate an application into the desktop.

62 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

The desktop provides a tool, dtappintegrate, that creates links between the
registration package files and the directories on the desktop search path.

Desktop registration is explained in Chapter 5.

� To Add an Application Icon to an Existing
Application Group
This procedure explains how to add an application icon to an existing application
group.

For example, the desktop provides an application group named System_Admin that
has been reserved for various applications and scripts related to administering
systems. If you have a script that users frequently run, you might want users to be
able to run the script by double-clicking an icon in the System_Admin application
group.

1. Use Create Action to create an action definition for the application.

For more information about Create Action, see Chapter 11.

2. Create an executable file with the same name as the action name in the directory for
the application group. The content of the file is irrelevant.

For example, if you’ve created an action named “Cleanup” that runs a system
administration tool, you would create the executable file:
/etc/dt/appconfig/appmanager/language/System_Admin/Cleanup

Creating and Administering General
Application Groups
A general application is an application group (directory) that is not associated with
one particular application product. For example, the built-in Desktop_Tools
application group is a general group containing icons for a large number of
applications that are related but not part of a single product.

You can create additional general application groups. For example, you might want to
create a group called Games to group together the various games available on the
system.

A general application group can be system-wide or personal in scope.

Chapter 4 • Adding and Administering Applications 63

� To Create a System-Wide General Application
Group

1. Log in as root.

2. Create a directory in /etc/dt/appconfig/appmanager/language.

The name of the directory becomes the name of the application group.

3. Double-click Reload Applications in the Desktop_Tools application group.

� To Create a Personal General Application Group
1. Create a directory in HomeDirectory/.dt/appmanager.

The name of the directory becomes the name of the application group.

2. Double-click Reload Applications in the Desktop_Tools application group.

� To Customize a Built-In Application Group
1. Log in as root.

2. If the application group is located in /usr/dt/appconfig/appmanager/language,
copy the application group to /etc/dt/appconfig/appmanager/language.

For example, the following command copies the Desktop_Tools application group:

cp -r /usr/dt/appconfig/appmanager/C/Desktop_Tools \

/etc/dt/appconfig/appmanager/C

The new copy of the application group will have precedence over the built-in version.

3. Modify the copy of the application group. For example, you can add new action files
(executable files with the same name as actions).

4. To see the changes, log out and back in.

Modifying the Search Path Used To
Locate Applications
The major reason for modifying the application search path is to add an application
server. When you add an application server to the search path, Application Manager
gathers all the server’s system-wide application groups.

64 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For more information on the application search path, see “Application Search Path”
on page 146.

The Default Search Path
The default application search path includes the directories shown in Table 4–3.

TABLE 4–3 Default Application Search Path Directories

Scope Search Path Directory

Personal HomeDirectory/.dt/appmanager

System-wide /etc/dt/appconfig/appmanager/language

Built-in /usr/dt/appconfig/appmanager/language

Adding an Application Server to the Application
Search Path
In addition to modifying the application search path, you may need to perform
additional configuration tasks to enable communication with the application server.
See “Administering Application Services” on page 129.

� To Set a System-Wide Application Search Path
1. Log in as root.

2. If the file /etc/dt/config/Xsession.d/0010.dtpaths doesn’t exist, create it
by copying /usr/dt/config/Xsession.d/0010.dtpaths.

3. Open /etc/dt/Xsession.d/0010.paths for editing. Add or edit a line that sets
and exports the DTSPSYSAPPHOSTS variable:

export DTSPSYSAPPHOSTS=hostname:[,hostname]

For example, the following line adds the system ApServA to the application search
path:

export DTSPSYSAPPHOSTS=ApServA:

4. Inform all users on the system that they must log out and then log back in for the
change to take effect.

Chapter 4 • Adding and Administering Applications 65

� To Set a Personal Application Search Path
1. Open HomeDirectory/.dtprofile for editing.

2. Add or edit a line that sets and exports the DTSPUSERAPPHOSTS variable:

export DTSPUSERAPPHOSTS=hostname:[,hostname]

For example, the following line adds the systems ApServB and ApServC to the
application search path:

export DTSPUSERAPPHOSTS=ApServB:,ApServC:

3. Log out and then log back in.

General Application Manager
Administration
General Application Manager administration tasks include:

� Removing an application
� Rereading the database of applications during a session

� To Remove an Application
If an application has been registered using the dtappintegrate tool, you can also
use dtappintegrate to reverse the process. When an application is unregistered, its
application group is removed from Application Manager, and its actions, data types,
icons, and help are no longer available.

1. Log in as root.

2. Run the command:

dtappintegrate -s app_root -u

� To Update Application Manager During a Session
You must rebuild Application Manager if you add applications and want those
changes to take effect immediately.

� Open the Desktop_Tools application group and double-click Reload Applications.

66 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Reload Applications is useful for updating Application Manager when applications
are added to an application server. However, Reload Applications does not detect
applications that have been removed from an application server, or applications that
have been moved from one location to another. These changes take effect when the
user logs out and back in.

Changing the Text Editor and Terminal
Emulator
Both the text editor and terminal emulator applications can be started by choosing a
control in the Front Panel, or by double-clicking an icon in Application Manager.

These applications are also started by other desktop activities.

� The text editor application opens when the user selects a text file in File Manager
and chooses Open from the Selected menu. The default text editor is dtpad.

� A terminal emulator runs when a user chooses Open Terminal from File Manager’s
File menu, or when an action opens a terminal emulator window. The default
terminal emulator is dtterm.

You can configure the desktop to use a different text editor or terminal emulator
application in these situations.

� To Change the Default Text Editor or Terminal
Emulator

1. If the change is system-wide, log in as root.

2. Create an action for the new text editor or terminal emulator application.

� You can use the Create Action application. Figure 4–3shows a Create Action
window filled in for an application named TextPad. For more information about
Create Action, see Chapter 11.

Chapter 4 • Adding and Administering Applications 67

FIGURE 4–3 Create Action window

� Or, you can create the action definition manually; for example:.

ACTION TextPad
{

LABEL TextPad
TYPE COMMAND
WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/TP/bin/TextPad %(File)Arg_1%
DESCRIPTION Double-click this icon to start the \

TextPad application.

}

For information on creating action definitions manually, see Chapter 12.

3. Place the configuration file containing the new action in the proper directory:

� System-wide: /etc/dt/appconfig/types/language
� Personal: HomeDirectory/.dt/types

4. If it doesn’t already exist, create the appropriate user-prefs.dt file by copying
/usr/dt/appconfig/types/language/user-prefs.dt to:

� System-wide: the /etc/dt/appconfig/types/language directory

� Personal: the HomeDirectory/.dt/types directory

68 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

5. Edit the TextEditor or Terminal action in the system-wide or personal
user-prefs.dt file. Modify the MAP_ACTION line to map the action to the new
action.

For example, change the line:

MAP_ACTION Dtpad

to:

MAP_ACTION TxtPd

6. Save the user-prefs.dt file.

7. Double-click Reload Actions in the Desktop_Tools application group to reload the
actions database.

Chapter 4 • Adding and Administering Applications 69

70 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 5

Registering an Application

This chapter describes how to create a registration package for an application and how
to register the application onto the desktop.

� “Overview of Application Registration” on page 72
� “General Steps for Registering an Application” on page 75
� “Step 1: Modifying Font and Color Resources” on page 75
� “Step 2: Creating the Desktop Application Root” on page 77
� “Step 3: Creating the Registration Package Directories” on page 77
� “Step 4: Creating the Actions and Data Types for the Application” on page 79
� “Step 5: Putting the Help Files in the Registration Package” on page 82
� “Step 6: Creating Icons for the Application” on page 83
� “Step 7: Creating the Application Group” on page 84
� “Step 8: Registering the Application Using dtappintegrate” on page 89
� “Example of Creating a Registration Package” on page 92

When an application is fully registered onto the desktop, it has:

� Its own application group at the top level of the Application Manager

� An action that starts the application. The action is represented by an icon in the
application group

� Optionally, data types for its data files

Application registration is a non-invasive operation to the application:

� It does not involve modification of the application executable itself. Therefore, you
can register existing applications on a system.

� It does not require that any of the application’s delivered files (such as the
executable and app-defaults) be moved to other file locations.

� It can be undone easily. The dtappintegrate tool, which is used to register
applications, provides a command-line option for reversing the process.

You will want to create a registration package if you are:

71

� A system administrator who wants to register an existing application onto the
desktop

� A software programmer who wants to create an installation package for a
desktop-smart application

Overview of Application Registration
This section explains:

� The purpose of application registration
� Features provided to your application by application registration

Note – For a detailed example that shows how to register an existing application, see
“Example of Creating a Registration Package” on page 92.

Features Provided by Application Registration
Application registration provides a graphical way for users to:

� Locate your application.

Upon installation, your application is “registered” into the Application Manager
and has its own application group.

FIGURE 5–1 Application groups at the top level of Application Manager

� Start your application.

72 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

The application group for your application contains an icon the user can
double-click to start your application.

FIGURE 5–2 An application group containing an icon to start the application

� Identify and manipulate data files. The application’s data files will have a unique
icon in File Manager.

The user can use data file icons to:

� Start (Open) the application
� Print data files

FIGURE 5–3 A data file’s pop-up menu containing ‘‘Open’’ and ‘‘Print’’

� Perform other operations, such as mailing, compressing, viewing, or playing
(audio) data

Chapter 5 • Registering an Application 73

The Purpose of Application Registration
A registered desktop application has certain configuration files used by the desktop to
provide the application’s user interface:

� Action and data type definition files
� Icon image (pixmap or bitmap) files
� A directory and files that create the application group
� Optionally, desktop help files and Front Panel definition files

In order for these files to be recognized and used by the desktop, they must be in
certain directories specified by the desktop’s search paths.

It can be difficult to administer an application when its configuration files are scattered
among numerous directories. Therefore, the desktop allows an application to keep all
its desktop configuration files gathered under a single directory. This grouping of files
is called a registration package.

If the application is desktop smart, it supplies a registration package as part of its
installation package. If you are a system administrator creating the configuration files
yourself, you can create the registration package yourself.

The configuration files in the registration package are not available to the desktop
because they are not located in the proper search path directories. The process of
placing these files in the proper locations is called registering, or integrating, the
application.

The desktop provides a tool, dtappintegrate, that performs the registration by
creating symbolically linked representations of the files in the proper search path
directories.

Many desktop-smart applications will automatically run dtappintegrate during
the installation process. If you are a system administrator integrating an existing
application, you can run it yourself after you’ve created the registration package.

Once an application is registered on a system’s desktop, the application is available to
all users on the system. If the system is configured as a desktop application server, the
application will also be available to other systems throughout the network.

The dtappintegrate tool has a command-line option that reverses the process by
breaking the links. This makes it easy to remove the application from the Application
Manager so that it can be moved to a different application server or updated.

74 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

General Steps for Registering an
Application

Note – For a detailed example that uses these steps to create an application package,
see “Example of Creating a Registration Package” on page 92.

1. Modify any application resources that set fonts and colors. Otherwise, the desktop’s
dynamic fonts and colors will not work properly.

See “Step 1: Modifying Font and Color Resources” on page 75.

2. Create an application root location.

See “Step 2: Creating the Desktop Application Root” on page 77.

3. Create the directory structure underneath the application root.

See “Step 3: Creating the Registration Package Directories” on page 77.

4. Create the actions and data types for the application.

See “Step 4: Creating the Actions and Data Types for the Application” on page 79.

5. Put the help files in an appropriate directory.

See “Step 5: Putting the Help Files in the Registration Package” on page 82.

6. Create the icons for the application

See “Step 6: Creating Icons for the Application” on page 83.

7. Create the application group for the application.

See “Step 7: Creating the Application Group” on page 84.

8. Register the application using dtappintegrate.

See “Step 8: Registering the Application Using dtappintegrate” on page 89.

Step 1: Modifying Font and Color Resources

Note – For an example of modifying resources for an application, see Step 1 of the
“Example of Creating a Registration Package” on page 92.

Chapter 5 • Registering an Application 75

The desktop provides mechanisms for setting and manipulating interface fonts and
window colors. In order for an application to use these mechanisms properly, you may
have to modify the application’s app-defaults file.

Modifying Font Resources

Note – This section applies to applications created using OSF/Motif 1.2™ (or later
versions). Style Manager cannot set interface fonts for applications written using
earlier versions of OSF/Motif.

The desktop Style Manager will set interface fonts for applications created using
OSF/Motif 1.2 (or later versions) if the application does not specify
application-specific interface fonts.

Style Manager provides two fonts:

system font—used by system areas such as labels, menus, and buttons

user font—used for editable areas such as text fields

Each font is provided in seven sizes, labeled 1 through 7 in the Fonts dialog box. The
Style Manager fonts are connected to actual fonts on the system through Style
Manager resources set in /usr/dt/app-defaults/language/Dtstyle.

If you want the application to use the Style Manager fonts, you should remove any
application resources that interface specify fonts. The desktop will automatically set
the application’s resources appropriately:

FontList—set to system font

XmText*FontList—set to user font

XmTextField*FontList—set to user font

Modifying Color Resources
Style Manager provides the ability to change application colors dynamically. The
application must be an OSF/Motif 1.1 or 1.2 client. Clients written with other toolkits
cannot change color dynamically; color changes take effect when the client is restarted.

The easiest way to use the dynamic colors provided by the desktop is to remove any
application color resources for background and foreground color.

76 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Step 2: Creating the Desktop Application Root

Note – For an example of creating the desktop application root directory for an
application, see Step 2 of “Example of Creating a Registration Package” on page 92.

The registration package files for the application are grouped beneath a directory
called the application root, or app_root. The app_root directory used for the desktop
configuration files can be the same directory as the application’s installation app_root
or some other location.

For example, suppose an application is installed under a directory /usr/BTE. This
same directory could be used as the app_root for the desktop configuration files.
However, if you are integrating an existing non-desktop smart application, create a
different desktop app_root directory. This will prevent the configuration files you create
from being overwritten when you update the application.

For example, a system administrator might want to create a directory
/etc/desktop_approots/BTE as the desktop app_root directory.

Step 3: Creating the Registration Package
Directories

Note – For an example of creating the registration package directories for an
application, see Step 3 of “Example of Creating a Registration Package” on page 92.

The registration package is the group of desktop configuration files used by the
desktop to provide a graphical interface for the application.

Registration Package Contents
The desktop configuration files include:

� Action and data type definition files

� Icon image files

� An application group directory and its contents

� Optionally: help data files and a Front Panel configuration file

Chapter 5 • Registering an Application 77

The registration package is gathered under a top-level directory called the
application root, or app_root.

FIGURE 5–4 A registration package beneath an application root directory

The major categories of configuration fields under the app_root/dt/appconfig
directory are shown in Table 5–1.

TABLE 5–1 Configuration Fields Major Categories

Subdirectory Contents

types Action and data type definition files

help Desktop help files

icons Bitmap and pixmap image files used by the application’s actions and
data types

appmanager The directory and contents that create the application group

Each of the major categories has subdirectories for language-dependent files.
Default-language files are placed in the C directory.

� To Create the Registration Package
� Create these directories. If you are providing language-dependent configuration

files, create a separate directory for each language. If you are supplying only one
language, put the files in the C directory.

� app_root/dt/appconfig/types/language

78 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� app_root/dt/appconfig/help/language

� app_root/dt/appconfig/icons/language

� app_root/dt/appconfig/appmanager/language/appgroup_name, where
appgroup_name is the name of the application group.

For example, Figure 5–5 shows Application Manager containing an group whose
appgroup_name is “Media_Tools.”

FIGURE 5–5 Application group at the top level of the Application Manager

The dtappintegrate tool operates only on the desktop configuration files in the
types, help, icons, and appmanager directories. The application’s binary
executable, app-defaults, and message catalog files are administered separately.

Step 4: Creating the Actions and Data Types for the
Application

Note – For an example of creating the actions and data types for an application, see
Step 4 of “Example of Creating a Registration Package” on page 92.

Actions and data types provide a user interface for the application.

� Actions provide a user interface for the command to launch the application.
� Data types provide customized appearance and behavior for the application’s data

files.

Chapter 5 • Registering an Application 79

Actions and Data Types Required by an Application
Typical applications require the following action and data type definitions:

� An action that opens the application.
� A data type for the data files of your application. If you create a data type, you will

also want to create:

� An Open action for the data files of your application
� A Print action for the data files of your application

� A data type for the application group (see “Configuring the Application Group To
Use a Unique Icon” on page 85).

For an introduction to how actions and data types are used in the desktop, see
Chapter 10.

Location for Action and Data Type Definition
Configuration Files
Actions and data types are defined in configuration files. The only naming
requirement for files containing action and data type definitions is that they must have
a .dt suffix. By convention, you may want to name the file action_name.dt or
application_name.dt.

Place files containing actions and data types under the application root in the directory
app_root/dt/appconfig/types/language. The default language is C.

FIGURE 5–6 Action and data type definition files

Ways to Create Actions and Data Types
You can create action and data type definitions for an application in either of two
ways:

� Use the Create Action tool.

80 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Create Action provides an easy-to-use interface with text fields that you fill in.
However, the tool has certain limitations.

� Create the definitions manually.

This requires you to learn the syntax for creating the definitions, but provides
access to the full range of functionality.

� To Create Actions and Data Types Using Create Action
This procedure uses the Create Action utility to create an action and data types for the
application.

For more information about Create Action, use its online help or see Chapter 11.

1. Open the Desktop_Apps application group and double-click Create Action.

2. Use Create Action to create the action and data type definitions for the application
and its data type.

The configuration file created by Create Action will be written to
HomeDirectory/.dt/type/action_name.dt. The action file (the executable file with
the same name as the action) is placed in your home directory.

3. Test the action using the action file created in your home directory.

4. Copy the action definition file HomeDirectory/.dt/type/action_name.dt to the
app_root/dt/appconfig/types/language directory.

5. After the application group directory has been created (see “Step 7: Creating the
Application Group” on page 84), copy the action file HomeDirectory/action_name to
the app_root/dt/appconfig/appmanager/language/appgroup_name directory.

� To Create Actions and Data Types Manually
� Create a configuration file containing the action and data type definitions for the

application.

Action and data type definition files must follow the naming convention name.dt.

You can place all your action and data type definitions in one file or distribute them
among multiple files. For each file, use a file name that system administrators will
easily connect with your application.

Action and data type names must be one word (no embedded spaces). You can use an
underscore character. By convention, the first letter of the action or data type name is
capitalized. Do not use an existing action name or file name. Use a name that
advanced users and system administrators will easily connect with your application.

If you want the application’s icon labeled with a different name than the action name,
include a LABEL field in the action definition.

Chapter 5 • Registering an Application 81

For more information about creating actions and data types, see:

� Chapter 10
� Chapter 11
� Chapter 12
� Chapter 13

Step 5: Putting the Help Files in the Registration
Package

Note – For an example of adding help files to a registration package, see Step 5 of
“Example of Creating a Registration Package” on page 92.

If the application includes a desktop help volume (a help volume created with the
desktop Help Developer’s Kit), the help volume master file (*.sdl) should be placed
in the directory app_root/appconfig/help/language.

Graphics used by the help files are usually placed in a graphics subdirectory. The
graphics must be located in the same directory relative to the master help volume
(*.sdl) file as when the help volume was created.

If the application does not provide a help volume, you can create one if you have the
Help Developer’s Kit.

There are two levels of integration of a help volume:

� Full integration.

When desktop help is fully integrated, the help volume can be accessed from the
application—for example, by on-item help and the Help menu. Full integration
involves modification to the application’s executables.

� Partial integration.

When desktop help is partially integrated, it is available from the top level of the
Help Manager. However, you cannot access the help volume from the application’s
windows. You can also provide an action to access the help from the application
group. The following example action displays the help volume located in the help
master file MyApp.sdl:

ACTION OpenMyAppHelp
{

LABEL MyAppHelp
ARG_COUNT 0
TYPE COMMAND
WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/dt/bin/dthelpview -helpVolume MyApp
DESCRIPTION Displays help for the MyApp application.

82 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

}

Step 6: Creating Icons for the Application

Note – For an example of creating the icon files for an application, see Step 6 of
“Example of Creating a Registration Package” on page 92.

The desktop provides default icons for actions, data types, and application groups.
However, you will probably want to create unique icons for the application.

Icons are placed in the directory app_root/dt/appconfig/icons/language.

Icons Required for the Desktop
The application uses these icon images on the desktop:

� Action icon. This is the icon the user double-clicks to start your application
(actions). It is referenced in the ICON field of the action that launches the
application.

Supply three sizes: tiny, medium, and large.

� Data type icon. This icon is used to represent the application’s data files in File
Manager. It is referenced in the ICON field of the data type definition.

If your application supports multiple data types, you should provide a different
icon for each data type.

Supply two sizes: tiny and medium.

� Application group icon. This is the icon representing the directory at the top level of
the Application Manager. It is referenced in the ICON field of the data type
definition for the application group. (See “Step 7: Creating the Application Group”
on page 84.)

Supply two sizes: tiny and medium.

You may need to supply both pixmap and bitmap versions of each icon to support
color (eight-bit and larger) and monochrome (fewer than eight bits) displays.

TABLE 5–2 Naming Conventions for Icon Files

Size Pixel Dimensions Bitmap Name Pixmap Name

tiny 16 by 16 basename.t.bm basename.t.pm

medium 32 by 32 basename.m.bm basename.m.pm

Chapter 5 • Registering an Application 83

TABLE 5–2 Naming Conventions for Icon Files (Continued)
Size Pixel Dimensions Bitmap Name Pixmap Name

large 48 by 48 basename.l.bm basename.l.pm

If you do not provide bitmap files, the desktop maps the color specifications of the
pixmap files into black and white. However, this mapping may not produce the
appearance you want.

For more information about icons, see “Icon Image Files” on page 223.

Step 7: Creating the Application Group

Note – For an example of creating the application group, see Step 7 of “Example of
Creating a Registration Package” on page 92.

Once you have created the action and data type definitions for the application, you
must create the configuration files responsible for creating what the user actually
sees—the application group and its contents.

The application group is a directory at the top level of the Application Manager (see
Figure 5–1).

There are three steps to creating the application group:

� Create the application group directory in the registration package.

� Optional: configure the application group to use a unique icon. This involves
creating the data type definition for the application group directory.

� Create the contents of the application group.

Creating the Application Group Directory
To create an application group, create the directories in the registration package under
appmanager, as shown in Figure 5–7.

84 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

FIGURE 5–7 The appmanager directory

Application Group Name
The <appgroup_name> in Figure 5–7 is the name for the application group.

FIGURE 5–8 The application group name (<appgroup_name>)

The name can be any allowable file (directory) name. Use a name that describes the
application.

Configuring the Application Group To Use a Unique Icon
The desktop provides a default application-group icon. However, you will probably
want to provide a custom icon.

If you want to provide a unique icon for the application group, you must create:

� A data type for the directory that appears at the top level of Application Manager.

Chapter 5 • Registering an Application 85

� Open and Print actions for the data type.

For example, suppose you want to create an application group named
Media_Tools. The following data type definition, placed in a file
app_root/dt/appconfig/types/language/name.dt, assigns a unique icon to the
application group icon.

DATA_ATTRIBUTES Media_ToolsAppgroup
{

ACTIONS OpenInPlace,OpenNewView
ICON MediaTools
DESCRIPTION Double-click to open the Media_Tools \

application group

}

DATA_CRITERIA Media_ToolsAppgroupCriteria1
{

DATA_ATTRIBUTES_NAME Media_ToolsAppgroup
MODE d
PATH_PATTERN */appmanager/*/Media_Tools

}

The attributes section of the definition specifies the icon to be used. The criteria
section of the definition specifies that the data type be defined to any directory
named Media_Tools that is a subdirectory of a directory named appmanager.

Figure 5–9 shows the relationship between the application group name and the
data type definition. The PATH_PATTERN field in the data type definition connects
a unique icon to the application group.

FIGURE 5–9 How an application group gets a unique icon

You should also create an Open and Print action for the application group data type:

ACTION Open
{

ARG_TYPE Media_ToolsAppGroup
TYPE MAP

86 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

MAP_ACTION OpenAppGroup

}

ACTION Print
{

ARG_TYPE Media_ToolsAppGroup
TYPE MAP
MAP_ACTION PrintAppGroup

}

OpenAppGroup and PrintAppGroup actions are built-in actions defined in
/usr/dt/appconfig/types/language/dtappman.dt.

Creating the Contents of the Application Group
The most important item in the application group is an icon to start the application (an
action icon). If the application group contains a suite of applications, there is usually
an icon for each application.

In addition to one or more action icons, the application group may contain:

� One or more README files
� One or more sample data files
� Templates
� An icon the user can double-click to view help information
� A man page
� A specialized Front Panel control

The application group can contain subdirectories.

Creating the Action File (Application Icon)
The application group should contain an icon that launches the application. If the
group supplies a suite of applications, there should be an icon for each one. These
icons are called application icons, or action icons, since they represent an underlying
action.

An action icon is created by creating an executable file with the same name as the
action it will run:

app_root/dt/appconfig/appmanager/appgroup_name/action_name

The file is called an action file, because its purpose is to create a visual representation of
the underlying action.

For example, if you’ve created an action named BestTextEditor that runs the
BestTextEditor application, you would create an executable file named BestTextEditor.
In File Manager and the Application Manager, the action file will use the icon image
specified in the action definition.

Chapter 5 • Registering an Application 87

Figure 5–10 illustrates the relationship between the action definition, action file, and
actual entry in the Application Manager window.

FIGURE 5–10 The application icon is a file in the application group

Read Me Files

The desktop provides a README data type that you can use for your application’s
README files. Use one of these naming conventions:

� README
� readme
� README.*
� Read.*.Me
� read.*.me
� READ.*.ME

Creating a Specialized Front Panel Control

In most cases, you do not need to provide a Front Panel control definition; the user can
add the application to the Front Panel by dropping the action icon on the Install Icon
control in a subpanel.

88 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

You might want to create a Front Panel configuration file containing a control
definition for your application if you want users to be able to install a control that
behaves differently than the action icon—for example, if the control monitors a file and
changes appearance when the monitored file changes.

Front Panel configuration files are placed in the
app_root/dt/appconfig/types/language directory. The naming convention is
name.fp.

If you supply a configuration file containing a control, the user can add the control to a
subpanel by dropping the *.fp file on the Install Icon control in the subpanel.

For example, the following definition can be placed in a Front Panel configuration file
in the application group. If the user drops this file on an Install Icon control in a
subpanel, a control is created in the subpanel that runs a single instance of the
BestTextEditor application. If BestTextEditor is already running, the window is moved
to the top of the window stack in the current workspace.

CONTROL BestTextEditorControl
{

TYPE icon
ICON BTEFPanel
PUSH_RECALL True
CLIENT_NAME BTEd
PUSH_ACTION BTEditor
DROP_ACTION BTEditor
HELP_STRING Starts the BestTextEditor application.

}

For additional information about creating Front Panel configuration files, see:

� Chapter 15
� The dtfpfile(4) man page

Step 8: Registering the Application Using
dtappintegrate

Note – For an example of registering an application, see Step 8 of “Example of
Creating a Registration Package” on page 92.

Once you’ve created a registration package under an application root, you are ready to
perform the actual application registration.

Application registration creates links between the registration package and the
directories located along the desktop search paths (see “How dtappintegrate
Integrates Applications” on page 90).

Chapter 5 • Registering an Application 89

� To Register an Application with dtappintegrate
If the application is desktop-smart, dtappintegrate is usually run automatically as
the final step in the installation process. If it is not run automatically, or if you have
created the configuration files to integrate a non-desktop smart application, then you
can run dtappintegrate manually.

1. Log in as root.

2. Run the command:

/usr/dt/bin/dtappintegrate -s app_root

where app_root is the desktop application root directory. For more information, see the
dtappintegrate(1) man page.

3. Open the Desktop_Tools application group and double-click Reload Applications.

4. Verify that the application is properly registered:

a. Display the top level of the Application Manager. The new application group
should appear in the Application Manager.

b. Open the application group and double-click the action icon.

Syntax and Options for dtappintegrate

dtappintegrate -s app_root [-t target_path] [-l language] [-u]

-s app_root Required parameter, specifies the application root under
which the appication has been installed.

-t target_path Optional parameter, defaults to the system location
/etc/dt/appconfig. Specifies the location to which
the desktop configuration files are linked. You must use
a location on the application search path.

-l language Optional parameter, defaults to all languages. Specifies
which language-dependent desktop configuration files
to integrate.

-u Optional parameter, un-integrates the application,
removing all the links set up during integration.

How dtappintegrate Integrates Applications
The function of dtappintegrate is to set up links between the installed files and the
locations where the desktop looks for configuration files.

90 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Actions and Data Types

dtappintegrate creates symbolic links from the action and data type definition files
in the registration package to the system-wide directory along the action database help
search path. This is done by creating links from

app_root/dt/appconfig/types/language/*.dt

to

/etc/dt/appconfig/types/language/*.dt

Help Information Files

dtappintegrate creates symbolic links from the help files in the registration
package to the system-wide directory along the help search path. This is done by
creating links from

app_root/dt/appconfig/help/language/help_file.sdl

to

/etc/dt/appconfig/help/language/help_file.sdl

Icon Files

dtappintegrate creates symbolic links from the icon files in the registration
package to the system-wide directory along the icon search path. This is done by
creating links from

app_root/dt/appconfig/icons/language/icon_files

to

/etc/dt/appconfig/icons/language/icon_files

Application Group

To place the application group for the application into the top level of Application
Manager, dtappintegrate creates a link between the application group directory in
the registration package and the system-wide location along the application search
path. This is done by creating links from the directory

app_root/dt/appconfig/appmanager/language/appgroup_name

to

/etc/dt/appconfig/appmanager/language/appgroup_name

Chapter 5 • Registering an Application 91

Example of Creating a Registration
Package
The following steps create a registration package for an existing, non-desktop smart
application named BestTextEditor.

Information You Need to Know About
‘‘BestTextEditor’’
The example assumes the following facts about the BestTextEditor application:

� It was installed into the directory /usr/BTE.

� The user’s session language is the default value, C.

� The command line to start BestTextEditor is:

BTEd {filename]

where filename is the name of the data file to open in the new window.
BestTextEditor creates its own window—that is, it does not run inside a terminal
emulator window.

� BestTextEditor creates and uses two types of data files:

� Documentation files. They use the naming convention *.bte. BestTextEditor
provides a command line for printing its .bte data files. The syntax of this
command is:

BTEPrint [-d destination] [-s] filename

where:

-d destination—specifies destination printer.

-s—specifies silent printing. The application’s print dialog box is not
displayed.

filename—specifies the file to be printed.

� Template files. They use the naming convention *.tpl. Template files cannot
be printed.

� The existing, non-desktop app-defaults files for BestTextEditor contain resources
for interface fonts and foreground and background colors.

92 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� An online help volume for BestTextEditor was created using the desktop Help
Developer’s Kit. When the online help volume was built, it used the following
source files:

.../BTEHelp.htg
.../graphics/BTE1.xwd

.../graphics/BTE2.xwd

and generated the file …/BTEHelp.sdl.

Steps to Registering ‘‘BestTextEditor’’
The following step-wise procedure registers BestTextEditor.

1. Modify font and color resources.

In BestTextEditor’s app-defaults file, remove resources that set:

� Fonts for text
� Colors for foreground and background

2. Create the application root.

Create the directory:

/desktop_approots/BTE

If you are integrating an existing application, you should create the application root
directory elsewhere than in the installation location for the application; otherwise, the
configuration files you create may be removed when you update the application.

3. Create the registration package directories.

Create these directories:

/desktop_approots/BTE/dt/appconfig/types/C
/desktop_approots/BTE/dt/appconfig/help/C
/desktop_approots/BTE/dt/appconfig/icons/C

/desktop_approots/BTE/dt/appconfig/appmanager/C/BestTextEditor

4. Create the actions and data types for the application.

a. Create the configuration file for the action and data type definitions:

/desktop_approots/BTE/dt/appconfig/types/C/BTE.dt

b. Create the action definition for running BestTextEditor:

ACTION BTEditor
{

WINDOW_TYPE NO_STDIO
ICON BTERun
DESCRIPTION Double-click this icon or drop \

a BTE data file on it to run \
BestTextEditor.

Chapter 5 • Registering an Application 93

EXEC_STRING /usr/BTE/BTEd %Arg_1%

}

c. Create the data type for *.bte files:

DATA_ATTRIBUTES BTEDataFile
{

DESCRIPTION BestTextEditor data file.
ICON BTEData
ACTIONS Open,Print

}

DATA_CRITERIA BTEDataFileCriteria1
{

DATA_ATTRIBUTES_NAME BTEDataFile
NAME_PATTERN *.bte
MODE f

}

d. Create the data type for *.tpl files:

DATA_ATTRIBUTES BTETemplateFile
{

DESCRIPTION BestTextEditor template file.
ICON BTETempl
ACTIONS Open

}

DATA_CRITERIAL BTETemplateFileCriteria1
{

DATA_ATTRIBUTES_NAME BTETemplateFile
NAME_PATTERN *.tpl
MODE f

}

e. Create the Open action for *.bte files.

ACTION Open
{

ARG_TYPE BTEDataFile
TYPE MAP
MAP_ACTION BTEditor

}

f. Create the Print action for *.bte files.

Here are simple Print actions that will print the data files. These actions require a
value for the LPDEST environment variable and ignore the -s print option. (If
LPDEST isn’t set, the action may fail.)

ACTION Print
{

ARG_TYPE BTEDataFile
TYPE MAP
MAP_ACTION BTEPrintData

}

94 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

ACTION BTEPrintData
{ WINDOW_TYPE NO_STDIO

EXEC_STRING BTEPrint -d $LPDEST %Arg_1%

}

Here is another version of the BTEPrintData action and an accompanying script.
Together, they handle situations where LPDEST is not set or if silent printing is
requested.

ACTION BTEPrintData
{

WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/BTE/bin/BTEenvprint \

%(File)Arg_1%

}

The contents of the /usr/BTE/bin/BTEenvprint script are:

BTEenvprint
#!/bin/sh
DEST=””
SILENT=””
if [$LPDEST] ; then

DEST=”-d $LPDEST”
fi

BTEPrint $DEST SILENT $1

g. Create the Open action for *.tpl files:

ACTION Open
{

ARG_TYPE BTETemplateFile
TYPE MAP
MAP_ACTION BTEditor

}

h. Create the Print action for *.tpl files:

ACTION Print
{

ARG_TYPES BTETemplateFile
TYPE MAP
MAP_ACTION NoPrint

}

NoPrint is a built-in action that displays a dialog box telling the user the file cannot
be printed.

5. Put the help files into the registration package.

a. Place the help files in the following locations:

/desktop_approots/BTE/dt/appconfig/help/C/BTEHelp.sdl
/desktop_approots/BTE/dt/appconfig/help/C/graphics/BTE1.xwd

/desktop_approots/BTE/dt/appconfig/help/C/graphics/BTE2.xwd

b. Create the file:

Chapter 5 • Registering an Application 95

/desktop_approots/BTE/dt/appconfig/types/C/BTEhelp.dt.

Put the following action definition in the file:

ACTION BTEHelp
{

WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/dt/bin/dthelpview -helpVolume \

BTEHelp.sdl
DESCRIPTION Opens the BestTextEditor help volume.

}

6. Create icons for the application.

Use Icon Editor to create the icons. Table 5–3 shows the size guidelines to use.

TABLE 5–3 Icon Size Guidelines

Name Size

basename.t.pm 16 by 16

basename.m.pm 32 by 32

basename.l.pm 48 by 48

Create these icon files in the directory
/desktop_approots/BTE/dt/appconfig/icons/C:

� Icons to represent the action that runs the application: BTERun.t.pm,
BTERun.m.pm, BTERun.l.pm

� Icons to represent *.bte files: BTEData.t.pm, BTEData.m.pm,

� Icons to represent *.tpl files: BTETempl.t.pm, BTETempl.m.pm

� Icons to represent the application group (used in step 7): BTEApp.t.pm,
BTEApp.m.pm

7. Create the application group.

a. If you haven’t already done so, create the directory.

/desktop_approots/BTE/dt/appconfig/appmanager/C/BestTextEditor

b. This step is optional. It provides a unique icon for the application group icon by
creating a data type and associated actions for the application group. If you omit
this step, the application group will use the default icon.

Add the following data type and action definitions to the file
/desktop_approots/BTE/dt/appconfig/types/C/BTE.dt. The data type
specifies the icon to be used by the BestTextEditor application group. The actions
provide the same Open and Print behavior as the built-in application groups.

DATA_ATTRIBUTES BestTextEditorAppGroup
{

ACTIONS OpenInPlace,OpenNewView

96 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

ICON BTEApp

{

DATA_CRITERIA BestTextEditorAppGroupCriterial
{

DATA_ATTRIBUTES_NAME BestTextEditorAppGroup
MODE d
PATH_PATTERN */appmanager/*/BestTextEditor

}

ACTION Open
{

ARG_TYPE BestTextEditorAppGroup
TYPE MAP
MAP_ACTION OpenAppGroup

}

ACTION Print
{

ARG_TYPE BestTextEditorAppGroup
TYPE MAP
MAP_ACTION PrintAppGroup

}

c. Create an icon in the application group that will start the application. To do this,
create the file:

/desktop_approots/BTE/dt/appconfig/appmanager/C \

/BestTextEditor/BTEditor

and make the file executable.

d. Create the action file in the application group that will open the help volume. To
do this, create the file:

/desktop_approots/BTE/dt/appconfig/appmanager/C \

/BestTextEditor/BTEHelp

and make the file executable.

e. Put other files into the application group; for example, “read me” files, sample
data and template files.

8. Register the application.

In a terminal emulator window:

a. Log in as root.

b. Run the command:

/usr/dt/bin/dtappintegrate -s /desktop_approots/BTE

c. Open the Desktop_Tools application group and double-click Reload
Applications.

Chapter 5 • Registering an Application 97

98 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 6

Miscellaneous Configurations

This chapter addresses setup and system administration topics.

� “Solaris CDE Directory Structure” on page 99
� “Key Configuration Files” on page 101
� “Starting the Login Server” on page 102
� “Mounting an Installed CDE from Another Workstation or Network Server

Installation Location” on page 104
� “Configuring Your Desktop To Use Multiple Screens” on page 105
� “Networked Desktops” on page 106
� “Using XTerminals” on page 108
� “Login Locale and Font Path” on page 109
� “Using Workstations as XTerminals” on page 109
� “Special CDE Configurations” on page 111

Solaris CDE Directory Structure
This section describes the main directories included in your desktop environment.

/usr/dt
This directory is the Solaris CDE installation location. It can also be the mount point
from a remote file server. Table 6–1 describes the /usr/dt subdirectories.

99

TABLE 6–1 /usr/dt Subdirectories

Subdirectory Description

/bin SCDE applications and utilities

/lib SCDE run-time shared libraries

/config Default system configuration files

/man [Optional] Man pages

/app-defaults Default application resources

/appconfig Default application icons, types, and actions

/examples [Optional] CDE code/program examples

/include [Optional] Developer include files

/palettes Color palettes

/share CDE AnswerBook documentation and default backdrops

/etc/dt
This directory contains customized workstation-specific configuration files. These files
enable you to customize your environment in the following ways:

� Set X-server configuration options
� Use multiple screens
� Customize workstation action files, data types, icons, and fonts

/var/dt
This directory is used to store temporary files for Solaris CDE applications such as
Login Manager and Application Manager.

$HomeDirectory
This directory contains user specific files that relate to the user’s desktop setup. They
include applications, color scheme, Workspace menu and Front Panel modifications,
and error logs.

100 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Key Configuration Files
Most customization of your desktop environment can involve many files. The
following files are two examples:

� /usr/dt/config/Xconfig
� /usr/dt/config/Xservers

Xconfig
Xconfig is the master configuration file used by dtlogin. It sets login resources and
specifies locations of additional files required by dtlogin. The following example
shows a few of the lines found in the default Xconfig file:

Dtlogin.errorLogFile: /var/dt/Xerrors

Dtlogin.servers: /usr/dt/config/Xservers

Dtlogin*session: /usr/dt/bin/Xsession

For more information about this file, refer to Appendix A. You can also review the
explanatory comments in the file itself.

Xservers
dtlogin, like XDM (X Display Manager) on which it is based, uses the Xservers file
to specify how the local Xserver is started. By default, the last line in this file is:

:0 Local local@console /usr/openwin/bin/Xsun :0

� :0 means that the Xserver display is <localhost:0>.

� local indicates to start the new X11 server locally.

Note – Replace local with foreign if you want to attach to a running X11 server.

� console means that the Command Line Login escape is to /dev/console.

� /usr/openwin/bin/Xsun is the path to the X11 server.

Note – The Solaris CDE and OpenWindows™ environments run the same X11 server.

Refer to the dtlogin(1) man page for more information about this file. You can also
review the explanatory comments in the file itself.

Chapter 6 • Miscellaneous Configurations 101

Starting the Login Server
The login server is usually started automatically when the system is booted. You can
also start the login server from a command line, but you must log in as the root user
first.

To set the login server to start when the system Is booted:

� Type the following command and press Return:

/usr/dt/bin/dtconfig -e

This will add a S99dtlogin file to your /etc/rc2.d directory. The login server
starts automatically when you reboot.

To disable the login server from starting automatically when the system is booted:

� Type the following command and press Return:

/usr/dt/bin/dtconfig -d

To start the login server from a command line:

� Type the following command and press Return:

/usr/dt/bin/dtlogin -daemon; exit

Note – Although starting the login server from the command line is available for
temporary configuration testing, the login server should normally be started when the
system is booted.

To kill the login server, Xserver, and the entire Solaris CDE desktop:

� Type the following command and press Return:

/usr/dt/bin/dtconfig -kill

For more information about the desktop configuration utility, dtconfig, see
Appendix A. It provides a copy of the dtconfig.1 man page.

To exit the Solaris CDE login screen using the Command Line Login Option:

� Choose Command Line Login from the Options menu on the Solaris CDE login
screen. After the screen clears, press Return to display a login prompt.

102 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Note – The desktop login daemon will start the desktop login screen automatically
after you are finished with the Command Line Login.

To start a single terminal emulation window:

� Choose Failsafe Session from the Session submenu of the Options menu on the
Solaris CDE login screen.

If you want to leave the Xserver running, choose Failsafe Session from the Session
submenu. This will start a single xterm window. The Failsafe Session option is always
available, even when the Command Line Login option is not available.

Chapter 6 • Miscellaneous Configurations 103

Mounting an Installed CDE from
Another Workstation or Network Server
Installation Location
You can mount an installed CDE from another workstation or network server
installation location if you do not have the required disk space on your workstation,
since this procedure does not use your local disk space.

Note – Since the /usr/dt directory structure differs between Solaris releases and
client workstations (SPARC directory structure differs for the Intel directory structure),
the client workstation must mount the appropriate NFS server /usr/dt image. For
example, a SPARC system with Solaris 2.5 would mount /usr/dt from another Solaris
2.5 system with /usr/dt installed CDE.

� To Mount an Installed CDE
1. Mount a /usr/dt directory from a previously installed workstation or network

server to the /usr/dt directory on your workstation.

2. Type /usr/dt/bin/dtconfig -inetd

3. Enable the Solaris Desktop Login by typing:

/usr/dt/bin/dtconfig -e

4. Reboot your workstation.

For more information about the desktop configuration utility, dtconfig, see
Appendix A. It provides a copy of the dtconfig(1) man page.

� To Unmount a Mounted CDE Directory
1. Disable the Solaris Desktop Login by typing:

/usr/dt/bin/dtconfig -d

2. Type /usr/dt/bin/dtconfig -inetd.ow

3. Unmount /usr/dt.

4. Reboot your workstation.

104 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For more information about the desktop configuration utility, dtconfig, see
Appendix A. It provides a copy of the dtconfig(1) man page.

Configuring Your Desktop To Use
Multiple Screens
The standard login starts the desktop on a single screen. You can edit the Xconfig file
to have the desktop start on multiple screens. You must be logged in as the root user
to change this file.

Note – For faster editing of login configuration information, use the Failsafe Session
option to run a single xterm window rather than the whole desktop.

� To Make the Desktop Start on Multiple Screens
1. Create a copy of the Xserver file by typing the following command and pressing

Return:

cp /usr/dt/config/Xservers /etc/dt/config/Xservers

Note – /etc/dt/config/Xservers overrides /usr/dt/config/Xservers.

2. Edit the /etc/dt/config/Xservers file to set up two frame buffers (screens):

a. Find the line:

:0 Local local_uid@console root /usr/openwin/bin/Xsun :0

b. At the end of this line add two -dev options. This example assumes they are
named /dev/fb0 and /dev/fb1. Add the following preceded by a space:

-dev /dev/fb0 -dev /dev/fb1

3. Choose Reset Login Screen from the Options menu.

Chapter 6 • Miscellaneous Configurations 105

Note – When running Solaris CDE on multiple screens, a Front Panel is displayed on
each screen. These Front Panels are independent of each other and have separate
configuration files.

Networked Desktops
The Solaris CDE Login Manager is network aware. By default, login screens will
respond to queries by the Solaris CDE Chooser.

To show the list of remote hosts:

� Select Choose Host From List from the Remote Login menu on the Solaris CDE
login screen.

Alternatively, to run the Chooser independently of the login screen, refer to the section
“Using Workstations as XTerminals” on page 109. The following screen shows a
typical Chooser list of available servers.

106 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

You can select an idle server from the list to use its resources via Chooser to log in to
Solaris CDE.

Any networked workstation running the Solaris CDE Login Manager can support
both a local desktop user and multiple remote users including Xterminal users using
the workstation as a Solaris CDE desktop server. (See Figure 6–1.)

Workstation XYZ running Solaris
CDE Login Manager (dtlogin)

Xterminal Xterminal

Workstation with Chooser window
(X -indirect XYZ)

Workstation with Login window
(X -query XYZ)

Workstation with Login window
(X -broadcast XYZ)

FIGURE 6–1 Networked Desktops

Note – Figure 6-1 can include a mixed hardware environment.

Chapter 6 • Miscellaneous Configurations 107

Using XTerminals
Any Xterminal that supports the XDM protocol can use Chooser to log in to Solaris
CDE. To run the Chooser, refer to the section “Using Workstations as XTerminals”
on page 109. The SPARC Xterminal™ software version 2.0 (or later) works well with
Solaris CDE. Click Properties on the X-Terminal Controls window and choose Session
as the Category to display the setup screen shown in Figure 6–2.

FIGURE 6–2 Session setup screen

Select None for the Local Window Manager, and XDM Indirect for the XDM
connection to the remote system running Solaris CDE.

108 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Login Locale and Font Path
You select the preferred language when you log in to Solaris CDE. The following
Solaris CDE login screen shows the Language choice on the Options menu.

On workstations, font paths are automatically set to include fonts (and aliases)
associated with both the preferred language and the system’s base “C” locale. For
Xterminals, these fonts are automatically supplied by an X11 font server.

Using Workstations as XTerminals
If you have older workstations or workstations with 16 megabytes or less of memory,
you can use them as Xterminals when they are loaded with Solaris 2.4 software or
later (or Solaris 2.3 software with the Xserver jumbo patch).

Chapter 6 • Miscellaneous Configurations 109

Note – If the fonts on your workstation’s screen do not display normally when
following the procedures below, Solaris CDE may not be installed on the host
workstation. Use the pkgadd utility to add the SUNWdtft() Solaris CDE font
package separately from a Solaris CDE 1.0.x unbundled release.

� To Use Chooser To Select a Host CDE Login
1. Exit any running window system.

2. Start Chooser. From the console command line, type the following commands
(using csh):

setenv OPENWINHOME /usr/openwin

/usr/openwin/bin/X -indirect CDE_login_host

The Xserver starts and displays the Chooser window from the host.

3. Select the desired login host from the Chooser window.

� To Use a Specific Host CDE Login
� Type the following command and press Return:

/usr/openwin/bin/X -once -query CDE_login_host

The Xserver starts and displays the Login screen from the host. The -once option will
exit the server after one login/logout session. If the -once option is not added, the
Login screen appears again after the Solaris CDE logout.

� To Use the First Available Host Login
� Type the following command and press Return:

/usr/openwin/bin/X -broadcast

This starts the Xserver. On the local sub-net, it broadcasts a request for an XDM (X
Display Manager) login service. If any systems on the sub-net are running the Solaris
CDE Login Manager (or any other XDM-based login window), the first host to
respond places its login window on your desktop.

110 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Special CDE Configurations
This section addresses special configurations.

Customizing Mail Printing
The CDE Mailer prints mail messages using the Print action that is defined for the
DTMAIL_FILE data type. It does not use the print script specified by the
OpenWindows Mail Tool. To change the print behavior you must modify this Print
action.

� To Modify the Print Action
1. Using your favorite editor, create the following file:

HomeDirectory/.dt/types/dtmail.dt

2. Enter the following lines into this file:

#

Override default Print action for mailboxes

#

ACTION Print

{

LABEL Print

ARG_TYPE DTMAIL_FILE

TYPE COMMAND

WINDOW_TYPE NO_STDIO

EXEC_STRING sh -c ’ \

dtmailpr -p -f %(File)Arg_1% | mp -m -l | \

dtlp -u %(File)Arg_1%;’

}

Chapter 6 • Miscellaneous Configurations 111

Note – dtmailpr is a print filter that strips out attachments, resulting in a stream of
plain text. dtlp is the standard CDE interface to lp. %(File)Arg_1% is the file being
printed.

3. Modify the EXEC_STRING to include the print commands you want.

4. Restart Mailer.

Converting Calendars to New Data Format
The version 4 extensible data format is a new format supported by the CDE Calendar.
The OpenWindows Calendar Manager will not be able to read this format. If you need
to switch back and forth between the OpenWindows and CDE platforms, you should
not convert your calendar to the version 4 data format. However, you can use the
sdtcm_convert script to prune your calendar.

Note – You can find out the data version of your calendar by choosing About
Calendar from the Calendar Help menu.

Otherwise, use the sdtcm_convert script to convert your calendar to the version 4
data format.

For more information about this file, refer to the sdtcm_convert(1) man pages.

Note – If you installed only the End User CDE Packages, the man pages were not
installed. To see the man pages, you will need to install them with the pkgadd utility.

Adding the AnswerBook Package from the
Network
When installing Solaris CDE, the installation menu gives you the option to install the
AnswerBook CDE package. If you choose YES, the AnswerBook package is installed in
the /usr/dt/share/answerbooks/language directory (language is the local name of
the particular AnswerBook translation).

Since the AnswerBook package requires 109 megabytes of disk space, you may not
want to install it. However, the following two options are available:

� You can mount (or link from /net/. . .) the AnswerBook package to
/usr/dt/share/answerbooks/language.

112 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� You can add the AB_CARDCATALOG environment variable to
HomeDirectory/.dtprofile. For example, if you have an exported version on
your network, then add the following line to HomeDirectory/.dtprofile:

export AB_CARDCATALOG=/net/hostname/usr/dt/share/answerbooks \

/language/ab_cardcatalog

Setting Up the CDE Environment Outside the CDE
Desktop
Environment variables used by your Solaris CDE applications can be set up outside
the CDE desktop. For example, you may want to log in to a remote workstation and
display a CDE application back to your workstation. Use the CDE utility
dtsearchpath to set up various CDE shell environment variables.

For Bourne and Korn shells, type the following command:

eval ‘/usr/dt/bin/dtsearchpath‘

For C shell, type the following command:

eval ‘/usr/dt/bin/dtsearchpath -c‘

You could follow this command by setting DISPLAY back to the local workstation and
then running the CDE application remotely. The results will be displayed on the local
workstation.

Note – In this example, the Bourne and Korn shell dtsearchpath syntax is part of
the CDE sample implementation available on all platforms running CDE. However,
the C shell (-c) option is only available on a Sun platform.

Desktop Environment File
The CDE desktop provides a run-time environment for the OpenWindows DeskSet™
applications. Nothing special needs to be done to the CDE setup for this capability.
Some of this environment setup is provided by the following file:

/usr/dt/config/Xsession.d/0015.sun.env

If you need to add to or subtract from this environment setup for a particular
workstation, this file can be either edited in place or copied first to the following file
location:

/etc/dt/config/Xsession.d/0015.sun.env

Chapter 6 • Miscellaneous Configurations 113

One example of an addition would be the start-up of the old OpenWindows virtual
keyboard for use by the OpenWindows DeskSet applications. Since most applications
on a CDE desktop (and the majority of Sun users) do not use this virtual keyboard
utility program, it was left out of the default start sequence to improve overall desktop
start-up performance.

See comments in the 0015.sun.env file for additional information on the optional
OpenWindows virtual keyboard (vkdb) start-up.

Using Floppy and CD Media with the Apple
Macintosh Application Environment
If you have installed the Apple Macintosh Application Environment (MAE) version
1.0 and intend to use removable media (diskettes or CD-ROMs) through the
OpenWindows File Manager application, you must edit the /etc/rmmount.conf
file. This ensures that the MAE will work properly with File Manager removable
media.

� To Change the /etc/rmmount.conf File
1. Become the root user by typing su, then type your password.

2. Change to the /etc directory. Type the following command and press Return:

cd /etc

3. Open the /etc/rmmount.conf file in your favorite editor.

4. Move the following line under #Actions to the end of the list:

action floppy action_macfs.so

For example:

more rmmount.conf

@(#)rmmount.conf 1.2 92/09/23 SMI

#

Removable Media Mounter configuration file.

#

File system identification

ident hsfs ident_hsfs.so cdrom

ident ufs ident_ufs.so cdrom floppy

ident pcfs ident_pcfs.so floppy

114 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

ident macfs ident_macfs.so floppy

Actions

action cdrom action_filemgr.so

action floppy action_filemgr.so

action floppy action_macfs.so

5. Save and exit.

When the MAE is installed, it puts the macfs action line in the rmmount.conf file
for you. If MAE is de-installed, the line is removed.

This change enables you to use removable media in the OpenWindows or CDE File
Manager application and still use Macintosh floppies in MAE. However, it does stop
MAE from grabbing unformatted, unreadable, or DOS floppies. All those disks will go
to the OpenWindows File Manager application using this setup procedure.

If you want to allow MAE access to unreadable, unformatted, or DOS floppies, then
the action floppy action action_macfs.so line must be placed before the
action floppy action_filemgr.so line.

Chapter 6 • Miscellaneous Configurations 115

116 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 7

Configuring the Desktop in a Network

The desktop is designed to work well in a highly networked environment.

� “Overview of Desktop Networking” on page 117
� “General Steps for Configuring Desktop Networking” on page 121
� “Configuring Base Operating System Networking for the Desktop” on page 121
� “Configuring Desktop Clients and Servers” on page 124
� “Administering Application Services” on page 129

The architecture of the desktop lets system administrators distribute computing
resources throughout the network, including:

� Applications
� Data files for applications
� Desktop session services (desktop applications such as Login Manager and File

Manager)
� Help services (help data files can be put on a central help server)

Overview of Desktop Networking
The operating system provides a variety of networking services, including distributed
file systems and remote execution. X servers provide additional networking
capabilities, including access to remote displays and security services.

The desktop layers a user interface on top of these networking features. The goals of
this interface and its underlying architecture are to make networked systems:

� Easier to use. Users can run applications and access data files without worrying
about where in the network the applications and data are located.

117

� Easier to administer. The desktop provides application integration tools and
networked search paths that make locating remote data and applications easier for
systems. In addition, the desktop’s file-name mapping process makes
administering complex networks containing numerous servers easier.

� Flexible. While the administration features of the desktop have been designed for
certain common network situations, the desktop can accommodate many other
customized network configurations.

Types of Networked Desktop Services
Networking enables a user to access various computing services distributed among
other systems, such as:

� The desktop session and its applications—for example, Workspace Manager and
File Manager

� Other applications

� Data files

Networking terminology uses the term server to describe a system that provides
computing services to one or more other systems. When a system receives services
from a server, it is called a client of that server.

In a complex network, a system may use services located on a number of systems
throughout the network. Furthermore, a system may act as a particular type of server
(for example, a session server) and may also be a client (for example, of an application
server).

Typical Network Situations
From a desktop perspective, a typical network configuration may contain some
combination of these major components:

Displays—where the X server is running

Login/Session servers—where the desktop applications (Login Manager, Workspace
Manager, and the like.) run

Application servers—where other applications run

File servers—where data used by applications is located

118 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

One of the most common network configurations involves systems accessing an
application server. Figure 7–1 illustrates a workstation that uses an application server.
The X server and desktop session are running on the workstation.

FIGURE 7–1 Application servers provide services to the desktop session

Networks also frequently use file servers to store large amounts of data. This data may
be used by applications running on an application server, or by the desktop
applications (for example, File Manager needs access to data files to display them in
the File Manager window).

FIGURE 7–2 File servers provide data to application servers and session servers

X terminals run the X server and obtain desktop session services from another system.

Chapter 7 • Configuring the Desktop in a Network 119

FIGURE 7–3 X terminals get session services from a session server

Other Networking Situations
The desktop is flexible and can support more complex network configurations. This
usually involves making various services, in addition to file servers, available to
application servers.

FIGURE 7–4 Services required by a desktop application server can be distributed

Summary—Types of Servers
Display—the system running the X server.

Login and session server—the system running the desktop session (Login Manager,
Session Manager, Window Manager, File Manager, and the like).

120 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Application server—a system on which an application runs. Also called the execution
host.

File server—a system on which data files for applications are stored.

Help server—a system on which help data files are stored.

(Action) database server—a system where files containing action and data type
definitions are stored.

Icon server—a system on which icon files are stored.

The network may include additional servers, such as a password server, mail server,
video server, and so on.

General Steps for Configuring Desktop
Networking
There are three general steps for configuring desktop networking:

1. Configure base operating system network services.

These are the networking services provided by your operating system upon which the
desktop depends. See “Configuring Base Operating System Networking for the
Desktop” on page 121.

2. Install and configure desktop networking software and services.

These are the services required by the desktop, regardless of the type of client or
server system being set up. See “Configuring Desktop Clients and Servers”
on page 124.

3. Configure the particular type of server or client.

For example, configuring an application server requires different steps than
configuring a file server. See “Administering Application Services” on page 129.

Configuring Base Operating System
Networking for the Desktop
The desktop requires the following base networking configuration:

Chapter 7 • Configuring the Desktop in a Network 121

� Users must have a login account on the session server and on each system
providing desktop services to the session server. The user must have the same user
ID and group ID on all client and server systems.

� Systems must have access to remote file systems containing data used by the
session and other applications.

� The lp print spooler must be configured to access remote printers.
� sendmail must be configured for email services.
� X authorization must be set up.

Providing Login Accounts to Users
This section describes the login account requirements for desktop networking.

Providing Login Accounts
Users must have a login account on:

� All systems providing services to the desktop, including application servers, file
servers, and systems providing networked printers.

� All session servers the user may access. Usually, session servers are used with X
terminals.

Providing Consistent User and Group IDs
UNIX users are identified by a login name and a numeric user ID (UID). In a desktop
network, the user should have the same login name and UID on all client and server
systems.

UNIX users are also assigned to one or more login groups. Each group has a group
name and a numeric group ID (GID). In a desktop network, all systems should use
consistent group names and group IDs.

For more information, see the id(1) or id(1M) man page.

Configuring Distributed File System Access
The desktop uses NFS for sharing files between systems. You must identify all the file
systems in your network that contain shared files and ensure that they are correctly
mounted on all appropriate systems.

Typically, you must provide the following remote file access:

122 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� The user’s home directory must be shared by all desktop client and server systems.
This is necessary because:

� The home directory contains data files that must be accessed by applications on
remote systems. For example, applications using data files frequently use the
home directory as the default data file location.

� The home directory is the default dtspcd authentication directory. For more
information about the dtspcd, see “Configuring the Subprocess Control
Daemon” on page 127.

� If users require access to data files that are not in their home directory, these data
files must be shared by all the desktop client and server systems that operate on
the data files.

� The desktop installation and configuration directories (/usr/dt and /etc/dt)
must be shared by all the desktop client and server systems so that all of the user’s
applications access the same desktop configuration files.

Providing a Networked Home Directory
A desktop network works most effectively when users have a single home directory
that is shared among all client and server systems on the network.

A networked home directory enables users to use different systems in the network
without losing personal customizations and configurations. This is because personal
customizations and the information required to restore the previous session are saved
in subdirectories of the home directory.

A common home directory is also required by:

� The default X authorization mechanism (see “Configuring X Authorization”
on page 124).

� The desktop subprocess control daemon. This daemon is involved in launching
remote applications and must be able to write to the user’s home directory.

File-Name Consistency
You should configure the network so that users can access their data files from all
systems using the same name. This is known as providing file-name consistency, and is
usually accomplished by creating appropriate symbolic links. For example you can
configure every system so that each user’s home directory is available as
/users/login_name by creating a symbolic link to the actual mount location of the
directory.

Chapter 7 • Configuring the Desktop in a Network 123

Configuring Access to Remote Printers
The desktop uses the lp print spooler for accessing local or remote printers. See the
lpadmin(1M) man page for information on configuring the lp spooler.

Before attempting to print using the desktop graphical interface, you should test that
you can correctly print to all printers using the lp command.

Be sure to use consistent printer device names. For example, if a particular printer is
known as Postscript1 on the system to which it is directly connected, all other
systems accessing the printer remotely should also use the name Postscript1.

Configuring Electronic Mail
The desktop mailer uses sendmail for delivering mail between systems. See the
sendmail(1M) man page for more information on how to configure email connectivity.

Before attempting to send or receive mail from the desktop, you should test that you
can correctly send and receive mail using the mailx command.

Configuring X Authorization
The desktop uses the default X mechanism for authorizing remote applications (X
clients) to access a local display. The easiest way to configure this is to provide a
networked home directory for each user. This ensures that the following requirements
are met:

� The user must have read and write permission to the file
HomeDirectory/.Xauthority.

� The .Xauthority file on an application server must contain the “magic cookie”
for the display on which the application will run.

For more information, see the X(1) or xauth(1) man pages.

Configuring Desktop Clients and Servers
This section covers network configuration requirements that are specific to the
desktop—that is, these capabilities are provided by the desktop rather than by the
base operating system.

The section is divided into two parts:

124 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� Configuring login and session services.
� Configuring services required by applications and their data. This includes

application, database, icon, file, and help servers and their clients.

Configuring Login and Session Services
A login/session server is a system that supplies desktop services (Login Manager,
Session Manager, File Manager, Window Manager, and so on) to a display and X
server.

Typically, a session server supplies services to X terminals. However, a network
configuration can be set up that concentrates session services on one or more servers
that are accessed by both X terminals and workstations.

Login Manager is the desktop component responsible for supplying login services to
other displays. Once the user has logged in, Session Manager is started for the user.

For information about configuring login/session servers and X terminals, see
“Displaying a Login Screen on a Network Display” on page 24.

Configuring Other Application-Related Services
This section covers networking requirements common to the desktop:

� Application servers
� Database servers
� Icon servers
� Help servers

� To Configure Desktop Clients and Servers
1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Install the desktop or the minimum set of files.

You must install:

� The entire Common Desktop Environment run-time file sets
� Or, these sets of files: CDE-MIN and CDE-TT

Note – Installation and file sets may differ among vendors.

3. Configure the system for the ToolTalk filename database server daemon
rpc.ttdbserver.

Chapter 7 • Configuring the Desktop in a Network 125

This should happen automatically when the desktop is installed. For more
information, see “Configuring the ToolTalk Database Server” on page 129.

4. Install and configure the subprocess control daemon (dtspcd).

This should happen automatically when the desktop is installed. For more
information, see “Configuring the Subprocess Control Daemon” on page 127.

5. Mount all required remote data.

Data is considered “remote” when it is located on a system other than the system on
which the application using the data is running.
For example:

� If an application uses data located on a file server, it must mount those files.

� If File Manager icons are located on an icon server, the session server must mount
those files.

� If the network uses a help server for desktop help files, the session server and all
application servers must mount the help data.

For more information about mount points, see the next section, “Configuring the
Mount Point for Remote File Systems” on page 126.

Configuring the Mount Point for Remote File Systems
When the desktop passes file names from one system to another, it must transform, or
map, those file names to names that make sense to the destination system. This
mapping is necessary because a file may be mounted in different locations on the
different systems, and therefore must be accessed using different names. For example
the file /projects/big on sysA may be accessed as /net/sysA/projects/big
on sysB.

Requirements for File-Name Mapping

To correctly perform this file-name mapping, one of the following must be true:

� The mount command is used to statically mount file systems. These types of static
mounts are typically configured in a file such as /etc/checklist,
/etc/mnttab, or /etc/filesystems.

For file-name mapping to work correctly between systems, file system mounts
must use consistent host names. If a host is known by several names (for example,
aliases, or if the host has more than one LAN address that are known by different
names), you must use the same name and form of the name for all mounts.

� Or, the automounter is used to mount file systems at the default /net mount
point.

� Or, the automounter is used to mount file systems at a location other than /net
and the DTMOUNTPOINT environment variable is set to indicate the mount point.
See the next section, “Setting a Value for DTMOUNTPOINT” on page 127.

126 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For information about the automounter, see the automount(1M) man page.

Setting a Value for DTMOUNTPOINT

You must set the DTMOUNTPOINT environment variable if both of the following
conditions are true:

� The automounter is used to mount file systems.
� And, remote file systems are mounted at a location other than /net.

DTMOUNTPOINT must be set for processes, including:

� The user’s desktop processes that are automatically started when the user logs in,
such as the Workspace Manager (dtwm) and File Manager (dtfile)

� System processes such as rpc.ttdbserver and dtspcd that are started by
mechanisms such as inetd

� Applications that are started by the desktop on local or remote systems

� Applications that are started by the user from a shell command line

To set DTMOUNTPOINT for these processes:

1. Edit the file /etc/inetd.conf:

2. Find the dtspcd entry and add:

-mount_point mount_point

3. Find the rpc.ttdbserver entry and add:

-m mount_point

For example if the automounter is being used with a mount point of /nfs, the
entries in /etc/inetd.conf are:

dtspc stream tcp nowait root /usr/dt/bin/dtspcd \
/usr/dt/bin/dtspcd -mount_point /nfs
rpc stream tcp wait root /usr/dt/bin/rpc.ttdbserver \

100083 1 rpc.ttdbserver -m /nfs

4. Perform the procedure on your system that rereads /etc/inetd.conf. For more
information, see the inetd(1M) man page.

5. Set DTMOUNTPOINT such that its value is inherited by user logins.

This can be done by setting the variable in /etc/dt/config/Xsession.d. For
more information on setting environment variables, see “To Set Environment
Variables” on page 48.

Configuring the Subprocess Control Daemon
The desktop subprocess control (SPC) service provides client/server command
execution.

Chapter 7 • Configuring the Desktop in a Network 127

The desktop subprocess control daemon (dtspcd) is used by the desktop to launch
remote applications. It is an inet daemon that accepts requests from remote clients to
execute commands. For more information on how to configure inet daemons, see the
inetd.conf(1M) man page.

The desktop action invocation library uses the SPC service to invoke remote actions.

� To Configure dtspcd
� Confirm that dtspc is properly registered in both /etc/services and

/etc/inetd.conf.

See the dtspcd(1M) man page.

SPC Security

Authentication for the subprocess control service is based on file system
authentication. The dtspcd must have access to an authentication directory that is also
mounted by all SPC client systems.

By default the dtspcd authentication directory is the user’s home directory. However,
you can configure the dtspcd to use a different location by setting the -auth_dir
option in the /etc/inetd.conf directory. See the dtspcd(1M) man page for more
information.

Because SPC authentication is based on file system authentication, the SPC service is
only as secure as your distributed file system. If you are using the desktop in a
network where you do not trust the distributed file system, you may wish to disable
the dtspcd. To disable the dtspcd, comment out the dtspc entry in
/etc/services.

Configuring Environment Variables for Remote Execution
When the desktop uses an action to start an application on a remote system, the user’s
environment variables are copied to the remote system and placed in the environment
of the application.

By default, some of the environment variables are altered before they are copied to the
remote system. You can configure both the action invocation component and the
subprocess control service of the desktop to perform additional environment variable
processing before the variables are placed into the application’s environment.

For more information on the default configuration and how to modify it, see the
dtactionfile(4) and dtspcdenv(4) man pages.

128 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Configuring the ToolTalk Database Server
One component of ToolTalk is the ToolTalk database server,
/usr/dt/bin/rpc.ttdbserver.

The ToolTalk database server is used by the ToolTalk messaging service and for
file-name mapping. It is usually registered in /etc/inetd.conf when the desktop is
installed and needs no additional configuration.

For more information on the ToolTalk database server and its configuration options,
see the rpc.ttdbserver(1M) man page.

Configuring the ToolTalk Message Server
The ToolTalk message server is ttsession. By default, it does not require any
configuration; it is started by the Xsession script during login.

See the ttsession man page for more information on the ToolTalk message server and
its configuration options.

Configuring the Calendar Daemon
One component of the Calendar application is the Calendar daemon rpc.cmsd. It is
usually registered in /etc/inetd.conf when the desktop is installed and needs no
additional configuration.

For more information on the Calendar daemon and its configuration options, see the
rpc.cmsd(1) man page.

Administering Application Services
This section covers specific configuration requirements for:

� Application servers and their clients
� Desktop servers that provide special services—database servers, icon servers, and

help servers

It also covers networking requirements for two special configurations for
networked applications:

� Remote execution hosts
� Applications running across file system mounts

Chapter 7 • Configuring the Desktop in a Network 129

Search Path Environment Variables
The desktop uses a set of environment variables to specify the search path used to find
application desktop configuration files such as the actions and data types database,
help files, and icon files.

For information on how to use the search path environment variables, see “Desktop
Search Paths and Their Environment Variables” on page 144 or the dtenvvar(5) man
page.

Configuring an Application Server and Its Clients
In the standard application server configuration, the application server contains all the
binary and configuration files associated with the application, including:

� The application executable(s)
� Standard application configuration files such as app-defaults, message catalogs,

and shared libraries for that application.
� Desktop configuration files:

� Action and data type definition files
� Icon image files
� Desktop help data files

FIGURE 7–5 Standard application server configuration

� To Configure an Application Server
1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Provide the general desktop configuration required for servers.

See “To Configure Desktop Clients and Servers” on page 125.

3. Install the application(s).

4. If an application does not automatically register itself, you must perform the
registration procedure.

130 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

See Chapter 5.

� To Configure the Client of an Application Server
1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Provide the general desktop configuration required for clients.

See “To Configure Desktop Clients and Servers” on page 125.

3. Add the application server to the application search path on a system-wide or
personal basis:

System-wide—set and export theDTSPSYSAPPHOSTS variable in
/etc/dt/config/Xsession.d/0010.dtpaths

Personal —set and export the DTSPUSERAPPHOSTS variable in
HomeDirectory/.dtprofile

For example, the following line in /etc/dt/config/Xsession.d/0010.dtpaths
adds a system with hostname SysAAA and SysBBB to the application search path:

export DTSPSYSAPPHOSTS=SysAAA:,SysBBB:

For more information about setting the application search path, see:

� “Application Search Path” on page 146
� “Setting the Value of a Search Path” on page 144

Configuring Database, Icon, and Help Services
Usually, the action and data type definitions, icons, and help data files associated with
an application are installed onto the same system as the application.

For example, consider the typical configuration of help data files:

� The help files for File Manager are usually located on the session server. The
desktop finds them because the help search path automatically searches the proper
locations on the session server.

� The help files for other applications are usually located on the same application
server as the application. The session server finds them because modifying the
application search path automatically modifies the help search path.

There may be situations in which you want to place database (actions and data
types), help, or icon data elsewhere on the network. For example, if your network
uses multiple session servers, you might want to create a help server on which all
the help data files for desktop applications (File Manager, Style Manager, and the
like) are stored. This conserves disk space because the help files do not need to be
duplicated on each session server.

Chapter 7 • Configuring the Desktop in a Network 131

� To Create a Database, Help, or Icon Server
1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Provide the general desktop configuration required for clients.

See “To Configure Desktop Clients and Servers” on page 125.

3. Install the database, help, or icon files.

The files can be located anywhere on the system. However, it may be easier to use the
following locations, since these are the directories automatically searched when a
system has been designated an application server.

� Database files: /etc/dt/appconfig/types/language

� Help files: /etc/dt/appconfig/help/language

� Icon files: /etc/dt/appconfig/icons/language

If you are setting up a database server, the actions must be written to specify where
their commands (EXEC_STRINGs) will run. See “Specifying a Remote Execution
Host” on page 133.

� To Configure the Session Server to Find a Database, Icon,
or Help Server

1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Provide the general desktop configuration required for clients.

See “To Configure Desktop Clients and Servers” on page 125.

3. Add the database, icon, or help server to the appropriate search path.

� If you placed the data files in the locations specified in Step 3of “To Create a
Database, Help, or Icon Server” on page 132,” you can modify the application
search path.

� If you placed the data files in other locations, you must modify the specific search
path.

For example, if you placed the help files in directory /etc/dt/help on system
SysCCC, you would add the following line to
/etc/dt/config/Xsession.d/0010.dtpaths:

export DTSPSYSHELP=/net/SysCCC/etc/dt/help

For more information about setting search paths, see:

� “Database (Action/Data Types) Search Path” on page 149
� “Icon Search Path” on page 151

132 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� “Help Search Path” on page 153
� “Setting the Value of a Search Path” on page 144

Special Networked Application Configurations
This section describes how to configure systems to run applications:

� Elsewhere than on the system containing the action—on a remote execution host
� Locally across file system mounts

Specifying a Remote Execution Host
In the typical application server configuration, the action definition is located on the
same system as the application executable. However, actions can be written to execute
commands on other systems. In this configuration, the system containing the
application is called the execution host.

The action definition may be located on the session server or on a system that
provides action and data type services to the session server—called a database server or
database host.

Action definitions use the EXEC_HOST field to specify where their commands
(EXEC_STRINGs) should be run. For example, the following action definition specifies
that an xload client be run on a system with host name SysDDD:

ACTION XloadSysDDD
{ TYPE COMMAND

EXEC_HOST SysDDD
EXEC_STRING /usr/bin/X11/xload -label SysDDD

}

If the EXEC_HOST field specifies more than one host name, then the desktop tries to
execute the EXEC_STRING on each host in order until it finds one that can run the
action. For example, the following EXEC_HOST field specifies that the action should
first attempt to run the EXEC_STRING on SysDDD, and, failing this, try SysEEE.

EXEC_HOST SysDDD,SYSEEE

If the EXEC_HOST field is not set for an action, it defaults to the value
%DatabaseHost%. The value of %DatabaseHost% is obtained from the database
search path.

For example, suppose the database search path has been modified by adding the
following line to /etc/dt/config/Xsession.d/0010.dtpaths:

DTSPSYSDATABASEHOSTS=SysAAA:,/net/SysBBB/etc/dt/appconfig/types/C

Chapter 7 • Configuring the Desktop in a Network 133

SysAAA is specified using the host-qualified syntax—SysAAA:. An action definition
found using this element of the search path sets the database host to SysAAA.
However, an action found using the /net/SysBBB… portion of the search path sets
the database host to the local system because the syntax does not include the host
qualifier.

� To Configure the Remote Execution Host
1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Provide the general desktop configuration required for servers.

See “To Configure Desktop Clients and Servers” on page 125.

3. Ensure that the applications are properly installed and configured for local
execution.

� To Configure the System Containing the Action Definition
1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Provide the general desktop configuration required for servers.

See “To Configure Desktop Clients and Servers” on page 125.

3. Create and install the action definitions and application groups.

See “Creating Actions that Run Applications on Remote Systems” on page 202 and
“Creating and Administering General Application Groups” on page 63.

� To Configure the Session Server
1. Provide the operating system network configurations required by the desktop.

See “Configuring Base Operating System Networking for the Desktop” on page 121.

2. Provide the general desktop configuration required for clients.

See “To Configure Desktop Clients and Servers” on page 125.

3. Modify the actions search path to include the database host.

See “Database (Action/Data Types) Search Path” on page 149.

4. Modify the application search path to include the execution host.

See “Application Search Path” on page 146.

134 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Running Applications Locally
The standard application server configuration runs applications on the application
server. Sometimes it is desirable to have the application installed on a remote system
but executed locally on the session server.

FIGURE 7–6 Execution across mount points

� To Configure the Application Server
No special configuration is required.

� To Configure the Session Server
� Modify the application search path. Use the local absolute path to the application.

For example, you might use the following variable definition to find an application
registered on sysAAA:

DTSPSYSAPPHOSTS=/net/SysAAA/etc/dt/appconfig/appmanager/C

The session server must be able to access the application’s configuration files, such as
app-defaults, message catalogs, and shared libraries.

Chapter 7 • Configuring the Desktop in a Network 135

136 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 8

Configuring and Administering
Printing from the Desktop

There are a variety of ways a desktop user can print files. They fall into two major
categories: printing from the desktop and printing from an application.

Ways to print from the desktop include:

� Selecting a file in File Manager and choosing Print from the Selected menu or the
icon’s pop-up menu

� Dragging a file from File Manager to the Front Panel Printer control or the Personal
Printers subpanel

� Dragging a file from File Manager to a printer in the Print Manager main window

To print from an application, use the Print command, usually accessed from a
menu or other control within the application’s window.

� “Adding and Deleting Printers” on page 137
� “Printer Icon Images” on page 139
� “Configuring the Default Printer” on page 140
� “Printing Concepts” on page 141

Adding and Deleting Printers
This section contains the procedures for adding and deleting printers from the
desktop.

� To Add a Printer to the Desktop
1. Add a printer to your system’s configuration.

Follow the instructions in the system administration documentation for your
operating system.

137

2. Run the command:

env LANG=language /usr/dt/bin/dtprintinfo -populate

3. Restart Print Manager or double-click Reload Actions from the Desktop_Tools
application group in Application Manager. Verify that the printer shows up.

4. Send mail to your users to let them know they should also restart Print Manager or
run Reload Actions.

Each time it is invoked, Print Manager reads the system printers configuration list. If it
detects a new printer, it automatically creates a new desktop printer action and icon
for that printer. You don’t need to do anything else to make the printer appear on the
desktop.

� To Delete a Printer from the Desktop
1. Remove the printer from your system’s configuration.

Follow the instructions in the system administration documentation for your
operating system.

2. Restart Print Manager or double-click Reload Actions from the Desktop_Tools
application group in Application Manager. Verify that the printer is gone.

3. Send mail to your users to let them know they should also restart Print Manager or
run Reload Actions.

Each time it is invoked, Print Manager reads the system printers configuration list. If it
sees that a printer has been removed from the list, it automatically removes that
printer’s action and icon from Print Manager and File Manager. You don’t need to do
anything else to delete the printer from the desktop.

Note – Print Manager cannot remove printers from the Front Panel. Therefore,
whenever you remove a printer from your configuration, you should send mail to all
users on the system telling them to remove any icons of the deleted printer from the
Front Panel.

Modifying the Job Update Interval
To change how often the information displayed in Print Manager is updated, modify
the job update interval. By default, Print Manager queries printers every thirty
seconds for information on their print jobs. You can change how often Print Manager
queries the printers by using the Update Interval slider in the Set Options dialog box
(displayed by choosing Set Options from the View menu).

138 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Printer Icon Images
When you add a printer, it is automatically assigned the default printer icon. If you
have another icon you want to make available for it, place the icon files in
/etc/dt/appconfig/icons/language, or in some other directory along the icon
search path. Users can then select this icon to replace the default icon for the printer.

You must create a complete set (large, medium, and tiny) of the icons or they will not
show up in the icon selector in Print Manager.

For more information about the icon search path, see “Icon Search Path” on page 151.

Icon File Names and Sizes
Icon file-naming requirements are:

base_name.size.type

where:

size—l (large), m (medium), t (tiny). For more information about icon sizes, see “Icon
Size Conventions” on page 224.

type—pm (color pixmap), bm (bitmap).

For example, icon file names for medium and tiny pixmap icons for a color printer
might be ColorPrinter.m.pm and ColorPrinter.t.pm.

Refer to Chapter 14, for more information on creating icons.

� To Globally Change the Icon, Printer Label, or
Description of a Printer
You should change global printer properties as soon as you add the printer, before
users have modified it using Print Manager. Once a user has modified the printer
properties using Print Manager, they will not see the changes you make.

Edit the file /etc/dt/appconfig/types/language/printer_queue_name.dt with the
desired information for the icon, printer label, or description:

1. In the ICON field, update basename to the new icon base name.

2. In the LABEL field, update labelname to the new label for the printer.

3. Update the text in the DESCRIPTION field.

Chapter 8 • Configuring and Administering Printing from the Desktop 139

This is a good place to put the location of the printer, type of printer, and printer
contact. To add more than one line, put a \ at the end of the line. For example:

DESCRIPTION This is a PostScript Printer in Building 1 \

Room 123. Call 555-5555 for problems.

Configuring the Default Printer
The default printer is accessed when the user:

� Drops an object on the Front Panel Printer control
� Selects an object in File Manager and chooses Print from the Selected menu or the

icon’s pop-up menu
� Prints from applications that use the default printer

� To Change the Destination for Default Printing
To change the default printer for all users:

1. Open the file /etc/dt/config/Xsession.d/0010.dtpaths.

If /etc/dt/config/Xsession.d/0010.dtpaths does not exist, copy it from
/usr/dt/config/Xsession.d/0010.dtpaths.

2. In the LPDEST=printer line, update printer to the new destination for default
printing.

If the line does not exist, add a line LPDEST=printer, where printer is the name of the
printer you want to be your default printer.

3. Users need to log out and back in.

To change the default printer for a single user, that user should:

� Copy another printer to the Front Panel from the Personal Printers subpanel.

To designate a different printer as your default printer:

1. Go to your home folder and open the file .dtprofile.

2. Add or edit a line that sets a value for the LPDEST environment variable:

LPDEST=printer_device; export LPDEST

If you are using csh the syntax is:

setenv LPDEST printer_device

140 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For example, the following line would change the default printer to the printer whose
device name is laser3d.

LPDEST=laser3d; export LPDEST

If you are using csh the syntax is:

setenv LPDEST laser3d

Printing Concepts
When a print request is initiated by dropping a file on a printer control, the system
proceeds as follows:

1. The system searches the data-type database for the definition of the object dropped.

2. If there is a unique print action for the data type (specified using the ARG_TYPE
field in the print action), it is used; otherwise, the default print action (dtlp) is
used. For example, if the file is a PostScript® file, the system uses the Print action for
PostScript files. (This action is defined in
/usr/dt/appconfig/types/language/dt.dt.) If you used the Create Action tool
for this data type, the print command you entered is the unique print action that
will be used to print files with this data type.

3. The file is delivered to the printer using the normal UNIX lp printing subsystem.

Chapter 8 • Configuring and Administering Printing from the Desktop 141

142 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 9

Desktop Search Paths

The desktop uses search paths to locate applications and their associated desktop files.

� “Desktop Search Paths and Their Environment Variables” on page 144
� “Setting the Value of a Search Path” on page 144
� “Application Search Path” on page 146
� “Database (Action/Data Types) Search Path” on page 149
� “Icon Search Path” on page 151
� “Help Search Path” on page 153
� “Localized Search Paths” on page 155

The desktop provides four search paths, described in Table 9–1.

TABLE 9–1 Desktop Search Paths

Search Path Description

Applications Used to locate applications. Application Manager uses the application
search path to dynamically populate its top level when a user logs in.

Database Used to specify additional locations for action and data type definition
files (*.dt files) and Front Panel files (*.fp files).

Icons Used to specify additional locations for icons.

Help data Used to specify additional locations for desktop help data.

The search paths can include both local and remote directories. Thus, the search paths
play an important role in the networking architecture of the desktop. For example, a
system finds applications on an application server because that application server is
listed in the application search path.

When a search path includes a remote location, you must configure remote file access
to the location. For more information, see “Configuring Distributed File System
Access” on page 122.

143

Desktop Search Paths and Their
Environment Variables
The desktop search paths are created at login by the desktop utility dtsearchpath.
The dtsearchpath utility uses a combination of environment variables and built-in
locations to create the search paths.

The environment variables that dtsearchpath reads are called input variables. These
are variables set by the system administrator or end user. The input variables use the
naming convention DTSP*.

When dtsearchpath runs at login time, it assembles the values assigned to these
variables, adds built-in locations, and creates values for output variables. There is an
output variable for each search path.

TABLE 9–2 Desktop Search Path Environment Variables

Search Path For: Output Environment Variable System-Wide Input Variable Personal Input Variable

Applications DTAPPSEARCHPATH DTSPSYSAPPHOSTS DTSPUSERAPPHOSTS

Database1 DTDATABASESEARCHPATH DTSPSYSDATABASEHOSTS DTSPUSERDATABASEHOSTS

Icons XMICONSEARCHPATH,
XMICONBMSEARCHPATH

DTSPSYSICON DTSPUSERICON

Help data DTHELPSEARCHPATH DTSPSYSHELP DTSPUSERHELP

1. Actions, data types, and Front Panel definitions

Components use the values of the output variables. For example, Application
Manager uses the value of the application search path (DTAPPSEARCHPATH) to locate
application groups.

Setting the Value of a Search Path
You can modify the search paths on a system-wide or personal basis. Modifications are
done by setting values for the system-wide or personal input variables. Any
modifications you make are added to the built-in search path locations.

144 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� To See the Current Value for a Search Path (Output
Variable)

� Use the dtsearchpath command to display the current values for the search paths:

� To obtain the value for the current (login) user, type the command:

dtsearchpath -v

� To obtain the value for a different user, type the command:

dtsearchpath -u user

Search path values include these variables:

%H—used in DTHELPSEARCHPATH. The help volume name.

%B—used in XMICONSEARCHPATH. The base name of an icon file.

%M—the size of the icon file (.l, .m, .s, .t) used in XMICONSEARCHPATH.

%L—value of the LANG environment variable.

� To Make Personal Modifications to a Search Path
1. Open HomeDirectory/.dtprofile for editing.

2. Add or edit a line that defines and exports the personal input variable.

For example, the following line adds a location to the user’s personal application
search path:

export DTSPUSERAPPHOSTS=/projects1/editors

3. To make the change take effect, log out and back in.

� To Make System-Wide Modifications to a Search
Path

1. Log in as root.

2. If the file /etc/dt/config/Xsession.d/0010.dtpaths doesn’t exist, create it by
copying /usr/dt/config/Xsession.d/0010.dtpaths.

3. Open /etc/dt/config/Xsession.d/0010.paths for editing. Add or edit a line
that defines and exports the system-wide input variable.

For example, the following line adds a location to the system-wide help search path:

export DTSPSYSHELP=/applications/helpdata

Chapter 9 • Desktop Search Paths 145

4. Inform all users on the system that they must log out and back in for the change to
take effect.

Application Search Path
The application search path is the primary search path used by the desktop to locate
applications on the local system and on application servers throughout the network.

When locations are added to the application search path, the other search paths
(database, icon, and help) are automatically updated to reflect the corresponding
locations for that data; thus, the application search path provides relatively simple
administration for applications and their desktop configuration files. See “How the
Application Search Path Affects the Database, Icon, and Help Search Paths”
on page 148.

Default Application Search Path
The default application search path includes personal, system-wide, and built-in
locations. The default language is C.

Personal location—HomeDirectory/.dt/appmanager

System-wide location—/etc/dt/appconfig/appmanager/language

Built-in location—/usr/dt/appconfig/appmanager/language

Application Search Path Environment Variables
The application search path is assembled from the built-in locations and the following
input variables:

DTSPSYSAPPHOSTS—system-wide application search path input variable

DTSPUSERAPPHOSTS—personal application search path input variable

The assembled search path is specified by the output variable DTAPPSEARCHPATH.

146 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Syntax for the Application Search Path Input
Variables
The syntax for the variables DTSPSYSAPPHOSTS and DTSPUSERAPPHOSTS is:

VARIABLE=location [,location...]

where location can have the syntax:

/path—specifies a directory on the local (session server) system. Use this syntax to add
a local directory.

hostname:—specifies the system-wide directory
/etc/dt/appconfig/appmanager/language on system hostname. Use this syntax to
add an application server.

hostname:/path—specifies a directory on the remote system hostname.

localhost:—the local system-wide location. This keyword is used to alter the precedence
of the local system-wide location. See “Changing the Precedence of the System-Wide
Local Location” on page 148.

How the Value of the Application Search Path Is
Assembled
The value of the application search path (DTAPPSEARCHPATH) is created by
assembling the following locations, listed in order of precedence:

� Locations specified using the DTSPUSERAPPHOSTS variable
� The default personal location: HomeDirectory/.dt/appmanager

� The default location: /etc/dt/appconfig/appmanager/language

� Locations specified using the DTSPSYSAPPHOSTS variable
� /usr/dt/appconfig/appmanager/language

The syntax:

hostname:

is expanded to specify the directory /etc/dt/appconfig/appmanager on
system hostname.

Chapter 9 • Desktop Search Paths 147

Changing the Precedence of the System-Wide Local
Location
By default, the local system-wide location
(/etc/dt/appconfig/appmanager/language) has precedence over remote
locations. Thus, local application groups have precedence over remote groups with the
same name. For example, if both the local and remote systems have Printer application
groups (/etc/dt/appconfig/appmanager/language/Printers), the local group
is used.

The application search path input variables provide syntax for specifying the
precedence of the local system-wide application groups:

localhost:

For example, suppose your system must access application servers SysA, SysB, and
SysC, and you want the system-wide application groups on SysB to have precedence
over any local groups with the same name.

The following value for DTSPSYSAPPHOSTS creates this behavior:

DTSPSYSAPPHOSTS=SysB:,localhost:,SysA:,SysC:

How the Application Search Path Affects the
Database, Icon, and Help Search Paths
Additions to the application search path automatically add corresponding locations to
the database, icon, and help search paths. This provides the ability to add an
application server to a search path by setting only the application search path input
variable.

For example, if you set DTSPSYSAPPHOSTS as follows:

export DTSPSYSAPPHOSTS=servera:

then the search paths are affected as shown in Table 9–3.

TABLE 9–3 Affected Search Paths

Search Path Directory Added to Search Path

Applications servera:/etc/dt/appconfig/appmanager/language

Database servera:/etc/dt/appconfig/types/language

Icon servera:/etc/dt/appconfig/icons/language

Help servera:/etc/dt/appconfig/help/language

148 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Similarly, if you set DTSPSYSAPPHOSTS as follows:

export DTSPSYSAPPHOSTS=/projects1/apps

then the search paths are affected as shown in Table 9–4 .

TABLE 9–4 Affected Search Paths

Search Path Directory Added to Search Path

Applications /projects1/apps/appmanager/language

Database /projects1/apps/types/language

Icon /projects1/apps/icons/language

Help /projects1/apps/help/language

Database (Action/Data Types) Search
Path
The database search path directs the desktop to search specified locations for files
containing:

� Action and data type definitions (*.dt files)

� Front Panel definitions (*.fp files).

You may need to modify the database search path when you create a database
server, or when you add a local location for database files.

Default Database Search Path
The default database search path includes personal, system-wide, and built-in
locations. The default language is C.

Personal location—HomeDirectory/.dt/types

System-wide location—/etc/dt/appconfig/types/language

Built-in location—/usr/dt/appconfig/types/language

Chapter 9 • Desktop Search Paths 149

How the Application Search Path Affects the
Database Search Path
When a location is added to the application search path, the appropriate database
subdirectory is automatically added to the database search path (see “How the
Application Search Path Affects the Database, Icon, and Help Search Paths”
on page 148).

For example, if the application server hosta: is added to the application search path,
the directory hosta:/etc/dt/appconfig/types/language is automatically added
to the database search path.

Database Search Path Environment Variables
The database search path is assembled from the built-in locations and the following
input variables:

DTSPSYSDATABASEHOSTS—system-wide database search path input variable

DTSPUSERDATABASEHOSTS—personal database search path input variable

Use these input variables to specify locations outside the application search path.

The assembled database search path is specified by the output variable
DTDATABASESEARCHPATH.

Syntax for the Database Search Path Input
Variables
The syntax for the variables DTSPSYSDATABASEHOSTS and
DTSPUSERDATABASEHOSTS is:

VARIABLE=location [,location...]

where location can have the syntax:

/path—specifies a directory on the local (session server) system. Use this syntax to add
a local directory.

hostname:—specifies the system-wide directory
/etc/dt/appconfig/types/language on system hostname.

hostname:/path—specifies a directory on the remote system hostname.

150 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

How the Database Search Path Is Assembled
The value of the database search path (DTDATABASESEARCHPATH) is created by
assembling the following locations, listed in order of precedence:

� Locations specified using the DTSPUSERDATABASEHOSTS variable
� Locations derived from the DTSPUSERAPPHOSTS variable
� The default personal location: HomeDirectory/.dt/types

� The default location: /etc/dt/appconfig/types/language

� Locations specified using the DTSPSYSDATABASEHOSTS variable
� Locations derived from the DTSPSYSAPPHOSTS variable
� /usr/dt/appconfig/types/language

The syntax:

hostname:

is expanded to specify the directory /etc/dt/appconfig/types on system
hostname.

Icon Search Path
The icon search path directs the desktop to search specified locations for files
containing bitmap and pixmap image files used by the desktop.

Default Icon Search Path
The default icon search path includes personal, system-wide, and built-in locations.
The default language is C.

Personal location—HomeDirectory/.dt/icons

System-wide location—/etc/dt/appconfig/icons/language

Built-in location—/usr/dt/appconfig/icons/language

Chapter 9 • Desktop Search Paths 151

How the Application Search Path Affects the Icon
Search Path
When a location is added to the application search path, the appropriate icon
subdirectory is automatically added to the icon search path (see “How the Application
Search Path Affects the Database, Icon, and Help Search Paths” on page 148).

For example, if the application server hosta: is added to the application search path,
the directory hosta:/etc/dt/appconfig/icons/language is automatically added
to the icon search path.

Icon Search Path Environment Variables
The database search path is assembled from the built-in locations and the following
input variables:

DTSPSYSICON—system-wide icon search path input variable

DTSPUSERICON—personal icon search path input variable

Use these input variables to specify locations outside the application search path.

The assembled database search path is specified by two output variables:

XMICONSEARCHPATH—used by color displays

XMICONBMSEARCHPATH—used by monochrome displays

Syntax for the Icon Search Path Input Variables
The syntax for the variables DTSPSYSICON and DTSPUSERICON is:

VARIABLE=location [,location...]

where location can have the syntax:

/path—specifies a directory on the local (session server) system. Use this syntax to add
a local directory.

To specify a location on another system, use its network file name—for example,
/nfs/servera/projects/icons.

How the Icon Search Path Is Assembled
The value of the icon search path (XMICONSEARCHPATH and XMICONBMSEARCHPATH)
is created by assembling the following locations, listed in order of precedence:

152 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� Locations specified using the DTSPUSERICON variable
� Locations derived from the DTSPUSERAPPHOSTS variable
� The default personal location: HomeDirectory/.dt/icons

� The default location: /etc/dt/appconfig/icons/language

� Locations specified using the DTSPSYSICON variable
� Locations derived from the DTSPSYSAPPHOSTS variable
� /usr/dt/appconfig/icons/language

The color and monochrome search paths differ only in the precedence given to
pixmap and bitmaps. The XMICONSEARCHPATH variables lists pixmaps before
bitmaps; XMICONBMSEARCPATH lists bitmaps before pixmaps.

Help Search Path
The help search path directs the desktop to search specified locations for files
containing help information that will be registered on your system.

Default Help Search Path
The default help search path includes personal, system-wide, and built-in locations.
The default language is C.

Personal location—HomeDirectory/.dt/help

System-wide location—/etc/dt/appconfig/help/language

Built-in location—/usr/dt/appconfig/help/language

How the Application Search Path Affects the Help
Search Path
When a location is added to the application search path, the appropriate help
subdirectory is automatically added to the help search path (see “How the Application
Search Path Affects the Database, Icon, and Help Search Paths” on page 148).

For example, if the application server hosta: is added to the application search path,
the directory hosta:/etc/dt/appconfig/help/language is automatically added to
the help search path.

Chapter 9 • Desktop Search Paths 153

Help Search Path Environment Variables
The help search path is assembled from the built-in locations and the following input
variables:

DTSPSYSHELP—system-wide help search path input variable

DTSPUSERHELP—personal help search path input variable

Use these input variables to specify locations outside the application search path.

The assembled database search path is specified by the output variable
DTHELPSEARCHPATH.

Syntax for the Help Search Path Input Variables
The syntax for the variables DTSPSYSHELP and DTSPUSERHELP is:

VARIABLE=location [,location...]

where location can have the syntax:

/path—specifies a directory on the local (session server) system. Use this syntax to add
a local directory.

To specify a location on another system, use its network file name—for example,
/nfs/servera/projects/help.

How the Help Search Path Is Assembled
The value of the help search path (DTHELPSEARCHPATH) is created by assembling the
following locations, listed in order of precedence:

� Locations specified using the DTSPUSERHELP variable
� Locations derived from the DTSPUSERAPPHOSTS variable
� The default personal location: HomeDirectory/.dt/help
� The default location: /etc/dt/appconfig/help/language
� Locations specified using the DTSPSYSHELP variable
� Locations derived from the DTSPSYSAPPHOSTS variable
� /usr/dt/appconfig/help/language

154 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Localized Search Paths
The output variables include entries for both localized and default (C) locations.

For example, the default application search path is:

HomeDirectory/.dt/appmanager
/etc/dt/appconfig/appmanager/language
/etc/dt/appconfig/appmanager/C
/usr/dt/appconfig/appmanager/language
/usr/dt/appconfig/appmanager/C

where language is the value of the LANG environment variable.

For each scope (system-wide and built-in), the language-specific location has
precedence over the default location.

Chapter 9 • Desktop Search Paths 155

156 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 10

Introduction to Actions and Data
Types

Actions and data types are powerful components for integrating applications into the
desktop. They provide a way to create a user interface for starting applications and
manipulating their data files.

� “Introduction To Actions” on page 157
� “Introduction to Data Types” on page 163

This chapter introduces the concepts of actions and data types. It describes:

� Why you may want to create actions and data types for applications.
� How actions and data types are related to each other.
� How actions and data types are related to desktop printing.

The procedures and rules for creating actions and data types are covered in three
chapters in this manual.

� Chapter 11 explains how to create actions and data types using the desktop
application Create Action.

You can use Create Action to create actions and data types for most applications
without having to learn the syntax rules for their definitions.

� Chapter 12 and Chapter 13 explain how to create actions and data types manually
by creating and editing configuration files.

When you want to use advanced features not supported by Create Action, you
must create actions and data types manually.

Introduction To Actions
Actions are instructions written that automate desktop tasks such as running
applications and opening data files. Actions work much like application macros or
programming functions. Each action has a name that is used to run the action.

157

Once you define an action, it can be used to adapt the desktop user interface so that
tasks are easier to do. The desktop provides the ability to attach user interface
components such as icons, Front Panel controls, and menu items to actions.

For example, the Desktop_Tools application group in Application Manager contains
icons that start various utilities.

FIGURE 10–1 Action icons in the Desktop_Tools application group

Each of these icons runs an action when double-clicked. For example, here’s a portion
of the definition of the action that runs when the user double-clicks the icon labeled
Xwd Display. The action is defined in the configuration file
/usr/dt/appconfig/types/language/xclients.dt:

ACTION Xwud
{

LABEL Xwd Display
TYPE COMMAND
EXEC_STRING /usr/bin/X11/xwud -noclick -in \

%(File)Arg_1"Xwd File To Display:"%
...

}

The command in the action’s EXEC_STRING is run when the user double-clicks the
icon.

The Front Panel also uses actions. For example, here’s a portion of the definition of the
control labeled Terminal in the Personal Applications subpanel. The control is defined
in the configuration file /usr/dt/appconfig/types/language/dtwm.fp:

CONTROL Term
{

ICON Fpterm
LABEL Terminal
PUSH_ACTION Dtterm
...

}

158 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

The PUSH_ACTION field specifies the action to run when the user clicks the control—in
this case, an action named Dtterm.

Another common use for actions is in menus. Data files usually have actions in their
Selected menu in File Manager. For example, XWD files (files with names ending
in.xwd or.wd) have an Open action that displays the screen image by running the
Xwud action.

FIGURE 10–2 Open action for files of data type XWD

The actions in the Selected menu are specified in the data type definition for XWD
files. The definition is located in the configuration file
/usr/dt/appconfig/types/language/xclients.dt.

DATA_ATTRIBUTES XWD
{

ACTIONS Open,Print
ICON Dtxwd

...

}

The XWD data type, and its associated Open and Print actions, are explained in “How
Data Types Connect Data Files to Actions” on page 164.

How Actions Create Icons for Applications
Consider the Xwd Display icon in the Desktop_Tools application group.
Double-clicking this icon runs the X client xwud. However, this icon does not directly
represent the actual xwud executable /usr/bin/X11/xwud.

Chapter 10 • Introduction to Actions and Data Types 159

The icon labeled Xwd Display appears in the application group because there is a file
in that directory named Xwud (see Figure 10–3). This file represents an underlying
action with the same name—Xwud. In the action definition, the action name is the
name following the ACTION keyword:

ACTION Xwud
{
LABEL Xwd Display
TYPE COMMAND
WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/bin/X11/xwud -noclick -in \

%(File)Arg_1"Xwd File To Display:"%
DESCRIPTION The Xwd Display (Xwud) XwdDisplay action \

displays an xwd file that was created using the \
Xwd Capture (Xwd) action. It uses \
the xwud command.

}

The file is called an action file because it represents an action. A file is an action file
when it is an executable file with the same name as an action. Its icon in Application
Manager (or File Manager) is called an action icon, or application icon, because
double-clicking it starts an application.

FIGURE 10–3 Application (action) icon representing an action file

When Application Manager detects an executable file, it looks through the actions
database to see if there are any actions whose names match the file name. If a match is
found, Application Manager knows that the file is an action file.

The content of the action file is irrelevant; action files usually contain comments
describing their desktop function.

Note – The action file is not the same as the action definition file. The action file is a file
with the same name as the action. It is used to create the application icon in File
Manager or Application Manager. The action definition file is the file named name.dt
containing the definition of the action.

160 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Once the desktop determines that a file is an action file, the underlying action
definition is used to define the appearance and behavior of the action file.

� The EXEC_STRING field specifies the behavior of the application icon. In the case
of the Xwd Display icon, the EXEC_STRING specifies that the action icon runs the
xwud X client with certain command-line arguments.

� The LABEL field specifies the label for the application icon.
� The DESCRIPTION field describes the text displayed when the user requests On

Item help.
� The Xwud application icon uses the default icon image for actions because its

action definition does contain an ICON field to specify a different image.

In contrast, the icon labeled Compress File uses a different icon image because its
underlying action definition contains an ICON field:

For example:

ACTION Compress
{

LABEL Compress File
ICON Dtcmprs
...

}

FIGURE 10–4 Icon image specified by the ICON field in the action definition

The Xwud action is called a command action because its definition contains the
command (EXEC_STRING) to be run. The TYPE field in the action definition defines
the action type.

Initially, the Xwd Display icon appears in the Desktop_Tools application group.
However, you can create additional copies of the action icon in any directory for which
you have write permission. As long as the Xwud action definition is part of the
database, any executable file you create named Xwud will be an action file representing
that action, and its icon in File Manager or Application Manager can be used to run the
action.

Chapter 10 • Introduction to Actions and Data Types 161

How Actions Use Data Files as Arguments
An argument of a command is the thing, usually a file, that the command acts upon.
Actions can be written to accept file arguments.

For example, the EXEC_STRING of the Xwud action specifies that a file argument is
required:

EXEC_STRING /usr/bin/X11/xwud -noclick -in \

%(File)Arg_1"Xwd File To Display:"%

The term Arg stands for the word argument. The syntax Arg_1 means the first
argument, and (File) means that the action treats that argument as a file.

The easiest way for the user to provide a file argument is to drop a data file on the
application icon. The desktop determines the path of the dropped file and substitutes
it into the command line in place of the text between the % symbols
(%(File)Arg_1"Xwd File To Display:"%). Thus, the command that gets executed is:

/usr/bin/X11/xwud -noclick -in file_path

When the user double-clicks the application icon, the desktop determines from the
EXEC_STRING that a file argument is required, and displays a dialog box prompting
the user to enter a file name or path. In the case of the Xwud action, the prompt is:

Xwd File To Display:

The file name or path supplied by the user is used as the file argument.

Additional Uses for Actions
In addition to starting applications, actions are used throughout the desktop to create
functionality in:

� The Front Panel

The definition for a Front Panel control includes fields that specify the action that
runs when the user clicks the control or drops a file on it. For more information, see
“Defining Front Panel Controls” on page 246.

� Menus

The syntax for the Window and Workspace menu definitions allows you to specify
the action to be run by a menu item. For more information, see “Workspace
Manager Menus” on page 264 and the dtwmrc(4) man page.

� Communication between applications

An application can be designed to send and receive information using a special
type of action called ToolTalk message (TT_MSG). TT_MSG actions are described in
the developer environment documentation for the desktop.

162 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Introduction to Data Types
When the user creates a new data file, the appearance and behavior of the file’s icon in
File Manager varies depending on the type of data file the user has created. This
ability to create custom appearance and behavior for files and directories is provided
by the desktop’s data typing mechanism.

What Is a Data Type?
A data type is a construct that is defined within the desktop database. For example,
here is the definition of the XWD data type. The definition is in the configuration file
/usr/dt/appconfig/types/language/xclients.dt:

DATA_ATTRIBUTES XWD
{
ACTIONS Open,Print
ICON Dtxwd
NAME_TEMPLATE %s.xwd
MIME_TYPE application/octet-stream
SUNV3_TYPE xwd-file
DESCRIPTION This file contains a graphics image in the XWD \

format. These files are typically created by \
taking snapshots of windows using the XwdCapture \
action. Its data type is named XWD. XWD files \
have names ending with ‘.xwd’ or ‘.wd’.

}

DATA_CRITERIA XWD1
{

DATA_ATTRIBUTES_NAME XWD
MODE f
NAME_PATTERN *.xwd

}

DATA_CRITERIA XWD2
{

DATA_ATTRIBUTES_NAME XWD
MODE f
NAME_PATTERN *.wd

}

Every data type definition has two parts:

DATA_ATTRIBUTES—describes the appearance and behavior of the data type.

DATA_CRITERIA—specifies the rules (naming or content) for categorizing a file as
belonging to that data type.

The DATA_ATTRIBUTES_NAME field connects the criteria to the attributes.

Chapter 10 • Introduction to Actions and Data Types 163

There can be multiple DATA_CRITERIA for a DATA_ATTRIBUTE. For example, the
XWD data type has two criteria to specify two different naming criteria
(NAME_PATTERN)—names ending with .xwd or .wd.

How Data Types Connect Data Files to Actions
Consider the XWD data type. The user creates an XWD-type file by giving the file one
of two file-name suffixes (extensions): .xwd or.wd. The desktop uses the file name as
the criteria for designating a file as that type.

The XWD data type supplies each file of that data type with:

� A unique icon image that helps users recognize the data files.

� On Item help that tells you about the data type.

� A customized Selected menu in File Manager containing the actions Open and
Print. The Open action for XWD files runs the Xwud action.

Running Actions from the Selected Menu
The Selected menu in File Manager is active only when a file or directory is selected.
The commands at the bottom of the Selected menu depend on the data type. For
example, if an XWD file is selected, the Selected menu includes the items Open and
Print.

The ACTIONS field in the data type definition specifies the commands added to the
bottom of the data type’s Selected menu.

DATA_ATTRIBUTES XWD { ACTIONS Open,Print … }

The contents of the Selected menu depends on the data type. However, many different
data types provide an Open action—that is, when you select a file of that particular
data type in File Manager and display the Selected menu, you see an Open command.

164 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

FIGURE 10–5 The Selected menu for an XWD file

The Open action usually runs the application with which the data file is associated.
For example, opening an XWD file runs the Xwud action, which in turn runs the xwud
X client to display the screen image. In other words, for the XWD data type, the Open
action is synonymous with the Xwud action. Likewise, opening a file of data type
TEXTFILE runs the Text Editor, and opening a BM (bitmap) or PM (pixmap) file runs
Icon Editor.

The ability to create a variety of Open actions that do different things uses two
features of action definitions:

� Action mapping

Action mapping lets you create an action that runs another action, rather than
directly running a command. For example, you can create an Open action that
maps to (runs) the Xwud action.

� Data-type restrictions on an action

Action definitions can include an ARG_TYPE field that limits the action to certain
data types. For example, you can specify that the Open action that maps to the
Xwud action applies only to files of data type XWD.

Here is the definition of the action that maps the Open action to the Xwud action for
the XWD data type. It is located in the database configuration file
/usr/dt/appconfig/types/C/xclients.dt.

ACTION Open
{

LABEL Open
ARG_TYPE XWD
TYPE MAP
MAP_ACTION Xwud

}

Chapter 10 • Introduction to Actions and Data Types 165

The TYPE field specifies that this is a map action; the MAP_ACTION field specifies this
action runs the Xwud action. The ARG_TYPE field specifies that this action applies only
to files whose data type is XWD.

Compare the previous definition of the Open action to the next definition, which
appears in the database file /usr/dt/appconfig/types/C/dt.dt.

ACTION Open
{

LABEL Open
ARG_TYPE BM
TYPE MAP
MAP_ACTION Dticon

}

This definition applies to files of data type (ARG_TYPE) BM (bitmap files). The
definition maps the Open action to the Dticon action, which runs Icon Editor.

Defining the Double-Click Behavior of the Data Type
The data type’s double-click behavior is defined by the first entry in the ACTIONS
field. For example, for the XWD data type, the double-click behavior is to run the
Open action, which in turn runs the Xwud action.

Dropping a Data File on an Action Icon
When the user drops a data file on an action icon, the system runs the action using
that data file as the argument for the action (see “How Actions Use Data Files as
Arguments” on page 162).

For example, when an XWD data file is dropped on the Xwd Display icon, the Xwud
action is run using the data file argument. This runs the xwud X client with that data
file.

Creating Desktop Printing for a Data Type
Desktop printing provides these ways to print a data file:

� Using the Print command, if available, in the File Manager Selected menu.
� Dropping a data file on a desktop printer drop zone (the Front Panel Printer

control or a printer icon in Print Manager).

In addition to desktop printing, many applications provide a way to print from within
the application.

Desktop printing uses actions named Print. Print, like Open, is an action name that is
used for many different types of data. Therefore, Print actions use action mapping and
the ARG_TYPE field to customize printing for each data type.

166 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For example, here is the Print action for the XWD data type. The definition is located
in /usr/dt/appconfig/types/language/xclients.dt:

ACTION Print
{

LABEL Print
ARG_TYPE XWD
TYPE MAP
MAP_ACTION NoPrint

}

This Print action, specific to XWD files, is mapped to a NoPrint action. NoPrint is a
special action defined in /usr/dt/appconfig/types/language/dt.dt. The
NoPrint action displays a dialog box telling the user that this data type cannot be
printed.

Compare the XWD Print action with the following Print action for PCL files:

ACTION Print
{

LABEL Print
ARG_TYPE PCL
TYPE MAP
MAP_ACTION PrintRaw

}

The PrintRaw action, defined in the configuration file
/usr/dt/appconfig/types/language/print.dt, contains the command line for
printing the PCL files.

ACTION PrintRaw
{

TYPE COMMAND
WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/dt/bin/dtlp -w %(File)Arg_1%

}

Chapter 10 • Introduction to Actions and Data Types 167

168 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 11

Creating Actions and Data Types
Using Create Action

Create Action is a tool for creating:

� An action to start an application
� One or more data types for an application’s data files
� Actions for opening and printing the application’s data files

Create Action is also useful for creating simple actions for running operating system
commands and shell scripts.

� “What Create Action Does” on page 169
� “Limitations of Create Action” on page 170
� “Creating an Action and Data Type for an Application with Create Action”

on page 171

For reference information, see the dtcreate(1X) man page.

What Create Action Does
Create Action includes a main window and a set of dialog boxes for creating an action
and its associated data types.

Create Action does the following:

� Creates an action definition that runs a command.
� Creates a file HomeDirectory/.dt/types/action_name.dt. This file stores the

action and data type definitions created for the application.
� Creates an action file in the user’s home directory. The action file is an executable

file with the same name as the action.

The action file’s representation in File Manager is called an application icon because
double-clicking it starts the application.

169

Optionally, you can make the action icon a drop zone by specifying dropable data
types when you create the action.

� Creates one or more data types for the application’s data files (optional).
� Creates an Open action for each data type.
� Creates a Print action for each data type (optional).
� Reloads the database of actions and data types. This makes the actions and data

types take effect immediately.

Limitations of Create Action
Create Action is designed to create actions and data types for running applications.
However, actions and data types are very flexible, and include additional functionality
that can only be accessed if you create the definitions manually.

For more information, see:

� Chapter 12
� Chapter 13

Action Limitations
You cannot use Create Action to create the action for an application if any of the
following conditions are true:

� The command line requires a non-file argument (parameter).

For example, you cannot use Create Action to write an action for the command:

lp -ddevice filename

where the user has to supply device each time the command is executed.

� The application icon must have a different label than the action name.

For example, you cannot use Create Action to provide a local-language version of
an existing action.

� The action requires any of the advanced features of the action database.

Examples of these advanced features are actions that:

� Launch commands on systems remote from the action definition
� Invoke other actions
� Must be run as a different user (for example, as superuser)
� Make extensive use of the ‘‘map’’ feature

170 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� Have very different behaviors depending on the number of file arguments
supplied to the action

Data Type Limitations
You cannot use Create Action to create the data type for an application if any of the
following conditions are true:

� The data type must have additional actions associated with it other than Open and
Print.

� The Open action for the data type is not the action’s command.

For example, you cannot use Create Action to create the data type that provides a
unique icon for the directory representing the application’s application group.

Creating an Action and Data Type for an
Application with Create Action
There are some things you’ll need to know about the application before you run
Create Action.

� The command line for starting the application.

You’ll need to know whether the command line includes a required file argument,
an optional file argument, or no file argument.

If the application requires a non-file argument, you cannot use Create Action to
create the action.

� The types of data files an application can accept.

Some applications can accept only one type of data. Others (for example, an ASCII
editor or graphics editor) can accept multiple data types.

� The way the application identifies its data files.

This may be a naming convention (for example, file names ending with.doc),
and/or may depend on the content of the file. If the application does not use a
file-name convention, you can still set one up for the action icon.

� Optional: The command line to print the files.

Chapter 11 • Creating Actions and Data Types Using Create Action 171

� To Create an Action for an Application
1. Double-click Create Action in the Desktop_Apps application group.

FIGURE 11–1 Create Action icon in Application Manager

This displays the main Create Action window.

FIGURE 11–2 Create Action main window

172 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

2. Type the name that will label the action icon into the Action Name text field.

3. Use the Action Icons controls to specify the icon for the application. Initially, the
default icon is shown.

� To choose a different, existing icon, click Find Set to display the Find Set dialog
box. See “Using the Find Set Dialog Box To Specify an Icon” on page 178.

� To create new icons, choose Edit Icon to run the Icon Editor.

4. In the Command When Action Icon Is Opened text field, type the command to start
the application.

Use the syntax $n for a file argument; for example:

emacs
bitmap $1
diff $1 $2

lp -oraw $1

If the command line includes a file argument ($n), then the action icon will be a drop
zone for files.
The command lines are not passed to a shell unless you explicitly specify the use of a
shell. For example, these lines use shell processing:

/bin/sh -c ’ps | lp’

/bin/sh -c ’spell $1 | more’

5. Type the On Item help text for the action icon into the Help Text For Action Icon
text field.

The text will automatically wrap in the text field. However, these line breaks are not
preserved online. If you want to specify a hard line break, use \n.

6. Choose the windowing support required by the action from the Window Type
option menu.

Graphical (X-Window)—the application creates its own window
Terminal (Auto-Close)—the application will run in a terminal emulator window that
closes automatically when the user exits the application
Terminal (Manual Close)—the application will run in a terminal emulator window
that remains open until the user explicitly closes it
No Output—the application does not produce output to the display

7. Proceed as follows:

� If your application has data files, and you want to create one or more data types for
them, see the next section, “To Create One or More Data Types for an Application”
on page 174.

� If you do not need to create a data type, save the action by choosing Save from the
File menu. Then, test the new action by double-clicking its icon in your home
directory.

Chapter 11 • Creating Actions and Data Types Using Create Action 173

� To Create One or More Data Types for an
Application

1. Define the action for the application using the procedure in the previous section,
“To Create an Action for an Application” on page 172.

2. Click the Advanced button in the Create Action window to expand the window.

FIGURE 11–3 Advanced features in the main Create Action window

3. If you want the application icon to prompt for a file argument when the icon is
double-clicked, type the text of the prompt into the ‘‘When Action Opens, Ask
Users for’’ text field.

Use these guidelines for this text field:

� You must use this field if the application’s command line has a required file
argument.

� You must leave this field blank if the command line does not include a file
argument.

� If the file argument in the application’s command line is optional, you have a
choice. If you supply the prompt text, the action icon will prompt for the file when
double-clicked. If you do not supply the prompt text, the action will be executed
with a null string as the file argument.

4. Specify the types of files that the action will accept as arguments:

� If the action can accept any data type, select All Data Types.

� If the action can accept only the data type(s) you create for the application, select
Only Above List.

Initially, the Datatypes That Use This Action list is empty. As you create data types
for the application, they are added to the list.

174 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

5. Click Add beside the Datatypes That Use This Action list box to display the Add
Data Type dialog box.

FIGURE 11–4 Create Action’s Add Datatype dialog box

6. Optional: If you don’t want to use the default data type name, type a new name for
the data type into the Name of Datatype Family text field.

The name cannot include spaces. The data type name is not visible to application
users; it is used in the actions/data types database to identify the data type definition.

7. Click the Edit button beside the Identifying Characteristics box to display the
Identifying Characteristics dialog box.

Chapter 11 • Creating Actions and Data Types Using Create Action 175

FIGURE 11–5 Create Action’s Identifying Characteristics dialog box

Characteristics of a data type are the criteria used to differentiate the data type from
others. You can choose one or more of the following criteria:

Files or Folder—the data type applies only to files or only to folders

Name Pattern—data typing based on the file name

Permission Pattern—read, write, execute permissions

Contents—contents of a specified portion of the file

8. Select whether the data type represents a file or folder.

FIGURE 11–6 Specifying a file or directory characteristic for a data type.

176 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

9. If the data typing depends on the name, select the Name Pattern check box and fill
in the text field.

FIGURE 11–7 Specifying the file name characteristic for a data type

You can use * and ? as wildcards:

*—matches any sequence of characters

?—matches any single character

10. If the data typing depends on the permissions, select the Permission Pattern check
box and select the permissions for the data type.

FIGURE 11–8 Specifying the permission characteristics for a data type

On—the file must have the specified permission

Off—the file must lack the specified permission

Either—the specified permission does not matter

11. If the data typing depends on the contents, select the Contents check box and
supply the requested information—Pattern to search for and Type of contents.
Optionally, you can supply the byte location where the search should start.

FIGURE 11–9 Specifying the contents characteristics for a data type

Chapter 11 • Creating Actions and Data Types Using Create Action 177

Note – Use of content-based data typing may affect the performance of the system.

12. Click OK to close the Identifying Characteristics dialog box.

The characteristics will be displayed in the Identifying Characteristics field using this
coding:

d—a directory

r—the file has read permission

w—the file has write permission

x—the file has execute permission

!—logical operator NOT

&—logical operator AND

13. Type the help text for the data files into the Help Text text field.

14. Use the Datatype Icons controls to specify the icon for the data files. Initially, the
default icon is shown.

� To choose a different, existing icon, click Find Set to display the Find Set dialog
box. See “Using the Find Set Dialog Box To Specify an Icon” on page 178.

� To create new icons, click Edit Icon to run the Icon Editor.

15. Verify the command in the Command to Open this Datatype text field. This is the
command that will be executed when the user double-clicks a data file.

16. Optional: If the application supplies a print command for printing data files from
the command line, type the command into the Command to Print this Datatype text
field, using the syntax $n for a file argument.

17. Do one of the following to save the data type definition:

� Click OK to save the data type and close the Add Datatype dialog box.

� Click Apply to save the data type without closing the Add Datatype dialog box.
This let you immediately proceed to define another data type for the action.

Using the Find Set Dialog Box To Specify an Icon
The Find Set dialog box is displayed when you click Find Set in the Create Action
main window or in the Add Datatype window. Use the dialog box to specify the icon
that will be used for the action or data type.

178 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

FIGURE 11–10 Find Set dialog box

The Find Set dialog box lets you specify a set of icon image files located:

� In a directory on the icon search path. The Icon Folders list includes all the
directories on the icon search path.

� In a registration package that will be integrated with the desktop using
dtappintegrate. These icons are not yet located in a directory on the icon search
path, but will be placed there by dtappintegrate.

Note – The action and data type definitions created using Create Action write out
the base name for the icon files (the file name minus the file-name suffixes for size
and type). Icons for actions and data types created with Create Action must
eventually be placed in directories on the icon search path.

� To Specify a Set of Icons Located on the Icon Search Path
1. In the Find Set dialog box’s Icon Folders list, double-click the folder path

containing the icon.

The Icon Files list will show all the icon files in that folder.

2. In the Icon Files list, click the icon you want to use.

This places the base name of the icon file in the Enter Icon File name text field.

3. Click OK.

� To Specify an Icon in a Registration Package
If you are a system administrator or programmer creating a registration package, the
icon image files are initially located in a directory in the registration package:

Chapter 11 • Creating Actions and Data Types Using Create Action 179

app_root/dt/appconfig/icons/language

After registration with dtappintegrate, the icon files will be copied to
/etc/dt/appconfig/icons/language, which is on the icon search path.

Use this procedure to specify icons that are part of a registration package:

1. In the Find Set dialog box’s Enter Icon Filename text field, type the base name of
the icon file.

2. Click OK.

Create Action displays a dialog box to inform you that the icons were not found in
directories on the icon search path.

3. In the information dialog box that appears, choose No Change.

180 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 12

Creating Actions Manually

There are two ways to create actions:

� Using the Create Action desktop application
� Manually creating an action definition

Creating an action manually requires you to edit a database file. This chapter describes
how to manually create action definitions.

� “Reasons You Must Create an Action Manually” on page 182
� “Creating an Action Manually: General Steps” on page 183
� “Building the Execution String for a COMMAND Action” on page 191
� “Windowing Support and Terminal Emulators for COMMAND Actions”

on page 197
� “Restricting Actions to Certain Arguments” on page 199
� “Creating Actions that Run Applications on Remote Systems” on page 202
� “Using Variables in Action and Data Type Definitions” on page 203
� “Invoking Actions from a Command Line” on page 204
� “Creating Localized Actions” on page 206
� “Creating Actions for ToolTalk Applications” on page 207

� For an introduction to actions, see Chapter 10.

� For information about using Create Action, see Chapter 11.

� For reference information about action definitions, see the dtactionfile(4) man page.

181

Reasons You Must Create an Action
Manually
There are three basic types of actions:

� COMMAND
� MAP
� TT_MSG

The Create Action tool is designed to create certain types of COMMAND and MAP actions.
All TT_MSG actions must be created manually.

For more information, see “Limitations of Create Action” on page 170.

COMMAND Actions
A command action executes a command that starts an application or utility, runs a shell
script, or executes an operating system command. The definition of the action includes
the command to be executed (the EXEC_STRING).

The Create Action tool can be used to create the most common types of command
actions. However, there may be some situations where you must create the action
manually; for example, you must create a COMMAND action manually if the action
specifies:

� Multiple-file arguments with a different prompt for each argument.
� Action invocation—the ability of actions to invoke other actions.
� Argument-count dependent behavior—the ability to create an action that has very

different behaviors for different numbers of file arguments.
� A remote execution host—the ability to run an application on a system other than

the one containing the action definition.
� Change of user—the ability to run the action as a different user (for example, to

prompt for the root password and then run as root).

MAP Actions
A map action is an action that is ‘‘mapped’’ to another action rather than directly
specifying a command or ToolTalk message

182 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Mapping provides the ability to specify alternative names for actions. For example, a
built-in command action named IconEditor starts Icon Editor. The database also
includes an Open action, restricted in the definition to bitmap and pixmap files (by the
ARG_TYPE field), that is mapped to the IconEditor action. This lets the user start Icon
Editor by selecting a bitmap or pixmap file in File Manager and then choosing Open
from the Selected menu.

Create Action provides limited mapping for Open and Print actions. All other map
actions must be created manually.

TT_MSG (ToolTalk Message) Actions
TT_MSG actions send a ToolTalk message. All TT_MSG actions must be created
manually.

Creating an Action Manually: General
Steps
This section explains how to create a configuration file for an action definition.

Configuration Files for Actions
Configuration files containing action definitions must meet these requirements:

� The files must use the naming convention name.dt

� The files must be located on the database (actions and data types) search path. The
default search path is:

Personal actions—HomeDirectory/.dt/types

System-wide actions—/etc/dt/appconfig/types/language

Built-in actions—/usr/dt/appconfig/types/language. You should not use this
directory.

For information on modifying the actions/data types search path, see “Setting the
Value of a Search Path” on page 144.

� To Create an Action Manually
1. Open an existing database file or create a new one.

See the previous section, “Configuration Files for Actions” on page 183.

Chapter 12 • Creating Actions Manually 183

2. Create the action definition using the syntax:

ACTION action_name
{

TYPE action_type
action_field

...

}

where:
action_name—name used to run the action.
action_type—COMMAND (default), MAP, or TT_MSG.
action_field—one of the required or optional fields for this type of action. All fields
consist of a keyword and a value.
Many of the action fields are covered in this chapter. For more information, see the
dtactionfile(4) man page.

3. Save the file.

4. If you want the action icon to have a unique image, create the icons for the action.
The default location for icons is:

� Personal icons: HomeDirectory/.dt/icons

� System-wide icons: /etc/dt/appconfig/icons/language. The default language
is C.

For more information, see “Specifying the Icon Image Used by an Action”
on page 188.

5. Double-click Reload Actions in the Desktop_Tools application group.

6. Create an action file for the action. The action file creates an icon in File Manager or
Application Manager that represents the action. (If the action is written to start an
application, the icon is called an application icon.)

To create the action file, create an executable file with the same name as action_name.
You can put the file in any directory to which you have write permission. You can
create as many action files as you like.

Example of Creating a COMMAND Action
The following steps create a personal action that starts a fax application on remote
system AppServerA. The command for starting the fax application is:

/usr/fax/bin/faxcompose [filename]

1. Create the file HomeDirectory/.dt/types/Fax.dt.

2. Put the following action definition into the file:

ACTION FaxComposer
{

184 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

TYPE COMMAND
ICON fax
WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/fax/bin/faxcompose -c %Arg_1%
EXEC_HOST AppServerA

DESCRIPTION Runs the fax composer

}

The WINDOW_TYPE and EXEC_STRING fields describe the behavior of the action.

WINDOW_TYPE—the NO_STDIO keyword specifies that the action does not have to run
in a terminal emulator window.

See “Specifying the Window Support for the Action” on page 198.

EXEC_STRING—the syntax %Arg_1% accepts a dropped file. If the action icon is
double-clicked, the action opens an empty fax composer window.

See “Building the Execution String for a COMMAND Action” on page 191.

3. Save the file.

4. Use Icon Editor to create the following icon image files in the
HomeDirectory/.dt/icons directory:

� fax.m.pm, size 32 by 32 pixels
� fax.t.pm, size 16 by 16 pixels

5. Double-click Reload Actions in the Desktop_Tools application group.

6. Create an executable file named FaxComposer in a directory to which you have
write permission (for example, your home directory).

Example of Creating a MAP Action
Suppose most of the files you fax are created with Text Editor and are of data type
TEXTFILE (files named *.txt).

These steps add a ‘‘Fax’’ menu item to the data type’s Selected menu.

1. Open the file HomeDirectory/.dt/types/Fax.dt that was created in the previous
example.

2. Add this map action definition to the file:

ACTION Fax
{

ARG_TYPE TEXTFILE
TYPE MAP
MAP_ACTION FaxComposer

}

3. Save the file.

Chapter 12 • Creating Actions Manually 185

4. Copy the data attributes definition for TEXTFILE from
/usr/dt/appconfig/types/language/dtpad.dt to a new file
HomeDirectory/.dt/types/textfile.dt. Add the Fax action to the ACTIONS field.

DATA_ATTRIBUTES TEXTFILE
{

ACTIONS Open,Print,Fax
ICON Dtpenpd
...

}

5. Save the file.

6. Open Application Manager and double-click Reload Actions in the Desktop_Tools
application group.

� To Reload the Actions/Data Types Database
In order for new or edited action definitions to take effect, the desktop must reread the
database.

� Open the Desktop_Tools application group and double-click Reload Actions.

� Or, execute the command:

dtaction ReloadActions

ReloadActions is the name of the action whose icon is labeled ‘‘Reload Actions.’’

The actions database is also reread when the user:

� Logs in

� Restarts the Workspace Manager

� Saves an action in the Create Action window by choosing Save from the File menu

Creating an Action File (Icon) for an Action
An action file is a file created to provide a visual representation of the action in File
Manager or Application Manager.

186 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

FIGURE 12–1 Action files (action icons) in Application Manager

Since an action file’s icon represents an action, it is sometimes called an action icon. If
the underlying action starts an application, the action file icon is called an application
icon.

Double-clicking the action icon runs the action. The action icon may also be a drop
zone.

� To Create an Action File (Action Icon)
� Create an executable file with the same name as the action name. The content of the

file does not matter.

For example, if the action definition is:

ACTION MyFavoriteApp
{

EXEC_STRING Mfa -file %Arg_1%
DESCRIPTION Runs MyFavoriteApp
ICON Mfapp

}

then the action file would be an executable file named MyFavoriteApp. In File
Manager and Application Manager, the MyFavoriteApp file would use the icon
image Mfapp.size.type. Double-clicking MyFavoriteApp’s icon would run the
action’s execution string, and the icon’s On Item help would be the contents of the
DESCRIPTION field (“runs MyFavoriteApp”).

Chapter 12 • Creating Actions Manually 187

Action Labels
If the action definition includes the LABEL field, the action file will be labeled in File
Manager and Application Manager with the contents of this field rather than the file
name (action_name). For example, if the action definition includes:

ACTION MyFavoriteApp
{

LABEL Favorite Application
...

}

then the action icon will be labeled ‘‘Favorite Application.’’

Specifying the Icon Image Used by an Action
Use the ICON field to specify the icon used in File Manager and Application Manager
for the action icons created for the action.

If you do not specify an icon, the system uses the default action icon image files
/usr/dt/appconfig/icons/language/Dtactn.*.

FIGURE 12–2 Default action icon image

The default action icon can be changed using the resource:

*actionIcon: icon_file_name

where icon_file_name can be a base name or absolute path.

The value of the ICON field can be:

� A base file name

The base file name is the name of the file containing the icon image minus the
file-name suffixes for size (m and t) and image type (bm and pm). For example, if
files are named GameIcon.m.pm and GameIcon.t.pm, use GameIcon.

If you use the base file name, the icon files must be placed in a directory on the icon
search path:

� Personal icons: HomeDirectory/.dt/icons
� System-wide icons: /etc/dt/appconfig/icons/language

� An absolute path to the icon file, including the full file name

You should use the absolute path only if the icon file is not located on the icon
search path. For example, if icon file GameIcon.m.pm is placed in the directory
/doc/projects, which is not on the icon search path, the value of the ICON field

188 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

would be /doc/projects/GameIcon.m.pm.

Table 12–1 lists icon sizes you should create and the corresponding file names.

TABLE 12–1 Icon Names and Sizes for Action Icons

Size in Pixels Bitmap Name Pixmap Name

48 by 48 name.l.bm name.l.pm

32 by 32 name.m.bm name.m.pm

16 by 16 name.t.bm name.t.pm

� To Modify an Existing Action Definition
You can modify any of the actions available on your system, including built-in actions.

Note – Use caution when modifying the built-in action database. The built-in actions
are designed to work well with the desktop applications.

1. Locate the definition of the action you want to modify.

The default locations for action definitions are:

� Built-in actions: /usr/dt/appconfig/types/language

� System-wide actions: /etc/dt/appconfig/types/language

� Personal actions: HomeDirectory/.dt/types

Your system might include additional locations. To see a list of the locations your
system uses for actions, type the command:

dtsearchpath -vYour system uses the directories listed under
DTDATABASESEARCHPATH.

2. If necessary, copy the text of the action definition to a new or existing file in one of
these directories:

� System-wide actions: /etc/dt/appconfig/types/language

� Personal actions: HomeDirectory/.dt/types

You must copy built-in actions, since you should not edit files in the
/usr/dt/appconfig/types/language directory.

3. Edit the action definition.

4. When you are done editing, save the file.

5. Double-click Reload Actions in the Desktop_Tools application group.

Chapter 12 • Creating Actions Manually 189

Precedence in Action Definitions
When the user invokes an action, the system searches the database for a matching
action name. When more than one action exists with that name, the system uses
precedence rules to decide which one to use.

� If no other precedence rules apply, the precedence is based on the location of the
definition. The following list is ordered from higher to lower precedence:

� Personal actions (HomeDirectory/.dt/types)
� System-wide local actions (/etc/dt/appconfig/types/language)
� System-wide remote actions

(hostname:/etc/dt/appconfig/types/language). The remote hosts searched
are those listed in the application search path.

� Built-in actions (/usr/dt/appconfig/types/language)

� Within a given directory, the *.dt files are read in alphabetical order.

� Actions restricted by ARG_CLASS, ARG_TYPE, ARG_MODE, or ARG_COUNT have
precedence over unrestricted actions. (The default for these four fields is *.)

Where more than one restriction applies, the precedence order from high to low is:

� ARG_CLASS

� ARG_TYPE

� ARG_MODE

� ARG_COUNT

Where more than one restricted ARG_COUNT exists, the precedence order from
high to low is:

� Specific integer value n
� <n
� >n
� *

For example, consider the following portions of action definitions:

ACTION EditGraphics
EditGraphics-1
{

ARG_TYPE XWD
...

}

ACTION EditGraphics
EditGraphics-2
{

ARG_COUNT 0
...

}

190 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

ACTION EditGraphics
EditGraphics-3
{

ARG_TYPE *
...

}

Double-clicking the EditGraphics action icon starts EditGraphics-2 because no
argument is provided and ARG_COUNT 0 has precedence. When an XWD-type file
argument is provided, EditGraphics-1 is used because it specified the XWD
ARG_TYPE. EditGraphics-3 is used for all other file arguments.

Building the Execution String for a
COMMAND Action
The minimum requirements for a COMMAND action are two fields—ACTION and
EXEC_STRING.

ACTION action_name
{

EXEC_STRING execution_string
}

The execution string is the most important part of a COMMAND action definition. It uses
syntax similar to the command line you would execute in a Terminal window but
includes additional syntax for handling file and string arguments.

General Features of Execution Strings
Execution strings may include:

� File and non-file arguments
� Shell syntax
� Absolute paths or names of executables

Action Arguments
An argument is information required by a command or application for it to run
properly. For example, consider the command line you could use to open a file in Text
Editor:

dtpad filename

Chapter 12 • Creating Actions Manually 191

In this command, filename is a file argument of the dtpad command.

Actions, like applications and commands, can have arguments. There are two types of
data that a COMMAND action can use:

� Files
� String data

Using Shells in Execution Strings
The execution string is executed directly, rather than through a shell. However, you
can explicitly invoke a shell in the execution string.

For example:

EXEC_STRING \
/bin/sh -c \
’tar -tvf %(File)Arg_1% 2>&1 | \${PAGER:-more};\

echo "\\n*** Select Close from the Window menu to close ***"’

Name or Absolute Path of the Executable
If your application is located in a directory listed in the PATH variable, you can use
the simple executable name. If the application is elsewhere, you must use the absolute
path to the executable file.

Creating an Action that Uses No Arguments
Use the same syntax for the EXEC_STRING that you would use to start the application
from a command line.

Examples
� This execution string is part of an action that starts the X client xcutsel.

EXEC_STRING xcutsel

� This execution string starts the client xclock with a digital clock. The command
line includes a command-line option but requires no arguments.

EXEC_STRING xclock -digital

Creating an Action that Accepts a Dropped File
Use this syntax for the file argument:

%Arg_n%

192 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

or

%(File)Arg_n%

(File) is optional, since arguments supplied to Arg_n are assumed (by default) to be
files. (See “Interpreting a File Argument as a String” on page 194 for use of the
%(String)Arg_n% syntax.)

This syntax lets the user drop a data file object on the action icon to start the action
with that file argument. It substitutes the nth argument into the command line. The
file can be a local or remote file.

Examples
� This execution string executes wc -w using a dropped file as the -load parameter.

EXEC_STRING wc -w %Arg_1%

� This example shows a portion of a definition for an action that works only with
directory arguments. When a directory is dropped on the action icon, the action
displays a list of all the files in the directory with read-write permission.

ACTION List_Writable_Files
{

ARG_TYPE FOLDER
EXEC_STRING /bin/sh -c ’s -l %Arg_1% | grep rw-’
...

}

Creating an Action that Prompts for a File
Argument
Use this syntax for the file argument:

%(File)"prompt"%

This syntax creates an action that displays a prompt for a file name when the user
double-clicks the action icon.

For example, this execution string displays a dialog box that prompts for the file
argument of the wc -w command:

EXEC_STRING wc -w %(File)"Count words in file:"%

Chapter 12 • Creating Actions Manually 193

Creating an Action that Accepts a Dropped File or
Prompts for One
Use this syntax for the file argument:

%Arg_n"prompt"%

or

%(File)Arg_n"prompt"%

This syntax produces an action that:

� Accepts a dropped file as the file argument.

� Displays a dialog box that prompts for a file name when the user double-clicks the
action icon.

For example, this execution string performs lp -oraw on a dropped file. If the
action is started by double-clicking the icon, a dialog box appears prompting for
the file name.

EXEC_STRING lp -oraw %Arg_1"File to print:"%

Creating an Action that Prompts for a Non-File
Argument
Use this syntax for the non-file parameter:

%"prompt"%

or

%(String)"prompt"%

(String) is optional, since quoted text is interpreted, by default, as string data. This
syntax displays a dialog box that prompts for non-file data; do not use this syntax
when prompting for a file name.

For example, this execution string runs the xwd command and prompts for a value to
be added to each pixel:

EXEC_STRING xwd -add %"Add value:"% -out %Arg_1"Filename:"%

Interpreting a File Argument as a String
Use this syntax for the argument:

%(String)Arg_n%

194 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For example, this execution string prints a file with a banner containing the file name,
using the command lp -tbanner filename.

EXEC_STRING lp -t%(String)Arg_1% %(File)Arg_1"File to print:"%

Providing Shell Capabilities in an Action
Specify the shell in the execution string:

/bin/sh -c ’command’
/bin/ksh -c ’command’
/bin/csh -c ’command’

Examples
� This execution string illustrates an action that uses shell piping.

EXEC_STRING /bin/sh -c ’ps | lp’

� This is a more complex execution string that requires shell processing and accepts a
file argument.

EXEC_STRING /bin/sh -c ’tbl %Arg_1"Man Page:"% | troff -man’

� This execution string requires that the argument be a compressed file. The action
uncompresses the file and prints it using lp -oraw.

EXEC_STRING /bin/sh -c ’cat %Arg_1 "File to print:"% | \

uncompress | lp -oraw’

� This execution string starts a shell script.

EXEC_STRING /usr/local/bin/StartGnuClient

Creating COMMAND Actions for Multiple File
Arguments
There are three ways for actions to handle multiple file arguments:

� The action can be run repeatedly, once for each argument. When an EXEC_STRING
contains a single file argument and multiple file arguments are provided by
dropping multiple files on the action icon, the action is run separately for each file
argument.

For example if multiple file arguments are supplied to the following action
definition:

ACTION DisplayScreenImage
{

EXEC_STRING xwud -in %Arg_1%

Chapter 12 • Creating Actions Manually 195

...

}

the DisplayScreenImage action is run repeatedly.

� The action can use two or more non-interchangeable file arguments. For example:

xsetroot -cursor cursorfile maskfile

requires two unique files in a particular order.

� The action can perform the same command sequentially on each file argument. For
example:

pr file [file ...]

will print one or many files in one print job.

Creating an Action for Non-Interchangeable Arguments
Use one of the following syntax conventions:

� If you want the action to prompt for the file names, use this syntax for each file
argument:

%(File)"prompt"%

Use a different prompt string for each argument.

For example, this execution string prompts for two files.

EXEC_STRING xsetroot -cursor %(File)"Cursor bitmap:"% \

%(File)"Mask bitmap:"%

� To accept dropped files, use this syntax for each file argument:

%Arg_n%

using different values of n for each argument. For example:

EXEC_STRING diff %Arg_1% %Arg_2%

Creating an Action with Interchangeable File Arguments
Use one of the following syntax conventions:

� To create an action that accepts dropped files and issues a command in the form
command file 1 file 2 …, use this syntax for the file arguments:

%Args%

� To create an action that accepts multiple dropped files, or displays a prompt for a
single file when double-clicked, use this syntax for the file arguments:

196 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

%Arg_1"prompt"% %Args%

The action will issue the command in the form: command file 1 file 2 ….

Examples
� This execution string creates an action that executes:

pr file 1 file 2

with multiple file arguments.

EXEC_STRING pr %Args%

� This execution string creates an action similar to the previous example, except that
the action displays a prompt when double-clicked (no file arguments).

EXEC_STRING pr %Arg_1"File(s) to print:"% %Args%

Creating an Action for Multiple Dropped Files
To accept multiple dropped file arguments and execute a command line in the form:

command file 1 file 2 ...

use the syntax:

%Args%

Examples
� This execution string executes a script named Checkout for multiple files:

EXEC_STRING /usr/local/bin/Checkout \

%Arg_1"Check out what file?"% %Args%

� This execution string executes lp -oraw with multiple files:

EXEC_STRING lp -oraw %Arg_1"File to print:"% %Args%

Windowing Support and Terminal
Emulators for COMMAND Actions
There are several ways that COMMAND actions support windows on the desktop.

Chapter 12 • Creating Actions Manually 197

� If the application has its own window, the action can be written to provide no
additional window support. This option is also used when an action runs a
command that requires no direct user input and has no output.

� If the application must run in a terminal emulator window, the action can be
written to open a window and then run the application. There are several terminal
options.

Specifying the Window Support for the Action
Use the WINDOW_TYPE field to specify the type of windowing support required by the
action as shown in Table 12–2.

TABLE 12–2 WINDOW_TYPE Field and Windowing Support Provided

WINDOW_TYPE Windowing Support Provided

NO_STDIO None. Use NO_STDIO if the application has its own window, or if the
command has no visible output.

PERM_TERMINAL Permanent terminal emulator window. The action opens a terminal
window that remains open until the user explicitly closes it. The user
can enter data into the window. Use with commands that take some
input, produce some output, then terminate (for example, ls directory).

TERMINAL Temporary terminal emulator window. The action opens a terminal
window that closes as soon as the command is completed. Use with
full-screen commands (for example, vi).

Specifying Command-Line Options for the
Terminal Emulator
Use the TERM_OPTS field in the action definition to specify command-line options for
the terminal emulator.

For example, the following action prompts for the execution host:

ACTION OpenTermOnSystemUserChooses
{

WINDOW_TYPE PERM_TERMINAL
EXEC_HOST %(String)"Remote terminal on:"%
TERM_OPTS -title %(String)"Window title:"%
EXEC_STRING $SHELL

}

198 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Specifying a Different Default Terminal Emulator
The default terminal emulator used by actions is dtterm. You can change this to
another terminal emulator. The default terminal emulator is used when the action
does not explicitly specify a terminal emulator to use.

The terminal emulator used by actions must have these command-line options:

� -title window_title

� -e command

Two resources determine the default terminal emulator used by actions:

� The localTerminal resource specifies the terminal emulator used by local
applications.

*localTerminal: terminal

For example:

*localTerminal: xterm

� The remoteTerminal resource specifies the terminal emulator used by remote
applications.

*remoteTerminal: host:terminal [,host:terminal...]

For example:

*remoteTerminal: sysibm1:/usr/bin/xterm,syshp2:/usr/bin/yterm

Restricting Actions to Certain
Arguments
Restricting an action to a particular type of argument refines the action. For example,
you should restrict an action that invokes a viewer for PostScript files to only
PostScript file arguments; with the restriction, the action will return an error dialog if a
non-PostScript file is specified.

You can restrict actions based on:

� The data type of the file argument.

� The number of file arguments—for example, no arguments versus one or more
arguments. This provides different drop and double-click behavior for the action
icon.

� The read/write mode of the argument.

Chapter 12 • Creating Actions Manually 199

Restricting an Action to a Specified Data Type
Use the ARG_TYPE field to specify the data types for which the action is valid. Use the
data attribute name.

You can enter a list of data types; separate the entries with commas.

For example, the following action definition assumes a GIF data type has been created.

ACTION Open_Gif
{

TYPE COMMAND
LABEL "Display Gif"
WINDOW_TYPE NO_STDIO
ARG_TYPE Gif
ICON xgif
DESCRIPTION Displays gif files
EXEC_STRING xgif

}

Restricting an Action Based on the Number of
Arguments
Use the ARG_COUNT field to specify the number of arguments the action can accept.
Valid values are:

* (Default)—any number of arguments. Other values have precedence over *.

n—any non-negative integer, including 0.

>n—more than n arguments.

<n—fewer than n arguments.

One use for ARG_COUNT is to provide different action icon behavior, depending on
whether the user double-clicks the icon or drops a file on it. See the next section, “To
Provide Different Double-Click and Drop Behavior.”

� To Provide Different Double-Click and Drop
Behavior
Use this procedure to create an action that accepts a dropped file but does not prompt
for a file when the action icon is double-clicked.

1. Create an action definition for the double-click functionality.

Use the ARG_COUNT field to specify 0 arguments. Use a syntax for the EXEC_STRING
that does not accept a dropped argument.

200 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

2. Create a second action definition for the drop functionality.

Use the ARG_COUNT field to specify >0 argument. Use a syntax for the EXEC_STRING
that accepts a dropped file.

For example, suppose the following two command lines can be used to start an editor
named vedit:

� To start the editor with no file argument:

vedit

� To start the editor with a file argument that is opened as a read-only document:

vedit -R filename

The following two actions create drop and double-click functionality for an action
named Vedit. The first action has precedence when the database is searched for a
match, since ARG_COUNT 0 is more specific than the implied ARG_COUNT * of the
drop functionality definition.

Double-click functionality
ACTION Vedit
{

TYPE COMMAND
ARG_COUNT 0
WINDOW_TYPE PERM_TERMINAL
EXEC_STRING vedit

}

Drop functionality
ACTION Vedit
{

TYPE COMMAND
WINDOW_TYPE PERM_TERMINAL
EXEC_STRING vedit -R %Arg_1%

}

Restricting an Action Based on the Mode of the
Argument
Use the ARG_MODE field to specify the read/write mode of the argument. Valid values
are:

* (Default)—any mode

!w—non-writable

w—writable

Chapter 12 • Creating Actions Manually 201

Creating Actions that Run Applications
on Remote Systems
When discussing actions and remote execution, there are two terms that are used
frequently:

database host—the system containing the action definition

execution host—the system where the executable runs

In most situations, actions and their applications are located on the same system; since
the default execution host for an action is the database host, no special syntax is
required.

However, when the execution host is different from the database host, the action
definition must specify where the execution string should be run.

The ability to locate actions and applications on different systems is part of the
client/server architecture of the desktop. For a more in-depth discussion of networked
applications, see “Administering Application Services” on page 129.

Creating an Action that Runs a Remote Application
Use the EXEC_HOST field in the action definition to specify the location of the
application.

Valid values for EXEC_HOST are:

%DatabaseHost%—the host where the action is defined.

%LocalHost%—the host where the action is invoked (the session server).

%DisplayHost%—the host running the X server (not allowed for X terminals).

%SessionHost%—the host where the controlling Login Manager is running.

hostname—the named host. Use this value for environments in which the action should
always be invoked on one particular host.

%"prompt"%—prompts the user for the host name each time the action is invoked.

The default value is %DatabaseHost%, %LocalHost%. Thus, when the EXEC_HOST
field is omitted, the action first attempts to run the command on the host containing
the action definition. If this fails, the action attempts to run the command on the
session server.

202 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Examples
� This field specifies host ddsyd:

EXEC_HOST ddsyd

� The field prompts for a host name:

EXEC_HOST %"Host containing application:"%

� This field specifies that the action will attempt to run the application on the host
containing the action definition. If this fails, the action will attempt to run the
application on host ddsyd.

EXEC_HOST %DatabaseHost%, ddsyd

Using Variables in Action and Data Type
Definitions
You can include string variables and environment variables in action and data type
definition files.

Using String Variables in an Action
A string variable definition remains in effect from the location of the definition to the
end of the file. There are no global string variables for the database.

If a string variable and environment variable have the same name, the string variable
has precedence.

� To Define a String Variable
� Use the syntax:

set variable_name=value

Variable names can contain any alphanumeric characters and underscore (_). Each
variable definition must be on a separate line.

For example:

set Remote_Application_Server=sysapp

set Remote_File_Server=sysdata

Chapter 12 • Creating Actions Manually 203

� To Reference a String Variable
� Use the syntax:

$[{]variable_name[}]

For example:

EXEC-HOST $Remote_Application_Server

CWD /net/${Remote_File_Server}/doc/project

Using Environment Variables in Actions and Data
Types

� Reference an environment variable using the syntax:

$[{]variable[}].

The variable is expanded (replaced by its value) when the database is loaded. If a
string variable and environment variable have the same name, the string variable has
precedence.

For example, this execution string prints a file with a banner containing the login
name.

EXEC-STRING lp -t$LOGNAME %(File)Arg_1%

Invoking Actions from a Command Line
The desktop provides the dtaction command for running actions from a command
line. You can use dtaction to run actions from:

� Scripts
� Other actions
� A terminal emulator command line

Syntax of dtaction
dtaction [-user user_name] [-execHost hostname] \

action_name [argument [argument]...]

-user user_name—provides the ability to run the action as a different user. If
dtaction is invoked by a user other than user_name, a prompt is displayed for the
password.

204 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

-execHost hostname—for COMMAND actions only; specifies the host on which the
command will be run.

argument—arguments to the action; usually file arguments.

The dtaction client has additional command-line options. For more information, see
the dtaction(1) man page.

Creating an Action that Runs Another Action
Use dtaction in the EXEC_STRING of the action.

For example, the following action uses a built-in action named Spell (the action is
labeled ‘‘Check Spelling’’ in Application Manager). The new action runs Text Editor
and the Spell action, displaying the spelling errors in a separate terminal emulator
window.

ACTION EditAndSpell
{

WINDOW_TYPE NO_STDIO
EXEC_STRING /bin/sh -c ’dtaction Spell \

%Arg_1"File:"%; dtpad %Arg_1%’

}

Creating an Action that Runs as a Different User
Use the following syntax in the EXEC_STRING:

EXEC_STRING dtaction -user user_name action_name [file_argument]

The new user (user_name) must have display access to the system through one of the
following mechanisms:

� Read permission on the login user’s .Xauthority file

� Or, xhost permission

For example, the following two actions provide the ability to become root and edit
an app-defaults file.

ACTION AppDefaults
{

WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/dt/bin/dtaction -user root \

EditAppDefaults %Arg_1"File:"%
}
ACTION EditAppDefaults
{

WINDOW_TYPE TERMINAL
EXEC_STRING /bin/sh -c ’chmod +w %Arg_1%; \

Chapter 12 • Creating Actions Manually 205

vi %Arg_1%; chmod -w %Arg_1%’

}

Creating Localized Actions
The search path for data types includes language-dependent locations. The desktop
uses the value of LANG to determine the locations searched for data type definitions.

Locations for Localized Actions
Localized action definitions must be placed in the proper language-dependent
directories along the actions search path.

The default search path is:

� Personal actions: HomeDirectory/.dt/types
� System-wide actions: /etc/dt/appconfig/types/language
� Built-in actions: /usr/dt/appconfig/types/language

� To Localize an Existing Action
1. Create a file in the appropriate language-dependent directory (for example, in

/etc/dt/appconfig/types/japanese) .

2. Copy the action definition to the language-dependent configuration file.

For example, you might copy an action definition from

app_root/dt/appconfig/types/C/file.dt

to

app_root/dt/appconfig/types/japanese/newfile.dt

3. Add a LABEL field or modify the existing LABEL field.

LABEL string

Application Manager and File Manager use the label string to identify the action’s
icon.

4. Localize any of the following fields in the action definition:

� For localized icons: ICON
� For localized On Item help: DESCRIPTION

206 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� For localized prompts: any quoted text in the EXEC_STRING

Creating Actions for ToolTalk
Applications

Note – The following information applies only to applications that support ToolTalk
messaging.

Use the action type TT_MSG to create an action that sends a ToolTalk message.

ACTION action_name
{

TYPE TT_MSG
...

}

addressing and disposition Fields
� The ToolTalk addressing field is always set to TT_PROCEDURE.

� The ToolTalk disposition field defaults to the specification in the static message
pattern.

Unsupported Messages
The following are not supported by TT_MSG-type actions:

� ToolTalk object-oriented messages
� Context arguments in messages

Keywords for TT_MSG Actions
Table 12–3shows the keyword and usage for TT_MSG actions.

Chapter 12 • Creating Actions Manually 207

TABLE 12–3 TT_MSG Action Keywords and Usage

Keyword Use

TT_CLASS Defines the value of the ToolTalk class message field

TT_SCOPE Defines the value of the ToolTalk scope message field

TT_OPERATION Defines the value of the ToolTalk operation message field

TT_FILE Defines the value of the ToolTalk file message field

TT_ARGn_MODE Defines the value of the ToolTalk mode attribute for the nth message
argument

TT_ARGn_VTYPE Defines the value of the ToolTalk vtype attribute of the nth message
argument

TT_ARGn_VALUE Defines the value of the nth message argument

208 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 13

Creating Data Types Manually

There are two ways to create a data type definition:

� Using the Create Action tool. Using Create Action is covered in Chapter 11.

� By manually creating the data type definition.

Creating a data type manually requires you to edit a database file.

This chapter describes how to manually create data type definitions.

� “Reasons You Must Create a Data Type Manually” on page 209
� “Components of a Data Type Definition: Criteria and Attributes” on page 210
� “Creating a Data Type Manually: General Steps” on page 210
� “Example of Creating a Personal Action and Data Type” on page 212
� “Defining the Data Criteria for a Data Type” on page 216

� For an introduction to data types, see Chapter 10.

� For reference information about data type definitions, see the dtddsfile(4) man
page.

Reasons You Must Create a Data Type
Manually
Manually creating a data type lets you use all the capabilities built into the syntax of
data type definitions.

You must create an data type manually if you want to use these features of data types:

� Location (path)-based data typing

209

� The ability to specify actions associated with the data type other than Open and
Print

� Multiple name, pattern, or content criteria for the same data type—for example, a
data type based on files named *.abc or *.def

� Link-based data typing

Components of a Data Type Definition:
Criteria and Attributes
A data type definition consists of two separate database definitions:

� The DATA_ATTRIBUTES definition.

The DATA_ATTRIBUTES definition describes the data type’s name and the
appearance and behavior of files of this type.

� The DATA_CRITERIA definition.

The DATA_CRITERIA definition describes the typing criteria. Each criteria
definition specifies the DATA_ATTRIBUTES definition to which the criteria apply.

There must be at least one DATA_CRITERIA definition for each DATA_ATTRIBUTES
definition; a DATA_ATTRIBUTES definition can have multiple DATA_CRITERIA
associated with it.

For example, you could create an attributes definition for PostScript files that
described how PostScript files look and behave in File Manager. Then, you could
create two separate criteria for the PostScript data type— one based on file name and
the other based on file content.

For more information, see “Defining the Data Criteria for a Data Type” on page 216.

Creating a Data Type Manually: General
Steps
This section describes how to create a data type configuration file.

210 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Configuration Files for Data Types
The requirements for configuration files containing data type definitions are:

� The files must use the naming convention name.dt

� The files must be located on the database search path. The default search path is:

Personal data types—HomeDirectory/.dt/types

System-wide data types—/etc/dt/appconfig/types/language

Built-in data types—/usr/dt/appconfig/types/language. You should not use
this directory.

For information on modifying the database search path, see “Setting the Value of a
Search Path” on page 144.

� To Create a Data Type Definition
1. Open an existing database file or create a new one.

For more information, see the previous section, “Configuration Files for Data Types”
on page 211.

2. Define the data attributes for the data type using the syntax:

DATA_ATTRIBUTES data_type_name
{

ICON image_name
DESCRIPTION string
attribute_field
attribute_field
...

}

where:
data_type_name—a unique name given to this data type.
image_name—file name or path of an icon file. Use the base name for the file. For
example, for icon files myimage.m.pm and myimage.t.pm, use myimage.
attribute_field—field that defines the appearance or behavior of the data type.
string—character string. The contents will be the on-item help for the data type.
See “Example of Creating a Personal Action and Data Type” on page 212.

3. Define the data criteria for the data type using the syntax:

DATA_CRITERIA criteria_name
{

DATA_ATTRIBUTES_NAME data_type_name
criteria_field
criteria_field
...

}

Chapter 13 • Creating Data Types Manually 211

where:

criteria_name—unique name for this criteria definition

data_type_name—name used in the DATA_ATTRIBUTES definition

criteria_field—field used to define the criteria for assigning a file to this data type

See “Defining the Data Criteria for a Data Type” on page 216.

4. Save the database file.

5. Create the icons for the data type.

For more information, see “Specifying the Icon Image Used for a Data Type”
on page 213.

6. If necessary, create the actions listed in the ACTIONS field of the attributes
definition.

7. Double-click Reload Actions in the Desktop_Tools application group to reload the
database.

Example of Creating a Personal Action and Data
Type
Suppose your system contains an application named xgif, which displays GIF
pictures. Ordinarily, you run the program by executing:

xgif filename

You want to be able to display GIF pictures several ways:

� By double-clicking a GIF data file

� By selecting the data file and choosing the application from the Selected menu

1. Open a new file HomeDirectory/.dt/types/GifViewer.dt for editing.

2. Type the data type definitions:

DATA_ATTRIBUTES Gif
{

DESCRIPTION Gif image file.
ICON GifIcon
ACTIONS View

}
DATA_CRITERIA Gif_Criteria
{

DATA_ATTRIBUTES_NAME Gif
NAME_PATTERN *.gif

}

3. Type the action definition for the GifViewer action:

212 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

ACTION GifViewer
{

EXEC_STRING xgif %(File)Arg_1"Gif file to view:"
WINDOW_TYPE NO_STDIO
DESCRIPTION Double-click or drop a file to \

start the Gif viewer.

}

Since the definition does not include an ICON field, the action will use the system’s
default icon.

4. Type the following map action to connect the GifViewer action to the View action
listed in the data type definition. Use the ARG_TYPE field to restrict this view action
to Gif-type files.

ACTION View
{

ARG_TYPE Gif
TYPE MAP
MAP_ACTION GifViewer

}

5. Save the file.

6. Double-click Reload Actions in the Desktop_Tools application group to reread the
database.

Defining the Data Attributes of a Data
Type
The DATA_ATTRIBUTES definition defines the appearance and behavior of the data
type. It specifies the name of the data type, and provides the ability to specify:

� The File Manager icon (ICON field)

� The double-click behavior and contents of the Selected menu (ACTIONS field)

� The data type’s on-item help (DESCRIPTION field)

Specifying the Icon Image Used for a Data Type
Use the ICON field to specify the icon used in File Manager. If you do not specify an
icon image, File Manager displays only a label.

The value of the ICON field can be:

� A base file name.

Chapter 13 • Creating Data Types Manually 213

The base file name is the name of the file containing the icon image, minus the
file-name suffixes for size (m and t) and image type (bm and pm). For example, if
files are named GameIcon.m.pm and GameIcon.t.pm, use GameIcon.

If you use the base file name, the icon files must be placed in a directory on the
icon search path:

� Personal icons: HomeDirectory/.dt/icons
� System-wide icons: /etc/dt/appconfig/icons/language

� An absolute path to the icon file, including the full file name.

You should use the absolute path only if the icon file is not located on the icon
search path. For example, if icon file GameIcon.m.pm is placed in the directory
/doc/projects, which is not on the icon search path, the value of the ICON field
would be /doc/projects/GameIcon.m.pm.

Table 13–1 lists icon sizes you should create and the corresponding file names.

TABLE 13–1 Icon Names and Sizes for Data Type Icons

Size in Pixels Bitmap Name Pixmap Name

32 by 32 name.m.bm name.m.pm

16 by 16 name.t.bm name.t.pm

Associating Data Types with Actions
There are two ways that data types are associated with actions:

� The ACTIONS field in the DATA_ATTRIBUTES definition lists the actions that will
appear in File Manager’s Selected menu. The first action in the list is the default
(double-click) action.

� Actions can be restricted to specified data types using the action definition’s
ARG_TYPE field.

For example, the following data type definition creates a data type for special
“readme” files created by your system administrator that use the naming
convention *.rm.

DATA_ATTRIBUTES SysReadmeFile
{

ICON SysReadMe
ACTIONS Open,Respond

}
DATA_CRITERIA SysReadmeFileCriteria
{

NAME_PATTERN *.rm
DATA_ATTRIBUTES_NAME SysReadmeFile

}

214 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

A special Respond action is defined below for the file. It opens a writable copy of
the file in Text Editor. When the file is saved and Text Editor is exited, the file is
mailed to the system administrator (mail address sysadmin@utd).

ACTION Respond
{

ARG_TYPE SysReadmeFile
EXEC_STRING /bin/sh -c ’cp %Arg_1% $HOME/readme.temp;\

chmod +w $HOME/readme.temp; \
dtpad $HOME/readme.temp; \
cat $HOME/readme.temp | \
/usr/bin/mailx sysadmin@utd; \
rm $HOME/readme.temp’

WINDOW_TYPE NO_STDIO

}

Hiding Files Based on Data Type
If a file is an invisible data type, it never appears in File Manager.

Use the PROPERTIES field in the DATA_ATTRIBUTES definition to specify that objects
of this type be hidden:

PROPERTIES invisible

Specifying Behaviors When the File Is Manipulated
Table 13–2 shows the DATA_ATTRIBUTES fields that are used primarily by application
programmers. They specify how files behave when the user performs various desktop
activities.

For more information, see the Common Desktop Environment Programmer’s Guide, which
is part of the developer environment documentation.

TABLE 13–2 DATA_ATTRIBUTES Fields and Descriptions

Field Description

MOVE_TO_ACTION For containers such as directories. Specifies an action to be run when a
file is moved to a container of this data type.

COPY_TO_ACTION For containers such as directories. Specifies an action to be run when a
file is copied to a container of this data type.

LINK_TO_ACTION Specifies an action to be run when a file is linked to a file of this data
type.

Chapter 13 • Creating Data Types Manually 215

TABLE 13–2 DATA_ATTRIBUTES Fields and Descriptions (Continued)
Field Description

IS_TEXT Specifies that files of this data type contain text that can be displayed in
a text box.

MEDIA Specifies the corresponding ToolTalk media type.

MIME_TYPE Specifies the corresponding MIME type.

X400_TYPE Specifies the corresponding X400 type.

Defining the Data Criteria for a Data
Type
The DATA_CRITERIA definition defines the criteria used to assign an object type to a
file or directory.

You can use the criteria show in Table 13–3 for object typing.

TABLE 13–3 DATA_CRITERIA Criteria and Descriptions

Criteria Description

File name The file name must match a specified pattern. Use the NAME_PATTERN
field.

File location The path must match a specified pattern. Use the PATH_PATTERN field.

File contents A specified portion of the file’s contents must match specified data. Use
the CONTENT field.

File mode The file must possess the specified permissions (read, write, execute,
directory). Use the MODE field.

Symbolic links The typing is based on the file to which the object is linked.

You can use more than one criteria for a data type. However, you should not use the
NAME_PATTERN and PATH_PATTERN criteria in the same data type.

Name-Based Data Types
Use the NAME_PATTERN field to specify the naming requirement. The field value can
include the following wildcards:

?—matches any single character

216 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

*—matches any sequence of characters (including a null string)

[cc…]—matches any of the characters (c) enclosed in brackets

[c–c]—matches any of the characters in the range c through c

Examples
� The following data type definition creates a data type based on the file name. The

file name must begin with QS and end with .doc.

DATA_ATTRIBUTES QS_Doc
{

DESCRIPTION This file contains a document for the QS \
project.

ICON Word_Doc
ACTIONS Open

}

DATA_CRITERIA QS_Doc_Criteria
{

NAME_PATTERN QS*.doc
DATA_ATTRIBUTES_NAME QS_Doc

}

� The following definition creates a data type for directories named Demo_n where n
is 0 through 9.

DATA_ATTRIBUTES Demo_directory
{

DESCRIPTION This is a directory. Double-click to open it.
ICON Demo
ACTIONS OpenInPlace,OpenNewView

}

DATA_CRITERIA Demo_directory_criteria
{

NAME_PATTERN Demo_[0-9]
MODE d
DATA_ATTRIBUTES_NAME Demo_directory

}

Location-Based Data Types
Use the PATH_PATTERN field to specify the path. You can use the same wildcard
characters as with NAME_PATTERN.

For example, the following data type uses a criteria based on path.

DATA_ATTRIBUTES Project_Graphics
{

DESCRIPTION Graphics file for the QS project. Double-click the \

Chapter 13 • Creating Data Types Manually 217

icon to see the graphic.
ICON QSgraphics
}
DATA_CRITERIA Project_Graphics_Criteria
{
DATA_ATTRIBUTES_NAME Project_Graphics
PATH_PATTERN */projects/QS/graphics/*

}

Data Types Based on Name and Location
To create a data type based on both file name and location, include the name in the
PATH_PATTERN value. You cannot use both NAME_PATTERN and PATH_PATTERN in
the same criteria definition.

Examples
� The QS_Source_Files data type defined below applies to all files named appn.c,

where n= 1 through 9, located in subdirectories of */projects/QS.

DATA_ATTRIBUTES QS_Source_Files
{

...
}
DATA_CRITERIA QS_Source_Files_Criteria
{

PATH_PATTERN */projects/QS/*/app[1-9].c
DATA_ATTRIBUTES_NAME QS_Source_Files

}

� The following data type applies to all files in the directory /doc/project1
named chnn.xxx where n is 0 through 9, and xxx is any three-character file- name
suffix.

DATA_ATTRIBUTES ChapterFiles
{

DESCRIPTION Chapter file for the project document.
ICON chapter
ACTIONS Edit,Print

}

DATA_CRITERIA Chapter_Criteria
{

PATH_PATTERN /doc/project1/ch[0-9][0-9].???
DATA_ATTRIBUTES_NAME ChapterFiles

}

Using File Modes as a Typing Criteria
Use the MODE field to specify the required permissions.

218 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Mode criteria are usually used in combination with name-based, location-based, or
content-based data typing. They allow you to limit a data type to a file or directory, or
to specify the required read, write, and execute permissions.

The MODE field can include logical operators (Table 13–4) and characters (Table 13–5).

TABLE 13–4 MODE Field Logical Operators and Descriptions

Operator Description

! Logical operator NOT

& Logical operator AND

| Logical OR

TABLE 13–5 MODE Field Characters and Descriptions

Character Description

f The data type applies only to files

d The data type applies only to directories

r The file is readable by any user

w The file is writable by any user

x The file is executable by any user

l The file is a link

The default for a particular mode is that the mode does not matter.

Examples
� The following mode fields restrict the data type as described:

f&!w—read-only files

!w—read-only files and directories

f&x—executable files

f&r&x—files that are both writable and executable

x|!w—files that are executable or read-only

� The following data type definition creates an data type for read-only,
non-executable files whose file names follow the naming convention *.doc. It
assumes that a View action has been defined for the data type.

DATA_ATTRIBUTES ReadOnlyDocument
{

ICON read_only

Chapter 13 • Creating Data Types Manually 219

DESCRIPTION This document is not writable. Double- \
clicking runs your editor with a \
read-only copy of the file.

ACTIONS View
}

DATA_CRITERIA ReadOnlyDocument_Criteria
{

NAME_PATTERN *.doc
MODE !d&!x&!w
DATA_ATTRIBUTES_NAME ReadOnlyDocument

}

Content-Based Data Typing
Use the CONTENT field to specify data typing based on the content of the file.
Content-based data typing can be used in combination with name- or location-based
data typing.

The typing can be based on either string or numeric content for files. The first byte in
the file is numbered 0.

� For string content of a file, use the syntax:

CONTENT starting_byte string string

� For number content of a file, use the syntax:

CONTENT starting_byte byte number
CONTENT starting_byte short number
CONTENT starting_byte long number

� For the contents of a directory, use the syntax:

CONTENT 0 filename "file_name"

Use standard C notation for octal (leading o) and hexidecimal (leading oX)
numbers.

Note – Use of content-based data typing will result in slower system performance.
Wherever possible, use name- and location-based typing instead.

For example, the following data type, Writable_Wingz, applies to all files with
write permission containing the string WNGZ at the beginning of the file.

DATA_ATTRIBUTES Writable_Wingz
{

...
}

220 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

DATA_CRITERIA Writable_Wingz_Criteria
{

CONTENT 0 string WNGZ
MODE w&!d
DATA_ATTRIBUTES_NAME Writable_Wingz

}

� To Create a Data Type with Several Independent
Criteria
You can create a data type with several independent criteria—that is, the file is
assigned to the data type if it meets either (or both) of the criteria.

1. Create the DATA_ATTRIBUTES definition for the data type.

2. Create a DATA_CRITERIA definition for each criteria.

Use the DATA_ATTRIBUTES_NAME field to connect each criteria to the same
DATA_ATTRIBUTES definition.
For example, the following definitions create the Mif data type. Typing is based on
name or content.

DATA_ATTRIBUTES Mif
{

ICON Frame
ACTION_LIST Open,Print

}

DATA_CRITERIA Mif_Name_Criteria
{

DATA_ATTRIBUTES_NAME Mif
NAME_PATTERN *.mif

}

DATA_CRITERIA Mif_Content_Criteria
{

DATA_ATTRIBUTES_NAME Mif
CONTENT 1 string MIFFile

}

Creating Localized Data Types
The search path for data types includes language-dependent locations. The desktop
uses the value of LANG to determine the locations searched for data type definitions.

Chapter 13 • Creating Data Types Manually 221

Locations for Localized Data Types
Localized data type definitions must be placed in the proper language-dependent
directories along the actions search path.

The default search path is:

� Personal actions: HomeDirectory/.dt/types
� System-wide actions: /etc/dt/appconfig/types/language
� Built-in actions: /usr/dt/appconfig/types/language

� To Localize a Data Type
1. Create a file in the appropriate language-dependent directory (for example, in

/etc/dt/appconfig/types/japanese) .

2. Copy the data type definition to the language-dependent configuration file.

3. Localize one or more fields in the data type definition.

222 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 14

Creating Icons for the Desktop

Desktop icons are associated with:

� Action files and data types in File Manager and Application Manager
� Front Panel controls
� Minimized application windows
� Graphics used by applications such as palettes and toolbars
� Workspace backdrop

� “Icon Image Files” on page 223
� “Icon Associations” on page 226
� “Icon Design Recommendations” on page 229

Note – The development environment documentation contains additional information
about desktop icons. See Chapter 4, “Visual Design,” in theCommon Desktop
Environment: Style Guide and Certification Checklist.

Icon Image Files
For the desktop to use an icon image, the icon image file must:

� Be in the proper format.

� Use the proper file-naming conventions.

� Use the desktop size conventions.

� Be located in a directory along the icon search path.

� Be called by the desktop construct using the proper syntax. For example, if you
create a new control for the Front Panel, use the ICON field in the Front Panel
definition to specify the icon image to use for the control.

223

Icon File Formats
For a color display, use X pixmap (XPM) format icon files, which typically have a.pm
suffix. Otherwise, use X bitmap (XBM) format files, which typically have a .bm suffix.
If transparency is used in the pixmap file, a mask file (_m.bm) is generated when the
.bm file is created. See “Icon Search Path” on page 151 for more information about
how the desktop finds these files.

Icon File Names
Each icon and backdrop image is stored as a separate file. Typically, an icon is
specified with the base part of its file name. For example, an icon might be referenced
with the name mail when the file is actually stored as:

/usr/dt/appconfig/icons/language/mail.l.pm

The file-naming convention of adding suffixes helps group icons by size and type. Icon
names for desktop components are in these general formats:

basename.size.format

Or

basename.format

where:

basename—the image base name used to reference the image

size—a letter indicating the size: l (large) m (medium) s (small) t (tiny)

format—file format: pm (pixmap) bm (bitmap)

Icon Size Conventions
Table 14–1shows the recommended pixel dimensions for desktop icons.

TABLE 14–1 Icon Sizes and File Names

Icon Size Bitmap Name Pixmap Name

16 by 16 (tiny) name.t.bm name.t.pm

24 by 24 (small) name.s.bm name.s.pm

32 by 32 (medium) name.m.bm name.m.pm

224 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

TABLE 14–1 Icon Sizes and File Names (Continued)
Icon Size Bitmap Name Pixmap Name

48 by 48 (large) name.l.bm name.l.pm

Table 14–2 shows the icon sizes used by the desktop components. In some cases, the
size of the icon used depends on the display resolution.

TABLE 14–2 Desktop Components and Their Icon Sizes

Desktop Component High Resolution Medium Resolution Low Resolution

File Manager and Application
Manager (View by Name and Icon)

medium medium medium

File Manager and Application
Manager (View by Name and Small
Icon)

tiny tiny tiny

Main Front Panel controls large large medium

Front Panel subpanels medium medium tiny

Front Panel switch controls small small tiny

Minimized windows large large medium

For example, if you specify an icon named mail for a data type, have a color display,
and have set the File Manager preferences to small icons, the icon image used is
mail.t.pm.

Icon Search Path
The desktop finds an icon file, or image, by searching for the file in a list of directories.
This list of directories, called the icon search path, is determined by the value of several
environment variables. Which variables are used and how they are put together to
create the icon search path are discussed in “Icon Search Path” on page 151.

The default search path is:

� Built-in icons: /usr/dt/appconfig/icons/language
� System-wide icons: /etc/dt/appconfig/icons/language
� Personal icons: HomeDirectory/.dt/icons

Accessing Icons across the Network
The desktop can access icons on remote systems. For information on creating an icon
server, see “Configuring Database, Icon, and Help Services” on page 131.

Chapter 14 • Creating Icons for the Desktop 225

Icon Associations
To enable quicker object recognition, you can associate icons with:

� Actions and data types
� Controls in the Front Panel and subpanels
� Minimized application windows

Specifying Icon Files
For icons used for actions, data types, and in the Front Panel or subpanels, specify
only the base name of the icon (no suffixes). The correct suffixes are added
automatically based on your display resolution, color support, and File Manager view
options (such as By Small Icons).

To override the search path, provide the complete path and name of the icon.

� To Associate an Icon with an Action or Data Type
1. Specify the icon using the ICON field.

If you follow the appropriate naming conventions for icon files, specify only the base
name of the icon. The correct icon will be displayed based on the resolution and color
support of your display.

2. Create the following icon sizes:

� Actions: large, medium, and tiny
� Data types: medium and tiny

Example of an Action Definition
The following example is an action definition for starting the Island Paint drawing
tool. The icons Ipaint.l and Ipaint.s are associated with the action.

ACTION IslandPaintOpenDoc
{

WINDOW_TYPE NO-STDIO
ICON Ipaint
EXEC_STRING /usr/bin/IslandPaint %Arg_1"File to open:"%

}

If you are using color icons, the desktop first appends .pm when looking for the actual
icon files. Otherwise (or if no match is found with .pm), the desktop appends .bm.

226 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Example of Data Type Definition
The following data type definition associates the icons comprsd.l and comprsd.s
with compressed files:

DATA_ATTRIBUTES COMPRESSED

{

ICON comprsd
ACTIONS Uncompress
DESCRIPTION A COMPRESSED file has been compressed by the \

’compress’ command to take up less space.

}

� To Display an Icon in a Front Panel Control
1. Specify the image name using the ICON field.

If the control monitors a file (MONITOR_TYPE is set to mail or file), use the
ALTERNATE_ICON field to specify the icons used when the change is detected.
You can also provide animation for buttons and drop zone controls.

2. Create the following icon sizes:

� Front Panel and subpanels: large, medium, and tiny
� Workspace switch: small

Example
The following control changes appearance when a file named report is placed in the
/doc/ftp/pub/ directory. When the file is not there, the NoReport.pm icon is
displayed; when the file is there, Report.pm is displayed.

CONTROL MonitorReport
{

CONTAINER_NAME container_name
TYPE ICON
MONITOR_TYPE file
FILE_NAME /doc/ftp/pub/report
ICON NoReport
ALTERNATE_ICON Report

}

� To Associate an Icon with an Application Window
1. Set the iconImage resource for Workspace Manager as follows:

Dtwm*clientname*iconImage: icon_file_name

Chapter 14 • Creating Icons for the Desktop 227

To determine the correct value for clientname, open Application Manager and
double-click Window Properties in the Desktop_Tools application group. When you
select a window, its properties are listed. The WM_CLASS property displays the
window’s class name in quotes.

For more information about setting resources, see “Setting Application Resources”
on page 273.

2. Choose Restart Workspace Manager from the Workspace menu.

To verify that the icon has been recognized by Workspace Manager, minimize the
window whose icon you are trying to modify.

Note – Some applications do not allow their default window icon to be overridden.

� To Use File Manager as an Icon Browser
1. Copy the file /usr/dt/examples/language/IconBrowse.dt to the

HomeDirectory/.dt/types/Iconbrowse.dt directory.

2. Open Application Manager and double-click Reload Actions in the Desktop_Tools
application group.

When you change to a directory that contains icons (.bm and .pm files), each icon is
displayed next to its name. For example, if you change to the
/usr/dt/appconfig/icons/language directory, you will see many of the desktop
icons.

Note – Enabling icon browsing on low-memory systems may cause File Manager to
display directories more slowly. Images larger than 256 x 256 are not displayed in the
default configuration.

To disable icon browsing:

1. Remove your personal copy of the IconBrowse.dt file.

2. Open Application Manager and double-click Reload Actions in the Desktop_Tools
application group.

228 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Icon Design Recommendations
Use a common theme among related icons. For example, if you are designing icons for
an application, have purposeful similarities between the application’s icon and icons
for data files.

Be sure the two-color version of any color icon you design is acceptable. If the icon is
displayed on a monochrome or grayscale display (or if there are not enough colors
available), the icon is automatically displayed in its two-color form.

To conserve system color usage, try to limit icon color use to the colors provided by
the desktop. (Icons created using Icon Editor will be use only desktop colors.)

For the sizes used by the desktop components, see Table 14–1.

Color Usage
Desktop icons use a palette of 22 colors including:

� Eight static grays

� Eight static colors: red, blue, green, cyan, magenta, yellow, black, and white

� Six dynamic colors: foreground, background, top shadow, bottom shadow, select,
and transparent

This palette creates attractive, easy-to-read icons without overtaking color
resources needed by other applications. Most icons provided with the desktop use
grays accented with color.

The transparent color is useful for creating icons that have the illusion of being
nonrectangular because the color behind the icon shows through.

Chapter 14 • Creating Icons for the Desktop 229

230 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 15

Advanced Front Panel Customization

Users can customize the Front Panel using its pop-up menus and the Install Icon
controls in the subpanels.

This chapter covers customizing the Front Panel by creating and editing configuration
files.

� “Front Panel Configuration Files” on page 231
� “Administering User Interface Customizations” on page 234
� “Organization of the Front Panel Definition” on page 235
� “Modifying the Main Panel” on page 238
� “Creating and Modifying Subpanels” on page 242
� “Defining Front Panel Controls” on page 246
� “Customizing the Workspace Switch” on page 253
� “General Front Panel Configuration” on page 254

� For reference information on Front Panel controls and configuration, see the
dtfpfile(4X) man page.

� For reference information about the Workspace Manager, see the dtwm(1) and
dtwmrc(4) man pages.

Front Panel Configuration Files
The Front Panel is defined in a database of configuration files.

The configuration files provide a way to customize the Front Panel. Certain
modifications can only be done by editing a configuration file, including:

� Adding a new control position to the Main Panel.

� Adding special types of controls, such as client windows.

231

� Changing certain default behaviors—for example, whether the Front Panel controls
respond to a single- or double-click.

To provide maximum flexibility in configuring the panel, these files can be personal,
system-wide, or located on other systems.

The Front Panel is created and managed by the Workspace Manager.

Default Front Panel Configuration File
The default Front Panel is defined in the Front Panel configuration file
/usr/dt/appconfig/types/language/dtwm.fp.

This file should not be altered.

Search Path for Front Panel Configuration Files
The Front Panel definition can be distributed among any number of files located
locally or on remote systems.

Files used to define the Front Panel must meet these requirements:

� The file name must end in .fp; for example, mail.fp.
� The file must be located along the actions database search path.

The default actions database search path includes these directories, searched in the
following order:

Personal customizations—HomeDirectory/.dt/types

System-wide customizations—/etc/dt/appconfig/types/language

Built-in panel and controls—/usr/dt/appconfig/types/language

An additional directory, HomeDirectory/.dt/types/fp_dynamic, is used for
personal customizations made with the user interface. Do not use this directory for
manual customizations.

The actions database search path may include additional directories added to
configure the system for networking. In particular, additional remote locations are
added when the system is configured to access an application server. For more
information, see “Database (Action/Data Types) Search Path” on page 149.

232 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

How the Front Panel Is Assembled: Precedence
Rules
The Front Panel is assembled from all the configuration files located on the actions
database search path.

Where there is a conflict between components of the definition, precedence rules
determine which definition is used. Two components are in conflict with one another
when they:

� Have the same control name, CONTAINER_NAME, and CONTAINER_TYPE.

� Compete for the same position (by having different names but the same
CONTAINER_NAME, CONTAINER_TYPE, and POSITION_HINTS).

The Front Panel uses the following precedence rules:

� If components have the same control name and container name and type, the
component read first is used.

For example, if both a system-wide and built-in control contain these fields but are
otherwise different:

CONTROL TextEditor
{

CONTAINER_TYPE BOX
CONTAINER_NAME Top
...

}

then the system-wide control has precedence.

� If two components complete for the same position, they are placed in the order in
which they are read.

For example, if a user creates a new personal control for the Main Panel
(CONTAINER_TYPE BOX and CONTAINER_NAME Top) and assigns it
POSITION_HINTS 5, the personal control will bump the built-in control and all
other controls with higher position numbers one position to the right.

Note – When you are modifying a control by creating a new system-wide or
personal version of it, the new control definition must specify the same control
name, CONTAINER_NAME, and CONTAINER_TYPE. Otherwise, the new control will
appear in addition to the existing control.

Dynamically Created Front Panel Files
When the user customizes the Front Panel using the Install Icon control and pop-up
menus, files are written to the directory HomeDirectory/.dt/types/fp_dynamic.

Chapter 15 • Advanced Front Panel Customization 233

The Front Panel creates an additional file,
HomeDirectory/.dt/sessions/dtwmfp.session, that is used to save and restore
the state of the customized Front Panel for each session.

Administering User Interface
Customizations
Users can use the pop-up menus and Install Icon controls of Front Panel controls to
extensively customize the Front Panel.

This section describes how to:

� Prevent certain personal customizations. For example, you may want to make it
impossible for a user to delete a control.

� Undo personal customizations. For example, a user might request that you restore
a single control accidentally deleted.

� To Prevent Personal Customizations
1. If the control is a built-in control, copy its definition from

/usr/dt/appconfig/types/language/dtwm.fp to
/etc/dt/appconfig/types/language/name.fp.

2. Add the following line to the control definition:

LOCKED True

� To Restore a Deleted Control or Subpanel
The Restore Front Panel action in the Desktop_Tools application group removes all
Front Panel customizations made with the user interface. Users can use this action to
remove all their personal customizations made with the Front Panel’s pop-up menus.

Use the following procedure to restore an individual control.

� In the HomeDirectory/.dt/types/fp_dynamic directory, remove the file that was
created when the user deleted the control. The control will have the same name as
the original control that was deleted.

For example, if the user deleted the Icon Editor control, a file in the fp_dynamic
directory will contain:

234 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CONTROL IconEditor
{

...
DELETE True

}

When the user deletes a subpanel, a separate dynamic file is created for the subpanel
and for each control in the subpanel.

Organization of the Front Panel
Definition
The Front Panel is built by assembling definitions for its components. Each of these
components has required syntax that defines where the component is placed in the
Front Panel, what the component looks like, and how it behaves.

Front Panel Components

FIGURE 15–1 Front Panel components

The Front Panel is assembled from the outside inward:

� The PANEL is the top-level container, or parent, for the entire Front Panel.
� The PANEL is a container for one or more BOXes.
� A BOX is a container for one or more CONTROLs.

There are two special types of containers:

Chapter 15 • Advanced Front Panel Customization 235

� A SUBPANEL is associated with a particular control (the control is the container for
the subpanel). Subpanels “slide up” from the control with which they are
associated.

� The SWITCH contains the buttons for changing workspaces plus additional
controls.

General Syntax of the Front Panel Definition
Each component in the Front Panel is defined separately using the syntax:

COMPONENT name
{

KEYWORD value
KEYWORD value
...

}

Some keywords are required, others are optional. For more information, see the
dtfpfile(4X) man page.

PANEL Definition
The PANEL is the top-level component. Its definition includes:

� The Front Panel name

� Fields describing the general appearance and behavior of the entire Front Panel

PANEL front_panel_name
{

KEYWORD value
KEYWORD value
...

}

The front_panel_name is a unique name for the Front Panel. The default name is
“FrontPanel.”

BOX Definitions
A BOX definition describes:

� The BOX name

� Which PANEL the box is in (CONTAINER_NAME)

� The position of the box in the PANEL (POSITION_HINTS)

� Fields describing appearance and behavior that apply to the entire box

236 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

BOX box_name
{

CONTAINER_NAME front_panel_name
POSITION_HINTS position

KEYWORD value
KEYWORD value

...

}

CONTROL Definitions
A CONTROL definition describes:

� The CONTROL name
� Whether the control is in a box, subpanel, or switch (CONTAINER_TYPE)
� Which box, subpanel, or switch the control is in (CONTAINER_NAME)
� The position of the CONTROL in the BOX (POSITION_HINTS).
� Fields describing appearance and behavior of the control

CONTROL control_name
{

CONTAINER_TYPE BOX or SUBPANEL or SWITCH
CONTAINER_NAME box_name or subpanel_name or switch_name

TYPE control_type
POSITION_HINTS position

KEYWORD value
KEYWORD value
...

}

SUBPANEL Definitions
A SUBPANEL definition describes:

� The SUBPANEL name
� The name of the control to which the subpanel is attached (CONTAINER_NAME)
� Fields describing appearance and behavior specific to the subpanel

SUBPANEL subpanel_name
{

CONTAINER_NAME control_name
KEYWORD value
KEYWORD value
...

}

Chapter 15 • Advanced Front Panel Customization 237

SWITCH Definition
The SWITCH definition describes:

� The SWITCH name
� Which BOX the SWITCH is in (CONTAINER_NAME)
� The position of the SWITCH within the BOX (POSITION_HINTS)
� Fields describing the appearance and behavior of the SWITCH

SWITCH switch_name
{

CONTAINER_NAME box_name
POSITION_HINTS position
KEYWORD value
KEYWORD value
...

}

Modifying the Main Panel
The Main Panel is the Front Panel window, excluding the subpanels.

FIGURE 15–2 Main Panel containers

Modifications you can make include:

� Adding or removing controls
� Interchanging the positions of controls

238 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� To Add a Control to the Main Panel
1. Create a Front Panel configuration file:

� System-wide: /etc/dt/appconfig/types/language/*.fp
� Personal: HomeDirectory/.dt/types/*.fp

2. Define the control in the file.

Use the CONTAINER_NAME and CONTAINER_TYPE fields to specify the container for
the control:

CONTAINER_NAME Top
CONTAINER_TYPE BOX

Use POSITION_HINTS to specify the left-to-right placement of the control. Since
customizations have precedence over built-in controls, the new control will “bump”
the existing control with that position one position to the right.

3. Save the configuration file.

4. Create an icon for the Front Panel control.

See “Specifying the Icon Used by a Control” on page 242.

5. Choose Restart Workspace Manager from the Workspace menu.

For example, the following control definition placed in the file
/etc/dt/appconfig/types/language/audio.fp inserts an audio application
control between the Clock and Calendar controls.

CONTROL AudioApplication
{
TYPE icon
CONTAINER_NAME Top
CONTAINER_TYPE BOX
ICON AudioApp
POSITION_HINTS 2
PUSH_ACTION StartAudioApplication
PUSH_RECALL true

}

� To Remove a Control
1. Create a Front Panel configuration file:

� System-wide: /etc/dt/appconfig/types/language/name.fp
� Personal: HomeDirectory/.dt/types/name.fp

2. Copy the definition of the control you want to delete to the new file.

If the control is built-in, its definition is in
/usr/dt/appconfig/types/language/dtwm.fp.

Chapter 15 • Advanced Front Panel Customization 239

You do not need to copy the entire definition. However, the portion you copy must
include the fields CONTAINER_NAME and CONTAINER_TYPE.

3. Add the DELETE field to the definition:

DELETE True

4. Save the configuration file

5. Choose Restart Workspace Manager from the Workspace menu.

For example, the following control definition placed in the file
/etc/dt/appconfig/types/language/TrashCan.fp removes the Trash Can
control from the Front Panel.

CONTROL Trash
{
CONTAINER_NAME Top
CONTAINER_TYPE BOX
DELETE True

}

� To Modify a Control
Use this procedure when you need to modify a control definition—for example, to
change its icon image.

1. Copy the entire control definition from
/usr/dt/appconfig/types/language/dtwm.fp to:

� System-wide: /etc/dt/appconfig/types/language/name.fp

� Personal: HomeDirectory/.dt/types/name.fp.

2. Edit the field you want to change. You can also add additional fields.

3. Save the file

4. Choose Restart Workspace Manager from the Workspace menu.

� To Interchange the Position of Controls
1. Copy the control definitions for the controls whose positions you want to change

from /usr/dt/appconfig/types/language/dtwm.fp to:

� System-wide: /etc/dt/appconfig/types/language/name.fp

� Personal: HomeDirectory/.dt/types/name.fp.

You must copy the entire control definition for each control to be moved.

2. Interchange the values of the POSITION_HINTS fields of the control definitions.

240 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

3. Save the file

4. Choose Restart Workspace Manager from the Workspace menu.

For example, the following definitions placed in a file
/etc/dt/appconfig/types/C/MailHelp.fp interchange the positions of the
Mail and Help Manager controls and lock these controls against personal changes.

CONTROL Mail
{

POSITION_HINTS 12
LOCKED True
...the rest of the control definition

}

CONTROL Help
{

POSITION_HINTS 5
LOCKED True
...the rest of the control definition

}

� To Replace a Front Panel Control
� Create another control definition with the same:

� control_name

� CONTAINER_NAME value

For example, the following two controls are defined in two different configuration
files. The controls have the same control name and container name and are
therefore considered the same control.

� Definition in /etc/dt/appconfig/types/C/SysControls.fp:

Control ImportantApplication
{

CONTAINER_NAME Top
CONTAINER_TYPE BOX
POSITION_HINTS 2

...

}

� Definition in HomeDirectory/.dt/types/MyControls.fp:

Control ImportantApplication
{

CONTAINER_NAME Top
CONTAINER_TYPE BOX
POSITION_HINTS 6

...

}

The personal control has precedence, so the control will be located at position 6.

Chapter 15 • Advanced Front Panel Customization 241

Specifying the Icon Used by a Control
The control definition’s ICON field defines the icon image used for the control.

The value of the ICON field can be:

� A base file name.

The base file name is the name of the file containing the icon image minus the
file-name suffixes for size (m and t) and image type (bm and pm). For example, if
files are named MyGame.l.pm and MyGame.m.pm, use MyGame.

If you use the base file name, the icon files must be placed in a directory on the
icon search path:

� Personal icons: HomeDirectory/.dt/icons
� System-wide icons: /etc/dt/appconfig/icons/language

� An absolute path to the icon file, including the full file name.

You should use the absolute path only if the icon file is not located on the icon
search path.

The size icon you need depends on the location of the control:

Location Size

Main Panel – 48 by 48 pixels (name.l.pm or name.l.bm)

Subpanel – 24 by 24 pixels (name.s.pm or name.s.bm)

Place the icon file in one of these locations:

� Personal icons: HomeDirectory/.dt/icons
� System-wide icons: /etc/dt/appconfig/icons/language

Creating and Modifying Subpanels
Users can create and modify subpanels using the Front Panel pop-up menus.

This section discusses how to provide system-wide customization, which requires you
to modify the Front Panel configuration files.

A subpanel is “attached” to a control in the Main Panel.

242 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

FIGURE 15–3 A subpanel’s container is the control to which it is attached

The attachment is done in the subpanel definition. The CONTAINER_NAME field
specifies the control to which the subpanel is attached:

CONTROL control_name
{

...
}

SUBPANEL subpanel_name
{

CONTAINER_NAME control_name
...

}

� To Create a New System-Wide Subpanel
1. Locate the control_name of the control in the Main Panel to which you want to attach

the subpanel.

If the control is one of the built-in controls, its definition is in
/usr/dt/appconfig/types/language/dtwm.fp.

2. Create a new file /etc/dt/appconfig/types/language/*.fp.

3. Define the subpanel:

SUBPANEL subpanel_name
{

CONTAINER_NAME control_name
TITLE value
KEYWORD value
...

}

4. Save the new configuration file.

Chapter 15 • Advanced Front Panel Customization 243

5. Choose Restart Workspace Manager from the Workspace menu.

Customizing the Built-in Subpanels
You can modify general properties (such as the title) and the contents of the built-in
subpanels.

� To Modify General Properties of a Built-In Subpanel
1. Create a new Front Panel configuration file:

� System-wide: /etc/dt/appconfig/types/language/name.fp

� Personal: HomeDirectory/.dt/types/name.fp.

2. Copy the entire default SUBPANEL definition from
/usr/dt/appconfig/types/language/dtwm.fp to the new file:

SUBPANEL subpanel_name
{

...

}

3. Modify the subpanel definition.

4. Save the new configuration file.

5. Choose Restart Workspace Manager from the Workspace menu.

For example, the following definition, placed in the file
/users/janice/.dt/types/PerApps.fp, changes the name of the Personal
Applications subpanel:

SUBPANEL PersAppsSubpanel
{

CONTAINER_NAME TextEditor
TITLE Janice’s Applications

}

� To Add a System-Wide Control to a Built-In Subpanel
1. Create a Front Panel configuration file

/etc/dt/appconfig/types/language/name.fp.

2. Define the system-wide control in the file.

Use the CONTAINER_NAME and CONTAINER_TYPE fields to specify the container for
the control:

CONTROL control_name
{

CONTAINER_NAME subpanel_name

244 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CONTAINER_TYPE SUBPANEL
...

}

See “Defining Front Panel Controls” on page 246.

3. Save the configuration file.

4. Choose Restart Workspace Manager from the Workspace menu.

For example, the following control defined in a new file
/etc/dt/appconfig/types/language/DigitalClock.fp adds the DigitalClock
(in the Desktop_Tools application group) to the Personal Applications subpanel for all
users.

CONTROL DigitalClockControl
{

TYPE icon
CONTAINER_NAME PersAppsSubpanel
CONTAINER_TYPE SUBPANEL
ICON Dtdgclk
PUSH_ACTION DigitalClock
PUSH_RECALL True

}

� To Remove a Control from a Built-In Subpanel
� Use the same procedure as for removing a Main Panel control. See “To Remove a

Control” on page 239.

� To Remove the Install Icon Control
� Add the following field to the subpanel definition:

CONTROL_INSTALL False

� To Change the Auto-Close Behavior of Subpanels
The default behavior of subpanels is to close when the user chooses a control, unless
the user has moved the subpanel from its original position.

The Front Panel can be configured to keep subpanels open until the user explicitly
closes them.

1. Create a new Front Panel configuration file in:

� System-wide: /etc/dt/appconfig/types/language/*.fp
� Personal: HomeDirectory/.dt/types/*.fp

2. Copy the default PANEL definition from
/usr/dt/appconfig/types/language/dtwm.fp to the new file:

Chapter 15 • Advanced Front Panel Customization 245

PANEL FrontPanel
{
...

}

3. Add the following field to the PANEL definition:

SUBPANEL_UNPOST False

4. Save the new configuration file.

5. Choose Restart Workspace Manager from the Workspace menu.

Defining Front Panel Controls
The user can create personal controls by dropping icons on the Install Icon controls.

While this provides easy customizability, the functionality it provides is a subset of the
capabilities of Front Panel controls. For example, a control created using the Install
Icon control cannot:

� Provide animation

� Display a client window

� Change appearance when an event occurs (for example, upon receiving new mail)

This section describes how to manually create Front Panel controls.

For reference information on the syntax of Front Panel controls, see the dtfpfile(4X)
man page.

Front Panel Control Definitions
The structure of a Front Panel control definition is:

CONTROL control_name
{

TYPE control_type
CONTAINER_NAME value
CONTAINER_TYPE value
other fields defining appearance and behavior

}

Control Types
The TYPE field in the control definition specifies the basic behavior of the control.

246 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Control TYPE Control Behavior

icon (Default). The control will run a specified action when the user clicks the
control or drops a file on it.

blank Placeholder used to adjust spacing of controls.

busy Busy light. The control blinks (toggles images) when an action is
invoked

client A client window in the Front Panel.

clock Clock.

date Displays the current date.

file Represents a file. Choosing the control runs the default action for
the file.

� To Create a New Control
This section describes the general steps for defining a control and describes how to
create various types of controls.

1. If the control will have a PUSH_ACTION and/or DROP_ACTION, create the action
definitions. These are the actions that run when the user clicks the control or drops
a file on it.

2. Create the icon image files for the control.

For information about icon sizes, names, and locations, see “Icon Image Files”
on page 223.

3. Create a new Front Panel configuration file in:

� System-wide: /etc/dt/appconfig/types/language/*.fp
� Personal: HomeDirectory/.dt/types/*.fp

4. Add the control definition to the file.

5. Save the file.

6. Choose Restart Workspace Manager from the Workspace menu.

Creating a Control that Runs an Action When Clicked
Use these fields to define the control’s behavior:

� TYPE: Set to icon

� PUSH_ACTION: Specifies the name of the action to be run

Chapter 15 • Advanced Front Panel Customization 247

For example, the following control, which will be put in the Personal Applications
subpanel, runs a game the user has acquired:

CONTROL Ball
{

TYPE icon
CONTAINER_NAME PersAppsSubpanel
CONTAINER_TYPE SUBPANEL
ICON ball
PUSH_ACTION RunBallGame
HELP_STRING "Choose this control to play Ball."

}

The following control will be located in the upper left corner of the switch. It starts
an action named CutDisp.

CONTROL StartCutDisp
{
TYPE icon
CONTAINER_NAME Switch
CONTAINER_TYPE SWITCH
POSITION_HINTS first
ICON cutdisp
HELP_STRING "Choose this control to run cutdisp."
PUSH_ACTION CutDisp

}

Creating a Control that Opens a File
Use these fields to define the control’s behavior:

� TYPE: Set to file

� FILE_NAME: Specifies the path of the file to be opened

� PUSH_ACTION: Set to Open

There must be an Open action defined for the data type of the file.

For example, the following control will be located on the far right side of the Main
Panel. It starts Text Editor with the data file /users/ellen/PhoneList.txt.
The Open action for *.txt files is part of the default action database.

CONTROL EditPhoneList
{

TYPE file
FILE_NAME /users/ellen/PhoneList.txt
CONTAINER_NAME Top
CONTAINER_TYPE BOX
POSITION_HINTS last
ICON PhoneBook
HELP_STRING "This control displays Ellen’s phone list."
PUSH_ACTION Open

}

248 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Creating a Control that Behaves as a Drop Zone
Use the DROP_ACTION field to specify the action that runs when the user drops a file
on the control. The action must be capable of accepting a file argument.

Frequently, a control definition includes both a PUSH_ACTION and DROP_ACTION
field. You can use the same action for the push and drop action.

For example, the following control, located in the Personal Applications subpanel,
runs the X client xwud, which takes a file argument.

CONTROL Run_xwud
{

CONTAINER_NAME PerAppsSubpanel
CONTAINER_TYPE SUBPANEL
POSITION_HINTS 2
ICON XwudImage
PUSH_ACTION RunXwud
DROP_ACTION RunXwud

}

Creating a Control that Monitors a File
Use these fields to define the control’s behavior:

� TYPE: Specify one of the following values:

icon—use this type if you want to specify a PUSH_ACTION and/or DROP_ACTION
for the control.

file—use this type if you want the control, when chosen, to behave like the file
when the file’s icon is double-clicked in File Manager.

� ICON and ALTERNATE_ICON: Describe the images used to indicate the
non-changed and changed state of the monitored file.

� MONITOR_TYPE: Describes the conditions causing the image to change. Use one of
the following values:

mail—the control will change appearance when information is added to the file.

file—the control will change when the specified file becomes non-empty.

� FILE_NAME: Specifies the file to be monitored.

For example, the following control looks for the presence of a file named
meetings that you expect to be transferred to your system using anonymous ftp.
The control is placed at the top of the Personal Applications subpanel.

CONTROL MonitorCalendar
{

TYPE file
CONTAINER_NAME PersonalApps
CONTAINER_TYPE SUBPANEL

Chapter 15 • Advanced Front Panel Customization 249

POSITION_HINTS first
FILE_NAME /users/ftp/meetings
MONITOR_TYPE file
ICON meetingsno
ALTERNATE_ICON meetingsyes

}

Creating a One-Instance (Toggle) Control
A one-instance control checks to see whether the process started by the PUSH_ACTION
is already running. If the process is not running, the PUSH_ACTION is run. If the
process is already running, the window is moved to the top of the window stack in the
current workspace.

Use these fields to define the control’s behavior:

� PUSH_RECALL: Set to True.

� CLIENT_NAME: Specifies the name of the client to the control.

The value of CLIENT_NAME must match the first string (res_name) in the
WM_CLASS property on the application’s top-level window. For more
information, see the xprop(1) man page.

� PUSH_ACTION: Describes the action run when the user clicks the control.

For example, the following control runs one instance of an application whose
action is named MyEditor.

CONTROL MyEditor
{

TYPE icon
CONTAINER_NAME Top
CONTAINER_TYPE BOX
POSITION_HINTS 15
PUSH_RECALL True
CLIENT_NAME BestEditor
PUSH_ACTION StartMyEditor
ICON MyEd

}

� To Create a Client Window Control
A client window control is an application window embedded in the Front Panel. For
example, you can put a system load meter in the Front Panel by creating an xload
client window control.

1. Define the control.

Use these fields to define the control’s behavior:

250 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� TYPE: Set to client.

� CLIENT_NAME: Specifies the client to be started.

The value of CLIENT_NAME must match the first string (res_name) in the
WM_CLASS property on the application’s top-level window. For more
information, see the xprop(1) man page.

� CLIENT_GEOMETRY: Specifies the size, in pixels, needed for the client’s Front Panel
window.

The xwininfo(1) man page describes how to find out the size of a window in pixels.

2. Choose Restart Workspace Manager from the Workspace menu.

3. Start the client from a terminal emulator command line.

For example, the following control displays a 30 × 20 pixel load meter.

CONTROL LoadMeter
{

TYPE client
CONTAINER_NAME Top
CONTAINER_TYPE BOX
CLIENT_NAME xload
CLIENT_GEOMETRY 30x20

}

If the client is not saved and restored between sessions, you may want to configure the
control to start the client when the user clicks it. For example, you can configure the
LoadMeter control to start xload by adding the following line to the definition:

PUSH_ACTION StartXload

and creating the action:

ACTION StartXload
{

WINDOW_TYPE NO_STDIO
EXEC_STRING /usr/contrib/bin/X11/xload

}

� To Animate a Control
You can attach an animation sequence to be used when the user chooses the control or
drops an object on it.

In order to have an animation sequence, a control must:

� Be type icon
� Have a PUSH_ACTION or DROP_ACTION

1. Specify the animation sequence using the ANIMATION component:

Chapter 15 • Advanced Front Panel Customization 251

ANIMATION animation_name
{

ANIMATION icon1 [milisecond_delay]
ANIMATION icon2 [milisecond_delay]
...

}

where icon1, icon 2, etc. are the names of icons, and milisecond_delay is the time delay
between animation icons in milliseconds. The default time delay is 200 milliseconds.

2. Add the PUSH_ANIMATION and/or DROP_ANIMATION fields to the control definition.
The value is the name of the ANIMATION sequence.

For example, the following lines animate a control that starts the BestEditor
application. The time delay between icons is 300 milliseconds. The example assumes
you’ve created icon files frame1, frame2, etc.

CONTROL BestEditor
{

...
PUSH_ANIMATION BestEdAnimation
...

}

ANIMATION BestEdAnimation
{

frame1 300
frame2
...

}

Providing On Item Help for Front Panel Controls
There are two ways to provide help for a control:

� Providing a help string in the control definition.

The help string is displayed in the help viewer when the user invokes on-item help
for the control. The help string cannot include formatting (such as headings) or
links.

To provide a help string, specify it in the control definition:

HELP_STRING help_string

� Specifying a help topic in a registered help volume.

A help topic is information authored using the full capabilities of the help system.
Authoring a help topic requires you to use the desktop Help Developer’s Kit.

To provide a help topic, specify the help volume and topic ID in the control
definition:

HELP_VOLUME help_volume_name
HELP_TOPIC topic_id

252 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Customizing the Workspace Switch
There are several ways to customize the workspace switch:

� Changing the number of workspaces
� Changing the layout of the switch
� Changing the controls in the switch

� To Change the Default Number of Workspaces
� Modify the following Workspace Manager resource:

Dtwm*workspaceCount: n

For more information, see “To Change the Number of Workspaces on a System-Wide
Basis” on page 262.

� To Change the Number of Switch Rows
� Modify the NUMBER_OF_ROWS field in the SWITCH definition.

For example, the following definition defines a three-row switch.

SWITCH Switch
{

CONTAINER_NAME box_name
NUMBER_OF_ROWS 3

...

}

� To Change or Add Controls in the Workspace
Switch

1. Create a Front Panel configuration file with the control definition.

� Specify that the control be inside the switch:

CONTAINER_NAME Switch

CONTAINER_TYPE SWITCH

� Specify the position in the switch:

POSITION_HINTS n

Chapter 15 • Advanced Front Panel Customization 253

where n is an integer. The positions are numbered sequentially left-to-right,
top-to-bottom. (For the default two-row switch, the positions are 1 through 4.)

2. Create the icon for the control. The recommended size is 16 by 16 pixels.

For example, the following control puts a Terminal control in the switch.

CONTROL SwitchTerminal
{

TYPE icon
CONTAINER_NAME Switch
CONTAINER_TYPE SWITCH
POSITION_HINTS 3
ICON Fpterm
LABEL Terminal
PUSH_ACTION Dtterm
HELP_TOPIC FPOnItemTerm
HELP_VOLUME FPanel

}

The control uses a built-in icon and the same help topic used by the Terminal control
in the Personal Applications subpanel.

General Front Panel Configuration
Front Panel’s PANEL syntax allows you to:

� Change the location of the Front Panel

� Change the window decoration

� Set general appearance and behavior of controls

The default PANEL description is in
/usr/dt/appconfig/types/language/dtwm.fp.

For additional information, see the dtfpfile(4X) man page.

General Steps
1. Create a new Front Panel configuration file in

/etc/dt/appconfig/types/language or HomeDirectory/.dt/types.

2. Copy the default PANEL description from
/usr/dt/appconfig/types/language/dtwm.fp to the new file.

3. Edit the PANEL description.

The new PANEL description has precedence over the default one.

254 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� To Change the Default Front Panel Location
� Use the PANEL_GEOMETRY field in the PANEL definition to specify the location.

For example, the following panel is in the upper right corner.

PANEL SpecialFrontPanel
{
PANEL_GEOMETRY -1+1
...

}

� To Label Controls in the Main Panel
1. Add the following line to the PANEL definition:

DISPLAY_CONTROL_LABELS True

2. Add a LABEL field to each control.

The control_name is used if no LABEL is specified.

� To Change the Click Behavior of Controls
� Use the CONTROL_BEHAVIOR field in the PANEL definition to specify how the user

runs a control’s PUSH_ACTION. Values for the field are:

single_click—the user clicks the control to run the PUSH_ACTION

double_click—the user double-clicks the control to run the PUSH_ACTION

� To Create an Entirely New Front Panel
Creating a new Front Panel may be preferable when you want to make extensive
changes.

To avoid conflict with the built-in Front Panel components, an entirely new Front
Panel should use new names for the PANEL and other containers.

1. Create the PANEL component for the new Front Panel. Give it a unique name:

PANEL front_panel_name
{

...

}

2. Create the new boxes and controls, using the new container names.

Chapter 15 • Advanced Front Panel Customization 255

If you want to use existing components, you must copy their definitions and change
the CONTAINER_NAME value.

3. Choose Restart Workspace Manager from the Workspace menu.

Example of Creating a Personal Front Panel with
Three Rows
The following example changes the default Front Panel so that its controls are
organized into three rows.

1. Copy /usr/dt/appconfig/types/language/dtwm.fp to
HomeDirectory/.dt/types/MyFrontPanel.fp. Give the file write permission.

This is the file you will edit to provide the new Front Panel.

2. Change the name of the Front Panel:

PANEL NewFrontPanel

3. Change the name of the box named Top and edit its container name:

BOX NewFrontPanelTop
{
CONTAINER_NAME NewFrontPanel
POSITION_HINTS first
...

}

4. Add box definitions for the middle and bottom rows:

BOX NewFrontPanelMiddle
{
CONTAINER_NAME NewFrontPanel
POSITION_HINTS second

}

BOX NewFrontPanelBottom
{
CONTAINER_NAME NewFrontPanel
POSITION_HINTS second

}

5. Change the CONTAINER_NAME of the following controls to NewFrontPanelTop:

� Clock
� Date
� Home
� TextEditor
� Mail

256 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

6. Change the CONTAINER_NAME of the following controls to
NewFrontPanelBottom:

� Printer
� Style
� Applications
� Help
� Trash

7. Change the CONTAINER_NAME of the switch to NewFrontPanelMiddle.

8. Choose Restart Workspace Manager from the Workspace menu.

Chapter 15 • Advanced Front Panel Customization 257

258 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 16

Customizing the Workspace Manager

This chapter describes how to customize the desktop Workspace Manager.

� “Workspace Manager Configuration Files” on page 260
� “Customizing Workspaces” on page 262
� “Workspace Manager Menus” on page 264
� “Customizing Button Bindings” on page 268
� “Customizing Key Bindings” on page 270
� “Switching Between Default and Custom Behavior” on page 272

The Workspace Manager is the window manager provided by the desktop. Like other
window managers, it controls:

� The appearance of window frame components
� The behavior of windows, including their stacking order and focus behavior
� Key bindings and button bindings
� The appearance of minimized windows
� Workspace and Window menus

In addition, the Workspace Manager controls these desktop components:

� Workspaces. The Workspace Manager controls the number of workspaces, and
keeps track of which windows are open in each workspace.

� Workspace backdrops. The user changes backdrops using Style Manager. However,
backdrop management is a function of the Workspace Manager.

� The Front Panel. Although the Front Panel uses its own configuration files, it is
created and managed by the Workspace Manager.

Many of these can be changed with Style Manager. Style Manager is able to make
often-used changes quickly, with little effort on your part. Other resources must be set
manually.

The Workspace Manager is dtwm. It is based on the Motif Window Manager.

259

� For reference information about the Workspace Manager, see the dtwm(1) and
dtwmrc(4) man pages.

� For information about setting Workspace Manager resources, see “Setting
Application Resources” on page 273.

� For information on Front Panel configuration files, see Chapter 15.

For additional information about setting resources, see “Setting Application
Resources” on page 273.

Workspace Manager Configuration Files
The Workspace Manager gets information about the window menus, workspace
menus, button bindings, and key bindings from a configuration file.

It uses one of the following files:

� Personal file: HomeDirectory/.dt/dtwmrc
� System custom file: /etc/dt/config/language/sys.dtwmrc
� Built-in file: /usr/dt/config/language/sys.dtwmrc

The Workspace Manager searches for a configuration file in the order shown above,
and uses the first one it finds.

For users who use more than one session language, a personal, language-dependent
configuration file HomeDirectory/.dt/language/dtwrmc can be created that takes
precedence over HomeDirectory/.dt/dtwmrc.

� To Create or Modify a Personal Configuration File
The personal Workspace Manager configuration file is HomeDirectory/.dt/dtwmrc. If
this file exists, it is the file used.

1. Double-click Edit Dtwmrc in the Desktop_Tools application group.

If you already have a personal dtwmrc file, it is loaded into the editor. If not,
sys.dtwmrc is copied to HomeDirectory/.dt/dtwmrc, which is then loaded into the
editor.

2. Edit the file.

3. Exit the editor.

The file is saved as your personal dtwmrc, regardless of its original source.

260 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� To Create a System-Wide Configuration File
The system-wide Workspace Manager configuration file is
/etc/dt/config/language/sys.dtwmrc.

� Copy /usr/dt/config/language/sys.dtwmrc to
/etc/dt/config/language/sys.dtwmrc.

Note – This file is not used if HomeDirectory/.dt/dtwmrc exists.

� To Include (Source In) Other Files
� Use the syntax:

include
{
path

path
...

}

For example, the following lines source in the file /users/ellen/mymenu:

include
{

/users/ellen/mymenu

}

Include statements are useful for providing additional functionality without copying
the entire configuration file. For example, a user might want to create a new key
binding without having to administer the entire configuration file. The user can create
a file HomeDirectory/.dt/dtwmrc with this content:

include
{
/etc/dt/config/C/sys.dtwmrc
}
Keys DtKeyBindings
{

Alt<Key>F5 root f.menu Applications

}

Menu Applications
{
"GraphicsApp" f.exec "/usr/bin/GraphicsApp/GApp"
...

}

Chapter 16 • Customizing the Workspace Manager 261

� To Restart the Workspace Manager
The Workspace Manager must be restarted in order for changes made to the
configuration file to take effect.

� Choose Restart Workspace Manager from the Workspace menu (press mouse button
3 when the pointer is on the backdrop).

Customizing Workspaces
Most workspace customization, such as changing workspace names and the number
of workspaces, can be done by the user using the desktop’s interface. However, the
Workspace Manager provides resources for setting system-wide defaults.

� To Change the Number of Workspaces on a
System-Wide Basis
The default desktop configuration provides four workspaces. The user can add and
delete workspaces using the pop-up menu associated with the Workspace switch.

The /usr/dt/app-defaults/C/Dtwm file has the workspaceCount resource set to
the following default number of workspaces:

Dtwm*0*workspaceCount: 4

Dtwm*workspaceCount: 1

Multiple workspaces are specified on screen 0. A single workspace is specified on any
other screen.

You can create (or modify if it exists) the /etc/dt/config/C/sys.resources file
to change the default number of workspaces for all new users on a workstation.

� Use the 0*workspaceCount resource to set the system wide default on the primary
screen:

Dtwm*0*workspaceCount: number

For example, the following resource sets the number of workspaces system wide on
the primary screen to six:

Dtwm*0*workspaceCount: 6

For information about setting Workspace Manager resources, see “Setting Application
Resources” on page 273.

262 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

For example, the following resource sets the number of workspaces to six:

Dtwm*workspaceCount: 6

� To Provide System-Wide Workspace Names
Internally, the workspaces are numbered by the numbering convention wsn, where n
is 0, 1, 2, and so on. For example, the default four workspaces are numbered internally
ws0 through ws3.

� Use the title resource to change the name of a specified workspace:

Dtwm*wsn: name

For information about setting Workspace Manager resources, see “Setting Application
Resources” on page 273.

For example, the following resources set the default four workspaces to the specified
names:

Dtwm*ws0*title: Anna
Dtwm*ws1*title: Don
Dtwm*ws2*title: Julia

Dtwm*ws3*title: Patti

� To Create Additional Backdrops
1. Create the backdrop images. They can be bitmap or pixmap files.

2. Place the backdrops in one of the following directories. (You may have to create the
directory.)

� System-wide backdrops: /etc/dt/backdrops

� Personal backdrops: HomeDirectory/.dt/backdrops

3. Choose Restart Workspace Manager from the Workspace menu.

The system-wide and personal backdrops are added to the built-in backdrops in
/usr/dt/backdrops.
You can replace an existing built-in backdrop by creating a personal or system-wide
backdrop with the same name.

� To Replace the Backdrop With a Graphics Image
The backdrops are layered over the display’s root window. The Style Manager
Backdrop dialog box provides a NoBackdrop setting in which the backdrop is
transparent.

Chapter 16 • Customizing the Workspace Manager 263

There is only one root window behind all the workspace backdrops. Thus, a graphics
image placed on the root window persists across all workspaces. You can specify
which workspaces cover up the root window with a backdrop. However, the image
visible when NoBackdrop is in effect will be the same for every workspace.

1. Create the graphics image.

The image must be in a format for which a tool exists to display it on the root window.
For example, if you intend to use xsetroot, you must create a bitmap file.

2. If it doesn’t already exist, create an executable file
HomeDirectory/.dt/sessions/sessionetc.

The sessionetc file is run each time the user logs in.

3. Place the command to display the image in the sessionetc file.

For example, the following command tiles the root window with the specified bitmap:

xsetroot -bitmap /users/ellen/.dt/icons/root.bm

Workspace Manager Menus
Workspace Manager has three default menus:

Workspace menu—also called the root menu. Displayed when the user presses mouse
button 3 when the pointer is on the backdrop. The menu is associated with the mouse
button through a button binding.

Window menu—the menu displayed when the user presses mouse button 1 or mouse
button 3 when the pointer is on the Window menu button (upper left corner of the
window frame). The menu is associated with the button by the windowMenu resource.

Front Panel menu—the menu displayed when the user presses mouse button 1 or
mouse button 3 when the pointer is over the Front Panel’s Window menu button.

Workspace Manager Menu Syntax
Workspace Manager menus have the syntax:

Menu MenuName
{

selection1 [mnemonic] [accelerator] function [argument]
selection2 [mnemonic] [accelerator] function [argument]
...

}

where:

264 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

selection—the text or bitmap that appears on the menu. If the text includes spaces,
enclose the text in quotation marks. For bitmaps, use the syntax @/path.

mnemonic—a single character that acts as a keyboard shortcut when the menu is
displayed. It is specified in the form _character.

accelerator—a keyboard shortcut that is active whether or not the menu is displayed.
Accelerators have the syntax modifier<Key> Keyname where modifier is Ctrl , Shift,
Alt (Extend char), or Lock. For a list of all possible key names, refer to the
keysymdef.h file in your "X11 include" directory.

function—the function to be performed when this selection is made. Refer to the
dtwmrc(4) man page for a list of functions.

argument—function arguments. Refer to the dtwmrc(4) man page for more details.

For example, the following menu item labeled Restore normalizes the window. When
the menu is displayed, typing "R" will also restore the window. Pressing Extend char
F5 will also restore the window.

Restore _R Alt<Key> F5 f.normalize

Note – For complete information on Workspace Manager menu syntax, see the
dtwmrc(4) man page.

� To Add a New Menu Item to the Workspace Menu
1. Click the Add Item to Menu control on the Tools subpanel of the Front Panel.

The Add Item to Workspace Menu dialog is displayed.

2. Type a complete path or click Browse and select the path of the file you want the
new menu item to run.

The file you point to should normally be available to this host. It should be an
executable file or a file of a data type (e.g. Audio or Manpage) registered to the host.
The complete path including filename is displayed in the text box.

3. Click Add to add the file to the menu.

Chapter 16 • Customizing the Workspace Manager 265

The file is added to the first position in the Workspace Menu. Its default icon (if any)
and filename will be used as the icon and text for the menu item.

Note – To change the menu item’s position on the Workspace Menu, see “To Modify
the Workspace Menu” on page 266.

� To Modify the Workspace Menu
1. Click the Customize Workspace Menu control on the Tools subpanel of the Front

Panel.

File Manager is displayed showing the configuration folder for the Workspace Menu.
Note that the files in this folder represent each menu item, and subfolders represent
each sub-menu. By rearranging the contents of the Workspace Menu folder, you
rearrange the Workspace Menu.

2. Drag and drop any menu item you wish to move to a new location under this
subfolder.

For help using File Manager in Tree View mode, see Solaris Common Desktop
Environment: User’s Guide.

3. Delete any unwanted menu items by dragging their files to the Trash can on the
Front Panel.

4. Rename any menu items you want to rename by editing their file or folder names.

5. When you are satisfied with the changes you have made, choose Update Workspace
Menu from the File menu in File Manager and exit File Manager.

The Workspace Menu now reflects the changes you made in the Workspace Menu
folder.

266 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� To Create a New Workspace (Root) Menu
1. Open the appropriate file for editing:

� Personal: HomeDirectory/.dt/dtwmrc

� System-wide: /etc/dt/config/language/sys.dtwmrc

For information on creating these files, see “Workspace Manager Configuration
Files” on page 260.

2. Create the new menu:

Menu menu_name
{

...

}

See “Workspace Manager Menu Syntax” on page 264.

3. Create or edit the button binding to display the new menu.

If the menu replaces the existing menu, edit the button binding that displays the
Workspace menu.

<Btn3Down> root f.menu menu_name

If the menu is an additional menu, create a new mouse button binding. For example,
the following button binding displays the menu when Shift-mouse button 3 is pressed
over the backdrop:

Shift<Btn3Down> root f.menu menu_name

4. Choose Restart Workspace Manager from the Workspace menu.

� To Create a New Window Menu

Note – The Window menu is built into the Workspace Manager, and ordinarily is not
customized. To keep window behavior consistent between applications, you should
avoid extensive modification to the Window menu.

1. Open the appropriate file for editing:

� Personal: HomeDirectory/.dt/dtwmrc

� System-wide: /etc/dt/config/language/sys.dtwmrc

For information on creating these files, see “Workspace Manager Configuration
Files” on page 260.

2. Create the new menu:

Chapter 16 • Customizing the Workspace Manager 267

Menu menu_name
{

...

}

3. Use the windowMenu resource to specify the new menu:

Dtwm*windowMenu: menu_name

4. Choose Restart Workspace Manager from the Workspace menu.

Customizing Button Bindings
A button binding associates a mouse button operation and possible keyboard modifier
key with a window manager function. Button bindings apply to all workspaces.

The desktop default button bindings are defined in the Workspace Manager
configuration file in a button binding set named DtButtonBindings:

Buttons DtButtonBindings
{
...

}

Button Binding Syntax
The syntax for button bindings is:

Buttons ButtonBindingSetName
{

[modifier]<button_nameMouse_action> context function [argument]
[modifier]<button_nameMouse_action> context function [argument]

where:

button_name—Btn1—Left mouse button Btn2—Middle button (3-button mouse) or
both buttons (2-button mouse) Btn3—Right button Btn4—Buttons 1 and 2 together
on a 3-button mouse Btn5—Buttons 2 and 3 together on a 3-button mouse

modifier—Ctrl, Shift, Alt, Lock

mouse_action—Down—Holding down a mouse; button Up—Releasing a mouse button;
Click—Pressing and releasing a mouse button; Click2—Double-clicking a mouse
button; Drag—Dragging the mouse while holding down the mouse button

context—indicates where the pointer must be for the binding to be effective. If
necessary, separate multiple contents with the "|" character.

268 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

root—The workspace window; window—Client window or window frame;
frame—Window frame, excluding the contents; icon—Icon; title—Title bar;
app—Client window (excluding the frame)

function—one of the window manager functions. Refer to the dtwmrc(4) man page for
a list of valid functions.

argument—any window manager function arguments that are required. Refer to the
dtwmrc(4) man page for details.

For example, the following line causes the menu described in DtRootMenu to be
displayed when mouse button 3 is pressed while the pointer is in the workspace
window (but not within client windows).

<Btn3Down> root f.menu DtRootMenu

Note – For complete information on button binding syntax, see the dtwmrc(4) man
page.

� To Add a Button Binding
1. Open the appropriate file for editing:

� Personal: HomeDirectory/.dt/dtwmrc

� System-wide: /etc/dt/config/language/sys.dtwmrc

For information on creating these files, see “Workspace Manager Configuration
Files” on page 260.

2. Add the button binding to the DtButtonBindings definition.

Do not bind the same button to different functions for the click and press operations,
and do not bind more than one function to the same button and context.

3. Choose Restart Workspace Manager from the Workspace menu.

� To Create a New Button Binding Set
1. Open the appropriate file for editing:

� Personal: HomeDirectory/.dt/dtwmrc

� System-wide: /etc/dt/config/language/sys.dtwmrc

For information on creating these files, see “Workspace Manager Configuration
Files” on page 260.

2. Create the new button binding set. See “Button Binding Syntax” on page 268.

Chapter 16 • Customizing the Workspace Manager 269

3. Set the buttonBindings resource to the new name:

Dtwm*buttonBindings: ButtonBindingsSetName

4. Choose Restart Workspace Manager from the Workspace menu.

Note – The new button bindings replace your existing button bindings. Copy any
button bindings you want to keep from DtButtonBindings.

Customizing Key Bindings
A keyboard binding, also known as a key binding, associates combination of keys with
Workspace Manager functions. Key bindings apply to all workspaces.

Note – Be careful about using a common key combination as a keyboard binding. For
example, Shift-A normally puts the letter "A" into your current window. If you bind
Shift-A to a function, you lose its normal usage.

Default Desktop Key Bindings
The desktop default key bindings are defined in the Workspace Manager
configuration file in a key binding set named DtKeyBindings:

Keys DtKeyBindings
{
...

}

Key Binding Syntax
The syntax for key bindings is:

Keys KeyBindingSetName
{

[Modifiers]<Key>key_name context function [argument]
[Modifiers]<Key>key_name context function [argument]
...

}

where:

270 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Modifiers—Ctrl, Shift. Alt, and Lock. Multiple modifiers are allowed; separate
them with spaces.

key_name—the key to which the function is mapped. For keys with letters or numbers,
the key_name name is usually printed on the key. For instance the name of the "a" key
is "a", and the "2" key is named "2". The "Tab" key is named "Tab". The "F3" key is
named "F3".

For other keys, the name is spelled out—for example, plus for the "+" key. The file
keysymdef.h, located in a system-dependent directory, contains additional
information about key names.

context—the element that must have the keyboard focus for this action to be effective.
These can be concatenated together if the binding applies to more than one context.
Multiple contexts are separated by the "|" character.

root—Workspace backdrop; window—Client window; icon—Icon

function—a window manager function. Refer to the dtwmrc(4) man page for a list of
valid functions.

argument—any window manager function arguments that are required. Refer to the
dtwmrc(4) man page for details.

For example, the following key binding lets the user to switch the keyboard focus to
the next transient window in an application by pressing Alt+F6.

Alt<Key>F6 window f.next_key transient

Note – For complete information on key binding syntax, see the dtwmrc(4) man page.

� To Create a Custom Key Binding Set
1. Open the appropriate file for editing:

� Personal: HomeDirectory/.dt/dtwmrc

� System-wide: /etc/dt/config/language/sys.dtwmrc

For information on creating these files, see “Workspace Manager Configuration
Files” on page 260.

2. Create a new key binding set with a unique KeyBindingSetName. Use the desktop
default key binding set, DtKeyBindings, as a guide.

3. Set the keyBindings resource to the new set name:

Dtwm*keyBindings: KeyBindingSetName

4. Choose Restart Workspace Manager from the Workspace menu.

Chapter 16 • Customizing the Workspace Manager 271

Note – The new key bindings replace your existing key bindings. Copy any key
bindings you want to keep from DtKeyBindings into your new set.

Switching Between Default and Custom
Behavior
To toggle between Motif default and CDE desktop window behavior:

1. Press Alt+Shift+Ctrl+!

2. Click OK in the dialog box.

Switching to default behavior removes the Front Panel and any custom key and
button bindings.

272 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 17

Administering Application Resources,
Fonts, and Colors

You can choose a wide range of colors and fonts for your display either by using Style
Manager or by customizing additional font and color resources. This chapter discusses
how to customize fonts and color resources.

This chapter also describes how to specify style translations for DtEditor widget
applications such as the desktop text editor (dtpad) and Mailer (dtmail), and
alternates for DtEditor widget application menu accelerators that conflict with these
translations.

� “Setting Application Resources” on page 273
� “Defining UNIX Bindings” on page 275
� “Administering Fonts” on page 279
� “Administering Colors” on page 283
� “Setting Shadow Thicknesses for Application Windows” on page 290

Setting Application Resources
Resources are used by applications to set certain aspects of appearance and behavior.
For example, Style Manager (dtstyle) provides resources that enable you to specify
where the system looks for files containing information about color palettes:

dtstyle*paletteDirectories: /usr/dt/palettes/C HomeDirectory/.dt/palettes

App-default files for the desktop applications are located in the
/usr/dt/app-defaults/language directory.

273

� To Set System-Wide Resources
� Add the resources to the file /etc/dt/config/language/sys.resources. (You

may have to create the file.)

For example, if in /etc/dt/config/C/sys.resources you specify:

AnApplication*resource: value

then the resource AnApplication*resource will be set in each user’s
RESOURCE_MANAGER property at the next login.

Note – For more information about Style Manager resources, see the dtstyle man
page. For more information about Mailer resources, see the dtmail man page.

� To Set Personal Resources
1. Add the resources to the file HomeDirectory/.Xdefaults.

2. Double-click Reload Resources in the Desktop_Tools application group.

How the Desktop Loads Resources
Resources are loaded at session startup by Session Manager. For information on how
Session Manager loads the resources into the RESOURCE_MANAGER, see “Loading the
Session Resources” on page 45.

Process Manager Resources
The following Process Manager Resources are available:

� sampleNowTR
� postPopupMenuTR
� selectNextProcessTR
� selectPrevProcessTR
� selectFirstProcessTR
� selectLastProcessTR
� killSelectedProcessTR

274 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Defining UNIX Bindings
By default UNIX bindings are not enabled.

� To Specify-EMACS Style Translations
The following procedure specifies:

� EMACS style translations for DtEditor widget applications such as the desktop
Text Editor (dtpad) and Mailer (dtmail)

� Alternates for DtEditor widget application menu accelerators that conflict with
these translations.

1. Add the following line to the HomeDirectory/.Xdefaults file:

#include "/usr/dt/app-defaults/language/UNIXbindings"

where language is the value of the LANG environment variable.

2. Restart your session.

� To Modify the EMACS-Style Translations
1. Insert the contents of the file /usr/dt/app-defaults/language/UNIXbindings

into HomeDirectory/.Xdefaults.

2. Edit the bindings in the .Xdefaults file.

3. Restart your session when you have finished.

UNIX Bindings Provided by the UNIXbindings File
The /usr/dt/app-defaults/language/UNIXbindings file provides the bindings
described in the tables below.

Note – The Delete key deletes the previous character when the UNIX bindings are
enabled, and Shift-Delete deletes the next character.

Table 17–1 lists the dtpad overrides for menu accelerators and accelerator text that
conflict with the UNIX bindings.

Chapter 17 • Administering Application Resources, Fonts, and Colors 275

TABLE 17–1 dtpad Overrides

Menu Accelerators and Accelerator Text Override

Dtpad*fileMenu.print.acceleratorText:

Dtpad*fileMenu.print.accelerator:

Dtpad*editMenu.undo.acceleratorText: Ctrl+_

Dtpad*editMenu.undo.accelerator: Ctrl<Key>_

Dtpad*editMenu.paste.acceleratorText: Shift+Insert

Dtpad*editMenu.paste.accelerator: Shift<Key>osfInsert

Dtpad*editMenu.findChange.acceleratorText: Ctrl+S

Dtpad*editMenu.findChange.accelerator: Ctrl<Key>s

Table 17–2 lists the dtmail Compose window overrides for menu accelerators and
accelerator text that conflict with the UNIX bindings.

TABLE 17–2 dtmail Compose Window Overrides

Menu Accelerators and Accelerator Text Override

Dtmail*ComposeDialog*menubar*Edit.Undo.acceleratorText: Ctrl+_

Dtmail*ComposeDialog*menubar*Edit.Undo.accelerator: Ctrl<Key>_

Dtmail*ComposeDialog*menubar*Edit.Paste.acceleratorText: Shift+Insert

Dtmail*ComposeDialog*menubar*Edit.Paste.accelerator: Shift<Key>osfInsert

Dtmail*ComposeDialog*menubar*Edit.Find/Change.acceleratorText: Ctrl+S

Dtmail*ComposeDialog*menubar*Edit.Find/Change.accelerator: Ctrl<Key>s

The following translations provide (GNU style) EMACS control and Meta key
bindings plus some additional bindings. When appropriate, they also allow the Shift
key to be used in combination with the normal binding to reverse the direction of the
operation. For example, Ctrl+Shift+F will move the cursor backward a character since
Ctrl+F normally moves it forward a character.

The additional bindings are:

Ctrl+comma—backward-word

Ctrl+Shift+comma—forward-word

Ctrl+period—forward-word

Ctrl+Shift+period—backward-word

276 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Ctrl+Return—end-of-file

Ctrl+Shift+Return—beginning-of-file

GNU EMACS binds delete-previous-character() rather than delete-next-character() to
the Delete key. Meta+F is normally the mnemonic for the File menu, so the binding to
forward-word() will be ignored. Use one of the other bindings for forward-word (for
example, Ctrl+period).

Table 17–3 lists the DtEditor.text Translations

TABLE 17–3 DtEditor.text Translations

Modifier Key Key Action Routine

c ~s <Key>a: beginning-of-line()\n\

c s <Key>a: end-of-line()\n\

c ~s <Key>b: backward-character()\n\

c s <Key>b: forward-character()\n\

c ~s <Key>b: backward-character()\n\

c s <Key>b: backward-word()\n\

m ~s <Key>b: backward-word()\n\

m s <Key>b: forward-word()\n\

c ~s <Key>d: delete-next-character()\n\

c s <Key>d: delete-previous-character()\n\

m ~s <Key>d: kill-next-word()\n\

m s <Key>d: kill-previous-word()\n\

c ~s <Key>e: end-of-line()\n\

c s <Key>e: beginning-of-line()\n\

c ~s <Key>f: forward-character()\n\

c s <Key>f: backward-character()\n\

m ~s <Key>f: forward-word()\n\

m s <Key>f: backward-word()\n\

c <Key>j: newline-and-indent()\n\

c ~s <Key>k: kill-to-end-of-line()\n\

c s <Key>k: kill-to-start-of-line()\n\

Chapter 17 • Administering Application Resources, Fonts, and Colors 277

TABLE 17–3 DtEditor.text Translations (Continued)
Modifier Key Key Action Routine

c <Key>l: redraw-display()\n\

c <Key>m: newline()\n\

c s <Key>n: process-up()\n\

c ~s <Key>n: process-down()\n\

c <Key>o: newline-and-backup()\n\

c ~s <Key>p: process-up()\n\

c s <Key>p: process-down()\n\

c ~s <Key>u: kill-to-start-of-line()\n\

c s <Key>u: kill-to-end-of-line()\n\

c ~s <Key>v: next-page()\n\

c s <Key>v: previous-page()\n\

m ~s <Key>v: previous-page()\n\

m s <Key>v: next-page()\n\

c <Key>w: kill-selection()\n\

c ~s <Key>y: unkill()\n\

m <Key>]: forward-paragraph()\n\

m <Key>[: backward-paragraph()\n\

c ~s <Key>comma: backward-word()\n\

c s <Key>comma: forward-word()\n\

m <Key>\\<: beginning-of-file()\n\

c ~s <Key>period: forward-word()\n\

c s <Key>period: backward-word()\n\

m <Key>\\>: end-of-file()\n\

c ~s <Key>Return: end-of-file()\n\

c s <Key>Return: beginning-of-file()\n\

~c ~s ~m ~a <Key>osfDelete: delete-previous-character()\n\

~c s ~m ~a <Key>osfDelete: delete-next-character()

278 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Administering Fonts
Using the Style Manager Font dialog box, you can select the font group and size you
want for all applications. You can also specify fonts on the command line or use
resources to:

� Set font resources for individual applications
� Assign different fonts to be used by the Font dialog box

A font is a type style in which text characters are printed or displayed. The desktop
includes a variety of fonts in different styles and sizes.

A bitmap font is made from a matrix of dots. (By default, Style Manager configures
bitmap fonts only.) The font is completely contained in one file. Many files are needed
to have a complete range of sizes, slants, and weights.

Fonts are specified as values of resources and as parameters to commands. The X
Logical Font Description (XLFD) name is the method by which a desired font is
requested. The system finds the font that best matches the description it was given.

Setting Desktop Font Resources
The Style Manager Font dialog box enables you to select fonts (up to seven sizes) for
things such as text entry and labels. It also enables you to add or delete font groups.

Resources Set by the Font Dialog Box
When a font is selected, the following resources are written to the
RESOURCE_MANAGER property:

� SystemFont is used for system areas, such as menu bars, menu panes, push
buttons, toggle buttons, and labels. The following resource is set by SystemFont:

*FontList—displayed in system areas of desktop clients and other clients created
using the OSF/Motif toolkit.

� UserFont is used for text entered into windows. The following resources are set
by UserFont:

*Font—supports earlier versions of X applications

*FontSet—the primary setting

*XmText*FontList—displayed in text entry boxes

*XmTextField*FontList—displayed in text entry boxes

Chapter 17 • Administering Application Resources, Fonts, and Colors 279

Resources Used by the Font Dialog Box
The fonts used for each selection in the Font dialog box are specified in the
/usr/dt/app-defaults/Dtstyle resource file. Up to seven sizes can be specified.

NumFonts—number of font sizes in the Font dialog box

SystemFont[1-7]—up to seven resources assigning a specific font to a Font dialog
box selection for SystemFont

UserFont[1-7]—up to seven resources assigning a specific font to a Font dialog box
selection for UserFont

Note – The default fonts for these resources have been chosen for readability on
various displays. If you want a specific font for an application, set the font with an
application font resource rather than changing these desktop fonts.

For more information about application fonts, see the DtStdAppFontNames(5) and
DtStdInterfaceFontNames(5) man pages.

� To List Available Fonts
1. Type the following:

xlsfonts [-options] [-fn pattern]

A list of XLFD names and font alias names available on your system is displayed.
Bitmap fonts show values in all fourteen XLFD fields. Scalable typefaces show zeros in
the PixelSize, PointSize, ResolutionX, and ResolutionY positions.

2. To check for specific fonts, use the pattern-matching capability of xlsfonts. Use
wildcards to replace the part of the pattern you are not trying to match.

3. If xlsfonts does not show any font names starting with dt, your font path does
not include the desktop fonts. Type the following command to include the desktop
fonts into your available fonts:

xset +fp directory name

where directory name is the directory containing the desktop fonts. The default location
set by session startup is /usr/dt/config/xfonts/language.
For additional information:

� The xset and xlsfonts man pages list the available options.
� Using the X Window System explains font alias names and the xset client.

280 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

� To Specify Fonts on the Command Line
� Use the -xrm command-line option to specify a font resource for a specific client.

For example:

application name -xrm \

"*bitstream-charter-medium-r-normal-8-88-75-75-p-45-iso8859-1"

X Logical Font Description (XLFD)
A font is specified by listing fourteen different characteristics, separated by dashes (-).
This is called the X Logical Font Description (XLFD). In some cases, a property in the
list can be replaced by a * wildcard, and a character within a property can be replaced
by a ? wildcard. Table 17–4 lists font property string specifications.

The form of the property string specification is:

"-Foundry-FamilyName-WeightName- Slant-SetwidthName-AddStyleName-PixelSize-
PointSize-ResolutionX-ResolutionY-Spacing-
AverageWidth-CharSetRegistry-CharSetCoding"

TABLE 17–4 Font Property String Specification

Property String Definition

Foundry A string identifying the font designer

FamilyName A string identifying the trademarked name of the font

WeightName A string giving the relative weight of the font, such as bold

Slant A code describing the direction of slant:

R (Roman–no slant)

I (Italic–slant right)

O (Oblique–slant right)

RI (Reverse Italic–slant left)

RO (Reverse Oblique–slant left)

SetwidthName A string describing the width, such as compressed or expanded

AddStyleName A string providing any additional information needed to uniquely
identify the font

PixelSize An integer giving the size of an em-square in pixels

PointSize An integer giving the size of an em-square in decipoints

ResolutionX An integer giving the horizontal resolution in pixels

Chapter 17 • Administering Application Resources, Fonts, and Colors 281

TABLE 17–4 Font Property String Specification (Continued)
Property String Definition

ResolutionY An integer giving the vertical resolution in pixels

Spacing A code specifying the spacing between units:

M (Monospace--fixed pitch)

P (Proportional space--variable pitch)

C (Character cell)

AverageWidth An integer giving the average width in 1/10th pixels

CharSetRegistry A string identifying the registration authority that has registered the font
encoding

CharSetEncoding A string identifying the character set in the specified registry

Example
The following XLFD name describes a font named charter made by Bitstream that
supports the ISO8859-1 standard encoding:

-bitstream-charter-medium-r-normal--8-80-75-75-p-45-iso8859-1

It is medium weight, with no special slanting, and normal width. The font is
proportional, with an em-square box of 8 pixels or 8.0 points. The horizontal and
vertical resolution are both 75 pixels. The average width of a character is 45 1/10ths
pixels or 4.5 pixels.

Parts of this string can be replaced by wildcards. The system uses the first font it finds
that matches the parts you have specified.

If all you want is an eight-pixel charter font, you could use:

-charter--*-*-*-8-*

Viewing Selected Font Group Attributes
By selecting the Attributes button from the Style Manager Font dialog box, you can
view the following font group attributes:

� Font Group
� Size
� Alias
� Alias XLFD
� Alias Location
� Font
� Font XLFD

282 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

User’s Font Group Filesystem Storage
When a user adds a font group, it is stored in the following location:

HomeDirectory/.dt/sdtfonts/host/locale/typeface-nnnnnn

host is the local workstation’s host name.

locale is the user’s current locale such as “C” or “ja.”

typeface-nnnnnn is a name derived from the selected font and a unique generated
number.

This font group directory contains the following three files

� fonts.alias
� fonts.dir
� sdtfonts.group

The fonts.alias and fonts.dir files are the normal X11 font files suitable for
adding to the Xserver’s font path. The sdtfonts.group file contains the user
specified font group name.

System Administrator Font Group Creation
So that other users can access the font groups on a workstation, the system
administrator can copy font groups to the /etc/dt/sdtfonts/locale directory or to
the /usr/openwin/lib/X11/stdfonts/locale directory. Session Manager first
looks in HomeDirectory/.dt/stdfonts/host/locale, next in
/etc/dt/sdtfonts/locale, and last in
/usr/openwin/lib/X11/stdfonts/locale.

Administering Colors
This section describes:

� How Style Manager sets display colors.
� Resources used by Style Manager to control desktop color usage.

Color Palettes
A palette consists a group of color sets. The color sets for the current palette are shown
in the Style Manager Color dialog box

Chapter 17 • Administering Application Resources, Fonts, and Colors 283

A file exists for each palette. The paletteDirectories resource specifies the
directories containing palette files. By default, this resource contains:

� Built-in palettes: /usr/dt/palettes
� System-wide palettes: /etc/dt/palettes
� Personal palettes: HomeDirectory/.dt/palettes

Color Sets
Each color set in the current palette is represented by a color button in the Style
Manager Color dialog box. Each color is identified by a color set ID—a number from 1
to 8.

FIGURE 17–1 Color set ID values for HIGH_COLOR

Each color set is composed of up to five colors. Each color button displays the
background color of the color set. The five colors in each color set represent the
following display component resources:

foreground—the foreground of an application window or window frame. It is always
black or white. This is generally used for text within windows and titles.

background—the background of the application or the window frame.

topShadowColor—the color of the top and left bevels of application controls (such as
push buttons) and window frames.

284 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

bottomShadowColor—the color of the bottom and right bevels of application controls
and window frames.

selectColor—the color that indicates the active state of certain controls, such as active
toggles and buttons.

The number of color sets used by each palette is determined by the colorUse
resource, which the user can set using the Style Manager Number of Colors To Use
dialog box.

Specifying Color Values
Style Manager uses RGB values when writing color information to its palette files. The
syntax for RGB numbers is:

#RedGreenBlue

Red, Green, and Blue are hexadecimal numbers, each 1 to 4 digits long, that indicate the
amount of that color used. There must be the same number of digits for each of the
colors. Thus, valid color values consist of 3, 6, 9, or 12 hexadecimal digits.

For example, white can be specified in any of the following ways:

#fff
#ffffff
#fffffffff

#fffffffffffff

If you set a color resource directly, you can use either the color name or RGB value.
The file /usr/lib/X11/rgb.txt lists all the named colors.

How Color Sets are Mapped to Resources
The desktop maps color sets to various display elements through resources and makes
the assignments shown in Table 17–5.

TABLE 17–5 Mapped Color Sets to Resources

Resource Display element

activeColorSetId Active window frame color

inactiveColorSetId Inactive window frame color

textColorSetId Text entry areas

primaryColorSetId Application’s main background areas

secondaryColorSetId Application’s menu bar, menus, and dialog boxes

Chapter 17 • Administering Application Resources, Fonts, and Colors 285

These resources take a color set ID as their value. Coloring display elements with color
set IDs allows the element to dynamically change to the new color scheme when a
new palette is selected with Style Manager.

You can use these resources for individual applications. For example, the following
line shows how you would visually group all dtterm windows by using color set 8
for their primary color.

dtterm*primaryColorSetId: 8

Default Color Set Assignments
The color set IDs used for display elements depend on the Number of Colors setting in
Style Manager:

Table 17–6 shows the color set IDs for high color (8 color sets)—Style Manager setting
More Colors for Desktop.

TABLE 17–6 High color

Color set ID Display element

1 Active window frame color

2 Inactive window frame color

3 Unused (by default)

4 Text entry areas

5 Application’s main background areas

6 Application’s menu bar, menus, and dialog boxes

7 Unused by default

8 Front Panel background

Table 17–7 shows the color set IDs for medium color (4 color sets)—Style Manager
setting More Colors for Applications.

TABLE 17–7 Medium color

Color set ID Display element

1 Active window frame color

2 Inactive window frame color

3 Application and Front Panel background color

286 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

TABLE 17–7 Medium color (Continued)
Color set ID Display element

4 Text entry areas

Table 17–8 shows the color IDs for low color (2 color sets)—Style Manager setting
Most Colors for Applications.

TABLE 17–8 Low color

Color set ID Display element

1 Active window frame, workspace selection buttons

2 All other display elements

Controlling Color with Style Manager
You can dynamically change color for desktop applications and other cooperating
applications through Style Manager. The foreground and background colors set by
Style Manager are available to non-cooperating applications.

For a client to respond to Style Manager color changes, the client must be using the
desktop Motif library. Clients written with other toolkits cannot change color
dynamically in response to Style Manager changes. Color changes for these clients do
not take effect until the client is restarted.

There must be no other specific color resources applied for the client. This includes
user-specified resources, application defaults, and resources built into the application.

Clients can specify primaryColorSetId and secondaryColorSetId resources to
use certain colors within a desktop palette.

Number of Colors Used by Style Manager
The number of colors used by Style Manager depends on the values for the following
resources:

colorUse—configures the number of colors the desktop uses

shadowPixmaps—directs the desktop to replace the two shadow colors with pixmaps

foregroundColor—specifies if the foreground color changes dynamically

dynamicColor—controls whether applications change color when you switch
palettes

Chapter 17 • Administering Application Resources, Fonts, and Colors 287

Table 17–9lists the maximum number of colors allocated by the desktop.

TABLE 17–9 Number of Desktop Colors

Display Maximum Number of Colors Number Derived From

B_W 2 Black and white

LOW_COLOR 12 Two color sets times five
colors plus black and white

MEDIUM_COLOR 22 Four color sets times five
colors plus black and white

HIGH_COLOR 42 Eight color sets times five
colors plus black and white

To determine the maximum number of colors:

1. Multiply the number of color sets in the palette by the number of colors within
each color set.

2. Add 2 (for black and white).

However, with the following configuration you would only have ten colors in your
palette: four color sets times two colors in each set (background and selectColor)
plus black and white:

*colorUse: MEDIUM_COLOR
*shadowPixmaps: True

*foregroundColor: White

Note – Multi-color icons use fourteen additional colors.

colorUse Resource
The default value of the colorUse resource is MEDIUM_COLOR. The value of this
resource affects the number of color sets used in a palette. Other resources affect the
number of colors used to make shadows. The value of the colorUse resource also
affects the use of multi-color icons.

Value Description

B_W “Black and White” Style Manager setting Displays with 1 to 3
color planes Number of color sets: 2 Maximum number of colors:
2 Default number of colors: 2 No multicolor icons

288 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Value Description

LOW_COLOR “Most Color for Applications” Style Manager setting Displays
with 4 to 5 color planes Number of color sets: 2 Maximum
number of colors: 12 Default number of colors: 12 No multicolor
icons

MEDIUM_COLOR “More Colors for Application” Style Manager setting Displays
with 6 color planes Number of color sets: 4 Maximum number of
colors: 22 Default number of colors: 22 Multicolor icons

HIGH_COLOR “More Colors for Desktop” Style Manager setting Displays with 7
or more color planes Number of color sets: 8 Maximum number
of colors: 42 Default number of colors: 42 Multicolor icons

default The desktop chooses the correct value for that display. (To reduce
the number of colors used by the desktop for high-color displays,
the default colorUse resource is set to MEDIUM_COLOR.)

shadowPixmaps Resource
The shadowPixmaps resource directs the desktop to replace the two shadow colors
with pixmaps. These pixmaps mix the background color with black or white to
simulate top or bottom shadow values. This reduces the number of needed colors by
two, since color cells do not need to be allocated for the shadow colors.

Value Description

True The desktop creates a topShadowPixmap and bottomShadowPixmap to
use instead of the shadow colors.

False topShadowColor and bottomShadowColor from the palette are used.

The default value for shadowPixmaps depends on the colorUse resource you have
and the hardware support for the display.

foregroundColor Resource
The foregroundColor resource specifies how the foreground is configured in a
palette.

Setting Result

White Foreground is set to white.

Black Foreground is set to black.

Chapter 17 • Administering Application Resources, Fonts, and Colors 289

Setting Result

Dynamic (Default) Foreground is dynamically set to black or white, depending on the
value of background. For instance, white letters on a yellow
background are difficult to read, so the system chooses black.

If foregroundColor is set to either Black or White, the number of colors in the color
set is reduced by one, and the foreground will not change in response to changes in
the background color.

The default value for foregroundColor is Dynamic, except where the value of
colorUse is B_W.

dynamicColor Resource
The dynamicColor resource controls whether applications change color dynamically;
that is, whether the clients change color when you switch palettes.

Value Description

True Clients change color dynamically when a new palette is selected. This is
the default value.

False Clients do not change color dynamically. When a new palette is selected,
clients will use the new colors when the session is restarted.

When the value of the dynamicColor resource is True, clients that cannot change
colors dynamically (non-Motif applications) allocate different cells in the color map
than clients that can change colors dynamically, even if you see the same color.

Note – Since all clients can share the same color cells, setting dynamicColor to False
reduces the number of colors your desktop consumes.

Setting Shadow Thicknesses for
Application Windows
The desktop defines a default shadow thickness of one pixel for the components in
application windows, such as button shadows and focus highlight. Motif 1.2
applications use this resource value; other applications may not obtain this resource
value and therefore will appear different on the display.

290 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

To set the shadow thickness to one pixel for non-Motif 1.2 applications:

1. Log in as root.

2. Create the /etc/dt/config/language/sys.resources file.

3. Specify the application-specific resource in
/etc/dt/config/language/sys.resources as follows:

application_class_name*XmCascadeButton*shadowThickness: 1

For more information about overriding system default resources and specifying
additional resources for all desktop users, see “Loading the Session Resources”
on page 45

Chapter 17 • Administering Application Resources, Fonts, and Colors 291

292 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

CHAPTER 18

Configuring Localized Desktop
Sessions

To configure localized desktop sessions, you will need to:

� Set the LANG environment variable and other National Language Support (NLS)
environment variables

� Access language-dependent message catalogs and resource files

� Execute applications remotely across internationalized systems

� “Managing the LANG Environment Variable” on page 293
� “Finding Fonts” on page 296
� “Localizing app-defaults Resource Files” on page 296
� “Localizing Actions and Data Types” on page 297
� “Localizing Icons and Bitmaps” on page 297
� “Localizing Help Volumes” on page 299
� “Localizing Message Catalogs” on page 299
� “Executing Localized Desktop Applications Remotely” on page 300
� “Resetting Your Keyboard Map” on page 300

Managing the LANG Environment
Variable
The LANG environment variable must be set for the desktop to use the operating
system’s language-sensitive routines. The desktop supports:

� Western Europe, Latin-based languages
� Japanese
� Traditional Chinese
� Simplified Chinese
� Korean

293

Note – Support for other languages may have been added by your desktop vendor.

You can set LANG to any value supported by the operating system. The Options menu
in the login screen displays the list of supported languages and territories.

There are four ways to set LANG for the desktop:

� By editing a resource in the Xconfig file

� Using the Options menu in the login screen

� By creating an executable sh or ksh Xsession.d script. (See “Sourcing Xsession.d
Scripts” on page 42 for more information about using an Xsession.d script.)

� By editing the user’s .dtprofile file

When LANG is set, the desktop uses the following language-dependent files to
determine the localized interface.

Colors—/usr/dt/palettes/desc.language

Backdrops—/usr/dt/backdrops/desc.language

Setting the Language for Multiple Users
If you set the language by means of an Xconfig file, the login screen is localized and
LANG is set for all users. This is the only way to change LANG for all displays in
multi-display systems. (To modify Xconfig, copy /usr/dt/config/Xconfig to
/etc/dt/config/Xconfig.)

The language is set by placing the following line in /etc/dt/config/Xconfig:

dtlogin.host_display.language: language

For example, the following line sets LANG to Swedish_locale on display
my_host:0.

dtlogin.my_host_0.language: Swedish_locale

The dtlogin client reads the appropriate message catalog for that language and
brings up the localized login screen. The dtlogin client then determines the list of
locales using the following resources in the /etc/dt/config/Xresources resource
file:

� dtlogin*language
� dtlogin*languageList
� dtlogin*languageName

294 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

The Xconfig file may need to set the NLSPATH environment variable appropriately
for the chosen language. If this is not the case, or if you want to set NLSPATH yourself,
see “NLSPATH Environment Variable” on page 296.

Setting the Language for One Session
To set the language for one session, use the login screen Options menu. The login
screen is localized and LANG is set for the user. LANG returns to its default value (set in
dtlogin) at the conclusion of the session.

Setting the Language for One User
A user can override the login’s LANG setting within the HomeDirectory/.dtprofile
file. The login screen is not localized, and LANG is set for the user.

� If you use sh or ksh:

LANG=language
export LANG

� If you use csh:

setenv LANG language

LANG Environment Variable and Session
Configuration
The LANG environment variable changes the directory name that is searched for your
session configuration files.

The localized session configuration files are:

� /usr/dt/config/language/Xresources (Login Manager resource file)
� /usr/dt/config/language/sys.font (Session Manager resource file)
� /usr/dt/config/language/sys.resources (Session Manager resource file)
� /usr/dt/config/language/sys.session (Session Manager executable shell)
� /usr/dt/config/language/sys.dtwmrc (Window Manager resource file)
� /usr/dt/appconfig/types/language/dtwm.fp (Window Manager Front

Panel)

Chapter 18 • Configuring Localized Desktop Sessions 295

Setting Other NLS Environment Variables
Besides LANG, there are other NLS environment variables such as LC_CTYPE and
LC_ALL. These variables are not affected by the dtlogin language resource nor by
the login screen Options menu. They must be set in the following files:

� System-wide variables: /etc/dt/config/Xsession.d
� Personal variables: HomeDirectory/.dtprofile

NLSPATH Environment Variable
The NLSPATH environment variable determines the directory paths that applications
search for message catalogs. Both LANG and NLSPATH must be set to use those
message catalogs. Refer to “Localizing Message Catalogs” on page 299 for the location
of localized messages. Most desktop clients will prefix the path to NLSPATH upon
startup.

Finding Fonts
Fonts included with the desktop are in the /usr/lib/X11/fonts directory. Each
directory contains a directory file, fonts.dir, and an alias file, fonts.alias. See
the mkfontdir man page for information on creating the fonts.dir and
fonts.alias files.

To list all fonts available at a server, user the xlsfonts command. To add or delete
fonts to the server, use the xset command.

Localizing app-defaults Resource Files
The default location for the app-defaults file for the desktop clients is
/usr/dt/app-defaults/language. For example, if LANG is set to
Swedish_locale, then applications will look for their app-defaults file in
/usr/dt/app-defaults/Swedish_locale. If LANG is not set, language is ignored,
and applications look for their app-defaults file in /usr/app-defaults/C.

To change the location of app-defaults, use the XFILESEARCHPATH environment
variable. For example, to move app-defaults to /users, set XFILESEARCHPATH to
/usr/app-defaults/language/classname.

296 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

If you set XFILESEARCHPATH in HomeDirectory/.dtprofile, the value applies to all
desktop and X clients you run. Nonclients will not find their resource files unless you
link or copy them into the directory specified by XFILESEARCHPATH.

Localizing Actions and Data Types

Note – To customize a file in the /usr/dt/appconfig directory, copy the file to the
/etc/dt/appconfig directory prior to customizing.

The search path for action and data-type definition files includes language-dependent
directories in:

� Personal: HomeDirectory/dt/types
� System-wide: /etc/dt/appconfig/types/language
� Built-in: /usr/dt/appconfig/types/language

The search path for Application Manager’s configuration files is:

� Personal: HomeDirectory/dt/appmanager

� System-wide: /etc/dt/appconfig/appmanager/language

� Built-in: /usr/dt/appconfig/appmanager/language

File and directory names in this directory are localized.

Localizing Icons and Bitmaps
To localize an icon, edit the icon with Icon Editor and save it in:

/etc/dt/appconfig/icons/language

If you save it in a different directory, set the XMICONSEARCHPATH environment
variable to include the directory where you saved the icon. The
XMICONBMSEARCHPATH environment variable controls the path used to search for
icons.

Chapter 18 • Configuring Localized Desktop Sessions 297

Localizing Backdrop Names
Localization of backdrops is done through the use of description files (desc.language
and desc.backdrops). No specific localized directory exists (such as
/usr/dt/backdrops/language) for backdrop files. All locales use the same set of
backdrop files but have their own desc.language file containing the translated names
of the backdrops.

The description file contains resource specifications for the backdrop names that are
translated. For example:

Backdrops*Corduroy.desc: Velours
Backdrops*DarkPaper.desc: PapierKraft

Backdrops*Foreground.desc: AvantPlan

The desc.language file is used to retrieve the description of the backdrops for locale
language in order to display the backdrop in the Style Manager. If there is a description
specification, it will be displayed in the Style Manager backdrops list. Otherwise, the
backdrop file name will be used.

Users can add their own backdrop descriptions in the
HomeDirectory/.dt/backdrops/desc.backdrops file. This file is used to retrieve
the backdrop descriptions for all backdrops added by the user regardless of locale.

The search path for the description files is:

� Personal: HomeDirectory/.dt/backdrops/desc.backdrops
� System-wide: /etc/dt/backdrops/desc.language
� Built-in: /usr/dt/backdrops/desc.language

Localizing Palette Names
Localization of palettes is done through the use of description files (desc.language
and desc.palettes). No specific localized directory exists (such as
/usr/dt/palettes/language). All locales use the same set of palette files but have
their own desc.palettes file containing the translated names of the palettes.

The description file contains resource specifications for the palette names that are
translated. For example:

Palettes*Cardamon.desc: Cardamone
Palettes*Cinnamon.desc: Cannelle

Palettes*Clove.desc: Brun

298 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

The desc.language file is used to retrieve the description of the palettes for locale
language in order to display the palette in the Style Manager list. If there is a
description specification it will be displayed in the Style Manager palettes list.
Otherwise, the palette file name will be used.

Users can add their own palette descriptions in the
HomeDirectory/.dt/palettes/desc.palettes file. This file is used to retrieve the
palette descriptions for all palettes added by the user regardless of locale.

The search path for the description files is:

� Personal: HomeDirectory/.dt/palettes/desc.palettes
� System-wide: /etc/dt/palettes/desc.language
� Built-in: /usr/dt/palettes/desc.language

Localizing Help Volumes
If you have localized a help volume, you must store it in one of the following
directories. The first help volume found is the one used. The directories are searched
in the following order:

� Personal: HomeDirectory/.dt/help
� System-wide: /etc/dt/appconfig/help/language
� Built-in: /usr/dt/appconfig/help/language

Localizing Message Catalogs
If you have localized a message catalog, store it in the following directory:

/usr/dt/lib/nls/msg/language.

These directories contain the *.cat files.

Chapter 18 • Configuring Localized Desktop Sessions 299

Executing Localized Desktop
Applications Remotely
You can invoke localized desktop applications on any remote execution host that has a
similarly localized desktop installation. The values of the NLS-related environment
variables on the host that is invoking the application are passed to the remote host
when the application is started. However, the environment variables do not contain
any host information.

Resetting Your Keyboard Map
If you see unexpected characters and behaviors, or characters cannot be displayed or
typed, you might need to reset or install your keyboard map or change your input
method.

The input method is determined by the LC_CTYPE, LANG, or LC_ALL environment
variables, or the language specified by the -lang option.

For example, if the user wants to open a terminal with the C locale within a POSIX
shell:

LANG=C dtterm

This new terminal uses the C locale including the C input method and fonts. If you are
using a language-specific keyboard, the input method may not accept any extended
characters for input. When using the C locale with a language-specific keyboard, users
need to set the LC_CTYPE (or LANG or LC_ALL) environment variable to an
appropriate value before invoking the terminal.

For example, to use the C locale with the German keyboard, type:

LANG=C LC_CTYPE=DeDE dtterm

If the X server has been reset and keymaps have been initialized, you can reset the
proper keyboard map at the server using the txmodmap command.

300 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

APPENDIX A

dtconfig(1) Man Page

NAME
dtconfig - desktop configuration utility

SYNOPSIS
dtconfig [-d |-e |-kill |-reset |-p |-inetd |-inetd.ow]

DESCRIPTION
Desktop configuration utility. Integrates CDE with the
operating system of the underlying platform. System root
login privilege is required to use dtconfig.

OPTIONS
-d Disables desktop auto-start feature. At end of boot

cycle, platform’s native text based login mechanism
will be used.

-e Enable’s desktop auto-start feature. Desktop login
-kill

Kill desktop (window based) login process and any user
sessions associated with it. Return control to
system’s native text based console.

-reset
Tell desktop (window based) login process to reread its
configuration file to incorporate any changes.

-p Printer actions for any printer known to platform will
be created if such print actions do not already exist
in the platform’s actions database. This option is
executed automatically at boot time if desktop auto-
start has been enabled.

-inetd
Adds /usr/dt/bin daemons to the /etc/inetd.conf file.
Specific CDE background daemon setup includes
rpc.ttdbserverd (ToolTalk), rpc.cmsd (Calendar
Manager), and dtspcd (subprocess control). This -inetd
option is called automatically by Solaris CDE package
installs. This -inetd option is also useful for CDE

301

daemon setup outside of normal Solaris CDE install,
including system setup where /usr/dt has simply been
mounted from some remote fileserver exporting the
/usr/dt directory.

-inetd.ow
Switches the ToolTalk and Calendar Manager daemons
(rpc.ttdbserverd & rpc.cmsd) start lines in
/etc/inetd.conf back to the older /usr/openwin/bin
area. This option is called automatically by Solaris
CDE package remove scripts when needed. It is also
useful outside of normal Solaris package remove opera-
tions when /usr/dt is about to be manually removed or
unmounted.

RETURN VALUES
0 Successful completion
>0 Error condition

FILES
/usr/dt/bin/dtconfig location of dtconfig utility

SEE ALSO
dtlogin (1), dtprintinfo (1)

302 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

Index

Numbers and Symbols
%B, 145
%DatabaseHost%, 202
%DisplayHost%, 202
%H, 145
%L, 145
%LocalHost%, 202
%M, 145
%SessionHost%, 202
? wildcard character, 216
* wildcard character, 217
?Xconfig file

setting language with, 294

A
action definition file, created by Create

Action, 169
action file, 169, 186

contents, 160
creating, 87, 186
definition, 160

action icon, 160, 186
creating, 186
required by desktop, 83

Action Icons controls, in Create Action, 173
Action Name field in Create Action, 173
action search path, See database search path
action servers, See database servers
actionIcon resource, 188
actions

accepting dropped file or prompting, 194

actions (continued)
accepting dropped files, 162, 192
accepting multiple dropped files, 197
argument count restrictions, 200
arguments, 191
arguments, non-file, 194
associating icon with, 226
associating with data types, 214
COMMAND, 182
configuration files, 183
creating icons for applications, 159
creating manually, 181, 183
default icon, 188
default terminal, 199
different double-click and drop

functionality, 200
editing, 189
environment variables, 204
example, 184
execution string, 191
file arguments, 162
files representing

See action file
icons for, 179, 188
icons representing, 186
integrated with dtappintegrate, 91
interchangeable arguments, 196
introduction, 157
labels, 188, 206
limitations of Create Action, 170
localized, 206
MAP, 182
mapping, 165

303

actions (continued)
modifying, 189
name, 169, 187
no arguments, 192
no display output, 173
non-file arguments, 170, 194
non-interchangeable arguments, 196
parameters

See arguments
precedence rules, 190
prompting for file, 193
providing shells, 195
reason to create manually, 182
relationship to data types, 164
reloading, 186
required for registration, 79
restricted by data type, 165, 200
restricting arguments, 199
running as different user, 205
running other actions, 204
running remote applications, 133, 202
search path

See database search path
server for, 131
string variables in, 203
terminal options, 198
terminal support for, 199
TT_MSG, 183
types of, 182, 184
used by Front Panel, 158
used in menus, 159
uses, 162
variables in definitions, 203
window support, 173
windowing support for, 197
without data, 192

ACTIONS field, 214
activeColorSetId resource, 285
ALTERNATE_ICON field, 249
AND operator in MODE field, 219
ANIMATION definition, 251
animation for Front Panel, 251
AnswerBook documentation, adding from

network, 112
app-defaults

desktop applications, 273
language-dependent, 296

app_root, See application root directory
/appconfig, 100
/app-defaults, 100
Apple Macintosh Application

Environment, 114
application groups

action for, 86
administering, 63
contents, 87
creating in registration package, 84
customizing, 64
data types for, 86
default, 59
definition, 57
directories for, 84
example of creating, 96
gathering, 58
icons for, 83, 85
integrated with dtappintegrate, 91
names, 85
naming, 64
personal, 64
precedence, 59
readme files, 88
system-wide, 64

application icon, 184
creating, 160, 186
double-clicking, 162
dropped files, 162
required by desktop, 83
using Create Action, 169

Application Manager
adding applications, 61
description, 57
file system location, 58
gathering applications, 43, 58
general administration, 66
integrating applications with, 72
precedence rules, 59
symbolic links, 59
updating, 66

application package, See registration package
application registration, See registration
application resources, See resources
application root directory, 77
application search path

assembling, 147
default, 65, 146

304 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

application search path (continued)
definition, 146
environment variables, 146
localized, 155
modifying, 65
modifying precedence, 148
personal, 66
reason for modifying, 64
syntax, 147
system-wide, 65
used to gather applications, 58

application servers
adding, 64
administering, 129
availability of applications, 74
client of, 131
configuring, 125, 130
configuring client of, 131
definition, 118
standard configuration, 130

application window, associating icon with, 227
applications

actions required, 80
adding to Application Manager, 61
adding to existing application groups, 63
adding without registering, 62
app_root directory, 77
creating icons for, 159
data types required, 80
desktop-smart, 62
features of registration, 72
gathered by Session Manager, 43
gathering, 60
gathering into Application Manager, 58
purpose for data types, 73
registered, definition, 61
registering

See registration
reloading, 66
removing, 66
root directory, 77
running locally across mounts, 135
search path, 58
starting at login, 41, 47
un-registering, 66
ways to add, 61

Arg_1 syntax, 162
ARG_CLASS field, 190

ARG_COUNT field, 190, 200
ARG_MODE field, 190
Arg_n syntax, 192
ARG_TYPE field, 190, 200, 214

printing, 141
arguments

for actions, 191
interchangeable for actions, 196
multiple for actions, 195
non-file, 194
non-interchangeable, for actions, 196
number of for actions, 200
of actions, 162
prompting for, 193
restricting for actions, 199

authentication, login, 53
authentication directory, 123, 128
authorization, X, 124
authorize resource, 32
automounter, 126

B
backdrops, 260

adding, 263
file locations, 263
using graphics image, 263

background resource, 284
base file name, 188, 213
/bin, 100
bitmapped display, running Login Server

without, 22
bitmaps, 224

how files are found, 224
naming conventions, 224
search path, 225

blank type control, 247
.bm filename extension, 224
bottomShadowColor resource, 285
BOX definition, 235

syntax, 236
BROADCAST, used in XDMCP-indirect, 26
-broadcast flag, 110
browsing icons using File Manager, 228
button binding, 268

adding, 269
creating new set, 269

Index 305

button binding (continued)
syntax, 268

buttonBindings resource, 270

C
C locale, 109
Calendar daemon, 129
CDE-MIN files, 125
CDE-TT files, 125
character display console, 23
Chooser, 106
CHOOSER string, 26
CLIENT_GEOMETRY field, 251
CLIENT_NAME field, 250
client-server configuration, See networking
client type control, 247
clients

definition, 118
of server, configuring, 124
window in Front Panel, 250

clock type control, 247
color

color sets, 284
controlling, with dynamicColor

resource, 290
controlling, with Style Manager, 287
creating shades with shadowPixmaps

resources, 289
maximum number allocated, 288
specifying foreground, 289
usage in icons, 229

color palettes, 283
color resources, modifying for registration, 76
color server, 41

resources, 46
starting, 46

color sets, 284
default, 286
mapping to display elements, 285

colors
active window frame, 285
administering, 283
application windows, 285
colorsets, 284
default, 286
inactive window frame, 285

colors (continued)
number used, 287
palettes, 283
resources, 284
text entry areas, 285
values, 285

colorUse resource, 46, 287
COMMAND action, 182

example, 184
execution string, 191
required fields, 191

command line for actions, 191
command-line login, 23
/config, 100
configuration files, 101

action, 183
data types, 211
Front Panel, 231
in registration package, 74
location, 100
Login Manager, 37
Session Manager, 52
Window Manager, 260
Workspace Manager, 260

CONTAINER_NAME field, 236, 241
CONTAINER_TYPE field, 237
content-based data type, 220
CONTENT field, 216, 220
control

adding to Main Panel, 239
animation, 251
appearance, 242
click vs. double-click, 255
client, 250
creating, 247
defining, 246
drop zone, 249
icon, 242
in workspace switch, 253
interchanging with another control, 240
labeling, 255
locking, 234
modifying, 240
monitor, 249
On Item help, 252
one-instance, 250
removing from Front Panel, 239
replacing, 241

306 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

control (continued)
restoring, 234
that opens a file, 248
toggle, 250
types, 246

CONTROL_BEHAVIOR field, 255
CONTROL definition, syntax, 237
COPY_TO_ACTION field, 215
cpp statements, 49
Create Action, 169

action command syntax, 173
action name, 173
configuration file created, 169
data type creation, 163, 174
data type name, 175
file prompt, 174
functionality, 169
introduction, 169
limitations, 170
main window, 172
specifying file argument, 173
specifying icons, 178
starting, 172
using, 171

current.old directory, 51
current session, 39
customizing mail printing, 111

D
DATA_ATTRIBUTES

defining, 213
definition, 210
syntax, 211

DATA_CRITERIA
defining, 216
definition, 210
multiple, 221
paired with DATA_ATTRIBUTES, 210
syntax, 211

data types
associating icon with, 226
associating with actions, 214
attributes, 213
categorization criteria, 216
configuration files, 211
content-based, 220

data types (continued)
created with Create Action, 163, 174
creating manually, 209
criteria, 216
defining, 211
differentiating, 216
double-click behavior, 166
drop behavior, 166
example, 212
executable, 219
help on, 213
hidden, 215
icons for, 83, 179, 213
integrated with dtappintegrate, 91
introduction, 157, 163
limitation of Create Action, 171
localized, 221
location-based, 217
mode criteria, 218
multiple criteria, 221
name-based, 176, 216
path-based, 217
permission pattern, 177
printing, 166
purpose for creating, 73
read-only, 219
relationship to actions, 164
Reload Actions, 186
reloading, 186
required for registration, 79
requirements for manual creation, 171, 209
restricting actions based on, 200
search path

See database search path
server for, 131
variables in definitions, 203

Data Types list in Create Action, 174
database

reloading, 186
reloading actions, 186

database host, 133, 202
database search path, 149, 183

affect on EXEC_HOST, 133
assembling, 151
default, 149
environment variables, 150
related to application search path, 148, 150
syntax, 150

Index 307

database servers, 121, 133
client of, 132
configuring, 125, 131
creating, 132

DataBaseHost keyword, 202
date type control, 247
DELETE field, 235
DESCRIPTION field, 187, 213
desktop environment file, 113
desktop search paths, 41
desktop-smart application, 62
desktop startup

multiple screens, 105
problems, 53

Desktop_Tools application group,
modifying, 64

desktops, networked, 106
/dev/console, 101
directory

datatype criteria, 219
display colors

maximum number allocated, 288
DISPLAY_displayname macro, 49
display-specific resources, 49
display-specific session, 50
DISPLAY variable,set by Login Manager, 35
DisplayHost keyword, 202
DROP_ACTION field, 249
DROP_ANIMATION field, 252
drop zone

action icon, 192
Front Panel control, 249

dropped file, action that accepts, 192
dt files, 183
dtaction

syntax, 204
used to change user, 205

dtappgather, 43, 59
dtappintegrate, 89

functionality, 90
removing application, 66
syntax, 90

DTAPPSEARCHPATH variable
assembling, 146
definition, 144

DtButtonBindings, 268
dtchooser file, 37
dtconfig(1) man page, 301

dtconfig command, 27
dtCreate, See Action
DTDATABASESEARCHPATH variable

assembling, 150
definition, 144
usage, 189

DtEditor, style translations for, 275
Dterrors file, 27
dtgreet file, 37
DTHELPSEARCHPATH variable

assembling, 154
definition, 144

dtlogin
See Login Manager, 101

Dtlogin*language resource, 32
dtlp, 112
dtmailpr, 112
DTMOUNTPOINT variable

inherited by users, 127
processes requiring, 127
processes that use, 127
setting, 127

Dtpid file, 21
.dtprofile, 53, 55
.dtprofile file

creating, 41
setting LANG, 295
setting environment variables in, 48
sourcing in, 41
syntax, 48

DtRootMenu, 266
dtsearchpath, 43, 145, 189
dtsmcmd command, 49
DTSOURCEPROFILE variable, 44
dtspcd, 126

authentication directory, 123, 128
configuring, 128

DTSPSYSAPPHOSTS variable
definition, 144
modifying, 65
syntax, 147

DTSPSYSDATABASEHOSTS variable
definition, 144, 150
effect on EXEC_HOST, 133
syntax, 150

DTSPSYSHELP variable, 154
definition, 144
syntax, 154

308 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

DTSPSYSICON variable
definition, 144
syntax, 152

DTSPUSERAPPHOSTS variable
definition, 144
modifying, 66
syntax, 147

DTSPUSERDATABASEHOSTS variable
definition, 144, 150
syntax, 150

DTSPUSERHELP variable
definition, 144
syntax, 154

DTSPUSERICON variable
definition, 144
syntax, 152

dtstart_appgather variable, 43
dtstart_searchpath variable, 43
dtstart_ttsession variable, 44
dtterm, 56
dtwm, See Workspace Manager
dtwm.fp file, 232
dtwmfp.session file, 234
dtwmrc file, 260

editing, 260
dynamicColor resource, 46, 287, 290

E
Edit Dtwmrc action, 260
editing actions, 189
electronic mail, configuring, 124
EMACS style translations, 275
EMACS translations, 275
environment file, desktop, 113
environment variables

action definitions, 204
application search path, 146
bitmap search path, 152
database search path, 150
default, 41
in .dtprofile, 41
exporting, 48
help search path, 154
icon search path, 152
Login Manager, 35
personal, 48

environment variables (continued)
pixmap search path, 152
remote execution, 128
search path, 144
setting, 48
sourcing in .login or .profile, 44
system-wide, 48

error log
locations, 54
login, 54
Session Manager, 54
startup, 54
Xsession, 54

/etc/dt, 100
/etc/rmmount.conf, 114
/examples, 100
EXEC_HOST, See execution host
EXEC_HOST field, 202

affected by database search path, 133
default value, 133, 202
multiple values, 133

EXEC_STRING, 112
EXEC_STRING field, See execution string
executable file, data type criteria, 219
execution host

configuring, 134
creating actions for, 202
specified by EXEC_HOST field, 202
specifying, 133

execution string, 191
absolute path in, 192
dropped files, 192
general features, 191
multiple-file arguments, 195
no arguments, 192
prompting for file, 193
prompting for string, 194
shell syntax, 192
specifying the executable, 192

F
fail-safe sessions, 34
Failsafe Session option, 54

login screen, 103
file, data type criteria, 219

Index 309

file argument
specified with Create Action, 173
used in actions, 162

File Manager, using as icon browser, 228
file-name consistency, 123
FILE_NAME field, 248
file-name mapping, 126
file names, icon, 224
file prompt, specified with Create Action, 174
file servers, 118
file sharing, 122
file type control, 247, 249
file types, See data types
filename database server, 125
files

access to distributed, 122
hiding based on data type, 215
mount point, 126
mounting, 122
name consistency, 123
remote access, 122
remote data, 126
required for networking, 125

files, login startup, 53
Find Set dialog box, 178
flag, -broadcast, 110
font path, 109
Font resource, 279
fonts

administering, 279
bitmapped, 279
finding with alias file, 296
finding with directory file, 296
finding with mkfontdir command, 296
listing available, 280
number of in Style Manager, 280
primary directory, 296
resources, modifying for registration, 76
resources, setting, 279
specifying property string, 281
system, in Style Manager, 280
X Logical Font Description, 279, 281
xlsfonts command, 296

Fonts dialog box, 279
FontSet resource, 279
foreground resource, 284
foregroundColor resource, 46, 289
foreign display type, 23

fp_dynamic directory, 232
Front Panel, 255

adding rows, 256
animation, 251
client in, 250
components, 235
configuration files, 231
control

See control
control in registration package, 88
controlling personal customizations, 234
customizing, 231
displaying icon in, 227
drop zone control, 249
dynamic customizations, 232
help, 252
location on screen, 255
managed by Workspace Manager, 260
menu, 264
modifying, 238
naming convention for files, 232
new, 255
organization of definition, 235
precedence in assembling, 233
search path, 232
syntax, 236
using actions, 158

G
getty, 23, 40
GID, 122
group ID, 122

H
help, 82

Front Panel, 252
full integration, 82
on action file, 187
on data type, 213
on printer icons, 139
partial integration, 82
specified using Create Action, 173

Help Developer’s Kit, 82

310 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

help files
in registration package, 82
integrated with dtappintegrate, 91

help search path, 143, 153
assembly, 154
default, 153
environment variables, 154
related to application search path, 148, 153
syntax, 154

help servers, 121
client of, 132
configuring, 125, 131
creating, 132

HELP_STRING field, 252
HELP_TOPIC field, 252
help volume

levels of integration, 82
location in registration package, 82
master help file, 82

HELP_VOLUME field, 252
help volumes

localizing, 299
hiding files with data type, 215
HIGH_COLOR, 288
home directory

networked, 123
shared, 123

home.old directory, 51
home session, 39
HOME variable, 35
HomeDirectory, 100

I
ICON field

allowable values, 188
for data type, 213
in Front Panel, 242
valid values, 213

icon placement, 56
icon search path, 151

assembling, 152
default, 151
environment variables, 152
related to application search path, 148, 152
syntax of, 152

icon servers, 121

icon search path (continued)
client of, 132
configuring, 125, 131
creating, 132

icon type control, 249
icons

action icons, 186
actions, 179, 188
application groups, 83, 85
associating with action or data type, 226
associating with application window, 227
base file name, 213
browsing with File Manager, 228
color usage, 229
data type, 83
data types, 179, 213
design recommendations, 229
file formats, 224
file names, 224
Find Set dialog box, 178
for applications, 159
Front Panel, 227, 242
how files are found, 224
integrated with dtappintegrate, 91
localized, 297
making associations, 226
naming conventions, 224
non-English, 297
printer images, 139
representing applications, 87
required for registration, 83
search path

See icon search path
servers

See icon servers
size conventions, 224
starting application, 83
using File Manager as icon browser, 228

Identifying Characteristics
dialog box, 175
field, 178

images, See icons
inactiveFrameColorId resource, 285
/include, 100
include statement, in Workspace Manager

files, 261
-indirect option, 24
inetd.conf, 127

Index 311

input method, internationalization, 300
input variables, 144
Install Icon control, removing, 245
installation

directory location, 99
internationalization

app-defaults, 296
fonts, 296
LANG variable, 293
NLS environment variables, 296
setting language, 294
troubleshooting, 300

IS_TEXT field, 216

K
key binding

creating new set, 271
default, 270
syntax, 270

key configuration files, 101
keyBindings resource, 271
keyboard map, resetting, 300

L
LABEL action field, 188
labeling controls, 255
labels

actions, 188, 206
Front Panel controls, 255

LANG variable, 293
effect on data types, 221
in .dtprofile, 295
set by Login Manager, 35

language, setting using Xconfig file, 294
Language menu, customizing, 33
Language menu item, 109
/lib, 100
link, data type criteria, 219
LINK_TO_ACTION field, 215
local display type, 23
locale, C, 109
localization, 298

action label, 206
actions, 206

localization (continued)
data type, 221
icons, 297
login screen, 30
message catalogs, 299
palette names, 298

localTerminal resource, 199
location-based data type, 217
LOCKED field, 234
.login, 54
login accounts, 122
login authentication, 53
login error log, 54
.login file, 41

not read by Login Manager, 48
sourcing in, 44

login locale, 109
Login Manager, 20

administration, 36
configuration files, 37
customizing, 20
definition, 20
errors, 26
issuing commands, 33
resources, 29, 31

login screen
changing appearance, 28
changing behavior, 30
changing content of language menu, 33
changing default language, 32
changing the welcome message, 29
customizing, 28
display-dependent behavior, 31
displaying on a network display, 24
exiting, 102
Failsafe Session option, 103
fonts, 30
greeting, 29
localizing, 30
resources, 29
X server access, 32
X server environment, 32

login server
configurations, 21
disabling at system boot, 102
killing, 102
starting at system boot, 102
starting from command line, 102

312 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

login servers
attaching displays, 20
authenticating users, 20
changing the time zone, 36
character display console, 23
command line login, 23
configuring, 125
controlling access, 25
disabling, 27
displaying login screen, 20
environments, 35
killing process ID, 27
no bitmap display, 22
overview, 20
process ID, 21
running without a local display, 22
starting, 20
starting a session, 20
starting from command line, 20
stopping, 27
system shell, 36
troubleshooting, 26
user path, 35

login startup files, 53
LOGNAME variable, 35
LOW_COLOR, 288
lp

command, 124
print spooler, 124

LPDEST variable, 140

M
mail printing, customizing, 111
mail type control, 249
mailx, 124
/man, 100
MAP actions, 165

definition, 182
example, 185

MEDIA field, 216
MEDIUM_COLOR, 288
menus

using actions, 159
Workspace Manager, 264

message catalogs, 296
MIME_TYPE_MEDIA field, 216

mkfontdir command, compiling files, 296
MODE field, 216

syntax, 218
MONITOR_TYPE field, 249
monitor types of controls, 249
Motif Window Manager, See Workspace

Manager
mount point for remote files, 126
mounting

an installed CDE, 104
mounts, running applications across, 135
mouse binding, See button binding
MOVE_TO_ACTION field, 215
multiple displays

Login Manager, 31
multiple screens, 105

N
name-based data types, 216
Name of Data Type text field, 175
NAME_PATTERN field, 216
National Language Support

internationalizing, 293
networked desktops, 106
networking, 117

base configuration, 121
configuring clients and servers, 124
electronic mail, 124
files required for, 125
general configuration steps, 121
overview, 117
running applications across mounts, 135
types of services, 118
X authorization, 124

New
Workspace Menu item, 265

NFS, 122
NLS environment variables, 296
NLS remote execution, 300
NO_STDIO window support, 198
NoBackdrop setting, 263
NoPrint action, 167
NOT operator in MODE field, 219
NUMBER_OF_ROWS field, 253

Index 313

O
-once option, 110
Open action, 165
OpenWindows

environment, 101
Options menu

language, 109
OR operator in MODE field, 219
output variables, 144

P
palettes, 283
/palettes, 100
palettes

localizing names, 298
PANEL definition, 235

syntax, 236
PANEL_GEOMETRY field, 255
path

system, 36
user, 35

path-based data type, 217
PATH_PATTERN field, 216

syntax, 217
PATH variable, 192

set by Login Manager, 35
PERM_TERMINAL window support, 198
permission pattern, specified with Create

Action, 176
personal application group, 64
personal data type and action, creating, 212
pixmaps

how files are found, 224
naming conventions, 224
search path, 225

placement, icons, 56
.pm filename extension, 224
POSITION_HINTS field, 240
precedence

action database assembly, 190
Front Panel assembly, 233

primaryColorSetId resource, 285, 287
print jobs update interval, 138
Print Manager, 138

job update interval, 138
print spooler, lp, 124

printers
adding, 137
default, 140
deleting, 138
device names, 124
icon images, 139
job update interval, 138
labels, 139
On Item help, 139
remote access, 124

printing
administration, 137
concepts, 141
configuring for data type, 166
default destination, 140
different data types, 141
testing, 124

problems, desktop startup, 53
.profile, 54
.profile file, 41

not read by Login Manager, 48
sourcing in, 44

prompts for actions, 193
protocol, XDM, 108
PUSH_ACTION field, 247
PUSH_ANIMATION field, 252

Q
-query option, 24

R
read-only data type criteria, 219
readme files, 88
registration, 87

actions needed, 79
application group, 84
application root directory, 77
color modifications, 76
data types needed, 79
definition, 61, 74
dtappintegrate, 89
example, 92, 97
features provided by, 72
font modifications, 76

314 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

registration (continued)
general steps, 75
help files, 82
icon requirements, 83
modifying resources, 75
overview, 72
purpose of, 74
resource modification, 75

registration package, 61, 87
application group contents, 87
application icon, 87
definition, 74
directories, 77
example of creating, 92
Front Panel control, 88
purpose of, 72
readme files, 88

Reload Actions action, 186
Reload Applications action, 67
Reload Resources action, 46
remote execution

by actions, 202
configuring application server, 130
native language support, 300
with action remote from application, 133

RESOURCE_MANAGER property, 46, 48
resources

app-defaults, 273
colorUse, 288
default desktop, 45
display-specific, 49
fonts, 279
foregroundColor, 289
language-dependent, 296
loading, 45
personal, 274
session, 41
setting, 48, 273
shadow thickness of windows, 290
shadowPixmaps, 289
system-wide, 274

Restore Front Panel action, 234
RGB color value, 285
rgb.txt file, 285
RGB values, 285
root menu, See Workspace menu
root window, 263
rpc.cmsd, 129

rpc.ttdbserver, 125, 127

S
.sdl files, 82
sdtcm_convert script, 112
search paths

actions, 183
applications, 58, 146
current value, 145
defined by desktop, 143
environment variables, 144
Front Panel definitions, 232
help, 153
icons, 225
input variables, 144
localized, 155
output variables, 144
set by Session Manager, 43
setting, 144

secondaryColorSetId resource, 285, 287
selectColor resource, 285
Selected menu, 159, 164
sendmail, 124
servers

actions, 131
application, 118, 125
configuring, 124
data types, 131
database, 125
definition, 118
file, 118
help, 121, 125
icon, 121, 125
login, 125
session, 125

servers, 118
types, 120

session
backup, 51
current, 39
default, 39
definition, 39
display-specific, 40, 50
executing commands at logout, 51
executing commands at startup, 50
failsafe, 34

Index 315

session (continued)
first, 49
home, 39
initial, 40
logging errors, 51
recovering, 51
resources, 41
script run at end, 34
starting, 40

Session Manager, 40
backing up sessions, 51
client, 45
customizing application startup, 47
directories, 52
error log, 51, 54
executing additional commands, 50
executing commands at logout, 51
files, 52
gathering applications, 43
introduction, 39
loading resources, 45
setting search paths, 43
starting, 40
starting applications, 47
starting Workspace Manager, 47
system-wide customization, 42
troubleshooting, 51
welcome message, 41

session servers, See login servers
sessionetc file, 50
sessionexit file, 51
SessionHost keyword, 202
sessions directory, 50
shadow thickness, windows, 290
shadowPixmaps resource, 46, 289
/share, 100
shell

personal customization, 41
See also environment variables, .profile,

.login, .dtprofile, 48
sourcing in .profile or .login, 44
syntax in execution string, 192
system-wide customization, 41
used in action, 195

SHELL variable, set by Login Manager, 35
shells

in actions, 195
sizes of icons, 224

Solaris CDE
killing desktop, 102

SPC, 127
security, 128

startlog file, 51
startup error log, 54
string action arguments, 194
string variables in action definitions, 203
stty, 54
Style Manager

color integration with, 76
font integration with, 76
using to specify colors, 285

subpanel
association with Main Panel, 243
changing auto-close behavior, 245
container, 237
creating, 242
customizing built-in panel, 244
definition, 237
modifying, 242
new, 243
restoring deleted, 234
syntax, 237
system-wide customization, 243

SUBPANEL definition, 236
subprocess control daemon, See dtspcd
subprocess control service, See SPC
switch, See workspace switch
SWITCH definition, 238
symbolic links

created during registration, 90
data type criteria, 216
file-name consistency, 123

sys.dtprofile file, 41
sys.dtwmrc file, 260
sys.resources file, 45, 48, 274
sys.session file, 47, 49
systemPath resource, 36

T
terminal emulation, 56
terminal emulator

action auto-close option, 173
changing, 67
command-line options for actions, 198

316 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

terminal emulator (continued)
default for actions, 199
for actions, 197

TERMINAL window support, 198
text editor, changing, 67
textColorSetId resource, 285
time zone, changing, 36
timeZone resource, 36
title resource, 263
ToolTalk

action
See TT_MSG action

applications, actions for, 207
Database Server

See rpc.ttdbserver
messaging daemon, 41, 44

ToolTalk Message Server, See ttsession
topShadowColor resource, 284
troubleshooting desktop startup, 53
tset, 54
TT_MSG action

creating, 207
keywords, 207

ttsession, 129
starting, 44

tty settings, 56
ttyModes, 56
TYPE field, 246
TZ variable, 35

U
UID, 122
UNIX key bindings, 273, 275
UNIXbindings file, 275
unmounting a mounted CDE directory, 104
user, changing for action, 205
user ID, 122
user-prefs.dt file, 68
USER variable, 35
userPath resource, 35
using X terminals, 108
/usr/dt, 99

V
/var/dt, 100
variables

environment, See environment variables, 48
in action definitions, 203

W
welcome message

changing, 29
customizing, 42
default, 29
displaying, 41

wildcard characters in data types, 217
Window Manager, 260

changing, 47
Window menu

definition, 264
new, 267
syntax, 264

window support for actions, 173
WINDOW_TYPE field, 198
windowMenu resource, 264
WM_CLASS property, 228
wmStartupCommand resource, 47
Workspace Manager

button bindings, 268
changing to Motif, 272
configuration files, 260
definition, 260
functions, 265
including other files, 261
managing Front Panel, 260
menus, 264
personal customization, 260
restarting, 262
starting, 41, 47
system-wide customization, 261

Workspace menu
adding menu item, 265
creating, 267
definition, 264
modifying, 266
syntax, 264

workspace switch
adding controls, 253
customizing, 253

Index 317

workspace switch (continued)
definition, 236
number of rows, 253
number of workspaces, 253
syntax of definition, 238

workspaceCount resource, 262
workspaces

backdrops
See backdrops

changing default number, 253
customizing, 262
names, 263
number of, 262

workstations, as X terminals, 109
writeXrdbColors resource, 46
wscon console log file, 54

X
X authorization, 124
X Logical Font Description, 279
X resources, See resources
X server

changing access, 32
changing environment, 32

X terminals, 107, 109, 125
as workstations, 109
CHOOSER string, 26
non-XDMCP displays, 24
obtaining session services, 119
possible login server configurations, 21
using, 108
Xaccess list, 25
XDMCP-direct, 24
XDMCP-indirect, 24, 26

X11 server, 101
X400_TYPE field, 216
Xaccess file, 25
XAUTHORITY variable,set by Login

Manager, 35
Xconfig, 101, 105
Xconfig file

modifying, 21
setting resources in, 31

.Xdefaults, 55

.Xdefaults file, 46, 274
XDM, 101, 108, 110

Xconfig file (continued)
protocol, 108

XDMCP, 20
definition, 24
direct access, 25
direct requests, 24
indirect access, 26
indirect requests, 24, 37
query mode, 24

Xerrors file, 26
Xfailsafe file, 34, 37
xlsfonts command

installation, 296
listing fonts at server, 296

XMICONBMSEARCHPATH variable
assembling, 152
definition, 144
usage, 152

XMICONSEARCHPATH variable
assembling, 152
definition, 144
usage, 152

XmText*FontList resource, 279
Xpid file, 21
Xreset file, 34
Xresources file, 29
Xserver, 110

killing, 102
Xservers file, 101

default, 22
managing local display, 36
starting a server, 22
syntax, 22

Xsession
script, 53

Xsession.d directory, 41, 48
customizing, 42
scripts in, 42

Xsession file, 41
run by login server, 34
setting PATH, 35
starting Session Manager, 40
system-wide customization, 42

Xsetup file, 33
Xstartup file, 33
xterm, 56

starting, 103

318 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

XUSERFILESEARCHPATH variable, 296

Index 319

320 Solaris Common Desktop Environment: Advanced User’s and System Administrator’s Guide • May 2002

