
Developer’s Guide to J2EE
Features and Services

Sun™ ONE Application Server

Version 7

817-2177-10
March 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

__

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS
L’AUTORISATION EXPRESSE, ÉCRITE ET PRÉALABLE DE SUN MICROSYSTEMS, INC. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de
Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à
celles-ci. Distribué par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Sun ONE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matière de contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations ("U.S. Commerce
Department’s Table of Denial Orders") et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons"), sont rigoureusement interdites.

3

Contents

About This Guide . 7

Who Should Use This Guide . 7
Using the Documentation . 8
How This Guide Is Organized . 10
Related Information . 11
Documentation Conventions . 11

General Conventions . 12
Conventions Referring to Directories . 13

Product Support . 14

Chapter 1 Overview of J2EE Features and Services . 15
Java™ Database Connectivity (JDBC™) API . 15
Transaction Service . 16
Java Naming and Directory Interface™ (JNDI) API . 16
Java™ Message Service (JMS) API . 16
JavaMail™ API . 16

Chapter 2 Using the JDBC™ API for Database Access . 17
Introducing the JDBC API . 17

Supported Functionality . 19
Understanding Database Limitations . 19

General Steps for Creating a JDBC Resource . 20
Integrating the JDBC Driver . 20

Supported Database Drivers . 20
Making the JDBC Driver JAR Files Accessible . 21

Creating a Connection Pool . 21
Using the Administration Interface . 21

4 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Using The Command Line Interface . 25
Creating a JDBC Resource . 26

Using The Administration Interface . 26
Using The Command Line Interface . 27

Configurations for Specific JDBC Drivers . 28
PointBase Type4 Driver . 28
Data Direct Connect JDBC3.0/ Type4 Driver for Oracle 9.x Databases . 29

Creating Applications That Use the JDBC API . 30
Using Connections . 30

Looking Up a JDBC Resource . 31
Pooling Connections . 32
Sharing Connections . 32
Opening and Closing Connections . 33

Using JDBC Transaction Isolation Levels . 33
Using the JDBC API in Application Layers . 35

Using the JDBC API in EJB Components . 35
Using the JDBC API in Servlets . 36

Sample Applications . 36

Chapter 3 Using the Transaction Service . 37
Introducing Transactions . 37

Transaction Resource Managers . 38
Transaction Scope . 39
Transaction Management . 40

Container-Managed Transactions . 40
Component-Managed Transactions . 40

Transaction Recovery . 41
Configuring the Transaction Service . 41

Using the Administration Interface . 41
Using the Command Line Interface . 43

Looking Up a Transaction . 44
Transaction Logging . 45
Sample Applications . 45

Chapter 4 Using the Java Naming and Directory Interface™ . 47
Accessing the Naming Context . 47

Using the InitialContext to Look Up a Named Object . 48
Naming Environment for J2EE Application Components . 48
COSNaming Provider for Application Clients . 49
Naming Environment for Lifecycle Modules . 49

Configuring Resources . 50
JDBC Resources . 51

5

User Transaction Handles . 51
JMS Resources . 51
JavaMail Sessions . 51
Persistence Manager Factories . 51
URL Connection Factories . 52
J2EE Connector Architecture Connection Factories . 52
External JNDI Resources . 53

Using the Administration Interface . 53
Using the Command Line Interface . 54

Custom Resources . 55
Using the Administration Interface . 55
Using the Command Line Interface . 56

Mapping References . 58
Sample Applications . 59

Chapter 5 Using the Java™ Message Service . 61
Introducing the JMS API . 61

JMS Provider . 62
JMS Clients . 62
JMS Messaging Models and Interfaces . 63

Administration of the JMS Service . 64
Configuring the JMS Service . 64

Using the Administration Interface . 65
Using the Command Line Interface . 66

Checking Whether the JMS Provider Is Running . 67
Creating Physical Destinations . 68

Using the Administration Interface . 68
Using the Command Line Interface . 68

Creating JMS Resources: Destinations and Connection Factories . 69
Using the Administration Interface . 70
Using the Command Line Interface . 72

Creating Applications That Use the JMS API . 73
Basic Steps for Developing a JMS Client . 74

Importing the JMS Package . 74
Looking Up Connection Factories . 74
Creating Connections . 75
Creating Sessions . 75
Looking Up Destinations . 75
Creating Message Producers . 76
Creating Message Consumers . 76
Starting the Connection . 76

Processing JMS Messages . 76
Sending Messages . 77

6 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Receiving Messages . 77
Acknowledging Received Messages . 78

JMS Cleanup . 79
Delivering SOAP Messages Using the JMS API . 79

Sending SOAP Messages Using the JMS API . 80
Receiving SOAP Messages Using the JMS API . 81

Sample Applications . 82

Chapter 6 Using the JavaMail™ API . 83
Introducing JavaMail . 83
Creating a JavaMail Session . 84

Using the Administration Interface . 84
Using the Command Line Interface . 86

JavaMail Session Properties . 87
Looking Up a JavaMail Session . 87
Sending Messages Using JavaMail . 88
Reading Messages Using JavaMail . 89
Sample Applications . 90

Index . 91

7

About This Guide

This guide describes how to create and run Java™ 2 Platform, Enterprise Edition
(J2EE™ platform) applications that follow the new open Java standards model for
the Java™ Database Connectivity (JDBC™), transaction, Java Naming and
Directory Interface™ (JNDI), Java™ Message Service (JMS), and JavaMail™ APIs,
on the Sun™ Open Net Environment (Sun ONE) Application Server 7.

This preface contains information about the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Related Information

• Documentation Conventions

• Product Support

Who Should Use This Guide
The intended audience for this guide is the person who develops, assembles, and
deploys J2EE applications in a corporate enterprise.

This guide assumes you are familiar with the following topics:

• J2EE specification

• HTML

• Java programming

Using the Documentation

8 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

• Java APIs as defined in the Java™ Servlet, JavaServer Pages™ (JSP™),
Enterprise JavaBeans™ (EJB™), and JDBC specifications

• Structured database query languages such as SQL

• Relational database concepts

• Software development processes, including debugging and source code
control

Using the Documentation
The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.sun.com/

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Table 1 Sun ONE Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the
documentation

Release Notes

Supported platforms and environments Platform Summary

Introduction to the application server, including new
features, evaluation installation information, and
architectural overview.

Getting Started Guide

Installing Sun ONE Application Server and its various
components (sample applications, Administration
interface, Sun ONE Message Queue).

Installation Guide

Creating and implementing J2EE applications that follow
the open Java standards model on the Sun ONE
Application Server 7. Includes general information about
application design, developer tools, security, assembly,
deployment, debugging, and creating lifecycle modules.

Developer’s Guide

Using the Documentation

About This Guide 9

Creating and implementing J2EE applications that follow
the open Java standards model for web applications on the
Sun ONE Application Server 7. Discusses web application
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to Web
Applications

Creating and implementing J2EE applications that follow
the open Java standards model for enterprise beans on the
Sun ONE Application Server 7. Discusses EJB
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to
Enterprise JavaBeans
Technology

Creating clients that access J2EE applications on the Sun
ONE Application Server 7

Developer’s Guide to Clients

Creating web services Developer’s Guide to Web
Services

J2EE APIs such as JDBC, transactions, JNDI, JMS, and
JavaMail

Developer’s Guide to J2EE
Features and Services

Creating custom NSAPI plugins Developer’s Guide to NSAPI

Performing the following administration tasks:

• Using the Administration interface and the command
line interface

• Configuring server preferences

• Using administrative domains

• Using server instances

• Monitoring and logging server activity

• Configuring the web server plugin

• Configuring the Java Messaging Service

• Using J2EE features

• Configuring support for CORBA-based clients

• Configuring database connectivity

• Configuring transaction management

• Configuring the web container

• Deploying applications

• Managing virtual servers

Administrator’s Guide

Table 1 Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

How This Guide Is Organized

10 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

How This Guide Is Organized
This guide provides a Sun ONE Application Server environment overview for
designing programs, and includes the following topics:

• Chapter 1, “Overview of J2EE Features and Services”

This chapter summarizes how to use the JDBC, transaction, JNDI, JMS, and
JavaMail APIs with the Sun ONE Application Server.

• Chapter 2, “Using the JDBC™ API for Database Access”

This chapter describes in detail how to use the JDBC API with the Sun ONE
Application Server.

• Chapter 3, “Using the Transaction Service”

Editing server configuration files Administrator’s Configuration
File Reference

Configuring and administering security for the Sun ONE
Application Server 7 operational environment. Includes
information on general security, certificates, and SSL/TLS
encryption. HTTP server-based security is also addressed.

Administrator’s Guide to
Security

Configuring and administering service provider
implementation for J2EE™ Connector Architecture (CA)
connectors for the Sun ONE Application Server 7.
Includes information about the Administration Tool, DTDs
and provides sample XML files.

J2EE CA Service Provider
Implementation
Administrator’s Guide

Migrating your applications to the new Sun ONE
Application Server 7 programming model from the
Netscape Application Server version 2.1, including a
sample migration of an Online Bank application provided
with Sun ONE Application Server

Migration Guide

Using the Sun™ Open Net Environment (Sun ONE)
Message Queue software.

The Sun ONE Message
Queue documentation at:

http://docs.sun.com/
db/prod/s1.s1msgqu#h
ic

Table 1 Sun ONE Application Server Documentation Roadmap (Continued)

For information about See the following

Related Information

About This Guide 11

This chapter describes in detail how to use transactions with the Sun ONE
Application Server.

• Chapter 4, “Using the Java Naming and Directory Interface™”

This chapter describes in detail how to use the JNDI API with the Sun ONE
Application Server.

• Chapter 5, “Using the Java™ Message Service”

This chapter describes in detail how to use the JMS API with the Sun ONE
Application Server.

• Chapter 6, “Using the JavaMail™ API”

This chapter describes in detail how to use the JavaMail API with the Sun ONE
Application Server.

Related Information
You can find a directory of URLs for the official specifications at
install_dir/docs/index.htm. Additionally, the following resources may be helpful:

General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with the JDBC API:

Database Programming with JDBC and Java, by George Reese, O’Reilly Publishing

JDBC Database Access With Java: A Tutorial and Annotated Reference (Java Series), by
Graham Hamilton, Rick Cattell, & Maydene Fisher

JMS Programming Concepts:

Java Message Service by Richard Monson-Haefel, David A. Chappell, and Mike
Loukides, O’Reilly Publishing

Documentation Conventions
This section describes the types of conventions used throughout this guide:

Documentation Conventions

12 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 13.

By default, the location of install_dir on most platforms is:

❍ Solaris™ 8 non-package-based Evaluation installations:

user’s home directory/sun/appserver7

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

Documentation Conventions

About This Guide 13

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 13
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following:

default_config_dir/domains/domain/instance

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

• For Solaris 9 bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

NOTE Forte for Java 4.0 has been renamed to Sun ONE Studio 4
throughout this manual.

Product Support

14 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

❍ default_config_dir refers to /var/opt/SUNWappserver7/domainswhich is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

15

Chapter 1

Overview of J2EE Features and
Services

The Java™ 2 Platform, Enterprise Edition (or J2EE™ Platform) includes features
and services that are available as resources to all J2EE applications and modules.
The Sun™ Open Net Environment (Sun ONE) Application Server 7, a J2EE 1.3
compliant server, provides access to these resources. This guide describes the
following features:

• Java™ Database Connectivity (JDBC™) API

• Transaction Service

• Java Naming and Directory Interface™ (JNDI) API

• Java™ Message Service (JMS) API

• JavaMail™ API

Java™ Database Connectivity (JDBC™) API
The standard way to connect to a database from a J2EE application or module is
through a JDBC driver. Sun ONE Application Server supports the core JDBC 3.0
API and the JDBC 2.0 extensions and works with a wide range of JDBC
Compliant™ drivers. A JDBC resource associates a JDBC driver and database to a
JNDI name that applications and modules can reference.

For information about the JDBC API in the Sun ONE Application Server, see
Chapter 2, “Using the JDBC™ API for Database Access.”

Transaction Service

16 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Transaction Service
The purpose of a transaction is to ensure that data is updated in an all-or-nothing
fashion in order to preserve data integrity. The transaction service provides
transactional resource managers for the JDBC API, the JMS API, and resource
adapters (connector modules). In the Sun ONE Application Server, you can
configure transactions and reference them using the JNDI API.

For information about transactions in Sun ONE Application Server, see Chapter 3,
“Using the Transaction Service.”

Java Naming and Directory Interface™ (JNDI) API
The JNDI API allows application components and clients to look up distributed
resources, services, and EJB™ components. The J2EE resources described in this
guide are made available through the JNDI API. External JNDI resources and
custom resources are also configurable in the Sun ONE Application Server.

For information about the JNDI API in the Sun ONE Application Server, see
Chapter 4, “Using the Java Naming and Directory Interface™.”

Java™ Message Service (JMS) API
The JMS API provides a common way for J2EE applications and modules to create,
send, receive, and read messages in a distributed environment. The fully integrated
JMS provider for Sun ONE Application Server is the Sun™ Open Net Environment
(Sun ONE) Message Queue software. JMS queues, topics, and message destinations
are made available through the JNDI API.

For information about the JMS API in the Sun ONE Application Server, see
Chapter 5, “Using the Java™ Message Service.”

JavaMail™ API
The JavaMail API allows J2EE applications to create, send, receive, and read mail
messages. The JavaMail API includes support for the IMAP4, POP3, and SMTP
mail protocols. JavaMail sessions are made available through the JNDI API.

For information about the JavaMail API in the Sun ONE Application Server, see
Chapter 6, “Using the JavaMail™ API.”

17

Chapter 2

Using the JDBC™ API for Database
Access

This chapter describes how to use the Java™ Database Connectivity (JDBC™) API
for database access with the Sun™ ONE Application Server. This chapter also
provides high level JDBC implementation instructions for servlets and EJB™
components using the Sun ONE Application Server. The Sun ONE Application
Server supports the core JDBC 3.0 API and the JDBC 2.0 extensions.

This chapter contains the following sections:

• Introducing the JDBC API

• General Steps for Creating a JDBC Resource

• Configurations for Specific JDBC Drivers

• Creating Applications That Use the JDBC API

• Using the JDBC API in Application Layers

• Sample Applications

Introducing the JDBC API
From a programming perspective, the JDBC API is a set of Java classes and
methods that allow embedding of database calls in server applications. More
specifically, the JDBC Specification is a set of interfaces that every JDBC driver
vendor must implement. A driver processes the JDBC statements in your
application and routes the SQL arguments they contain to your database engines.
The Sun ONE Application Server supports a variety of JDBC drivers, which
support a variety of Enterprise Information Systems (EIS) databases.

Introducing the JDBC API

18 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

The following figure illustrates how application components use the JDBC API to
interact with databases.

The JDBC API lets you write high-level, easy-to-use programs that operate
seamlessly with and across many different databases without requiring you to
know most of the low-level database implementation details.

For explanations of two-tier and three-tier database access models, see the Sun
ONE Application Server Administrator’s Guide.

The JDBC specifications are available here:

http://java.sun.com/products/jdbc/download.html

A useful JDBC tutorial is located here:

http://java.sun.com/docs/books/tutorial/jdbc/index.html

The rest of this section includes these topics:

• Supported Functionality

JDBC
Resources

JDBC
Resources

Request

Request

Response

Sun ONE Application Server Application

Java
Server
Pages

EJBsJDBC calls

HTML
or
JSP
Page

HTML
or
JSP
Page Servlets

JDBC
Resources

Servlets use data
models and query
files to access
JDBC resources
through EJBs and
JDBC RowSet
calls

Introducing the JDBC API

Chapter 2 Using the JDBC™ API for Database Access 19

• Understanding Database Limitations

Supported Functionality
The JDBC specification is a broad, database-vendor-independent set of guidelines.
The guidelines encompass the broadest database functionality range possible in a
simple framework. At a minimum, the JDBC API assumes the database supports
the SQL-3 database access language. Sun ONE Application Server supports these
parts of the JDBC specification:

• The JDBC 3.0 core database access and functionality that a server vendor must
implement to be JDBC compliant is supported. The Sun ONE Application
Server fully meets the compliance standard. From a database vendor’s
perspective, the JDBC 3.0 API describes a database access model that permits
full access to the standard SQL-3 language, the standard language portions
each vendor supports, and the language extensions each vendor implements.

• The JDBC 2.0 Standard Extension API, which describes advanced features,
many of which offer improved database performance, is supported.

Understanding Database Limitations
When using the JDBC API in your server applications, you may encounter
situations where the results are not what you desire or expect. You may think the
problem lies in the JDBC API or driver implementation. However, the vast
majority of these problems are limitations in your database engine.

Because the JDBC API covers the broadest possible database support, it enables
you to attempt operations not every database supports. For example, most
database vendors support most of the SQL-3 language, but no vendor provides
fully unqualified support for all of the SQL-3 standard. Most vendors built SQL-3
support on top of their existing proprietary relational database management
systems, and either those proprietary systems offer features not in SQL-3 or SQL-3
offers features not available in those systems. Most vendors have added non
standard SQL-3 extensions to their SQL implementation to support their
proprietary features. The JDBC API provides ways to access vendor-specific
features, but these features may not be available for all databases you use.

NOTE Sun ONE Application Server does not support connection pooling
or transactions for an application’s database access if it does not use
standard J2EE™ DataSource objects.

General Steps for Creating a JDBC Resource

20 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Some JDBC access problems can result if you attempt to access JDBC features that
are either partially supported or not supported by the JDBC driver. Check the
JDBC driver documentation for details about which JDBC features are supported.

General Steps for Creating a JDBC Resource
To prepare a JDBC resource for use in J2EE applications deployed to the Sun ONE
Application Server, perform the following tasks:

• Integrating the JDBC Driver

• Creating a Connection Pool

• Creating a JDBC Resource

For information about how to configure some specific JDBC drivers, see
“Configurations for Specific JDBC Drivers” on page 28.

Integrating the JDBC Driver
To use JDBC features, you must choose a JDBC driver to work with the Sun ONE
Application Server, then you must set up the driver. This section covers these
topics:

• Supported Database Drivers

• Making the JDBC Driver JAR Files Accessible

Supported Database Drivers
Supported JDBC drivers are those that have been fully tested by Sun. For a list of
the JDBC drivers currently supported by the Sun ONE Application Server, see the
Sun ONE Application Server 7 Platform Summary.

For configurations of certified drivers, see “Configurations for Specific JDBC
Drivers” on page 28.

NOTE Because the drivers and databases supported by the Sun ONE
Application Server are constantly being updated, and because
database vendors continue to upgrade their products, always check
with Sun technical support for the latest database support
information.

General Steps for Creating a JDBC Resource

Chapter 2 Using the JDBC™ API for Database Access 21

Making the JDBC Driver JAR Files Accessible
To integrate the JDBC driver into a Sun ONE Application Server instance, you can
do either of the following:

• Make the driver’s class files accessible to the Common Classloader. Copy the
JAR and ZIP files into the instance_dir/lib directory or copy the .class files
into the instance_dir/lib/classes directory, then restart the server.

• Make the driver’s class files accessible to the System Classloader. Go to the
server instance page in the Administration interface, click the JVM Settings tab,
click the Path Settings option, edit the Classpath Suffix field, click Save, then
restart the server.

Using either classloader makes classes accessible to any application or module
across the server instance. For more information about Sun ONE Application
Server classloaders, see the Sun ONE Application Server Developer’s Guide.

Creating a Connection Pool
When you create a JDBC connection pool in the Sun ONE Application Server, you
can define many of the characteristics of your database connections.

You can create a connection pool in one of these ways:

• Using the Administration Interface

• Using The Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

For additional information about connection pools, including connection pool
monitoring, see the Sun ONE Application Server Administrator’s Guide.

Using the Administration Interface
To create a JDBC connection pool using the Administration interface, perform the
following tasks:

1. Open the JDBC component under your server instance.

2. Click Connection Pools.

3. Click the New button.

4. Enter the following information:

General Steps for Creating a JDBC Resource

22 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

❍ Name (required) - Enter a name (or ID) for the connection pool.

❍ Database Vendor (required) - Select the database driver vendor from the
list. You must select a JDBC driver that you have integrated as described in
“Integrating the JDBC Driver” on page 20. You can select Other if your
database driver is not listed.

5. If you want to enable global transactions, check the Global Transaction
Support box.

If you check this box, the Datasource Classname value you enter later must
implement the java.sql.XADataSource interface.

6. Click the Next button. (You can click the Back button to return to this page.)

Your Database Vendor selection determines what is displayed when you click
the Next button.

7. Enter or edit the Datasource Classname value. This is the vendor-supplied
DataSource class name.

8. Specify values for any properties your JDBC driver requires. If a property you
need is not listed, use the Add button to add it. The following table lists some
standard and commonly used properties.

Table 2-1 Common Connection Pool Properties

Property Description

User Specifies the user name for this connection pool.

Password Specifies the password for this connection pool.

databaseName Specifies the database for this connection pool.

serverName Specifies the database server for this connection pool.

port Specifies the port on which the database server listens for
requests.

networkProtocol Specifies the communication protocol.

roleName Specifies the initial SQL role name.

datasourceName Specifies an underlying XADataSource, or a
ConnectionPoolDataSource if connection pooling is done.

description Specifies a text description.

url Specifies the URL for this connection pool. Although this is not a
standard property, it is commonly used.

General Steps for Creating a JDBC Resource

Chapter 2 Using the JDBC™ API for Database Access 23

9. You can change the Pool Settings listed in the following table.

10. You can change the Connection Validation settings listed in the following
table. All of these settings are optional.

Table 2-2 Pool Settings

Setting Default Description

Steady Pool Size 8 Specifies the initial and minimum number of
connections maintained in the pool.

Max Pool Size 32 Specifies the maximum number of connections that
can be created to satisfy client requests.

Pool Resize Quantity 2 Specifies the number of connections to be destroyed if
the existing number of connections is above the
Steady Pool Size (subject to the Max Pool Size limit).
This is enforced periodically at the Idle Timeout
interval. An idle connection is one that has not been
used for a period specified by Idle Timeout.

Idle Timeout (secs) 300 Specifies the minimum time that a connection can
remain idle in the free pool. After this amount of
time, the pool can close this connection.

Max Wait Time 60000 Specifies the amount of time, in milliseconds, that the
caller is willing to wait to acquire a connection. If 0,
the caller is blocked indefinitely until a resource is
available or an error occurs.

Table 2-3 Connection Validation Settings

Setting Default Description

Connection
Validation Required

Unchecked Specifies whether connections have to be validated before being
given to the application. If a resource’s validation fails, it is
destroyed, and a new resource is created and returned.

Validation Method auto-commit Legal values are as follows:

• auto-commit (default), which uses
Connection.setAutoCommit()

• meta-data, which uses Connection.getMetaData()

• table, which performs a query on the table specified in the
Table Name setting

General Steps for Creating a JDBC Resource

24 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

11. You can change the Transaction Isolation settings listed in the following table.
Both of these settings are optional.

12. Click the Finish button.

Table Name none Specifies the table name to be used to perform a query to validate a
connection. This setting is mandatory if and only if the Validation
Method is set to table.

Fail All Connections Unchecked If checked, closes all connections in the pool if a single validation
check fails. Recovery of a minimum number of connections
(specified by the Steady Pool Size setting) is attempted.

This setting is mandatory if and only if Connection Validation
Required is checked. If Connection Validation Required is
unchecked, this setting is ignored.

Table 2-4 Transaction Isolation Settings

Setting Default Description

Transaction Isolation default
JDBC
driver
isolation
level

Specifies the transaction isolation level on the pooled database
connections. Allowed values are read-uncommitted,
read-committed, repeatable-read, or serializable. Not
all databases support all these values. For more information about
these values, see “Using JDBC Transaction Isolation Levels” on
page 33.

Applications that change the isolation level on a pooled connection
programmatically risk polluting the pool, which can lead to errors.
See Guarantee Isolation Level for more details.

Guarantee Isolation Level Checked Applicable only when the Transaction Isolation level is explicitly
set. If checked, every connection obtained from the pool is
guaranteed to have the desired isolation level. This may impact
performance on some JDBC drivers. You can uncheck this setting if
you are certain that the hosted applications do not return
connections with altered isolation levels.

Table 2-3 Connection Validation Settings (Continued)

Setting Default Description

General Steps for Creating a JDBC Resource

Chapter 2 Using the JDBC™ API for Database Access 25

Using The Command Line Interface
To create a JDBC connection pool using the command line, use the asadmin
create-jdbc-connection-pool command. The syntax is as follows, with defaults
shown for optional parameters that have them:

asadmin create-jdbc-connection-pool --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] --datasourceclassname
class_name [--restype javax.sql.DataSource] [--steadypoolsize=8]
[--maxpoolsize=32] [--maxwait=60000] [--poolresize=2]
[--idletimeout=300] [--isolationlevel isolation_level]
[--isisolationguaranteed=true] [--isconnectvalidatereq=false]
[--validationmethod=auto-commit] [--validationtable table_name]
[--failconnection=false] [--description text] [--property
(name=value)[:name=value]*] connection_pool_id

For more information about the parameters specific to asadmin
create-jdbc-connection-pool, see “Using the Administration Interface” on
page 21. For more information about the general asadmin parameters (--user,
--password, --passwordfile, --host, --port, and --secure), see the Sun ONE
Application Server Administrator’s Guide.

For example:

asadmin create-jdbc-connection-pool --user joeuser --password secret
--datasourceclassname oracle.jdbc.pool.OracleDataSource
--failconnection=true --isconnectvalidatereq=true --property
url=jdbc\\:oracle\\:thin\\:@myhost\\:1521\\:V8i:user=staging_lookup
_app:password=staging_lookup_app OraclePoollookup

Note that the colon characters (:) within property values must be escaped with
double backslashes (\\) on Solaris™ platforms as shown, because otherwise they
are interpreted as property delimiters. On Windows platforms, colon characters (:)
must be escaped with single backslashes (\). For details about using escape
characters, see the Sun ONE Application Server Administrator’s Guide.

To delete a JDBC connection pool, use the following command:

asadmin delete-jdbc-connection-pool --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] connection_pool_id

For example:

asadmin delete-jdbc-connection-pool --user joeuser --password secret
OraclePoollookup

To list JDBC connection pools, use the following command:

General Steps for Creating a JDBC Resource

26 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

asadmin list-jdbc-connection-pools --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name]

For example:

asadmin list-jdbc-connection-pools --user joeuser --password secret
--instance server1

Creating a JDBC Resource
A JDBC resource, also called a data source, lets you make connections to a database
using getConnection(). Create a JDBC resource in one of these ways:

• Using The Administration Interface

• Using The Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

For general information about JDBC resources, see the Sun ONE Application Server
Administrator’s Guide.

Using The Administration Interface
To create a JDBC resource using the Administration interface, perform these tasks:

1. Open the JDBC component under your server instance.

2. Click JDBC Resources.

3. Click the New button.

4. Enter the following information:

❍ JNDI Name (required) - Enter the JNDI name that application components
must use to access the JDBC resource. For more information, see “Looking
Up a JDBC Resource” on page 31.

❍ Pool Name (required) - Select from the list the name (or ID) of the
connection pool used by this JDBC resource. For more information, see
“Creating a Connection Pool” on page 21.

❍ Description (optional) - You can enter a text description of the JDBC
resource.

General Steps for Creating a JDBC Resource

Chapter 2 Using the JDBC™ API for Database Access 27

5. Check the Data Source Enabled box to enable the JDBC resource.

If a JDBC resource is disabled, no application component can connect to it, but
its configuration remains in the server instance.

6. Click the OK button.

7. Go to the server instance page.

8. Click the General tab.

9. Click the Apply Changes button.

Using The Command Line Interface
To create a JDBC resource using the command line, use the asadmin
create-jdbc-resource command. The syntax is as follows, with defaults shown
for optional parameters that have them:

asadmin create-jdbc-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] --connectionpoolid
connection_pool_id [--enabled=true] [--description text] [--property
(name=value)[:name=value]*] jndi_name

For more information about the parameters specific to asadmin
create-jdbc-resource, see “Using The Administration Interface” on page 26. For
more information about the general asadmin parameters (--user, --password,
--passwordfile, --host, --port, and --secure), see the Sun ONE Application
Server Administrator’s Guide.

For example:

asadmin create-jdbc-resource --user joeuser --password secret
--connectionpoolid OraclePoollookup OracleDSlookup

To delete a JDBC resource, use the following command:

asadmin delete-jdbc-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] jndi_name

For example:

asadmin delete-jdbc-resource --user joeuser --password secret
OracleDSlookup

To list JDBC resources, use the following command:

Configurations for Specific JDBC Drivers

28 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

asadmin list-jdbc-resources --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name]

For example:

asadmin list-jdbc-resources --user joeuser --password secret
--instance server1

After you create the JDBC resource, you must reconfigure the server instance using
the following command:

asadmin reconfig --user user [--password password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure |
-s][--discardmanualchanges=false | --keepmanualchanges=false]
instance_name

For example:

asadmin reconfig --user joeuser --password secret server1

Configurations for Specific JDBC Drivers
The following certified JDBC 2.0 drivers have passed the J2EE Compatibility Test
Suite (CTS) when tested with Sun ONE Application Server:

• PointBase Type4 Driver

• Data Direct Connect JDBC3.0/ Type4 Driver for Oracle 9.x Databases

For details about how to integrate a JDBC driver and how to use the
Administration interface or the command line interface to implement the
configuration, see “General Steps for Creating a JDBC Resource” on page 20.

PointBase Type4 Driver
The PointBase 4.2 JDBC driver is included with the Sun ONE Application Server by
default, except for the Solaris bundled installation, which does not include
PointBase. Therefore, unless you have the Solaris bundled installation, you do not
need to integrate this JDBC driver with the Sun ONE Application Server.

Configure the connection pool using the following settings:

• Name: You will use this name when you configure the JDBC resource later.

• Database Vendor: PointBase 4.2

Configurations for Specific JDBC Drivers

Chapter 2 Using the JDBC™ API for Database Access 29

• Global Transaction Support, Datasource Classname: See the following table.

• Properties:

❍ User - Set as appropriate.

❍ Password - Set as appropriate.

❍ databaseName - Specify the complete database URL.

Configure the JDBC resource using the following settings:

• JNDI Name: Beginning the JNDI name with jdbc/ is recommended.

• Pool Name: Select the name of the connection pool you configured.

• Data Source Enabled: Check this box.

Data Direct Connect JDBC3.0/ Type4 Driver for
Oracle 9.x Databases

Configure the connection pool using the following settings:

• Name: You will use this name when you configure the JDBC resource later.

• Database Vendor: Data Direct 3

• Global Transaction Support, Datasource Classname: See the following table.

Table 2-5 Datasource Classname Values for the PointBase Type4 Driver

Global Transaction Support Datasource Classname Value

No (unchecked) com.pointbase.jdbc.jdbcDataSource

Yes (checked) com.pointbase.xa.xaDataSource

NOTE This JDBC driver limits the size of BLOB datatypes to 4 GB.

Table 2-6 Datasource Classname Values for the Data Direct Driver for Oracle 9.x
Databases

Global Transaction Support Datasource Classname Value

No (unchecked) com.ddtek.jdbcx.oracle.OracleDataSource

Creating Applications That Use the JDBC API

30 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

• Properties:

❍ serverName - Specify the host name or IP address of the database server.

❍ portNumber - Specify the port number of the database server.

❍ User - Set as appropriate.

❍ Password - Set as appropriate.

❍ SID - Set as appropriate.

❍ xa-driver-does-not-support-non-tx-operations - Set to the value
true. Optional: only needed if Global Transaction Support is checked.

Configure the JDBC resource using the following settings:

• JNDI Name: Beginning the JNDI name with jdbc/ is recommended.

• Pool Name: Select the name of the connection pool you configured.

• Data Source Enabled: Check this box.

Creating Applications That Use the JDBC API
An application that uses the JDBC API is an application that looks up and connects
to one or more databases. This section covers these topics:

• Using Connections

• Using JDBC Transaction Isolation Levels

Using Connections
To use connections, you should be familiar with these topics:

• Looking Up a JDBC Resource

Yes (checked) com.ddtek.jdbcx.oracle.OracleDataSource

NOTE This JDBC driver limits the size of BLOB datatypes to 4 GB.

Table 2-6 Datasource Classname Values for the Data Direct Driver for Oracle 9.x
Databases (Continued)

Global Transaction Support Datasource Classname Value

Creating Applications That Use the JDBC API

Chapter 2 Using the JDBC™ API for Database Access 31

• Pooling Connections

• Sharing Connections

• Opening and Closing Connections

For general information about connections and JDBC URLs, see the Sun ONE
Application Server Administrator’s Guide.

Looking Up a JDBC Resource
The recommended Java Naming and Directory Interface™ (JNDI) subcontext for
JDBC resources is java:comp/env/jdbc.

The JDBC 3.0 API specifies that all JDBC resources are registered in the jdbc
naming subcontext of a JNDI namespace, or in one of its child subcontexts. The
JNDI namespace is hierarchical, like a file system’s directory structure, so it is easy
to find and nest references. A JDBC resource is bound to a logical JNDI name. The
name identifies a subcontext, jdbc, of the root context, and a logical name. In order
to change the JDBC resource, you can just change its entry in the JNDI namespace
without having to modify the application.

For more information about the JNDI API, see the JDBC 2.0 Standard Extension
API and Chapter 4, “Using the Java Naming and Directory Interface™.”

The following code example demonstrates how a JDBC resource is looked up and a
connection created from it. As illustrated, the string that is looked up is the same as
specified in the res-ref-name element in the deployment descriptor file.

InitialContext ctx = null;
String dsName1 = "java:comp/env/jdbc/HelloDbDs";
DataSource ds1 = null;
Connection conn1 = null;

try {
ctx = new InitialContext();
ds1 = (DataSource)ctx.lookup(dsName1);

UserTransaction tx = ejbContext.getUserTransaction();

tx.begin();

Connection conn1 = ds1.getConnection();

// use conn1 to do some database work -- note that
// conn1.commit(), conn1.rollback(), and conn1.setAutoCommit()
// cannot be used here

Creating Applications That Use the JDBC API

32 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

tx.commit();
conn1.close();
conn1 = null;

} catch(Exception e) {
e.printStackTrace(System.out);

}
finally {

if (conn1 != null) {
try {

conn1.close();
} catch (Exception e) {

// ignore
}

}
}

Pooling Connections
Creating and destroying database connections are expensive operations.
Connection pooling allows reuse of persistent connections. When an application
closes a connection, the connection is returned to the pool.

For details about connection pool settings (maximum number of connections,
connection timeout, and so on), see “Creating a Connection Pool” on page 21.

Sharing Connections
When multiple connections acquired by an application use the same JDBC
resource, the connection pool provides connection sharing within the same
transaction scope. For example, suppose Bean_A starts a transaction and obtains a
connection, then calls a method in Bean_B. If Bean_B acquires a connection to the
same JDBC resource with the same sign-on information, and if Bean_A completes
the transaction, the connection can be shared.

Connections are shared only if res-sharing-scope is set to Shareable in the J2EE
deployment descriptor. To turn off connection sharing, set res-sharing-scope to
Unshareable.

NOTE Connection pooling is an automatic feature of the Sun ONE
Application Server. The API is not exposed.

Creating Applications That Use the JDBC API

Chapter 2 Using the JDBC™ API for Database Access 33

Opening and Closing Connections
When you open a JDBC connection using DataSource.getConnection(), the Sun
ONE Application Server allocates connection resources. You can use the default
user name and password defined for your connection pool or you can pass in other
values. For details about setting the default user name and password, see “Creating
a Connection Pool” on page 21.

When a connection is no longer needed, call Connection.close() to free the
connection resources. Always reestablish connections before continuing database
operations after you call Connection.close().

Use Connection.isClosed() to test whether the connection is closed. This
method returns false if the connection is open, and returns true only after
Connection.close() is explicitly called.

Some connection behavior depends on whether it is a local or global connection:

• You can manage the transaction context for local connections using the
setAutoCommit(), commit(), and rollback() methods.

• Transaction management methods such as setAutoCommit(), commit(), and
rollback() are not allowed for global connections.

Using JDBC Transaction Isolation Levels
For general information about transactions, see Chapter 3, “Using the Transaction
Service,” and the Sun ONE Application Server Administrator’s Guide.

Not all database vendors support all transaction isolation levels available in the
JDBC API. The Sun ONE Application Server permits specifying any isolation level
your database supports, but throws an exception against values your database
does not support. The following table defines transaction isolation levels.

TIP Using Connection.close() in a finally block is recommended.
Depending on your database vendor, you may have to close
statements as well. Connections are not automatically closed; an
application must close its connections.

Creating Applications That Use the JDBC API

34 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Specify or examine the transaction isolation level for a connection using the
Connection.setTransactionIsolation() and
Connection.getTransactionIsolation() methods, respectively. Note that you
cannot call setTransactionIsolation() during a transaction.

You can set the default transaction isolation level for a JDBC connection pool. For
details, see “Creating a Connection Pool” on page 21.

To verify that a level is supported by your database management system, test your
database programmatically using the supportsTransactionIsolationLevel()
method in java.sql.DatabaseMetaData, as shown in the following example:

java.sql.DatabaseMetaData db;
if (db.supportsTransactionIsolationLevel(TRANSACTION_SERIALIZABLE)

{ Connection.setTransactionIsolation(TRANSACTION_SERIALIZABLE);
}

For more information about these isolation levels and what they mean, see the
JDBC 3.0 API specification.

Table 2-7 Transaction Isolation Levels

Transaction Isolation Level Description

TRANSACTION_READ_UNCOMMITT
ED

Dirty reads, non-repeatable reads and phantom reads can occur.

TRANSACTION_READ_COMMITTED Dirty reads are prevented; non-repeatable reads and phantom
reads can occur.

TRANSACTION_REPEATABLE_REA
D

Dirty reads and non-repeatable reads are prevented; phantom
reads can occur.

TRANSACTION_SERIALIZABLE Dirty reads, non-repeatable reads and phantom reads are
prevented.

NOTE Applications that change the isolation level on a pooled connection
programmatically risk polluting the pool, which can lead to errors.

Using the JDBC API in Application Layers

Chapter 2 Using the JDBC™ API for Database Access 35

Using the JDBC API in Application Layers
The JDBC API is part of the Sun ONE Application Server runtime environment.
This means the JDBC API is always available any time you use Java to program an
application. In a typical multi-tiered server application, you use the JDBC API to
access an EIS database from a client, from the presentation layer, in servlets, and in
EJB components.

However, in practice it makes sense—for security and portability reasons—to
restrict database accesses to the middle layers of a multi-tiered server application.
In the Sun ONE Application Server programming model, this means placing all
JDBC calls in servlets or preferably EJB components.

Using the JDBC API in EJB Components
There are two reasons to place JDBC calls in EJB components:

• Placing all JDBC calls inside EJB components makes your application more
modular and more portable. Because you use EJB components as building
blocks for many applications with little or no changes, you can use an EJB
component to maintain a common interface to your EIS database.

• EJB components provide built-in mechanisms for transaction control. Placing
JDBC calls in well-designed EJB components frees you from programming
explicit transaction control using the JDBC API or
java.transaction.UserTransaction, which provides low-level transaction
support under the JDBC API.

For more information about transactions in EJB components, see “Transaction
Management” on page 40 and the Sun ONE Application Server Developer’s Guide to
Enterprise JavaBeans Technology.

NOTE For container-managed transactions, use a globally available JDBC
resource to create a global connection so that the EJB transaction
manager controls the transaction.

Sample Applications

36 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Using the JDBC API in Servlets
Servlets are at the heart of a Sun ONE Application Server application. They stand
between a client interface, such as an HTML or JSP™ page (a page created with the
JavaServer Pages™ technology), and the EJB components that do the bulk of an
application’s work.

The Sun ONE Application Server applications use JDBC calls embedded in EJB
components for most database accesses. This is the preferred method for database
accesses using the Sun ONE Application Server because it enables you to take
advantage of the transaction control built into EJB components and their
containers. Servlets, however, can also provide database access through the JDBC
API.

In some situations, accessing a database directly from a servlet can offer a speed
advantage over accessing a database from EJB components. There is less call
overhead, if an application is spread across servers so that EJB components are
accessible only through the Java Remote Method Interface (RMI).

If access to a database is from a servlet, use the JDBC 2.0 RowSet interface to
interact with the database. A row set is a Java object that encapsulates a set of rows
that have been retrieved from a database or other tabular data source, such as a
spreadsheet. The RowSet interface provides JavaBean properties that allow a
RowSet instance to be configured to connect to a database and retrieve a set of
rows.

Sample Applications
JDBC sample applications are in the following directory:

install_dir/samples/jdbc

37

Chapter 3

Using the Transaction Service

The J2EE™ platform provides several abstractions that simplify development of
dependable transaction processing for applications. This chapter discusses J2EE
transactions and transaction support in the Sun™ ONE Application Server.

This chapter contains the following sections:

• Introducing Transactions

• Configuring the Transaction Service

• Looking Up a Transaction

• Transaction Logging

• Sample Applications

Introducing Transactions
The purpose of a transaction is to ensure that data is updated in an all-or-nothing
fashion. For example, a message is either delivered or not delivered. A transaction
has these four characteristics.

• Atomicity - A transaction can end in two ways: with a commit or a rollback.
When a transaction is committed, modifications made to the data within the
transaction boundaries are saved and made permanent. When a transaction is
rolled back, all modifications made to the data are undone.

• Consistency - If a transaction fails, data integrity is preserved.

• Isolation - Phases in a transaction cannot be observed by other applications and
threads until the transaction is committed or rolled back.

• Durability - Committed changes can survive system failures.

Introducing Transactions

38 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

In addition, J2EE transaction semantics do not support nested transactions. You
must commit or roll back a transaction before you can begin another one.

For more information about the Java™ Transaction API (JTA) and Java™
Transaction Service (JTS), see the Sun ONE Application Server Administrator’s Guide
and the following sites:

http://java.sun.com/products/jta/

http://java.sun.com/products/jts/

You may also want to read the chapter on transactions in the J2EE tutorial:

http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

This section covers the following topics:

• Transaction Resource Managers

• Transaction Scope

• Transaction Management

• Transaction Recovery

Transaction Resource Managers
There are three types of transaction resource managers:

• Databases - Use of transactions prevents databases from being left in
inconsistent states due to incomplete updates. Sun ONE Application Server
supports a variety of JDBC™ XA drivers, listed in “Configurations for Specific
JDBC Drivers” on page 28. For information about JDBC transaction isolation
levels, see “Using JDBC Transaction Isolation Levels” on page 33.

• Java™ Message Service (JMS) Providers - Use of transactions ensures that
messages are reliably delivered. Sun ONE Application Server is integrated
with Sun ONE Message Queue, a fully capable JMS provider. For more
information about transactions and the JMS API, see “Using Transactions for
Message Acknowledgement” on page 78.

• J2EE™ Connector Architecture (CA) components - Use of transactions
prevents legacy EIS systems from being left in inconsistent states due to
incomplete updates. For more information about J2EE CA connectors, see the
Application Server J2EE CA Service Provider Implementation Administrator’s Guide.

For details about how transaction resource managers, the transaction service, and
applications interact, see the Sun ONE Application Server Administrator’s Guide.

Introducing Transactions

Chapter 3 Using the Transaction Service 39

Transaction Scope
A local transaction involves only one non-XA resource and requires that all
participating application components execute within one process. Local
transaction optimization is specific to the resource manager and is transparent to
the J2EE application.

In Sun ONE Application Server, a JDBC resource is non-XA if it meets any of the
following criteria:

• In the JDBC connection pool configuration, the datasource class does not
implement the javax.sql.XADataSource interface.

• The Global Transaction Support box is not checked, or the res-type attribute
does not exist or is not set to javax.sql.XADataSource.

A transaction remains local if the following conditions remain true:

• One and only one non-XA resource is used. If any additional non-XA or XA
resource is used, the transaction is aborted.

• No transaction importing or exporting occurs.

If the transaction timeout is greater than zero:

• If the resource involved is non-XA, this resource is wrapped in a Sun ONE XA
wrapper, and the global transaction infrastructure is used.

• If the resource involved is XA, it is like any other global transaction.

Transactions that involve more than one resource, or multiple participant
processes, are distributed or global transactions.

If only one XA resource is used in a transaction, one-phase commit occurs,
otherwise the transaction is coordinated with a two-phase commit protocol.

A two-phase commit protocol between the transaction manager and all the
resources enlisted for a transaction ensures that either all the resource managers
commit the transaction or they all abort. When the application requests the
commitment of a transaction, the transaction manager issues a
PREPARE_TO_COMMIT request to all the resource managers involved. Each of these
resources may in turn send a reply indicating whether it is ready for commit
(PREPARED) or not (NO). Only when all the resource managers are ready for a
commit does the transaction manager issue a commit request (COMMIT) to all the
resource managers. Otherwise, the transaction manager issues a rollback request
(ABORT) and the transaction is rolled back.

Introducing Transactions

40 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Transaction Management
Sun ONE Application Server supports both types of transaction management:

• Container-Managed Transactions

• Component-Managed Transactions

These sections provide brief summaries. For more information, see the Sun ONE
Application Server Administrator’s Guide and the Sun ONE Application Server
Developer’s Guide to Enterprise JavaBeans Technology.

Container-Managed Transactions
In an enterprise bean with container-managed (or declarative) transactions, the
EJB™ container sets the boundaries of the transactions. You can use
container-managed transactions with any type of enterprise bean: session, entity,
or message-driven. Container-managed transactions simplify development
because the enterprise bean code does not explicitly mark the transaction’s
boundaries. The code does not include statements that begin and end the
transaction.

Typically, the container begins a transaction immediately before an enterprise bean
method starts. It commits the transaction just before the method exits. Each method
can be associated with a single transaction. Nested or multiple transactions are not
allowed within a method.

Component-Managed Transactions
There may be times when component-managed (or programmatic) transaction
management using the JDBC API or javax.transaction.UserTransaction is
appropriate for an application. In these cases, you can program the transaction
management in the application yourself.

In a component-managed transaction, the code in the session or message-driven
bean explicitly marks the boundaries of the transaction. An entity bean cannot
have component-managed transactions; it must use container-managed
transactions instead. Although beans with container-managed transactions require
less coding, they have one limitation: When a method is executing, it can be
associated with either a single transaction or no transaction at all. If this limitation
will make coding your bean difficult, you should consider using
component-managed transactions.

Configuring the Transaction Service

Chapter 3 Using the Transaction Service 41

To initiate and perform programmatic transactions, components reference the Sun
ONE Application Server’s default transaction coordinator as described in “Looking
Up a Transaction” on page 44. EJB components can also reference the transaction
using the EJBContext.getUserTransaction() method.

Transaction Recovery
Transaction recovery is an important aspect of distributed transactions. If a
resource becomes unreachable, or if there are unrecoverable errors, the status of the
distributed transaction can be in question. Automatic and manual recovery of
stranded or incomplete transactions is an important feature in Sun ONE
Application Server. To enable automatic transaction recovery, see “Configuring the
Transaction Service” on page 41.

Configuring the Transaction Service
You can configure the transaction service in Sun ONE Application Server in the
following ways:

• Using the Administration Interface

• Using the Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

This section covers basic configuration. For details about monitoring and other
administration topics, see the Sun ONE Application Server Administrator’s Guide.

Using the Administration Interface
To configure the transaction service using the Administration interface, perform
the following tasks:

1. Open the Transaction Service component under your server instance.

2. Edit the following information if desired. All of these settings are optional.

❍ Monitoring Enabled - Check this box to enable monitoring of the
transaction service. By default, monitoring is disabled.

Configuring the Transaction Service

42 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

❍ Log Level - Controls the type of messages logged by the transaction service
to the server log. You can select a specific level, or you can select the
default level set in the Log Service. For details, see the description of the
Log Service in the Sun ONE Application Server Administrator’s Guide.

❍ Recover on Restart - Check this box if you want the server instance to
attempt transaction recovery during startup. By default, recovery is not
attempted.

❍ Transaction Timeout - Specifies the amount of time after which the
transaction is aborted. If set to 0 (the default), the transaction never times
out. This is the application level timeout. To set the XAResource timeout,
use the xaresource-txn-timeout property, described in Step 3.

❍ Transaction Log Location - Sets the location of the transaction log
directory. The directory in which the transaction logs are kept must be
writable by whatever user account the server runs as. The default location
is instance_dir/logs.

❍ Heuristic Decision - During recovery, if the outcome of a transaction
cannot be determined from the logs, this property determines the outcome.
The default is rollback. The other choice is commit.

❍ Keypoint Interval - Specifies the number of transactions between keypoint
operations in the log. Keypoint operations reduce the size of the
transaction log file by compressing it. A larger value for this attribute (for
example, 4096) results in a larger transaction log file, but fewer keypoint
operations and potentially better performance. A smaller value (for
example, 100) results in smaller log files, but slightly reduced performance
due to the greater frequency of keypoint operations.

3. To add properties to the transaction service, perform the following tasks:

a. Click the Properties button.

b. Specify names and values for any properties you want to use. If you need
another name-value row, use the Add button to add it. The following table
lists the transaction service properties for Sun ONE Application Server.

Configuring the Transaction Service

Chapter 3 Using the Transaction Service 43

c. Click the Save button.

4. Go to the server instance page.

5. Click the General tab.

6. Click the Apply Changes button.

Using the Command Line Interface
To configure the transaction service using the command line interface, use the
asadmin set command. The syntax is as follows, with defaults shown for optional
parameters that have them:

asadmin set --user admin_user [--password admin_password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure | -s]
attribute_name=value [attribute_name=value] *

For more information about the general asadmin parameters (--user, --password,
--passwordfile, --host, --port, and --secure), see the Sun ONE Application
Server Administrator’s Guide.

The attribute_name is a hierarchical name that looks like this:

instance.transaction-service.ts_attribute_name

Table 3-1 Transaction Service Properties

Property Default Description

disable-distribute
d-transaction-
logging

false If true, disables transaction logging, which may improve
performance. If false, the transaction service writes
transactional activity into transaction logs so that transactions
can be recovered. If Recover on Restart is checked, this
property is ignored.

Use only if performance is more important than transaction
recovery.

xaresource-txn-
timeout

specific to the
XAResource
used

Changes the XAResource timeout. In some cases, the
XAResource default timeout causes transactions to be
aborted, so it is desirable to change it.

To set the application level timeout, use the Transaction
Timeout setting, described in Step 2.

Looking Up a Transaction

44 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

The instance is the application server instance name. The ts_attribute_name is the
transaction service attribute that needs to be configured. For example:

server1.transaction-service.transactionTimeout

To view the list of transaction service attribute names that can be configured using
the asadmin set command, use the asadmin get command with a wildcard. The
asadmin get command has the same syntax as the asadmin set command. For
example:

asadmin get --user joeuser --password secret "server1.transaction-service.*"

A list of attribute names for configuring the transaction service of the server1
application server instance is displayed. The transaction service attributes are as
follows:

server1.transaction-service.logLevel
server1.transaction-service.automaticTransactionRecovery
server1.transaction-service.heuristicDecision
server1.transaction-service.transactionTimeout
server1.transaction-service.keypointInterval
server1.transaction-service.monitoringEnabled
server1.transaction-service.transactionLogFile

Here is an example of running the asadmin set command:

asadmin set --user joeuser --password secret
server1.transaction-service.transactionTimeout=0

The attribute_name for a transaction service property is a hierarchical name that
looks like this:

instance.transaction-service.property.ts_property_name

The instance is the application server instance name. The ts_property_name is the
transaction service property that needs to be configured. Here is an example of
running the asadmin set command to set a transaction service property:

asadmin set --user joeuser --password secret
server1.transaction-service.property.xaresource-txn-timeout=30

Looking Up a Transaction
Application components obtain reference to the container’s default transaction
coordinator by doing a Java Naming and Directory Interface™ (JNDI) lookup of
java:comp/UserTransaction. The returned object implements the
javax.transaction.UserTransaction interface and can be used in the

Transaction Logging

Chapter 3 Using the Transaction Service 45

application to begin, commit, rollback, and query the status of programmatic
transactions. For more information about the JNDI API, see the JDBC 2.0 Standard
Extension API and Chapter 4, “Using the Java Naming and Directory Interface™.”
The transaction lookup in the application code looks like this:

InitialContext ic = new InitialContext();
String txName = "java:comp/UserTransaction";
UserTransaction tx = (javax.transaction.UserTransaction)ic.lookup(txName);
tx.begin();
// transacted commands, such as JDBC calls
tx.commit();

Transaction Logging
The transaction service writes transactional activity into transaction logs so that
transactions can be recovered. You can control transaction logging in these ways:

• Set the location of the transaction log files using the Transaction Log Location
setting in the Administration interface or the transactionLogFile attribute in
the command line interface.

• Turn off transaction logging by setting the
disable-distributed-transaction-logging property to true. Do this only
if performance is more important than transaction recovery.

For details, see “Configuring the Transaction Service” on page 41.

You can set the level of detail for transaction-related messages in the server log file
using the Log Level setting in the Administration interface or the LogLevel
attribute in the command line interface.

Sample Applications
Sample applications that use transactions are in the following directory:

install_dir/samples/transactions

Sample Applications

46 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

47

Chapter 4

Using the Java Naming and Directory
Interface™

A naming service maintains a set of bindings, which relate names to objects. The
J2EE™ naming service is based on the Java Naming and Directory Interface™
(JNDI) API. The JNDI API allows application components and clients to look up
distributed resources, services, and EJB™ components. For general information
about the JNDI API, see:

http://java.sun.com/products/jndi/

You can also see the JNDI tutorial at:

http://java.sun.com/products/jndi/tutorial/

This chapter contains the following sections:

• Accessing the Naming Context

• Configuring Resources

• Mapping References

• Sample Applications

Accessing the Naming Context
Sun™ ONE Application Server provides a naming environment, or context, which
is compliant with standard J2EE 1.3 requirements. A Context object provides the
methods for binding names to objects, unbinding names from objects, renaming
objects, and listing the bindings. The InitialContext is the handle to the J2EE
naming service that application components and clients use for lookups.

Accessing the Naming Context

48 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

The JNDI API also provides subcontext functionality. Much like a directory in a file
system, a subcontext is a context within a context. This hierarchical structure
permits better organization of information. For naming services that support
subcontexts, the Context class also provides methods for creating and destroying
subcontexts.

The rest of this section covers these topics:

• Using the InitialContext to Look Up a Named Object

• Naming Environment for J2EE Application Components

• COSNaming Provider for Application Clients

• Naming Environment for Lifecycle Modules

Using the InitialContext to Look Up a Named
Object
To look up a resource, first you instantiate an InitialContext, then you use the
InitialContext.lookup() method to look up the resource by its JNDI name. The
following example catches NameNotFoundException and NamingException
exceptions that can occur during a lookup:

try {
InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

}
catch (NameNotFoundException e) {

out("\nJNDI binding was not found");
}
catch (NamingException e) {

out("\nJNDI binding error");
}

Naming Environment for J2EE Application
Components
The namespace for objects looked up in a J2EE environment is organized into
different subcontexts, with the standard prefix java:comp/env.

Accessing the Naming Context

Chapter 4 Using the Java Naming and Directory Interface™ 49

The following table describes recommended JNDI subcontexts for connection
factories in the Sun ONE Application Server.

COSNaming Provider for Application Clients
To support a global JNDI namespace that is accessible to IIOP application clients,
Sun ONE Application Server includes a J2EE-based CosNaming provider, which
supports the binding of CORBA references (remote EJB references). The
InitialContext returned to the IIOP clients is a CosNaming provider. A Sun
ONE Application Server instance registers the entity beans for the IIOP clients to
lookup and bind to.

Objects stored in the CosNaming and local JNDI environments are transient. On
each server startup or application reloading, all relevant objects are re-bound to the
namespace.

Naming Environment for Lifecycle Modules
Lifecycle listener modules provide a means of running short or long duration
Java-based tasks within the application server environment, such as instantiation
of singletons or RMI servers. These modules are automatically initiated at server
startup and are notified at various phases of the server life cycle. For details about
lifecycle modules, see the Sun ONE Application Server Developer’s Guide.

Table 4-1 Recommended JNDI Subcontexts for Connection Factories

Resource Manager Connection Factory Type JNDI Subcontext

JDBC™ javax.sql.DataSource java:comp/env/jdbc

Transaction
Service

javax.transaction.UserTransaction java:comp/UserTransaction

JMS javax.jms.TopicConnectionFactory

javax.jms.QueueConnectionFactory

java:comp/env/jms

JavaMail™ javax.mail.Session java:comp/env/mail

URL java.net.URL java:comp/env/url

Connector javax.resource.cci.ConnectionFactory java:comp/env/eis

Configuring Resources

50 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

The configured properties for a lifecycle module are passed as properties during
server initialization (the INIT_EVENT). The initial JNDI naming context is not
available until server initialization is complete. A lifecycle module can get the
InitialContext for lookups using the method
LifecycleEventContext.getInitialContext() during, and only during, the
STARTUP_EVENT, READY_EVENT, or SHUTDOWN_EVENT server life cycle events.

Configuring Resources
J2EE application components can access a variety of resources using the JNDI API,
such as:

• JDBC Resources

• User Transaction Handles

• JMS Resources

• JavaMail Sessions

• Persistence Manager Factories

• URL Connection Factories

• J2EE Connector Architecture Connection Factories

In addition, Sun ONE Application Server exposes the following resources in the
naming environment. For these resources, full administration details are provided
in the following sections:

• External JNDI Resources

• Custom Resources

NOTE Each resource within a server instance must have a unique name.
However, two resources in different server instances or different
domains may have the same name.

Configuring Resources

Chapter 4 Using the Java Naming and Directory Interface™ 51

JDBC Resources
For details on how to configure JDBC resources, see “General Steps for Creating a
JDBC Resource” on page 20. The recommended JNDI subcontext for JDBC
resources is java:comp/env/jdbc. For more information, see “Looking Up a JDBC
Resource” on page 31.

User Transaction Handles
Application components obtain reference to the container’s default transaction
coordinator by doing a JNDI lookup of java:comp/UserTransaction. The
returned object implements the javax.transaction.UserTransaction interface
and can be used in the application to begin, commit, rollback, and query the status
of transactions. For additional information about transactions, see Chapter 3,
“Using the Transaction Service.”

JMS Resources
For details on how to configure JMS resources, see “Administration of the JMS
Service” on page 64. The recommended JNDI subcontext for JMS resources is
java:comp/env/jms. For more information, see “Looking Up Connection
Factories” on page 74 and “Looking Up Destinations” on page 75.

JavaMail Sessions
For details on how to configure JavaMail sessions, see “Creating a JavaMail
Session” on page 84. The recommended JNDI subcontext for JavaMail sessions is
java:comp/env/mail. For more information, see “Looking Up a JavaMail Session”
on page 87.

Persistence Manager Factories
A persistence manager factory resource for container-managed persistence (CMP)
implements the following interface:

com.sun.jdo.spi.persistence.support.sqlstore.impl.PersistenceManagerFactory

The recommended JNDI subcontext for persistence manager factories is
java:comp/env/jdo.

Configuring Resources

52 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

For details about how to create and use a persistence manager factory resource, see
the Sun ONE Application Server Administrator’s Guide and the Sun ONE Application
Server Developer’s Guide to Enterprise JavaBeans Technology.

URL Connection Factories
A URL connection factory implements the java.net.URL interface. The
recommended JNDI subcontext for URL connection factories is
java:comp/env/url.

URL connection factories do not require any resource to be configured in the Sun
ONE Application Server itself. The jndi-name element in the relevant deployment
descriptor specifies the target URL. For example, the following entry in the
web.xml file:

<resource-ref>
<res-ref-name>myURL</res-ref-name>
<res-type>java.net.URL</res-type>
<res-auth>Container</res-auth>

</resource-ref>

maps to the following entry in the sun-web.xml file:

<resource-ref>
<res-ref-name>myURL</res-ref-name>
<jndi-name>http://www.sun.com/index.html</jndi-name>

</resource-ref>

J2EE Connector Architecture Connection
Factories
A J2EE™ Connector Architecture (CA) connection factory implements the
javax.resource.cci.ConnectionFactory interface.

The recommended JNDI subcontext for J2EE CA connection factory resources is
java:comp/env/eis.

For details about how to create and use a J2EE CA connection factory, see the Sun
ONE Application Server J2EE CA Service Provider Implementation Administrator’s
Guide.

Configuring Resources

Chapter 4 Using the Java Naming and Directory Interface™ 53

External JNDI Resources
An external JNDI resource defines custom JNDI contexts and implements the
javax.naming.spi.InitialContextFactory interface. There is no specific JNDI
parent context for external JNDI resources, except for the standard
java:comp/env/.

Create an external JNDI resource in one of these ways:

• Using the Administration Interface

• Using the Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

Using the Administration Interface
To create an external JNDI resource using the Administration interface, perform
the following tasks:

1. Open the JNDI component under your server instance.

2. Click External Resources.

3. Click the New button.

4. Enter the following information:

❍ JNDI Name (required) - Enter the JNDI name for the resource.

❍ Resource Type (required) - Enter the fully qualified type of the resource.

❍ JNDI Lookup (required) - Enter the JNDI value to look up in the external
repository. For example, for a bean class, your JNDI Lookup might be
cn=mybean.

❍ Factory Class (required) - Enter the fully qualified name of the factory
class.

❍ Description (optional) - You can enter a text description of the external
JNDI resource.

5. Check the External Resource Enabled box to enable the external JNDI resource.

If an external JNDI resource is disabled, no application component can connect
to it, but its configuration remains in the server instance.

6. Click the OK button.

Configuring Resources

54 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

7. To add properties to an external JNDI resource, perform the following tasks:

a. Go back to the External Resources page.

b. Click the external JNDI resource you just created.

c. Click the Properties button.

d. Specify names and values for any properties you want to use. If you need
another name-value row, use the Add button to add it.

e. Click the OK button.

f. Click the Save button.

8. Go to the server instance page.

9. Click the General tab.

10. Click the Apply Changes button.

Using the Command Line Interface
To create an external JNDI resource using the command line, use the asadmin
create-jndi-resource command. The syntax is as follows, with defaults shown
for optional parameters that have them:

asadmin create-jndi-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] --jndilookupname
lookup_name --resourcetype resource_type --factoryclass class_name
[--enabled=true] [--description text] [--property
(name=value)[:name=value]*] jndi_name

For more information about the parameters specific to asadmin
create-jndi-resource, see “Using the Administration Interface” on page 53. For
more information about the general asadmin parameters (--user, --password,
--passwordfile, --host, --port, and --secure), see the Sun ONE Application
Server Administrator’s Guide.

For example:

asadmin create-jndi-resource --user joeuser --password secret
--jndilookupname cn=myBean --resourcetype test.myBean --factoryclass
com.sun.jndi.ldap.LdapCtxFactory test/myBean

To delete an external JNDI resource, use the following command:

asadmin delete-jndi-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] jndi_name

Configuring Resources

Chapter 4 Using the Java Naming and Directory Interface™ 55

For example:

asadmin delete-jndi-resource --user joeuser --password secret
test/myBean

To list external JNDI resources, use the following command:

asadmin list-jndi-resources --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] --instance instance_name

For example:

asadmin list-jndi-resources --user joeuser --password secret
--instance server1

After you create the external JNDI resource, you must reconfigure the server
instance using the following command:

asadmin reconfig --user user [--password password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure |
-s][--discardmanualchanges=false | --keepmanualchanges=false]
instance_name

For example:

asadmin reconfig --user joeuser --password secret server1

Custom Resources
A custom resource specifies a custom server-wide resource object factory that
implements the javax.naming.spi.ObjectFactory interface. There is no specific
JNDI parent context for external JNDI resources, except for the standard
java:comp/env/.

Create a custom resource in one of these ways:

• Using the Administration Interface

• Using the Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

Using the Administration Interface
To create a custom resource using the Administration interface, perform the
following tasks:

Configuring Resources

56 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

1. Open the JNDI component under your server instance.

2. Click Custom Resources.

3. Click the New button.

4. Enter the following information:

❍ JNDI Name (required) - Enter the JNDI name for the resource.

❍ Resource Type (required) - Enter the fully qualified type of the resource.

❍ Factory Class (required) - Enter the fully qualified name of the factory
class.

❍ Description (optional) - You can enter a text description of the custom
resource.

5. Check the Custom Resource Enabled box to enable the custom resource.

If a custom resource is disabled, no application component can connect to it,
but its configuration remains in the server instance.

6. Click the OK button.

7. To add properties to a custom resource, perform the following tasks:

a. Go back to the Custom Resources page.

b. Click the custom resource you just created.

c. Click the Properties button.

d. Specify names and values for any properties you want to use. If you need
another name-value row, use the Add button to add it.

e. Click the OK button.

f. Click the Save button.

8. Go to the server instance page.

9. Click the General tab.

10. Click the Apply Changes button.

Using the Command Line Interface
To create a custom resource using the command line, use the asadmin
create-custom-resource command. The syntax is as follows, with defaults
shown for optional parameters that have them:

Configuring Resources

Chapter 4 Using the Java Naming and Directory Interface™ 57

asadmin create-custom-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] --resourcetype
resource_type --factoryclass class_name [--enabled=true] [--description
text] [--property (name=value)[:name=value]*] jndi_name

For more information about the parameters specific to asadmin
create-custom-resource, see “Using the Administration Interface” on page 53.
For more information about the general asadmin parameters (--user, --password,
--passwordfile, --host, --port, and --secure), see the Sun ONE Application
Server Administrator’s Guide.

For example:

asadmin create-custom-resource --user joeuser --password secret
--resourcetype test.MyBean --factoryclass test.MyBeanFactory
test/myBean

To delete a custom resource, use the following command:

asadmin delete-custom-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] jndi_name

For example:

asadmin delete-custom-resource --user joeuser --password secret
test/myBean

To list custom resources, use the following command:

asadmin list-custom-resources --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] --instance instance_name

For example:

asadmin list-custom-resources --user joeuser --password secret
--instance server1

After you create the custom resource, you must reconfigure the server instance
using the following command:

asadmin reconfig --user user [--password password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure |
-s][--discardmanualchanges=false | --keepmanualchanges=false]
instance_name

For example:

asadmin reconfig --user joeuser --password secret server1

Mapping References

58 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Mapping References
The following XML elements map JNDI names configured in the Sun ONE
Application Server to resource references in application client, EJB, and web
application components:

• resource-env-ref - Maps the resource-env-ref element in the
corresponding J2EE XML file to the absolute JNDI name configured in Sun
ONE Application Server.

• resource-ref - Maps the resource-ref element in the corresponding J2EE
XML file to the absolute JNDI name configured in Sun ONE Application
Server.

• ejb-ref - Maps the ejb-ref element in the corresponding J2EE XML file to
the absolute JNDI name configured in Sun ONE Application Server.

JNDI names for EJB components must be unique. For example, appending the
application name and the module name to the EJB name would be one way to
guarantee unique names. In this case, mycompany.pkging.pkgingEJB.MyEJB
would be the JNDI name for an EJB in the module pkgingEJB.jar, which is
packaged in the pkging.ear application.

These elements are part of the sun-web-app.xml, sun-ejb-ref.xml, and
sun-application-client.xml deployment descriptor files. For more information
about how these elements behave in each of the deployment descriptor files, see
the manuals listed in the following table.

The rest of this section uses an example of a JDBC resource lookup to describe how
to reference resource factories. The same principle is applicable to all resources
(such as JMS destinations, JavaMail sessions, and so on).

The resource-ref element in the sun-web-app.xml deployment descriptor file
maps the JNDI name of a resource reference to the the resource-ref element in
the web-app.xml J2EE deployment descriptor file.

Table 4-2 Manuals that Document the Sun ONE Application Server Deployment Descriptors

Deployment Descriptor Where to Find More Information

sun-web.xml Sun ONE Application Server Developer’s Guide to Web Applications

sun-ejb-jar.xml Sun ONE Application Server Developer’s Guide to Enterprise JavaBeans
Technology

sun-application-client.xml Sun ONE Application Server Developer’s Guide to Clients

Sample Applications

Chapter 4 Using the Java Naming and Directory Interface™ 59

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();
String dsName = "java:comp/env/jdbc/HelloDbDs";
DataSource ds = (javax.sql.DataSource)ic.lookup(dsName);
Connection connection = ds.getConnection();

The resource being queried is listed in the res-ref-name element of the web.xml
file as follows:

<resource-ref>
<description>DataSource Reference</description>
<res-ref-name>jdbc/HelloDbDs</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>

The resource-ref section in a Sun ONE specific deployment descriptor, for
example sun-web.xml, maps the res-ref-name (the name being queried in the
application code) to the JNDI name of the JDBC resource. The JNDI name is the
same as the name of the JDBC resource as defined in the resource file when the
resource is created.

<resource-ref>
<res-ref-name>jdbc/HelloDbDs</res-ref-name>
<jndi-name>jdbc/HelloDbDataSource</jndi-name>

</resource-ref>

The JNDI name in the Sun ONE specific deployment descriptor must match the
JNDI name you assigned to the resource when you created and configured it.

Sample Applications
JNDI sample applications are in the following directory:

install_dir/samples/jndi

Sample Applications

60 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

61

Chapter 5

Using the Java™ Message Service

This chapter describes how to use the Java™ Message Service (JMS) API. The
Sun™ ONE Application Server has a fully integrated JMS provider: the Sun™
Open Net Environment (Sun ONE) Message Queue software.

This chapter contains the following sections:

• Introducing the JMS API

• Administration of the JMS Service

• Creating Applications That Use the JMS API

• Delivering SOAP Messages Using the JMS API

• Sample Applications

Introducing the JMS API
The Sun ONE Application Server provides support for applications that use the
JMS API. The JMS API is a set of programming interfaces that provide a common
way for Java applications to create, send, receive, and read messages in a
distributed environment.

In particular, the JMS API is the standards-based way that J2EE™ applications
perform asynchronous messaging. Accordingly, J2EE components (web or EJB™
components) can use the JMS API to send messages that can be consumed
asynchronously by a specialized EJB, called a message-driven bean.

For more detailed information about JMS concepts and JMS support in Sun ONE
Application Server, see the Sun ONE Application Server Administrator’s Guide.

The rest of this section includes these topics:

• JMS Provider

Introducing the JMS API

62 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

• JMS Clients

• JMS Messaging Models and Interfaces

JMS Provider
Sun ONE Application Server support for JMS messaging, in general, and for
message-driven beans, in particular, requires messaging middleware that
implements the JMS specification: a JMS provider. Sun ONE Application Server
uses the Sun ONE Message Queue software as its native JMS provider. The Sun
ONE Message Queue software is tightly integrated into Sun ONE Application
Server, providing transparent JMS messaging support. This support (known
within Sun ONE Application Server as the JMS Service) requires only minimal
administration.

For more information about the Sun ONE Message Queue, refer to the following
documentation:

http://docs.sun.com/db/prod/s1.s1msgqu#hic

For general information about the JMS API, see the JMS web page at:

http://java.sun.com/products/jms/index.html

JMS Clients
JMS clients (components or applications) exchange messages by way of the JMS
provider. Message producers send messages to the JMS provider, from which
message consumers receive them.

A JMS client can be any type of J2EE application component: a web application, an
EJB component, an Application Client Container client, and so on. To set up a JMS
client, see “Creating Applications That Use the JMS API” on page 73.

NOTE The Sun ONE Message Queue software supports the JMS 1.1 API.
However, Sun ONE Application Server supports the JMS 1.0.2 API
in its application components (application client container included)

When the JMS API is used inside web components and EJB
components, certain restrictions are placed on its use, which are
outlined in the J2EE specification.

Introducing the JMS API

Chapter 5 Using the Java™ Message Service 63

A specialized JMS client called a message-driven bean is one of a family of EJB
components. Unlike other EJB components (session beans and entity beans)
message-driven beans are invoked asynchronously. For more information about
message-driven beans, see the EJB 2.0 Specification
(http://java.sun.com/products/ejb/docs.html) and the Sun ONE Application
Server Developer’s Guide to Enterprise JavaBeans Technology.

JMS Messaging Models and Interfaces
The JMS API supports two messaging models:

• Point-to-point: allows two applications to communicate by sending and
receiving messages through a Destination called a Queue.

• Publish-subscribe: allows several messaging applications to communicate
through a Destination called a Topic. Messages are sent by publishing to a
Topic. Messages are received by subscribers.

Regardless of the messaging model, the link between applications and the JMS
provider is the Connection object. Applications get their Connection objects from
ConnectionFactory objects.

To maximize the portability of an application between JMS providers,
provider-specific messaging features are encapsulated in administered objects. A
JMS administered object implements one of four JMS interfaces, two for each
messaging model.

The following table lists the JMS administered object interfaces. The first column
lists the JMS parent interface, the second column lists the corresponding interfaces
in the point-to-point domain, and the third column lists the corresponding
interfaces in the publish-subscribe domain.

JMS providers supply:

• Classes that implement the Queue, Topic, QueueConnectionFactory, and
TopicConnectionFactory interfaces.

Table 5-1 JMS Interfaces

JMS Parent Point-to-Point Publish-Subscribe

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Destination Queue Topic

Administration of the JMS Service

64 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

• Tools to create and configure the administered object class instances according
to the deployment requirements. Administrators use these tools to set
provider-specific parameters. These tools can also store the administered
objects in a Java Naming and Directory Interface™ (JNDI) repository.

This programming model lets you write JMS programs that are provider-
independent. Applications look up administered objects using the JNDI API.

Administration of the JMS Service
To configure the JMS Service and prepare JMS resources for use in applications
deployed to the Sun ONE Application Server, you must perform these tasks:

• Configuring the JMS Service

• Checking Whether the JMS Provider Is Running

• Creating Physical Destinations

• Creating JMS Resources: Destinations and Connection Factories

For information about other JMS administration tasks, see the Sun ONE Application
Server Administrator’s Guide and the Sun ONE Message Queue documentation at:

http://docs.sun.com/db/prod/s1.s1msgqu#hic

Configuring the JMS Service
You can edit or check the JMS Service configuration in the following ways:

• Using the Administration Interface

• Using the Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

NOTE Configuration of the JMS Service should be done only when the Sun
ONE Application Server instance is stopped.

Administration of the JMS Service

Chapter 5 Using the Java™ Message Service 65

Using the Administration Interface
To edit the JMS Service configuration using the Administration interface, perform
the following tasks:

1. Open the JMS component under your server instance.

2. Click Service.

3. You can edit the following information. Defaults are displayed.

❍ Log Level - Controls the type of messages logged by the JMS Service to the
server log. You can select a specific level, or you can select the default level
set in the Log Service. For details, see the description of the Log Service in
the Sun ONE Application Server Administrator’s Guide.

❍ Port - Specifies the port number used by the JMS provider. The default is
7676.

❍ Admin Username - Specifies the administrator user name for the JMS
provider. The default is admin.

❍ Admin Password - Specifies the administrator password for the JMS
provider. The default is admin.

❍ Start Timeout (secs) - Specifies the amount of time the server instance waits
at startup for the corresponding JMS instance to respond. If there is no
response, startup is aborted. If set to 0, the server instance waits
indefinitely. The default is 30 seconds.

❍ Start Arguments - Specifies the string of arguments supplied for startup of
the corresponding JMS instance. By default, there are no arguments.

❍ Start Enabled - If checked (the default), the Sun ONE Application Server
instance is responsible for starting up and shutting down the JMS
provider. If unchecked, the Sun ONE Application Server instance does not
start up nor shut down the JMS provider (either because the JMS provider
is not used or because it is managed independently of the Sun ONE
Application Server).

4. Click the Properties button to activate and specify values for any properties
your application requires.

a. To add a property, type its name and value in the Name and Value fields.

b. To activate a property, check its box.

c. If you need to add more Name and Value fields, click the Add button.

The following table lists the standard JMS Service properties.

Administration of the JMS Service

66 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

5. Click the OK button to return to the main JMS Service page.

6. Click the Save button.

Using the Command Line Interface
To configure the JMS service using the command line interface, use the asadmin
set command. The syntax is as follows, with defaults shown for optional
parameters that have them:

asadmin set --user admin_user [--password admin_password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure | -s]
attribute_name=value [attribute_name=value] *

For more information about the general asadmin parameters (--user, --password,
--passwordfile, --host, --port, and --secure), see the Sun ONE Application
Server Administrator’s Guide.

The attribute_name is a hierarchical name that looks like this:

instance.jms-service.jms_attribute_name

The instance is the application server instance name. The jms_attribute_name is the
JMS service attribute that needs to be configured. For example:

server1.jms-service.port

Table 5-2 JMS Service Properties

Property Default Description

instance-name domain_instance Specifies the full Sun ONE Message Queue broker instance
name, which is a concatenation of the domain and server
instance names. For example: domain1_server1.

instance-name-suffix none Specifies a suffix to add to the full Sun ONE Message Queue
broker instance name. The suffix is separated from the
instance name by an underscore character (_). For example,
if the instance name is domain1_server1, appending the
suffix xyz changes the instance name to
domain1_server1_xyz.

append-version false If true, appends the major and minor version numbers,
preceded by underscore characters (_), to the full Sun ONE
Message Queue broker instance name. For example, if the
instance name is domain1_server1, appending the
version numbers changes the instance name to
domain1_server1_7_0.

Administration of the JMS Service

Chapter 5 Using the Java™ Message Service 67

To view the list of JMS service attribute names that can be configured using the
asadmin set command, use the asadmin get command with a wildcard. The
asadmin get command has the same syntax as the asadmin set command. For
example:

asadmin get --user joeuser --password secret "server1.jms-service.*"

A list of attribute names for configuring the JMS service of the server1 application
server instance is displayed as follows:

server1.jms-service.logLevel
server1.jms-service.startArgs
server1.jms-service.adminPassword
server1.jms-service.port
server1.jms-service.enabled
server1.jms-service.adminUserName
server1.jms-service.initTimeoutInSeconds

Here is an example of running the asadmin set command:

asadmin set --user joeuser --password secret
server1.jms-service.enabled=false

The attribute_name for a JMS property is a hierarchical name that looks like this:

instance.jms-service.property.jms_property_name

The instance is the application server instance name. The jms_property_name is the
JMS service property that needs to be configured. Here is an example of running
the asadmin set command to set a JMS property:

asadmin set --user joeuser --password secret
server1.jms-service.property.instance-name-suffix=xyz

Checking Whether the JMS Provider Is Running
You can use the asadmin jms-ping command to check whether a Sun ONE
Message Queue instance is running. The syntax is as follows, with defaults shown
for optional parameters that have them:

asadmin jms-ping --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] instance_name

For example:

asadmin jms-ping --user joeuser --password secret server1

Administration of the JMS Service

68 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Creating Physical Destinations
Produced messages are delivered for routing and subsequent delivery to
consumers using physical destinations in the JMS provider. A physical destination is
identified and encapsulated by an administered object (a Topic or Queue
destination resource) that an application component uses to specify the destination
of messages it is producing and the source of messages it is consuming.

This section describes how to create a physical destination. To create a destination
resource, see “Creating JMS Resources: Destinations and Connection Factories” on
page 69.

You can create a JMS physical destination in the following ways:

• Using the Administration Interface

• Using the Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

Using the Administration Interface
To create a JMS physical destination using the Administration interface, perform
the following tasks:

1. Open the JMS component under your server instance.

2. Click Service, then click Physical Destinations.

3. Click the New button.

4. Enter the following information:

❍ Destination Name (required) - Specify the name of the physical
destination.

❍ Type (required) - Select queue or topic from the list.

5. Click the OK button.

Using the Command Line Interface
To create a JMS physical destination using the command line, use the asadmin
create-jmsdest command. The syntax is as follows, with defaults shown for
optional parameters that have them:

Administration of the JMS Service

Chapter 5 Using the Java™ Message Service 69

asadmin create-jmsdest --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--instance instance_name] --desttype dest_type
[--property (name=value)[:name=value]*] dest_name

For more information about the parameters specific to asadmin create-jmsdest,
see “Using the Administration Interface” on page 68. For more information about
the general asadmin parameters (--user, --password, --passwordfile, --host,
--port, and --secure), see the Sun ONE Application Server Administrator’s Guide.

For example:

asadmin create-jmsdest --user joeuser --password secret --desttype
topic MyDest

To delete a JMS physical destination, use the following command:

asadmin delete-jmsdest --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--instance instance_name] --desttype dest_type dest_name

For example:

asadmin delete-jmsdest --user joeuser --password secret --desttype
topic MyDest

To list JMS physical destinations, use the following command:

asadmin list-jmsdest --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--desttype dest_type] instance_name

For example:

asadmin list-jmsdest --user joeuser --password secret --desttype
topic server1

Creating JMS Resources: Destinations and
Connection Factories
You can create two kinds of JMS resources in Sun ONE Application Server:

• Connection Factories: administered objects that implement the
QueueConnectionFactory or TopicConnectionFactory interfaces.

• Destination Resources: administered objects that implement the Queue or
Topic interfaces.

Administration of the JMS Service

70 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

In either case, the steps for creating a JMS resource are the same. You can create a
JMS resource in the following ways:

• Using the Administration Interface

• Using the Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

Using the Administration Interface
To create a JMS resource using the Administration interface, perform the following
tasks:

1. Open the JMS component under your server instance.

2. Click Connection Factories to create a connection factory, or click Destination
Resources to create a queue or topic.

3. Click the New button.

4. Enter the following information:

❍ JNDI Name (required) - Enter the JNDI name that application components
must use to access the JMS resource. For more information, see “Looking
Up Connection Factories” on page 74 and “Looking Up Destinations” on
page 75.

❍ Type (required) - Select the type of the JMS resource.

• If you are on the Connection Factories page, the types are:

javax.jms.TopicConnectionFactory
javax.jms.QueueConnectionFactory

• If you are on the Destination Resources page, the types are:

javax.jms.Topic
javax.jms.Queue

❍ Description (optional) - You can enter a text description of the JMS
resource.

5. Check the Resource Enabled box to enable the JMS resource.

If a JMS resource is disabled, no application component can connect to it, but
its configuration remains in the server instance.

6. Click the OK button.

Administration of the JMS Service

Chapter 5 Using the Java™ Message Service 71

7. To add properties to a JMS resource, perform the following tasks:

a. Go back to the Connection Factories or Destination Resources page.

b. Click the JMS resource you just created.

c. Click the Properties button.

d. Specify names and values for any properties you want to use. If you need
another name-value row, use the Add button to add it. The following table
lists the standard JMS resource properties.

Table 5-3 JMS Resource Properties

Property Default Description

imqDestinationName none Specifies the JMS physical destination name associated
with this JMS resource. You must specify this property
for JMS resources of the Type javax.jms.Topic or
javax.jms.Queue.

The Sun ONE Message Queue Administrator's Guide
shows a default value for this property, but this does not
apply in the Sun ONE Application Server environment.

imqBrokerHostName the same host
name as the Sun
ONE Application
Server instance
(localhost)

Specifies the host name where the JMS service (Sun ONE
Message Queue broker) is running. For JMS resources of
the Typejavax.jms.TopicConnectionFactory or
javax.jms.QueueConnectionFactory.

imqBrokerHostPort the JMS Service’s
Port setting

Specifies the port where the JMS service (Sun ONE
Message Queue broker) is running. For JMS resources of
the Typejavax.jms.TopicConnectionFactory or
javax.jms.QueueConnectionFactory.

Administration of the JMS Service

72 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

e. Click the OK button.

f. Click the Save button.

8. Go to the server instance page.

9. Click the General tab.

10. Click the Apply Changes button.

Using the Command Line Interface
To create a JMS resource using the command line, use the asadmin
create-jms-resource command. The syntax is as follows, with defaults shown
for optional parameters that have them:

asadmin create-jms-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] --resourcetype
resource_type [--enabled=true] [--description text] [--property
(name=value)[:name=value]*] jndi_name

imqConfiguredClientID none Specifies the JMS Client Identifier to be associated with a
Connection created using the
createQueueConnection and
createTopicConnection methods of the
QueueConnectionFactory and
TopicConnectionFactory classes, respectively.

For JMS resources of the
Typejavax.jms.TopicConnectionFactory or
javax.jms.QueueConnectionFactory.

Durable subscription names are unique and only valid
within the scope of a client identifier. To create or
reactivate a durable subscriber, the connection must
have a valid client identifier. The JMS specification
ensures that client identifiers are unique and that a given
client identifier is allowed to be used by only one active
connection at a time.

Table 5-3 JMS Resource Properties (Continued)

Property Default Description

Creating Applications That Use the JMS API

Chapter 5 Using the Java™ Message Service 73

For more information about the parameters specific to asadmin
create-jms-resource, see “Using the Administration Interface” on page 70. For
more information about the general asadmin parameters (--user, --password,
--passwordfile, --host, --port, and --secure), see the Sun ONE Application
Server Administrator’s Guide.

For example:

asadmin create-jms-resource --user joeuser --password secret
--resourcetype javax.jms.Topic --property
imqDestinationName=testTopic MyTopic

To delete a JMS resource, use the following command:

asadmin delete-jms-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] jndi_name

For example:

asadmin delete-jms-resource --user joeuser --password secret MyTopic

To list JMS resources, use the following command:

asadmin list-jms-resources --user admin_user [--password admin_password]
[--passwordfile password_file] [--host localhost] [--port 4848]
[--secure | -s] [--resourcetype resource_type] [--instance instance_name]

For example:

asadmin list-jms-resources --user joeuser --password secret
--resourcetype Topic --instance server1

After you create the JMS resource, you must reconfigure the server instance using
the following command:

asadmin reconfig --user user [--password password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure |
-s][--discardmanualchanges=false | --keepmanualchanges=false]
instance_name

For example:

asadmin reconfig --user joeuser --password secret server1

Creating Applications That Use the JMS API
This section discusses how to use the JMS API in applications:

• Basic Steps for Developing a JMS Client

Creating Applications That Use the JMS API

74 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

• Processing JMS Messages

• JMS Cleanup

Basic Steps for Developing a JMS Client
Developing a JMS client involves these tasks:

• Importing the JMS Package

• Looking Up Connection Factories

• Creating Connections

• Creating Sessions

• Looking Up Destinations

• Creating Message Producers

• Creating Message Consumers

• Starting the Connection

Importing the JMS Package
The javax.jms and javax.naming packages define all the JMS interfaces
necessary to develop a JMS client. Import these packages as follows:

import javax.jms.*;
import javax.naming.*;

Looking Up Connection Factories
The recommended JNDI subcontext for JMS connection factories is
java:comp/env/jms. The resource lookup in the application code looks like this
for point-to-point messaging:

InitialContext ic = new InitialContext();
QueueConnectionFactory QCFactory = (QueueConnectionFactory)
ic.lookup("java:comp/env/jms/MyQCF");

For publish-subscribe messaging, the only difference is that
TopicConnectionFactory is used instead.

For more information about the JNDI API, see Chapter 4, “Using the Java Naming
and Directory Interface™.”

Creating Applications That Use the JMS API

Chapter 5 Using the Java™ Message Service 75

Creating Connections
After you have looked up a connection factory, use it to create connections to the
JMS provider. The following code creates a connection for point-to-point
messaging:

QueueConnection connection = QCFactory.createQueueConnection();

The following code creates a connection for publish-subscribe messaging:

TopicConnection tConnection = TCFactory.createTopicConnection();

Creating Sessions
Sessions are lightweight JMS objects which provide a context for producing and
consuming messages. Sessions are used to create message producers and message
consumers, as well as to build messages themselves. The following code creates a
session for point-to-point messaging:

QueueSession session = connection.createQueueSession(false,
QueueSession.AUTO_ACKNOWLEDGE);

The following code creates a session for publish-subscribe messaging:

TopicSession tSession = tConnection.createTopicSession(false,
TopicSession.AUTO_ACKNOWLEDGE);

For more information about acknowledgement modes, of which
AUTO_ACKNOWLEDGE is one, see “Using Acknowledgements” on page 78.

Looking Up Destinations
You look up queues and topics by their JNDI names directly. Unlike connection
factories, queues and topics do not use resource references in the deployment
descriptor files.

The following code looks up a queue:

Queue queue = (Queue) ic.lookup("java:comp/env/jms/sampleQ");

The following code looks up a topic:

Topic topic = (Topic) ic.lookup("java:comp/env/jms/sampleT");

To create a queue or topic, see “Creating JMS Resources: Destinations and
Connection Factories” on page 69.

NOTE A servlet can create Java threads, but this is not recommended.

Creating Applications That Use the JMS API

76 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Creating Message Producers
Use the session and destination to create a message producer. The following code
creates a message producer for point-to-point messaging:

QueueSender qSender = session.createSender(queue);

The following code creates a message producer for publish-subscribe messaging:

TopicPublisher tPublisher = tSession.createPublisher(topic);

Creating Message Consumers
You use the session and destination to create a message consumer as well. The
following code creates a message consumer for point-to-point messaging:

QueueReceiver qReceiver = session.createReceiver(queue);

The following code creates a message consumer for publish-subscribe messaging:

TopicSubscriber tSubscriber = tSession.createSubscriber(topic);

For both point-to-point and publish-subscribe message consumers, you can
optionally register a message listener with your message consumer to enable
asynchronous messaging. First, write a class that implements the
MessageListener interface (which contains the onMessage() method), then call
the setMessageListener() method of the message consumer:

tSubscriber.setMessageListener(this);

It is assumed that the class containing the example code above implements the
MessageListener interface, which is why this is used in the
setMessageListener() method.

Starting the Connection
Use the following code to start a connection for point-to-point messaging:

connection.start();

Use the following code to start a connection for publish-subscribe messaging:

tConnection.start();

Processing JMS Messages
When you have created message producers and consumers, you are ready to
perform these tasks:

• Sending Messages

Creating Applications That Use the JMS API

Chapter 5 Using the Java™ Message Service 77

• Receiving Messages

• Acknowledging Received Messages

Sending Messages
Point-to-point messaging sends one or more messages to a target queue as shown
in the following code:

TextMessage msgSent = session.createTextMessage();
String msg = "Cold weather today";
msgSent.setText(to + ":" + from + " ["+new Date()+"]: " + msg);
qSender.send(msgSent);

Publish-subscribe messaging publishes messages to a given topic as shown in the
following code:

TextMessage msgPub = tSession.createTextMessage();
msgPub.setText("temperature: 35 degrees");
tPublisher.publish(msgPub);

Receiving Messages
JMS messages can be received (or consumed) synchronously or asynchronously,
whether they are used with point-to-point or publish-subscribe message
consumers.

JMS messages can be received synchronously in any of these ways:

• Call the receive method with no arguments or an argument of 0, so that the
method blocks indefinitely until a message arrives:

TextMessage msgReceived = (TextMessage) qReceiver.receive();

• Call the receive method with a timeout argument (in milliseconds) greater
than 0:

TextMessage msgReceived = (TextMessage) qReceiver.receive(2000);

• Call the receiveNoWait method to receive a message only if one is available:

TextMessage msgReceived = (TextMessage)
qReceiver.receiveNoWait();

To receive JMS messages asynchronously, you register a MessageListener with
the consumer as described in “Creating Message Consumers” on page 76. The
client consumes a message when a session thread invokes the onMessage()
method of the MessageListener object.

After you have received a message, you can get its contents:

Creating Applications That Use the JMS API

78 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

out("\nMessage received: " + msgReceived.getText());

Acknowledging Received Messages
You can guarantee successful message delivery using either of these mechanisms
supported by a JMS session:

• Using Acknowledgements

• Using Transactions for Message Acknowledgement

Using Acknowledgements
You can use one of these acknowledgement modes when you instantiate a session
as described in “Creating Sessions” on page 75:

• AUTO_ACKNOWLEDGE - The session automatically acknowledges a client’s receipt
of a message either when the session has successfully returned from a call to
receive or when the message listener the session has called to process the
message successfully returns.

• DUPS_OK_ACKNOWLEDGE - The session lazily acknowledges the delivery of
messages. This is likely to result in the delivery of some duplicate messages if
the JMS provider fails, so it should only be used by consumers that can tolerate
duplicate messages. Use of this mode can reduce session overhead by
minimizing the work the session does to prevent duplicates.

• CLIENT_ACKNOWLEDGE - The JMS client acknowledges a consumed message by
calling the message’s acknowledge method. Acknowledging a consumed
message acknowledges all messages that the session has consumed. When
client acknowledgment mode is used, a client may build up a large number of
unacknowledged messages while attempting to process them.

Using Transactions for Message Acknowledgement
You can send and receive messages within local or distributed transactions to
ensure message delivery. The JMS API provides methods for initiating,
committing, or rolling back a local transaction.

Distributed transactions use the Sun ONE Application Server’s transaction service.
The following table lists the XA classes supported by the JMS provider. The first
column lists the JMS parent classes, the second column lists the corresponding
classes in the point-to-point domain, and the third column lists the corresponding
classes in the publish-subscribe domain.

Delivering SOAP Messages Using the JMS API

Chapter 5 Using the Java™ Message Service 79

You can use the XASession.getTransacted() method to find out whether the
current JMS distributed session is within a transaction.

For details about the transaction service, see Chapter 3, “Using the Transaction
Service.”

JMS Cleanup
To free system resources, make sure your application closes message producers,
message consumers, sessions, and connections in that order. For example:

qSender.close()
qReceiver.close()
session.close()
connection.close()

Calling close() statements inside a finally block is strongly recommended.

Delivering SOAP Messages Using the JMS API
Web service clients use the Simple Object Access Protocol (SOAP) to communicate
with web services. SOAP uses a combination of XML-based data structuring and
Hyper Text Transfer Protocol (HTTP) to define a standardized way of invoking
methods in objects distributed in diverse operating environments across the
Internet.

For more information about SOAP, see the Sun ONE Application Server Developer’s
Guide to Web Services and the Apache SOAP web site:

http://xml.apache.org/soap/index.html

Table 5-4 XA Classes

JMS Parent Point-to-Point Publish-Subscribe

XAConnectionFactory XAQueueConnectionFactory XATopicConnectionFactory

XAConnection XAQueueConnection XATopicConnection

XASession XAQueueSession XATopicSession

Delivering SOAP Messages Using the JMS API

80 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

You can take advantage of the JMS provider’s reliable messaging when delivering
SOAP messages. You can convert a SOAP message into a JMS message, send the
JMS message, then convert the JMS message back into a SOAP message. The
following sections explain how to do these conversions:

• Sending SOAP Messages Using the JMS API

• Receiving SOAP Messages Using the JMS API

Sending SOAP Messages Using the JMS API
You use the MessageTransformer utility to convert a SOAP message into a JMS
message. You then send the JMS message containing the SOAP payload as you
would a normal JMS message.

1. Import the library com.sun.messaging.xml.MessageTransformer. This is the
utility whose methods you use to convert SOAP messages to JMS messages
and the reverse.

import com.sun.messaging.xml.MessageTransformer;

2. Initialize the TopicConnectionFactory, TopicConnection, TopicSession,
and publisher.

tcf = new TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false,Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
publisher = session.createPublisher(topic);

3. Construct a SOAP message using the SOAP with Attachments API for Java
(SAAJ). For more information on constructing a SOAP message, see the Sun
ONE Application Server Developer’s Guide to Web Services and the Sun ONE
Message Queue Developer’s Guide.

*construct a default soap MessageFactory */
MessageFactory mf = MessageFactory.newInstance();

* Create a SOAP message object.*/
SOAPMessage soapMessage = mf.createMessage();

/** Get SOAP part.*/
SOAPPart soapPart = soapMessage.getSOAPPart();

/* Get SOAP envelope. */
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();

/* Get SOAP body.*/
SOAPBody soapBody = soapEnvelope.getBody();

Delivering SOAP Messages Using the JMS API

Chapter 5 Using the Java™ Message Service 81

/* Create a name object. with name space */
/* http://www.sun.com/imq. */
Name name = soapEnvelope.createName("HelloWorld", "hw",

"http://www.sun.com/imq");

* Add child element with the above name. */
SOAPElement element = soapBody.addChildElement(name)

/* Add another child element.*/
element.addTextNode("Welcome to SunOne Web Services.");

/* Create an atachment with activation API.*/
URL url = new URL ("http://java.sun.com/webservices/");
DataHandler dh = new DataHandler (url);
AttachmentPart ap = soapMessage.createAttachmentPart(dh);

/*set content type/ID. */
ap.setContentType("text/html");
ap.setContentId("cid-001");

/** add the attachment to the SOAP message.*/
soapMessage.addAttachmentPart(ap);
soapMessage.saveChanges();

4. Convert the SOAP message to a JMS message by calling the
MessageTransformer.SOAPMessageintoJMSMessage() method.

Message m = MessageTransformer.SOAPMessageIntoJMSMessage
(soapMessage, session);

5. Publish the JMS message.

publisher.publish(m);

6. Close the JMS connection.

tc.close();

Receiving SOAP Messages Using the JMS API
You receive the JMS message containing the SOAP payload as you would a normal
JMS message. You then use the MessageTransformer utility to convert the JMS
message back into a SOAP message.

1. Import the library com.sun.messaging.xml.MessageTransformer. This is the
utility whose methods you use to convert SOAP messages to JMS messages
and the reverse.

import com.sun.messaging.xml.MessageTransformer;

Sample Applications

82 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

2. Initialize the TopicConnectionFactory, TopicConnection, TopicSession,
TopicSubscriber, and Topic.

messageFactory = MessageFactory.newInstance();
tcf = new com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();

session = tc.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

topic = session.createTopic(topicName);
subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);
tc.start();

3. Use the OnMessage method to receive the message. Use the
SOAPMessageFromJMSMessage method to convert the JMS message to a SOAP
message.

public void onMessage (Message message) {
SOAPMessage soapMessage =
MessageTransformer.SOAPMessageFromJMSMessage(message,
messageFactory); }

4. Retrieve the content of the SOAP message. For more information about SOAP
messages, see the Sun ONE Application Server Developer’s Guide to Web Services.

Sample Applications
JMS sample applications are in the following directory:

install_dir/samples/jms

Message-driven bean sample applications are in the following directory:

install_dir/samples/ejb/mdb

83

Chapter 6

Using the JavaMail™ API

This chapter describes how to use the JavaMail™ API, which provides a set of
abstract classes defining objects that comprise a mail system.

This chapter contains the following sections:

• Introducing JavaMail

• Creating a JavaMail Session

• JavaMail Session Properties

• Looking Up a JavaMail Session

• Sending Messages Using JavaMail

• Reading Messages Using JavaMail

• Sample Applications

Introducing JavaMail
The JavaMail API defines classes such as Message, Store, and Transport. The API
can be extended and can be subclassed to provide new protocols and to add
functionality when necessary. In addition, the API provides concrete subclasses of
the abstract classes. These subclasses, including MimeMessage and MimeBodyPart,
implement widely used Internet mail protocols and conform to the RFC822 and
RFC2045 specifications. The JavaMail API includes support for the IMAP4, POP3,
and SMTP protocols.

The JavaMail architectural components are as follows:

• The abstract layer declares classes, interfaces, and abstract methods intended to
support mail handling functions that all mail systems support.

Creating a JavaMail Session

84 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

• The internet implementation layer implements part of the abstract layer using the
RFC822 and MIME internet standards.

• JavaMail uses the JavaBeans Activation Framework (JAF) to encapsulate message
data and to handle commands intended to interact with that data.

For more information, see the Sun ONE Application Server Administrator’s Guide and
the JavaMail specification at:

http://java.sun.com/products/javamail/

Creating a JavaMail Session
You can create a JavaMail session in the following ways:

• Using the Administration Interface

• Using the Command Line Interface

The “Using The Administration Interface” section describes each connection pool
setting. The “Using The Command Line Interface” section merely lists syntax and
default values.

Using the Administration Interface
To create a JavaMail session using the Administration interface, perform the
following tasks:

1. Open the Java Mail Sessions component under your server instance.

2. Click the New button.

3. Enter the following information:

❍ JNDI Name (required) - Enter the JNDI name that application components
must use to access the JavaMail session. For more information, see
“Looking Up a JavaMail Session” on page 87.

❍ Mail Host (required) - The mail server host name.

❍ Default User (required) - The mail server user name.

❍ Default Return Address (required) - The e-mail address the mail server
uses to indicate the message sender.

Creating a JavaMail Session

Chapter 6 Using the JavaMail™ API 85

❍ Description (optional) - You can enter a text description of the JavaMail
session.

4. Check the Java Mail Session Enabled box to enable the JavaMail session.

If a JavaMail session is disabled, no application component can connect to it,
but its configuration remains in the server instance.

5. You can also edit the following Advanced settings:

❍ Store Protocol - Specifies the storage protocol service, which connects to a
mail server, retrieves messages, and saves messages in folder(s). Example
values are imap (the default) and pop3.

❍ Store Protocol Class - Specifies the service provider implementation class
for storage. The default is com.sun.mail.imap.IMAPStore.

❍ Transport Protocol - Specifies the transport protocol service, which sends
messages. The default is smtp.

❍ Transport Protocol Class - Specifies the service provider implementation
class for transport. The default is com.sun.mail.smtp.SMTPTransport.

❍ Debug Enabled - Enables debugging for this JavaMail session.

6. Click the OK button.

7. To add properties to a JavaMail session, perform the following tasks:

a. Go back to the Java Mail Sessions page.

b. Click the JavaMail session you just created.

c. Click the Properties button.

d. Specify names and values for any properties you want to use. If you need
another name-value row, use the Add button to add it. For details about
JavaMail session properties, see “JavaMail Session Properties” on page 87.

e. Click the Save button.

8. Go to the server instance page.

9. Click the General tab.

10. Click the Apply Changes button.

Creating a JavaMail Session

86 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Using the Command Line Interface
To create a JavaMail session using the command line, use the asadmin
create-javamail-resource command. The syntax is as follows, with defaults
shown for optional parameters that have them:

asadmin create-javamail-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] --mailhost mail_host
--mailuser mail_user --fromaddress address [--storeprotocol=imap]
[--storeprotocolclass=com.sun.mail.imap.IMAPStore]
[--transprotocol=smtp]
[--transprotocolclass=com.sun.mail.smtp.SMTPTransport]
[--debug=false] [--enabled=true] [--description text] [--property
(name=value)[:name=value]*] jndi_name

For more information about the parameters specific to asadmin
create-javamail-resource, see “Using the Administration Interface” on
page 84. For more information about the general asadmin parameters (--user,
--password, --passwordfile, --host, --port, and --secure), see the Sun ONE
Application Server Administrator’s Guide.

For example:

asadmin create-javamail-resource --user joeuser --password secret
--mailhost MailServer --mailuser MailUser --fromaddress
user@mailserver.com MailSession

To delete a JavaMail session, use the following command:

asadmin delete-javamail-resource --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name] jndi_name

For example:

asadmin delete-javamail-resource --user joeuser --password secret
MailSession

To list JavaMail sessions, use the following command:

asadmin list-javamail-resources --user admin_user [--password
admin_password] [--passwordfile password_file] [--host localhost] [--port
4848] [--secure | -s] [--instance instance_name]

For example:

asadmin list-javamail-resources --user joeuser --password secret
--instance server1

JavaMail Session Properties

Chapter 6 Using the JavaMail™ API 87

After you create the JavaMail session, you must reconfigure the server instance
using the following command:

asadmin reconfig --user user [--password password] [--passwordfile
password_file] [--host localhost] [--port 4848] [--secure |
-s][--discardmanualchanges=false | --keepmanualchanges=false]
instance_name

For example:

asadmin reconfig --user joeuser --password secret server1

JavaMail Session Properties
You can set properties for a JavaMail Session object. Every property name must
start with a mail- prefix. Sun ONE Application Server changes the dash (-)
character to a period (.) in the name of the property and saves the property to the
MailConfiguration and JavaMail Session objects. If the name of the property
doesn’t start with mail-, the property is ignored.

For example, if you want to define the property mail.password in a JavaMail
Session object, first define the property as follows:

• Name - mail-password

• Value - secret

After you get the JavaMail Session object, you can get the mail.password
property to retrieve the value secret, as follows:

String password = session.getProperty("mail.password");

Looking Up a JavaMail Session
The recommended Java Naming and Directory Interface™ (JNDI) subcontext for
JavaMail sessions is java:comp/env/mail.

Registering JavaMail sessions in the mail naming subcontext of a JNDI namespace,
or in one of its child subcontexts, is recommended. The JNDI namespace is
hierarchical, like a file system’s directory structure, so it is easy to find and nest
references. A JavaMail session is bound to a logical JNDI name. The name
identifies a subcontext, mail, of the root context, and a logical name. To change the
JavaMail session, you can change its entry in the JNDI namespace without having
to modify the application.

Sending Messages Using JavaMail

88 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

The resource lookup in the application code looks like this:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

For more information about the JNDI API, see Chapter 4, “Using the Java Naming
and Directory Interface™.”

Sending Messages Using JavaMail
To send a message using JavaMail, perform the following tasks:

1. Import the packages that you need:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the JavaMail session, as described in “Looking Up a JavaMail Session”
on page 87:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (Session)ic.lookup(snName);

3. Override the JavaMail session properties if necessary. For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4. Create a MimeMessage. The msgRecipient, msgSubject, and msgTxt variables
in the following example contain input from the user:

Message msg = new MimeMessage(session);
msg.setSubject(msgSubject);
msg.setSentDate(new Date());
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,
InternetAddress.parse(msgRecipient, false));
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(msgTxt);
Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
msg.setContent(mp);

Reading Messages Using JavaMail

Chapter 6 Using the JavaMail™ API 89

5. Send the message:

Transport.send(msg);

Reading Messages Using JavaMail
To read a message using JavaMail, perform the following tasks:

1. Import the packages that you need:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the JavaMail session, as described in “Looking Up a JavaMail Session”
on page 87:

InitialContext ic = new InitialContext();
String snName = "java:comp/env/mail/MyMailSession";
Session session = (javax.mail.Session)ic.lookup(snName);

3. Override the JavaMail session properties if necessary. For example:

Properties props = session.getProperties();
props.put("mail.from", "user2@mailserver.com");

4. Get a Store object from the Session, then connect to the mail server using the
Store object’s connect() method. You must supply a mail server name, a mail
user name, and a password.

Store store = session.getStore();
store.connect("MailServer", "MailUser", "secret");

5. Get the default folder, then get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. It is efficient to read the Message objects (which represent messages on the
server) into an array:

Message[] messages = folder.getMessages();

Sample Applications

90 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

Sample Applications
JavaMail sample applications are in the following directory:

install_dir/samples/javamail

91

Index

A
acknowledgement modes 78
Admin Password setting 65
Admin Username setting 65
administered objects 63
Administration interface

using to add to the server classpath 21
using to configure the JMS Service 65
using to configure the transaction service 41
using to create a connection pool 21
using to create a custom resource 55
using to create a JavaMail session 84
using to create a JDBC resource 26
using to create an external JNDI resource 53
using to create JMS resources 70
using to create physical destinations 68

append-version property 66
application model 18
asadmin create-custom-resource command 56
asadmin create-javamail-resource command 86
asadmin create-jdbc-connection-pool command 25
asadmin create-jdbc-resource command 27
asadmin create-jmsdest command 68
asadmin create-jms-resource command 72
asadmin create-jndi-resource command 54
asadmin delete-custom-resource command 57
asadmin delete-javamail-resource command 86
asadmin delete-jdbc-connection-pool command 25
asadmin delete-jdbc-resource command 27
asadmin delete-jmsdest command 69

asadmin delete-jms-resource command 73
asadmin delete-jndi-resource command 54
asadmin get command 44, 67
asadmin jms-ping command 67
asadmin list-custom-resources command 57
asadmin list-javamail-resources command 86
asadmin list-jdbc-connection-pools command 26
asadmin list-jdbc-resources command 28
asadmin list-jmsdest command 69
asadmin list-jms-resources command 73
asadmin list-jndi-resources command 55
asadmin reconfig command 28, 55, 57, 73, 87
asadmin set command 43, 66

B
BLOB size limit for Oracle JDBC driver 29, 30

C
CMP, and JNDI 51
Common Classloader, and the JDBC driver 21
component-managed transactions 40
connection factories, JNDI subcontexts for 49
connection pool

creating 21
properties 22

Section D

92 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

purpose of 32
Connection Validation Required setting 23
Connection.isClosed() method 33
ConnectionFactory interface 63
connections, JDBC

code example 31
opening and closing 33
pooling 32
sharing 32

connections, JMS
creating 75
starting 76

connectors
and JNDI 52
and transactions 38
JNDI subcontext for 49

container-managed persistence see CMP
container-managed transactions 40
context, for JNDI naming 47
CosNaming provider 49
custom resource 55

properties 56
Custom Resource Enabled setting 56

D
Data Direct Connect JDBC3.0/ Type4 Driver

for Oracle databases 29
Data Source Enabled setting 27
database vendor limitations 19
Database Vendor setting 22
databaseName property 22
databases

as transaction resource managers 38
connection handling with JDBC 31, 33
EJB components as the preferred interface to 35
supported 28

Datasource Classname setting 22
datasourceName property 22
Debug Enabled setting 85
declarative transactions 40
Default Return Address setting 84

Default User setting 84
deployment descriptor files 58
description property 22
Description setting 26, 53, 56, 70, 85
Destination interface 63
Destination Name setting 68
destinations

destination resources 69
looking up 75
physical 68

disable-distributed-transaction-logging property 43

E
EJB 2.0 Specification 63
EJB components

transaction isolation level in 34
transactions in 40
using JDBC in 35

ejb-ref element 58
escape characters 25
external JNDI resource 53

properties 54
External Resource Enabled setting 53

F
Factory Class setting 53, 56
Fail All Connections setting 24
Forte for Java 13

G
getInitialContext() method 50
Global Transaction Support setting 22
Guarantee Isolation Level setting 24

Section H

Index 93

H
Heuristic Decision setting 42

I
Idle Timeout setting 23
IMAP4 protocol 83
imqBrokerHostName property 71
imqBrokerHostPort property 71
imqConfiguredClientID property 72
imqDestinationName property 71
InitialContext naming service handle 47
InitialContext.lookup() method 48
instance-name property 66
instance-name-suffix property 66

J
Java Database Connectivity see JDBC
Java Mail Session Enabled setting 85
Java Message Service see JMS
Java Naming and Directory Interface see JNDI
Java Transaction API (JTA) 38
Java Transaction Service (JTS) 38
java.transaction.UserTransaction 35
JavaMail

and JNDI lookups 87
architecture 83
creating sessions 84
defined 83
JNDI subcontext for 49
sample applications 90
session properties 85, 87
specification 84

javax.jms package 74
javax.naming package 74
JDBC

2.0 extension support 19
3.0 support 19

and JNDI lookups 31
application model diagram 18
creating resources 26
database vendor limitations 19
defined 17
integrating driver JAR files 21
JNDI subcontext for 49
sample applications 36
servlet access using rowsets 36
specification 18
SQL support 19
supported drivers 20, 28
supported functionality 19
transaction isolation levels 33
tutorial 18
using in EJB components 35
using in servlets 36

JMS
and JNDI lookups 74
and transactions 38
checking if provider is running 67
clients 62
creating clients 74
creating resources 69
creating sessions 75
defined 61
JMS Service administration 64
JNDI subcontext for 49
messaging models 63
provider 62
resource properties 71
sample applications 82

JMS Service
configuring 64
properties 65

JNDI
and application clients 49
and CMP 51
and connectors 52
and EJB components 58
and JavaMail 87
and JDBC 31
and JMS 74
and lifecycle modules 50
and transactions 44
and URL connection factories 52
custom resource 55

Section K

94 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

defined 47
external JNDI resources 53
mapping references 58
sample applications 59
subcontexts for connection factories 49
tutorial 47

JNDI Lookup setting 53
JNDI Name setting 26, 53, 56, 70, 84

K
Keypoint Interval setting 42

L
lifecycle modules 49
Log Level setting 42, 65

M
Mail Host setting 84
mapping resource references 58
Max Pool Size setting 23
Max Wait Time setting 23
message consumers 76
message producers 76
message-driven bean 63

sample applications 82
messages, JavaMail

reading 89
sending 88

messages, JMS
ensuring delivery 78
receiving 77
sending 77
SOAP 79
using transactions 78

MessageTransformer utility 80, 81

messaging models 63
Monitoring Enabled setting 41

N
Name setting 22
naming service 47

for clients 49
nested transactions 38
networkProtocol property 22

O
Oracle Data Direct Driver 29
Oracle JDBC driver BLOB size limit 29, 30

P
Password property 22
physical destinations 68
PointBase 4.2 JDBC driver 28
point-to-point messaging model 63
Pool Name setting 26
Pool Resize Quantity setting 23
POP3 protocol 83
port property 22
Port setting 65
programmatic transactions 40
publish-subscribe messaging model 63

Q
Queue interface 63, 69
QueueConnectionFactory interface 63, 69

Section R

Index 95

R
Recover on Restart setting 42
recovery of transactions 41
Resource Enabled setting 70
resource managers 38
resource references, mapping 58
Resource Type setting 53, 56
resource-env-ref element 58
resource-ref element 58
res-sharing-scope deployment descriptor setting 32
roleName property 22

S
serverName property 22
servlets

using JDBC in 36
using rowsets in 36

sessions, JavaMail, creating 84
sessions, JMS, creating 75
Simple Object Access Protocol see SOAP
SMTP protocol 83
SOAP messages 79
SOAP with Attachments API for Java (SAAJ) 80
Solaris 9, bundled

installation directory differences 13
SQL 19
Start Arguments setting 65
Start Enabled setting 65
Start Timeout setting 65
Steady Pool Size setting 23
Store Protocol Class setting 85
Store Protocol setting 85
Sun customer support 14
Sun ONE Message Queue 62, 66

checking to see if running 67
Sun ONE Studio

renamed from Forte for Java 13
sun-application-client.xml file 58
sun-ejb-jar.xml file 58

sun-web.xml file 58
System Classloader, and the JDBC driver 21

T
Table Name setting 24
timeout

for JMS connections 65
for transactions 42, 43

Topic interface 63, 69
TopicConnectionFactory interface 63, 69
Transaction Isolation setting 24
transaction log file 42
Transaction Log Location setting 42
transaction service

configuring 41
properties 42

Transaction Timeout setting 42
transactions

accessing through
java.transaction.UserTransaction 35

and JMS 78
and JNDI lookups 44
component-managed 40
container-managed 40
defined 37
disabling logging 43
in the J2EE tutorial 38
JDBC isolation levels 33
JNDI subcontext for 49
local or global scope of 39
logging for recovery 45
nested 38
recovery 41
resource managers 38
sample applications 45
XA classes for JMS 78

Transport Protocol Class setting 85
Transport Protocol setting 85
Type setting 68, 70

Section U

96 Sun ONE Application Server 7 • Developer’s Guide to J2EE Features and Services • March 2003

U
URL connection factories 52
url property 22
URL, JNDI subcontext for 49
User property 22

V
Validation Method setting 23

X
XA resource 39
XADataSource interface 22
xaresource-txn-timeout property 43
XASession.getTransacted() method 79

	Developer’s Guide to J2EE Features and Services
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Related Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Product Support

	Overview of J2EE Features and Services
	Java™ Database Connectivity (JDBC™) API
	Transaction Service
	Java Naming and Directory Interface™ (JNDI) API
	Java™ Message Service (JMS) API
	JavaMail™ API

	Using the JDBC™ API for Database Access
	Introducing the JDBC API
	Supported Functionality
	Understanding Database Limitations

	General Steps for Creating a JDBC Resource
	Integrating the JDBC Driver
	Creating a Connection Pool
	Creating a JDBC Resource

	Configurations for Specific JDBC Drivers
	PointBase Type4 Driver
	Data Direct Connect JDBC3.0/ Type4 Driver for Oracle 9.x Databases

	Creating Applications That Use the JDBC API
	Using Connections
	Using JDBC Transaction Isolation Levels

	Using the JDBC API in Application Layers
	Using the JDBC API in EJB Components
	Using the JDBC API in Servlets

	Sample Applications

	Using the Transaction Service
	Introducing Transactions
	Transaction Resource Managers
	Transaction Scope
	Transaction Management
	Transaction Recovery

	Configuring the Transaction Service
	Using the Administration Interface
	Using the Command Line Interface

	Looking Up a Transaction
	Transaction Logging
	Sample Applications

	Using the Java Naming and Directory Interface™
	Accessing the Naming Context
	Using the InitialContext to Look Up a Named Object
	Naming Environment for J2EE Application Components
	COSNaming Provider for Application Clients
	Naming Environment for Lifecycle Modules

	Configuring Resources
	JDBC Resources
	User Transaction Handles
	JMS Resources
	JavaMail Sessions
	Persistence Manager Factories
	URL Connection Factories
	J2EE Connector Architecture Connection Factories
	External JNDI Resources
	Custom Resources

	Mapping References
	Sample Applications

	Using the Java™ Message Service
	Introducing the JMS API
	JMS Provider
	JMS Clients
	JMS Messaging Models and Interfaces

	Administration of the JMS Service
	Configuring the JMS Service
	Checking Whether the JMS Provider Is Running
	Creating Physical Destinations
	Creating JMS Resources: Destinations and Connection Factories

	Creating Applications That Use the JMS API
	Basic Steps for Developing a JMS Client
	Processing JMS Messages
	JMS Cleanup

	Delivering SOAP Messages Using the JMS API
	Sending SOAP Messages Using the JMS API
	Receiving SOAP Messages Using the JMS API

	Sample Applications

	Using the JavaMail™ API
	Introducing JavaMail
	Creating a JavaMail Session
	Using the Administration Interface
	Using the Command Line Interface

	JavaMail Session Properties
	Looking Up a JavaMail Session
	Sending Messages Using JavaMail
	Reading Messages Using JavaMail
	Sample Applications

	Index

