
Migrating and Redeploying
Server Applications Guide

Sun™ ONE Application Server

Version 7

817-2181-10

March 2003

Copyright © 2003 Sun Microsystems, Inc. Some preexisting portions Copyright © 2003 Netscape Communications Corporation. All rights

reserved.

Sun, Sun Microsystems, and the Sun logo, iPlanet, and the iPlanet logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the

United States and other countries. Netscape and the Netscape N logo are registered trademarks of Netscape Communications Corporation in the

U.S. and other countries. Other Netscape logos, product names, and service names are also trademarks of Netscape Communications Corporation,

which may be registered in other countries.

This product includes software developed by Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999 The Apache Software

Foundation. All rights reserved.

This product includes software developed by the University of California, Berkeley and its contributors. Copyright (c) 1990, 1993, 1994 The

Regents of the University of California. All rights reserved.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of the

product or this document may be reproduced in any form by any means without prior written authorization of the Sun-Netscape Alliance and its

licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND

WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY

INVALID.

__

Copyright © 2003 Sun Microsystems, Inc. Pour certaines parties préexistantes, Copyright © 2003 Netscape Communication Corp. Tous droits

réservés.

Sun, Sun Microsystems, et the Sun logo, iPlanet, and the iPlanet logo sont des marques de fabrique ou des marques déposées de Sun Microsystems,

Inc. aux Etats-Unis et d’autre pays. Netscape et the Netscape N logo sont des marques déposées de Netscape Communications Corporation aux

Etats-Unis et d’autre pays. Les autres logos, les noms de produit, et les noms de service de Netscape sont des marques déposées de Netscape

Communications Corporation dans certains autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la distribution et la

décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par quelque moyen que ce soit sans

l’autorisation écrite préalable de l’Alliance Sun-Netscape et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES

REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À UN

BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES EXCLUSIONS

SERAIENT CONTRAIRES À LA LOI.

http://www.apache.org/

3

Contents

About This Guide . 7

What You Should Know . 7

How This Guide is Organized . 8

Documentation Conventions . 8

Chapter 1 About Sun ONE Application Server 7 . 11
Sun ONE Application Server 7 Architecture . 11

J2EE Component Standards . 13

Development Environments . 15

Sun ONE Application Server 6.0/6.5 Development Environment . 15

Sun ONE Application Server 7 Development Environment . 15

Administration Tools . 16

Sun ONE Application Server 6.0 Administration Tools . 17

Sun ONE Application Server 6.5 Administration Tools . 17

Sun ONE Application Server 7 Administration Tools . 18

Database Connectivity . 20

Database Support in Sun ONE Application Server 6.0 . 20

Database Support in Sun ONE Application Server 6.5 . 21

Database Support in Sun ONE Application Server 7 . 21

J2EE Application Components and Migration . 22

Migration and Redeployment . 23

Why is Migration Necessary . 24

What Needs to be Migrated . 24

What is Redeployment . 25

Chapter 2 Migration Considerations and Strategies . 27
About Sun ONE Application Server 6.0/6.5 . 27

4 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Migration Issues From Sun ONE Application Server 6.x to 7 . 29

Migrating JDBC Code . 30

Establishing Connections Through the DriverManager Interface . 30

Using JDBC 2.0 Data Sources . 32

Migrating Java Server Pages and JSP Custom Tag Libraries . 35

Migrating Servlets . 36

Obtaining a Data Source from the JNDI Context . 37

Declaring EJBs in the JNDI Context . 37

EJB Migration . 37

EJB Changes Specific to Sun ONE Application Server 7 . 38

Migrating Web Applications . 39

Migrating Web Application Modules . 40

Particular setbacks when migrating servlets and JSPs . 41

Migrating Enterprise EJB Modules . 42

Migrating Enterprise Applications . 43

Application root context and access URL . 44

Migrating Proprietary Extensions . 44

Migrating Example: iBank . 45

Manual Migration of iBank Application . 46

Web application changes . 46

EJB Changes . 48

Assembling Application for Deployment . 70

Deploying iBank application on Sun ONE Application Server 7 using the asadmin utility 70

Migrating iBank using Sun ONE Studio for Java 4.0 . 70

Creating a Web application module in Sun ONE Studio for Java . 73

Converting CMP Entity EJBs from 1.1 to 2.0 . 78

Creating an EJB module in Sun ONE Studio for Java . 91

Creating an enterprise application in Sun ONE Studio for Java . 114

Deploying an application in Sun ONE Application Server 7 . 117

Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0 . 118

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 . 119
Introduction . 119

Migration Preparation . 119

Migration Process Overview . 119

Preparing your Working Environment . 121

Preparing a Project for Automated Migration . 121

Preparing the GXR file . 122

Before Running the Extraction Tool . 123

Migrating OnlineBankSample . 123

Running the Migration Toolbox . 124

Create a Toolbox . 125

5

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 . 151
Introduction . 151

Migration Preparation . 152

Migration Process Overview . 152

Preparing your Working Environment . 152

Preparing a Project for Automated Migration . 154

Migrating ToolBox Sample Application . 156

Running the Migration Toolbox . 156

Create a Toolbox Builder . 157

Chapter 5 Automating Migration . 171
Sun ONE Migration Tool for Application Servers . 171

Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox) . 172

Redeploying Migrated Applications . 172

Appendix A iBank Application specification . 173
Tools used for the development of the application . 174

Sun ONE Studio Enterprise Edition for Java, Release 4.0 . 174

Oracle 8i 8.1.6 . 174

Database schema . 174

Application navigation and logic . 178

Application Components . 182

Fitness of design choices with regard to potential migration issues . 185

Servlets . 185

Java Server Pages . 185

JDBC . 186

Enterprise Java Beans . 186

Application Packaging . 187

Appendix B Sun ONE Migration Toolbox . 189
Supported Platforms . 189

Migration . 189

Toolbox Builder . 190

Kiva Migration Toolbox Builder . 190

Invoking the Tools . 193

Tools Created by Kiva Migration Toolbox Builder . 194

NetDynamics Migration Toolbox Builder . 194

Invoking the Tools . 197

Tools Created by Kiva Migration Toolbox Builder . 197

Tools and Toolboxes . 201

Creating New Tools . 201

Cloning Tools . 201

6 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Deleting Tools . 201

Importing & Exporting Tools . 201

Toolbox Merging . 202

Troubleshooting . 202

Toolbox Installation & Configuration . 202

Extraction . 203

General Issues . 203

Non-Fatal Error During Extraction . 204

Fatal Error During Extraction . 204

Translation . 205

Post-Migration . 205

Appendix C Migrating from EJB 1.1 to EJB 2.0 . 207
EJB Query Language . 207

Local Interfaces . 208

EJB 2.0 Container-Managed Persistence (CMP) . 209

Defining Persistent Fields . 209

Defining Entity Bean Relationships . 210

Message-Driven Beans . 210

Migrating EJB Client Applications . 210

Declaring EJBs in the JNDI Context . 210

Recap on Using EJB JNDI References . 212

Placing EJB References in the JNDI Context . 212

Global JNDI context versus local JNDI context . 212

Migrating CMP Entity EJBs . 212

Migrating the Bean Class . 213

Migration of ejb-jar.xml . 216

Custom Finder Methods . 216

Index .219

7

About This Guide

This Migrating and Redeploying Server Applications Guide describes how J2EE

applications are migrated from earlier versions of the Sun™ ONE Application Server

(formerly known as ‘iPlanet Application Server’) to Sun ONE Application Server 7.

In addition, this guide describes how NetDynamics applications and applications from the

Netscape Application Server (NAS) are migrated to the Sun ONE Application Server 7.

This manual is intended for system administrators, network administrators, application

server administrators and web developers who have an interest in migration issues.

What You Should Know
Before you begin, you should already be familiar with the following topics:

• HTML

• Application Servers

• Client/Server programming model

• Internet and World Wide Web

• Windows 2000 and/or Solaris™ operating systems

• Java programming

• Java APIs as defined in specifications for EJBs, Java Server Pages (JSP)

• Java Database Connectivity (JDBC)

• Structured database query languages such as SQL

• Relational database concepts

• Software development processes, including debugging and source code control

How This Guide is Organized

8 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

How This Guide is Organized
This guide is organized as follows:

• About Sun ONE Application Server 7 - describes the architecture of the Sun ONE

Application Server 7 and the differences between J2EE standards and application

components implemented with this version of the Sun ONE Application Server versus

previous versions.

• Migration and Redeployment - describes those application components that need to be

migrated and why, as well as the redeployment process for migrated applications.

• Migration Considerations and Strategies - describes considerations and strategies for

migrating applications from competing platforms and from previous versions of the

Sun ONE Application Server. There are also sample migration applications included

that provide an end-to-end description of the migration process.

• Automating Migration - describes the available automation tools used to migrate

applications from competing platforms and earlier versions of the Sun ONE

Application Server.

• Redeploying Migrated Applications - describes how migrated applications are

redeployed to the Sun ONE Application Server.

Documentation Conventions
File and directory paths are given in Windows format (with backslashes separating

directory names). For Unix versions, the directory paths are the same, except forward

slashes are used instead of backslashes to separate directories.

This guide uses URLs of the form: http://server.domain/path/file.html, where:

• server is the name of the server where you are running the application.

• domain is your internet domain name.

• path is the directory structure on the server.

• file is an individual filename.

The following table shows the typographic conventions used throughout Sun ONE

documentation

http://server.domain/path/file.html

Documentation Conventions

About This Guide 9

Table 1 Typographic Conventions

Typeface Meaning Examples

Monospaced The names of files, directories, sample code,

and code listings; and HTML tags

Open Hello.html file.

<HEAD1> creates a top level heading.

Italics Book titles, variables, other code

placeholders, words to be emphasized, and

words used in the literal sense

See Chapter 2 of the Migrating and
Redeploying Server Applications Guide.

Enter your UserID.

Enter Login in the Name field.

Bold First appearance of a glossary term in the

text

Templates are page outlines.

Documentation Conventions

10 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

11

Chapter 1

About Sun ONE Application Server 7

This chapter describes the architecture of the Sun™ ONE Application Server 7 and the

J2EE components that are integral to the server environment. In addition, the differences

between the Sun ONE Application Server 7 environment and earlier Sun ONE Application

Server environments are described.

The following topics are addressed:

• Sun ONE Application Server 7 Architecture

• J2EE Component Standards

• Development Environments

• Administration Tools

• Database Connectivity

• J2EE Application Components and Migration

• Migration and Redeployment

Sun ONE Application Server 7 Architecture
Application servers provide the framework for a client to connect to a backend source,

execute the application logic, and return the result to the client. The application server

occupies the middle-tier in the three-tier computing model.

The Sun ONE Application Server 7 is a Java application server and is fully compliant with

the Java 2 Enterprise Edition (J2EE™) specifications. J2EE provides a complete, secure

foundation and describes a rich set of standards for security, development, deployment,

code re-use and portability that allows the enterprise to create applications that are portable

and vendor independent.

Sun ONE Application Server 7 Architecture

12 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

The Sun ONE Application Server 7 provides a robust J2EE platform for the development,

deployment, and management of e-commerce application services to a broad range of

servers, clients, and devices.

Sun ONE Application Server 7 is a J2EE 1.3 compliant application server.

The key goals of this architecture are horizontal and vertical scalability, high availability,

reliability, performance, and standards compliance. Sun ONE Application Server 7 is also a

significant architectural departure from the first generation of Sun ONE application server

products. By combining existing and strong Sun ONE products and technologies with the

J2EE 1.3 standards, Sun ONE Application Server 7 architecture is built upon a proven

framework of technologies.

Figure 1-1 Sun ONE Application Server 7 Architecture

The Sun ONE Application Server architecture is graphically represented in the figure Sun

ONE Application Server 7 Architecture. The architecture shows the Sun ONE Application

Server components, sub-systems, access paths and how external entities interface with the

core server.

J2EE Component Standards

Chapter 1 About Sun ONE Application Server 7 13

Sun ONE Application Server 7 architecture, is highly componentised which results in a

very highly manageable architecture. All the services required by the J2EE specification are

present with well-defined standard interfaces to invoke them from within applications.

The web user interface, new in Sun ONE Application Server 7, provides for easy remote

server management. In fact, the server is designed such that one administration server could

be used to administer multiple numbers of administered servers. The task of creating a new

administered server instance has been greatly simplified in this new version.

Support for the type 2 JDBC drivers bundled along with the earlier versions of Sun ONE

Application Server has been withdrawn. As a result of this, the platform has moved towards

a more standardized approach to JDBC resource management.

By using the JDK 1.4 for the server operation, Sun ONE Application Server utilizes the

enhanced abilities of this newer version of JDK to its advantage.

A typical J2EE application is composed of an n-tier system in which a client obtains

processed information from a Web server or an application server. The servers in turn

access the information from enterprise systems such as RDBMS or ERP, process them by

using contained business logic, and deliver the processed information to the client in an

appropriate format. These layers can be designated as client layer (Web browser or rich

Java client), middle layer (Web servers and application servers), and the back-end layer or

data layer (enterprise systems such as databases).

The J2EE application model within the Sun ONE Application Server allows developers to

focus on the business logic while J2EE components handle all the low level details.

Therefore, applications and services can be easily enhanced and rapidly deployed, allowing

business to quickly react to competitive changes. By providing an open standard

architecture through the J2EE Platform, Sun ONE Application Server solves the problem of

the cost and complexity in developing multi-tiered services that are scalable, highly

available, secure and reliable.

J2EE Component Standards
Sun ONE Application Server 7 is a J2EE v1.3 compliant server based on the component

standards developed by the Java community for Servlets, Java Server Pages (JSPs), and

Enterprise JavaBeans (EJBs).

In contrast to Sun ONE Application Server 7, Sun ONE Application Server 6.0/6.5 is a

J2EE v1.2 compliant server. Between the two J2EE versions, there are considerable

differences with the J2EE application component APIs.

J2EE Component Standards

14 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

The following table characterizes the differences between the component APIs used with

the J2EE v1.3 compliant Sun ONE Application Server 7 and the J2EE v1.2 Sun ONE

Application Server 6.0/6.5.

In addition, the two products support a number of technologies connected with XML

standards and Web Services which, while not part of the J2EE specification, are mentioned

in the following table due to the increasing usage of these standards in enterprise

applications.

Table 1-1 Application Server Version Comparison of APIs for J2EE Components

Component API Sun ONE Application Server
6.0/6.5

Sun ONE Application Server 7

JDK 1.2.2 1.4

Servlet 2.2 2.3

JSP 1.1 1.2

JDBC 2.0 2.0

EJB 1.1 2.0

JNDI 1.2 1.2

JMS 1.0 2.0

JTA 1.0 1.01

Table 1-2 Additional Application Server Supported Technologies

Technology Sun ONE Application
Server 6.0/6.5

Sun ONE Application
Server 7

XML document processing

(API and XML parser)

JAXP 1.0,Apache Xerces JAXP 1.1

SOAP/Java support for Web

Services

SOAP 1.1 (IBM SOAP4J

framework)

Apache SOAP 2.2,

JAX-RPC 1.0, JAXM 1.1,

JAXR 1.0

Development Environments

Chapter 1 About Sun ONE Application Server 7 15

Development Environments
This section characterizes the differences between the development environments for the

Sun ONE Application Server 6.0/6.5 and the Sun ONE Application Server 7. The following

topics are described:

• Sun ONE Application Server 6.0/6.5 Development Environment

• Sun ONE Application Server 7 Development Environment

Sun ONE Application Server 6.0/6.5
Development Environment
 Sun ONE Application Server 6.0/6.5 offers an evaluation version of Sun ONE Studio for

Java, which is especially geared towards application development for this version of the

Sun ONE Application Server.

It is a very complete development environment in Java, based on the NetBeans platform.

This IDE provides an extremely rich range of features for designing and developing Java

applications and EJB components. It also integrates through a plug-in with Sun ONE

Application Server for assembly, deployment, and debugging of the various J2EE

components of an application. It is available in both Windows and Solaris.

Of the third-party vendor solutions available on the market, the recently released Borland
JBuilder 6 Enterprise is an extremely mature, comprehensive product, with the added

advantage of being available on several platforms (Windows, Solaris, Linux, and MacOS

X). In addition to its Java development features (servlets, JSP pages, EJB components,

graphic applications), JBuilder also caters for UML design, unit testing, collaborative

development, and XML development. Moreover, JBuilder integrates perfectly with

mainstream application servers (including the Sun ONE Application Server) for assembly,

deployment and debugging of Web applications and EJB components.

Sun ONE Application Server 7 Development
Environment
The availability of a fully integrated development solution is key to the success of the Sun

ONE Application Server 7. Sun ONE Studio for Java Enterprise Edition 4 is the Sun ONE

strategic tool for Sun ONE application development.

Sun ONE Studio for Java 4 is provided with Sun ONE Application Server.

Some of the key features of Sun ONE Studio for Java Enterprise Edition 4 are:

Administration Tools

16 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• Ability to build EJBs quickly and easily

• Ability to assemble applications from EJBs and package applications for deployment

• Application server integration for deployment

• Ability to develop and publish web services

• Sun ONE studio for java enterprise service presentation toolkit

• Ability to integrate with the Sun ONE Application Server 7

As shown in the figure Sun ONE Studio Enterprise Edition and Sun ONE Application

Server 7 Integration, the Sun ONE Application Server 7 integration module relies upon the

NetBeans Open Source modules that are implemented from the Sun ONE Studio Close

Source.

Figure 1-2 Sun ONE Studio Enterprise Edition and Sun ONE Application Server 7 Integration

Administration Tools
This section characterizes the differences between the administration tools for the Sun ONE

Application Server 6.0, Sun ONE Application Server 6.5, and the Sun ONE Application

Server 7. The following topics are described:

Administration Tools

Chapter 1 About Sun ONE Application Server 7 17

• Sun ONE Application Server 6.0 Administration Tools

• Sun ONE Application Server 6.5 Administration Tools

• Sun ONE Application Server 7 Administration Tools

Sun ONE Application Server 6.0 Administration
Tools
Sun ONE Application Server 6.0 features a full set of graphical administration tools, which

cover all the aspects of server management and administration

• Sun ONE Console - the main administration control panel. Sun ONE console gives

fast access to the Administration Server Console, the Directory Server, and the

Administration Tool.

• Administration Server Console - used to define event-logging options and to create

SSL security certificates.

• Sun ONE Directory Server Console - used for administration of the Sun ONE

Directory Server. The Directory Server is used to administer the two main information

directory trees, the user directory (user and organizational unit administration), and the

configuration directory (server configuration).

• Sun ONE Administration Tool - used to administer one or more instances of Sun

ONE Application Server 6.0, along with the applications deployed. It also enables

JDBC drivers and data sources to be configured.

• Sun ONE Registry Editor (kregedit) - is a graphical tool similar to the windows

registry editor (regedit). It is used to adjust certain parameters specific to the Sun ONE

Application Server, stored in a specific registry.

Sun ONE Application Server 6.5 Administration
Tools
Sun ONE Application Server 6.5 can be administered using integrated Administration Tool,

Sun ONE registry editor and command line tools, which are described below:

• Sun ONE Application Server Administration Tool - a stand-alone java application

with a graphical user interface that allows you to administer one or more instances of

Sun ONE Application Server along with administering application components.

Administration Tools

18 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• Command line tools - can be run from the command-line prompt on Windows and the

shell prompt on Solaris. You can perform a variety of tasks using the command line

tools, right from basic configuration to deploying an application. To get a complete

description of any command-line tool, type [command] -help at the command

prompt. For ease of use, most of the command-line tools have been integrated with the

Sun ONE Application Server Administration Tool and the Sun ONE Application

Server Deployment Tool.

• Sun ONE Registry Editor (kregedit) - a stand-alone GUI tool similar to the Windows

Registry editor (regedit). It can display and edit registry information for Sun ONE

Application Server.

Sun ONE Application Server 7 Administration
Tools
The Administration Server in Sun ONE Application Server 7 is a special instance of the

Server that serves the Administrative interface and controls some global settings common

to all server instances. It is a web-based server that contains the forms used to configure the

Sun ONE Application Server.

This graphical tool allows you to manage your application server including viewing error

and access logs, monitoring server usage, creating and editing virtual servers, apply

configuration changes and start or stop server instances.

When you installed the Sun ONE Application Server, you chose a port number for the

Administration Server, or used the default port of 4848. To access the Administrative

interface, in a web browser type:

http://hostname:port/admin

You are prompted for the configured user name and password. Upon entering this

information and clicking the OK button, the home page of the Administrative interface is

displayed, as shown in the figure "Administrative Interface Home Page".

The left pane is a tree view of all items you can configure in the Sun ONE Application

Server. To use the Administrative interface, click an item in the left pane. The right pane

displays the page associated with that item.

You can access help for any page in the Administrative interface by clicking the Help

button in the banner at the top of the Administrative interface. The online help describes the

use of the page you are accessing and gives information about what to enter in the fields on

the page.

http://hostname:port/admin

Administration Tools

Chapter 1 About Sun ONE Application Server 7 19

Figure 1-3 Administrative Interface Home Page

Sun ONE Application Server 7 contains a command line interface. You can use a utility and

commands to perform the same set of tasks as you can perform in the Administrative

interface. You can use these commands either from a command prompt in the shell, or you

can call them from other scripts and programs. Using these commands you can automate

administration tasks that otherwise might become repetitive.

Sun ONE Application Server 7 has a command line utility asadmin, which can be run from

the command-line prompt on Windows and the shell prompt on Solaris. The asadmin utility

has a set of commands used to perform administrative tasks. You can use these commands

to perform all the same tasks that are performed from the Administrative Interface, from

basic configuration to deploying an application. To get a complete description of any

command, type help after entering the asadmin utility.

You can run asadmin either in singlemode or multimode. In singlemode you run one

command at a time from the command prompt. In multimode you can run multiple

commands without needing to reenter environment-level information.

Database Connectivity

20 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Database Connectivity
This section describes type of drivers included in the Sun ONE Application Server 6.0, Sun

ONE Application Server 6.5 and Sun ONE Application Server 7. This section also

describes the database(s) supported by each type of driver.

The following topics are included:

• Database Support in Sun ONE Application Server 6.0

• Database Support in Sun ONE Application Server 6.5

• Database Support in Sun ONE Application Server 7

Database Support in Sun ONE Application
Server 6.0
Sun ONE Application Server 6.0 includes a series of type 2 JDBC drivers (which require

installation of native client libraries for access to the corresponding DBMSs), which

provide connectivity to the following main market database back-ends:

• DB2 6.1, 7.1

• Informix 7.3, 9.1.4, 9.2

• Oracle 8.0.5, 8i, 9i

• Sybase 11.9.2, 12

• Microsoft SQL Server 7

• PointBase 3.5

It is possible to use third-party Type 4 JDBC drivers, by declaring them via the Sun ONE

Application Server Administration Tool, or via a specific, separate utility: db_setup.sh in
Solaris, jdbcsetup in Windows.

JDBC data sources and connection pool properties can be added and configured from the

Sun ONE Application Server Administrative interface, or from the iasdeploy command line

utility. For the latter, an XML file is passed which defines the properties of the data source

to be defined.

Database Connectivity

Chapter 1 About Sun ONE Application Server 7 21

Database Support in Sun ONE Application
Server 6.5
Sun ONE Application Server 6.5 provides a JDBC type 2 driver which supports a variety of

databases, including:

• DB2 5.1 and 6.1 and client version 7.1

• Informix 7.3, 9.1.4, 9.2 and client version SDK 2.40

• Oracle 8i, 9i

• Sybase 12

• Microsoft SQL Server 7

Configuration of native JDBC drivers on Solaris can be done via a specific utility,

db_setup.sh. On Windows, native drivers are automatically configured during installation if

the database client libraries are present in your machine. If you install a database client

library after Sun ONE Application Server installation, then restart Sun ONE Application

Server to automatically configure the native drivers.

It is possible to use third-party Type 4 JDBC drivers, by declaring them via the Sun ONE

Application Server Administration Tool, on Solaris as well as on Windows.

Sun ONE Application Server allows you to adjust database connectivity through connection

parameters via the Sun ONE Application Server Administrative interface. The connection

parameters are grouped in the following categories:

• Connection

• Threads, and

• Database cache

Database Support in Sun ONE Application
Server 7
Sun ONE Application Server 7 has Type 2 and Type 4 XA capable JDBC 2.0 style drivers,

which provide connectivity to the main market database back-ends:

• DB2 v7

• Oracle 8.1.7

• Sybase v11

J2EE Application Components and Migration

22 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• PointBase version 4.2RE

All external JDBC compliant drivers are supported by Sun ONE Application Server.

JDBC data sources and connection pool properties can be added and configured from the

Sun ONE Application Server Administration interface, or from the asadmin command line

utility.

For details on configuring JDBC Data sources and connection pools, refer to the section

“Using JDBC 2.0 Data Sources”.

J2EE Application Components and Migration
J2EE simplifies development of enterprise applications by basing them on standardized,

modular components, providing a complete set of services to those components, and

handling many details of application behavior automatically, without complex

programming. J2EE v1.3 architecture includes several component APIs. Prominent J2EE

components include:

• Servlets

• Java Server Pages (JSPs)

• EJBs, including Message Driven Beans (MDBs)

• Java Database Connectivity (JDBC)

• Java Transaction Service (JTS)

• Java Naming and Directory Interface (JNDI)

• Java Message Service (JMS)

J2EE components are packaged separately and bundled into a J2EE application for

deployment. Each component, its related files such as GIF and HTML files or server-side

utility classes, and a deployment descriptor are assembled into a module and added to the

J2EE application. A J2EE application is composed of one or more enterprise bean(s), Web,

or application client component modules. The final enterprise solution can use one J2EE

application or be made up of two or more J2EE applications, depending on design

requirements.

Migration and Redeployment

Chapter 1 About Sun ONE Application Server 7 23

A J2EE application and each of its modules has its own deployment descriptor. A

deployment descriptor is an XML document with an .xml extension that describes a

component’s deployment settings. An enterprise bean module deployment descriptor, for

example, declares transaction attributes and security authorizations for an enterprise bean.

Because deployment descriptor information is declarative, it can be changed without

modifying the bean source code. At run time, the J2EE server reads the deployment

descriptor and acts upon the component accordingly.

A J2EE application with all of its modules is delivered in an Enterprise Archive (EAR) file.

An EAR file is a standard Java Archive (JAR) file with an .ear extension. The EAR file

contains EJB JAR files, application client JAR files and/or Web Archive (WAR) files. The

characteristics of these files are as follows:

• Each EJB JAR file contains a deployment descriptor, the enterprise bean files, and

related files

• Each application client JAR file contains a deployment descriptor, the class files for the

application client, and related files

• Each WAR file contains a deployment descriptor, the Web component files, and related

resources

Using modules and EAR files makes it possible to assemble a number of different J2EE

applications using some of the same components. No extra coding is needed; it is just a

matter of assembling various J2EE modules into J2EE EAR files.

The migration process is concerned with moving J2EE application components, modules,

and files.

For more information on migrating various J2EE components please refer to Chapter 2,

section “Migration Issues From Sun ONE Application Server 6.x to 7.”

For more background information on J2EE, see the following references:

• J2EE tutorial - http://java.sun.com/j2ee/tutorial/

• J2EE overview - http://java.sun.com/j2ee/overview.html

• J2EE topics - http://java.sun.com/j2ee

Migration and Redeployment
This section describes the need to migrate J2EE applications and the particular files that

will need to be migrated. Following successful migration, a J2EE application can be

redeployed to the Sun ONE Application Server. Redeployment is also described within this

section.

http://java.sun.com/j2ee/tutorial/
http://java.sun.com/j2ee/overview.html
http://java.sun.com/j2ee

Migration and Redeployment

24 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

The following topics are addressed:

• Why is Migration Necessary

• What Needs to be Migrated

• What is Redeployment

Why is Migration Necessary
Although J2EE specifications broadly cover requirements for applications, it is nonetheless

an evolving standard. It either does not cover some aspects of applications or leaves

implementation details as the responsibility of application providers.

These product implementation-dependent aspects manifest as differences in the way

application servers are configured and also in the deployment of J2EE components on

application servers. The array of available configuration and deployment tools for use with

any particular application server product also contribute to the product implementation

differences.

The evolutionary nature of the specifications itself presents challenges to application

providers. Each of the component APIs in turn are separately evolving. This leads to a

varying degree of conformance by products. In particular, an emerging product such as Sun

ONE Application Server, has to contend with differences in J2EE application components,

modules, and files deployed on other established application server platforms. Such

differences require mappings between earlier implementation details of the J2EE standard

such as file naming conventions, messaging syntax, and so forth.

Moreover, product providers usually bundle additional features and services with their

products. These features are available as custom JSP tags or proprietary Java API libraries.

Usage of such proprietary features render these applications non-portable.

What Needs to be Migrated
For migration purposes, the J2EE application consists of the following file categories:

• Deployment descriptors (XML files)

• JSP source files that contain Proprietary API’s

• Java source files that contain Proprietary API’s

Migration and Redeployment

Chapter 1 About Sun ONE Application Server 7 25

Deployment descriptors (XML files)
Deployment is accomplished by specifying deployment descriptors (DDs) for EJBs

(ejb-jar), front-end web components (war) and enterprise applications (ear). Deployment

descriptors are used to resolve all external dependencies of the J2EE

components/applications. The J2EE specification for DDs is common across all application

server products. However, the specification leaves several deployment aspects of

components pertaining to an application dependent on product-implementation.

JSP source files
J2EE specifies how to extend JSP by adding extra custom tags. Product vendors include

some custom JSP extensions in their products, simplifying some tasks for developers.

However, usage of these proprietary custom tags results in non-portability of JSP files.

Additionally, JSP can invoke methods defined in other Java source files as well. The JSP’s

containing proprietary API’s needs to be rewritten before they can be migrated.

Java source files
The Java source files can be Servlets, EJBs or other helper classes. The Servlets and EJBs

can invoke standard J2EE services directly. They can also invoke methods defined in helper

classes. Java source files are used to encode the business layer of applications such as

EJBs.Vendors bundle several services and proprietary Java API with their products. The

usage of proprietary Java API is the major source of non-portability in applications. Since

J2EE is an evolving standard, different products may support different versions of J2EE
component APIs. This is another aspect that migration will address.

Files within the above file categories need to be migrated to Sun ONE Application Server.

The details on how to migrate each of the indicated file categories are provided in Migration

Issues From Sun ONE Application Server 6.x to 7.

What is Redeployment
Redeployment refers to deploying a previously deployed application from an earlier version

of Sun ONE Application Server, or from applications that were previously deployed, but

migrated, from a competing application server platform.

The act of redeploying an application typically refers to using the standard deployment

actions outlined in the Sun ONE Application Server Administrator’s Guide. However,

when migration activities are performed with automated tools, such as the Sun ONE
Migration Tool for Application Servers (for J2EE applications) or the Sun ONE Migration
Toolbox (for NetDynamics and Netscape Application Servers), there might be

post-migration or pre-deployment tasks that are needed (and defined) prior to deploying the

migrated application.

For more information about the available migration tools, refer to Automating Migration.

Migration and Redeployment

26 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

27

Chapter 2

Migration Considerations and
Strategies

This chapter describes the considerations and strategies that are needed when moving J2EE

applications from Sun™ ONE Application Server 6.0 and 6.5 to Sun ONE Application

Server 7.

This section also describes specific migration tasks at the component level.

The following topics are addressed:

• About Sun ONE Application Server 6.0/6.5

• Migration Issues From Sun ONE Application Server 6.x to 7

• Migrating Example: iBank

About Sun ONE Application Server 6.0/6.5
Sun ONE Application Server version 6.0 is a multi-platform application server based

entirely on the J2EE 1.2 specification. Supported platforms include Windows NT and 2000,

Solaris, AIX, and HP-UX.

In addition, Sun ONE Application Server 6.0 integrates with many Web servers through

specific Web connector plug-ins that it ships with. These connectors enable it to be coupled

with Sun ONE Web Server, Microsoft IIS, or Apache.

The Sun ONE Application Server 6.0/6.5 architecture is shown in the following figure.

About Sun ONE Application Server 6.0/6.5

28 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-1 Sun ONE Application Server 6.0/6.5 Architecture

As shown in the figure "Sun ONE Application Server 6.0/6.5 Architecture", there are four

internal servers, which are often called engines or processes. These processes are

responsible for all the processing in the Sun ONE Application Server. The four internal

servers of the Sun ONE Application Server 6.0/6.5 are:

Executive Server - provides most system services (some services are managed by the

Administrative Server).

Administrative Server - provides system services for Sun ONE Application Server

Administration and failure recovery.

Java Server - provides services to java applications.

C++ Server - components written in C++ are hosted in C++ server.

When a web server forwards requests to Sun ONE Application Server 6.0/6.5, the requests

are first received by the Executive Server process (KXS). The KXS process forwards the

request either to a Java Server process (KJS) or to a C++ Server process (KCS). A KJS

process runs Java programming logic, whereas a KCS process runs C++ programming

logic. Each KJS and KCS process maintains a specified number of threads and runs the

programming logic to completion on those threads. The results are returned to the web

server and sent on to the client browser.

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 29

Migration Issues From Sun ONE Application
Server 6.x to 7

This section describes the issues that will arise while migrating the main components of a

typical J2EE application from Sun ONE Application Server 6.0 and 6.5 to Sun ONE

Application Server 7.

The migration issues described in this section are based on an actual migration that was

performed for a J2EE application called iBank, a simulated online banking service, from

Sun ONE Application Server 6.0 and 6.5 to Sun ONE Application Server 7. This

application reflects all aspects that comprise a traditional J2EE application.

The following sensitive points of the J2EE specification covered by the iBank application

include:

• Servlets, especially with redirection to JSP pages (model-view-controller architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP entity

beans.

• Assembly and deployment in line with the standard packaging methods of the J2EE

application

The iBank application is presented in detail in Appendix A - iBank Application
Specification.

The following migration processes are described:

• Migrating JDBC Code

• Migrating Servlets

• Migrating Java Server Pages and JSP Custom Tag Libraries

• Obtaining a Data Source from the JNDI Context

• EJB Migration

• EJB Changes Specific to Sun ONE Application Server 7

• Migrating Web Applications

Migration Issues From Sun ONE Application Server 6.x to 7

30 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• Migrating Enterprise EJB Modules

• Migrating Enterprise Applications

Migrating JDBC Code
With the JDBC API, there are two methods of database access:

• Establishing Connections Through the DriverManager Interface

(JDBC 1.0 API), by loading a specific driver and providing a connection URL. This

method is used by other Application Servers, such as IBM’s WebSphere 4.0

• Using JDBC 2.0 Data Sources

The Data Source interface (JDBC 2.0 API) can be used via a configurable connection

pool. According to J2EE 1.2, a data source is accessed through the JNDI naming

service

Establishing Connections Through the DriverManager Interface
Although this means of accessing a database is not recommended, as it is obsolete and is not

very effective, there may be some applications that still use this approach.

In this case, the access code will be similar to the following:

public static final String driver =
"oracle.jdbc.driver.OracleDriver";

public static final String url =
"jdbc:oracle:thin:tmb_user/tmb_user@iben:1521:tmbank";

Class.forName(driver).newInstance();

Properties props = new Properties();

props.setProperty("user", "tmb_user");

props.setProperty("password", "tmb_user");

Connection conn = DriverManager.getConnection(url, props);

This code can be fully ported from Sun ONE Application Server 6.0/6.5 to Sun ONE

Application Server 7, as long as Sun ONE Application Server is able to locate the classes

needed to load the right JDBC driver. In order to make the required classes accessible to the

application deployed in Sun ONE Application Server 7, you should:

• Place the archive (JAR or ZIP) for the driver implementation in the /lib directory of the

Sun ONE Application Server 7 installation directory.

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 31

• Modify the CLASSPATH by setting the path for the driver through the GUI of the

admin server. Click the server instance “server1” and then click the tab “JVM Settings”

from the right pane. Now click the option Path Settings and add the path in the

classpath suffix text entry box. Once you make the changes, click “Save” and then

apply the new settings. Restart the server to modify the configuration file,

server.xml.

The figure Using the JVM Settings to Set the Classpath Suffix shows adding the path of the

driver in the classpath suffix through GUI.

Figure 2-2 Using the JVM Settings to Set the Classpath Suffix

Migration Issues From Sun ONE Application Server 6.x to 7

32 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Using JDBC 2.0 Data Sources
Using JDBC 2.0 data sources to access a database provides performance advantages such as

transparent connection pooling, enhances productivity by simplifying code and

implementation, and provides code portability.

Using a data source in an application requires an initial configuration phase followed by a

registration of the data source in the JNDI naming context of the application server. Once

the data source is registered, the application will easily be able to obtain a connection to the

database by retrieving the corresponding DataSource object from the JNDI context. The

actions are described in the following topics:

• Configuring a Data Source

• Looking Up the Data Source Via JNDI To Obtain a Connection

Configuring a Data Source
In Sun ONE Application Server 6.0 data sources and their corresponding JDBC drivers are

configured from the server's graphic administration console. Connection pools are managed

automatically by the application server, and the administration tool can be used to configure

their properties. With integrated type 2 JDBC drivers, the connection pooling properties are

defined on a per-driver basis, and common to all data sources using a given driver.

On the other hand, for third-party JDBC drivers, connection pool properties are defined on a

per-data source basis. Third-party JDBC drivers can be configured either from the

administration tool, or from a separate utility (db_setup.sh in Sun Solaris, and

jdbcsetup in Windows NT/2000). Moreover, the command line utility iasdeploy can be

used to configure a data source from an XML file describing its properties. These utilities

are all located in the /bin/ sub-directory of the Sun ONE Application Server installation

root directory.

In Sun ONE Application Server 7, data sources can be configured from the server's graphic

administration console or through the command line utility asadmin. The command line

utility asadmin can be invoked by executing asadmin.bat in windows and asadmin file in

Solaris kept at Sun ONE Application Server 7 installation’s bin directory. Then on the

asadmin prompt, following commands would create connection pool and JNDI resource.

The syntax for calling the asadmin utility to create a connection pool is as follows:

asadmin>create-jdbc-connection-pool -u username -w password -H

hostname -p adminport [-s] [--instance instancename]

--datasourceclassname classname [--steadypoolsize=8]

[--maxpoolsize=32] [--maxwait=60000] [--poolresize=2]

[--idletimeout=300] [--isconnectvalidatereq=false]

[--validationmethod=auto-commit] [--validationtable tablename]

[--failconnection=false] [--description text] [--property

(name=value)[:name=value]*] connectionpoolid

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 33

For example:

asadmin>create-jdbc-connection-pool -u admin -w password -H cl1

-p 4848 –instance server1 --datasourceclassname

oracle.jdbc.pool.OracleConnectionPoolDataSource --property

(user-name=ibank_user):(password=ibank_user) oraclepool

Here JDBC connection pool ‘oraclepool’ for oracle database is created using database

schema having the username ‘ibank_user’ and password ‘ibank_user’.

The syntax to create a JDBC resource is as follows:

asadmin>create-jdbc-resource -u username -w password -H hostname

-p adminport [-s] [--instance instancename] --connectionpoolid id

[--enabled=true] [--description text] [--property

(name=value)[:name=value]*] jndiname

For example:

asadmin>create-jdbc-resource -u admin -w password -H cl1 -p 4848

--instance server1 --connectionpoolid oraclepool jdbc/IBANK

Here jdbc resource is created for the connection pool created above with the JNDI name

‘jdbc/IBANK’.

Here is the procedure to follow when registering a data source in Sun ONE Application

Server 7 through graphical interface.

1. Register the data source classname

a. Place the archive (JAR or ZIP) for the data source class implementation in the /lib
directory of the Sun ONE Application Server 7 installation directory.

b. Modify the CLASSPATH by setting the path for the driver through the GUI of the

admin server. Click at the server instance “server1” and then click at tab “JVM

Settings”, now click at path settings and add the path at the classpath suffix

column. Once you make the changes save it and then apply these new settings.

Restart the server, which would modify the configuration file, server.xml.

2. Register the data source

In Sun ONE Application Server 7, data sources and their corresponding JDBC drivers are

configured from the server's graphic administration interface.

The left pane is a tree view of all items you can configure in the Sun ONE Application

Server. Click on the item Connection pool at the left pane, the right pane would display the

page associated with it where the relevant entries can be made.

Migration Issues From Sun ONE Application Server 6.x to 7

34 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-3 Configuring Connection Pool through GUI

Similarly now click at the item Data source, right pane would show the entries required for

data source setup.

Sun ONE Application Server 7 specific deployment descriptor sun-web.xml has to be

modified accordingly.

For example if a new data source is configured for the iBank Application, the sun-web.xml

would have following entries.

<!DOCTYPE web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN' 'Http://localhost:8000/sun-web-app_2_3.dtd'>

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/iBank</res-ref-name>

<jndi-name>jdbc/iBank</jndi-name>

<default-resource-principal>

<name>ibank_user</name>

Http://localhost:8000/sun-web-app_2_3.dtd'

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 35

<password>ibank_user</password>

</default-resource-principal>

</resource-ref>

</sun-web-app>

Looking Up the Data Source Via JNDI To Obtain a Connection
To obtain a connection from a data source, the process is as follows:

• Obtain an initial JNDI context

• Obtain a reference to the data source by using a JNDI lookup

• Obtain a connection using this referen

1. Obtaining the initial JNDI context

To guarantee portability between different environments, the code used to retrieve an

InitialContext object (in a servlet, in a JSP page, or an EJB), should be simply, as

follows:

InitialContext ctx = new InitialContext();

2. Obtaining a data source reference

To obtain a reference to a data source bound to the JNDI context, look up the data

source's JNDI name from the initial context object. The object retrieved in this way

should then be cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

3. Obtaining the connection

This operation is very simple, and requires the following line of code:

conn = ds.getConnection();

Sun ONE Application Server 6.0/6.5 and 7 both follow the above technique for obtaining a

connection form data source. So to summarize migration does not require any modification

to be made to the code.

Migrating Java Server Pages and JSP Custom
Tag Libraries
Sun ONE Application Server 6.0/6.5 complies with the JSP 1.1 specification and Sun ONE

Application Server 7 complies with the JSP 1.2 specification.

Migration Issues From Sun ONE Application Server 6.x to 7

36 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

JSP 1.2 specification contains many new features as well as corrections and clarifications of

areas that were not quite right in JSP 1.1 specification.

The most significant changes are

• JSP 1.2 is based on Servlet 2.3 and Java 2. JSP 1.2 applications will not run on

platforms that only support JDK 1.1. JSP 1.2 is backward compatible with JSP 1.1, so

JSP 1.1 application should run without any tweaking in a JSP 1.2 complaint container.

• The definition of XML syntax for a JSP page has been finalized. So a JSP 1.2

complaint container must accept files in both JSP 1.1 format and the new XML format

called as JSP Document.

• Tag libraries can make use of Servlet 2.3 event listeners.

• A new type of validation has been added, for the tag libraries, which validates JSP

pages.

• New options for tag library distribution and deployment have been added.

These changes are basically enhancements and are not required to be made, while migrating

JSP pages from JSP API 1.1 to 1.2.

The implementation of JSP custom tag libraries in Sun ONE Application Server 6.0 and 6.5

complies with the J2EE specification. Consequently, migration of JSP custom tag libraries

to Sun ONE Application Server 7 does not pose any particular problem, nor require any

modifications to be made.

Migrating Servlets
Sun ONE Application Server 6.0 and 6.5 support the Servlet 2.2 API whereas Sun ONE

Application Server 7, supports the Servlet 2.3 API.

Servlet API 2.3 actually leaves the core of servlets relatively untouched; most changes are

concerned with adding new features outside the core.

The most significant features are:

• Servlets now require JDK 1.2 or later

• A filter mechanism has been created

• Application lifecycle events have been added

• New internationalization support has been added

• New error and security attributes have been added

• The HttpUtils class has been deprecated

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 37

• Several DTD behaviors have been expanded and clarified

These changes are basically enhancements and are not required to be made while migrating

servlets from Servlet API 2.2 to 2.3.

However, if the servlets in the application use JNDI to access resources of the J2EE

application (such as data sources, EJBs, and so forth), some modifications may be needed in

the source files or in the deployment descriptor.

These modifications are explained in detail in the following sections:

• Obtaining a Data Source from the JNDI Context

• Declaring EJBs in the JNDI Context

One last scenario may mean modifications are required in the servlet code, naming conflicts

may occur with Sun ONE Application Server if a JSP page has the same name as an

existing Java class. In this case, the conflict should be resolved by modifying the name of

the JSP page in question, which may then mean editing the code of the servlets that call this

JSP page. This issue is resolved in Sun ONE Application Server 7 as it uses new class

loader hierarchy as compared to Sun ONE Application Server 6.0/6.5. In this new scheme,

for a given application, one class loader loads all EJB modules and another class loader

loads web module. As these two loaders do not talk with each other, there would be no

naming conflict.

Obtaining a Data Source from the JNDI Context
To obtain a reference to a data source bound to the JNDI context, look up the data source's

JNDI name from the initial context object. The object retrieved in this way should then be

cast as a DataSource type object:

ds = (DataSource)ctx.lookup(JndiDataSourceName);

For detailed information, refer to section “Migrating JDBC Code” in the previous pages.

Declaring EJBs in the JNDI Context
Please refer to section Declaring EJBs in the JNDI Context from Appendix C.

EJB Migration
As mentioned in About Sun ONE Application Server 7, while Sun ONE Application Server

6.0 and 6.5 support the EJB 1.1 specification, Sun ONE Application Server 7 also supports

the EJB 2.0 specification. The EJB 2.0 specification introduces the following new features

and functions to the architecture:

• Message Driven Beans (MDBs)

Migration Issues From Sun ONE Application Server 6.x to 7

38 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• Improvements in Container-Managed Persistence (CMP)

• Container-managed relationships for entity beans with CMP

• Local interfaces

• EJB Query Language (EJB QL)

Although the EJB 1.1 specification will continue to be supported in Sun ONE
Application Server 7, the use of the EJB 2.0 architecture is recommended to leverage its

enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0, please refer to Appendix C.

EJB Changes Specific to Sun ONE Application
Server 7
Migrating EJB’s from Sun ONE Application server 6.0/6.5 to Sun ONE Application Server

7 would not require any changes in the EJB code. The following DTD changes are required.

Session Beans:

• The <!DOCTYPE definition should be modified to point to the latest DTD url in case

of J2EE standard DDs, like ejb-jar.xml.

• Replace the ias-ejb-jar.xml with modified version of this file, named

sun-ejb-jar.xml created manually according to the DDs. See url

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
_0-0.dtd'>

for details.

• In sun-ejb-jar.xml, the JNDI name for all the EJB’s, should prepend ‘ejb/’ in all

the JNDI names. This is required as in Sun ONE Application Server 6.5, the JNDI

name of the EJB could only be “ejb/<ejb-name>” where <ejb-name> is the name

of the EJB as declared inside ejb-jar.xml. In Sun ONE Application Server 7 this has

changed as a new tag has been introduced in sun-ejb-jar.xml inside which the JNDI

name of the EJB can be declared. Because of this flexibility provided by Sun ONE

Application Server 7 we advice that the JNDI name of the EJB should be declared as

“ejb/<ejb-name>” inside the <jndi-name> tag to avoid changing JNDI names

throughout the application.

Entity Beans:

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 39

• The <!DOCTYPE definition should be modified to point to the latest DTD url in case of

J2EE standard DDs, like ejb-jar.xml.

• Insert <cmp-version> tag with value 1.1 for all CMPs in ejb-jar.xml.

• Replace all the <ejb-name>-ias-cmp.xml files with one sun-cmp-mappings.xml

file, which is created manually. See url

<!DOCTYPE sun-cmp-mappings PUBLIC '-//Sun Microsystems,
Inc.//DTD Sun ONE Application Server 7 OR Mapping //EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi
ng_1_0.dtd'>

for details.

• Generate dbschema by using the capture-schema utility in the Sun ONE Application

Server 7 installation’s bin directory and place it above META-INF folder for the Entity

beans.

• ias-ejb-jar.xml should be replaced with its new version named

sun-ejb.jar.xml in Sun ONE Application Server 7.

• In Sun ONE Application Server 6.5, the finders sql was directly embedded inside the

<ejb-name>-ias-cmp.xml, in Sun ONE Application Server 7 this has changed such

that now mathematical expressions are used to declare the <query-filter> for the

various finder methods.

Migrating Web Applications
Sun ONE Application Server 6.0 and 6.5 support servlets (Servlet API 2.2), and JSPs (JSP

1.1). Sun ONE Application Server 7 on the other hand supports servlets (Servlet API 2.3)

and JSPs (JSP 1.2).

Within these environments it is essential to group the different components of an

application (servlets, JSP and HTML pages and other resources) together within an archive

file (J2EE-standard Web application module) before you can deploy it on the application

server.

According to the J2EE 1.3 specification, a Web application is an archive file (.WAR file)

with the following structure:

• a root directory containing the HTML pages, JSP pages, images and other "static"

resources of the application.

• a META-INF/ directory containing the archive manifest file (MANIFEST.MF)

containing the version information for the SDK used and, optionally, a list of the files

contained in the archive.

http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi

Migration Issues From Sun ONE Application Server 6.x to 7

40 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• a WEB-INF/ directory containing the application deployment descriptor (web.xml file)

and all the Java classes and libraries used by the application, organized as follows:

• a classes/ sub-directory containing the tree-structure of the compiled classes

of the application (servlets, auxiliary classes...), organized into packages.

• a lib/ directory containing any Java libraries (.jar files) used by the

application.

Migrating Web Application Modules
Migrating applications from Sun ONE Application server 6.0/6.5 to Sun ONE Application

Server 7 would not require any changes in the Java/JSP code. The following changes are,

however, still required.

• web.xml

Sun ONE Application Server 7 adheres to J2EE 1.3 standards, according to which, the

web.xml file inside a WAR should adhere to the revised DTD available at

http://java.sun.com/dtd/web-app_2_3.dtd. This DTD fortunately, is a

superset of the previous versions’ DTD, hence only the <! DOCTYPE definition needs

to be changed inside the web.xml, which is to be migrated. The modified <! DOCTYPE

declaration should look like:

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

• ias-web.xml

In Sun ONE Application Server 7 the name of this file is changed to sun-web.xml.

This XML file is required to declare the Sun ONE Application Server 7 specific

properties/resources that will be required by the web application.

Note: See the next section for some important inclusions to this file.

If the ias-web.xml of the Sun ONE Application Server 6.5 application is present and

does declare Sun ONE Application Server 6.5 specific properties, then this file needs to

be migrated to Sun ONE Application Server 7 standards. The file name has to be

changed to sun-web.xml and other details are available at

<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 Servlet 2.3//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2
_3-0.dtd'>

http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd
http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 41

Once the web.xml and ias-web.xml are migrated in the above-mentioned fashion, the

Web application (.WAR archive) can be deployed from the Sun ONE Application Server

7’s GUI interface of the admin server or from the command line utility asadmin, where the

deployment command should mention the type of application as web.

The command line utility asadmin can be invoked by running asadmin.bat file kept at

Sun ONE Application Server 7 installation’s bin directory.

The command at asadmin prompt would be:

asadmin> deploy -u username -w password -H hostname -p adminport

--type web [--contextroot contextroot] [--force=true] [--name

component-name] [--upload=true] [--instance instancename]

filepath

Deployment can also be done from the Sun ONE Studio development environment as

explained in section "Deploying an application in Sun ONE Application Server 7".

Particular setbacks when migrating servlets and JSPs
The actual migration of the components of a Servlet / JSP application from Sun ONE

Application Server 6.0/6.5 to Sun ONE Application Server 7 will not require any

modifications to be made to the component code.

In case if the web-application is using a server resource, for example, a DataSource, then

Sun ONE Application Server 7 requires that this resource be declared inside the web.xml

and correspondingly inside sun-web.xml. For declaring a DataSource called jdbc/iBank,

the <resource-ref> tag as declared inside the web.xml would look like this:

<resource-ref>

<res-ref-name>jdbc/iBank</res-ref-name>

<res-type>javax.sql.XADataSource</res-type>

<res-auth>Container</res-auth>

<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

Corresponding declaration inside the sun-web.xml will look like this:

<?xml version="1.0" encoding="UTF-8"?>

<! DOCTYPE FIX ME: need confirmation on the DTD to be used for this
file

<sun-web-app>

<resource-ref>

Migration Issues From Sun ONE Application Server 6.x to 7

42 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<res-ref-name>jdbc/iBank</res-ref-name>

<jndi-name>jdbc/iBank</jndi-name>

</resource-ref>

</sun-web-app>

Migrating Enterprise EJB Modules
Sun ONE Application Server 6.0 and 6.5 support the EJB 1.1 API whereas Sun ONE

Application Server 7 supports the EJB 2.0 API. Thereby, both can support:

• Stateful or Stateless Session Beans.

• Entity beans with bean managed persistence (BMP), or container managed persistence

(CMP).

EJB 2.0 API however, introduces a new type of enterprise bean, called a message-driven

bean in addition to the session and entity beans.

J2EE 1.3 specification dictates that the different components of an EJB must be grouped

together in a JAR file with the following structure:

• META-INF/ directory with an XML deployment descriptor named ejb-jar.xml

• The .class files corresponding to the home interface, remote interface, the

implementation class, and the auxiliary classes of the bean with their package.

Sun ONE application servers observe this archive structure. However, the EJB 1.1

specification leaves each EJB container vendor to implement certain aspects as they see fit:

• Database persistence of CMP EJBs (particularly the configuration of mapping between

the bean's CMP fields and columns in a database table).

• Implementation of the custom finder method logic for CMP beans.

As we might expect, Sun ONE Application Server 6.0 or 6.5 and Sun ONE Application

Server 7 diverge on certain points, which means that when migrating an application certain

aspects require particular attention. Some XML files have to be modified:

• The <!DOCTYPE definition should be modified to point to the latest DTD url in case of

J2EE standard DDs, like ejb-jar.xml.

• Replace the ias-ejb-jar.xml with modified version of this file, i.e.,

sun-ejb-jar.xml created manually according to the DTDs. See url

Migration Issues From Sun ONE Application Server 6.x to 7

Chapter 2 Migration Considerations and Strategies 43

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7 EJB 2.0//EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
_0-0.dtd'>

• Replace all the <ejb-name>-ias-cmp.xml files with one sun-cmp-mappings.xml

file, which is created manually. See url

<!DOCTYPE sun-cmp-mappings PUBLIC '-//Sun Microsystems,
Inc.//DTD Sun ONE Application Server 7 OR Mapping //EN'
'http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi
ng_1_0.dtd'>

• Only for CMP entity beans: Generate dbschema by using the capture-schema utility in

the Sun ONE Application Server 7 installation’s bin directory and place it above

META-INF folder for the Entity beans.

Migrating Enterprise Applications
According to the J2EE specifications, an enterprise application is an EAR file, which must

have the following structure:

• a META-INF/ directory containing the XML deployment descriptor of the J2EE

application called application.xml

• the .JAR and .WAR archive files for the EJB modules and Web module of the

enterprise application, respectively.

In the application deployment descriptor, we define the modules that make up the enterprise

application, and the Web application's context root.

Sun ONE Application server 6.0/6.5 and 7 primarily supports the J2EE model wherein

applications are packaged in the form of an enterprise archive (EAR) file (extension .ear).

The application is further subdivided into a collection of J2EE modules, packaged into Java

archives (JAR, extension .jar) for EJBs and web archives (WAR, extension .war) for

servlets and JSPs.

It is therefore essential to follow the steps listed here before deploying an enterprise

application:

• Package EJBs in one or more EJB modules,

• Package the components of the Web application in a Web module,

• Assemble the EJB modules and Web modules in an enterprise application module

• Define the name of the enterprise application's root context, which will determine the

URL for accessing the application.

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2
http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi

Migration Issues From Sun ONE Application Server 6.x to 7

44 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Note: Sun ONE Application Server 7 uses a new class loader hierarchy as compared to Sun

ONE Application Server 6.0/6.5. In the new scheme of things, for a given application, one

class loader loads all EJB modules and another class loader loads web modules. These two

are related in a parent child hierarchy where the JAR module class loader is the parent

module of the WAR module class loader. Hence all classes loaded by the JAR class loader

are available/ accessible to the WAR module but the reverse is not true. Hence, suppose

there is a certain class which is required by the JAR as well as the WAR, then it should be

packaged inside the JAR module only. If this guideline is not followed it would lead to class

conflicts hence ClassCastException.

Application root context and access URL
There is one particular difference between Sun ONE Application Server 6.0/6.5 and Sun

ONE Application Server 7, concerning the applications access URL (root context of the

application's Web module):

If AppName is the name of the root context of an application deployed on a server called

hostname, then the access URL for this application will differ depending on the application

server used:

• With Sun ONE Application Server 6.0 or 6.5, which is always used jointly with a Web

front-end, the access URL for the application will take the following form (assuming

the Web server is configured on the standard HTTP port, 80):

http://hostname/NASApp/AppName/

• With Sun ONE Application Server 7, the URL will take the form:

http://hostname:port/AppName/

The TCP port used as default by Sun ONE Application Server 7 is port 80.

Although the difference in access URLs between Sun ONE Application Server 6.0/6.5 and

Sun ONE Application Server 7 may appear minor, it can however be problematical when

migrating applications that make use of absolute URL references. In such cases, it will be

necessary to edit the code to update any absolute URL references so that they are no longer

prefixed with the specific marker used by the Web Server plug-in for Sun ONE Application

Server 6.0/6.5.

Migrating Proprietary Extensions
A number of classes proprietary to the Sun ONE Application Server 6.0/ 6.5 environment

may have been used in applications. Some of the proprietary Sun ONE packages used by

Sun ONE Application Server 6.x are listed below:

• com.iplanet.server.servlet.extension

• com.kivasoft.dlm

http://hostname/NASApp/AppName/
http://hostname:port/AppName/

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 45

• com.iplanetiplanet.server.jdbc

• com.kivasoft.util

• com.netscape.server.servlet.extension

• com.kivasoft

• com.netscape.server

These APIs are not supported in Sun ONE Application Server 7. Applications using any

classes belonging to the above package will have to be re written such that the applications

use standard J2EE APIs. Applications using Custom JSP tags and UIF framework also

needs to be rewritten to use standard J2EE API.

Migrating Example: iBank
In this section we describe the process for migrating the main components of a typical J2EE

application from Sun ONE Application Server 6.0 and 6.5 to Sun ONE Application Server

7. For each aspect we highlight any problems posed by migration, and suggest practical

solutions to overcome these.

For this migration process, the J2EE application presented is called ‘iBank’ and is based on

the actual migration of the iBank application from the Sun ONE Application Server 6.0 and

6.5 versions to Sun ONE Application Server 7. iBank simulates an online banking service

and covers all of the aspects traditionally associated with a J2EE application.

The sensitive points of the J2EE specification covered by the iBank application are

summarized below:

• Servlets, especially with redirection to JSP pages (model-view-controller architecture)

• JSP pages, especially with static and dynamic inclusion of pages

• JSP custom tag libraries

• Creation and management of HTTP sessions

• Database access through the JDBC API

• Enterprise JavaBeans: Stateful and Stateless session beans, CMP and BMP entity

beans.

• Assembly and deployment in line with the standard packaging methods of the J2EE

application

The iBank application is presented in detail in Appendix A - iBank Application
specification.

Migrating Example: iBank

46 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

The iBank Application can be migrated to Sun ONE Application Server 7 by manually

changing the deployment descriptors or using Sun ONE Studio or using Sun ONE

Migration Tool. The recommended process among the above three is the Sun ONE

Migration Tool. If the migration has to be carried out without converting CMP’s to 2.0, then

follow the section "Manual Migration of iBank Application" or use Sun ONE Migration

Tool.

In this guide the Manual Migration process and the migration using Sun ONE Studio are

discussed. The Automatic migration procedure, using Sun ONE Migration Tool for iBank

example, is discussed in the documentation provided with the Migration Tool itself.

Manual Migration of iBank Application
The manual migration does not require any major changes in the source code as Sun ONE

Application Server 7 supports CMP 1.1. However manual migration of the application

would require a few changes to be made in the following aspects:

Web application changes
Migrating iBank from Sun ONE Application server 6.0/6.5 to Sun ONE Application Server

7 would not require any changes in the web application part of the iBank application. Delete

the ias-web.xml file from the source directory, as there is no information in this file that

can go inside its counterpart in the Sun ONE Application Server 7 Deployment descriptor,

the sun-web.xml file. The web.xml requires no changes.

However, generically speaking, if there is some information inside the web.xml that needs

to be mapped to the Server specific resources, then a declaration in sun-web.xml would

have been required in that case. For example, if the web.xml file had declared a

javax.sql.Datasource type resource reference, it would be mandatory to map it to the JNDI

name of the actual DataSource on the Sever, inside the sun-web.xml.

The migrator needs to create the new sun-web.xml. The creation process is outlined below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD Sun

ONE Application Server 7 Servlet 2.3//EN'

'http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

_3-0.dtd'>

Save this file as “sun-web.xml”.

http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 47

2. The root tag of this XML file, as evident from the DOCTYPE definition, is sun-web.

In the DTD, this element is defined as

<!ELEMENT sun-web-app (security-role-mapping*, servlet*,

session-config?, resource-env-ref*, resource-ref*, ejb-ref*,

cache?, class-loader?, jsp-config?, locale-charset-info?,

property*)>

From the above declaration it is clear that all tags are optional so a default

sun-web.xml would look something like:

<!DOCTYPE sun-web-app SYSTEM

"http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

_3-0.dtd">

</sun-web-app>

3. For declaring any resource references, the element declaration would be:

<!ELEMENT resource-ref (res-ref-name, jndi-name,
default-resource-principal?)> where the sub elements are:

<!ELEMENT res-ref-name (#PCDATA)>

<!ELEMENT default-resource-principal (name, password)>

<!ELEMENT jndi-name (#PCDATA)>

In case of ibank, resource reference details, sun-web.xml would be:

<sun-web-app>

<resource-ref>

<res-ref-name>jdbc/IBank</res-ref-name>

<jndi-name>jdbc/IBank</jndi-name>

<default-resource-principal>

<name>ibank_user</name>

<password>ibank_user</password>

</default-resource-principal>

</resource-ref>

</sun-web-app>

http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

Migrating Example: iBank

48 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

EJB Changes
Migrating iBank from Sun ONE Application server 6.5 to Sun ONE Application Server 7

would not require any changes in the EJB code.

Session Beans:
In ejb-jar.xml: The <!DOCTYPE definition should be modified to point to the latest

DTD url in case of ejb-jar.xml. This new definition should look like this:

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 2.0//EN' 'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

In ias-ejb-jar.xml: The ias-ejb-jar.xml in Sun ONE Application server 6.5 has

been replaced by sun-ejb-jar.xml in Sun ONE Application server 7. Since the DTDs

for these two XML files are radically different, the migrator needs to create the new

sun-ejb-jar.xml by extracting relevant information from the ejb-jar.xml and

ias-ejb-jar.xml. The creation process is outlined below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun

ONE Application Server 7 EJB 2.0//EN'

'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

_0-0.dtd'>

Save this file as “sun-ejb-jar.xml”, along with the modified ejb-jar.xml.

2. The root tag of this XML file, as evident from the DOCTYPE definition, is

sun-ejb-jar. In the DTD, this element is defined as

<!ELEMENT sun-ejb-jar (security-role-mapping*,enterprise-beans)>

The security-role-mapping tag is meant for mapping the security roles declared in the

ejb-jar.xml. As in the iBank application, there is no security declared in the

ejb-jar.xml file, we will skip the security-role-mapping optional tag and focus on the

enterprise-beans tag. Right now, the sun-ejb-jar.xml file should look like.

<sun-ejb-jar>

<enterprise-beans>

</enterprise-beans>

</sun-ejb-jar>

NOTE: We have not included the header part of the document, namely the XML

declaration and DOCTYPE definition, here for brevity.

http://java.sun.com/dtd/ejb-jar_2_0.dtd'
http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 49

3. The enterprise-beans element is defined in the DTD as

<!ELEMENT enterprise-beans (name?, unique-id?, ejb*,

pm-descriptors?, cmp-resource?)>

The optional name element should contain the canonical name of the enterprise-beans.

You may give it some name. We will skip this tag.

The unique-id element is used by the Sun ONE Application Server and is inserted by
the Application Server automatically at the time of application deployment. We will

skip this tag.

The EJB element is the tag in which we are interested. This is the element describing

runtime bindings for a single EJB. It is defined in the DTD as

<!ELEMENT ejb (ejb-name, jndi-name?, ejb-ref*, resource-ref*,

resource-env-ref*, pass-by-reference?, cmp?, principal?,

mdb-connection-factory?, jms-durable-subscription-name?,

jms-max-messages-load?, ior-security-config?,

is-read-only-bean?, refresh-period-in-seconds?, commit-option?,

gen-classes?, bean-pool?, bean-cache?)>

In our case, the ejb element will contain the ejb-name element. The ejb-name element

will contain the canonical name of the EJB. This name should be the same as declared

inside the ejb-name element of the ejb-jar.xml for that EJB. It will also contain the

jndi-name of the EJB. One of the differences between Sun ONE Application Server 6.5

and 7 is the flexibility of the latter in providing freedom to the bean developer to have

different ejb-name and jndi-name of an EJB. In Sun ONE Application Server 6.5, the

jndi name of an EJB by default was ejb/<ejb-name>.

To allow for smooth migration, we need to keep the jndi-names of the EJB and all other

resources to be same as they were on Sun ONE Application Server 6.5. Hence, we

declare the ejb-name of all the EJBs’ to be ejb/<ejb-name>.

Using the logic described above, the sun-ejb-jar.xml now should look like

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

</ejb>

<ejb>

Migrating Example: iBank

50 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

4. For each <ejb-ref> element inside the ejb-jar.xml, there should be a

corresponding <ejb-ref> element inside the sun-ejb-jar.xml. The <ejb-ref>

element inside the ejb-jar.xml is used to declare all the EJBs referenced from

inside the bean class of that EJB. While the bean class code will reference the EJB by

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 51

using its <ejb-ref-name>, this <ejb-ref-name> has to be mapped to the actual

<jndi-name> of the bean on the Application Server. Hence, this serves as a

mechanism to add a layer of abstraction between the name referenced by the EJB

implementation and the actual JNDI name of the bean.

Using the logic explained above, let us examine the BankTeller EJB. In the

ejb-jar.xml, there are two <ejb-ref> declarations inside this EJB. The first one is

for the Customer EJB (an entity bean in the Entity Bean module). As we have

explained in point #3 above, the JNDI names of all EJBs will be kept as

ejb/<ejb-name>, we will add this declaration inside the sun-ejb-jar.xml

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Similarly, we will add a similar <ejb-ref> tag for Account EJB. Since the

InterestCalculator bean does not have a <ejb-ref> tag inside the ejb-jar.xml, it is

not required inside the sun-ejb-jar.xml also. By now, the sun-ejb-jar.xml

should look like this

<sun-ejb-jar>

<enterprise-beans>

Migrating Example: iBank

52 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>Account</ejb-ref-name>

<jndi-name>ejb/Account</jndi-name>

</ejb-ref>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

5. The ejb element would contain element pass-by-reference <!ELEMENT

pass-by-reference (#PCData).

pass-by-reference elements controls use of Pass by Reference semantics. The EJB

specification requires pass by value, which will be the default mode of operation. This

can be set to true for non-compliant operation and possibly higher performance. It can

apply to all the enclosed EJB modules. Allowed values are true and false. Default will

be false.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 53

6. The ejb element would also have element bean-cache.

<!ELEMENT bean-cache (max-cache-size?, is-cache-overflow-allowed?,

cache-idle-timeout-in-seconds?, removal-timeout-in-seconds?,

victim-selection-policy?)>

This element is used only for stateful session beans and entity beans. In iBank, only

BankTeller session bean would have this entry.

In this tag, max-cache-size defines the maximum number of beans in the cache.

cache-idle-timeout-in-seconds specifies the maximum time that a stateful session bean

or entity bean is allowed to be idle in the cache. After this time, the bean is passivated

to backup store. This is a hint to server. Default value for

cache-idle-timeout-in-seconds is 10 minutes.

The amount of time that the bean remains passivated (i.e. idle in the backup store) is

controlled by removal-timeout-in-seconds parameter. Note that if a bean was not

accessed beyond removal-timeout-in-seconds, then it will be removed from the backup

store and hence will not be accessible to the client. The Default value for

removal-timeout-in-seconds is 60min.

With the above entries, sun-ejb-jar.xml should look like this:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>Account</ejb-ref-name>

<jndi-name>ejb/Account</jndi-name>

</ejb-ref>

<pass-by-reference>false</pass-by-reference>

<bean-cache>

Migrating Example: iBank

54 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<cache-idle-timeout-in-seconds>

0

</cache-idle-timeout-in-seconds>

<removal-timeout-in-seconds>

0

/removal-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

<pass-by-reference>false</pass-by-reference>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 55

7. The element used only for Stateless session bean and message-driven bean pools is

bean-pool.

<!ELEMENT bean-pool (steady-pool-size?, resize-quantity?,

max-pool-size?, pool-idle-timeout-in-seconds?,

max-wait-time-in-millis?)>

steady-pool-size specified the initial and minimum number of beans that must be

maintained in the pool.

resize-quantity specifies the number of beans to be created or deleted when the pool is

being serviced by the pool manager.

max-pool-size specifies the maximum pool size. Valid values are from 0 to

MAX_INTEGER.

max-pool-size spiffiest the maximum pool size.

pool-idle-timeout-in-seconds specifies the maximum time that a stateless session bean

or message-driven bean is allowed to be idle in the pool.

Finally the sun-ejb-jar.xml would having following shape:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name>BankTeller</ejb-name>

<jndi-name>ejb/BankTeller</jndi-name>

<ejb-ref>

<ejb-ref-name>Customer</ejb-ref-name>

<jndi-name>ejb/Customer</jndi-name>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>Account</ejb-ref-name>

<jndi-name>ejb/Account</jndi-name>

</ejb-ref>

<pass-by-reference>false</pass-by-reference>

<bean-cache>

Migrating Example: iBank

56 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<cache-idle-timeout-in-seconds>

0

</cache-idle-timeout-in-seconds>

<removal-timeout-in-seconds>

0

</removal-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb>

<ejb-name>InterestCalculator</ejb-name>

<jndi-name>ejb/InterestCalculator</jndi-name>

<pass-by-reference>false</pass-by-reference>

<bean-pool>

<pool-idle-timeout-in-seconds>

0

</pool-idle-timeout-in-seconds>

</bean-pool>

</ejb>

</enterprise-beans>

</sun-ejb-jar>

Entity Beans:
In ejb-jar.xml: The <!DOCTYPE definition should be modified to point to the latest DTD

url in case of ejb-jar.xml. This new definition should look like this:

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

Insert <cmp-version> tag with value 1.1 for all CMPs beans in ejb-jar.xml.

Entry for entity bean would look like:

<entity>

http://java.sun.com/dtd/ejb-jar_2_0.dtd'

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 57

<description>Account CMP entity bean</description>

<ejb-name>Account</ejb-name>

<home>com.sun.bank.ejb.entity.AccountHome</home>

<remote>com.sun.bank.ejb.entity.Account</remote>

<ejb-class>com.sun.bank.ejb.entity.AccountEJB</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>com.sun.bank.ejb.entity.AccountPK</prim-key-cla
ss>

<reentrant>False</reentrant>

<cmp-version>1.x</cmp-version>

<cmp-field>

<field-name>branchCode</field-name></cmp-field>

<cmp-field>

<field-name>accTypeId</field-name></cmp-field>

<cmp-field>

<field-name>accBalance</field-name></cmp-field>

<cmp-field>

<field-name>custNo</field-name></cmp-field>

<cmp-field>

<field-name>accNo</field-name></cmp-field>

</entity>

similarly all the CMP beans would have this entry.

Similar to Session Beans, the ias-ejb-jar.xml in Sun ONE Application server 6.5 has

been replaced by sun-ejb-jar.xml in Sun ONE Application server 7. Since the DTDs

for this two XML files are radically different, the migrator needs to create the new

sun-ejb-jar.xml by extracting relevant information from the ejb-jar.xml and

ias-ejb-jar.xml. The creation process is outlined below:

Migrating Example: iBank

58 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Sun

ONE Application Server 7 EJB 2.0//EN'

'http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

_0-0.dtd'>

Save this file as “sun-ejb-jar.xml”, along with the modified ejb-jar.xml.

2. The root tag of this XML file, as evident from the DOCTYPE definition, is

sun-ejb-jar. In the DTD, this element is defined as

<!ELEMENT sun-ejb-jar (security-role-mapping*, enterprise-beans)

>

The security-role-mapping tag is meant for mapping the security roles declared in the

ejb-jar.xml. As in the iBank application, there is no security declared in the

ejb-jar.xml file, we will skip the security-role-mapping optional tag and focus on

the enterprise-beans tag. Right now, the sun-ejb-jar.xml file should look like.

<sun-ejb-jar>

<enterprise-beans>

</enterprise-beans>

</sun-ejb-jar>

NOTE: We have not included the header part of the document, namely the XML

declaration and DOCTYPE definition, here for brevity.

http://www.sun.com/software/sunone/appserver/dtds/sun-ejb-jar_2

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 59

3. The enterprise-beans element is defined in the DTD as

<!ELEMENT enterprise-beans (name?, unique-id?, ejb*,

pm-descriptors?, cmp-resource?)>

The optional name element should contain the canonical name of the enterprise-beans.

You may give it some name. We will skip this tag.

The unique-id element is used by the Sun ONE Application Server and is inserted by

the Application Server automatically at the time of application deployment. We will

skip this tag.

The ejb element is the tag in which we are interested. This is the element describing

runtime bindings for a single EJB. It is defined in the DTD as

<!ELEMENT ejb (ejb-name, jndi-name?, ejb-ref*, resource-ref*,

resource-env-ref*, pass-by-reference?, cmp?, principal?,

mdb-connection-factory?, jms-durable-subscription-name?,

jms-max-messages-load?, ior-security-config?,

is-read-only-bean?, refresh-period-in-seconds?, commit-option?,

gen-classes?, bean-pool?, bean-cache?)>

In our case, the ejb element will contain the ejb-name element. The ejb-name element

will contain the canonical name of the EJB. This name should be the same as declared

inside the ejb-name element of the ejb-jar.xml for that EJB. It will also contain the

jndi-name of the EJB. One of the differences between Sun ONE Application Server 6.5

and 7 is the flexibility of the latter in providing freedom to the bean developer to have

different ejb-name and jndi-name of an EJB. In Sun ONE Application Server 6.5, the

JNDI name of an EJB by default was ejb/<ejb-name>.

To allow for smooth migration, we need to keep the jndi-names of the EJB and all other

resources to be same as they were on Sun ONE Application Server 6.5. Hence, we

declare the ejb-name of all the ejbs’ to be ejb/<ejb-name>.

Using the logic described above, the sun-ejb-jar.xml now should look like

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

</ejb>

<ejb> --- </ejb>

Migrating Example: iBank

60 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

</enterprise-beans>

</sun-ejb-jar>

4. The ejb element would contain element pass-by-reference <!ELEMENT

pass-by-reference (#PCData).

pass-by-reference elements control use of Pass by Reference semantics. EJB spec

requires pass by value, which will be the default mode of operation. This can be set to

true for non-compliant operation and possibly higher performance. It can apply to all

the enclosedEJBmodules. Allowed values are true and false. Default will be false.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 61

5. In case of CMP entity beans, element cmp is declared, which describes runtime

information for a CMP EntityBean object for EJB1.1 and EJB2.0 beans.

<!ELEMENT cmp (mapping-properties?, is-one-one-cmp?,

one-one-finders?)>

In this mapping-properties contains the location of the persistence vendor specific O/R

mapping file. is-one-one-cmp field is used to identify CMP 1.1 with old descriptors.

This contains the boolean true if it is CMP 1.1. one-one-finders contains the finders for

CMP 1.1.

This root element finder contains the finder for CMP 1.1 with a method-name and

query parameters.

<!ELEMENT finder (method-name, query-params?, query-filter?,

query-variables?)>

Element method-name contains the method name for the query field. Element

query-params contains the query parameters for CMP 1.1 finder.

query-filter is an optional element which contains the query filter for CMP 1.1 finder.

After making the above entries in iBank, sun-ejb-jar would look like:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

<pass-by-reference>false</pass-by-reference>

<cmp>

<mapping-properties>

META-INF/sun-cmp-mappings.xml

</mapping-properties>

<is-one-one-cmp>true</is-one-one-cmp>

<one-one-finders>

<finder>

<method-name>

Migrating Example: iBank

62 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

findOrderedAccountsForCustomer

</method-name>

<query-params>int custNo</query-params>

<query-filter>

custNo == custNo

</query-filter>

</finder>

</one-one-finders>

</cmp>

</ejb>

<ejb> --- </ejb>

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

</enterprise-beans>

</sun-ejb-jar>

Account is the only entity bean having a finder other than primary key. So the finder

entry shown above would only be in the case of Account bean.

6. The <!ELEMENT commit-option (#PCDATA)> specifies option for committing.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 63

7. The ejb element would also have an element bean-cache.

<!ELEMENT bean-cache (max-cache-size?,

is-cache-overflow-allowed?, cache-idle-timeout-in-seconds?,

removal-timeout-in-seconds?, victim-selection-policy?)>

This element is used only for stateful session beans and entity beans. In this tag,

max-cache-size defines the maximum number of beans in the cache.

cache-idle-timeout-in-seconds specifies the maximum time that a stateful session bean

or an entity bean is allowed to be idle in the cache. After this time, the bean is

passivated to backup store. This is a hint to server. Default value for

cache-idle-timeout-in-seconds is 10 minutes.

The amount of time that the bean remains passivated (i.e. idle in the backup store) is

controlled by removal-timeout-in-seconds parameter. Note that if a bean was not

accessed beyond removal-timeout-in-seconds, then it will be removed from the backup

store and hence will not be accessible to the client. The Default value for

removal-timeout-in-seconds is 60min.

With the above entries, sun-ejb-jar.xml should look like this:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

<pass-by-reference>false</pass-by-reference>

<cmp>

<mapping-properties>

META-INF/sun-cmp-mappings.xml

</mapping-properties>

<is-one-one-cmp>true</is-one-one-cmp>

<one-one-finders>

<finder>

<method-name>

findOrderedAccountsForCustomer

</method-name>

Migrating Example: iBank

64 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<query-params>int custNo</query-params>

<query-filter>

custNo == custNo

</query-filter>

</finder>

</one-one-finders>

</cmp>

<commit-option>C</commit-option>

<bean-cache>

<max-cache-size>60</max-cache-size>

<cache-idle-timeout-in-seconds>

0

</cache-idle-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb> --- </ejb>

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

</enterprise-beans>

</sun-ejb-jar>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 65

8. In <!ELEMENT enterprise-beans (name?, unique-id?, ejb*,

pm-descriptors?, cmp-resource?)>

Element pm-descriptors would be <!ELEMENT pm-descriptors

(pm-descriptor+, pm-inuse)> Persistence Manager descriptors contain one or

more pm descriptors, but only of them must be in use at any given time.

pm-descriptor describes the properties for the persistence manager associated with

entity bean. pm-identifier element describes the vendor who provided the PM

implementation. pm-version further specifies which version of PM vendor product to

be used. pm-config specifies the vendor specific config file to be used.

pm-class-generator specifies the vendor specific concrete class generator. This is the

name of the class specific to a vendor. pm-mapping-factory specifies the vendor

specific mapping factory. This is the name of the class specific to a vendor. pm-insue
specifies whether this particular PM must be used or not.

Element cmp-resource contains the database to be used for storing CMP beans in an

ejb-jar. <!ELEMENT cmp-resource (jndi-name,

default-resource-principal?)>

Element jndi-name Specifies the JNDI name string. Element

default-resource-principal has element name and password to be used when none are

specified while accessing a resource.

<!ELEMENT default-resource-principal (name, password)>

Finally sun-ejb-jar.xml would look like:

<sun-ejb-jar>

<enterprise-beans>

<ejb>

<ejb-name> Account</ejb-name>

<jndi-name> ejb/Account</jndi-name>

<pass-by-reference>false</pass-by-reference>

<cmp>

<mapping-properties>

META-INF/sun-cmp-mappings.xml

</mapping-properties>

<is-one-one-cmp>true</is-one-one-cmp>

<one-one-finders>

Migrating Example: iBank

66 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<finder>

<method-name>

findOrderedAccountsForCustomer

</method-name>

<query-params>int custNo</query-params>

<query-filter>

custNo == custNo

</query-filter>

</finder>

</one-one-finders>

</cmp>

<commit-option>C</commit-option>

<bean-cache>

<max-cache-size>60</max-cache-size>

<cache-idle-timeout-in-seconds>

0

</cache-idle-timeout-in-seconds>

</bean-cache>

</ejb>

<ejb> --- </ejb>

<ejb> --- </ejb>

other ejb’s

<ejb> --- </ejb>

<ejb> --- </ejb>

<pm-descriptors>

<pm-descriptor>

<pm-identifier>IPLANET</pm-identifier>

<pm-version>1.0</pm-version>

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 67

<pm-class-generator>

com.iplanet.ias.persistence.

internal.ejb.ejbc.JDOCodeGenerator

</pm-class-generator>

<pm-mapping-factory>

com.iplanet.ias.cmp.NullFactory

</pm-mapping-factory>

</pm-descriptor>

<pm-inuse>

<pm-identifier>IPLANET</pm-identifier>

<pm-version>1.0</pm-version></pm-inuse>

</pm-descriptors>

<cmp-resource>

<jndi-name>jdo/pmf</jndi-name>

</cmp-resource>

</enterprise-beans>

</sun-ejb-jar>

Generate dbschema by using the capture-schema utility in the Sun ONE Application Server

7 installation’s bin directory. Execute capture-schema.bat file kept in bin directory and

specify the valid inputs for the database URL, username, password and specify the tables

for which schema has to be generated. By default, schema has to be generated for all the

tables used by the application. In case of iBank, there are five tables for which schema has

to be generated. Name this schema file as myschema.dbschema. The tables used in iBank

are:

ACCOUNT

ACCOUNT_TYPE

BRANCH

CUSTOMER

TRANSACTION_HISTORY

TRANSACTION_TYPE

Place this file myschema.dbschema above META-INF folder for the
Entity beans.

Migrating Example: iBank

68 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

In <ejb-name>-ias-cmp.xml: Replace all the <ejb-name>-ias-cmp.xml files in Sun

ONE Application Server 6.0/6.5 with one sun-cmp-mappings.xml file. This file maps (at

least one) set of beans to tables and columns in a specific db schema. Since the DTDs for

this two XML files are radically different, the migrator has to actually create a new file

following the steps given below:

1. Create a new XML file which has the following DOCTYPE definition on top:

<!DOCTYPE sun-cmp-mappings PUBLIC '-//Sun Microsystems,

Inc.//DTD Sun ONE Application Server 7 OR Mapping //EN'

'http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi

ng_1_0.dtd'>

Save this file as “sun-cmp-mappings.xml”.

2. The root tag of this XML file, as evident from the DOCTYPE definition, is

sun-cmp-mappings. In the DTD, this element is defined as:

<!ELEMENT sun-cmp-mappings (sun-cmp-mapping+) >

Element sun-cmp-mapping would be :

<!ELEMENT sun-cmp-mapping (schema, entity-mapping+) >

Here element schema is the path name to the schema file.

A cmp bean has a name, a primary table, one or more fields, zero or more relationships,

and zero or more secondary tables, plus flags for consistency checking. Element

entity-mapping has following elements

<!ELEMENT entity-mapping (ejb-name, table-name,

cmp-field-mapping+, cmr-field-mapping*, secondary-table*,

consistency?)>

Element ejb-name is the EJB name from standard EJB-jar DTD. Element table-name is

the name of the database table. A cmp-field-mapping has a field, one or more columns

that it maps to cmr-field mapping. A cmr field has a name and one or more column

pairs that define the relationship. Element secondary-table is for secondary table used.

In case of iBank, no secondary table is used.

Right now, the sun-cmp-mappings.xml file with entries for Account entity bean

should look like:

<sun-cmp-mapping>

<schema>mySchema</schema>

<entity-mapping>

<ejb-name>Account</ejb-name>

http://www.sun.com/software/sunone/appserver/dtds/sun-cmp_mappi

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 69

<table-name>ACCOUNT</table-name>

<cmp-field-mapping>

<field-name>custNo</field-name>

<column-name>CUST_NO</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>branchCode</field-name>

<column-name>BRANCH_CODE</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>accTypeId</field-name>

<column-name>ACCTYPE_ID</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>accNo</field-name>

<column-name>ACC_NO</column-name>

</cmp-field-mapping>

<cmp-field-mapping>

<field-name>accBalance</field-name>

<column-name>ACC_BALANCE</column-name>

</cmp-field-mapping>

</entity-mapping>

</sun-cmp-mapping>

NOTE: We have not included the header part of the document, namely the XML

declaration and DOCTYPE definition, here for brevity.

Entries for all the CMP entity beans have to be made.

The above changes can be referenced in file iBankWithCMP1.1.zip provided with this

guide.

Migrating Example: iBank

70 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Assembling Application for Deployment
Sun ONE Application server 7 primarily supports the J2EE model wherein applications are

packaged in the form of an enterprise archive (EAR) file (extension .ear). The application is

further subdivided into a collection of J2EE modules, packaged into Java archives (JAR,

extension .jar) for EJBs and web archives (WAR, extension .war) for servlets and JSPs.

So all the JSPs and Servlets should be packaged into WAR file, all EJBs into the JAR file

and finally the WAR and the JAR file together with the deployment descriptors in to the

EAR file. This EAR file is a deployable component.

Deploying iBank application on Sun ONE Application Server 7 using
the asadmin utility
The last stage is to deploy the application on an instance of Sun ONE Application Server 7.

The process for deploying an application is described below:

The Sun ONE Application Server 7 asadmin includes a help section on deployment that is

accessible from the Help menu.

The command line utility asadmin can be invoked by executing asadmin.bat file in

windows and asadmin file in solaris kept at Sun ONE Application Server 7 installation's

bin directory. i.e., <Install_dir>/AppServer7/appserv/bin.

At asadmin prompt, the command for deployment would be:

asadmin> deploy -u username -w password -H hostname -p adminport [--type

application|ejb|web|client|connector] [--contextroot contextroot] [--force=true] [--name

component-name] [--upload=true] [--instance instancename] filepath

Restart the server instance and then test the application on the browser by typing the url

‘http://<machine_name>:<port_number>/IBank’. Test by giving one of the available user

name and password, say username as 'jatkins' and password as 'Monday'. This should show

the main menu page of the ibank application.

Migrating iBank using Sun ONE Studio for Java
4.0
The sample application we defined is called 'iBank' and simulates a basic online banking

service with the following functionality:-

• log on to the online banking service

• view/edit personal details and branch details

• summary view of accounts showing cleared balances

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 71

• facility to drill down by account to view individual transaction history

• money transfer service, allowing online transfer of funds between accounts

• compound interest earnings projection over a number of years for a given principal and

annual yield rate.

The major steps to be followed for migrating the iBank application would be as follows:

• The first and the foremost requirement of this migration is to install Sun ONE

Application Server 7 and Sun ONE Studio.

• Extract the application, which is in a zip format in a local directory.

The source for the iBank application (iBank65.zip) can be found at the migration

site http://www.sun.com/migration/sunonetools.html. Unzipping the file

“iBank65.zip” would create following directory structure:

It would have 4 sub directories ‘Docroot’, ‘SessionContent’, ‘EntityContent’

and ‘Scripts’.

m ‘Docroot’ would contain Html, Jsp’s and Image files in its root. It would also

contain the source files for servlets, EJBs, etc in the sub-folder WEB-INF\classes

following the package structure com.sun.bank.*. War file would be generated

through the contents of this directory.

m ‘SessionContent’ would contain the source code for Session beans following

the package structure com.sun.bank.ejb.session. This directory would form the

EJB module for session beans.

I. ‘EntityContent’ would contain the Entity beans following the package

structure com.sun.bank.ejb.entity. This directory would form the EJB module

for Entity beans.

m ‘Scripts’ contain the sql scripts for the database setup.

• Setup the schema for iBank application by executing the sql scripts provided in the

‘Scripts’ folder. These scripts are for oracle database. These scripts would create

user, create tables and insert data into the tables. Execute the scripts in the following

order

m 01_iBank_CreateUser.sql

m 02_iBank_CreateTables.sql

m 03_iBank_InsertData.sql

Manual migration would involve following steps:

a. Migrate Servlets, JSPs and JSP Custom tag libraries.

http://www.sun.com/migration/sunonetools.html

Migrating Example: iBank

72 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

b. Migrate Session Beans.

c. Migrate Entity Beans.

d. Migrate JDBC code.

These steps have to be carried out manually and is explained as and when required in

the following sections. If migration tool is used as an option, it has to be carried out at

this point itself. If manual approach is followed then changes have to be done as and

when specified in following sections.

• Prepare Sun ONE Studio for assembling and deploying sample application ‘iBank’

Sun ONE Studio can be invoked through the runide.exe file (runide.sh in case of

Solaris) kept in the <Sun ONE App Server ROOT>/<AppServ>/<SUN ONE

STUDIO FOR JAVA_ROOT>/bin directory.

(Note: Sun ONE Application Server 7 should be up and running before following the

steps below)

m In the explorer window,

m Click at the Runtime tab

m Click ‘Server Registry’

m Click ‘installed servers’

m Choose Sun ONE Application Server.

m Setup admin server by right clicking at the Sun ONE Application Server and then

selecting ‘Add Admin Server’

m Enter details for host (local machine name), port number (by default its 4848),

username and password.

m Once the admin server is setup, click on it to get the server instance installed.

m Set the server instance as default server by right clicking on the server instance and

selecting option for setting it as default.

• Create web module by following the instructions given in "Creating a Web application

module in Sun ONE Studio for Java".

• Migrate EJBs manually if migration tool is not used as an option for migrating the

application. Follow the section on "EJB Migration", for the manual migration. This

step can be carried out by opening the source code for the EJB’s in Sun ONE Studio

and modifying it.

• Migrate the JDBC code if migration tool is not used as an option to migrate the

application by following the section on "Migrating JDBC Code".

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 73

• iBank application has Entity Beans with CMP 1.1, so they have to be converted to

CMP 2.0 by following the manual procedure explained in the section on "Migrating

CMP Entity EJBs" if the application is not migrated using the tool.

If application is migrated through the tool, all the entity beans are migrated except one,

i.e., ‘Account’ entity bean as it has Enumeration used in its code. The code for this has

to be changed manually following the instructions given in section, "Migrating CMP

Entity EJBs". Refer section, "Converting CMP Entity EJBs from 1.1 to 2.0" for an

example of changes to be carried out for converting CMPs from 1.1 to 2.0.

• Create separate EJB modules for the Entity Beans and the Session Beans by following

the instructions given in section, "Creating an EJB module in Sun ONE Studio for

Java".

• Create Enterprise application by following the instructions given in section, "Creating

an enterprise application in Sun ONE Studio for Java", which would include the web

module as well as the EJB modules. The final output of this step would be .ear file,

which can be deployed.

• Deploy .ear file on Sun ONE Application server 7 by following the instructions given

in section, "Deploying an application in Sun ONE Application Server 7".

Creating a Web application module in Sun ONE Studio for Java
To create a Web application module in Sun ONE Studio for Java, follow the procedure

below:

1. Mount the directory containing the source files i.e, ‘Docroot’ in the Sun ONE Studio

for Java “FileSystems Explorer” window by right clicking at the Filesystem and

choosing option for mount.

2. Create an empty directory, say ‘WarContent’ for the web module in the root directory

structure containing the source files.

3. Mount the newly created directory ‘WarContent’ in the Sun ONE Studio for Java

“FileSystems Explorer” window by right clicking at the Filesystem and choosing

option for mount.

4. Mount the other directories containing the EJBs in the source file directory structure.

i.e., ‘EntityContent’ and ‘SessionContent’.

5. Convert the FileSystem (WarContent) into a Web Module by right clicking at the

folder name and then selecting tools where there is an option for converting it into

WebModule.

6. Copy the source JSP, HTML and image files to the web application root. i.e., to the

directory ‘WarContent’ from the directory ‘Docroot’.

Migrating Example: iBank

74 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

7. Copy servlets and auxiliary class sources to the WEB-INF/classes directory. i.e., copy

the sub folder ‘com’ in the ‘Docroot’ directory to the WEB-INF/classes directory of

‘WarContent’ directory.

8. Copy the tag library present in the WEB-INF of the ‘Docroot’ directory to the WEB-INF

of ‘WarContent’ directory.

9. Edit the source code wherever required to migrate it to Sun ONE Application Server 7

(if it has not been modified through the migration tool), by following the steps below:

m Figure out the JSPs that have to be changed.

m Figure out if any custom JSP tags are used in the application.

m Open the selected JSP code in Sun ONE Studio by right clicking at the file and

selecting option to open.

m Follow the steps given in section "Migrating Java Server Pages and JSP Custom

Tag Libraries" to modify the source.

m Similarly migrate the servlets by following the details in section, "Migrating

Servlets".

10. Assemble the application and fill in the deployment descriptor web.xml (in the

WEB-INF/ directory). Click on the web.xml file and edit the properties of it, i.e,

During this assembly phase, configure each servlet, JSP page and JSP tag library, as

well as the EJB or data source references used in the Web application.

The following screen shots illustrate how this assembly phase is carried out using Sun ONE

Studio for Java:

Configuring a Servlet
In the web module, click on web and then view the properties window.

Click at the deployment tab of the properties window of web.xml. Further click on the

servlets for configuring servlets.

A property editor is displayed, click at ‘Add’ button to add new servlet.

For each servlet in the Web application, you specify the name of the servlet, the full name

of its implementation class by clicking at the ‘Browse’ button, the mapping elements for the

servlet by clicking at ‘Mappings’, and any initialization parameters.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 75

Figure 2-4 Configuring Servlet

The list of servlets and their mappings in iBank application are:

Table 2-1 Servlets and Mappings

 Servlet Name Display Name Mapping

LoginServlet LoginServlet /CheckLogin

CheckTransferServlet CheckTransferServlet /CheckTransfer

CustomerProfileServlet CustomerProfileServlet /CustomerProfile

DataSourceTestServlet DataSourceTestServlet /DataSourceTest

HelloWorldServlet HelloWorldServlet /HelloWorld

LookUpDataSourceTestServlet LookUpDataSourceTestServlet /LookUpDataSourceTest

ProjectEarningsServlet ProjectEarningsServlet /ProjectEarnings

Migrating Example: iBank

76 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

All the above servlets have to be configured such that web.xml has entries for all of them.

Finally the ‘deployment’ tab should show 11 servlets mappings and 11 servlets.

Configuring a JSP tag library
Click on the Deployment tab of the web.xml properties window. Click at the Tag

Libraries to set the Tag lib.

To define a JSP tag library in the Web application deployment descriptor, specify the URI

of the library (the identifier which the JSP pages will use to access it), and the path to the

library's deployment descriptor (.tld file).

In iBank, there is one JSP Tag library TMBHisto.tld. The deployment descriptor is kept

in WEB-INF. Following entries have to be made.

Figure 2-5 Configuring Tag lib

Add Resource Reference
Click at the references tab of the web.xml Properties window. Click at the Resource

Reference to add a new resource. Following screen shot shows adding a new Resource for

Data source in iBank i.e., jdbc/iBank

ShowAccountSummaryServlet ShowAccountSummaryServlet /ShowAccountSummary

TestContextServlet TestContextServlet /TestContext

TransferFundsServlet TransferFundsServlet /TransferFunds

UpdateCustomerDetailsServlet UpdateCustomerDetailsServlet /UpdateCustomerDetails

Table 2-1 Servlets and Mappings

 Servlet Name Display Name Mapping

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 77

Figure 2-6 Adding Resource Reference

Click at the Sun ONE App Server tab and set the JNDI name as 'jdbc/IBank' and also set

the User name and Password depending on the database schema you are using.

Migrating Example: iBank

78 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-7 Adding Resource Reference entry for Sun ONE Application Server

Add Context Param
Add entry for context parameter for the JNDI name to lookup iBank data source.

Following screen shot shows the entry for context param, which can be done by clicking at

the context param in the Properties window at the Deployment tab of web.xml.

Figure 2-8 Adding Context Parameter

Specify the Welcome File
Specify the welcome file in the properties window by clicking at the Welcome Files.

In case of iBank, index.jsp is the welcome file so that has to be mentioned.

Converting CMP Entity EJBs from 1.1 to 2.0
Referring to the manual process described in section, "Migrating CMP Entity EJBs", Here

is an example of Account Entity bean being converted from CMP 1.1 to CMP 2.0.

The related files for Account bean are:

Account.java

AccountEJB.java

AccountHome.java

AccountPK.java

The details of the changes done are described below:

• Account.java:

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 79

There are no major changes in the code except for commenting out the setters for the

primary key. The other setters are kept as it is.

Following is the code before modification:

public String getBranchCode()

throws RemoteException;

public void setBranchCode(String branchCode)

throws RemoteException;

public String getAccNo()

throws RemoteException;

public void setAccNo(String accNo)

throws RemoteException;

-----other getters and setters----

After commenting the setters for the primary keys, i.e., branchCode and accNo, the

same code would be:

public String getBranchCode()

throws RemoteException;

/* public void setBranchCode(String branchCode)

throws RemoteException; */

public String getAccNo()

throws RemoteException;

/* public void setAccNo(String accNo)

throws RemoteException; */

Migrating Example: iBank

80 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

-----other getters and setters----

• AccountEJB.java :

The changes incorporated in the bean class are as follows:

m Prepend the bean class declaration with the key word abstract.

Before modification:

public class AccountEJB implements EntityBean

{

--

--

}

After modification:

public abstract class AccountEJB implements EntityBean

{

--

--

}

m Comment all the cmp fields and Prefix the accessor methods with the keyword

abstract, thus the line of code in the methods would be commented and postfix the

methods with a semicolon. Thus replace the given code below Before modification

with the code given below After modification.

Before modification:

public String branchCode;

public String accNo;

public int custNo;

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 81

public String accTypeId;

public double accBalance;

public String accTypeDesc;

public double accTypeInterestRate;

private EntityContext context;

public String getBranchCode() {

return(branchCode);

}

public void setBranchCode(String branchCode) {

this.branchCode = branchCode;

}

public String getAccNo() {

return(accNo);

}

public void setAccNo(String accNo) {

this.accNo = accNo;

}

public int getCustNo() {

return(custNo);

}

public void setCustNo(int custNo) {

Migrating Example: iBank

82 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

this.custNo = custNo;

}

public String getAccTypeId() {

return(accTypeId);

}

public void setAccTypeId(String accTypeId) {

this.accTypeId = accTypeId;

}

public BigDecimal getAccBalance() {

return new BigDecimal(accBalance);

}

public void setAccBalance(BigDecimal accBalance) {

this.accBalance = accBalance.doubleValue();

}

After modification:

private EntityContext context;

public abstract void setBranchCode(String branchCode);

public abstract String getBranchCode();

public abstract void setAccNo(String accNo);

public abstract String getAccNo();

public abstract void setCustNo(int custNo);

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 83

public abstract int getCustNo();

public abstract void setAccTypeId(String accTypeId);

public abstract String getAccTypeId();

public abstract void setAccBalance(BigDecimal accBalance);

public abstract BigDecimal getAccBalance();

m Read up all the ejbCreate() method bodies (there could be more than one

ejbCreate). Look for the pattern '<cmp-field>=some value or local

variable', and replace it with the expression 'abstract mutator method

name(same value or local variable)'. Hence the code changes would be:

Before modification :

public void setEntityContext(EntityContext ec) {

context = ec;

}

public void unsetEntityContext() {

this.context = null;

}

public void ejbActivate() {

this.branchCode =

((com.sun.bank.ejb.entity.AccountPK)

context.getPrimaryKey()).branchCode;

this.accNo = ((com.sun.bank.ejb.entity.AccountPK)

Migrating Example: iBank

84 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

context.getPrimaryKey()).accNo;

}

public void ejbPassivate() {

}

public void ejbLoad() {

}

public void ejbStore() {

}

public AccountPK ejbCreate(String branchCode,

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

this.branchCode = branchCode;

this.accNo = accNo;

this.custNo = custNo;

this.accTypeId = accTypeId;

this.accBalance = accBalance.doubleValue();

return null;

}

public void ejbPostCreate(String branchCode,

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

}

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 85

public void ejbRemove() {

}

After modification:

public void setEntityContext(EntityContext ec) {

context = ec;

}

public void unsetEntityContext() {

this.context = null;

}

public void ejbActivate() {

}

public void ejbPassivate() {

}

public void ejbLoad() {

}

public void ejbStore() {

}

public AccountPK ejbCreate(String branchCode,

Migrating Example: iBank

86 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

setBranchCode(branchCode);

setAccNo(accNo);

setCustNo(custNo);

setAccTypeId(accTypeId);

setAccBalance(accBalance);

return null;

}

public void ejbPostCreate(String branchCode,

String accNo, int custNo, String accTypeId,

BigDecimal accBalance) {

}

public void ejbRemove() {

}

• AccountPK.java

No changes required in this file.

• AccountHome.java

In the home interface of the bean, changes are required to be made only if the return

type of any finder methods is of type java.util.Enumeration.In case of Account bean,

the home interface has a finder findOrderedAccountsForCustomer which has a return

type as Enumeration. In such cases, the return type has to be changed to Collection and

also the code affected by this change, i.e, the code in the session bean which uses this

finder method has to be changed such that it has provision to accept the result of this

finder method in a Collection.

The changes done in the home interface is shown below:

Before Modification:

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 87

public interface AccountHome extends EJBHome

{

public Account findByPrimaryKey(AccountPK key)

throws FinderException, RemoteException;

public Enumeration findOrderedAccountsForCustomer(int

custNo)

throws FinderException, RemoteException;

}

After Modification:

public interface AccountHome extends EJBHome

{

public Account findByPrimaryKey(AccountPK key)

throws FinderException, RemoteException;

public Collection findOrderedAccountsForCustomer(int

custNo)

throws FinderException, RemoteException;

}

Due to the above changes, Session bean BankTeller which accesses this finder method

also needs to incorporate changes to accept the result of the finder method in a

Collection.

Following code snippet shows the changes made to the BankTellerEJB.java

Consider method getAccountSummary which uses finder method

findOrderedAccountsForCustomer

Before modification:

public AccountSummary getAccountSummary()

Migrating Example: iBank

88 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

throws EJBException

{

 int custNo = 0;

 Enumeration accEnum = null;

 AccountSummary accSum = new AccountSummary();

 try

 {

 AccountHome home=(AccountHome) PortableRemoteObject.

narrow(accHomeHandle.getEJBHome(),

AccountHome.class);

 AccountTypeHome accTypeHome = (AccountTypeHome)

PortableRemoteObject.narrow(accTypeHomeHandle.getEJBHome(),

AccountTypeHome.class);

 accEnum = (Enumeration) home.

 findOrderedAccountsForCustomer(this.custNo);

 AccountTypePK accTypePK = new AccountTypePK();

 Account accRef = null;

 AccountType accTypeRef = null;

 String accTypeDesc = null;

 int i = 0;

 while(accEnum.hasMoreElements())

 {

 i++;

 accRef = (Account) accEnum.nextElement();

 accTypePK.accTypeId = accRef.getAccTypeId();

 accTypeRef = (AccountType) PortableRemoteObject.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 89

narrow(accTypeHome.findByPrimaryKey(accTypePK),

AccountType.class);

 accTypeDesc = accTypeRef.getAccTypeDesc();

 accSum.addElement(

 accRef.getBranchCode(),

 accRef.getAccNo(),

 accRef.getAccBalance(),

 accTypeDesc

);

 }

 }

}

After Modification:

public AccountSummary getAccountSummary()

throws EJBException

{

 int custNo = 0;

 //Enumeration accEnum = null;

 Collection accEnum = null;

 AccountSummary accSum = new AccountSummary();

 try

Migrating Example: iBank

90 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

 {

 AccountHome home = (AccountHome) PortableRemoteObject.

 narrow(accHomeHandle.getEJBHome(), AccountHome.class);

 AccountTypeHome accTypeHome = (AccountTypeHome)

PortableRemoteObject.narrow(accTypeHomeHandle.

GetEJBHome(), AccountTypeHome.class);

 // accEnum = (Enumeration) home.

 // findOrderedAccountsForCustomer(this.custNo);

 accEnum = (Collection) home.

 findOrderedAccountsForCustomer(this.custNo);

 AccountTypePK accTypePK = new AccountTypePK();

 Account accRef = null;

 AccountType accTypeRef = null;

 String accTypeDesc = null;

 int i = 0;

Iterator iterator = accEnum.iterator();

 // while(accEnum.hasMoreElements())

 while(iterator.hasNext())

 {

 i++;

 // accRef = (Account) accEnum.nextElement();

accRef = (Account) PortableRemoteObject.

narrow(iterator.next(), Account.class);

 accTypePK.accTypeId = accRef.getAccTypeId();

 accTypeRef = (AccountType) PortableRemoteObject.

narrow(accTypeHome.findByPrimaryKey(accTypePK),

AccountType.class);

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 91

 accTypeDesc = accTypeRef.getAccTypeDesc();

 accSum.addElement(

 accRef.getBranchCode(),

 accRef.getAccNo(),

 accRef.getAccBalance(),

 accTypeDesc

);

 }

 }

 }

Creating an EJB module in Sun ONE Studio for Java
The procedure described below explains how to create an EJB module in Sun ONE Studio

for Java, using existing source files:

Creating Module for Session Beans
1. Directory for Session Beans 'SessionContent' has following in it.

There would be bean class and interfaces for the following Session Beans:

BankTeller

InterestCalculater

In addition to this, it will also contain Exception classes.

Migrating Example: iBank

92 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

2. Create the new EJBs from existing source files.

In Sun ONE Studio for Java, it is possible to create an EJB from existing source files.

Select mounted directory 'SessionContent', walk through the sub folders there to finally

reach the package 'session', right click here and select option for new J2EE and finally

click at 'Session EJB', which shows a new EJB wizard.

After specifying the main characteristics of the EJB (i.e., session, stateful or stateless),

and defining the name and package for the EJB, you match the existing source files and

the different components of the EJB: implementation class, home and remote

interfaces. In order to make the match with existing source files, use the "Modify"

button in the dialog box and select "Select an existing source file."

All the session beans have to be created in similar fashion.

Following screen shot shows the creation of Session Bean BankTeller which is a

Stateful Session bean. So the State specified should be Stateful whereas

InterestCalculator session bean is Stateless, so while creating InterestCalculator bean,

the state specified should be stateless. Click at the browse button to specify the

package.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 93

Migrating Example: iBank

94 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-9 Creation of new Session Bean

Following screen shot (click ‘Next>’ when you are done) shows specifying the bean

class, the home interface and the remote interface. Clicking on the modify button and

selecting option for using existing class would show up the existing files, which can be

selected.

Figure 2-10 Specifying the Bean class, Home Interface and the Remote Interface

Create the InterestCalculator session bean in similar fashion.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 95

3. Edit the properties of the EJBs

By editing the properties of an EJB, you can declare the EJB Resource references;

specify an EJB's environment entries.

Migrating Example: iBank

96 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-11 Properties window of the Session Bean BankTeller

The following screenshot shows the declaration of an environment entry for the

BankTeller session bean. InterestCalculator bean does not require this entry.

Click at the Environment Entries in the 'References' tab and then click on Add to add

new entry for the DSN.

Figure 2-12 Adding Environment Entry to BankTeller Session Bean

At the references tab of the Properties window for BankTeller Session bean, click at the

Resource Reference to add a new resource. Following screen shot shows adding a new

Resource for Data source in iBank i.e., jdbc/iBank.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 97

Figure 2-13 Adding Resource Reference

Click at the Sun ONE App Server tab to set the JNDI name as 'jdbc/iBank' and

username and password depending on the database schema used.

InterestCalculator bean does not require this entry.

Migrating Example: iBank

98 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-14 Adding Resource Reference for Sun ONE Application Server

At the references tab of the Properties window, click at the Ejb Reference to

addEJBreferences. Following screen shot shows adding EJB Reference for the

BankTeller session bean. BankTeller session bean has references to Entity bean

'Account' and 'Customer'. So entries have to be made for both the entity beans.

Home and Remote interfaces have to be specified by clicking at the modify button and

then selecting existing source for the beans.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 99

Figure 2-15 Adding EJB Reference

Now click at the 'Sun ONE App Server' tab in the EJB Reference, to specify the JNDI

name. Following screen shot shows the JNDI entry to be made for the Account entity

bean i.e., 'ejb/Account'. Similarly whenEJBreference for 'Customer' bean is added

the JNDI name specified at the Sun ONE App Server tab would be 'jndi/Customer'.

Figure 2-16 Adding EJB Reference entry for Sun ONE Application Server

4. Compile the source files

Migrating Example: iBank

100 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

5. Create an EJB module and assemble the EJBs within it.

In accordance with the J2EE 1.2 specification, in Sun ONE Application Server 7 you

must group EJBs together in an EJB module. Create new EJB Module i.e.,

SessionModule at the root directory i.e., 'SessionContent' by right clicking the

folder and selecting option for New and then selecting J2EE and then finally selecting

New EJB Module. After creation add the Session EJB's into it.

The screen shot below shows how the BankTeller and InterestCalculator EJBs are

added to an EJB module SessionModule.

Figure 2-17 Adding Session Beans to EJB Module

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 101

Creating Module for Entity Beans
1. Directory for Entity Beans would contain following.

Bean class, Remote and Home interface for the following Entity Beans:

a. Account

b. AccountType

c. Branch

d. Customer

e. Transaction

f. TransactionType

Customer entity bean is Bean managed and others are Container managed.

2. Configure the JDBC driver

In the Runtime view of the Explorer, in Databases / Drivers / Add Driver: specify the

driver name, implementation class, and the prefix of the relevant URL. The

corresponding JAR or ZIP for the driver must be accessible to Sun ONE Studio for

Java, and must therefore be copied into the <SUN ONE STUDIO FOR

JAVA_ROOT>/lib/ext directory.

To place the driver classes in the appropriate Sun ONE Studio for Java directory in

Solaris, run the following command from the shell (sh or ksh):

cp $ORACLE_HOME/jdbc/lib/classes12.zip <SUN ONE STUDIO FOR

JAVA_ROOT>/lib/ext

Migrating Example: iBank

102 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

3. Define the database connection properties

In the Runtime view of the Explorer, in Databases / Add Connection... indicate the

driver used, the full connection URL, the user name, the related password, and lastly

the appropriate database schema:

Figure 2-18 Configuring a database connection (Oracle) in Sun ONE Studio for Java

4. Create the new EJBs from existing source files.

In Sun ONE Studio for Java, it is possible to create an EJB from existing source files.

Select the mounted directory 'EntityContent', walk through the directory till you

reach 'entity' sub-folder. Right click and select option for new J2EE and finally click

at 'Entity EJB(CMP/BMP)', which shows a new EJB wizard.

After specifying the main characteristics of the EJB (entity, BMP or CMP), and

defining the name and package for the EJB, you match the existing source files and the

different components of the EJB: implementation class, home and remote interfaces. In

order to make the match with existing source files, use the "Modify" button in the

dialog box and select "Select an existing source file." Entity beans require an extra step

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 103

of specifying the mappings of the cmp fields with the table. In the Explorer Filesystems

view, after selecting the option New CMP Entity Bean, Select option, table from

Database connection in order to be able to specify the database table to be used for

persistence of the EJB fields:

Migrating Example: iBank

104 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-19 Creation of an Entity bean with container-managed persistence.

The following screen enables you to select the right connection from the list of

database connections defined.

Once the connection is selected, list of tables accessible from this connection are

shown, and select the appropriate table:

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 105

Figure 2-20 Choosing a table for mapping CMP bean fields.

The next screen is used to configure mapping between the columns of the table selected

and the CMP fields of the bean. Particular care should be taken to correctly indicate the

names of the bean fields and associated Java types.

Migrating Example: iBank

106 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-21 Mapping between table columns and CMP fields of the bean

The next screen shot shows, specifying the source files for the Entity Bean.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 107

Figure 2-22 Specifying the source files for the Entity Bean

The next step involves informing Sun ONE Studio for Java that you want to create the

EJB from existing source files, which can be specified by clicking at the 'Modify Class'

button.

If you get any error while pointing to the existing source files, it may have caused

because you made a mistake in the previous steps or the source is not migrated

properly. Such errors should be handled by making changes as and when reported.

The next screen shot shows selecting existing source file for EJB bean class.

Migrating Example: iBank

108 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-23 Specifying EJB Bean class by selecting option for Existing Source files

The next stage involves editing the properties of the new EJB wherever required.

All the entity beans have to be created in similar fashion.

(Note: This might give some errors giving option to select the existing class or using

another one, click on to 'using same class'. Sun ONE Studio might show some

unexpected results, in such condition, exit Sun ONE Studio and then reload it again.)

5. Edit the properties of the EJBs.

Select the new EJB in the explorer window so that its properties are displayed in the

properties inspector.

In the properties window, select the References tab, click on the text zone to the right

of the "Resource References" label, then on the button showing suspension points

("…") on the right hand edge of this text zone.

Following properties have to be set for the entity bean Customer only.

Following screen shot shows adding Resource reference for the Entity Bean Customer.

In the "Standard" tab, give the full name of the data source

("jdbc/DataSourceName"), the resource type (javax.sql.DataSource), and

select "Container" from the drop-down list of options for managing access to this

resource ("Authorization").

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 109

Figure 2-24 Adding Resource Reference

Once the declaration has been made, select the "Sun ONE App Server" tab, and specify

the JNDI name of the data source "jdbc/iBank" in the JNDI Name column of the

entry that corresponds to the resource reference defined previously. Also specify the

username and password.

Figure 2-25 Editing Resource Reference

In the properties window select the 'Sun ONE AS' tab Click on the 'Reference Resource

Mapping' and choose the data source i.e, jdbc/IBank on the server instance which has

to be used. Following screen shot would dipict the same

Migrating Example: iBank

110 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-26 Resource Reference Mapping for Sun ONE Application Server

6. Set EJB QL for finders other than findByPrimaryKey method.

EJB QL has to be specified for finders. As per the CMP 2.0 specification, the finders

will use EJB QL.

In iBank application the entity bean that would require this type of editing is Account

bean. Select the AccountEJB node in the Sun ONE Studio explorer window and expand

the finder methods in it. Click on any finder method other than the findByPrimaryKey
to open its properties window:

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 111

Figure 2-27 Properties of Finder Method

Click at the EJBQL Query to enter the query. Following screen shot shows the query

entered:

Figure 2-28 Editing EJB QL for the Finder

7. Create an EJB module and assemble the EJBs within it.

Create new EJB module named EntityModule and add all Entity beans into this module

by right clicking on the EJB module and selecting the option to add EJB's. As per the

J2EE 1.2 specification, you must group EJBs together in a EJB module.

8. Create new Database Schema

From the file menu click new and then select new Database Schema. Provide the

connection information for the database from which schema has to be captured.

Migrating Example: iBank

112 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

9. Map the database entries for Sun ONE Application Server 7.

Select a EJB node in the EJB module, right click the node to choose the properties

window and select Sun ONE AS tab. Specify the database schema and primary table

name for this particular entity bean. Repeat the process for other Entity Beans in the

EJB Module.

Following screen shot shows selection of primary table for the entity bean Account

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 113

Figure 2-29 Database Mapping

Click on ‘Next >” for specifying the mappings for the cmp fields of bean with the table

fields.

Now select the Sun ONE Mapping Tab from the properties window and re-enter the

mappings.

Following screen shot shows mappings for the Account EJB

Figure 2-30 Properties of entity bean ‘Account’

Similarly mappings for all the Entity beans have to be set.

See Appendix A for the details on the mapping of particular Entity bean to

corresponding database table field.

Migrating Example: iBank

114 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

10. Add CMP resource

Select EntityModule and view its properties, click at Sun ONE AS tab, and now click

at CMP Resource to configure the Persistence manager factory.

Following screen shot shows the configuration:

Figure 2-31 Adding CMP Resource

Creating an enterprise application in Sun ONE Studio for Java
After creating the Web application and EJB files, the next step is to create an enterprise

application, which groups all the modules together. The process for creating an enterprise

application is as follows:

1. Create a new enterprise application module in a new directory say 'IBank' under the

same package available for the source.

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 115

2. Add the Web module and EJB modules to the enterprise application module

The following screen shots show an enterprise application called iBank, containing a

Web module called WarContent and EJB module called SessionModule and

EntityModule.

Migrating Example: iBank

116 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure 2-32 Adding Modules to the Application

Following screen shot shows Application iBank having 3 modules in it.

Figure 2-33 File System showing Application ‘iBank’ having different modules

Migrating Example: iBank

Chapter 2 Migration Considerations and Strategies 117

3. Edit the enterprise application properties.

The property editor allows you to set the different properties of the enterprise

application module. In particular, this is where the root context name is defined for the

Web module of the enterprise application:

Figure 2-34 Specifying the Web Context

4. Export EAR file.

Export EAR file by right clicking the Enterprise application and selecting option for

exporting EAR file. This EAR file would contain JAR files, WAR file and XML files.

This EAR file has all the Sun ONE specific XML files required for the deployment on

Sun ONE Application Server 7. This EAR file can now be deployed.

Deploying an application in Sun ONE Application Server 7
The last stage is to deploy the application on an instance of Sun ONE Application Server 7.

The process for deploying an application is described below:

Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0

118 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

1. Deploying an application on Sun ONE server 7 instance from Sun ONE Studio for Java

Right click on the EAR file and select option ‘Deploy’. This would deploy the

application on the default server instance. Restart the server instance and then test the

application.

2. Deploying an application on an Sun ONE Application Server 7 instance using Sun

ONE Application Server 7 asadmin utility

An alternative to using Sun ONE Studio for Java to deploy enterprise applications on

an Sun ONE server instance is to use the Sun ONE Application Server 7 asadmin
utility, after creating and exporting the application EAR archive from Sun ONE Studio

for Java.

For instructions on deploying the iBank application using the asadmin deployment

utility, please refer to "Deploying iBank application on Sun ONE Application Server 7

using the asadmin utility" section under "Manual Migration of iBank Application"

topic.

Migration from BEA WebLogic Server v6.1 and
IBM WebSphere v4.0

The detailed J2EE application migration process and the sample application migration for

BEA WebLogic v6.1 and IBM WebSphere v4.0 is part of another guide which can be found

at the Migration Site.

119

Chapter 3

Migration from KIVA/NAS 4.1 to Sun
ONE AS 7

Kiva/NAS 4.1 Java AppLogic applications can be migrated to J2EE web modules using

iPlanet Migration Toolkit (iMT 1.2.3). The resulting web modules leverage JATO and a

thin KFC (Kiva Foundation Classes) adaption layer to support running the AppLogic code

on any J2EE web container.

Introduction
Before starting the migration process, be sure you have read the release notes so that you

are aware of the latest information and any issues that might be relevant to you and your

environment. Also refer to %MIGTBX_HOME%/bin/readme.txt file. This file also

describes proper installation and configuration of the Migration Toolbox and its

environment, which must be complete before beginning the migration process described in

later sections.

%MIGTBX_HOME% represents the directory in which you installed/unzipped the Sun ONE

Migration Toolbox (S1MT).

Migration Preparation

Migration Process Overview
There are two main phases to full migration of a proprietary AppLogics application to its

J2EE equivalent. These phases are the automated migration phase and the manual
migration phase. The automated migration itself consists of two steps called extraction and
translation.

120 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Automated Migration Phase
This phase consists of preparing the AppLogic application source for migration and then

using the S1MT to perform automated extraction and translation. The input to this phase is

a user provided archive (JAR/ZIP) containing the original application source files

(AppLogic files, GXR, query files, templates, static content and regular Java source and

properties). This file is called the application extract archive. Using a standard Java archive

(JAR/ZIP) to package the existing application and NOT requiring a NAS/iAS runtime

environment allows the migration environment to be more flexible; migration may even be

performed remote from the customer site since the runtime infrastructure (databases, web

servers, app servers) is only needed during manual migration for unit testing. Essentially,

this archive is just the targeted contents of the ./nas/APPS directory of the application server

and document root of the web server. The Extraction Tool for KIVA AppLogics will read

this archive and create the application descriptor. iMT v1.2.3 now supports the automatic

creation of the application extract archive (See the Kiva Migration Toolbox Builder 'Addin'

from the 'Addin' menu).

The application descriptor (an XML file) is used to guide the Translation Tool on the

disposition of each file in the archive. The migrator may need to adjust the application

descriptor. See Technote on editing the application descriptor. After running the Translation

Tool the result is a partially (or in some cases, fully) migrated application consisting

entirely of J2EE-compliant components based on JATO and the KIVA Migration library

composed in a web application archive (deployment descriptor, servlets, JSPs, Command,

query files).

The output from the translation process entirely transforms HTML templates to JSPs and

converts GX tags to new JSP tags used with the KIVA migration library. AppLogic source

files are adjusted to use the KIVA migration library (minimal change mostly to import

statements). The translation process also creates the web application infrastructure

including all the components of the JATO application and direct command invocation

module. However, the translation phase does not automatically port code written to

proprietary KFC APIs which are "non-targeted" in the KIVA migration library. This porting

will be the primary task during the manual migration phase. iMT v1.2.3 now supports the

automatic migration of static documents specifically with help in fixing URLs.(See the

Kiva Migration Toolbox Builder 'Addin' from the 'Addin' menu) and the new Kiva

Document Translation Tool.

Manual Migration Phase
In general, the manual migration phase consists of reviewing the automatically migrated

application output and porting non-targeted KFC API code to J2EE-specific code.

Understand that this process does not typically require a redesign of the application or its

architecture. In many cases, code which needs manual attention is clearly outlined in a

deprecated compile using the MIGRATION version of the KIVA Migration library

[kivaMIGRATION.jar]

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 121

Preparing your Working Environment
Before going further, ensure you've done the following:

1. Make sure you've installed the iPlanet Migration Toolbox

• Unzip the distribution archive into the desired target directory. Follow the

directions in the readme.txt file.

• Test the installation by trying to start the Toolbox application. Run

toolbox.bat in the %MIGTBX_HOME%/bin directory. An empty Toolbox

should appear after a few moments. If nothing appears, check that the

Migration Toolbox was installed properly and that all appropriate

environment settings have been set in %MIGTBX_HOME%/bin/setenv.bat.

2. To avoid class version issues, it is strongly recommended that you remove all JAR files

from your JDK's extension directory (%JAVA_HOME%/jre/lib/ext) while running

the Toolbox application. All the classes necessary for running the Toolbox are included

with the distribution. Please note that simply renaming the JAR files in the extension

directory is not sufficient; you must move them to a different location.

3. Identify the AppLogic based application which is to be migrated.

4. Generate the application extract archive. In the simplest case, it is a ZIP or JAR file

containing all files and directories under ./nas/APPS which are related to the

application. The iMT for AppLogics DOES NOT actually load or run any Java classes

or libraries from your application. All extraction and translation is done at the source

level so it is not a problem if the archive does not contain all dependent classes or

libraries - these will only be needed while compiling after automated migration.

5. At this point, you may also want to install Sun™ ONE Application Server 7 (known as

S1AS), Forte for Java 4.0 EE or another J2EE-compliant servlet/JSP container.

• Follow the installation instructions for the server or container

• Test the installation by starting the server or container and trying to load the

default home or index page. If an error occurs, troubleshoot the installation

process before continuing

Preparing a Project for Automated Migration
Because AppLogic and the KFC allowed developers immense latitude and practically no

prescription, there is no way for the iMT to account for all possible permutations. For this

reason, it is strongly recommended that customers engage Sun Professional Services to

assist in preparing projects for migration

122 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

iMT Kiva BETA customers discovered that during manual migration procedures portions

of the existing code caused obstacles in compiling the code in the JDK 1.3.1 an J2EE

environment. The following is a list of considerations and activities which should be

performed before a migration is attempted.

You have to prepare the application code for J2EE environment before using the iMT. The

code should be compiled against JDK 1.3 (or at least JDK 1.2.2) and the J2EE APIs. For

instance, the iMT comes with the kfcjdk11.jar library for the KFC. This is provided so

that customers may compile their existing application in an advanced J2EE capable IDE

like Forte for Java (FFJ). A standard AppLogic application should be able to compile in FFJ

by simply adding the kfcjdk11.jar to the classpath (FileSystems). Prior to compiling,

the deprecate flag should be set (TRUE) to expose deprecated code.

When customers are already using JDBC it is highly recommended that the database

services be re-factored for the latest third party drivers (JDBC, Oracle, and Sybase) as

recommended by the vendors for the new JDK.

In order for exact migration tasks to be identified and sourced, all special considerations

would need to be assessed first. In simpler terms, we need to identify anything “out of the

ordinary” which may be in the code. This includes code patterns or use of Java services

which conflict with a concurrent server pattern of the J2EE container contract with the

developer. For instance, if the code used java.lang.Thread directly or shared resources, this

code will need to be inspected for suitability in J2EE.

Some customers use other third party Java services which may themselves may not be ready

for J2EE even though the customers code is. For instance, an old version of CORBA (e.g.

Visibroker for Java, or Iona) may need to be upgraded.

J2EE has the requirement that logical applications shall be deployed into separate web

applications as WARs. It is easier to isolate logical applications and common libraries

before migration proceeds.

Customers need to prepare for the change of external URLs. No matter what technique is

used to migrate to J2EE, URLs will change and therefore a strategy is required for

bookmarks and previously published URLs. The iMT v1.2.3 release provides some support

for automated migration of static documents URLs. Nevertheless, customers will need to

survey the existing system to account for all the changes which will need to be managed.

Preparing the GXR file
In order for the extraction phase to perform accurately when generating the application

descriptor, a GXR file is needed to identify the AppLogic files and the AppLogic names

used during NameTrans and URLs. Most applications use at least one GXR file or at least

one for each package in the application. The extraction phase requires one (1) single GXR

file in the application extract archive. If you have more than one GXR file, combine them.

If you do not have a GXR file you will need to compose one using proper GXR syntax; the

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 123

source data can be acquired by dumping the KIVA registry (./nas/bin/kreg -save

temp.out SOFTWARE). In short, the extraction tool uses the GXR file to determine which

files in the application extract archive are AppLogic source files and also develops a

mapping of GUID to AppLogic name to AppLogic class name.

Before Running the Extraction Tool
If your AppLogic application is entirely based on app server side Java and material (query

files, HTML templates, AppLogic source, support Java source, etc.) then you can usually

create the application extract archive by zipping up the relevant contents of the

./nas/APPS directory. However, if the application also contains static content then you

have some additional work to do. It is common and more efficient to have static content

located on the Netscape Enterprise web server and leave the dynamic content on the

application server side (AppLogics and templates). Depending upon your J2EE server

vendor, you may benefit from this separation or it may be helpful to combine the static

content and dynamic application resources. The static content may be added to the WAR

during or after automated migration - this is usually the easiest.

There is one important consideration when migrating from original AppLogics application

to J2EE JATO using the iMT. URLs which invoke AppLogics (POST/GET) are absolute

URLs (e.g. http://host/cgi-bin/gx.cgi/AppLogic+HelloWorld) After migration,

the URLs become relative to a context defined by the ServletContext and therefore absolute

URLs should be avoided. The transformation of URLs is different for static content and

dynamic content (HTML templates). The iMT maps all AppLogics to JATO Command

implementations in a special JATO module called the direct command invocation module.

Since all translated AppLogics are invoked from the same path within the ServletContext,

the intra-AppLogic invocations (URLs) in the resulting HTML markup are the most

predictable. Therefore, all AppLogic invocation URLs are translated as if intra-AppLogic is

in order. When there is static content among the HTML templates in the application extract

archive, the AppLogic URLs will need to be adjusted since the context of the static content

will most likely NOT match the path in the ServletContext for the direct command

invocation module (ModuleServlet). The OnlineBankSample application migration

demonstrates the need to make this adjustment and utilizes the automatic translation of

static documents using the Kiva Document Translation Tool.

Migrating OnlineBankSample
This section describes the automated and manual migration procedures of the

onlineBankSample to J2EE.

http://host/cgi-bin/gx.cgi/AppLogic+HelloWorld

124 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Running the Migration Toolbox
Install iMT 1.2.3, if you have not installed it already and refer to "Migration Preparation"

section for details on installing and starting iMT. Make sure that you edit the

%MIGTBX_HOME%\bin\setenv.bat to account for the installation location of the iMT and

the JDK home dir.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 125

Create a Toolbox
1. Select the Kiva Migration Toolbox Builder from the Addin:Migration menu.

A modal dialog wizard will appear.

Select OK to proceed to the first step of the wizard.

126 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

2. Automated iMT migration will produce some J2EE infrastructure including new Java

JATO files. These new files must be assigned a package. Although existing Java source

in the original application will retain packaging, we still need to assign a package for

these new files. There is no restriction on the package name. The default value is

provided for the OnlineBankSample application.

Enter a package and select OK to display the next step in the wizard.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 127

3. Enter the directory where all materials generated by the iMT will be stored. The default

is usually satisfactory and is used in this example. Select OK to display the next step in

the wizard.

128 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

4. The Automatic Application Extract Archive wizard will help create tools to

automatically build the archive. If you choose OK then proceed to Step (5) otherwise

Cancel will show the Extract Archive selection dialog (see below)

which allows you to specify the manually created archive. This is useful if you already

have invested time in the extract archive and you are just building a new Toolbox.

If you choose OK to the Automatic Application Extract Archive wizard you will see

the following dialog:

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 129

5. Select OK to accept the default and display the next step.

6. Select OK to accept the default BLANK list and display the next step in the wizard.

130 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

7. Select OK to accept the default, generate three new tools for the toolbox and display

the next step in the wizard.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 131

8. The OnlineBankSample only contains Java source which is ASCII encoded so accept

the default. When you are migrating your own application, if you have Java source

using another character encoding (e.g. Japanese Shift_JIS) then be sure to specify the

encoding used. Select OK to display the next step in the wizard.

9. The OnlineBankSample only contains Query files which are ASCII encoded so accept

the default. When you are migrating your own application, if you have Query files

using another character encoding (e.g. Japanese Shift_JIS) then be sure to specify the

encoding used. Select OK to create the Kiva Extraction and Translation tools in the

toolbox and display the next step in the wizard.

132 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

10. iMT v1.2.3 now provides assistance automatically translating static HTML documents

and combining them with the WAR file. If you choose the skip this feature the wizard

exits and the toolbox is complete. For the OnlineBankSample, we will Select OK and

use the automated feature.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 133

11. Select OK to accept the default location of the document directory for the

OnlineBankSample and proceed to add four (4) new tools to the toolbox and exit the

wizard.

Click ‘OK’ to complete the generation of the necessary tools. The result of the Addin is

a complete Toolbox consisting of an Extraction and Translation tool and the optional

tools to automatically create the application extract archive and translate the

documents. Please remember to select the 'branch' for each tool to display the detailed

Help for each tool in the right frame. The Help explains each property in the tool. Click

on each 'instance' of the tools to display the bean property panel in the right frame. Both

the basic and expert properties may be edited.

The Task Tools simply cause a list of other tools to be executed in order. It is usually

more informative to run the tools separately so that you can carefully watch the console

output.

The Extraction tool properties are shown here:

134 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

The Translation tool properties are shown here:

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 135

12. Invoke the CreateAppExtractArchive-onlinebank Task tool. This tool runs the

CopySrcAll-onlinebank and JarExtract-onlinebank tools one after the other to produce

the application extract archive

%MIGTBX_HOME%\work\onlinebank\archive\onlinebankApps.jar

13. Invoke the Extract-onlinebank. This tool runs very quickly. The trace of the tool

execution is shown in the Console frame. It will introspect the application extract

archive, concentrating on GXR files to produce the application descriptor XML file.

You must review the application descriptor and sometimes edit it so that the files are

organized properly so that the Translation tool clearly understand the disposition of

136 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

each file (including the proper encoding) in the archive. For iMT 1.2.3 the Extraction

tool will automatically discern the encoding of the HTML templates. Please review the

application descriptor to ensure that the proper encoding was selected for each

template. The location of the application descriptor is

%MIGTBX_HOME%\work\onlinebank\appdesc\onlinebank.xml

and it is helpful to use an XML editor to navigate and edit this file carefully. Here is a

view of a portion of this file in XML Spy.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 137

14. Invoke the Translate-onlinebank tool. It takes a little longer than extraction and the

time will depend on the number of AppLogic source files, Java files and Html

templates you have in the archive. ALWAYS review the Console output when

Translating to see if errors are reached. The Translation tool will usually skip past

errors and continue to translate the rest of the application. It is easy to miss a

WARNING or ERROR in the large trace output. You may change the expert properties

138 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

to enable debugging and verbose tracing to see the real detail of the translation

including use of the internal calls to Regular Expression mapping rules and element

processing. The results of translation are placed in the 'migrated' directory under output

directory

A complete J2EE JATO Web Application is created under 'migrated/war'.

15. Invoke the FixStaticDocs-onlinebank Task tool. This task will call in order the

JarDocs-onlinebank, TranslateDocs-onlinebank and CopyDocs2War-onlinebank so

that the static content URLs for AppLogics are fixed and the content is copied to the

document root of the WAR.

At this point, automated migration is complete and manual migration starts.

The easiest way to proceed in manual migration is to load the web application into a

J2EE IDE. Forte for Java EE (FFJ) is used in this example.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 139

16. Start FFJ 4.0 and create a new Project called OnlineBank. Make sure there are no

existing file systems in the new project. Select [Project] from menu and click [Project

Manager].

140 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

17. On the Project Manager window, click New and put a project name (OnlineBank).

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 141

18. Right click [Filesystem] icon and select [Mount Directory] on the Explorer panel.

Select ${migtbox_home}\work\output\onlinebank\migrated\war and click

OK. Forte should recognize this directory as a standard WAR directory and create a

WAR view in the Explorer.

FFJ uses the term FILESYSTEM to refer to an entry in the CLASSPATH for a project.

Upon mounting the WAR directory not only will the ./war/WEB-INF/classes

directory be AUTOMATICALLY part of the CLASSPATH because its a 'war' file, but

each library under ./war/WEB-INF/lib will also be added (ZIPs and JARs). See the

Filesystems for the OnlineBank project below

Here is the document root of the new web application (see below). Notice that some

static content has been translated to JSPs and the HTML templates have been translated

to JSPs.

142 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Here is the new layout of Java classes in the web application (see below). Notice that

the original Java source retains original packaging. The AppLogics are translated to

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 143

JATO commands and very little code is affected. The new JATO source files are

placed in the new package specified as a property in the Translation tool.

The Java source will need to be compiled. It is very important to enable 'deprecation'

flag in the compiler. The Translation tool automatically placed the debug or 'migration'

version of the KFC adaption library in the WAR. When you compile your translated

application using this library and the 'deprecation' flag is enabled, the compile will

produce a report of each line of code which uses a 'non-targeted' API. The intention

here is to reach a complete compilation as quickly as possible and produce a report on

the tasks required for manual migration. Even if the application uses 'non-targeted'

144 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

APIs, as long as it compiles it will run; although it may not function properly since

non-targeted API are non-functional (e.g. return null or GXE.FAILURE). This is

valuable because the migrator may incrementally migrate portions of the application

and test these portions without being burdened with having to totally migrate the

application. In other words, the migrated AppLogic JATO Commands may be tested

one at a time. Another value proposition is that the deprecation report is a nice way to

determine how much work there is to do.

19. Edit Project properties (Compiler: External Compiler:) and set deprecation to TRUE.

Select [Tools] from menu and click [Options]. Expand the ‘Building’ and then

‘Compiler Types’ nodes and set [deprecation] as True for External Compilation on

Options window as shown below:

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 145

20. In the project view in the Explorer, select the Classes branch and right click to menu

and choose Compile ALL. All the migrated code (AppLogics, etc.) in

${migtbox_home}\work\output\onlinebank\migrated\war\WEB-INF\clas

ses\

and the new generated JATO infrastructure in

${migtbox_home}\work\output\onlinebank\migrated\war\WEB-INF\clas

ses\com

Everything should compile immediately.

146 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

There are six uses of NON-TARGETED SESSION KFC API's in the

OnlineBankSample and three uses of the NON-TARGETED "commit" method of
ITrans in the version of the iMT.

The 'session' APIs are the most commonly found non-targeted APIs. In the KIVA

Application Server and KFC, developers could optionally supply an ISessionIDGen

reference to any of the 'session' APIs. This interface allowed the developer to control

the Session ID and related behavior. There is no such capability in J2EE. Applications

which used ISessionIDGen will need to manually redesign that portion of the

application. Most developers chose not to use this feature by providing a 'null' object

reference to the APIs. Nevertheless, since ALL the KFC 'session' APIs required this

parameter and the ISessionIDGen type is non-targeted, ALL the KFC 'session' APIs are

non-targeted too. There are alternative APIs provided for most of the non-targeted

methods which do NOT require the ISessionIDGen parameter. The migrator will need

to revise each case of non-targeted 'session' APIs so that the alternative APIs are used

instead. Usually, these 'session' APIs are located in one or few places in the application

so it should not be a costly manual change. Please note that there are two special cases

in the 'session' APIs. The IAppLogic.saveSession(ISessionIDGen) does not provide an

alternative method because there is no concept of 'saving or flushing' HttpSession in

J2EE. This API is eliminated. The IAppLogic.createSession(int, int, String, String,

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 147

ISessionIDGen) API provides an alternative API which takes zero parameters. Again,

in J2EE, the Servlet API does not provide any control for the developer like the KFC

API did; although the container vendor may provide value-added configuration or the

HttpSession via deployment descriptor and app server configuration.

The single argument to the ITrans.commit method was never used by KIVA. We have

eliminated this API for an Adapted API which takes zero arguments. You will need to

remove the '0' value in the three commit methods in CreateCust.java Transfer.java and

UpdateCust.java

21. In the OnlineBankSample application the 'session' APIs are used in

BaseAppLogic.java, OBLogin.java, and OBLogout.java. The changes are shown

below and are required to proceed.

BaseAppLogic.java LINE 38

ISession2 currentSession = getSession(); // getSession(0,

appName, null);

BaseAppLogic.java LINE 44

currentSession = createSession();

//createSession(GXSESSION.GXSESSION_DISTRIB, 0, appName,

null, null);

OBSession.java LINE 52

// result = m_logic.saveSession(null);

OBLogin.java LINE 123

int rc = GXE.SUCCESS; // saveSession(null);

OBLogout.java LINE 27

destroySession(); // destroySession(null);

There will usually be manual modifications needed on the HTML source or even the

HTML Template source (now JSPs). The modifications will be different for every

application. The iMT alleviates most of the manual work for systematic tasks.

Customers may find repeatable patterns and leverage the Regular Expression mapping

tool to help automate their efforts. In most cases, the maintenance on the markup is in

the area of URL paths. Links to static content from the dynamics content may suffer

from invalid absolute paths caused by the addition of the web application context.

148 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

22. edit both parallel versions of the ExitMessage.jsp. The absolute reference to static

content from the dynamic content are broken because we have moved the static content

into the WAR file. These references would be correct if the content was deployed

outside of the WAR file. Notice the [..] characters added to the beginning of the

absolute URL. Because the ExitMessage.jsp is rendered from the context of the [/cmd]

servlet mapping within the servlet context, we can get back to the document root of the

servlet context by just moving one segment up in the path.

/GXApp/OnlineBankSample/templates/en/ExitMessage.jsp

/GXApp/OnlineBankSample/templates/ja/ExitMessage.jsp

LINE 15 (html -> jsp links and path) (see snippet below for English version)

href="../GXApp/OnlineBankSample/en/OBLogin.html"> Back to Login

Page

23. Optional edit /WEB-INF/web.xml to allow for automatic startup when the root context

is requested (see snippet below) You need to add welcome file elements between the

servlet mappings and the taglib elements

</servlet-mapping>

<welcome-file-list>

<welcome-file>

GXApp/OnlineBankSample/index.html

</welcome-file>

</welcome-file-list>

<taglib>

A major effort required during manual migration will be to verify URLs within the

application. Links between static and dynamic content will usually need to be updated

for the relative paths required for portable J2EE deployment. Also, JavaScript may

need to be revised.

The manual migration effort is completed and the final web application may be

deployed on any J2EE web container. In FFJ you may export a WAR file and deploy

on iAS 6.5. You may also run the web application directly in FFJ using the built-in

TomCat server.

Chapter 3 Migration from KIVA/NAS 4.1 to Sun ONE AS 7 149

24. Add a Server Module Group in FFJ. Right click on WEB-INF branch in Explorer,

select [New]->[JSP&Servlet]->[Web Module Group] and add a server group. Accept

the default on the wizard screen and simply chose 'Finish'. A new element under

WEB-INF in the Explorer appears called 'ServerConfiguration'. Add the current web

application by right clicking on [Server Configuration] branch in Explorer and select

[Add Web Module]. Provide a servlet context name on [Add Web Module] window.

For example "Demo".

25. Execute in FORTE by right clicking on [Server Configuration] branch in Explorer and

select [Execute].

150 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

151

Chapter 4

Migration from NetDynamics to Sun
ONE AS 7

NetDynamics applications can be migrated to J2EE web modules using iPlanet Migration

Toolkit (iMT 1.2.3). The resulting web modules can be deployed and executed on any J2EE

web container.

Introduction
Before continuing, be sure you have read the %MIGTBX_HOME%/bin/readme.txt file so

that you are aware of the latest information and any issues that might be relevant to you and

your environment. The readme file also describes proper installation and configuration of

the Migration Toolbox and its environment, which must be complete before beginning the

migration process described in this document.

[%MIGTBX_HOME% represents the directory in which you installed/unzipped the iPlanet

Migration Toolbox (iMT)].

This document covers the minimal process of migrating a NetDynamics application to

J2EE. It is not intended to be an exhaustive reference for the migration process, in large part

because there are only a few common aspects between any two migrations. Instead, this

document provides the information necessary to understand the basic migration process

using the iPlanet Migration Toolbox (iMT).

152 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Migration Preparation

Migration Process Overview
There are two main phases to full migration of a NetDynamics proprietary project to its

J2EE equivalent. These phases are the automated migration phase and the manual
migration phase. The automated migration itself consists of two steps called extraction and
translation.

Automated Migration Phase
This phase consists of manually preparing a NetDynamics project for migration and then

using the iMT to perform automated extraction and translation. The input to this phase is a

proprietary NetDynamics project or set of projects, and the result is a partially (or in some

cases, fully) migrated application consisting entirely of non-proprietary J2EE-compliant

components (servlets and JSPs).

The output from the translation process entirely replicates the component structure present

in the original NetDynamics project. This process also uses the declarative property

information present in the project's INTRP files to generate equivalent features in the

migration application. However, the translation phase does not (currently) automatically

port code written to the NetDynamics Spider API to its J2EE equivalent. This porting will

be the primary task during the manual migration phase. The process does, however, place

the original source code in the appropriate location in the new output. For example, code

from the NetDynamics onBeforeDisplay event handlers is placed in the analogous event

handler methods in the migrated application.

Manual Migration Phase
The degree of application migration accomplished in the automated phase is directly related

to the amount of declarative versus API features used in the original application. In those

rare cases where a project used entirely declarative features, that project can frequently be

automatically migrated fully and be immediately deployable and runnable in a J2EE

container without any manual work. Consequently, projects that use fewer declarative

features will require more manual work to become functional as J2EE applications.

In general, the manual migration phase consists of reviewing the automatically migrated

application output and porting Spider-API-specific code to J2EE-specific code. Understand

that this process does not typically require a redesign of the application or its architecture;

rather, it is largely a straightforward 1-to-1 mapping of API calls. This is possible because

of the use of JATO, a powerful J2EE-compliant web application foundation targeted by the

automated translation process.

Preparing your Working Environment
Before going further, ensure you've done the following:

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 153

1. Make sure you've installed the iPlanet Migration Toolbox.

• Unzip the distribution archive into the desired target directory. Follow the

directions in the readme.txt file.

• Test the installation by trying to start the Toolbox application. Run

toolbox.bat in the %MIGTBX_HOME%/bin directory. An empty Toolbox

should appear after a few moments. If nothing appears, check that the

Migration Toolbox was installed properly and that all appropriate

environment settings have been set in %MIGTBX_HOME%/bin/setenv.bat.

2. To avoid class version issues, we strongly recommend that you remove all JAR files

from your JDK's extension directory (%JAVA_HOME%/jre/lib/ext) while running

the Toolbox application. We have included all the classes necessary for running the

Toolbox with the distribution. Please note that simply renaming the JAR files in the

extension directory is not sufficent; you must move them to a different location.

3. Copy the NetDynamics project(s) you wish to migrate into the

%MIGTBX_HOME%/work/NDProjects directory (or any other convenient directory).

This directory will be referred to as the NetDynamics projects directory below. This

directory is not necessarily the actual project directory used by a NetDynamics

installation on the same machine (although it could be). Instead, it is the directory in

which you will place the NetDynamics projects to be migrated. Note that NetDynamics

need not be installed on the machine running the Migration Toolbox. However, if

NetDynamics is installed on the machine that will be used to run iMT, you must be sure

that the installed NetDynamics does not interfere with the iMT. This will happen if the

installed ND's classpath is referenced in the system environment variable called

CLASSPATH. When iMT is started, it appends its own necessary classpaths to the end of

the system classpath. If the installed ND's classpath is part of the system classpath, then

the iMT will not operate properly.

4. At this point, you may also want to install Sun™ ONE Application Server 7 or another

J2EE-compliant servlet/JSP container

• Follow the installation instructions for the server or container

• Test the installation by starting the server or container and trying to load the

default home or index page. If an error occurs, troubleshoot the installation

process before continuing

154 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Preparing a Project for Automated Migration
Because NetDynamics allowed developers immense latitude (with both positive and

negative consequences), there is no way for iMT to account for all possible project

permutations. This is particularly true of projects that use non-standard portions of the

NetDynamics Spider API, or use this API in an unorthodox or undocumented way.

Therefore, some applications will require manual preparation before being migrated by the

iMT. In some cases, this preparation may be significant if a particular problematic feature is

widespread throughout a project or set of projects.

Of the two automated phases, you are more likely to encounter initial difficulties during

project extraction. This is normal, and is simply a consequence of the issues noted above.

The good news is that many projects will not encounter any difficulties during extraction,

and once an application description has been extracted from a project, it should be

translatable with little or no difficulty.

Differences Between the Project Extraction Runtime and NetDynamics
Runtime Environments
The iMT uses an embedded NetDynamics Connection Processor (CP) to instantiate and

then extract information from a project. From the project's perspective, it is being

instantiated inside a normal NetDynamics 5.x server environment. However, the extraction

runtime environment differs substantially from that present in a NetDynamics server.

Specifically, the JDBC Service, the PE Service, and PACs are not available to applications

instantiated within the iMT's embedded runtime, nor are they necessary to extract the

necessary information.

We have found that some project objects perform tasks that depend on these runtime

features in their constructors, static initializers, initialization events, or non-Spider threads.

The iMT automatically suppresses the firing of the NetDynamics 4/5.x-style

onBeforeInit and onAfterInit events so that customer code in those events will not

execute during the initialization. However, other initialization-time methods, such as static

initializers, overridden init() methods, and NetDynamics 3.x-style onBeforeInit and

onAfterInit events may still execute. You may need to comment out code in these

methods if that code attempts to perform behaviors that cannot complete successfully

within the iMT runtime. (You may leave the code in the original location and it will be

automatically moved to the correct target location during translation). One can normally

identify these problematic cases most easily from error messages and exceptions generated

by the Extraction Tool.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 155

Before Running the NetDynamics Extraction Tool
For the reasons given above, we generally advocate running the Extraction Tool on your

project with only minimal preparation. Although it is more likely that the extraction will fail

with an error, doing so will typically save you time in the overall migration process, it is

usually easier and faster to detect and rectify problems using the diagnostic error

information than trying to find and fix potential problems preemptively (unless potential

problems are well-known).

However, to avoid several other common sources of extraction difficulties, we recommend

you perform the following tasks before running the NetDynamics Extraction Tool:

• We have found instances of NetDynamics projects that appeared normal when opened

with the Studio or run in the NetDynamics server, but in reality contained corrupted

references and project objects that were only detected upon closer inspection. In other

cases, we have found corrupted class files that prevented the embedded NetDynamics

runtime from loading the corresponding project object and caused it to throw

seemingly unrelated exceptions. Therefore, we strongly recommend you follow these

steps to prevent trouble before beginning migration:

m If the project came from another source (such as a client or colleague), ensure the

projects links directory is present and contains a number of .sid files. You may

open several of these files in a text editor and ensure that the objects named in the

file correspond to the names of the project objects. Also ensure that all necessary

external classes were included with the project.

m The project must have been converted to NetDynamics 5 using the Studio's

automated conversion process. This process entails opening the project in the

NetDynamics 5 Studio and following the upgrade prompts. During conversion, the

Studio upgrades object properties and converts DataObjects to NetDynamics

5.x-compatible versions. IMPORTANT: Note that the project need not actually

run under NetDynamics 5.xósimply using the Studio to convert the project is

sufficient.

m Open the projects you will be migrating in the NetDynamics 5.x Studio and inspect

them for completeness and validity. Also inspect the project directory itself. For

example, you should have one <project>.spj (or <project>Project.spj)

and <project>.class file, one <page>.spg, <page>.class, and

<page>.html file per NetDynamics page, and one <dataobject>.sdo and

<dataobject>.class file per DataObject.

156 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

m Delete all .class and .ser files from the project directory and fully recompile

the project. The project must be compiled against the NetDynamics 5.x binaries.

The easiest way to do this is to use the "Compile All" command in the Studio. You

may also be able to use the Java Compilation Tool in the Migration Toolbox

application to compile a project using the NetDynamics 5 binaries, though this is

not recommended and may require substantially more configuration.

• If possible, test run the project in NetDynamics 5.x. A project that runs successfully in

the server is more likely to be migratable without trouble. If you have a running copy of

NetDynamics, configure the CP to preload the projects you will be migrating. Use the

Command Center to stop or remove the JDBC Service, the PE Service, and all PACs

from the current configuration. Restart the CP. After the CP starts successfully, check

the NetDynamics log and the Service Manager (SM) log to determine if any exceptions

were thrown. Projects that throw exceptions at this point are likely to throw exceptions

during extraction.

Migrating ToolBox Sample Application
This section describes the automated and manual migration procedures of the ToolBox

sample application.

Running the Migration Toolbox
If you don't have the Toolbox application currently running, please follow the instructions

given in section Preparing your Working Environment to setup your toolbox.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 157

Create a Toolbox Builder
1. Start the toolbox and choose "Migrate an application" option in the Welcome dialog

and press OK. With the Toolbox running, be sure that you have an empty (New)

toolbox. Select the menu option Add-In -> Migration -> NetDynamics

Migration Toolbox Builder.

A modal dialog wizard will appear.

158 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Select OK to proceed to the first step of the wizard.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 159

2. Enter the name of the application you will be migrating in the “Input Application

Name” dialog box, for e.g. ‘MigtoolboxSample’. Select OK to proceed to the next step.

3. Enter the directory where all materials generated by the iMT will be stored. The default

is usually satisfactory and is used in this example. Select OK to display the next step in

the wizard

160 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

4. Automated iMT migration will produce some J2EE infrastructure including new Java

JATO files. These new files must be assigned a package. Although existing Java source

in the original application will retain packaging, we still need to assign a package for

these new files. There is no restriction on the package name. The default value is

provided for the MigtoolboxSample application.

Enter a package and select OK to display the next step in the wizard.

5. Enter the project name you want to migrate. This project should be located in

‘{MIGTBX_HOME}\work\NDProjects\’ folder.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 161

6. Enter the name of the web application archive (WAR) file into while you want to

package to your application. The default value is provided for this application. Select

OK to proceed to the next step.

7. Enter the output directory name where iMT will generate the WAR file. When you

select OK on the dialog box, the toolbox builder will generate a set of tools necessary

for the automated portion of the application migration process.

162 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

8. Select OK to exit the NetDynamics Migration Toolbox Builder wizard. The result of

the Addin is a complete Toolbox consisting of an Extraction and Translation tool and

the optional tools to automatically create the application extract archive and translate

the documents. When you select the ‘branch’ for each tool on the left frame, it will

display the detailed help for each tool in the right frame. The help explains each

property in the tool. Click on each ‘instance’ of the tools to display the bean property

panel in the right frame. Both the basic and expert properties may be edited.

The Task Tools simply cause a list of other tools to be executed in order. It is usually

more informative to run the tools separately so that you can carefully watch the console

output. The extraction tool properties are shown here:

The Translation tool properties are shown here:

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 163

9. Invoke the Migrate MigtoolboxSample Application Task tool. This tool will inturn

invoke Extract-MigtoolboxSample, Translate-MigtoolboxSample and

MapSpider2JATO-MigtoolboxSample tools one after the other to produce the migrated

code and the application description file(MigtoolboxSample.xml).

10. Invoke the Create MigtoolboxSample War File Task tool. This tool will invoke the

following tools to produce a Web Application Archive(WAR) file to enable automatic

deployment of the application to a J2EE container. This WAR file will be the only file

you will need to deploy your application to the J2EE container.

CopyDeplDesc-MigtoolboxSample, CopyJatoJar-MigtoolboxSample,

CopyJatoTLD-MigtoolboxSample, CopyJSP-MigtoolboxSample,

CopyClasses-MigtoolboxSample, CopySource-MigtoolboxSample,

JarWarFile-MigtoolboxSample

164 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

11. Invoke the Compile-MigtoolboxSample tool to compile the JATO Foundation classes

and the new J2EE application components. This tool simply invokes the javac

command line tool provided with the JDK.

At this point, automated migration is complete and manual migration if any starts.

The easiest way to proceed in manual migration is to load the web application into a

J2EE IDE. Forte for Java EE (FFJ) is used in this example.

12. Start FFJ 4.0 and create a new Project called OnlineBank. Make sure there are no

existing file systems in the new project. Select [Project] from menu and click [Project

Manager].

13. On the Project Manager window, click New and put a project name

(MigtoolboxSample).

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 165

14. Right click [Filesystem] icon and select [Mount Directory] on the Explorer panel.

Select ${migtbox_home}\work\output\MigtoolboxSample\war and click OK.

Forte should recognize this directory as a standard WAR directory and create a WAR

view in the Explorer.

FFJ uses the term FILESYSTEM to refer to an entry in the CLASSPATH for a project.

Upon mounting the WAR directory not only will the ./war/WEB-INF/classes

directory be AUTOMATICALLY part of the CLASSPATH because its a 'war' file, but

each library under ./war/WEB-INF/lib will also be added (ZIPs and JARs).

The Java source will need to be compiled. It is very important to enable 'deprecation'

flag in the compiler.When you compile your translated application and the 'deprecation'

flag is enabled, the compile will produce a report of each line of code which uses a

'non-targeted' API. The intention here is to reach a complete compilation as quickly as

possible and produce a report on the tasks required for manual migration.

166 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

15. Edit Project properties (Compiler: External Compiler:) and set deprecation to TRUE.

Select [Tools] from menu and click [Options]. Expand the ‘Building’ and then

‘Compiler Types’ nodes and set [deprecation] as True for External Compilation on

Options window as shown below:

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 167

16. In the project view in the Explorer, select the Classes branch and right click to menu

and choose Compile ALL. All the migrated code in

${migtbox_home}\work\output\MigtoolboxSample\war\WEB-INF\classes

\

and the new generated JATO infrastructure in

${migtbox_home}\work\output\MigtoolboxSample\war\WEB-INF\classes

\

Everything should compile immediately.

The compiler generates some warnings, they are shown here:

168 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

17. These warnings should be fixed to complete the manual migration of the application.

The final web application may be deployed on any J2EE web container. In FFJ you

may export a WAR file and deploy on Sun ONE Application Server 7. You may also

run the web application directly in FFJ using the built-in TomCat server.

Chapter 4 Migration from NetDynamics to Sun ONE AS 7 169

18. Add a Server Module Group in FFJ. Right click on WEB-INF branch in Explorer,

select [New]->[JSP&Servlet]->[Web Module Group] and add a server group. Accept

the default on the wizard screen and simply chose 'Finish'. A new element under

WEB-INF in the Explorer appears called 'ServerConfiguration'. Add the current web

application by right clicking on [Server Configuration] branch in Explorer and select

[Add Web Module]. Provide a servlet context name on [Add Web Module] window.

For example "Demo".

19. Execute in FORTE by right clicking on [Server Configuration] branch in Explorer and

select [Execute].

170 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

171

Chapter 5

Automating Migration

This chapter describes the use of available migration tools that can be used to automate the

migration process from both earlier versions of Sun™ ONE Application Server and from

other application server providers.

The following migration tools are available:

• Sun ONE Migration Tool for Application Servers

• Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)

Sun ONE Migration Tool for Application Servers
The Sun ONE Migration Tool for Application Servers migrates J2EE[tm] applications from

other server platforms to Sun ONE Application Server (version 6.5 / 7).

For Sun ONE Application Server 6.5 the following source platforms are supported:

• WebSphere Application Server (WAS) 4.0

• WebLogic Application Server (WLS) 5.1

For Sun ONE Application Server 7 the following source platforms are supported:

• WebLogic Application Server (WLS) 5.1, 6.0, 6.1

• WebSphere Application Server (WAS) 4.0

• J2EE Reference Implementation Application Server (RI) 1.3

• Sun ONE Application Server 6.x

• Sun ONE Web Server 6.0

Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)

172 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

The Migration Tool specifications and migration process change from time to time, so the

sample migration using the tool is not included in this guide. The migration process of a

sample application is discussed in the docuemntation for this tool. The latest version of the

Sun ONE Migration Tool for Application Servers can be downloaded from Sun Download

center. For the latest on Sun ONE Migration Tool please visit,

http://www.sun.com/migration/sunonetools.html

Sun ONE Migration Toolbox (formerly iPlanet
Migration Toolbox)

For information on Sun ONE Migration Toolbox, please refer to Appendix B.

Redeploying Migrated Applications
Most of the applications that are migrated automatically through the use of the available

migration tools will utilize the standard deployment tasks described in the Sun ONE

Application Server Administrator’s Guide.

In some cases, the automatic migration will not be able to migrate particular methods or

syntaxes from the source application. When this occurs in the case of the Sun ONE

Migration Tool for Application Servers, you are notified of the steps that will be needed to

complete the migration. Once you complete the post-migration manual steps, you will be

able to deploy the application in the standard manner described in the Sun ONE Application

Server Administrator’s Guide.

http://www.sun.com/migration/sunonetools.html

173

Appendix A

iBank Application specification

The sample application we defined is called 'iBank' and simulates a basic online banking

service with the following functionality:

• log on to the online banking service

• view/edit personal details and branch details

• summary view of accounts showing cleared balances

• facility to drill down by account to view individual transaction history

• money transfer service, allowing online transfer of funds between accounts

• compound interest earnings projection over a number of years for a given principal and

annual yield rate.

The application is designed after the MVC (Model-View-Controller) model where:

• EJBs are used to define the business and data model components of the application

• Java Server Pages handle the presentation logic and represent the View.

• Servlets play the role of Controllers and handle application logic, taking charge of

calling the business logic components and accessing business data via EJBs (the

Model), and dispatching processed data for display to Java Server Pages (the View).

For packaging and deployment of application components, standard J2EE methods are

used, and include definition of deployment descriptors, and packaging of application

components within archive files:

• a WAR archive file for the Web application including HTML pages, images, Servlets,

JSPs and custom tag libraries, and ancillary server-side Java classes.

• EJB-JAR archive files for the packaging of one or more EJBs, including deployment

descriptor, bean class and interfaces, stub and skeleton classes, and other helper classes

as required.

174 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• an EAR archive file for the packaging of the enterprise application module that

includes the Web application module and the EJB modules used by the application.

The use of standard J2EE packaging methods will be useful in pointing out any differences

between Sun™ ONE Application Server 6.0/6.5 and Sun ONE Application Server 7, and

any issues arising thereof.

Tools used for the development of the
application

Sun ONE Studio Enterprise Edition for Java, Release 4.0
As Sun ONE Application Server 7 supports both the EJB 1.0 and EJB 1.1 standard, the

other EJBs in the iBank application (2 session EJBs and the BMP entity bean) were

developed with Sun ONE Studio for Java, and then packaged and deployed in Sun

ONE Application Server 7 using the supplied Application Assembly Tool. This

approach enabled us to test usage of a third-party IDE for developing 1.1 EJBs in Sun

ONE Application Server 7. Moreover, the approach also gave us the chance to

experiment with migrating 1.1 EJBs developed for Sun ONE Application Server 6.5 to

Sun ONE Application Server 7.

The Sun ONE Studio for Java development environment was also used to migrate EJB

components in the iBank application to Sun ONE Application Server (code adapted

from EJB 1.0 standard to EJB 1.1, O/R mapping for CMP entity beans, configuration of

deployment properties and packaging of the application's different modules).

Oracle 8i 8.1.6
The database was developed with Oracle 8i (version 8.1.6) and the JDBC driver used to

access the database was the thin Oracle driver (type 4).

Database schema
• The iBank database schema is derived from the following business rules:

• The iBank company has local Branches in major cities

• A Branch manages all customers within its regional area.

• A Customer has one or more accounts held at their regional branch.

Appendix A iBank Application specification 175

• A customer Account is uniquely identified by the branch code and account no., and

also holds the no. of the customer to which it belongs. The current cleared balance

available is also stored with the account.

• Accounts are of a particular Account Type that is used to distinguish between several

kinds of accounts (checking account, savings account, etc.)

• Each Account Type stores a number of particulars that apply to all accounts of this type

(regardless of branch or customer) such as interest rate and allowed overdraft limit.

• Every time a customer receives or pays money into/from one of their accounts, the

transaction is recorded in a global transaction log, the Transaction History.

• The Transaction History stores details about individual transactions, such as the

relevant branch code and account no., the date the transaction was posted (recorded), a

code identifying the type of transaction and a complementary description of the

particular transaction, and the amount for the transaction.

• Transaction types allow different types of transactions to be distinguished, such as cash

deposit, credit card payment, fund transfer between accounts, and so on.

These business rules are illustrated in the entity-relationship diagram below:

176 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Figure A-1 Database Schema

The database model translates as the series of table definitions below, where primary key

columns are printed in bold type, while foreign key columns are shown in italics.

BRANCH

BRANCH_CODE CHAR(4) NOT NULL 4-digit code identifying the branch

BRANCH_NAME VARCHAR(40) NOT NULL Name of the branch

BRANCH_ADDRESS1 VARCHAR(60) NOT NULL Branch postal address, street address, 1st line

BRANCH_ADDRESS2 VARCHAR(60) Branch postal address, street address, 2nd line

Appendix A iBank Application specification 177

BRANCH_CITY VARCHAR(30) NOT NULL Branch postal address, City

BRANCH_ZIP VARCHAR(10) NOT NULL Branch postal address, Zip code

BRANCH_STATE CHAR(2) NOT NULL Branch postal address, State abbreviation

CUSTOMER

CUST_NO INT NOT NULL iBank customer number (global)

BRANCH_CODE CHAR(4) NOT NULL References this customer's branch

CUST_USERNAME VARCHAR(16) NOT NULL Customer's login username

CUST_PASSWORD VARCHAR(10) NOT NULL Customer's login password

CUST_EMAIL VARCHAR(40) Customer's e-mail address

CUST_TITLE VARCHAR(3) NOT NULL Customer's courtesy title

CUST_GIVENNAMES VARCHAR(40) NOT NULL Customer's given names

CUST_SURNAME VARCHAR(40) NOT NULL Customer's family name

CUST_ADDRESS1 VARCHAR(60) NOT NULL Customer postal address, street address, 1st line

CUST_ADDRESS2 VARCHAR(60) Customer postal address, street address, 2nd line

CUST_CITY VARCHAR(30) NOT NULL Customer postal address, City

CUST_ZIP VARCHAR(10) NOT NULL Customer postal address, Zip code

CUST_STATE CHAR(2) NOT NULL Customer postal address, State abbreviation

ACCOUNT_TYPE

ACCTYPE_ID CHAR(3) NOT NULL 3-letter account type code

ACCTYPE_DESC VARCHAR(30) NOT NULL Account type description

ACCTYPE_INTERESTR

ATE

DECIMAL(4,2) DEFAULT

0.0

Annual interest rate

ACCOUNT

BRANCH_CODE CHAR(4) NOT NULL branch code (primary-key part 1)

178 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Application navigation and logic
High-level view of application navigation

ACC_NO CHAR(8) NOT NULL account no. (primary-key part 2)

CUST_NO INT NOT NULL Customer to whom accounts belongs

ACCTYPE_ID CHAR(3) NOT NULL Account type, references ACCOUNT_TYPE

ACC_BALANCE DECIMAL(10,2) DEFAULT

0.0

Cleared balance available

TRANSACTION_TYPE

TRANSTYPE_ID CHAR(4) NOT NULL A 4-letter transaction type code

TRANSTYPE_DESC VARCHAR(40) NOT NULL Human-readable description of code

TRANSACTION_HISTORY

TRANS_ID LONGINT NOT NULL Global transaction serial no

BRANCH_CODE CHAR(4) NOT NULL key referencing ACCOUNT part 1

ACC_NO CHAR(8) NOT NULL key referencing ACCOUNT part 2

TRANSTYPE_ID CHAR(4) NOT NULL References TRANSACTION_TYPE

TRANS_POSTDATE TIMESTAMP NOT NULL Date & time transaction was posted

TRANS_DESC VARCHAR(40) Additional details for the transaction

TRANS_AMOUNT DECIMAL(10,2) NOT NULL Money amount for this transaction

Appendix A iBank Application specification 179

Detailed application logic

• Login Process

• View / edit details

180 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• Account summary and Transaction history

• Fund Transfer

Appendix A iBank Application specification 181

• Interest Calculation

182 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Application Components
• Data Components

Each table in the database schema is encapsulated as an entity bean:

All entity beans use container-managed persistence (CMP), except Customer, which uses

bean-managed persistence (BMP).

Currently, the application only makes use of the Account, AccountType, Branch, and

Customer beans.

• Business components

Business components of the application are encapsulated by session beans-

The BankTeller bean is a stateful session bean that encapsulates all interaction between

the customer and the system. BankTeller is notably in charge of:

• authenticating a customer through the authCheck() method

• giving the list of accounts for the customer through the

getAccountSummary() method

• transferring funds between accounts on behalf of the customer through the

transferFunds() method.

The InterestCalculator bean is a stateless session bean that encapsulates financial

calculations. It is responsible for providing the compound interest projection calculations,

through the projectEarnings() method.

• Application logic components (servlets)

Entity Bean Database Table

Account ACCOUNT table

AccountType ACCOUNT_TYPE table

Branch BRANCH table

Customer CUSTOMER table

Transaction TRANSACTION_HISTORY table

TransactionType TRANSACTION_TYPE table

Appendix A iBank Application specification 183

• Presentation logic components (JSP Pages)

Component name Purpose

LoginServlet Authenticates the user with the BankTeller session bean (authCheck()

method), creates the HTTP session and saves information pertaining

to the user in the session.Upon successful authentication, forwards

request to the main menu page (UserMenu.jsp)

CustomerProfileServlet Retrieves customer and branch details from the Customer and Branch

entity beans and forwards request to the view/edit details page

(CustomerProfile.jsp)

UpdateCustomerDetails

Servlet

Attempts to effect customer details changes amended in

CustomerProfile.jsp by updating the Customer entity bean after

checking validity of changes.Redirects to UpdatedDetails.jsp if

success, or to DetailsUpdateFailed.jsp in case of incorrect input.

ShowAccountSummary

Servlet

Retrieves the list of customer accounts from the BankTeller session

bean (getAccountSummary() method) and forwards request to

AccountSummary.jsp for display

TransferFundsServlet Retrieves the list of customer accounts from the BankTeller session

bean (getAccountSummary() method) and forwards request to

TransferFunds.jsp allowing the user to set up the transfer operation.

CheckTransferServlet Checks the validity of source and destination accounts selected by the

user for transfer and the amount entered. Calls the transferFunds()

method of the BankTeller session bean to perform the transfer

operation. Redirects the user to CheckTransferFailed.jsp in case of

input error or processing error, or to TransferSuccess.jsp if the

operation was successfully carried out

ProjectEarningsServlet Retrieves the interest calculation parameters defined by the user in

InterestCalc.jsp and calls the projectEarnings() method of the

InterestCalculator stateless session bean to perform the calculation,

and forwards results to the ShowProjectionResults.jsp page for

display. In case of invalid input, redirects to BadIntCalcInput.jsp

Component name Purpose

index.jsp Index page to the application that also serves as the login page.

184 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

LoginError.jsp Login error page displayed in case of invalid user credentials

supplied. Prints an indication as to why login was unsuccessful.

Header.jsp Page header that is dynamically included in every HTML page of the

application

CheckSession.jsp This page is statically included in every page in the application and

serves to verify whether the user is logged in (i.e. has a valid HTTP

session). If no valid session is active, the user is redirected to the

NotLoggedIn.jsp page

NotLoggedIn.jsp Page that the user gets redirected to when they try to access an

application page without having gone through the login process first.

UserMenu.jsp Main application menu page that the user gets redirected to after

successfully logging in. This page provides links to all available

actions.

CustomerProfile.jsp Page displaying editable customer details and static branch details.

This page allows the customer to amend their correspondence address

UpdatedDetails.jsp Page where the user gets redirected to after successfully updating

their details.

DetailsUpdateFailed.jsp Page where the user gets redirected if an input error prevents their

details to be updated.

AccountSummaryPage.j

sp

This page displays the list of accounts belonging to the customer in

tabular form listing the account no, account type and current balance.

Clicking on an account no. in the table causes the application to

present a detailed transaction history for the selected account

ShowTransactionHistor

y.jsp

This page prints the detailed transaction history for a particular

account no. The transaction history is printed using a custom tag

library.

TransferFunds.jsp This page allows the user to set up a transfer from one account to

another for a specific amount of money.

TransferCheckFailed.jsp When the user chooses incorrect settings for fund transfer, they get

redirected to this page.

TransferSuccess.jsp When the fund transfer set-up by the user can successfully be carried

out, this page will be displayed, showing a confirmation message.

InterestCalc.jsp This page allows the user to enter parameters for a compound interest

calculation.

Appendix A iBank Application specification 185

Fitness of design choices with regard to potential
migration issues
While many of application design choices made are certainly debatable especially in a

"real-world" context, care was taken to ensure that these choices enabled the sample

application to encompass as many potential issues as possible as one would face in the

process of migrating a typical J2EE application.

This section will go through the potential issues that one can face when migrating a J2EE

application, and the corresponding component of iBank that was included to check for this

issue during the migration process:-

With respect to the selected migration areas to address, the white paper specifically looks at

the following technologies:

Servlets
• iBank includes a number of servlets, that enable us to detect potential issues with:

• The use of generic functionality of the Servlet API.

• Storage/retrieval of attributes in the HTTP session and HTTP request.

• Retrieval of servlet context initialisation parameters.

• Page redirection.

Java Server Pages
With respect to the JSP specification, the following aspects have been addressed:

• Use of JSP declarations, scriptlets, expressions, and comments.

BadIntCalcInput.jsp If the parameters for compound interest calculation are incorrect, the

user gets redirected to this page.

ShowProjectionResults.j

sp

When an interest calculation is successfully carried out, the user is

redirected to this page that displays the projection results in tabular

form.

Logout.jsp Exit page of the application. This page removes the stateful session

bean associated with the user and invalidates the HTTP session.

Error.jsp In case of unexpected application error, the user will be redirected to

this page that will print details about the exception that occurred.

186 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• Static includes (<%@ include file="…" %>): notably tested with the

inclusion of the CheckSession.jsp file in every page).

• Dynamic includes (<jsp:include page=… />): this is catered for by the

dynamic inclusion of Header.jsp in every page.

• Use of custom tag libraries: a custom tag library is used in

ShowTransactionHistory.jsp.

• Error pages for JSP exception handling: the Error.jsp page is the

application error redirection page.

JDBC
The iBank application accesses a database via a connection pool and data source, both

programmatically (BMP entity bean, BankTeller session bean, custom tag library) and

declaratively (with the CMP entity beans).

Enterprise Java Beans
iBank uses a variety of Enterprise Java Beans:

Entity beans:

Bean-managed persistance ("Customer" bean): that allows us to test:

• JNDI lookup of initial context

• pooled data source access via JDBC

• definition of a BMP custom finder ("findByCustUsername()")

Container-managed persistence ("Account" and "Branch" beans): that allow us to test:

• Object/Relational mapping with the development tool and within the

deployment descriptor

• Use of composite primary keys ("Account")

• Definition of custom CMP finders (with the "Account" bean, and its

"findOrderedAccountsForCustomer()" method). This is the occasion to

look at differences in declaring the query logic in the deployment descriptor,

and also to have a complex example returning a collection of objects.

Session beans:

Stateless session beans: InterestCalculator allows us to test:

• using and deploying a stateless session bean

• calling a business method for calculations

Appendix A iBank Application specification 187

Stateful session beans: BankTeller allows us to test:

• looking up various interfaces using JNDI and initial contexts

• using JDBC to perform database queries

• using various transactional attributes on bean methods

• using container-demarcated transactions

• maintaining conversational state between calls

• business methods acting as front-ends to entity beans (e.g., the

"getAccountSummary()" method)

Application Packaging
iBank is packaged following J2EE standard procedures, using:-

• a Web application archive file for the Web application module, and EJB-JAR

archives for EJBs.

• an Enterprise application archive file (EAR file) for the final packaging of the

Web application and EJB modules.

188 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

189

Appendix B

Sun ONE Migration Toolbox

Sun ONE Migration Toolbox (S1MT) is used primarily to migrate applications built on

NetDynamics or Kiva/NAS platforms to Sun™ ONE Application Server or any J2EE

compatible containers. The main interface for the Sun ONE Migration Toolbox is what we

call the Toolbox application, or the Toolbox GUI. This application can be invoked by

running the %MIGTBX_HOME%/bin/toolbox.bat script (provided the setenv.bat file

has been customized appropriately, see README.txt for more information).

Supported Platforms
Microsoft Windows NT 4.0 and Windows 2000 currently support S1MT. Although it is

expected that the application can be run on other Win32 platforms (Windows 95/98/Me),

these platforms have not been tested and may require additional configuration beyond that

specified in the S1MT installation documentation.

The Toolbox require atleast JavaSoft JDK 1.2.2 (JDK 1.3.1 has been tested) to run

successfully.

Migration
The toolbox is set of tools which perform different aspects of migration. S1MT 1.2.3

support migration from NetDynamics and Kiva/NAS platforms. Each platform has its own

Toolbox Builder which when executed will create a set of tools used to migrate a

application. Kiva Migration Toolbox Builder creates tools for Kiva/NAS application

migration and similarly NetDynamics Migration Toolbox Builder is used for migrating

NetDynamics applications. The following figure shows you how to invoke a toolbox

builder.

Migration

190 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Toolbox Builder
You will use the same basic set of tools for each migration you perform, but each tool will

need to be customized to that particular migration. Creating each of these tools can be a

tedious task and prone to inconsistencies in naming conventions and layout of directory

structures. Therefore, we've created a toolbox add-in (a pre-configured, ready-to-run tool)

to simplify the process of creating these tools and setting their properties appropriately.

Many of the tools have similar or even the same properties where consistency is important

to the success of your migration.

Kiva Migration Toolbox Builder
The following are the steps for creating a new toolbox using the Kiva Migration Toolbox

Builder add-in:

1. If you don't have the Toolbox application currently running, start the Toolbox and

select the menu option Add-In|Migration|Kiva Migration Toolbox

Builder.

Migration

Appendix B Sun ONE Migration Toolbox 191

2. After a few moments, you will be prompted by a series of dialog boxes that will request

some information. This information will be used by the Toolbox Builder to fill property

values for the tools it generates. Some of the properties that you are not prompted for

will contain defaults that may or may not need to be modified after the tools are created

by the Toolbox Builder.

3. First, you are prompted for the package which the new JATO Application will be

placed in. The best way to understand what this means is to run the OnlineBankSample

migration and learn how a new package is created under ./war/WEB-INF/classes to

contain the JATO material. Although all the existing Java code is left in the same

package, there is a need to create some new Java code for the JATO Application

infrastructure. The new package is for this code. Please note that ALL Java source from

the original application may remain in the same package. It is only the new Java source

for the JATO resources which need a new package defined. No matter what package

you choose (e.g. com.iplanet.migration.samples.onlinebank), the last name in the
package will be used as the default directory name for the migration results. You can

override this directory location in the next panel; we recommend taking all the default

values.

4. Next, you are provided the choice of using the Automatic Application Extract Archive

Wizard. This wizard will help create tools for creating the application extract archive.

If you choose Cancel then you are simply asked for the application extract

archive (ZIP/JAR) path name. This is the name of the zip or JAR file which

contains all the source for the application. In this case the archive must have been

created manually beforehand and the wizard continues with encoding specifications.

5. If you choose OK for the Automatic Application Extract Archive Wizard then you are

asked to enter the root directory to the application source (this is normally the

./nas/APPS directory).

6. Next, you are asked to provide a list of top level packages in the application source

directory pertinent to this migration. If all the source in the directory is included then

you can skip specifying a value.

7. Next, you are asked to provide a list of file extensions which will be included in the

Application Extract Archive.

8. If you choose OK for the Automatic Application Extract Archive Wizard then you will

see a Task tool and Copy Directory tool and Java tool added to the toolbox.

9. There are two (2) panels which ask for the character encodings for Java source and

query files. There are many customers who have Java source in an alternate character

encoding (not ASCII). For instance, it is common for Asian developers/customers to

use double-byte character source files. In a change from the S1MT BETA, only one (1)

encoding value is allowed for file type. It is assumed that there is a common encoding

standard within an application. If there are varying encodings then the application

Migration

192 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

descriptor XML file may be edited accordingly after Extraction. Please note that S1MT

1.2.3 attempts to automatically discover character encoding of HTML templates by

inspecting the <meta> tags in the source files. However, the migrator should carefully

review the application descriptor XML file for encoding dispositions to ensure proper

translation.

10. At this point the Kiva Extraction and Translation Tools are added to the toolbox.

11. Lastly, you are provided the choice of using the Automatic Static Document

Translation Wizard. This wizard will help create tools for assembling the static

document content and translating appropriate documents fixing the URLs for

AppLogic invocation and copying the documents to the result WAR directory

structure.

12. If you choose CANCEL then the builder exits. If you choose OK, you are asked to

enter the location of the document root for the application and another Task tool, JAR

tool, Document Translation tool and Copy Directory tool are added to the toolbox.

13. Save the toolbox to disk by selecting the menu option File|Save and give it a name.

Tools generated by Kiva Toolbox Builder are shown here:

Migration

Appendix B Sun ONE Migration Toolbox 193

Invoking the Tools
You are now ready to migrate your application by invoking the generated tools; extraction

first and then translation. Before invoking each tool, inspect its properties first and make

adjustments as needed. In general, if you've provided desirable initial values to the Toolbox

Builder, none of the properties will need to be adjusted.

NOTE The Toolbox Builder created one Task Tool in your toolbox which you can

use to invoke all of the other generated tools at once. However, we

recommend invoking each tool individually until you have migrated one or

two applications and become familiar with each tool's output.

Migration

194 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Tools Created by Kiva Migration Toolbox Builder
1. KIVA Application Extraction Tool

This tool reads a zip or JAR file called the application extract archive containing Kiva

application files and creates an XML document called an application description file.

The application description file contains high level information describing the

application including disposition of each file found in the application extract archive.

This tool assumes, as input, the pre-existence of a zip file containing all of the original

NAS/KIVA application source (i.e. templates, applogic java files, other application

specific resources). The zip file need not contain the actual original class files since the

migration effort will be altering the source files.

Creation of the application description file is the first step in the automated migration

process. Although this file may be useful for other purposes, its main use is as input to

the application translation process using the Kiva Application Translation Tool

(com.iplanet.moko.nas.tools.KivaTranslateTool).

2. KIVA Application Translation Tool

This tool reads both a zip or JAR file called the application extract archive containing

Kiva application files and also an XML document called an application description file.

This tool takes as input an application description file and uses it to generate a set of

equivalent J2EE components and files. The application description file (an XML

document) is produced as the result of using the Kiva Extraction Tool

(com.iplanet.moko.nas.tools.KivaExtractTool) to extract information from a set of

source Kiva projects. Use of the translation tool is the second step in performing the

automated migration of a Kiva application.

3. Copy Directory Tool

Copies the contents of a source directory to a target directory

4. JAR Tool

JARs all files in the source directory and all subdirectories

NetDynamics Migration Toolbox Builder
The following are the steps for creating a new toolbox using the NetDynamics Migration

Toolbox Builder add-in:

1. If you don't have the Toolbox application currently running, start the Toolbox and

choose the "Migrate an application" option in the Welcome dialog and press OK. With

the Toolbox running, be sure that you have an empty (New) toolbox. Select the menu

option Add-In|Migration|NetDynamics Migration Toolbox Builder.

Migration

Appendix B Sun ONE Migration Toolbox 195

2. After a few moments, you will be prompted by a series of dialog boxes that will request

some information. This information will be used by the Toolbox Builder to fill property

values for the tools it generates. Some of the properties that you are not prompted for

will contain defaults that may or may not need to be modified after the tools are created

by the Toolbox Builder.

3. First prompt: Enter the logical application name. This is the name of the

entire application, which may include more than one NetDynamics project. If the

application is only one project, then it is not recommended to use the project name as

the application name. For example, if your project is called foo, then call your

application fooapp rather than just plain foo. This will prevent confusion with other

similar properties and avoid difficulties later during deployment.

4. After you've entered an application name, the Toolbox Builder will prompt you for

more information, providing default values when possible. We recommend taking all

the default values.

Migration

196 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

5. Once you have finished entering information, The Toolbox Builder will create several

tools in your current toolbox. Save the toolbox to disk by selecting the menu option

File|Save and give it a name. Using the application name (the value from the first

promptófooapp in our example here) as the name of the toolbox is recommended.

Tools generated by NetDynamics Toolbox Builder are shown here:

Migration

Appendix B Sun ONE Migration Toolbox 197

Invoking the Tools
You are now ready to migrate your NetDynamics application by invoking several of the

generated tools. Before invoking each tool, inspect its properties first and make adjustments

as needed. In general, if you've provided desirable initial values to the Toolbox Builder,

none of the properties will need to be adjusted. (NOTE: The Toolbox Builder created one

or more Task Tools in your toolbox which you can use to invoke several of the other

generated tools at once. However, we recommend invoking each tool individually until you

have migrated one or two applications and become familiar with each tool's output.)

Tools Created by Kiva Migration Toolbox Builder
1. NetDynamics Extraction Tool

This tool gathers as much information as possible from the source NetDynamics

project or projects and then writes this information to an XML file called the

application description file. This application description will serve as the input to the

Application Translation Tool.

Before invoking this tool, check the following properties for accuracy:

ProjectsDirectory is the path to the NetDynamics projects directory used

during extraction. The default value is %MIGTBX_HOME%/work/NDProjects. We

recommend placing all the NetDynamics projects you intend to migrate in this

directory.

All other properties should be fine with their current values unless you made an error

during the prompting stages of the Toolbox Builder add-in. The other properties will be

discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The XML output file

(the application description) will be written to the location specified by the

OutputDirectory property.

You may open and browse the application description file if you wish to understand the

details of the project extraction. Using an XML browser like XML Spy is

recommended. We highly discourage editing this file as mistakes introduced here may

significantly affect the translation phase, causing it to fail completely or generate faulty

output

Migration

198 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

2. Application Translation Tool

This tool uses the application description file generated by the NetDynamics Extraction
Tool to output a set of J2EE-compliant components that accurately reflect the structure

of the behavior of the original NetDynamics application.

All other properties should be fine with the current values unless you made an error

during the prompting stages of the Toolbox Builder add-in. The other properties will be

discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The new J2EE

components will be written to the location specified by the OutputDirectory

property.

Additionally, this tool places a migration log file (MigrationLog.csv) in the

translation output directory. This file indicates various items that were identified during

translation as requiring additional or special migration attention. Our reason for

generating this file is to alert migration developers to those items that were not

automatically handled by the translation, and to record information that was otherwise

not carried forward during translation. This file generally serves as a minimal task list

for the manual portion of the migration (there will likely be other tasks as well not

related directly to the translation).

Migration

Appendix B Sun ONE Migration Toolbox 199

3. Regular Expression Mapping Tool

This tool, also known as the Regexp Tool, uses a set of XML-specified match and

replace specifications to effect changes within files (note, this tool uses the Perl 5

regular expression syntax). The Toolbox Builder generates a Regexp Tool that is

preconfigured to replace common Spider API Java constructs with equivalent JATO

constructs in your migrated Java source files.

Before invoking this tool, check the following properties for accuracy:

SourceDirectory is the location of your migrated application code. Please make

sure that this directory does not also contain the JATO source files, as the processing of

those files may cause unexpected problems.All other properties should be fine with the

current values unless you made an error during the prompting stages of the Toolbox

Builder add-in.

Save the toolbox if you made any changes and invoke the tool. The migrated source

files will be processed and any changes that occur will be written to the console. Before

any file is modified, the tool will backup the original file in its original location with a

.orig file extension.

IMPORTANT: At this point, you have completed the automated migration phase, and

must now port the Java code in the migrated application to use the J2EE/JATO API

instead of the NetDynamics Spider API. The remaining tools described below will be

useful for packaging and deploying your application once manual migration has been

completed, with one exception: the migrated application should compile successfully at

this point and minimally run if deployed (pages can be invoked); however, the

application may not be functional if you've used any of the NetDynamics Spider API.

Therefore, unless you want to simply make a sanity check or check the migration of

non-Spider dependent features, we recommend porting at least part of the migrated

application before continuing.

4. Java Compiler Tool

This tool is a convenient way to compile the JATO Foundation Classes and the new

J2EE application components with one click. This tool simply invokes the javac

command line tool provided with the JDK.

There should be no properties that need adjusting in this tool unless changes were made

to the output directory properties of the previous tools. All of the properties will be

discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. All of the java class

source files (.java) under the directory specified by the SourceDirectory will be

compiled.

Migration

200 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

5. Copy Directory Tools (Create WAR File Directory Structure)

This tool copies directories/files from one location to another with a file filter

capability. The goal of the generated tools of this type is to create a "WAR file ready"

directory structure. Running the first four Copy Directory Tools will copy the

deployment descriptor, tag lib definition, JSPs, and Java classes into the appropriate

directories so that the Jar Tool can be used to create a WAR file to be deployed in your

J2EE container.

The instance of the Copy Directory Tool labeled CopySource is optional. The source

files are not needed in your production WAR file, but you may find it helpful to keep a

copy of the source files with your deployed application to ensure proper version control

(these may also come in handy if a quick fix is necessary at the deployment site). These

source files will not be visible to any application clients, and will therefore remain safe

on your deployment server.

All of the properties should be fine with the current values unless you made changes to

the output directory properties of the previous tools. All of the properties will be

discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the first four copy directory tools

(CopyDeplDesc, CopyTLD, CopyJSP, CopyClasses). Invoke the fifth copy

directory tool (CopySource) if this makes sense for your environment. Once these

tools have been invoked, the appropriatly filtered files will be written to the directory

specified by each of the tools' respective OutputDirectory property. The application

is now ready to be "WAR'ed".

6. Jar Tool

This tool uses the JAR command line tool from the JDK to create a WAR file using the

directory structure created by the previous copy directory tools. This WAR file will be

the only file you will need to deploy your application to the J2EE container. (The iAS

deployment procedure is discussed in the JATO Deployment Guide). Each container

generally has its own deployment procedure; please follow the instructions for your

container.

All of the properties should be fine with the current values unless you made changes to

the output directory properties of the previous tools. All of the properties will be

discussed in detail later in this document.

Save the toolbox if you made any changes and invoke the tool. The WAR file will be

created and written to the location specified by the OutputDirectory property. The

application is ready to be deployed.

Tools and Toolboxes

Appendix B Sun ONE Migration Toolbox 201

Tools and Toolboxes
Toolboxes are persisted to disk in the format of a toolbox file (.toolbox). Individual tools

of the toolbox are contained in the toolbox file in a serialized object format. These

individual tools can exist outside of the toolbox file as a tools file (.tools) in a similar

format. There are several menu commands that allow you to create, copy, delete, and merge

two toolboxes together, as well as import and export individual or groups of tools.

Creating New Tools
To create a new instance of any tool, use the Tool|New menu option and select the type of

tool you would like to create (Extraction, Translation, Compilation, etc.). You will notice

the new tool will be added to currently opened toolbox in the toolbox tree. It will be

grouped with other tools of its type and will have a default name of the form

<ToolType><##>, like CopyDirectoryTool7. You can triple-click the tool name or

press F2 to rename it as you wish. Spaces are allowed in tool names.

Cloning Tools
To create a copy of a current tool, use the Tool|Clone menu option and a new tool of the

same type will be created with the same properties as the original. Rename and adjust

properties as needed.

Deleting Tools
To delete a tool, use the Tool|Delete menu option and the tool will be removed from the

toolbox. You will be prompted verify your delete tool command, but there is no undo

action. You may select several tools to delete at once by holding down the Ctrl or Shift

keys while selecting additional tools.

Importing & Exporting Tools
You may have many different toolboxes (.toolbox files) that are focused on different

NetDynamics application migrations. With the import and export commands, you can

export a tool to a .tools file and then import it into another toolbox (.toolbox file).

Troubleshooting

202 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

To export a tool, open the toolbox with the tool you wish to export, select the tool or tools in

the toolbox tree, then use the File|Export menu option and name the .tools file to

export the tool. The tool will not be removed from the current toolbox.

To import the tool into another toolbox, open the toolbox you wish to be imported, then use

the File|Import menu option, browse to the location of the .tools file you wish to

import, then save the toolbox.

Toolbox Merging
If you have two separate toolboxes and would like to merge them into single toolbox you

use the merge toolbox feature of the Open Toolbox menu option. To merge two toolboxes

into one toolbox, open one of the toolboxes, and while it is open, open the other toolbox.

You will be prompted to replace the existing toolbox, merge the new toolbox with the

already-open toolbox, or cancel the operation.

Troubleshooting
IMPORTANT: Before continuing, make sure you have the latest S1MT patches available

from the Sun ONE Migration Website. We will be releasing patches regularly as we

discover and diagnose difficulties. We will release most of these patches to address

problems found by users of the S1MT. Please submit any problems you encounter to the

S1MT team so that we can diagnose the problem and issue a patch if necessary.

Toolbox Installation & Configuration
If you have difficulty running the Toolbox application, consult the following:

• Ensure that all the %MIGTBX_HOME%/bin/setenv.bat script is customized for your

environment. Because of limitations of the JDK, you may not install the S1MT in a

path containing directory names with spaces. For example, do not unpack the archive in

your C:\Program Files directory. We recommend unpacking the archive either in

c:\iPlanet or c:\.

• There are known problems using older versions of WinZip to unpack archives created

with the JDK's zip/jar tools. Doing so will cause files to be truncated during unpacking,

resulting in file lengths of zero bytes. Therefore, please ensure that you are using the

latest version of WinZip when unpacking the S1MT archive (http://www.winzip.com).

http://www.winzip.com).

Troubleshooting

Appendix B Sun ONE Migration Toolbox 203

• To avoid class version issues, we strongly recommend that you remove all JAR files

from your JDK's extension directory (%JAVA_HOME%/jre/lib/ext) while running

the Toolbox application. We have included all the classes necessary for running the

Toolbox with the distribution. Please note that simply renaming the JAR files in the

extension directory is not sufficent; you must move them to a different location.

• Because many development machines have several installed copies and/or versions of

the JDK, be sure you know which copy of the JDK you are using. Set the JAVA_HOME

environment variable in the %MIGTBX_HOME%/bin/setenv.bat file to ensure you

are running the preferred copy with the Toolbox application.

Extraction
For the most part, as we've mentioned above, extraction of an application description is the

most likely step in which you will encounter errors or difficulties. Also as we've already

mentioned, this is frequently a normal part of the migration process and shouldn't

discourage you if you are following the steps in previous sections. If you are having

difficulties not covered above, consult the following tips.

General Issues
• During extraction, ensure that all external classes (non-NetDynamics project classes)

are present on the Toolbox's classpath. The easiest way to make these classes available

is to place JAR files or unpackaged classes in the %MIGTBX_HOME%/lib/ext

directory. Classes and JARs in this directory will automatically be added to the

Toolbox classpath upon startup. If this solution is unsatisfactory, you may either add

the classes to your classpath or edit the %MIGTBX_HOME%/bin/setclasspath.bat

file.

• Note the summary at the end of the output from the extraction and translation tools to

determine if any project objects failed the automated process.

• Because of a limitation inherent in using the embedded NetDynamics runtime,

exceptions thrown during extraction may not impact the reported tool status, and

therefore the tool may report success when in fact the extraction failed. Therefore, we

caution users to note and investigate all exceptions thrown during extraction. In some

cases, we have seen seemingly innocuous exceptions cause side effects which

significantly impacted the fidelity of extracted project information. For example,

during one extraction, we encountered a ClassNotFoundException from the

NetDynamics runtime looking for a (seemingly) non-critical class. This exception later

prevented certain DataObject properties from being extracted, resulting in a

non-functional migrated application. Therefore, to ensure the best possible migration,

always be sure to eliminate all sources of exceptions during the extraction phase before

continuing.

Troubleshooting

204 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• Note that because of a feature of the embedded NetDynamics CP, two copies of a

project are instantiated during project extraction, one before extraction and one after.

This is generally harmless, but if the project throws exceptions during instantiation,

you will see two sets of stack traces in the Toolbox's console log.

Non-Fatal Error During Extraction
If only part of the automated migration succeeds (or fails), we recommend the following:

• Find and correct the cause of the failure using the tips in the above Sections and re-run

the extraction or translation

• If a problem occurs with NetDynamics migration, create a new project in the

NetDynamics Studio and import the problematic objects. Simplify them until you can

get this project to run through the appropriate tool(s). Introduce these files back into the

original, now-migrated project.

• Migrate the failed objects by hand. This is not as hard as it may sound. The JATO

framework was also designed for manual application authoring. Using the templates in

the application package, follow the example of a migrated object of the same type.

Documentation has been created to assist in creating new JATO objects manually.

Check the "Files" location of the JATO eGroups forum.

• Diagnose the problem as thoroughly as possible and consult the discussion forums or

the S1MT team.

Fatal Error During Extraction
Ensure the following items are not factors in the failure (in approximate order of

likelihood):

1. Incorrect environment settings. Check the settings of your

%MIGTBX_HOME%/bin/setenv.bat file and ensure they are appropriate for your

machine.

2. Missing external classes

3. Incorrect tool property settings. Ensure that the Extraction Tool has valid property

settings

4. Use of non-existent runtime feature in a critical location (such as a class initializer or

initialization of non-Spider threads to perform background tasks)

5. Non-present links directory or corrupted class files

6. Use of incorrect JDK version or platform

Troubleshooting

Appendix B Sun ONE Migration Toolbox 205

7. Conflicting class file versions in boot classpath (such as those present in the JDK's

extension directory)

If none of the above items are discernable factors in the problem, you may have

encountered a bug in the S1MT. We reiterate that because of the latitude NetDynamics

allowed during project development, Sun ONE cannot anticipate all possibilities and thus

ensure a trouble-free migration for all customers. However, the S1MT is committed to

making the migration process as painless as possible. Please report any problems to the

S1MT team and/or the discussion forums so that we may address them and issue patches as

necessary.

Translation
If you encounter an error during application translation, do the following first:

• Ensure that your application description file looks complete and is valid XML. Use a

tool like XMLSpy or Internet Explorer to open the document and view it.

• Ensure that the Translation Tool settings are correct

• Verify your environment settings in the %MIGTBX_HOME%/bin/setenv.bat file and

ensure they are appropriate for your machine

• Ensure that you have a complete Toolbox installation

If none of the above items are discernable factors in the problem, you may have

encountered a bug in the S1MT. We reiterate that because of the latitude NetDynamics

allowed during project development, Sun ONE cannot anticipate all possibilities and thus

ensure a trouble-free migration for all customers. However, the S1MT is committed to

making the migration process as painless as possible. Please report any problems to the

S1MT team and/or the discussion forums so that we may address them and issue patches as

necessary.

Post-Migration
Some problems may arise after migration or during testing. In general, such problems will

need to be posted to the discussion forums or discussed with the S1MT team. However,

before contacting others, note the following:

• The module URLs for each servlet and display URLs for each view bean are set to

certain defaults during project translation. These defaults will likely be correct for your

deployment environment, but may not be in some cases. Please consult the JATO

Deployment Guide or the discussion forums for information on how to configure these

URLs differently for deployment.

Troubleshooting

206 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

• There are inconsistencies in the way JDBC drivers treat certain column types. JATO

contains a number of options that may need to be modified in order for your application

to work against your specific database. If you are having difficulty running the

migrated application against your target database, please consult the Sun ONE

Migration website and discussion forums for information on specific database-related

tweaks.

207

Appendix C

Migrating from EJB 1.1 to EJB 2.0

Although the EJB 1.1 specification will continue to be supported in Sun™ ONE

Application Server 7, the use of the EJB 2.0 architecture is recommended to leverage its

enhanced capabilities.

To migrate EJB 1.1 to EJB 2.0 a number of modifications will be required, including within

the source code of components.

Essentially, the required modifications relate to the differences between EJB 1.1 and EJB

2.0, all of which are described in the following topics.

• EJB Query Language

• Local Interfaces

• EJB 2.0 Container-Managed Persistence (CMP)

• Defining Persistent Fields

• Defining Entity Bean Relationships

• Message-Driven Beans

EJB Query Language
The EJB 1.1 specification left the manner and language for forming and expressing queries

for finder methods to each individual application server. While many application server

vendors let developers form queries using SQL, others use their own proprietary language

specific to their particular application server product. This mixture of query

implementations causes inconsistencies between application servers.

208 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

The EJB 2.0 specification introduces a query language called EJB Query Language, or EJB
QL to correct many of these inconsistencies and shortcomings. EJB QL is based on SQL92.

It defines query methods, in the form of both finder and select methods, specifically for

entity beans with container-managed persistence. EJB QL's principal advantage over SQL

is its portability across EJB containers and its ability to navigate entity bean relationships.

Local Interfaces
In the EJB 1.1 architecture, session and entity beans have one type of interface, a remote

interface, through which they can be accessed by clients and other application components.

The remote interface is designed such that a bean instance has remote capabilities; the bean

inherits from RMI and can interact with distributed clients across the network.

With EJB 2.0, session beans and entity beans can expose their methods to clients through

two types of interfaces: a remote interface and a local interface. The 2.0 remote interface is

identical to the remote interface used in the 1.1 architecture, whereby, the bean inherits

from RMI, exposes its methods across the network tier, and has the same capability to

interact with distributed clients.

However, the local interfaces for session and entity beans provide support for lightweight

access from EJBs that are local clients; that is, clients co-located in the same EJB container.

The EJB 2.0 specification further requires that EJBs that use local interfaces be within the

same application. That is, the deployment descriptors for an application's EJBs using local

interfaces must be contained within one ejb-jar file.

The local interface is a standard Java interface. It does not inherit from RMI. An enterprise

bean uses the local interface to expose its methods to other beans that reside within the same

container. By using a local interface, a bean may be more tightly coupled with its clients

and may be directly accessed without the overhead of a remote method call.

In addition, local interfaces permit values to be passed between beans with pass by

reference semantics. Because you are now passing a reference to an object, rather than the

object itself, this reduces the overhead incurred when passing objects with large amounts of

data, resulting in a performance gain.

Setting up a session or entity bean to use a local interface rather than a remote interface is

simple. The local interface through which the bean's methods are exposed to clients extends

EJBLocalObject rather than EJBObject. Similarly, the bean's home interface extends

EJBLocalHome rather than EJBHome. The implementation class extends the same

EntityBean or SessionBean interface.

Appendix C Migrating from EJB 1.1 to EJB 2.0 209

EJB 2.0 Container-Managed Persistence (CMP)
The EJB 2.0 specification has expanded CMP to allow multiple entity beans to have

relationships among themselves. This is referred to as Container-Managed Relationships
(CMR). The container manages the relationships and the referential integrity of the

relationships.

The EJB 1.1 specification presented a more limited CMP model. The 1.1 architecture

limited CMP to data access that is independent of the database or resource manager type. It

allowed you to expose only an entity bean's instance state through its remote interface; there

is no means to expose bean relationships. The 1.1 version of CMP depends on mapping the

instance variables of an entity bean class to the data items representing their state in the

database or resource manager. The CMP instance fields are specified in the deployment

descriptor, and when the bean is deployed, the deployer uses tools to generate code that

implements the mapping of the instance fields to the data items.

You must also change the way you code the bean's implementation class. According to the

2.0 specification, the implementation class for an entity bean that uses CMP is now defined

as an abstract class.

Defining Persistent Fields
The EJB 2.0 specification lets you designate an entity bean's instance variables as CMP

fields or CMR fields. You define these fields in the deployment descriptor. CMP fields are

marked with the element cmp-field, while container-managed relationship fields are

marked with the element cmr-field.

In the implementation class, note that you do not declare the CMP and CMR fields as public

variables. Instead, you define get and set methods in the entity bean to retrieve and set the

values of these CMP and CMR fields. In this sense, beans using the 2.0 CMP follow the

JavaBeans model: instead of accessing instance variables directly, clients use the entity

bean's get and set methods to retrieve and set these instance variables. Keep in mind that

the get and set methods only pertain to variables that have been designated as CMP or

CMR fields.

NOTE A bean destined to be remote in EJB 2.0 extends EJBObject in its remote

interface and EJBHome in its home interface, just as it did in EJB 1.1.

Migrating EJB Client Applications

210 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Defining Entity Bean Relationships
As noted previously, the EJB 1.1 architecture does not support CMRs between entity beans.

The EJB 2.0 architecture does support both one-to-one and one-to-many CMRs.

Relationships are expressed using CMR fields, and these fields are marked as such in the

deployment descriptor. You set up the CMR fields in the deployment descriptor using the

appropriate deployment tool for your application server.

Similar to CMP fields, the bean does not declare the CMR fields as instance variables.

Instead, the bean provides get and set methods for these fields.

Message-Driven Beans
Message-driven beans are another new feature introduced by the EJB 2.0 architecture.

Message-driven beans are transaction-aware components that process asynchronous

messages delivered through the Java Message Service (JMS). The JMS API is an integral

part of the J2EE 1.3 platform.

Asynchronous messaging allows applications to communicate by exchanging messages so

that senders are independent of receivers. The sender sends its message and does not have

to wait for the receiver to receive or process that message. This differs from synchronous

communication, which requires the component that is invoking a method on another

component to wait or block until the processing completes and control returns to the caller

component.

Migrating EJB Client Applications
This section includes the following topics:

• Declaring EJBs in the JNDI Context

• Recap on Using EJB JNDI References

Declaring EJBs in the JNDI Context
In Sun ONE Application Server 7, EJBs are systematically mapped to the JNDI sub-context

"ejb/". If we attribute the JNDI name "Account" to an EJB, then Sun ONE Application

Server 7 will automatically create the reference "ejb/Account" in the global JNDI context.

The clients of this EJB will therefore have to look up "ejb/Account" to retrieve the

corresponding home interface.

Migrating EJB Client Applications

Appendix C Migrating from EJB 1.1 to EJB 2.0 211

Let us examine the code for a servlet method deployed in Sun ONE Application Server

6.0/6.5,

The servlet presented here calls on a stateful session bean, BankTeller, mapped to the root

of the JNDI context. The method whose code we are considering is responsible for

retrieving the home interface of the EJB, so as to enable a BankTeller object to be

instantiated and a remote interface for this object to be retrieved, in order to make business

method calls to this component.

/**

 * Look up the BankTellerHome interface using JNDI.

 */

private BankTellerHome lookupBankTellerHome(Context ctx)

 throws NamingException

{

 try

 {

 Object home = (BankTellerHome) ctx.lookup("ejb/BankTeller");

 return (BankTellerHome) PortableRemoteObject.narrow(home,
BankTellerHome.class);

 }

 catch (NamingException ne)

 {

log("lookupBankTellerHome: unable to lookup BankTellerHome" +

 "with JNDI name 'BankTeller': " + ne.getMessage());

 throw ne;

 }

}

As the code already uses ejb/BankTeller as an argument for the lookup, there is no need for

modifying the code to be deployed on Sun ONE Application Server 7.

Migrating CMP Entity EJBs

212 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

Recap on Using EJB JNDI References
This section summarizes the considerations when using EJB JNDI references. Where noted,

the consideration details are specific to a particular source application server platform.

Placing EJB References in the JNDI Context
It is only necessary to modify the name of the EJB references in the JNDI context

mentioned above (moving these references from the JNDI context root to the sub-context

"ejb/") when the EJBs are mapped to the root of the JNDI context in the existing WebLogic

application.

If these EJBs are already mapped to the JNDI sub-context ejb/ in the existing application,

no modification is required.

However, when configuring the JNDI names of EJBs in the deployment descriptor within

the Forté for Java IDE, it is important to avoid including the prefix ejb/ in the JNDI name

of an EJB. Remember that these EJB references are automatically placed in the JNDI ejb/

sub-context with Sun ONE Application Server 7. So, if an EJB is given to the JNDI name

"BankTeller" in its deployment descriptor, the reference to this EJB will be "translated" by

Sun ONE Application Server into ejb/BankTeller, and this is the JNDI name that client

components of this EJB must use when carrying out a lookup.

Global JNDI context versus local JNDI context
Using the global JNDI context to obtain EJB references is a perfectly valid, feasible

approach with Sun ONE Application Server 7. Nonetheless, it is preferable to stay as close

as possible to the J2EE specification, and retrieve EJB references through the local JNDI

context of EJB client applications. When using the local JNDI context, you must first

declare EJB resource references in the deployment descriptor of the client part (web.xml

for a Web application, ejb-jar.xml for an EJB component).

Migrating CMP Entity EJBs
This section describes the steps to migrate your application components from the EJB 1.1

architecture to the EJB 2.0 architecture.

In order to migrate a CMP 1.1 bean to CMP 2.0, we first need to verify if a particular bean

can be migrated. The steps to perform this verification are as follows.

Migrating CMP Entity EJBs

Appendix C Migrating from EJB 1.1 to EJB 2.0 213

1. From the ejb-jar.xml file, go to the <cmp-fields> names and check if the

optional tag <prim-key-field> is present in the ejb-jar.xml and has an

indicated value, if yes, go to next step.

Look for the <prim-key-class> field name in the ejb-jar.xml, get the class

name and get the public instance variables declared in the class. Now see if

the signature (name and case) of these variables matches with the <cmp-field>

names above. Segregate the ones that are found. In these segregated fields, check if

some of them start with an upper case letter. If any of them do, then migration cannot

be performed.

2. Look into the bean class source code and obtain the java types of all the <cmp-field>

variables.

3. Change all the <cmp-field> names to lowercase and construct accessors from

them. For example if the original field name is Name and its java type is String, the

accessor method signature will be:

Public void setName(String name)

Public String getName()

4. Compare these accessor method signatures with the method signatures in the bean

class. If there is an exact match found, migration is not possible.

5. Get the custom finder methods signatures and their corresponding SQLs. Check if there

is a ‘Join’ or ‘Outer join’ or an ‘OrderBy’ in the SQL, if yes, we cannot migrate, as EJB

QL does not support ‘joins’, ‘Outer join’ and ‘OrderBy’.

6. Any CMP 1.1 finder, which used java.util.Enumeration, should now use

java.util.Collection. Change your code to reflect this. CMP2.0 finders cannot

return java.util.Enumeration.

The next topic, "Migrating the Bean Class", performs to migration process.

Migrating the Bean Class
This section describes the steps required to migrate the bean class to Sun ONE Application

Server.

Migrating CMP Entity EJBs

214 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

1. Prepend the bean class declaration with the keyword abstract. For example if the bean

class declaration was:

Public class CabinBean implements EntityBean // before

modification

abstract Public class CabinBean implements EntityBean // after

modification

2. Prefix the accessors with the keyword abstract.

3. Insert all the accessors after modification into the source(.java) file of the bean class at

class level.

4. Comment out all the cmp fields in the source file of the bean class.

5. Construct protected instance variable declarations from the cmp-field names in

lowercase and insert them at the class level.

6. Read up all the ejbCreate() method bodies (there could be more than one

ejbCreate). Look for the pattern ‘<cmp-field>=some value or local variable’, and

replace it with the expression ‘abstract mutator method name (same value or local
variable)’. For example, if the ejbCreate body (before migration) is like this:

public MyPK ejbCreate(int id, String name)

{

this.id = 10*id;

Name = name;//1

return null;

}

The changed method body (after migration) should be:

public MyPK ejbCreate(int id, String name)

{

setId(10*id);

setName(name);//1

return null;

}

Migrating CMP Entity EJBs

Appendix C Migrating from EJB 1.1 to EJB 2.0 215

7. All the protected variables declared in the ejbPostCreate()methods in Step 5 have

to be initialized. The protected variables will be equal in number with the

ejbCreate() methods. This initialization will be done by inserting the initialization

code in the following manner:

protected String name;//from step 5

protected int id;//from step 5

public void ejbPostCreate(int id, String name)

{

name /*protected variable*/ = getName();/*abstract accessor*/
//inserted in this step

id /*protected variable*/ = getId();/*abstract accessor*/
//inserted in this step

}

8. Inside the ejbLoad method, you have to set the protected variables to the beans

database state. So insert the following lines of code:

public void ejbLoad()

{

name = getName();//inserted in this step

id = getId(); //inserted in this step

……….. //already present code

}

9. Similarly, you will have to update the beans’ state inside ejbStore()so that its

database state gets updated. But remember, you are not allowed to update the setters

that correspond to the primary key outside the ejbCreate(), so do not include them

inside this method. Insert the following lines of code:

public void ejbStore()

{

setName(name);//inserted in this step

NOTE The method signature of the abstract accessor in //1 is as per the Camel

Case convention mandated by the EJB 2.0 spec. Also, the keyword ‘this’

may or may not be present in the original source, but it has to be removed
from the modified source file.

Migrating CMP Entity EJBs

216 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

// setId(id);//Do not insert this if it is a part of the
primary key

………………..//already present code

}

10. As a last change to the bean class source (.java) file, examine the whole code and

replace all occurrences of any <cmp-field> variable name with the equivalent

protected variable name (as declared in Step 5).

If you do not migrate the bean, at the minimum you need to insert the

<cmp-version>1.x</cmp-version> tag inside the ejb-jar.xml at the

appropriate place, so that the unmigrated bean still works on Sun ONE Application

Server.

Migration of ejb-jar.xml
To migrate the file ejb-jar.xml to Sun ONE Application Server perform the following

steps:

1. In the ejb-jar.xml, convert all <cmp-fields> to become lowercase.

2. In the ejb-jar.xml file, insert the tag <abstract-schema-name> after the

<reentrant> tag. The schema name will be the name of the bean as in the

< ejb-name> tag, prefixed with “ias_”.

3. Insert the following tags after the <primkey-field> tag:

<security-identity><use-caller-identity/></security-identity>

4. Use the SQL’s obtained above to construct the EJB QL from SQL.

5. Insert the <query> tag and all its nested child tags with all the required information in

the ejb-jar.xml, just after the <security-identity> tag.

Custom Finder Methods
The custom finder methods are the findBy... methods (other than the default

findByPrimaryKey method) which can be defined in the home interface of an entity bean.

As the EJB 1.1 specification does not stipulate a standard for defining the logic of these

finder methods, EJB server vendors are free to choose their implementations. As a result,

the procedures used to define the methods vary considerably between the different

implementations chosen by vendors.

Sun ONE Application Server 6.0 and 6.5 use standard SQL to specify the finder logic.

Migrating CMP Entity EJBs

Appendix C Migrating from EJB 1.1 to EJB 2.0 217

Information concerning the definition of this finder method is stored in the EJB's

persistence descriptor (Account-ias-cmp.xml) as follows:

<bean-property>

 <property>

 <name>findOrderedAccountsForCustomerSQL</name>

 <type>java.lang.String</type>

 <value>

 SELECT BRANCH_CODE,ACC_NO FROM ACCOUNT where CUST_NO = ?

</value>

 <delimiter>,</delimiter>

 </property>

</bean-property>

<bean-property>

 <property>

 <name>findOrderedAccountsForCustomerParms</name>

 <type>java.lang.Vector</type>

 <value>CustNo</value>

 <delimiter>,</delimiter>

 </property>

</bean-property>

Each findXXX finder method therefore has two corresponding entries in the deployment

descriptor (SQL code for the query, and the associated parameters).

In Sun ONE Application Server the custom finder method logic is also declarative, but is

based on the EJB query language EJB QL.

The EJB-QL language cannot be used on its own. It has to be specified inside the file

ejb-jar.xml, in the <ejb-ql> tag. This tag is inside the <query> tag, which defines a

query (finder or select method) inside an EJB. The EJB container can transform each query

into the implementation of the finder or select method. Here's an example of an <ejb-ql>

tag:

Migrating CMP Entity EJBs

218 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

<ejb-jar>
 <enterprise-beans>

 <entity>
 <ejb-name>hotelEJB</ejb-name>

 ...
<abstract-schema-name>TMBankSchemaName</abstract-schema-name>
 <cmp-field>...
 ...
 <query>
 <query-method>
 <method-name>findByCity</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>

 </method-params>
 </query-method>
 <ejb-ql>

<![CDATA[SELECT OBJECT(t) FROM TMBankSchemaName AS t WHERE
t.city = ?1]]>

</ejb-ql>
 </query>

 </entity>
 ...
 </enterprise-beans>
...
</ejb-jar>

Section A

Index 219

Index

A
About Sun ONE Application Server 6.0/6.5 27

About Sun ONE Application Server 7 11

About This Guide

How This Guide is Organized 8

What you should know 7

Administration Server 18

Administration Tool 17

Administration Tools 16

Sun ONE Application Server 6.0 17

Sun ONE Application Server 6.5 17

Sun ONE Application Server 7 18

application client JAR 23

AppLogic 119

Architecture 11, 12

Sun ONE Application Server 6.0/6.5 architecture 27

Sun ONE Application Server 7 Architecture 11

asadmin 19, 41, 70, 118

Automated Migration Phase 120, 152

automated tools 25

Automating Migration 8, 171

B
BEA WebLogic Server v6.1 118

BMP 42

C
CMP 38, 42

CORBA 122

D
data sources 32

Database Connectivity 20

Database Support in Sun ONE Application Server

6.0 20

Database Support in Sun ONE Application Server

7 21

db_setup.sh 20

DB2 20

Deploy 118

Deployment descriptors 23, 24

Development Environments 15

Sun ONE Application Server 6.0/6.5 15

Sun ONE Application Server 7 15

DriverManager 30

E
EAR files 23

Section F

220 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

EJB 37

EJB 1.1 to EJB 2.0

Defining Entity Bean Relationships 210

EJB 2.0 Container-Managed Persistence (CMP) 209

EJB Query Language 207

Message-Driven Beans 210

Migrating CMP Entity EJBs

Custom Finder Methods 216

Migrating the Bean Class 213

Migration of ejb-jar.xml 216

Migrating EJB Client Applications 210

Declaring EJBs in the JNDI Context 210

Migration of ejb-jar.xml 216

EJB Changes Specific to S1AS 7 38

EJB JAR 23

EJB Migration 37

EJB QL 38

ejbCreate 83

enterprise application 114

Enterprise Applications 43

Application root context and access URL 44

Migrating Proprietary Extensions 44

Enterprise EJB Modules 42

Enterprise JavaBeans 13

Entity Beans 38

Extraction Tool 155

Extraction tool 133

F
format

URLs, in manual 8

Forte for Java (FFJ) 122

G
GXR 122

H
home interface 94

I
iasdeploy 20

iBank 29, 45

Migrating iBank using Sun ONE Studio for Java

4.0 70

Converting CMP Entity EJBs from 1.1 to 2.0 78

Creating a Web application module 73

Creating an EJB module 91

Creating an enterprise application 114

Deploying the application 117

iBank Application specification

Application Components 182

Application navigation and logic 178

Database schema 174

Fitness of design choices with regard to potential

migration issues 185

Tools used for the development of the application 174

IBM WebSphere v4.0 118

Informix 20

Iona 122

J
J2EE 13

J2EE Application Components and Migration 22

J2EE applications

components 22

J2EE Component Standards 13

J2EE JATO 138

JATO 126, 143

JavaServer Pages 13

JDBC Code 30

Using JDBC 2.0 Data Sources 32

Configuring a Data Source 32

Looking Up the Data Source Via JNDI 35

JDBC drivers 20

Section K

Index 221

jdbcsetup 20

JNDI context 35

JSP 1.2 specification 36

JSP’s and JSP Custom Tag Libraries 35

K
KFC (Kiva Foundation Classes) 119

Kiva 119

automated migration phase 119

extraction 119

translation 119

manual migration phase 119

Kiva Migration Toolbox Builder 189

Kiva/NAS 4.1

Migration Preparation 119

Before Running the Extraction Tool 123

Migration Process Overview 119

Preparing a Project for Automated Migration 121

Preparing the GXR file 122

Preparing your Working Environment 121

KIVA/NAS 4.1 to Sun ONE AS 7 119

M
Manual Migration of iBank Application 46

Assembling Application for Deployment 70

EJB Changes 48

Web application changes 46

Manual Migration Phase 120, 152

MDB 37

Migrating From S1AS 6.x to S1AS 7 29

Migration and Redeployment 23

What is Redeployment 25

What Needs to be Migrated 24

Why is Migration Necessary 24

Migration Considerations and Strategies 27

N
NAS 4.1 119

NetDynamics 152

automated migration phase 152

extraction 152

translation 152

Create a Toolbox Builder 157

Extraction Tool 154, 155

manual migration phase 152

Migrating ToolBox Sample Application 156

Migration Preparation 152

igration Process Overview 152

Preparing a Project for Automated Migration 154

Preparing your Working Environment 152

Running the Migration Toolbox 156

NetDynamics Migration Toolbox Builder 189

NetDynamics to Sun ONE AS 7 151

O
Obtaining a Data Source from the JNDI Context 37

onAfterInit 154

onBeforeInit 154

OnlineBankSample 123

Create a Toolbox 125

Running the Migration Toolbox 124

Oracle 20

P
PointBase 20

Project Manager 140

R
Registry Editor 17

remote interface 94

Section S

222 Sun ONE Application Server 7 • Migrating and Redeploying Server Applications Guide • March 2003

S
S1MT 119, 120

Servlets 13, 36

Session Beans 38

setenv.bat 153

SQL Server 20

Sun ONE Console 17

Sun ONE Migration Tool 25

Sun ONE Migration Tool for Application Servers 171

Sun ONE Migration Toolbox 25, 119, 189

Migration 189

Kiva Migration Toolbox Builder 190

NetDynamics Migration Toolbox Builder 194

Toolbox Builder 190

Supported Platforms 189

Tools and Toolboxes 201

Cloning Tools 201

Creating New Tools 201

Deleting Tools 201

Importing & Exporting Tools 201

Toolbox Merging 202

Troubleshooting 202

Extraction 203

Post-Migration 205

Toolbox Installation & Configuration 202

Translation 205

Sun ONE Studio 15, 71

Sybase 20

T
Task Tools 133

toolbox 130

Toolbox application 189

Toolbox GUI 189

Translation tool 134

type 2 20

Type 4 20

U
URLs

format, in manual 8

V
Visibroker for Java 122

W
WAR 23, 122

Web Applications 39

Migrating Web Application Modules 40

Particular setbacks when migrating servlets and

JSPs 41

Web module 115

web.xml 74

WEB-INF 74

Welcome File 78

	Migrating and Redeploying Server Applications Guide
	Contents
	About This Guide
	What You Should Know
	How This Guide is Organized
	Documentation Conventions

	About Sun ONE Application Server 7
	Sun ONE Application Server 7 Architecture
	J2EE Component Standards
	Development Environments
	Sun ONE Application Server 6.0/6.5 Development Environment
	Sun ONE Application Server 7 Development Environment

	Administration Tools
	Sun ONE Application Server 6.0 Administration Tools
	Sun ONE Application Server 6.5 Administration Tools
	Sun ONE Application Server 7 Administration Tools

	Database Connectivity
	Database Support in Sun ONE Application Server 6.0
	Database Support in Sun ONE Application Server 6.5
	Database Support in Sun ONE Application Server 7

	J2EE Application Components and Migration
	Migration and Redeployment
	Why is Migration Necessary
	What Needs to be Migrated
	What is Redeployment

	Migration Considerations and Strategies
	About Sun ONE Application Server 6.0/6.5
	Migration Issues From Sun ONE Application Server 6.x to 7
	Migrating JDBC Code
	Migrating Java Server Pages and JSP Custom Tag Libraries
	Migrating Servlets
	EJB Migration
	EJB Changes Specific to Sun ONE Application Server 7
	Migrating Web Applications
	Migrating Enterprise EJB Modules
	Migrating Enterprise Applications

	Migrating Example: iBank
	Manual Migration of iBank Application
	Migrating iBank using Sun ONE Studio for Java 4.0

	Migration from BEA WebLogic Server v6.1 and IBM WebSphere v4.0

	Migration from KIVA/NAS 4.1 to Sun ONE AS 7
	Introduction
	Migration Preparation
	Migrating OnlineBankSample

	Migration from NetDynamics to Sun ONE AS 7
	Introduction
	Migration Preparation
	Migrating ToolBox Sample Application

	Automating Migration
	Sun ONE Migration Tool for Application Servers
	Sun ONE Migration Toolbox (formerly iPlanet Migration Toolbox)
	Redeploying Migrated Applications

	iBank Application specification
	Tools used for the development of the application
	Database schema
	Application navigation and logic
	Application Components
	Fitness of design choices with regard to potential migration issues

	Sun ONE Migration Toolbox
	Supported Platforms
	Migration
	Toolbox Builder
	Kiva Migration Toolbox Builder
	NetDynamics Migration Toolbox Builder

	Tools and Toolboxes
	Creating New Tools
	Cloning Tools
	Deleting Tools
	Importing & Exporting Tools
	Toolbox Merging

	Troubleshooting
	Toolbox Installation & Configuration
	Extraction
	Translation
	Post-Migration

	Migrating from EJB 1.1 to EJB 2.0
	EJB Query Language
	Local Interfaces
	EJB 2.0 Container-Managed Persistence (CMP)
	Defining Entity Bean Relationships
	Message-Driven Beans
	Migrating EJB Client Applications
	Declaring EJBs in the JNDI Context
	Recap on Using EJB JNDI References

	Migrating CMP Entity EJBs
	Migrating the Bean Class
	Migration of ejb-jar.xml
	Custom Finder Methods

	Index

