
Sun Java™ System

Sun Java Enterprise System
Deployment Planning White Paper

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-5759-10

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.
The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.
L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.
Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

List of Figures . 7

List of Tables . 9

Chapter 1 Introduction to Deployment Planning . 11
About Java Enterprise System . 12

Java Enterprise System Suites of Services . 13
Advantages of Java Enterprise System . 15

About Deployment Planning . 17
Business Analysis Phase . 18
Technical Requirements Phase . 18
Logical Design Phase . 19
Deployment Design Phase . 19
Implementation Phase . 20

Chapter 2 Business Analysis . 21
Business Requirements . 21
Business Constraints . 24
Incremental Approach to Deployment . 25

Chapter 3 Technical Requirements . 27
Usage Analysis . 28
Use Cases . 30
System Requirements . 31

Availability . 32
Fault Tolerant Systems . 32
Sun Cluster 3.1 4/04 . 33
Prioritizing Availability of Services . 33

Latent Capacity . 34
Performance . 34

4 Sun Java Enterprise System • Deployment Planning White Paper

Scalability . 35
Security Requirements . 36

Authentication . 37
Authorization . 37
Identity Management . 37

Serviceability Requirements . 38
Service Level Requirements . 39

Chapter 4 Designing the Logical Architecture . 41
Deployment Planning Example . 42
Java Enterprise System Services . 43
Logical Architecture for the Example Deployment . 47

Data Flow for the Example Deployment . 48
Deployment Scenario . 49

Chapter 5 Designing a Deployment Architecture . 51
Sizing a Planned Deployment . 52

Sizing for Performance . 52
Determine Baseline CPU Estimate for User Entry Points . 53
Adjust CPU Estimates for Service Dependencies . 54
Adjust CPU Estimates for Latent Capacity, Scalability, and Availability 56

Sizing for Security . 58
Calculating Performance for Secure Transactions . 59
Specialized Hardware to Handle SSL Transactions . 60

Sizing for Availability . 61
Directory Design for Complex Systems . 61
Hardware and Software Failures . 62
General Approaches to Availability . 62
Availability Design for Sample Deployment . 65
Serviceability Issues . 66

Sizing for Scalability . 67
Latent Capacity . 67
Upgrading the Capacity of a System . 67

Optimizing Resources . 68
Risk Management . 68
Managing Resources . 68

Example Deployment Architecture . 70
Detailed Design Specification . 72

Chapter 6 Implementing a Deployment Design . 73
Developing Pilots and Prototypes . 74
Testing Pilot and Prototype Deployments . 74

5

Rolling Out a Production Deployment . 75

6 Sun Java Enterprise System • Deployment Planning White Paper

7

List of Figures

Figure 1-1 Deployment Planning Phases . 17

Figure 3-1 Technical Requirements Phase and Other Deployment Planning Phases 28

Figure 4-1 Logical Design in Relation to Other Deployment Planning Phases 42

Figure 4-2 Java Enterprise System Components . 44

Figure 4-3 Java Enterprise System Components in a Logical Architecture 47

Figure 4-4 Logical Flow of Data for the Example Deployment . 48

Figure 5-1 Baseline CPU Estimates for Components Providing User Entry Points 54

Figure 5-2 CPU Estimates adjusted for Supporting Services . 56

Figure 5-3 Performance Figures Including Memory Requirements . 57

Figure 5-4 Worksheet for Calculating CPU Estimates for Secure Transactions 60

Figure 5-5 Single Server . 62

Figure 5-6 Two Replicate Servers . 63

Figure 5-7 Distribution of Load Between Two Servers . 63

Figure 5-8 Distribution of Load Between n Servers . 64

Figure 5-9 Availability Design for Calendar Server in Example Deployment 66

Figure 5-10 Example Deployment Architecture . 71

8 Sun Java Enterprise System • Deployment Planning White Paper

9

List of Tables

Table 1-1 Java Enterprise System Components . 12

Table 1-2 Java Enterprise System Suites of Services . 14

Table 1-3 Java Enterprise System Advantages . 15

Table 2-1 Topics for Analyzing Business Requirements . 22

Table 2-2 Topics for Analyzing Business Constraints . 24

Table 3-1 Usage Analysis Topics . 29

Table 3-2 System Qualities Affecting Deployment Design . 31

Table 3-3 Downtime for a System Running Year-round (8,760 hours) . 32

Table 3-4 Prioritizing Availability of Services . 33

Table 3-5 Scalability Considerations . 35

Table 3-6 Topics for Serviceability Requirements . 38

Table 4-1 Use Cases for Example Deployment . 43

Table 4-2 Java Enterprise System Component Interdependencies . 45

Table 4-3 Java Enterprise System Components to Support Example Use Cases 46

Table 4-4 Additional Components to Support Example Use Cases . 46

Table 5-1 CPU Estimates for Supporting Services . 55

Table 5-2 Resource Management Topics . 69

10 Sun Java Enterprise System • Deployment Planning White Paper

11

Chapter 1

Introduction to Deployment Planning

This white paper provides an introduction to planning large scale deployments
based on Sun Java™ Enterprise System. It presents some basic concepts and
principles of deployment planning and introduces a number of processes that you
can use as a starting point when designing enterprise-wide deployments.

If you are evaluating Java Enterprise System or planning to create and deploy large
scale applications based on Java Enterprise System, use this paper as a guide to the
deployment planning process.

This chapter provides a brief overview of Java Enterprise System and introduces
concepts on deployment planning that are discussed in later chapters. This chapter
contains the following sections:

• “About Java Enterprise System” on page 12

• “About Deployment Planning” on page 17

About Java Enterprise System

12 Sun Java Enterprise System • Deployment Planning White Paper

About Java Enterprise System
The Java Enterprise System is a software infrastructure that provides services to
support enterprise-strength applications distributed across a network or Internet
environment. The following table lists the components of the Java Enterprise
System and the infrastructure services they provide.

Table 1-1 Java Enterprise System Components

System Component Services Provided

Application Server Provides Java 2 Platform, Enterprise Edition (J2EE™
platform) container services for Enterprise JavaBeans™ (EJB)
components, such as session beans, entity beans, and
message-driven beans. The container provides the
infrastructure services needed for tightly-coupled distributed
components to interact, making it a platform for the
development and execution of e-commerce applications and
web services. The Application Server also provides web
container services.

Calendar Server Provides calendar and scheduling services to end users and
groups of end users. Calendar Server includes a
browser-based client that interacts with the server.

Directory Proxy Server Provides security services for Directory Server from outside a
corporate firewall. Directory Proxy Server provides enhanced
directory access control, schema compatibility, routing, and
load balancing for multiple Directory Server instances.

Directory Server Provides a central repository for storing and managing intranet
and Internet information such as identity profiles (employees,
customers, suppliers, and so forth), user credentials (public
key certificates, passwords, and pin numbers), access
privileges, application resource information, and network
resource information.

Identity Server Provides access management and digital identity
administration services. Access management services include
authentication (including single sign-on) and role-based
authorization for access to applications and/or services.
Administration services include centralized administration of
individual user profiles, roles, groups, and policies.

Instant Messaging Provides secure, real-time communication between end
users, such as instant messaging (chat), conferencing, alerts,
news, polls, and file transfer. The service includes a presence
manager that tells users who is currently on line and includes
a browser-based client that interacts with the server.

About Java Enterprise System

Chapter 1 Introduction to Deployment Planning 13

Java Enterprise System Suites of Services
Java Enterprise System deployments typically fall into two general categories,
those consisting primarily of services provided by Java Enterprise System and
those that integrate a significant number of custom developed services and third
party applications. You can think of the former type of deployment as an 80:20
deployment (80% of the services are provided by Java Enterprise System) and
similarly, the latter as a 20:80 deployment.

Message Queue Provides reliable, asynchronous messaging between
loosely-coupled distributed components and applications.
Message Queue implements the Java Message Service
(JMS) API specification and adds enterprise features such as
security, scalability, and remote administration.

Messaging Server Provides secure, reliable, high-capacity store-and-forward
messaging that supports email, fax, pager, voice, and video. It
can concurrently access multiple message stores and
provides content filtering to help reject unsolicited email and
prevent virus attacks.

Portal Server Provides key portal services, such as content aggregation and
personalization, to browser-based clients accessing business
applications or services. Portal Server also provides a
configurable search engine.

Secure Remote Access Provides secure, Internet access from outside a corporate
firewall to Portal Server content and services, including
internal portals and Internet applications.

Web Server Provides J2EE platform web container services for Java web
components, such as Java Servlet and JavaServer Pages™
(JSP™) components. The Web Server also supports other
web application technologies for delivering static and dynamic
web content, such as CGI scripts and Active Server Pages.

Sun Cluster Provides high availability and scalability services for the Java
Enterprise System, the applications that run on top of the Java
Enterprise System infrastructure, and the hardware
environment in which both are deployed.

Table 1-1 Java Enterprise System Components (Continued)

System Component Services Provided

About Java Enterprise System

14 Sun Java Enterprise System • Deployment Planning White Paper

The following table groups Java Enterprise System components into suites that can
deliver enterprise deployments. Some components are in more than one suite.

NOTE Actual enterprise deployments can vary greatly in the amount of
custom developed services they require.

Java Enterprise System is particularly suited to 80:20 deployments
because of its rich set of services it. For example, it is relatively easy
to deploy an enterprise-wide communications system or an
enterprise-wide portal system.

However, for deployments requiring custom development, Java
Enterprise System provides the ability to create and integrate
custom developed services and applications.

Table 1-2 Java Enterprise System Suites of Services

Suite Java Enterprise System Components

Network Identity Services Identity Server
Directory Server
Web Server

Enterprise Portal Services Portal Server
Secure Remote Access
Identity Server
Directory Server
Application Server or Web Server

Enterprise Communication and
Collaboration Services

Messaging Server
Calendar Server
Instant Messaging
Identity Server
Directory Server
Application Server or Web Server

Web and Application Services Application Server
Message Queue
Web Server

Availability Services Sun Cluster 3.1 4/04
Sun Cluster Agents

About Java Enterprise System

Chapter 1 Introduction to Deployment Planning 15

Most of the suites in Table 1-2 above can deliver 80:20 type of deployments. For
example, the Enterprise Communications and Collaboration suite can be used to
create a deployment that provides email, calendar, and instant messaging services
to end users, allowing them to aggregate and personalize the content. Similarly, the
Network Identity and Enterprise Portal suites allow you to install and configure
enterprise-wide applications without having to develop or integrate custom
services.

The Availability Services suite provides high availability to large scale
deployments of enterprise applications. Use the Web and Application Services
suite if your enterprise application requires custom development of J2EE platform
services that run in an application server or web server.

Because of the interoperability between Java Enterprise System services, you can
create your own suite of services tailored to your particular enterprise needs.

Advantages of Java Enterprise System
Enterprise deployments have three keys to success.

• Time to deliver

• Cost of delivery

• Functionality

Java Enterprise System provides you with the tools to address each of these keys to
success, as indicated in the following table.

Table 1-3 Java Enterprise System Advantages

Advantage Description

Simple to use Java Enterprise System provides a common installer, which makes
it easy to install, configure, and upgrade.

Java Enterprise System provides a shift from integrating
independently developed, single products and middleware to a
system of integrated platform services that can be deployed and
configured with little customization.

About Java Enterprise System

16 Sun Java Enterprise System • Deployment Planning White Paper

Predictable The Java Enterprise System release cycle takes into account
compatibility among the Java Enterprise System components.
When you upgrade to a new release, you can avoid incompatibility
and misalignment between the components.

Java Enterprise System components use a set of shared platform
components, which makes it easier for services to interoperate.

Java Enterprise System delivery model of scheduled releases
provides predictability in deployment planning.

Affordable Java Enterprise System single unit pricing model for commercial
licenses reduces the complexity and cost of installing and
upgrading a deployment. The single unit price includes support,
maintenance, and consulting services.

Other pricing models for OEM and education licenses are available.

Table 1-3 Java Enterprise System Advantages (Continued)

Advantage Description

About Deployment Planning

Chapter 1 Introduction to Deployment Planning 17

About Deployment Planning
Successful deployment planning is the result of careful preparation, analysis, and
design through a series of phases, as illustrated in the following figure.

Figure 1-1 Deployment Planning Phases

Prototypes
Functional tests
Stress tests

Implementation

Deployment architecture
Design specification

Deployment Design

Logical architecture
Deployment scenario

Logical Design

Usage analysis
Use cases
System requirements

Technical Requirements

Business requirements
Business constraints

Business Analysis

Project approval

About Deployment Planning

18 Sun Java Enterprise System • Deployment Planning White Paper

Each phase depicted in Figure 1-1 has its own set of analyses and procedures that
results in specifications and designs carried forward to subsequent phases. The
following sections in this chapter provide a summary description of each
deployment planning phase.

Business Analysis Phase
During the business analysis phase you define the business goal of a deployment
project and state the business requirements that must be met to achieve that goal.
When stating the business requirements, consider any business constraints that
might impact the ability to achieve the business goal. The business analysis phase
results in a business requirements document that you later use in the technical
requirements phase and against which you later measure the success of the
deployment design.

For more information on the business analysis phase, refer to Chapter 2, “Business
Analysis” on page 21.

Technical Requirements Phase
The technical requirements phase starts with the business requirements you create
during the business analysis phase and translates these requirements into technical
specifications that can be used to design the deployment architecture. During the
technical requirements phase you prepare the following information:

• Analysis of user tasks and usage patterns

• Use cases that model user interaction with the planned deployment

• System requirements derived from the business requirements, taking into
consideration the analysis of user tasks and usage patterns

The resulting set of usage analysis, use cases, and system requirements documents are
inputs to the logical design phase.

During technical requirements analysis, you might also specify service level
requirements, which are the terms under which customer support must be provided
to remedy a deployed system failure to meet system requirements. Service level
requirements are the basis for service level agreements signed during project
approval.

For more information on the technical requirements phase, refer to Chapter 3,
“Technical Requirements” on page 27.

About Deployment Planning

Chapter 1 Introduction to Deployment Planning 19

Logical Design Phase
Deployment design begins in the logical design phase. In this phase, you design a
logical architecture that represents the Java Enterprise System services and
dependencies that satisfy the use cases you identified during the technical
requirements phase.

The logical architecture, together with the system requirements document,
characterize a deployment scenario. The logical architecture does not specify the
actual hardware required to implement the deployment scenario.

For more information on the logical design phase, refer to Chapter 4, “Designing
the Logical Architecture” on page 41.

Deployment Design Phase
In the deployment design phase, you create a deployment architecture that represents
a mapping of the deployment scenario to a physical environment. The physical
environment is the network infrastructure for the deployment and includes
computing nodes, hardware requirements for each node, firewalls, and other
devices on the network.

The process of mapping consists of sizing the deployment to specify the actual
hardware needed to fulfill system requirements and determining a strategy to
optimize the deployment architecture to meet budget considerations.

Approval for a deployment project typically follows the creation of the deployment
architecture. During project approval, the cost of the deployment is assessed, and if
approved, contracts for implementation of the deployment are signed, and
resources to build the project acquired.

A detailed design specification is also part of the deployment design phase. The
design specification provides details needed to implement the deployment
architecture, such as the actual hardware, operating systems, network design, and
other aspects of a physical environment. The detailed design specification also
includes specifying directory services data structures needed to provision users for
access to system services. Depending on the processes and policies for your
deployment project, design specification occurs before or after project approval.

For more information on the deployment design phase, refer to Chapter 5,
“Designing a Deployment Architecture” on page 51.

About Deployment Planning

20 Sun Java Enterprise System • Deployment Planning White Paper

Implementation Phase
During the implementation phase, you build out the deployment architecture.
Depending on the nature of your deployment project, this phase includes some or
all of the following steps:

• Creating and deploying pilot and/or prototype deployments in a test
environment

• Designing and running functional tests to measure compliance with system
requirements

• Designing and running stress tests to measure performance under peak loads

• Creating a production deployment, which might be phased into production in
stages

Once a deployment is in production, you need to continue to monitor, test, and
tune the deployment to ensure that it fulfills the business goals.

For more information on the implementation phase, refer to Chapter 6,
“Implementing a Deployment Design” on page 73.

21

Chapter 2

Business Analysis

This chapter provides some guidelines on how to analyze a business problem,
identify its business requirements and constraints, and articulate a business goal.

Business analysis starts with stating the business goals for the deployment project.
You then analyze the business problems you must solve and identify the business
requirements that must be met to achieve the business goals. Consider also any
business constraints that limit your ability to achieve the goals. The business
requirements and constraints that you identify are a basis for a business requirements
document that you later use to derive system requirements during the technical
requirements phase.

No simple formula exists that identifies business requirements—you determine the
requirements based on collaboration with your customer and on your own
knowledge about the business domain. The guidelines presented here provide one
way that you can begin your business analysis.

This chapter contains the following sections:

• “Business Requirements”

• “Business Constraints” on page 24

• “Incremental Approach to Deployment” on page 25

Business Requirements
A business problem statement is much like an executive summary of the project,
outlining the project’s ultimate goal. Within the business problem statement you
make the business case for the project (why the project is necessary or desirable to
do) and define the scope of the project (what is in bounds and out of bounds for the
project). You also decide which features of the project are critical to its success.

Business Requirements

22 Sun Java Enterprise System • Deployment Planning White Paper

The result of business requirements analysis should be a document that defines
how a deployment satisfies the business goals. The following table lists topics
typically addressed during business requirements analysis.

Table 2-1 Topics for Analyzing Business Requirements

Topic Description

Business goals Clearly articulate the goals of the project. A clear understanding of
the goals helps focus design decisions.

Here are a few example goals:

• Enterprise collaboration, including features such as messaging,
address book, instant messaging, and calendar services

• Enterprise portal, to allow users to aggregate and personalize
content, and to provide access to e-mail, calendar, instant
messaging, and other enterprise services

• Enterprise resource scheduler, to schedule conference rooms,
offices, and other shared physical resources

• Enable online commerce

Contrasting the goals for a planned deployment with current
operations can help later determine design decisions.

Type of deployment Identify which of the following types of deployments you envision:

• Business to Customer

• Business to Employee

• Business to Business

• Enterprise Employee to Employee Communications

• Some combination of these types

Understanding the type of deployment brings to focus specific
design issues inherent with that type.

Scope Clearly state the scope of the project. Make sure you identify area
that can be solved and avoid “open-ended” statements that make
the goal either unclear or unreachable.

Poorly defined scope can lead to deployment design that
insufficiently addresses business needs.

Stakeholders Identify individuals and organizations that have a vested interest in
the success of the deployment.

All stakeholders should actively participate in defining the business
goals and requirements.

Critical qualities Identify areas that are critical to success. This allows for analysis of
the design with respect to the most important criteria.

Business Requirements

Chapter 2 Business Analysis 23

Target users Identify the types of users the deployment targets. For example:

• Current and previous employees

• Active customers

• Membership site

• General public

• Administrators

Benefits to the users State the expected benefits to the users of the deployment. For
example:

• Remote access to company resources

• Enterprise collaboration

• Reduced response time

• Reduced error rate

• Simplification of daily tasks

• Sharing of resources by remote teams

• Increased productivity

Clearly stating the expected benefits helps drive design decisions.

Service level agreements Define the level and extent of customer support you must provide
should the deployment fail to meet specific system requirements.

Typically, a service level agreement is signed during project
approval, based on service level requirements defined during
analysis of technical requirements.

Security issues Goals that you previously identified might have implicit security
issues that you do not need to list in the problem statement.
However, it can be useful to call out specific security goals essential
to the deployment. For example:

• Access to proprietary information to authorized users

• Role-based access to confidential information

• Secure communication between remote locations

• Invocation of remote applications on local systems

• Secure transactions with third party businesses

Priorities State the priorities of your goals.

Large and complex deployments might require phased
implementation. Limited resources might require elimination or
modification of some goals. By clearly stating the priorities, you can
provide guidance to decisions that might need to be made for your
deployment design to garner acceptance.

Table 2-1 Topics for Analyzing Business Requirements (Continued)

Topic Description

Business Constraints

24 Sun Java Enterprise System • Deployment Planning White Paper

Business Constraints
Business constraints play a significant role in determining the nature of a
deployment project. The key to a successful deployment design is finding the
optimal way to meet business requirements within known business constraints.

The following table lists typical business constraints that might affect deployment
design. Individual deployment projects might have business constraints particular
to their own situation.

Table 2-2 Topics for Analyzing Business Constraints

Topic Description

Time frame or schedule The schedule for deployment can affect design decisions that you
make. Aggressive schedules might result in scaling back of goals,
changing priorities, or adopting an incremental solution approach.

Within a schedule, there might be significant milestones that
deserve consideration as well.

Budget considerations Most deployments must adhere to a specific budget. This budget
should always be considered during the design process to avoid
cost overruns.

When considering the budget, keep in mind not only the cost of
completion of the project, but the resources required to maintain the
project over a specific lifetime.

Resources Consider all resources necessary for a successful deployment, not
just the capital expenditures. This includes the following:

• Existing hardware and network infrastructure
Reliance on existing infrastructure can affect the design of a
system.

• Development resources needed to implement the deployment
design
Limited development resources, including hardware, software,
and human resources, might suggest incremental deployment.
You might have to reuse the same resources or development
teams for each incremental phase.

• Maintenance, administration, and support
Analyze the resources available to administer, maintain, and
support users on the system. Limited resources here might
impact design decisions you make.

Cost of ownership In addition to maintenance, administration, and support, you should
analyze other factors that affect the cost of ownership.

For example, hardware and software upgrades that might be
necessary, the footprint on the power grid, telecommunications
cost, and other factors influencing out-of-pocket expenses.

Incremental Approach to Deployment

Chapter 2 Business Analysis 25

Incremental Approach to Deployment
Typically, you view a deployment as a whole, comprehensive system. However,
you often achieve the comprehensive system incrementally with measured steps.

The incremental approach provides these advantages:

• You can adapt to requirement changes due to business growth

• You can leverage existing infrastructure as you transition to your ultimate
deployment implementation

• You can accommodate capital expenditure requirements

• You can leverage a small supply of human resources

• You can allow for partnership possibilities

When adopting an incremental approach, you typically design a road map that
provides milestones that lead to the ultimate, comprehensive solution.
Additionally, you might have to consider short term solutions for phases that will
be implemented later in the plan.

No matter what approach you take, you should always design deployments to
allow room for change and growth.

Company standards and
policies

Make sure to understand the standards and policies of the
organization requesting the deployment.

These standards and policies might affect technical aspects of the
design, product selection, and methods of deployment.

Company change
management

Company procedures for change management might dramatically
affect the deployment methods and time table.

Return on investment Each deployment should provide a return to the customer on their
investment. Analysis of return on investment typically involves
measuring the financial benefits gained from the expenditure of
capital.

Estimating the financial benefits of a deployment involves a careful
analysis of the goals to be achieved by the deployment in
comparison with alternate ways of achieving those goals, or in
comparison with the cost of doing nothing at all.

Regulatory requirements Regulatory requirements vary greatly, depending on the nature of
the deployment.

Table 2-2 Topics for Analyzing Business Constraints (Continued)

Topic Description

Incremental Approach to Deployment

26 Sun Java Enterprise System • Deployment Planning White Paper

27

Chapter 3

Technical Requirements

This chapter discusses some of the processes and procedures that occur during
technical requirements analysis.

Technical requirements analysis begins with the business requirements documents
created during the business analysis phase. Using the business requirements as a
basis, you perform the following steps:

• Perform a usage analysis to aid in determining expected load on the deployment

• Create a set of use cases that model typical user interaction with the deployment

• Create a set of system requirements that are derived from the business
requirements, use cases, and usage analysis

The use cases are also the basis for designing the logical architecture in the design
phase. The logical architecture and the system requirements together form the
deployment scenario, which later is an input to the deployment design phase.

The following figure shows the technical requirements phase in relation to the
business analysis, logical design, and deployment design phases.

Usage Analysis

28 Sun Java Enterprise System • Deployment Planning White Paper

Figure 3-1 Technical Requirements Phase and Other Deployment Planning Phases

As with business analysis, no magic formula for technical requirements analysis
exists that generates the usage analysis, use cases, and system requirements.
Technical requirements analysis requires an understanding of the business
domain, business objectives, and the underlying system technology.

This chapter contains the following sections:

• “Usage Analysis”

• “Use Cases” on page 30

• “System Requirements” on page 31

Usage Analysis
Usage analysis involves identifying the various users of the deployment you are
designing and determining the usage patterns for those users. The information you
gather provides an idea of the expected load conditions and is later used to
determine performance requirements and other system requirements. Usage
analysis information is also useful when assigning weights to use cases, as
described in “Use Cases” on page 30.

Business
requirements

Deployment
architecture

Use
cases

System
requirements

Usage
analysis

Logical
architecture

Business
Analysis

Technical
Requirements

Logical
Design

Deployment
Design

Deployment
Scenario

Usage Analysis

Chapter 3 Technical Requirements 29

During usage analysis you should interview users whenever possible, research
existing data on usage patterns, and also interview builders and administrators of
previous systems. The following table lists topics to consider when performing a
usage analysis.

Table 3-1 Usage Analysis Topics

Topic Description

Number and type of users Identify how many users your deployment must support, and
categorize those users, if necessary.

For example:

• A Business to Customer deployment might have a large
number of visitors, but only a small number of users who
register and engage in business transactions.

• A Business to Employee deployment typically has to
accommodate each employee, but some might need access
from outside the corporate network.

• In a Business to Employee deployment, managers might need
authorization to areas that regular employees should not be
able to access.

Active and inactive users Identify the usage patterns and ratios of active and inactive users.

Active users are those users logged into the system and are
interacting with the system’s components. Inactive users can be
users who are not logged in or users who log in but do not interact
with the system’s components.

Administrative users Identify users that access the deployed system to monitor, update,
and support the deployment.

Determine any specific administrative usage patterns that might
affect system requirements. For example, administration of the
deployment from outside the firewall.

Usage patterns Identify how users of various types will access the system and
provide targets for expected usage.

For example:

• Are there peak times when usage spikes?

• What are the normal business hours?

• Are users distributed globally?

• What is the expected duration of user connectivity?

User growth Determine if the size of the user base is fixed or if the deployment
expects growth in the number of users.

If the user base is expected to grow, try to create reasonable
projections of the growth.

Use Cases

30 Sun Java Enterprise System • Deployment Planning White Paper

Use Cases
Use cases model typical user interaction with the deployment you are designing,
describing the complete flow of an operation from the perspective of an end user.
Prioritizing design around a complete set of use cases ensures a continual focus on
the delivery of expected functionality.

Each use case can include quantitative estimates about user behavior, which you
can later use to determine system requirements for performance, availability, and
other qualities of service. Use cases are also the starting point for designing the
logical architecture, as described in Chapter 4, “Designing the Logical
Architecture” on page 41.

You often assign relative weights to use cases, with the highest weighted use cases
representing the most common user tasks. The weighting of use cases helps to
determine system requirements.

Use cases can be described at two levels.

• Use case diagrams

Graphical depiction of the relationships among actors and use cases.

User transactions Identify the type of user transactions that must be supported. These
user transactions can be translated into use cases.

For example:

• What tasks will users perform?

• When users log in, do they remain logged in? Or do they
typically perform a few tasks and log out?

• Will there be significant collaboration between users that
requires common calendars, web-conferences, and
deployment of internal web pages?

User studies and statistical
data

Use pre-existing user studies and other sources to determine
patterns of user behavior.

Often, enterprises or industry organizations have user research
studies from which you can extract useful information about users.
Log files for existing applications might contain statistical data
useful in making estimates for a system.

Table 3-1 Usage Analysis Topics (Continued)

Topic Description

System Requirements

Chapter 3 Technical Requirements 31

• Use case reports

Descriptions of individual use cases, including primary and alternative flows
of events.

System Requirements
System requirements describe the quality of service a deployed system must
provide to meet the business requirements arrived at through business analysis.
You typically use the usage analysis and use cases together with the business
requirements to derive system requirements.

The following table lists system qualities that are often used to specify system
requirements.

The system qualities that affect deployment design are closely interrelated.
Requirements for one system quality might affect the requirements and design for
other system qualities. For example, higher levels of security might affect
performance, which in turn might affect availability. Adding additional servers to
address availability issues might affect maintenance costs (serviceability).

Table 3-2 System Qualities Affecting Deployment Design

System Qualities Description

Availability A measure of how often a system’s resources and services are
accessible to end users, often expressed as the uptime of a
system.

Latent Capacity The ability of a system to handle unusual peak load usage without
additional resources.

Performance The measurement of response time and latency with respect to
user load conditions.

Scalability The ability to add capacity (and users) to a deployed system over
time. Scalability typically involves adding resources to the system
but should not require changes to the deployment architecture.

Security A complex combination of factors that describe the integrity of a
system and its users. Security includes authentication and
authorization of users as well as the secure transport of information.

Serviceability The ease by which a deployed system can be administered,
including tasks such as monitoring the system, repairing problems
that arise, and upgrading hardware and software components.

System Requirements

32 Sun Java Enterprise System • Deployment Planning White Paper

Understanding how system qualities are interrelated and the trade-offs that must
be made is the key to designing a system that successfully satisfies both business
requirements and business constraints.

The following sections take a closer look at the system qualities that affect
deployment design, providing guidance on factors to consider when formulating
system requirements. There is also a section on service level requirements, which
are a special set of system requirements used to create service level agreements.

Availability
Availability is a way to specify the uptime of a deployed system. It is typically
measured as the percentage of time that the system is accessible to users. The time
the system is not accessible (downtime) can be due to the failure of hardware,
software, the network, or any other factor (such as loss of power) that causes the
system to be down. In most cases, scheduled time for service (maintenance and
upgrades) is not considered downtime.

Typically you measure availability by the number of “nines” you can achieve. For
example, 99% availability is two nines. Specifying additional nines significantly
affects the deployment design for availability. The following table displays the
result of adding additional nines of availability to a system that is running 24x7
year-round, which is a total of 8,760 hours.

Fault Tolerant Systems
Availability requirements of four or five nines typically require a system that is
fault tolerant. A fault tolerant system must be able to continue service even during a
hardware or software failure. Typically, fault tolerance is achieved by redundancy
in both hardware (such as CPUs, memory, and network devices) and software
providing key services.

Table 3-3 Downtime for a System Running Year-round (8,760 hours)

Nines Percentage Available Downtime

Two 99% 88 hours

Three 99.9% 9 hours

Four 99.99% 45 minutes

Five 99.999% 5 minutes

System Requirements

Chapter 3 Technical Requirements 33

A single point of failure is a hardware or software component that is not backed up
by redundant components. The failure of this component results in the loss of
service for the system. When designing a fault tolerant system, you must identify
potential single points of failure and eliminate them.

Fault tolerant systems can be expensive to implement and maintain. Make sure you
understand the nature of the business requirements for availability and consider
the strategies and costs of availability solutions that meet those requirements.

Sun Cluster 3.1 4/04
Sun Cluster 3.1 4/04 software provides a high availability solution for
deployments that require a highly available, fault tolerant system. Sun Cluster 3.1
4/04 couples servers, storage, and other network resources to provide a failover
process that is achieved quickly and with little interruption of services to the users
of the system.

Prioritizing Availability of Services
From a user perspective, availability often applies more to each service provided
by the deployed system rather than the availability of the entire system. For
example, if instant messaging services become unavailable, there usually is little or
no impact on the availability of other services. However, the availability of services
upon which many other services depend (such as Directory Server) has a wider
impact on the system.

It is helpful to list availability needs according to an ordered set of priorities. The
following table prioritizes the availability of different types of services.

Table 3-4 Prioritizing Availability of Services

Priority Service Type Description

1 Strategic Services essential to operation. For example, many services
depend on Directory Server.

2 Mission critical Services that must be available at peak load. For example,
database services to applications defined as mission critical.

3 Must be
available

Services that must be available, but can be available at reduced
performance. For example, Messaging Server availability might
not be critical in some business environments.

4 Can be
postponed

Services that must be available within a given time period. For
example, Instant Messaging availability might not be essential in
some business environments.

5 Optional Services that can be postponed indefinitely.

System Requirements

34 Sun Java Enterprise System • Deployment Planning White Paper

For information on various design strategies to implement availability
requirements, refer to “Sizing for Availability” on page 61.

Latent Capacity
Latent capacity is the ability of a deployment to handle unusual peak load usage
without the addition of resources. Typically, you do not specify system
requirements directly around latent capacity, but this system quality is a factor in
determining availability, performance, and scalability requirements.

Performance
Determining performance requirements is the process of translating business
requirement expectations on performance into system requirements. The business
requirement typically expresses performance in non-technical terms that specify
response time. For example, a business requirement for web-based access might
state the following:

Users should expect a reasonable response time upon login, typically no
greater than four seconds.

Starting with this business requirement, examine all use cases to determine how to
express this requirement at a system level. Take into account the user load
conditions, as determined during usage analysis. Express the performance
requirement for each use case in terms of response time under specified load conditions
or response time plus throughput. You might also specify the allowable number of
errors.

Here is one example of how to specify system requirements for performance.

Response for user login must be no greater than four seconds throughout the
day, measured at 15 minute intervals, with fewer than 3.4 errors per million
transactions.

The performance requirements are closely related to availability requirements
(how failover impacts performance) and latent capacity (how much capacity there
is to handle unusual peak loads).

System Requirements

Chapter 3 Technical Requirements 35

Scalability
Scalability describes the ability to add capacity and users to a system over time.
Scalability usually requires the addition of resources, but should not require
changes in the design of the deployment architecture or loss of service due to the
time required to add additional resources.

As with availability, scalability applies more to individual services provided by a
system rather than to the entire system. However, for services upon which other
services depend, such as Directory Server, scalability can have system-wide
impact.

You do not necessarily specify scalability requirements with system requirements
unless projected growth of the deployment is clearly stated in the business
requirements. During the deployment design phase, the deployment architecture
should account for scaling the system even if you do not specify scalability
requirements.

Determining scalability requirements is not an exact science. Estimating the growth
of a system involves projections, estimates, and guesses that might not be fulfilled.
Here are three keys to building a scalable system.

• Adopt a strategy of high performance design.

During the specification and design of performance requirements, include
latent capacity to handle loads that might increase over time. Also, maximize
availability within the budget constraints. This strategy allows you to absorb
growth and better schedule milestones for scaling the system.

• Implement your deployment in stages.

Incremental implementation helps with scheduling the addition of resources.

• Implement extensive performance monitoring.

Monitoring performance of a deployment helps determine when to add
resources to the deployment.

The following table lists some topics to consider for scalability.

Table 3-5 Scalability Considerations

Topic Description

Usage analysis Understand the usage patterns of the current (or projected) user
base by studying existing data. In the absence of current data,
analyze industry data or market estimates.

System Requirements

36 Sun Java Enterprise System • Deployment Planning White Paper

Security Requirements
Security is the quality of a system that affects the integrity of the system and its
users, including the integrity of the user’s transactions and associated data. As with
other system requirements, the business requirements, usage analysis, and use
cases drive the analysis for security requirements.

Analysis for security requirements fall under the following categories:

• Authentication

• Authorization

• Identity Management

Authentication, authorization, and identity management, together with an
enterprise-wide policy for enforcement of sound security practices, provide
confidence that transactions are secure and that data stored on a site cannot be
compromised.

Design for reasonable
maximum scale

Design with a goal towards the maximum required scale for both
known and possible demand.

Often, this is a 24 month estimate based on performance evaluation
of the existing user load and reasonable expectations of future load.
The time period for the estimate depends largely on the reliability of
projections.

Set appropriate milestones Implement the deployment design in increments to meet short term
requirements with a buffer to allow for unexpected growth. Set
milestones for adding system resources.

For example:

• Capital acquisition
Such as quarterly or yearly

• Hardware lead time
For example, one to six weeks

• Buffer (10% to 100%, depending on growth expectations)

Incorporate emerging
technology

Understand emerging technology, such as faster CPUs and Web
servers, and how that can affect the performance of the underlying
architecture.

Table 3-5 Scalability Considerations (Continued)

Topic Description

System Requirements

Chapter 3 Technical Requirements 37

Authentication
Authentication is how users identify themselves to a system and also how the
system identifies itself to the users. Authentication is a key part of the system
integrity that protects the system from unauthorized access.

You should understand user requirements to select the best authentication scheme
for the deployment. For example, a Business to Customer deployment might allow
users to register using a username/password combination. These users rely on a
server certificate issued by a trusted certificate authority, such as VeriSign, to
authenticate the selling system over a secure transport.

A Business to Employee deployment might instead provision employees from an
existing user base. From within the company firewall, access is allowed to known
secure locations. From outside the firewall, access to secure locations is through
proxies that perform the authentication and redirection inside the company
firewall.

Authorization
Authorization is the recognition of specific privileges to authenticated users. For
example, users with administrator authority have access to parts of a deployed
system that are inaccessible to ordinary users.

Authorization also plays a role in deployments implementing single sign-on (SSO).
Authenticated users to a deployment can have access to multiple services without
having to sign on more than once.

Identity Management
A deployed system must have a way to add, modify, or delete users who will be
accessing system services. Depending on your needs, identity management can be
accomplished by an authorized administrator or by the users themselves by means
of a delegated administration interface. Deployments for medium or large enterprise
should consider a delegated administration design. Delegated administration
improves customer satisfaction and reduces the costs of system administration.

NOTE Security requirements affecting the integrity of the infrastructure
(for example firewall software and network design) are typically not
considered during system requirements analysis. Instead, these
security issues come into play during deployment design.

System Requirements

38 Sun Java Enterprise System • Deployment Planning White Paper

Serviceability Requirements
Serviceability is the ease by which a deployed system can be administered,
including tasks such as monitoring the system, repairing problems that arise, and
upgrading hardware and software components.

When planning requirements for serviceability, consider the topics listed in the
following table.

Table 3-6 Topics for Serviceability Requirements

Topic Description

Downtime Planning Identify maintenance tasks that require specific services to be
unavailable or partially unavailable.

Some maintenance and upgrades can occur seamlessly to users,
while others require interruption of service. When possible,
schedule with users those maintenance activities that require
downtime, allowing the users to plan for the downtime.

Usage Patterns Identify the usage patterns of a deployment to determine windows
of opportunity for maintenance.

For example, on systems where peak usage is normally during
normal business hours, the windows of opportunity occur in the
evening or weekends. For geographically distributed systems,
identifying these times can be more challenging.

Availability Serviceability is often a reflection of your availability design.
Strategies for minimizing downtime for maintenance and upgrades
revolve around your availability strategy. Systems that require a
high degree of availability have smaller windows for maintenance,
upgrades, and repair.

Strategies for handling availability requirements affect how you
handle maintenance and upgrades. For example, on systems that
are distributed geographically, servicing can depend on the ability
to route workloads to remote servers during maintenance periods.

Also, systems requiring a high degree of availability might require
more sophisticated solutions that automate restarting of systems
with little human intervention.

Diagnostics and Monitoring You can improve the stability of a system by regularly running
diagnostic and monitoring tools to identify problem areas.

This can avoid problems before they occur, help balance workloads
according to availability strategies, and improve planning for
maintenance and downtime.

Service Level Requirements

Chapter 3 Technical Requirements 39

Service Level Requirements
Service level requirements are a set of system requirements that specify the conditions
under which customer support must be provided. Service level requirements are
the basis for service level agreements, which are typically signed during project
approval.

As with system requirements, service level requirements derive from business
requirements and represent a kind of guarantee to the customer about the overall
system quality that the deployment must meet. Because the service level agreement
is a contract between you and the customer, there should be no ambiguity in the
specification of service level requirements. The service level requirements define
exactly under what conditions the requirements are tested and precisely what
constitutes failure to meet the requirements.

Service Level Requirements

40 Sun Java Enterprise System • Deployment Planning White Paper

41

Chapter 4

Designing the Logical Architecture

This chapter discusses a process for creating a logical architecture and provides an
example of the process using a set of use cases representative of those found in a
communications deployment for a medium-sized enterprise.

The logical architecture identifies the Java Enterprise System components (and
their dependencies) that provide the software services needed to meet the business
goals of a deployment. Typically, use cases developed during the technical
requirements phase indicate which software services are required. However, the
information on software services can often be obtained directly from the business
requirements derived during the business analysis phase.

The logical architecture, together with system requirements determined during
requirements analysis, represent a deployment scenario. The deployment scenario
is the basis for designing the deployment architecture. The following figure shows
the relationship of the logical design phase to the business analysis, technical
requirements, and deployment design phases.

Deployment Planning Example

42 Sun Java Enterprise System • Deployment Planning White Paper

Figure 4-1 Logical Design in Relation to Other Deployment Planning Phases

This chapter contains the following sections:

• “Deployment Planning Example”

• “Java Enterprise System Services” on page 43

• “Logical Architecture for the Example Deployment” on page 47

Deployment Planning Example
To help illustrate the deployment planning process, this section introduces use
cases for an example deployment based on the communications needs of a typical
medium-sized enterprise. This example deployment continues in later chapters of
this white paper to illustrate various steps of deployment planning.

CAUTION The use cases, logical architecture, deployment architecture, and
design specification for the example deployment are simplified
versions of steps in a deployment planning process.

The example has been simplified for illustrative purposes. The
design for the example is incomplete and has never been built or
tested. Do not use the example as a blueprint for any deployment
you are planning.

Business
requirements

Deployment
architecture

Use
cases

System
requirements

Usage
analysis

Logical
architecture

Business
Analysis

Technical
Requirements

Logical
Design

Deployment
Design

Deployment
Scenario

Java Enterprise System Services

Chapter 4 Designing the Logical Architecture 43

The example deployment begins with a set of use cases that are derived from
typical business requirements for a communications deployment. The following
table summarizes these use cases.

From these use cases, you can derive the services needed for the logical
architecture, as described in following sections.

Java Enterprise System Services
Design of the logical architecture begins with an analysis of the use cases, which
should help you determine the services required for the deployment. Using your
knowledge of Java Enterprise System and previous design experience, lay out an
initial logical design of Java Enterprise System components that provide the
services identified by the use cases.

Table 4-1 Use Cases for Example Deployment

Use Case Description

#1
Single sign-on

From Web browser, user logs on to system
(username/password) to access enterprise
services, which could be any of the following:

• Custom Portal Web page

• Web-based e-mail page

• Calendar interface

• Secure Web page

#2
Open personal portal screen

From Web browser, user navigates to personal
portal screen.

#3
Through portal, user checks e-mail

From portal interface, user checks for new
e-mail messages.

#4
Through portal, user checks secure web page

From personal portal interface, user checks a
secure project status page.

#5
Through portal, user checks calendar

From portal interface, user checks daily
appointments.

#6
Manage calendar

From Web-based calendar client, user
schedules appointments.

#7
Manage e-mail

From e-mail client, user reads and sends e-mail.

Java Enterprise System Services

44 Sun Java Enterprise System • Deployment Planning White Paper

When laying out the components, consider the logical flow of data within the
system and the dependencies between the components that provide the services.
Your logical design should reflect these dependencies, which impact the flow of
data between components in the design.

The following figure shows components provided with Java Enterprise System.
Use this figure with Table 4-2 on page 45 to understand the interdependencies of
Java Enterprise System components. In general, components at the bottom of the
figure provide support to components above them.

Figure 4-2 Java Enterprise System Components

The following table lists the actual interdependencies among Java Enterprise
System components.

Web
Server

Application
Server

Message
Queue

Identity
Server

Messaging
Server

Instant
Messaging

Calendar
Server

Portal
Server

Secure
Remote
Access

Directory
Server

Directory
Proxy
Server

Java Enterprise System

Java Enterprise System Services

Chapter 4 Designing the Logical Architecture 45

Table 4-2 Java Enterprise System Component Interdependencies

Java Enterprise
System Component

Provides Support To Depends On

Application Server Identity Server
Portal Server

Message Queue

Calendar Server Portal Server (for calendar
channel)

Directory Server
Identity Server (for single sign-on)

Messaging Server (for Calendar
Server e-mail notification service)

Directory Proxy Server None Directory Server

Directory Server Administration Server
Calendar Server
Directory Proxy Server
Identity Server
Instant Messaging
Messaging Server
Portal Server

None

Identity Server Portal Server

If configured for single sign-on:

Calendar Server
Instant Messaging
Messaging Server

Directory Server
Application Server or Web Server

Instant Messaging Portal Server Directory Server

Message Queue Application Server Directory Server (optional)

Messaging Server Calendar Server

Portal Server (for messaging
channel)

Directory Server
Web Server
Identity Server

Portal Server Secure Remote Access Directory Server
Application Server or Web Server

If configured to use Portal Server
Channels:

Calendar Server
Messaging Server
Instant Messaging

Secure Remote Access None Portal Server

Web Server Identity Server
Portal Server

None

Java Enterprise System Services

46 Sun Java Enterprise System • Deployment Planning White Paper

For example, to lay out the Java Enterprise System components for the example
communications deployment, analyze the use cases listed in Table 4-1 on page 43.
The following table lists the components directly required for the deployment, as
indicated by the use cases.

You also need to determine which Java Enterprise System components are needed
to support the components listed in Table 4-3 above. The following table lists these
additional components.

Table 4-3 Java Enterprise System Components to Support Example Use Cases

Java Enterprise System Component Use Cases

Portal Server #1 Single sign-on

#2 Open personal portal screen

#3 Through portal, user checks e-mail

#4 Through portal, user checks secure web page

#5 Through portal, user checks calendar

Calendar Server #1 Single sign-on

#5 Through portal, user checks calendar

#6 Manage calendar

Messaging Server #1 Single sign-on

#3 Through portal, user checks e-mail

#7 Manage e-mail

Table 4-4 Additional Components to Support Example Use Cases

Java Enterprise System Component Support Provided

Identity Server Provides support to Portal Server.

Provides single sign-on support to Calendar Server and
Messaging Server.

Directory Server Provides support to Identity Server and Portal Server.

Application Server or
Web Server

Provides support to Identity Server and Portal Server.
(Identity Server and Portal Server must run inside a web
container.)

Logical Architecture for the Example Deployment

Chapter 4 Designing the Logical Architecture 47

Logical Architecture for the Example Deployment
Figure 4-3 below shows the layout of components for the example deployment,
indicating user entry points to the deployment. The figure places the service
requiring the most support (Portal Server) at the top and lists supporting
components beneath it, roughly reflecting the dependencies between the
components (as described in Table 4-2 on page 45). The figure does not depict the
component providing the web container to support Portal Server and Identity
Server because this dependency does not reflect the flow of data in the
deployment.

Figure 4-3 Java Enterprise System Components in a Logical Architecture

Portal
Server

Calendar
Server

Messaging
Server

Identity
Server

Directory
Server

Web container to support Portal Server
and Identity Server not shown

Logical Architecture for Example Deployment

Web
browser

Web
browser

E-mail
client

User
entry

points

Logical Architecture for the Example Deployment

48 Sun Java Enterprise System • Deployment Planning White Paper

Data Flow for the Example Deployment
Study the use cases to determine the logical flow of data between services in the
logical architecture, and indicate this flow in the layout. The flow of data between
the services in a system plays an important role when sizing for performance and
availability, as described in “Sizing a Planned Deployment” on page 52.

The following figure depicts the flow of data for the example deployment. The data
flow is determined from the use cases for the deployment as well as the Java
Enterprise System service dependencies.

Figure 4-4 Logical Flow of Data for the Example Deployment

Figure 4-4 calls out the data flow that satisfies both use cases 1 and 2. This data
flow represents the following:

• User login request from the Web-based client

• Portal Server’s dependency on Identity Server to provide authentication
services

Portal
Server

Calendar
Server

Messaging
Server

Identity
Server

Directory
Server

Logical Architecture for Example Deployment

Web
browser

Web
browser

E-mail
client

User
entry

points

Data flow to
 satisfy use

cases 1 and 2

Deployment Scenario

Chapter 4 Designing the Logical Architecture 49

• LDAP information provided by Directory Server to Identity Server

The remaining data flows in Figure 4-4 are similarly derived from the use cases and
server dependencies.

Deployment Scenario
The completed logical architecture design and the system requirements derived
during requirements analysis constitute the deployment scenario. The deployment
scenario is the starting point for designing the deployment architecture, as
explained in Chapter 5, “Designing a Deployment Architecture.”

Deployment Scenario

50 Sun Java Enterprise System • Deployment Planning White Paper

51

Chapter 5

Designing a Deployment Architecture

This chapter provides information on how to design a deployment for
performance, security, availability and other system qualities. The chapter also
provides information on optimizing the deployment design.

A deployment architecture depicts the mapping of a logical architecture to a
physical environment. The physical environment includes the computing nodes in
an intranet or Internet environment, CPUs, memory, storage devices, and other
hardware and network devices.

Designing the deployment architecture involves sizing the deployment to determine
the physical resources necessary to meet the system requirements specified during
the technical requirements phase. You also optimize resources by analyzing the
results of sizing the deployment to create a design that provides the best use of
resources within business constraints.

After a deployment architecture design is complete the actual cost of the
deployment is assessed during project approval. Once the project is approved,
contracts for completion of the deployment need to be signed and resources to
implement the project acquired.

A detailed design specification occurs before or after project approval. The detailed
design specification is used in the implementation phase to build out the design.

This chapter continues using the example deployment from Chapter 4 to illustrate
various steps in the process of designing a deployment architecture.

This chapter contains the following sections:

• “Sizing a Planned Deployment” on page 52

• “Optimizing Resources” on page 68

• “Example Deployment Architecture” on page 70

• “Detailed Design Specification” on page 72

Sizing a Planned Deployment

52 Sun Java Enterprise System • Deployment Planning White Paper

Sizing a Planned Deployment
Sizing a planned deployment is the process of determining the set of hardware
resources necessary to fulfill the system requirements and ultimately satisfy the
business goals. As with other aspects of planning and designing a deployment,
sizing is not an exact science and cannot be prescribed with formulas and recipes.
Successful sizing is the result of a combination of past design experience,
knowledge of systems architecture, domain knowledge, and applied creative
thinking.

Sizing revolves around the system requirements you previously determined for the
following system qualities, as described in “System Requirements” on page 31. The
business requirements, usage analysis, and use cases from the earlier phases of
deployment design also play a role in sizing a system.

When performing a sizing exercise, the use cases and usage analysis help
determine the resources necessary to support the use cases. You typically start with
the heaviest weighted use cases (representing the most common transactions) and
proceed to the least weighted ones. This use of weighted use cases helps allocate
resources according to the expected stress on the system.

The following sections provide some general guidance on how to size a
deployment for the following system qualities:

• Performance

• Security

• Availability

• Serviceability

Sizing for Performance
Sizing for performance and load requirements is an iterative process that estimates
the number of CPUs and corresponding memory required to support the services
in the deployed system. When estimating the number of CPUs required to support
a service, consider the following:

• Use cases and corresponding usage analysis that apply to the service

• System requirements determined during analysis for technical requirements

• Past experience with the Java Enterprise System components providing the
service

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 53

• Consultation with Sun professional services, who have experience with sizing
various types of deployment scenarios

The process of sizing for performance typically consists of the following steps. The
ordering of these steps is not critical—it simply provides a way to consider the
factors that affect the final result.

1. Determine a baseline CPU estimate for components identified as user entry
points to the system.

2. Make adjustments to the CPU estimates to account for dependencies between
components.

3. Make adjustments to the CPU estimates to reflect security, availability,
scalability, and latent capacity requirements.

Determine Baseline CPU Estimate for User Entry Points
Begin by estimating the number of CPUs required to handle the expected load on
each component that is a user entry point. Note the estimates on your layout
design of the logical architecture.

The following figure uses the example deployment introduced in “Deployment
Planning Example” on page 42, depicting initial CPU estimates for components
that are user entry points. These estimates represent figures that might result from
analysis of the system requirements, use cases, and usage analysis.

CAUTION This white paper does not instruct you on the specifics of sizing for
performance. The CPU and memory figures used in this manual are
arbitrary estimates for illustration only. They do not represent any
specific implementation advice, other than to illustrate a process
you might use when designing a system.

Sizing a Planned Deployment

54 Sun Java Enterprise System • Deployment Planning White Paper

Figure 5-1 Baseline CPU Estimates for Components Providing User Entry Points

Adjust CPU Estimates for Service Dependencies
The components providing user entry points require support from other Java
Enterprise System services. To continue specifying performance requirements,
adjust the performance estimates to take into account support required from other
components.

In the example, examine the logical flow of data, as illustrated in Figure 4-4 on
page 48, and make adjustments for components providing support to other
components. The following table summarizes the adjustments to the CPU
estimates. In your estimates, you can specify fractional CPUs. When performance
estimates are complete, the CPU counts are totaled and rounded up.

As with the estimates in the previous section, the performance estimates in the
following table are arbitrary values for illustration purposes only.

Portal
Server

Calendar
Server

Messaging
Server

Identity
Server

Directory
Server

Logical Architecture for Example Deployment

4 CPUs

4 CPUs 4 CPUs

Web
browser

Web
browser

E-mail
client

User
entry

points

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 55

The following figure updates the estimates for performance, based on the
information in Table 5-1.

Table 5-1 CPU Estimates for Supporting Services

Service Estimate Description

Portal Server None Does not provide support to other services.

Calendar Server 1 CPU Provides support to:

• Portal Server’s calendar channel

Messaging Server 1.5 CPUs Provides support to:

• Portal Server’s messaging channel

• Calendar Server’s e-mail notification service

Identity Server 3 CPUs Provides support to:

• Portal Server

• Calendar Server

• Messaging Server

Directory Server 5 CPUs Provides support to:

• Identity Server

• Calendar Server

• Messaging Server

Sizing a Planned Deployment

56 Sun Java Enterprise System • Deployment Planning White Paper

Figure 5-2 CPU Estimates adjusted for Supporting Services

Adjust CPU Estimates for Latent Capacity, Scalability, and
Availability
Once you complete sizing estimates for performance, round up the figures for
CPUs. Typically, you round up CPUs to the next even number. When rounding up
CPU estimates, consider the following factors:

• Latent capacity

Increase CPU estimates to improve the ability to handle peak loads.

• Scalability

Increase CPU estimates to make sure your deployment does not need to be
scaled prematurely. Look at the anticipated milestones for scaling and
projected load increase over time to make sure you allow enough latent
capacity to reach the milestones.

Portal
Server

Calendar
Server

Messaging
Server

Identity
Server

Directory
Server

Logical Architecture for Example Deployment

4 CPUs

3 CPUs

5 CPUs

5 CPUs 5.5 CPUs

Web
browser

Web
browser

E-mail
client

User
entry

points

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 57

• Availability

Adjust CPU estimates to account for replication of services that might be
required for availability or failover.

The following figure adjusts the CPU estimates for the example deployment. The
figure also specifies memory requirements for each CPU. The example assumes
each CPU requires 2GB of memory. These memory specifications for the example
are arbitrary figures for illustration purposes. The calculation of memory required
for each CPU is beyond the scope of this white paper.

Figure 5-3 Performance Figures Including Memory Requirements

Portal
Server

Messaging
Server

Identity
Server

Directory
Server

Logical Architecture for Example Deployment

Web
browser

Calendar
Server

Web
browser

E-mail
client

User
entry

points

4 CPUs
8 GBs RAM

4 CPUs
8 GBs RAM

6 CPUs
12 GBs RAM

6 CPUs
12 GBs RAM

6 CPUs
12 GBs RAM

Sizing a Planned Deployment

58 Sun Java Enterprise System • Deployment Planning White Paper

Sizing for Security
When sizing a deployment, security issues become a factor in the following ways:

• Secure transport of data

• Authentication of users

Secure transport of data involves handling transactions over a secure transport
protocol such as Secure Sockets Layer (SSL). Authentication of users can also
require handling transactions over a secure transport.

Transactions handled over a secure transport typically require additional
computing power to first, establish a secure session (known as the handshake) and
second, to encrypt and decrypt transported data. Depending on the encryption
algorithm used (for example, 40-bit or 128-bit encryption algorithms), the
additional computing power can be substantial.

For secure transactions to perform at the same level as non-secure transactions, you
must plan for additional computing power. Depending on the nature of the
transaction, and the Java Enterprise System services that handle it, secure
transactions might require four times (or more) computing power.

When estimating the performance requirement to handle secure transactions, first
analyze use cases to determine the percentage of transactions that require secure
transport. If the performance requirements for secure transactions are the same as
for non-secure transactions, modify the CPU estimates to account for the additional
computing power needed for the secure transactions.

In some usage scenarios, secure transport might only be required for
authentication. Once a user is authenticated to the system, no additional security
measures for transport of data is required. In other scenarios, secure transport
might be required for all transactions. An estimate of five to ten percent of
transactions requiring secure transport is reasonable in many cases.

For example, when browsing a product catalog for an online e-commerce site, all
transactions can be non-secure until the customer has finished making selections
and is ready to “check out.” Additionally, many of these e-commerce sites relax the
latent response requirement for secure transactions. However some usage
scenarios, such as deployments for banks or brokerage houses, require most, if not
all, transactions to be secure and apply the same performance standard for both
secure and non-secure transactions.

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 59

Calculating Performance for Secure Transactions
This section continues the example deployment to illustrate a worksheet for
calculating CPU requirements for a use case that includes both secure and
non-secure transactions.

To calculate the CPU requirements, in the worksheet make the following
calculations:

1. Start with a baseline figure for the CPU requirements, such as you calculated in
the previous section, “Sizing for Performance” on page 52.

2. Calculate the percentage of transactions that require SSL, and compute the
CPU requirements for the SSL transactions.

3. Adjust the CPU calculations for the non-secure transactions.

4. Tally the secure and non-secure requirements to calculate the total CPU
requirements.

The worksheet in Figure 5-4 is based on additional use cases and usage analysis for
the Portal Server. The additional use cases and usage analysis assume the
following:

• All logins require secure authentication

• All logins account for 10% of the total Portal Server load

• The performance requirement for secure transactions equals the performance
requirement for non-secure transactions.

For the purposes of this example, to account for the extra computing power to
handle SSL transactions, the number of CPUs to handle these transactions will be
increased by a factor of five. As with other CPU figures in the example, this is an
arbitrary figure for illustration purposes only.

Sizing a Planned Deployment

60 Sun Java Enterprise System • Deployment Planning White Paper

Figure 5-4 Worksheet for Calculating CPU Estimates for Secure Transactions

Specialized Hardware to Handle SSL Transactions
Specialized hardware devices, such as SSL accelerator cards and other appliances,
are available to provide computing power to handle establishment of secure
sessions and/or encryption and decryption of data. When using specialized
hardware for SSL operations, computational power is dedicated to some part of the
SSL computations, typically the “handshake” operation that establishes a secure
session.

This hardware might be of benefit to your final deployment architecture. However,
because of the specialized nature of the hardware, it is best to estimate secure
transaction performance requirements first in terms of CPU power, and then
consider the benefits of using specialized hardware to handle the additional load.

Some factors to consider when using specialized hardware are whether the use
cases support using the hardware (for example, use cases that require a large
number of SSL “handshake” operations) and the added layer of complexity this
type of hardware brings to the design. This complexity includes the installation,
configuration, testing, and administration of these devices.

Baseline estimate for all Portal Server transactions: 4 CPUs

1. Calculate CPU estimates for SSL transactions:

Ten percent require SSL
.10 x 4 = 4

SSL transactions require 5x CPU power
5 x .4 = 2 CPUs

2. Adjust CPU estimates for non-SSL transactions:

Ninety percent are nonsecure
.9 x 4 = 3.6 CPUs required

3. Total CPU estimate:

SSL 2
Non-SSL 3.6

5.6 CPUs

2 CPUs

3.6 CPUs

5.6 CPUs

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 61

Sizing for Availability
After you complete sizing for performance you can begin sizing your system for
availability. This is where you designate specific servers to host the components in
the logical architecture and design load balancing, redundancy, and failover
strategies for the various Java Enterprise System components.

Study the use cases and usage analysis to determine which availability solutions to
consider. The following items are examples of the type of information you gather
to help determine availability strategies:

• How many nines of availability are specified?

• Are there performance specifications specific to failover situations (for
example, at least 50% of performance during failover)?

• Do the use cases and usage analysis identify times of peak and non-peak
usage?

• What are the latent performance requirements?

• Are there geographical considerations?

For each component, analyze the use cases to determine a best-fit solution for
failover and load balancing requirements. Also, consider the use cases and usage
analysis to determine the best way to load balance services.

The availability strategy you choose must also take into consideration
serviceability requirements, as discussed in “Serviceability Issues” on page 66. Try
to avoid complex solutions that require considerable administration and
maintenance in favor of systems that are easy to manage.

Directory Design for Complex Systems
Complex deployments for a large number of users might require a directory design
for Directory Server that can affect the availability strategy. This is because the
LDAP directory design might affect availability strategy for Identity Server and
Messaging Server, which in turn might affect other system qualities.

If you are designing a complex deployment, consider creating a preliminary
directory design to aid in the availability design. Later, during detailed design
specification or development phases, provide the complete directory design.

Sizing a Planned Deployment

62 Sun Java Enterprise System • Deployment Planning White Paper

Hardware and Software Failures
Your availability design should provide protections for both hardware and
software failures. Software failure typically has a higher cost than hardware
failure. There is higher mean time between software failures than between
hardware failures. Additionally, software failures are harder to diagnose and
repair and require higher administration and maintenance costs to prevent.

General Approaches to Availability
This section provides some general ways you can design for availability
requirements. Specific availability designs are outside the scope of this white
paper.

Single Server System
Place all your computing resources for a service on a single server. If the server
fails, the entire service fails.

Figure 5-5 Single Server

Sun provides high-end servers that provide the following benefits:

• Replacement and reconfiguration of hardware components while the system is
running

• Running multiple applications in fault-isolated domains on the server

• Upgrading capacity, performance speed, and I/O configuration without
rebooting the system

A high-end server typically costs more than a comparable multi-server system.
However, a single server provides savings on administration, monitoring, and
hosting costs for servers in a data center. However, load balancing, failover, and
removal of single points of failure is more flexible with multi-server systems.

10 CPUs

Required performance: 10 CPUs

Place all CPUs that satisfy the performance
requirement on a single server.

The server is a single point of failure.

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 63

Horizontally Redundant Systems
There are several ways to increase availability with parallel redundant servers that
provide both load balancing and failover. The following figure illustrates two
replicate servers providing an N+1 availability system. An N+1 system has an
additional component to provide 100% capacity should one server fail.

Figure 5-6 Two Replicate Servers

The computing power of each server in Figure 5-6 above is identical. One server
alone handles the performance requirements. The other server provides 100% of
performance when called into service as a backup.

Advantages of a replica server design is 100% performance during a failover
situation. Disadvantages include increased hardware costs with no corresponding
gain in overall performance.

The following figure illustrates a scenario that distributes the performance between
two servers for load balancing and failover.

Figure 5-7 Distribution of Load Between Two Servers

In Figure 5-7 above, if one server fails, all services are still available, although at a
percentage of the full capacity. The remaining server provides 6 CPUs of
computing power, which is 60% of the 10 CPU requirement.

10 CPUs 10 CPUs

Required performance: 10 CPUs
Place all CPUs that satisfy the performance
requirement on two identical servers.

If one server fails, the other server provides
100% of performance requirement.

6 CPUs 6 CPUs

Required performance: 10 CPUs Distribute load between 2 servers for
failover and load balancing.

If one server fails, the available CPUs
are reduced to 60% of those needed
to meet the performance requirement.

Sizing a Planned Deployment

64 Sun Java Enterprise System • Deployment Planning White Paper

An advantage of this design is the additional 2 CPU latent capacity when both
servers are available. Also if one server fails, all of the services are available, but
possibly at diminished performance.

The following figure illustrates the distribution between a number of servers for
performance and load balancing.

Figure 5-8 Distribution of Load Between n Servers

Because there are five servers in the design illustrated inFigure 5-8, if one server
fails the remaining servers provide a total 8 CPUs of computing power, which is
80% of the 10 CPU performance requirement. If you add an additional server with
2 CPUs capacity to the design, you effectively have an N+1 design. If one server
fails, 100% of the performance requirement is met by the remaining servers.

This design includes the following advantages:

• Added performance if a single server fails

• Availability even when more than one server is down

• Servers can be rotated out of service for maintenance and upgrades

• Multiple low-end servers typically cost less than a single high-end server

However, administration and maintenance costs can increase significantly with
additional servers. There are also hosting costs for servers in a data center. At some
point you run into diminishing returns by adding additional servers.

Sun Cluster
For situations that require a high degree of availability (such as four or five nines),
you might consider Sun Cluster as part of your availability design. A cluster
system is the coupling of servers, storage, and other network resources. The servers
in a cluster continually communicate with each other. If one of the servers goes

2 CPUs 2 CPUs 2 CPUs 2 CPUs 2 CPUs

Required performance: 10 CPUs Distribute the required load among
5 servers for failover and load balancing.

If one server fails, the available CPUs
are reduced to 80% of those needed to
meet the performance requirement.

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 65

offline, the rest of the devices in the cluster isolate the server and fail-over any
application or data from the failing node to another node. This failover process is
done achieved relatively quickly with little interruption of service to the users of
the system.

Sun Cluster requires additional dedicated hardware and specialized skills to
configure, administer, and maintain.

Availability Design for Sample Deployment
The following figure shows an availability design for the calendar service portion
of the example deployment, which was introduced in Chapter 4, “Designing the
Logical Architecture.” The figure depicts an availability solution for the Calendar
Server piece of the logical architecture for the example deployment. An analysis of
the complete availability solution for the example deployment is beyond the scope
of this white paper.

The sizing exercise earlier in this chapter determined that Calendar Server requires
6 CPUs and 12 GB of memory, as depicted in Figure 5-3 on page 57. The following
figure shows the front end of Calendar Server deployed on two servers for load
balancing incoming and outgoing requests. The back end of Calendar Server is
deployed on a separate server, and is replicated in a Sun Cluster 3.1 4/04 for
failover. For failover purposes, the CPU and memory required for the Calendar
Server back end is replicated in the Sun Cluster 3.1 4/04.

Sizing a Planned Deployment

66 Sun Java Enterprise System • Deployment Planning White Paper

Figure 5-9 Availability Design for Calendar Server in Example Deployment

Serviceability Issues
When designing for availability, you must also consider the administration and
maintenance costs of your solution. These costs are often overlooked in a design
because they are not specifically tied to the purchase of hardware. Rather, they can
be hidden, ongoing costs that reflect the complexity of your design.

For example, your design might include a large number of horizontally redundant
servers that provide a high degree of availability. But if you do not factor in the
costs to set up and configure the servers, continually upgrade the software, and
monitor the health of the system the availability gain can be compromised.

When designing for serviceability, consider the following administration and
maintenance costs:

• Setup and configuration

Hardware system
(2x4)

Calendar Server
(front end)

Hardware system
(2x4)

Calendar Server
(front end)

Load Balancer

Calendar Store

Hardware system
(2x4)

Calendar Server
(back end)

Hardware system
(2x4)

Active Standby

Calendar Server
(back end)

Failover

Sun Cluster

Hardware system

System component

Sun Cluster

2—CPU, 4—GB RA(2x4)

Network connection

Sizing a Planned Deployment

Chapter 5 Designing a Deployment Architecture 67

• Monitoring

• Upgrading server hardware

• Upgrading server software

• Automation of failover

Sizing for Scalability
Scalability describes the ability to add capacity to your system, usually by the
addition of system resources, but without changes to the deployment architecture.
This section discusses topics to consider when designing for scalability.

During requirements analysis, you typically make projections of expected growth
to a system based on the business requirements and subsequent usage analysis.
These projections of the number of users of a system, and the capacity of the system
to meet their needs, are often estimates that can vary significantly from the actual
numbers for the deployed system. Your design should be flexible enough to allow
for variance in your projections.

Latent Capacity
Latent capacity is one aspect of scalability where you include additional
performance and availability resources into your system so it can easily handle
unusual peak loads. Latent capacity is one way to build safety into your design.

A careful analysis of use cases can help identify the scenarios that can create
unusual peak loads (for example, a business to employee deployment that
schedules mandatory webcasts). Use this analysis of unusual peak loads, plus a
factor to cover unexpected growth, to design latent capacity that builds safety into
your system.

You can also monitor how latent capacity is used in a deployed system to help
determine when it is necessary to scale the system by adding resources.

Upgrading the Capacity of a System
Your system design should be able to handle projected capacity for the first 6 to 12
months of operation. Maintenance cycles can be used to add resources or increase
capacity as needed. Ideally, you should be able to schedule upgrades to the system
on a regular basis, but predicting needed increases in capacity is often difficult.
Rely on careful monitoring of your resources as well as business projections to
determine when to upgrade a system.

Optimizing Resources

68 Sun Java Enterprise System • Deployment Planning White Paper

If you are performing an incremental deployment, where you defer deployment of
parts of the system for business or technical reasons, you might schedule
upgrading the capacity of the system to coincide with other upgrades that include
new features of the system.

Optimizing Resources
Sizing a deployment is not just the estimation of resources to meet the system
requirements. Sizing is also an exercise in both risk management and resource
management. How a design handles risk management and resource management
is often the key to meeting business goals.

Risk Management
Much of the information on which sizing is based, such as business requirements
and usage analysis, is not empirical data but data based on estimates and
projections. Before completing the sizing of a planned deployment, revisit the data
and make sure your sizing design takes into account any reasonable deviations
from the estimates or projections.

For example, if the projections from the business requirements underestimate the
actual usage of the system, you run the risk of building a system that cannot cope
with the amount of traffic it encounters. A design that under performs will surely
be considered a failure.

On the other hand, if you build a system that is several orders more powerful than
required, you divert resources that could be used elsewhere. The key is to include a
margin of safety above the requirements, but to avoid extravagant use of resources.

Extravagant use of resources can also result in a failure of the design because t
under utilized resources could have been applied to other areas critical to success.
Additionally, extravagant solutions might be perceived as not fulfilling contracts in
good faith.

Managing Resources
Managing resources is the process of analyzing all available sizing options and
selecting the best fit solution that minimizes cost but still fulfills system
requirements. This involves understanding the trade-offs for each design decision
to make sure a benefit in one area is not offset by a cost in another.

Optimizing Resources

Chapter 5 Designing a Deployment Architecture 69

For example, horizontal scaling for availability might increase overall availability,
but at the cost of increased maintenance and service. Vertical scaling for
performance might increase computing power inexpensively, but the additional
power might be used inefficiently by some services.

Before completing your sizing strategy, examine your decisions to make sure you
have balanced the use of resources with overall benefit to the design. This typically
involves examining how system qualities in one area affect other system qualities.
The following table lists some topics you might want to consider for management
of resources.

Table 5-2 Resource Management Topics

Topic Description

Performance For performance solutions that concentrate CPUs on individual
servers, will the services be able to efficiently utilize the computing
power. (For example, some services have a ceiling on the number
of CPUs that can be efficiently used.)

Latent Capacity Do you have a strategy to handle loads that exceed performance
estimates?

Are excessive loads handled with vertical scaling on servers, load
balancing to other servers, or both?

Is the latent capacity sufficient to handle unusual peak loads until
the next milestone for scaling the deployment?

Security Have you sufficiently accounted for the performance overhead
required to handle secure transactions?

Availability For horizontally redundant solutions, have you sufficiently
estimated long term maintenance expenses?

Have you taken into account scheduled downtime necessary to
maintain the system?

Have you balanced the costs between high-end servers and
low-end servers.

Scalability Have you estimated milestones for scaling the deployment?

Do you have a strategy to provide enough latent capacity to handle
projected increases in load up to the milestones for scaling the
deployment?

Serviceability Have you taken into account administration, monitoring, and
maintenance costs into your availability design?

Have you considered delegated administration solutions (allowing
users themselves to perform some administration tasks) to reduce
administration costs?

Example Deployment Architecture

70 Sun Java Enterprise System • Deployment Planning White Paper

Example Deployment Architecture
The following figure represents a completed deployment architecture for the
example deployment introduced earlier in this white paper. This figure provides
an idea of how to present a deployment architecture.

CAUTION The deployment architecture in the following figure is for
illustration purposes only. It does not represent a deployment that
has been actually designed, built, or tested and should not be
considered as deployment planning advice.

Example Deployment Architecture

Chapter 5 Designing a Deployment Architecture 71

Figure 5-10 Example Deployment Architecture

Hardware System

System component

n—CPU, m—GB RAM(nxm)

Network connection

Hardware System 3
(4x8)

Messaging Server
(MTA)

Hardware System 4
(4x8)

Messaging Server
(MTA)

Calendar Server
(front end)

Calendar Server
(front end)

Load Balancer

Hardware System 5
(4x8)

Messaging Server
(Message Store)

Hardware System 6
(4x8)

Calendar Server
(back end)

Messaging Server
(Message Store)

Messaging and
Calendar Store

Failover
Hardware System 8

(2x4)

Directory Server
(Multi-master
replication)

Hardware System 7
(2x4)

Directory Server
(Multi-master
replication)

Hardware System 2
(4x8)

Portal Server

Identity Server

Web Server

Hardware System 1
(4x8)

Portal Server

Identity Server

Web Server

Load Balancer

Load Balancer

LDAP Store

Calendar Server
(back end)

Detailed Design Specification

72 Sun Java Enterprise System • Deployment Planning White Paper

Detailed Design Specification
After a deployment architecture is complete, there is a period for customer review,
followed by, hopefully, project approval. In some cases the customer might
redirect you to make changes to the deployment architecture before granting
approval.

After project approval, you create a detailed design specification that is a starting
point for implementation of the deployment. The design specification includes
details on specific hardware resources and network devices, as well as a detailed
LDAP directory specification.

73

Chapter 6

Implementing a Deployment Design

This chapter provides an overview of the steps necessary to implement a
deployment design.

After the deployment architecture has been approved and a detailed design
specification has been completed, you enter the implementation phase of
deployment planning. During the implementation phase, you build out the
deployment architecture. Depending on the nature of your deployment project,
implementing a deployment design includes some or all of the following steps:

• Creating and deploying pilots or prototypes in a test environment

• Designing and running functional tests to measure compliance with system
requirements

• Designing and running stress tests to measure performance under peak loads

• Creating a production deployment, which might be phased into production in
stages

This chapter discusses the following sections:

• “Developing Pilots and Prototypes” on page 74

• “Testing Pilot and Prototype Deployments” on page 74

• “Rolling Out a Production Deployment” on page 75

Developing Pilots and Prototypes

74 Sun Java Enterprise System • Deployment Planning White Paper

Developing Pilots and Prototypes
Java Enterprise System deployments typically fall into two categories, those based
primarily on services provided with Java Enterprise System and those that require
a significant number of custom services that are integrated with Java Enterprise
System services. You can think of the former type of deployment as an 80:20
deployment (80% of the services are provided by Java Enterprise System) and
similarly, the former as a 20:80 deployment.

For 80:20 deployments, during the implementation phase, you typically develop a
pilot deployment for testing purposes. Because 80:20 deployments use mature Java
Enterprise System services that provide “out-of-the-box” functionality, pilot
deployments move relatively quickly from development, testing, and modification
steps, to production deployments.

20:80 deployments, on the other hand, introduce new, custom services that do not
have the history of interoperability that comes with 80:20 deployments. For this
reason, you create prototype deployments, which are proof-of-concept deployments
that typically require a more rigorous development, testing, modification cycle
before going to production.

Testing Pilot and Prototype Deployments
The purpose of testing pilot and prototype deployments is to determine, as best as
possible under test conditions, whether the deployment satisfies the system
requirements and also meets the business goals.

Ideally, functional tests should model scenarios based on all identified use cases—a
set of metrics should be developed to measure compliance. Functional testing can
also involve a limited deployment to a select group of beta users to determine if
business requirements are being satisfied.

Stress tests measure performance under peak loads. These tests typically use a
series of simulated environments and load generators to measure throughput of
data and performance. System requirements for the deployment are typically the
basis for designing and passing stress tests.

NOTE Actual enterprise deployments can vary greatly in the amount of
custom development of services they require. Whether you use pilot
or prototype deployments for testing purposes depends on the
complexity and nature of your deployment.

Rolling Out a Production Deployment

Chapter 6 Implementing a Deployment Design 75

Testing can indicate problems with the deployment design specification, and might
involve several design, build, test iterations before you can roll out the deployment
to a production environment. However, testing should never be the place where
you discover problems with the deployment architecture. If you discover design
problems at the testing stage for deployment architecture, then your analysis,
planning, and design can be considered a failure.

Rolling Out a Production Deployment
Once the pilot or proof of concept deployment passes the test criteria, you are
ready to roll out the deployment to a production environment. Typically, you roll
out to a production environment in stages. A staged rollout is especially important
for large deployments that affect a significant number of users.

The staged deployment can start with a small set of users and eventually expand
the user base until the deployment is available to all users. A staged deployment
can also start with a limited set of services, eventually phasing in the remaining
services. Staging services in phases can help isolate, identify, and resolve any
problems a service might encounter in a production environment.

Because testing never completely simulates a production environment, you should
continue to monitor the deployed systems to identify any areas that require tuning,
maintenance, or service.

NOTE Functional and stress tests are particularly important for large
deployments where system requirements might not be well-defined,
there is no previous implementation on which to base estimates, and
the deployment requires a significant amount of new development.

Rolling Out a Production Deployment

76 Sun Java Enterprise System • Deployment Planning White Paper

	Sun Java Enterprise System Deployment Planning White Paper
	Contents
	List of Figures
	List of Tables
	1. Introduction to Deployment Planning
	About Java Enterprise System
	Java Enterprise System Suites of Services
	Advantages of Java Enterprise System

	About Deployment Planning
	Business Analysis Phase
	Technical Requirements Phase
	Logical Design Phase
	Deployment Design Phase
	Implementation Phase

	2. Business Analysis
	Business Requirements
	Business Constraints
	Incremental Approach to Deployment

	3. Technical Requirements
	Usage Analysis
	Use Cases
	System Requirements
	Availability
	Fault Tolerant Systems
	Sun Cluster 3.1 4/04
	Prioritizing Availability of Services

	Latent Capacity
	Performance
	Scalability
	Security Requirements
	Authentication
	Authorization
	Identity Management

	Serviceability Requirements

	Service Level Requirements

	4. Designing the Logical Architecture
	Deployment Planning Example
	Java Enterprise System Services
	Logical Architecture for the Example Deployment
	Data Flow for the Example Deployment

	Deployment Scenario

	5. Designing a Deployment Architecture
	Sizing a Planned Deployment
	Sizing for Performance
	Determine Baseline CPU Estimate for User Entry Points
	Adjust CPU Estimates for Service Dependencies
	Adjust CPU Estimates for Latent Capacity, Scalability, and Availability

	Sizing for Security
	Calculating Performance for Secure Transactions
	Specialized Hardware to Handle SSL Transactions

	Sizing for Availability
	Directory Design for Complex Systems
	Hardware and Software Failures
	General Approaches to Availability
	Availability Design for Sample Deployment
	Serviceability Issues

	Sizing for Scalability
	Latent Capacity
	Upgrading the Capacity of a System

	Optimizing Resources
	Risk Management
	Managing Resources

	Example Deployment Architecture
	Detailed Design Specification

	6. Implementing a Deployment Design
	Developing Pilots and Prototypes
	Testing Pilot and Prototype Deployments
	Rolling Out a Production Deployment

