
Developer’s Guide to Web
Services

Sun™ ONE Application Server

Version7

817-2174-10
March 2003

Copyright 2003 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun ONE, iPlanet, and all Sun, Java, and Sun ONE based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of Sun
Microsystems, Inc. and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright 2003 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun ONE, et iPlanet sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et d’autre pays.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.

Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par
quelque moyen que ce soit sans l’autorisation écrite préalable de Sun Microsystems, Inc. et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Document . 7

Who Should Use This Guide . 7
Using the Documentation . 8
How This Guide Is Organized . 10
Reference Information . 11
Documentation Conventions . 11

General Conventions . 11
Conventions Referring to Directories . 13

Chapter 1 About Web Services . 15
What are Web Services? . 15
Messaging Models Used in Web Services . 16

Synchronous Model . 16
Asynchronous Model . 17

Standards and Interoperability in Web Services . 17
SOAP . 17
WSDL . 18
UDDI . 18
ebXML . 18

A Simple Web Service Scenario . 19
Support for Web Services in Sun ONE Application Server . 20
Java APIs for XML and Web Services . 21

JAXP . 22
JAX-RPC . 23
JAXR . 23
SAAJ . 24
JAXM . 24

4 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Implementing Web Services Using Java APIs . 25
The Coffee Break Example . 26

Preparing for Developing Web Services and Clients . 28
Using Ant Tasks . 28
Setting Up the Client Environment . 29

Chapter 2 Services and Clients Using JAX-RPC . 33
JAX-RPC Implementation . 33
Developing JAX-RPC Web Services . 35

JAX-RPC Web Services Using a WSDL . 37
Assembling and Deploying JAX-RPC Web Services . 38
Invoking JAX-RPC Web Services . 42

Creating Clients Using Generating Stubs Method . 43
Generating the Stubs . 45
Coding the Client . 45
Compiling the Client Code . 46
Assembling the Client Classes into a JAR file . 46
Running the Client . 47

Creating Clients Using Dynamic Invocation Interface . 47
Creating JAX-RPC Client Using a Dynamic Proxy . 48
Creating a JAX-RPC Client Using the Call Interface . 49

Assembling and Deploying a JAX-RPC Client . 51
Sample Applications . 52

JAX-RPC Client Invoking an EJB . 52
Building Security into JAX-RPC Web Services . 55

Basic Authentication Over SSL . 56
Adding Security Elements to web.xml . 57
Setting Security Properties in the Client Code . 58
Mutual Authentication Over SSL . 59
Setting Up Client Certificate Authentication for Web Services . 60

JAX-RPC Tools . 64
wscompile Tool . 64

wscompile Command Options . 65
Configuration File . 67

wsdeploy Tool . 69
wsdeploy Command Options . 69

Namespace Mappings . 71
SOAP Handlers . 72

Java Language Types Supported By JAX-RPC . 73

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM . 77
SOAP Clients . 77

5

SOAP Client Messaging Models . 77
Client Without a Messaging Provider . 78
Client With a Messaging Provider . 79

SOAP Messages . 80
Parts of a SOAP Message . 80
Accessing Elements of a Message . 82

Developing a SOAP Client . 84
How SOAP Messaging Occurs? . 84
Creating a SOAP Client . 85

Assembling and Deploying a SOAP Client . 91
SOAP Service . 92

Creating a SOAP Service . 92
Exception and Fault Handling . 93

Fault Handling . 93
Defining SOAP Fault . 95

Assembling and Deploying a SOAP Service . 96
Sample Clients and Services . 96

Chapter 4 Clients Using JAXR . 97
Developing a JAXR Client . 97

Getting Access to a Registry . 98
Accessing an ebXML Registry . 98

Establishing a Connection . 98
Querying a Registry . 102

Finding Organizations by Name . 103
Finding Organizations by Classification . 103
Finding Organizations by WSDL Descriptions . 104
Finding Services and Service Bindings . 105

Managing Registry Data . 106
Getting Authorization from the Registry . 106
Creating an Organization . 107
Adding Classifications . 108
Using Taxonomies . 109

Defining Taxonomies . 109
Specifying Postal Address . 111

Adding Services and Service Bindings to an Organization . 113
Publishing a Web Service to a UDDI Registry . 114
Assembling and Deploying a JAXR Client . 119

Sample JAXR Client . 120

Appendix A XML Schema Definitions . 121
XML Schema for wscompile Configuration File . 121
XML Schema for Deployment Descriptors . 134

6 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

XML Schema for Exported wscompile Model Files . 140
XML Schema for Runtime Descriptors . 143

Glossary . 147

Index .173

7

About This Document

This guide describes how to create and run Web services and JavaTM based clients
that invoke them on SunTM Open Net Environment (Sun ONE) Application Server
7. In addition to describing programming concepts and tasks, this guide offers
sample code, implementation tips, reference material, and a glossary.

This preface contains information about the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Reference Information

• Documentation Conventions

• Product Support

Who Should Use This Guide
The intended audience for this guide are the information technology developers in
a corporate enterprise who develop and publish Web services, and build clients
that invoke them.

This guide assumes you are familiar with the following topics:

• Java(2) Platform, Enterprise EditionTM specification

• HTML

• JavaTM and XML programming

• Java APIs as defined in specifications for EJBTM, JSPTM, and JDBCTM

Using the Documentation

8 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

• Software development processes, including debugging and source code
control

Using the Documentation
The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.sun.com/

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Table 1 Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the
documentation

Release Notes

Supported platforms and environments Platform Summary

Introduction to the application server, including new
features, general installation information, migration details,
and architectural overview

Getting Started Guide

Installing Sun ONE Application Server and its various
components (sample applications, Administration interface,
Sun ONE Message Queue).

Installation Guide

Creating and implementing J2EE applications that follow
the open Java standards model on the Application Server 7.
Includes general information about application design,
developer tools, security, assembly, deployment,
debugging, and creating lifecycle modules.

Developer’s Guide

Creating and implementing J2EE applications that follow
the open Java standards model for web applications on the
Application Server 7. Discusses web application
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to Web
Applications

Creating and implementing J2EE applications that follow
the open Java standards model for EJBs on the Application
Server 7. Discusses EJB programming concepts and tasks,
and provides sample code, implementation tips, and
reference material.

Developer’s Guide to
Enterprise JavaBeans
Technology

http://docs.sun.com/

Using the Documentation

About This Document 9

Creating Web services and clients in Application Server
environment.

Developer’s Guide to Web
Services

Creating clients that access J2EE applications on the Sun
ONE Application Server.

Developer’s Guide to Clients

J2EE features such as JDBC, JNDI, JTS, JMS, JavaMail,
resources, and connectors

Developer’s Guide to J2EE
Features and Services

Creating custom NSAPI plug-ins Developer’s Guide to NSAPI

Performing the following administration tasks:

• Using the Administration interface and the command
line interface

• Configuring server preferences

• Using server instances

• Monitoring and logging server activity

• Configuring the web server plug-in

• Configuring the Java Messaging Service

• Using J2EE features

• Configuring support for CORBA-based clients

• Configuring database connectivity

• Configuring transaction management

• Configuring the web container

• Deploying applications

• Managing virtual servers

Administrator’s Guide

Editing server configuration files Administrator’s
Configuration File Reference

Configuring and administering security for the Application
Server 7 operational environment. Includes information on
general security, certificates, and SSL/TLS encryption.
Web-core-based security is also addressed.

Administrator’s Guide to
Security

Configuring and administering service provider
implementation for J2EE CA connectors for the Application
Server 7. Includes information about the Administration
Tool, DTDs and provides sample XML files.

J2EE CA Service Provider
Implementation
Administrator’s Guide

Table 1 Application Server Documentation Roadmap (Continued)

For information about See the following

How This Guide Is Organized

10 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

How This Guide Is Organized
This guide provides instructions for the development and the deployment of Web
services to Sun ONE Application Server. The guide also provides information on
developing client applications that can invoke Web services.

• Chapter 1, “About Web Services”

This chapter introduces you to Web services and the standards used in
implementing Web services. Also discusses about the working of Web services
in the Sun ONE Application Server environment.

• Chapter 2, “Services and Clients Using JAX-RPC”

This chapter describes the procedure to develop, deploy, execute JAX-RPC
Web services and clients that access such services.

• Chapter 3, “SOAP Clients and Services Using SAAJ and JAXM”

This chapter introduces you to the SAAJ and JAXM APIs, how to use these
APIs to develop message-oriented services and clients in Sun ONE Application
Server environment.

• Chapter 4, “Clients Using JAXR”

This chapter introduces you to the JAXR API, how to use the API to build
clients, and how to manage the registry data.

• Appendix A, “XML Schema Definitions”

This appendix provides XML Schema Definitions for the various configuration
files used in developing JAX-RPC Web services and clients.

Migrating your applications to the new Sun ONE
Application Server 7 programming model from the
Netscape Application Server version 2.1, including a
sample migration of an Online Bank application provided
with Sun ONE Application Server

Migration Guide

Using Sun ONE Message Queue The Sun ONE Message
Queue documentation at

http://docs.iplanet.com/d
ocs/manuals/javamq.html

Table 1 Application Server Documentation Roadmap (Continued)

For information about See the following

http://docs.iplanet.com/d

Reference Information

About This Document 11

Finally, a Glossary and Index are provided.

Reference Information
In addition to the information in the Sun ONE Application Server documentation
collection listed in “Using the Documentation” on page 8", we recommend the
following resources:

General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Web Services:

Java Web Services, by David Chappell and Tyler Jewell, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Java API Specifications:

http://java.sun.com/xml/download.html

Java Web Services Tutorial:

http://java.sun.com/webservices/docs/1.0/tutorial/index.html

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

http://java.sun.com/xml/download.html
http://java.sun.com/webservices/docs/1.0/tutorial/index.html

Documentation Conventions

12 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 13.

By default, the location of install_dir on most platforms is:

❍ Solaris 8 non-package-based Evaluation installations:

user’s home directory/sun/appserver7

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 13
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following path:

default_config_dir/domains/domain/instance

http://server.domain/path/file.html

Documentation Conventions

About This Document 13

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

• For Solaris 9, bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

❍ default_config_dir refers to /var/opt/SUNWappserver7/domains which is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

Documentation Conventions

14 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

http://www.sun.com/supportraining/

15

Chapter 1

About Web Services

This chapter introduces you to Web services, standards used in implementing Web
services, and summarizes the process of building such services.

This chapter describes the following topics:

• What are Web Services?

• Messaging Models Used in Web Services

• Standards and Interoperability in Web Services

• Support for Web Services in Sun ONE Application Server

• A Simple Web Service Scenario

• Java APIs for XML and Web Services

• Implementing Web Services Using Java APIs

• Preparing for Developing Web Services and Clients

What are Web Services?
A Web service is a modular application that you can describe, publish, locate, and
invoke across the web. A Web service perform functions, which can be anything
from simple requests to complicated business processes. Once a Web service is
deployed, other applications or other Web services can discover and invoke the
deployed service.

Messaging Models Used in Web Services

16 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Web services are invoked using Simple Object Access Protocol (SOAP) messages.
SOAP is a lightweight messaging protocol that allows objects of any kind, on any
platform, written in any language to cross-communicate. SOAP messages are
encoded in eXtensible Markup Language (XML) and typically transported over
HTTP. Unlike other distributed computing technologies, Web services are loosely
coupled and can dynamically locate and interact with other components on the
internet to provide services.

A Web service is invoked using an XML message such as a SOAP message through
a well-defined message exchange pattern. The message exchange pattern is defined
in a Web Services Description Language (WSDL) document by a description of the
data required to invoke the service.

Messaging Models Used in Web Services
This section describes the two principal messaging models used in Web services.
The two Web service messaging models are distinguished by their
request-response operation handling.

This section describes the following Web services models:

• Synchronous Model

• Asynchronous Model

Synchronous Model
Synchronous means that every time a client accesses a Web service application, the
client receives a SOAP response. Synchronous is request-response operation.
Synchronous services are designed when client applications require a more
immediate response to a request. Web services that rely on synchronous
communication are usually Remote Procedure Call (RPC)-oriented. JavaTM API for
XML-based RPC (JAX-RPC) and SOAP with Attachments API for JavaTM (SAAJ)
use the synchronous model for communication.

Standards and Interoperability in Web Services

Chapter 1 About Web Services 17

Asynchronous Model
Asynchronous means that the client which invokes a Web service, does not or can
not wait for a response. Thus, asynchronous is one-way operation. The client sends
a request in the form of an XML message. The Web service receives the message
and processes it, sending the results when it completes its processing. An
asynchronous send requires a messaging provider which is not supported in Sun
ONE Application Server. Asynchronous receive is supported in the application
server using the JavaTM API for XML Messaging (JAXM).

Standards and Interoperability in Web Services
Web services are based on a set of standard protocols and technologies, so that all
the components of a Web service understand how to communicate. This section
describes the following standards.

• SOAP

• WSDL

• UDDI

• ebXML

SOAP
Simple Object Access Protocol (SOAP) is a lightweight protocol that allows
exchange of information in a distributed environment. It plays a very important
role in the communication mechanism for Web services. It provides a standard
packaging structure for transporting XML documents using a variety of standard
internet technologies including SMTP, HTTP, and FTP.

For more information about SOAP 1.1 specification, visit the following URL:
http://www.w3.org/TR/soap

http://www.w3.org/TR/soap

Standards and Interoperability in Web Services

18 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

WSDL
Web Services Description Language (WSDL) is an XML-based specification schema
for describing a Web service. WSDL defines Web services as a set of endpoints or
ports operating on messages. A port is defined by associating a network address
with a reusable binding, and a collection of ports define a service. The message can
be either message-style or RPC-style. WSDL is extensible to allow the description
of endpoints and their associated messages regardless of what message formats or
network protocols are used to communicate.

For more information about WSDL specification, visit the following URL:
http://www.w3.org/TR/wsdl

UDDI
Universal Description, Discovery, and Integration (UDDI) standard provides a
mechanism for businesses to describe themselves and the types of services they
provide and allows these to register themselves in a UDDI registry. Using SOAP
messages, other businesses can search, query, or discover registered businesses.
Having discovered other suitable businesses to partner with, businesses can then
integrate their services with their partners and provide service to their customers.

For more information about UDDI 2.0 specification, visit the following URL:
http://www.uddi.org

ebXML
electronic business eXtensible Markup Language (ebXML) defines core
components, business processes, registry and repository, messaging services,
trading partner agreements, and security. ebXML defines standards by extending
all three of the previous standards to achieve e-business partner interoperability
for document exchange. ebXML message service extends SOAP 1.1 with
attachment for use as the base messaging protocol to achieve reliability and other
quality of service aspects.

ebXML Collaboration Partner Profile and Agreement (CPP and CPA) describe
partner interactions for the e-business scenario in a complete manner.

An ebXML Registry and Repository enables the storing and sharing of information
between parties to allow e-business collaboration. Sun ONE Application Server
supports clients to access an ebXML registry through a third-party provider.

http://www.w3.org/TR/wsdl
http://www.uddi.org

A Simple Web Service Scenario

Chapter 1 About Web Services 19

For more information on ebXML, visit the following URL:
http://www.ebxml.org

A Simple Web Service Scenario
The following figure illustrates the working of a simple Web service in Sun ONE
Application Server environment.

Figure 1-1 Web services in Sun ONE Application Server Environment

The typical working of Web services is explained in the following steps:

1. Once the Web service application is ready to accept requests, the Web service is
registered with a registry, such as a UDDI registry or an ebXML registry and
repository. Describe the Web service using a WSDL.

Web Service
Client

Computer
Requesting
Web Service

SOAP Request
Response

Service
Discovery

Register/Publish
Service

Web Service Provider
Web Server

SOAP

Processing

WSDL Interface
Definition

Node

HTTP Server

Computer

Providing

Web Services

UDDI
Registry

or
ebXML
Registry &
Repository

http://www.ebxml.org

Support for Web Services in Sun ONE Application Server

20 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

2. Another service or a user locates this registered service and requests by
querying the registry.

3. The requesting service or a user writes an application to bind the registered
service using SOAP.

4. The client discovers the Web service that is registered with the registry.

5. The request from a client to a Web service arrives in the form of an XML
document.

6. The Web service receives the request and processes the request.

7. The Web service calls one or more Enterprise JavaBeans (EJBs) components to
perform business data processing.

8. The EJB components perform their processing calling external systems.

9. The EJB components return data to the service.

10. The Web service then marshals this return value into an XML document.

11. The Web service returns the XML document to the client on a response.

Support for Web Services in Sun ONE
Application Server

Support for Web services in Sun ONE Application Server, is primarily through the
implementation of different JAX* APIs. Sun ONE Application Server delivers the
runtime environment and tools to develop, deploy, and host RPC and
document-oriented Web services. Sun ONE Application Server provides the
facility to publish Web services into a UDDI registry and discover the registered
services. In addition, Sun ONE Application Server enables integration of reliable
messaging into Web services using Sun ONE MQ 3.0.1 (Message Queue).

For more information on the Java APIs, see “Java APIs for XML and Web Services”
on page 21.

Sun ONE Application Server includes the following features:

• Sun ONE Application Server includes command-line tools to perform the
following tasks:

Java APIs for XML and Web Services

Chapter 1 About Web Services 21

❍ Generate client side stubs and server-side tie classes which interface with
the application server at runtime. You can generate stubs and tie-classes
using the wscompile and wsdeploy tools provided with Sun ONE
Application Server. For more information on using these tools, see
“JAX-RPC Tools” on page 64.

❍ Convert Java interfaces-to-WSDL and vice versa.

❍ Ant tasks to develop and deploy Web services to Sun ONE Application
Server.

• Provides Sun ONE Studio 4, a graphical user interface, that helps in the
development and deployment of Web services and clients.

For instructions on how to use Sun ONE Studio to build Web services and
clients, see the Sun ONE Studio Building Web Services documentation. The Sun
ONE Studio documentation is available at the following URL:

http://docs.sun.com/source/816-7862/index.html

Unsupported Features in Sun ONE Application Server
Sun ONE Application Server does not support the following features:

• Does not include any registry servers but, is certified with the Sun ONE
Registry Server as well as tested with external UDDI registry.

• Does not support any Web services security protocols, instead relies on web
container’s security.

• Does not include a messaging provider that enforces reliable messaging
between the client and the server.

Java APIs for XML and Web Services
Support for developing Web services on Sun ONE Application Server is primarily
based on the implementation of Java APIs for XML and Web services. These APIs
provide specific XML and/or SOAP capabilities required to access or deliver Web
services from the Java platforms. This section describes each API as delivered in
Sun ONE Application Server.

For detailed information on the Java APIs and the programming concepts, visit the
following URL:

http://java.sun.com/webservices/docs/1.0/tutorial/index.html

http://docs.sun.com/source/816-7862/index.html
http://java.sun.com/webservices/docs/1.0/tutorial/index.html

Java APIs for XML and Web Services

22 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The following table lists the Java APIs supported by Sun ONE Application Server.
The first column lists the Java APIs and the second column shows the version
number of the Java API.

JAXP
The JavaTM API for XML Processing (JAXP) supports the processing of XML
documents using Simple API for XML (SAX) and Document Object Model (DOM),
along with a pluggable interface to an XML Stylesheet Language Transformations
(XSLT) engine. JAXP enables applications to parse and transform XML documents
independent of a particular XML processing implementation. Depending on the
needs of the application, developers have the flexibility to swap between XML
processors, such as high performance vs. memory conservative parsers, without
making application code changes. Thus, application and tools developers can
rapidly and easily XML-enable their Java applications for e-commerce, application
integration, and dynamic web publishing. JAXP 1.2 implementation in Sun ONE
Application Server has support for XML schema and an XML compiler (XSLTC).

JAXP 1.2 is required for the other Java APIs for XML and Web services in Sun ONE
Application Server. JDK 1.4 bundles an implementation of JAXP 1.1. Sun ONE
Application Server bundles JAXP 1.2 implementation. To override the classes in
JAXP implementation in JDK 1.4, see “Overriding the JAXP Implementation” on
page 31.

For more information about JAXP, visit the following URLs:
http://java.sun.com/xml/tutorial_intro.html
http://java.sun.com/xml/xml_jaxp.html

Table 1-1 Java APIs for XML and Web Services supported in Sun ONE Application
Server

Java API Version Number

JAXP 1.1, 1.2

JAX-RPC 1.0

JAXR 1.0

SAAJ 1.1

JAXM 1.1

http://java.sun.com/xml/tutorial_intro.html
http://java.sun.com/xml/xml_jaxp.html

Java APIs for XML and Web Services

Chapter 1 About Web Services 23

JAX-RPC
The Java API for XML-based RPC (JAX-RPC) enables developers to build SOAP
based interoperable and portable Web services. JAX-RPC provides an easy to
develop programming model for the development of SOAP based synchronous
Web services. Developers use the RPC programming model to develop clients and
endpoints. For typical scenarios, developers are not exposed to the complexity of
the underlying runtime mechanisms, such as SOAP protocol level mechanisms,
marshalling, and unmarshalling.

A JAX-RPC runtime system or a library abstracts these runtime mechanisms for
programming Web services. A JAX-RPC client can use stubs-based, dynamic
proxy, or dynamic invocation interface (DII) programming models to invoke a
heterogeneous Web services application. JAX-RPC provides support for document
based messaging. Using JAX-RPC, any MIME encoded content can be carried as
part of a SOAP message with attachments. This enables exchange of XML
document, images, and other MIME types across Web services. JAX-RPC supports
HTTP level session management and SSL based security mechanisms. This enables
in the development of secured Web services.

Sun ONE Application Server provides support for development and deployment
of JAX-RPC Web services and clients. In addition to providing implementation for
JAX-RPC API, application server provides tools support for WSDL to Java and Java
to WSDL mapping as part of the development of clients and services.

For detailed information on JAX-RPC, visit the following URL:
http://java.sun.com/xml/jaxrpc/index.html

JAXR
The JavaTM API for XML Registries (JAXR) provides standard Java API for
accessing different kinds of XML registries in a uniform manner. An XML registry
is an enabling infrastructure for building, deploying, and discovering Web
services.

Currently, there are a variety of specifications for XML registries including
pre-eminently, the ebXML Registry and Repository standard, which is being
developed by OASIS and U.N./CEFACT and the UDDI specification, which is
being developed by a vendor consortium.

JAXR enables Java software programmers to use a single, easy-to-use abstraction
API to access a variety of XML registries. Simplicity and ease of use are facilitated
within JAXR by a unified JAXR information model, which describes content and
metadata within XML registries.

http://java.sun.com/xml/jaxrpc/index.html

Java APIs for XML and Web Services

24 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

JAXR provides rich metadata capabilities for classification and association, as well
as rich query capabilities. As an abstraction-based API, JAXR gives developers the
ability to write registry client programs that are portable across different target
registries.

Sun ONE Application Server provides implementation for JAXR 1.0 version. This
version of the JAXR specification includes detailed bindings between the JAXR
information model and both the ebXML Registry and the UDDI Registry v2.0
specifications.

For detailed information on JAXR visit the following URL:
http://java.sun.com/xml/jaxr/index.html

SAAJ
The SOAP with Attachments API for JavaTM (SAAJ) enables developers to produce
and consume messages conforming to the SOAP 1.1 specification and SOAP with
Attachments note. This API is derived from the java.xml.soap package originally
defined in the JAXM 1.0 specification.

Sun ONE Application Server provides support for SAAJ API 1.1. For more
information on SAAJ 1.1 API, visit the following URL:

http://java.sun.com/xml/downloads/saaj.html

JAXM
JavaTM API for XML Messaging (JAXM) defines the API for xml messaging using a
messaging provider. JAXM API enables applications to send and receive
document-oriented XML messages. JAXM implements SOAP 1.1 with attachments
messaging so that developers can focus on building, sending, receiving, and
retrieving messages, avoiding programming low level communication routines.

Sun ONE Application Server implements the JAXM 1.1 API that enables
applications to send and receive asynchronous messages using a messaging
provider.

For detailed information on JAXM visit the following URL:
http://java.sun.com/xml/jaxm/index.html

http://java.sun.com/xml/jaxr/index.html
http://java.sun.com/xml/downloads/saaj.html
http://java.sun.com/xml/jaxm/index.html

Implementing Web Services Using Java APIs

Chapter 1 About Web Services 25

Implementing Web Services Using Java APIs
The following figureFigure 1-2 illustrates the role of standard Java APIs in
implementing Web services.

Figure 1-2 Implementing Web Services Using Java APIs

SOAP messaging is the protocol for Web services. JAXP API allows you to access
and parse XML data. The main goal of JAXP is to provide an interface that lets the
you create, manipulate, and use standard XML parsers without reference to the
underlying implementation, allowing you to create parser-neutral code, and
deferring parser selection to runtime.

JAX-RPC aids you in building XML-based requests such as SOAP requests, used
for sending and receiving method calls using XML-based protocols. JAX-RPC API
provides the high level framework to expose Java functionality as Web services
that can be consumed by SOAP clients or as the way to consuming SOAP services

Organization A

Sends a
Request

Receives
Response

document

XML
document

XML Process &
Transform
XML to Java

Process &
Transform
Java to XML

Incorporate
Session
Information
Request

Incorporate
Session
Information

JAXP
EJB

JAXM

JAX-RPC
SAAJ Service

WSDLSOAP

ebXML
SOAP-RP

request and
response

Service registry &
repository

(UDDI or ebXML)

JAXR JAXR
Publish / discovery Publish / discovery

Web Server JSP/Servlet
Organization B

Application
Server

Web

DBMS

Existing
Applications

JDBC

J2EE

Connector

Implementing Web Services Using Java APIs

26 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

and clients. In the typical JAX-RPC use case, the developer does not have to deal
with XML and SOAP programming, thus enabling rapid application development.
This not only does XML to Java mapping and vice-versa, also avoids you to interact
directly with the XML representation of the call.

JAXM provides the framework for such XML data to interact between two
applications. That is, JAXM allows the transfer of complete XML documents
between two separate Web services. SOAP provides the underlying format of
messages transferred between the applications. JAXM being a lightweight API,
abstracts away the underlying message infrastructure. Hence it is easy to develop
JAXM messages packaged via SOAP, which allows you to access SOAP messages
quickly and easily.

SAAJ API allows you to manipulate simple SOAP messages. It can be used in
combination with JAX-RPC, which is the J2EE standard API for sending and
receiving SOAP messages, to represent literal XML document fragments. SAAJ is
an integral part of the JAX-RPC, but you can also use it with other APIs such as
JAXM.

The difference between JAXM and JAX-RPC is, JAXM supports the development of
message-oriented middle ware-type applications, that allows you to focus on
sending and receiving messages. Whereas, JAX-RPC supports the application for
RPC behavior. JAX-RPC provides the Java interface to XML RPC calls as defined in
SOAP.

The Coffee Break Example
The Coffee Break example demonstrates how each of the Java APIs for XML and
Web services can be used.

Figure 1-3 Coffee Break Web Service Using Java APIs

Implementing Web Services Using Java APIs

Chapter 1 About Web Services 27

The following steps describes the working of the Coffee Break Web service.

• The Coffee Break server obtains the information about the various types of
coffees it sells and the prices associated, by querying the distributors at startup
and on demand.

• The Coffee Break server uses JAXM messaging to communicate with one of its
distributors. It has been dealing with this distributor for some time and has
previously made the necessary arrangements for performing request-response
JAXM messaging. The two parties have agreed to exchange four kinds of XML
messages and have set up the DTDs that these messages will follow.

• The Coffee Break server uses JAXR to send a query searching for coffee
distributors that support JAX-RPC to the Registry Server.

Preparing for Developing Web Services and Clients

28 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

• The Coffee Break server requests the price lists from each of the coffee
distributors. The server makes the appropriate remote procedure calls and
waits for the response, which is a JavaBean component representing a price list.
The JAXM distributor returns the price lists as XML documents.

• Upon receiving the responses, the Coffee Break server processes the price lists
from the JavaBean components returned by calls to the distributors.

• The Coffee Break Server creates a local database of distributors.

• When an order is placed, suborders are sent to one or more distributors using
the distributor’s preferred protocol.

The code examples for the coffee break server is installed at
install_dir/samples/webservices/cb. For more information on using the sample,
see the sample application document.

Preparing for Developing Web Services and
Clients

This section describes the pre-requisites to develop Web services and clients. This
section presents the following topics:

• Using Ant Tasks

• Setting Up the Client Environment

Using Ant Tasks
You can use the automated assembly features available through Ant, a Java-based
build tool available through the Apache Software Foundation:

http://jakarta.apache.org/ant/

Ant is a java-based build tool that is extended using Java classes. Instead of using
shell commands, the configuration files are XML-based, calling out a target tree
where tasks get executed. Each task is run by an object that implements a particular
task interface.

In order to use ant tasks in your client environment, perform the following tasks:

http://jakarta.apache.org/ant/

Preparing for Developing Web Services and Clients

Chapter 1 About Web Services 29

• Include install_dir/appserver7/bin in the PATH environment variable. The
Ant script provided with Sun ONE Application Server, asant, is located in this
directory. For details on how to use asant, see the sample applications
documentation in the

install_dir/appserver7/samples/docs/ant.html

For more information on using Ant tasks in Sun ONE Application Server
environment, see the Sun ONE Application Server Developer’s Guide.

Creating the build.xml File
Ant commands operate under the control of a build file, normally called
build.xml, that defines the processing steps required.

The build.xml file provides several targets that support optional development
activities. This build file includes targets for compiling the application, deploying
the application to the application server, redeploying the modified application to
the application server, and removing old copies of the application to regenerate
their content.

For more information on creating an ant build file, see the Apache Ant Manual at:

http://jakarta.apache.org/ant/manual/index.html

Setting Up the Client Environment
A client uses various jar files that are bundled with Sun ONE Application Server.
This section describes how to setup your client environment:

If you are developing a client application in the system where you have installed
Sun ONE Application Server, the required jar files are included to help the
development of a client.

If your client development environment is different from that of the system where
Sun ONE Application Server is installed, you must perform the following steps:

If you are using version 1.3 of Java 2 SDK, perform the following steps:

1. Copy the following jar files to your client development environment.

❍ mail.jar - JavaMail API. Installed at install_dir/share/lib

❍ activation.jar - JavaBeans Activation Framework. Installed at
install_dir/share/lib.

❍ fscontext.jar - Contains the file system service provider. Installed at
install_dir/share/lib.

http://jakarta.apache.org/ant/manual/index.html

Preparing for Developing Web Services and Clients

30 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

❍ jaxm-api.jar - Java API for XML Messaging. Installed at
install_dir/share/lib.

❍ jaxrpc-api.jar - Java API for XML-based RPC. Installed at
install_dir/share/lib.

❍ jaxrpc-impl.jar - Java API for XML-based RPC implementation.
Installed at install_dir/share/lib.

❍ jaxr-api.jar - Java API for XML Registry. Installed at
install_dir/share/lib.

❍ jaxr-impl.jar - Java API for XML Registry implementation. Installed at
install_dir/share/lib.

❍ saaj.-api.jar - SOAP runtime API. Installed at install_dir/share/lib.

❍ saaj-impl.jar - SOAP implementation. Installed at
install_dir/share/lib.

❍ commons-logging.jar - Contains a logging library package. Installed at
install_dir/share/lib.

❍ jaxp-api.jar - The javax.xml.parsers and javax.xml.transform

components of JAXP. These packages contain the APIs that give
applications a consistent way to obtain instances of XML processing
implementations.

❍ sax.jar - The APIs and helper classes for the Simple API for XML (SAX),
used for serial access to XML data.

❍ dom.jar - The APIs and helper classes for the Document Object Model
(DOM), used to create an in-memory tree structure from the XML data.

❍ xercesImpl.jar - The implementation classes for the SAX and DOM
parsers, as well as xerces-specific implementations of the JAXP APIs.

❍ xalan.jar - The "classic" (interpreting) XSLT processor.

❍ xsltc.jar - The compiling XSLT processor.

2. Add the following jar files to the starting of your classpath. These jar files must
appear first in the classpath to avoid using any other parser:

❍ jaxp-api.jar

❍ dom.jar

❍ sax.jar

❍ xercesImpl.jar

Preparing for Developing Web Services and Clients

Chapter 1 About Web Services 31

❍ xalan.jar

❍ xsltc.jar

3. Add the rest of the jar files also to your classpath.

If you are using version 1.4 of Java 2 SDK for developing clients, perform the
following step:

Copy all the jar files listed in Step 1, except the following to your client
development environment and add them to your classpath.

❍ jaxp-api.jar

❍ dom.jar

❍ sax.jar

❍ xercesImpl.jar

❍ xalan.jar

❍ xsltc.jar

The J2SE 1.4 is the first version of the JDK that bundles an implementation of JAXP
1.1. This allows developers to write applications without having to provide a
parser and XSLT processor with their application. However, to override this
implementation of JDK with a newer version, you need to use the ‘Endorsed
Standards Override Mechanism’.

Overriding the JAXP Implementation
To use the JAXP 1.2 implementation, copy the following jar files into
Java_home/jre/lib/endorsed/ directory:

❍ dom.jar

❍ sax.jar

❍ xercesImpl.jar

❍ xalan.jar

❍ xsltc.jar

If the /endorsed directory does not exist, you must create it.

NOTE The jaxp-api.jar file should not be copied, because it contains
high-level APIs that are not subject to change.

Preparing for Developing Web Services and Clients

32 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The jar files must exist in Java_home/jre/lib/endorsed/ directory to override
earlier versions of the Xalan libraries that are a standard part of the 1.4 platform.
Because of that special requirement, it is not possible to specify these libraries using
the -classpath option on the java/javac command line.

Alternatively, you can use the java.endorsed.dirs system property to
dynamically add those jar files to the JVM when you start your client development.
Using that system property gives you flexibility of using different implementations
for different applications.

For more information on how to use ‘Endorsed Standards Override Mechanism’,
visit the following URL:

http://java.sun.com/j2se/1.4/docs/guide/standards

http://java.sun.com/j2se/1.4/docs/guide/standards

33

Chapter 2

Services and Clients Using JAX-RPC

Thi chapter describes the procedure to develop, assemble, and deploy RPC-based
Web services in Sun ONE Application Server 7 environment; how to build clients
that invoke such services.

This chapter contains the following sections:

• JAX-RPC Implementation

• Developing JAX-RPC Web Services

• Assembling and Deploying JAX-RPC Web Services

• Invoking JAX-RPC Web Services

• JAX-RPC Client Invoking an EJB

• Building Security into JAX-RPC Web Services

• JAX-RPC Tools

• Java Language Types Supported By JAX-RPC

JAX-RPC Implementation
JavaTM API for XML-based RPC (JAX-RPC) is an API for building Web services
and clients that use remote procedure calls (RPC) and XML. The RPC mechanism
enables clients to execute procedures on other systems in a distributed
environment. In JAX-RPC, a remote procedure call is represented by an
XML-based protocol such as SOAP. The SOAP specification defines envelope
structure, encoding rules, and a convention for representing remote procedure
calls and responses. These calls and responses are transmitted as SOAP messages
over HTTP. For more information on SOAP messages, see “SOAP Messages” on
page 80.

JAX-RPC Implementation

34 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

JAX-RPC uses technologies HTTP, SOAP, and the WSDL defined by the World
Wide Web Consortium (W3C), which makes it possible for a JAX-RPC client to
access a Web service that is not running on the Java platform and vice versa. Sun
ONE Application Server implementation of the JAX-RPC API uses HTTP as the
transport protocol. The implementation also provides necessary tools to generate
stubs, ties, and other artifacts needed on the client-side and the server-side. See
“JAX-RPC Tools” on page 64.

Implementation of JAX-RPC in Sun ONE Application Server provides the
following benefits to the developers:

• Enables JAX-RPC clients to invoke Web services developed across
heterogeneous platforms.

• Developers are not exposed to the complexity of the underlying runtime
mechanisms such as, SOAP protocol level mechanisms, marshalling, and
unmarshalling. A JAX-RPC runtime system or a library abstracts these runtime
mechanisms for the Web services programming model. This simplifies Web
service development.

• Provides support for WSDL to Java and Java to WSDL mapping as part of the
development of Web service’s endpoints and clients. (A Web service’s
endpoint is the address at which the Web service can be reached using a
specific protocol or a data format, from where its methods can be invoked.)

• Supports the J2SE SDK classes, application classes that you have written, and
JavaBean components. For more information, see “Java Language Types
Supported By JAX-RPC” on page 73.

• Enables a Web service endpoint to be developed using the Servelt model. A
Web service endpoint is deployed on the application server. These endpoints
are described using a WSDL document.

• A JAX-RPC client can use stubs-based, dynamic proxy, or dynamic invocation
interface (DII) programming models to invoke a heterogeneous Web service
endpoint. See“Invoking JAX-RPC Web Services” on page 42.

• Provides wscompile and wsdeploy tools to help in the development of Web
services and clients. See “JAX-RPC Tools” on page 64.

Developing JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 35

Developing JAX-RPC Web Services
JAX-RPC Web services are synchronous services which means that, every time a
client invokes a JAX-RPC Web services operation, it always receives a SOAP
response, even if the method that implements the operation returns void. For more
information on the Web services operation, see “Messaging Models Used in Web
Services” on page 16.

Web services deployed to Sun ONE Application Server can be accessed by any type
of client such as an application client, any J2EE component performing the role of a
client, any J2SE-based client, or a .net client.

The following steps describe the procedure to create JAX-RPC Web services using
the Java interface and its implementation:

1. Define a class that represents the remote interface to the service; this is the
service endpoint interface. This class contains the signature for the methods
that a client may invoke on the service. The service endpoint interface extends
the java.rmi.Remote interface and its methods must throw
java.rmi.RemoteException. The following code illustrates the creation of a
service endpoint interface.

package hello;

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface HelloIF extends Remote{

public String sayHello(String S) throws RemoteException;

}

In the code illustration above, the name of the package file is hello, and the
service definition interface is HelloIF.java.

A service endpoint is deployed in a container that implements the JAX-RPC
runtime system.

2. Write the service implementation class. The service implementation class is an
ordinary Java class. Invocation is done inside the servelt container. The code
illustration below shows how to write the service implementation class.

package hello;

public class HelloImpl implements HelloIF {

public String message = “Hello”;

public String sayHello(String S) {

Developing JAX-RPC Web Services

36 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

return message + S;

}
}

3. In order to handle the communication between the client and the service
endpoint, JAX-RPC needs various classes, interfaces, and other files on both
the client-side and the server-side. JAX-RPC implementation in Sun ONE
Application Server provides the wscompile tool to generate these artifacts.

The wscompile tool uses the configuration file, config.xml to read the
interface and implementation class, for generating client-side and server-side
artifacts. The wscompile tool also creates the WSDL description for the service.

The configuration file of the example is given below:

<?xml version="1.0" encoding="UTF-8"?>

<configuration

 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
<service name=”HelloWorld”

targetNameSpace=”http://hello.org/HelloWorld.wsdl”
typeNameSpace=”http://hello.org/hello/type”

packageName=”hello”>
<interface name=”hello.HelloIF”
 servantName=”hello.HelloImpl”/>

</service>

</configuration>

For information about the configuration file, see “Configuration File” on
page 67.

For information about the XML schema for creating a configuration file, see
Appendix A, “XML Schema Definitions”.

The following is the syntax to run the wscompile tool:

wscompile -gen:both -d build/client -classpath build/shared

config.xml

Stubs and ties are the most important artifacts that the wscompile tool
generates. Stubs and ties are the classes that enable the communication
between a service endpoint and a client. The stub class sits on the client side,
between the service client and the JAX-RPC client runtime system. The stub
class is responsible for converting a request from a JAX-RPC service client to a
SOAP message and sending it across to the service endpoint using the

http://java.sun.com/xml/ns/jax-rpc/ri/config
http://hello.org/HelloWorld.wsdl%E2%80%9D
http://hello.org/hello/type%E2%80%9D

Developing JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 37

specified protocol. It also converts the response from the service endpoint,
which it receives in the form of a SOAP message, to the format required by the
client. Converting a client request to SOAP format is called marshalling;
converting back from SOAP format to a client response is unmarshalling.

Similarly, the tie class resides on the server side, between the service endpoint
and the JAX-RPC runtime system. The tie class handles marshalling and
unmarshalling the data between the service endpoint class and the SOAP
format. A stub is a local object that acts as a proxy for the service endpoint.

You can use an ant build file (build.xml) to compile the service, generate
server-side artifacts and create a portable war file. You can find a sample
build.xml file at the following location:

install_dir/samples/webservices/jaxrpc/simple/src

For more information on creating a build.xml file, see “Creating the
build.xml File” on page 29.

4. Assemble and deploy the service to Sun ONE Application Server. See
“Assembling and Deploying JAX-RPC Web Services” on page 38.

5. Write the client side application that invokes the service. See “Invoking
JAX-RPC Web Services” on page 42.

JAX-RPC Web Services Using a WSDL
You can create a JAX-RPC Web service using an existing WSDL document. In this
method, the wscompile tool generates the service definition interface for the Web
service using the WSDL. The WSDL portType is mapped to the Java service
definition interface. To generate the service interface from the WSDL, use the
wscompile command with -import option, passing it the location of the WSDL
document. Alternatively, you can store the information required to generate the
service definition interface in a configuration file by name config.xml. The
config.xml, typically stores the location of the WSDL that you wish to access.

The following wscompile command reads the config.xml to generate the service
definition interface:

wscompile -gen:server -import <config.xml>

The configuration file with a WSDL document has the following format:

<?xml version="1.0" encoding="UTF-8"?>

<configuration
xmlns="http://java.sun.com/jax-rpc-ri/xrpcc-config">

http://java.sun.com/jax-rpc-ri/xrpcc-config">

Assembling and Deploying JAX-RPC Web Services

38 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

 <wsdl location="[1]"
packageName="[2]">
<typeMappingRegistry>[3] </typeMappingRegistry>

 </wsdl>

 </configuration>

The configuration file with a WSDL document has the following attributes:

• wsdl location - URL pointing to a WSDL document.

• packageName - Specifies a fully qualified name of the Java package for the
generated classes/interfaces.

• typeMappingRegistry - The type mapping registry used for this service.

For information on the XML schema for creating a configuration file, see
Appendix A, “XML Schema Definitions”.

The code below is the configuration file of the sample and is located at:
install_dir/samples/webservices/jaxrpc/simple

<?xml version="1.0" encoding="UTF-8"?>

<configuration
xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

 <wsdl location="HelloWorld.wsdl"

 packageName="samples.webservices.jaxrpc.simple"/>

</configuration>

After you generate the service interface, perform Step 2 to Step 5 under the section,
“Developing JAX-RPC Web Services” on page 35.

Assembling and Deploying JAX-RPC Web
Services

A JAX-RPC Web service application can be assembled and deployed to Sun ONE
Application Server as a WAR file. A WAR file contains the files needed for the web
application in compressed form.

The following steps describe the procedure to assemble and deploy a Web services
application to Sun ONE Application Server.

http://java.sun.com/xml/ns/jax-rpc/ri/config

Assembling and Deploying JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 39

1. Create the WAR file. To create a WAR file that contains the service code, create
a build.xml file, specifying the create-war command for the target-name.
The following code is a sample build.xml file that creates a WAR file:

<target name="create-war" depends="compile-server"

 description="Packages the WAR file">

 <echo message="Creating the WAR...."/>

 <delete file="../${portable-war}" />

 <delete dir="${assemble}/WEB-INF" />

 <copy todir="${assemble}/WEB-INF/classes/">

<fileset dir="${build}/shared/" includes="**/*.class" />

 </copy>

 <copy file="web.xml" todir="${assemble}/WEB-INF" />

 <copy file="jaxrpc-ri.xml" todir="${assemble}/WEB-INF" />

 <jar jarfile="${assemble}/${portable-war}" >

 <fileset dir="${assemble}" includes="WEB-INF/**" />

 </jar>

 <move file="${assemble}/${portable-war}" todir="../" />
</target>

This XML file when executed, bundles the files into a WAR file named
hello-portable.war. This WAR file is not ready for deployment because it
does not contain the tie classes. A WAR (web application archive) file contains
a complete web application in compressed form.

A special directory under the document root, WEB-INF, contains everything
related to the application that is not in the public document tree of the
application. No file contained in WEB-INF can be served directly to the client.
The contents of WEB-INF include:

❍ /WEB-INF/classes/*, the directory for servlet and other classes.

❍ /WEB-INF/lib/*.jar, the directory for JAR files containing beans and other
utility classes.

Assembling and Deploying JAX-RPC Web Services

40 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

❍ /WEB-INF/web.xml and /WEB-INF/sun-web.xml, XML-based deployment
descriptors that specify the web application configuration, including
mappings, initialization parameters, and security constraints.

The web application directory structure follows the structure outlined in the
J2EE specification.

In the example, the hello-portable.war contains the following files:

❍ WEB-INF/classes/hello/HelloIF.class

❍ WEB-INF/classes/hello/HelloImpl.class

❍ WEB-INF/jaxrpc-ri.xml

❍ WEB-INF/web.xml

2. Define the configuration file that specifies the name of the service and its
service endpoint interface and the class. The name of the configuration file
must be jaxrpc-ri.xml. The following configuration file is the configuration
file of the example.

<?xml version="1.0" encoding="UTF-8"?>

<webServices

xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
version="1.0"
targetNamespaceBase="http://hello.org/wsdl"
typeNamespaceBase="http://hello.org/types"
urlPatternBase="/ws">

 <endpoint

name="HelloWorld"
displayName="HelloWorld Service"
description="A simple web service"
interface="samples.webservices.jaxrpc.simple.HelloIF"
implementation="samples.webservices.jaxrpc.simple.

HelloImpl"/>

<endpointMapping

endpointName="HelloWorld"
urlPattern="/simple"/>

</webServices>

The configuration file contains the following webServices attributes:

❍ The webServices element includes name, typeNamespace, and
targetNamespace attributes.

http://java.sun.com/xml/ns/jax-rpc/ri/dd
http://hello.org/wsdl
http://hello.org/types

Assembling and Deploying JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 41

• The name attribute is used to generate the WSDL file for publication in
a public registry.

• The typeNamespace attribute defines the namespace in WSDL
document for types generated by the wscompile tool.

• The targetNamespace attribute is used for qualifying everything else
in the WSDL document.

For information about the XML schema for creating a runtime configuration
file, see Appendix A, “XML Schema Definitions”.

3. Create web.xml deployment descriptor file to include the information required
for deploying a service, such as mapping the service to an URL, specifying the
location of the configuration file in the WAR file, etc. For more information on
the deployment descriptors, see the Sun ONE Application Server Developer’s
Guide.

For general information about DTD files and XML, see the XML specification
at:

http://www.w3.org/TR/REC-xml

The following is the deployment descriptor of the example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Hello World Application</display-name>

 <description>A web application containing a simple JAX-RPC
endpoint</description>

 <session-config>

 <session-timeout>60</session-timeout>

 </session-config>

</web-app>

For information about the XML schema for creating deployment descriptors,
see Appendix A, “XML Schema Definitions”.

Web services applications have a directory structure, all accessible from a
mapping to the application’s document root (for example, /hello).

http://www.w3.org/TR/REC-xml
http://java.sun.com/dtd/web-app_2_3.dtd

Invoking JAX-RPC Web Services

42 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

4. Use the wsdeploy tool to create a deployable WAR module. The wsdeploy tool
executes the wscompile tool to generate the stubs, tie classes and other
necessary classes.

wsdeploy -keep tmpdir tempdir -o hello.war hello-portable.war

The wsdeploy command when executed, performs the following tasks:

❍ Reads the hello-portable.war file as input

❍ Gets information from the jaxrpc-ri.xml file that’s inside the
hello-portable.war file

❍ Generates the tie classes for the service

❍ Generates a WSDL file named HelloWorld.wsdl

❍ Assembles the tie classes, the HelloWorld.wsdl file, and the contents of
hello-portable.war file into a deployable WAR file.

See “wsdeploy Tool” on page 69 for information on using the wsdeploy
command-line tool.

5. Use the asadmin deploy command to deploy the WAR module.

For example,

asadmin> deploy --user admin --password admin --host localhost

--port 4848 --type web --instance server1

/sun/appserver7/samples/webservices/jaxrpc/simple/Hello.war

For more information on using the asadmin command-line tool, see the Sun
ONE Application Server Developer’s Guide.

Invoking JAX-RPC Web Services
Invoking a Web service essentially refers to the actions that a client application
performs to access a Web service. Web services deployed to Sun ONE Application
Server can be accessed by any client. That is, any J2EE component within the
application server can take the role of a client. Any application or an application
client can access Web services. A client can use Apache SOAP libraries to make a
call to a Web service or it could be a .net client.

This section describes the procedures to develop JAX-RPC clients that can invoke
JAX-RPC Web services deployed to Sun ONE Application Server.

Invoking JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 43

JAX-RPC clients are applications that use the JAX-RPC APIs and runtime for
invoking a Web service. These clients import the service using WSDL and can
invoke a service that has been defined and deployed on a non-Java platform.
JAX-RPC defines the javax.xml.rpc.Service interface to model the Web service
from a client’s perspective. You can use either J2SE or J2EE client programming
model to develop JAX-RPC clients.

The main steps in invoking a Web service are listed below:

1. Add the Java client JAR files to the client jar path. For more information on
how to add the jar files to the classpath, see “Setting Up the Client
Environment” on page 29.

2. Create a Java-based service client.

3. Assemble and deploy your client application. See “Assembling and Deploying
a JAX-RPC Client” on page 51.

4. Execute your Java client to invoke the Web service.

You can create JAX-RPC clients using the stubs method, a dynamic proxy, or the
call interface method. This section discusses the following topics:

• Creating Clients Using Generating Stubs Method

• Creating Clients Using Dynamic Invocation Interface

❍ Creating JAX-RPC Client Using a Dynamic Proxy

❍ Creating a JAX-RPC Client Using the Call Interface

• Assembling and Deploying a JAX-RPC Client

Creating Clients Using Generating Stubs Method
Stubs are used when a JAX-RPC client knows what method to call and how to call
it, such as what parameters to pass. Invoking a remote method through a stub is
like invoking a remote method using the Java Remote Method Invocation (RMI)
system. A stub simplifies the remote method calls by making them appear like
local method calls. A local stub object is used to represent a remote object. To make
a remote method call, a JAX-RPC client makes the method call on the local stub.

A stub class is a mapping of a port in the WSDL that describes the Web service. It
must therefore implement the service definition interface that reflects the methods
of the associated portType. Thus the client has strongly typed, early-bound access
to the Web service endpoint.

Invoking JAX-RPC Web Services

44 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The stub must also implement the javax.xml.rpc.Stub interface, which provides
the facility for the client to configure the stub dynamically.

Typically, a JAX-RPC client performs the following steps. These steps are
illustrated in the figure “JAX-RPC Client Model”.

1. The client calls the stub.

2. The stub redirects the call to the appropriate Web service.

3. The server catches the call and redirects it to a framework.

4. The framework wraps the actual implementation of the service, then calls the
Web service on behalf of the client.

5. The framework returns the call to the server.

6. The Web service, in turn, returns the information to the originating client stub.

7. Finally, the client stub returns the information to the client application.

JAX-RPC Client Model

The following sections describe these steps:

• Generating the Stubs

• Coding the Client

• Compiling the Client Code

• Assembling the Client Classes into a JAR file

Client

Protocol

SOAP, HTTP...

Client Stubs

JAX-RPC
Servlets

JAX-RPC

Skeleton

Protocol
SOAP, HTTP...

RPC Calls via SOAP

Invoking JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 45

• Running the Client

Generating the Stubs
You can use the wscompile tool to generate the stubs for the client. In addition to
generating the stubs, the wscompile tool also generates the ties for the server. To
generate stubs, set the PATH to the install_dir/share/bin directory. Run the tool
using the following syntax:

wscompile -gen:client -d build/client -classpath build/shared
config.xml

For more information on wscompile tool, see “wscompile Tool” on page 64.

There are two ways to generate the stubs. The stubs can be generated from the
service endpoint definition or from a WSDL document. The wscompile command
above uses the service endpoint definition to generate the stubs.

Coding the Client
Make sure to add the necessary jar files to the classpath. For more information, see
“Setting Up the Client Environment” on page 29.

The client performs the following steps:

1. Obtain an instance of the interface stub.

2. Set the endpoint property of the stub to point to the service endpoint of the
Web service.

3. Call the method.

In this example, the stubs are generated using the service endpoint definition. You
provide the configuration information using the JAX-RPC implementation’s
client-side API javax.xml.rpc.Stub.

The following code illustrates the above mentioned steps:

package hello;

import javax.xml.rpc.Stub;

public class HelloClient {
public static void main(String[] args) {
try {

HelloIF_Stub stub =
(HelloIF_Stub)(newHelloWorld_Impl().getHelloIFPort());

stub._setProperty(javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY,
args[0]);

Invoking JAX-RPC Web Services

46 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

System.out.println(stub.sayHello("Duke!"));

command-line}

catch (Exception ex) {

 ex.printStackTrace();

 }

}

}

In the code illustration above, the HelloClient is a stand-alone program that calls
the sayHello method of the HelloWorld service. It makes this call through a stub,
a local object that acts as a proxy for the remote service. In the code listing, note the
names of the HelloIF_Stub and HelloWorldImpl classes, which were generated
by the wscompile tool. The HelloIF prefix matches the name of the service
definition interface and the HelloWorld prefix corresponds to the service name
specified in the configuration file. The HelloWorldImpl class is the implementation
of a service as described in the JAX-RPC specification. The client gets a reference to
the stub by calling the getHelloIF method of the HelloWorldImpl class, which
was created when you ran the wscompile tool.

The args[0] parameter of the stub._setProperty method is a URI that denotes
the address of the target service port.

Compiling the Client Code

To compile the client, go to the directory where you have the client code saved and
type the following command:

asant compile

This command compiles the Java source code.

Assembling the Client Classes into a JAR file
You can use the asant tool to assemble the client classes into a JAR file. asant is a
command-line interface tool. Type the following command:

NOTE Be sure to run the wscompile and the wsdeploy tools before you
compile the client code. The client code refers to the generated by
the wscompile tool.

wscompile -gen:client -d build/client -classpath
build/shared config.xml

Invoking JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 47

asant jar

This command creates the client jar file.

Running the Client
Use the asant tool to run the client. Type the following command:

asant run

The run target of asant executes this command:

java -classpath cpath client endpoint

cpath - The classpath includes the client jar file that you have created, as well as
several other JAR files that are part of the JAX-RPC implementation.

endpoint- http://localhost:8080/jaxrpc-hello/jaxrpc/HelloIF

The jaxrpc-hello portion of the URL is the context of the servlet that implements
the HelloWorld service. This portion corresponds to the prefix of the
jaxrpc-hello.war file. The jaxrpc string matches the value of the
<url-pattern> element of the sun-web.xml deployment descriptor. And finally,
HelloIF is the name of the interface that defines the service.

You can accomplish the task of compiling, assembling and deploying, and running
a client through a build.xml file. The build.xml file for the sample bundled with
Sun ONE Application Server is available at the following location:

install_dir/samples/webservices/jaxrpc/simple/src

Creating Clients Using Dynamic Invocation
Interface
Using Dynamic Invocation Interface (DII), a client can call a service or a remote
procedure. The client can discover the name of the service or the procedure at
runtime, making use of a service broker that can dynamically look up the service
and its remote procedures.

NOTE In order to run the client remotely, all of these JAR files must reside
on the remote client system.

http://localhost:8080/jaxrpc-hello/jaxrpc/HelloIF

Invoking JAX-RPC Web Services

48 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The javax.xml.rpc.Service encapsulates two types of dynamic invocation that
do not require any generated code. This section describes the procedure to create
dynamic clients.

• Creating JAX-RPC Client Using a Dynamic Proxy

• Creating a JAX-RPC Client Using the Call Interface

Creating JAX-RPC Client Using a Dynamic Proxy
A JAX-RPC client can interact with a Web service using a dynamic proxy. A
dynamic proxy is a class that dynamically supports service endpoints at runtime,
without having pre generated stubs. A client creates dynamic proxies by calling the
getPort() method of the javax.xml.rpc.Service interface. The client calls its
getPort() method, passing in the Java service definition interface and the
corresponding Web service port name. It passes back a dynamically built and
configured implementation of the service definition interface-a dynamically built
stub.

For more information on dynamic proxies, visit the following URL:
http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html

The steps given below explains the procedure to create a dynamic proxy client.

1. Make sure to add necessary jar files to the classpath. For more information on
adding jar files to the classpath, see “Setting Up the Client Environment” on
page 29.

2. Create a client class that uses a dynamic proxy to invoke the service.

public class HelloClient {
....
....
}

3. Define the name of the service, the port name and the name of the WSDL that
contains the information about the Web service you wish to access.

String UrlString = endpoint;
String nameSpaceUri = "http://proxy.org/wsdl/HelloWorld";
String serviceName = "HelloWorld";
String portName = "HelloIFPort";
URL helloWsdlUrl = new URL(UrlString);

4. Obtain an instance of the default implementation for ServiceFactory object.

ServiceFactory serviceFactory = ServiceFactory.newInstance();

Service helloService =serviceFactory.createService(helloWsdlUrl,
new QName(nameSpaceUri,serviceName));

http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
http://proxy.org/wsdl/HelloWorld

Invoking JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 49

5. Get a dynamic proxy for the object.

HelloIF myProxy =(HelloIF)helloService.getPort(new
QName(nameSpaceUri,portName), proxy.HelloIF.class);

In the code illustration, the getPort() method is passed in an interface
definition that will be used as a template for building a runtime instance of a
dynamic proxy.

6. Invoke the service using
java.lang.reflect.InvocationHandler.Invoke();

System.out.println(myProxy.sayHello("Buzz"));

Creating a JAX-RPC Client Using the Call Interface
In the Call Interface approach, a client dynamically discovers services, configures
the remote calls, and executes the calls.The client uses the javax.xml.rpc.Call
interface for the dynamic invocation of a JAX-RPC service. At runtime, the client
uses the DII to call remote procedures on the Web service.

DII Call object method supports two types of invocation, namely, synchronous
request-response and one-way mode. In the synchronous request-response mode,
the client uses the invoke method of the call object to make a remote method. The
client then waits until the operation is complete, that is, until a response is
returned. In one-way method, the client uses the invokeOneWay method of the call
object to make a remote call.

The steps given below explains the procedure to create a client that can invoke a
Web service using the call interface approach:

1. Make sure to include the necessary jar files to the classpath. For more
information, see “Setting Up the Client Environment” on page 29.

2. When you create a dynamic client, define the name of the service that you wish
to access and the port name. Then, you create a service factory using the
ServiceFactory.newInstance() method. The
ServiceFactory.newInstance() method is supported by the JAXR API to
define a service.For more information, see “Adding Services and Service
Bindings to an Organization” on page 113.

private static String qnameService = "HelloWorld";
private static String qnamePort = "HelloIF";

ServiceFactory factory = ServiceFactory.newInstance();

Service service = factory.createService(new
QName(qnameService));

Invoking JAX-RPC Web Services

50 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

3. Create a Service object from the factory.

Service service = Factory.createService(new
QName(qnameService));

4. Create a Call object from the service and pass the name of the port and the
operation you want to execute.

QName port = new QName(qnamePort);

Call call = service.createCall();
call.setPortTypeName(port);
call.setTargetEndpointAddress(endpoint);

5. Set the property prior to making the actual method call. The setProperty
method is used to set standard properties that are listed in the JAX-RPC
specification.

call.setProperty(Call.SOAPACTION_USE_PROPERTY, new
Boolean(true));

call.setProperty(Call.SOAPACTION_URI_PROPERTY, "");
call.setProperty(ENCODING_STYLE_PROPERTY, URI_ENCODING);
QName QNAME_TYPE_STRING = new QName(NS_XSD, "string");
call.setReturnType(QNAME_TYPE_STRING);

6. Set the operation name.

call.setOperationName(new
QName(BODY_NAMESPACE_VALUE,"sayHello"));
call.addParameter("String_1", QNAME_TYPE_STRING,
ParameterMode.IN);
String[] params = { new String("Duke!") };

The addParameter method is used to add a parameter and the type for the
operation specified in the setOperationName method. Note that the values of
these parameters are obtained from the WSDL document for the service.

7. Use the Call.invoke() method to invoke the service.

String result = (String)call.invoke(params);

The invoke method invokes the operation specified in the setOperationName
method using a synchronous request-response interaction mode. The method
call specifies the input parameters for the invocation.

Creating a JAX-RPC Client Using a WSDL
The following steps describes the procedure to create a dynamic client that uses the
WSDL to locate a Web service and invoke the service.

Invoking JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 51

1. Create a service factory using the ServiceFactory.newInstance() method.

ServiceFactory serviceFactory = ServiceFactory.newInstance();

2. Create a service object from the factory. Pass the name of the WSDL.

String nameSpaceUri = “http://hello.org/wsdl”;

URL helloWsdlURL = new URL(URLstring);

3. Create a serviceName object and pass the name of the service that you wish to
invoke.

String serviceName = “HelloWorld”;

4. Create a portName object and specify the port name.

String portName = “HelloIFport”;

5. Create an OperationName object and specify the name of the operation in the
service that you wish to execute.

String operationName = “sayHello”;

6. Create a service, passing it the WSDL location and the name of the service that
you want to invoke.

Service helloService =
serviceFactory.createService(helloWsdlURL, new
QName(nameSpaceUri, serviceName"));

7. Create a Call object, pass it the name of the port and the operation that you
want to execute.

Call call = helloService.createCall(portName, operationName);

8. Invoke the service using the Call.Invoke() method.

String result = String call.Invoke(helloService);

Assembling and Deploying a JAX-RPC Client
JAX-RPC Clients can be bundled into a deployable WAR file using the wsdeploy
command tool. The wsdeploy command reads the JAX-RPC runtime descriptor
jaxrpc-ri.xml file and the web application deployment descriptor web.xml file.
Assembling and deploying a JAX-RPC client involves the following steps:

1. Create the JAX-RPC runtime descriptor file. The name of the file must be
jaxrpc-ri.xml. See “The jaxrpc-ri.xml File” on page 70.

http://hello.org/wsdl%E2%80%9D%00

JAX-RPC Client Invoking an EJB

52 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

2. JAX-RPC client is a web module. Create a web module deployment descriptor
web.xml. For information on web.xml file, see the Sun ONE Application Server
Developer’s Guide to Web Applications.

3. Use the wsdeploy command tool to create a deployable WAR file. For
information about wsdeploy command tool, see “wsdeploy Tool” on page 69.

4. Deploy the WAR file using asadmin deploy command.

You can accomplish the task of assembling and deploying, and running a JAX-RPC
client through an ant build.xml file. The build.xml file for the samples are
bundled with Sun ONE Application Server which is available at the following
location:

install_dir/samples/webservices/jax-rpc/simple/src

Sample Applications
• install_dir/samples/webservices/jaxrpc/proxy - contains a sample dynamic

proxy client application that illustrates the basics of creating, deploying, and
accessing a Web service.

• install_dir/samples/webservices/jaxrpc/dynamic - contains a dynamic
invocation interface client that illustrates the basics of creating, deploying, and
accessing a Web service.

JAX-RPC Client Invoking an EJB
This section describes the procedure to create a stand-alone JAX-RPC client that
makes a remote call on a JAX-RPC service. This service locates a stateles session
bean and invokes a method on the bean.

The main steps to invoke an EJB are listed below:

1. Create a stateless session bean. See the Sun ONE Application Server Developer’s
Guide to Enterprise Java Beans for detailed instructions on creating a stateless
session bean.

NOTE These instructions apply to the development of JAX-RPC services
only in the J2EE 1.3.1 environment.

JAX-RPC Client Invoking an EJB

Chapter 2 Services and Clients Using JAX-RPC 53

2. Create a JAX-RPC Web service that performs a lookup on the EJB. The
following code illustrates how a Web services application can make a remote
call on the EJB:

public String sayHello(String name) {

Context initial = new InitialContext();

Context myEnv = (Context)initial.lookup("java:comp/env");

Object objref = myEnv.lookup("ejb/SimpleGreeting");

GreetingHome home =

(GreetingHome)PortableRemoteObject.narrow(objref,GreetingHome.cl

ass);

}

JAX-RPC Client Invoking an EJB

54 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

3. Create a stand-alone client that makes a remote call on the JAX-RPC service.
The following code is an example of the client that makes a remote call on the
EJB.

package samples.webservices.jaxrpc.toejb.client;

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.rmi.PortableRemoteObject;

import samples.webservices.jaxrpc.toejb.ejb.*;

public class GreetingClient {

public static void main(String[] args) {

try {

Context initial = new InitialContext();

Context myEnv = (Context)initial.lookup("java:comp/env");

Object objref = myEnv.lookup("ejb/SimpleGreeting");

GreetingHome home =

(GreetingHome)PortableRemoteObject.narrow(objref,GreetingHome.cl

ass);

Greeting salutation = home.create();

System.out.println(salutation.sayHey("Buzz"));

System.exit(0);

} catch (Exception ex) {

System.err.println("Caught an unexpected exception!");

ex.printStackTrace(); }

} // main

You can find the complete code listing for the sample at:
install_dir/samples/webservices/jax-rpc/toejb/src/

4. Assemble the service and the client. See “Assembling and Deploying JAX-RPC
Web Services” on page 38 and “Assembling and Deploying a JAX-RPC Client”
on page 51.

5. Deploy the session bean by performing the following steps:

❍ Edit the deployment descriptor files (ejb-jar.xml and
sun-ejb-jar.xml).

Building Security into JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 55

❍ Execute an Ant build command (such as build jar) to reassemble the JAR
module.

❍ Use the asadmin deploy command to deploy the JAR module. For
example, the following command deploys an EJB application as a
stand-alone module:

asadmin deploy --type ejb --instance inst1 myEJB.jar

6. Deploy the JAX-RPC service. See “Assembling and Deploying JAX-RPC Web
Services” on page 38.

7. Run the JAX-RPC client using the asant command.
asant run

Building Security into JAX-RPC Web Services
This section describes the procedure to provide security to a JAX-RPC service
application, by providing security to the web container that contains the
application, using HTTP/SSL for basic and mutual authentication. For more
information on authentication, see the Sun ONE Application Server Developer’s Guide
to Web Applications.

This section presents the following topics:

• Basic Authentication Over SSL

• Adding Security Elements to web.xml

• Setting Security Properties in the Client Code

• Mutual Authentication Over SSL

• Setting Up Client Certificate Authentication for Web Services

You must perform the following steps to configure a JAX-RPC Web service
endpoint for HTTP/S basic and mutual authentication:

• Use keytool, which is part of the J2SE SDK, to generate certificates and
keystrokes.

• Add security elements to sun-web.xml deployment descriptor.

• Add some properties in the client code.

• Build and run the Web service.

Building Security into JAX-RPC Web Services

56 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Basic Authentication Over SSL
Follow the steps below to configure a Web service for basic authentication over
HTTP/S:

1. Configure a certificate and enable SSL on HTTP listener for your server. For
more information on configuring a certificate and enabling SSL on HTTP, see
“Administering Certificates” and “Turning Security On” sections respectively,
in the Sun ONE Application Server Administrator’s Guide to Security.

A HTTP client uses a repository of trusted Certificate Authorities (CA) during
the SSL handshake to validate server certificate. It is important that the CA of
your server certificate be a trusted CA for the client.

2. For the J2SE 1.4 based clients which includes JSSE based clients, such as Web
services applications, you need to import the certificate of your server’s CA
into JSSE cacerts database. Use the command line tool, the keytool to import
the trusted CA certificate.

The following code illustrates how you can import the certificate of your CA
into the trusted CA database of your J2SE-based client:

keytool -import -v -alias "CMS-CA" -file cmsca.cer -keystore
cacerts

For more information on using keytool, run keytool command with -help

option or visit the following URL:

http://java.sun.com/products/jdk/1.2/docs/tooldocs/solaris/keyto
ol.html

http://java.sun.com/products/jdk/1.2/docs/tooldocs/solaris/keyto

Building Security into JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 57

3. Enter keystore password: changeit

Owner: CN=Certificate Manager, OU=AppServices, O=Sun
Microsystems, L=SCA, ST=California, C=US

Issuer: CN=Certificate Manager, OU=AppServices, O=Sun
Microsystems, L=SCA, ST=California, C=US

Serial number: 1

Valid from: Mon Jun 03 12:00:00 PDT 2002 until: Thu Jun 03
12:00:00 PDT 2004

Certificate fingerprints:

MD5: 6C:8D:A6:E4:55:52:1A:FF:9D:19:44:D7:0F:62:66:95

SHA1:89:B1:0E:7E:8F:56:B2:34:65:46:15:86:53:7E:3E:6B:4F:9D:84:63

Trust this certificate? [no]: yes

Certificate was added to keystore

[Saving cacerts]

4. Configure the server instance to use appropriate realm and make sure the
realm has users you would like to permit the Web services access.

For Example, to set up the flat file of users, follow the steps below in the
Administration interface:

❍ Select the server instance and click on the Security node in the left pane.

❍ Select the drop-down box for the Default Realm in the right pane and
choose the option “file”.

❍ Select the Realms in the left pane and click on the file realm to add the
users to the file realm.

❍ Apply your changes. Now, the server’s flat file user database is ready to
use.

For detailed information on Configuring the server instance to use the realm,
see the Sun ONE Application Server Administrator’s Guide.

Adding Security Elements to web.xml
Enable Basic Authentication for the web application and specify a security
constraint to enforce authentication. For more information on security elements in
web.xml, see the Sun ONE Application Server Developer’s Guide to Web Applications.

Building Security into JAX-RPC Web Services

58 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Here is an example of how you can configure the Basic Authentication for the Web
service servelt-based end point. This security-constraint allows principals with the
role “ServiceUser” which is mapped to user “bob” in the sun-web.xml.

The WEB-INF/web.xml:

<security-constraint>

....
<web-resource-collection>

<web-resource-name>SecureHello</web-resource-name>
<url-pattern>/security</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>
<role-name>manager</role-name>

</auth-constraint>

</security-constraint>

<login-config>

<auth-method>BASIC</auth-method>

</login-config>

The WEB-INF/sun-web.xml:

<sun-web-app>

<security-role-mapping>

<role-name>ServiceRole</role-name>

<principal-name>bob</principal-name>

</security-role-mapping>

</sun-web-app>

5. Set the security properties for the J2SE-based client. For step-by-step
instructions, see “Setting Security Properties in the Client Code” on page 58.

Setting Security Properties in the Client Code
For basic authentication over SSL, the client code must set several security-related
properties.

Building Security into JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 59

trustStore Property
The client specifies the trustStore property as follows:

System.setProperty(“javax.net.ssl.trustStore”, trustStore);

trustStorePassword Property
The trustStorePassword property is the password of the J2SE SDK keystore. In
the previous section, you specified the default password changeit when running
keytool. The client sets the trustStorePassword property in the following code
illustration:

System.setProperty(“javax.net.ssl.trustStorePassword”,
trustStorePassword);

Username and Password Properties
The username and password values correspond to the manager role. The client sets
the username and password properties as follows:

stub._setProperty(javax.xml.rpc.Stub.USERNAME_PROPERTY, username);

stub._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY, password);

Mutual Authentication Over SSL
To configure and create a JAX-RPC service with mutual authentication, follow all
of the steps in the “Basic Authentication Over SSL” on page 56. Then, follow these
steps:

1. Export the generated client certificate.

The following code illustrates how to export the client certificates.

$Java_home/bin/keytool -export -alias -client -storepass changeit

-file client.cer -keysnttore client.keystore

2. Import the client certificate into the server’s keystore.

$Java_home/bin/keytool -import -v -trustcacerts -alias -client
-file client.cert -keystore server.keystore -keypass changeit

-storepass changeit

3. Run the application using asant tool.

asant run

Building Security into JAX-RPC Web Services

60 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Setting Up Client Certificate Authentication for
Web Services
This section describes how you can configure a Web service that uses Client
Certificate Authentication with Sun ONE Application Server.

1. Follow the steps 1 and 2 described under “Basic Authentication Over SSL” on
page 56.

2. For J2SE-based clients, generate a key-pair for the client certificate using the
keytool. The key-pairs are stored in a keystore. The following code line
illustrates how to generate a key-pair:

> keytool -genkey -v -alias clcert -dname ’CN=Test User,
OU=testOU, O=testO, L=SCA, S=California, C=US’\

-keystore clcerts -keypass changeit

The command execution, displays the following information:

Generating 1,024 bit DSA key pair and self-signed certificate
(SHA1WithDSA)

for: CN=Test User, OU=testOU, O=testO, L=SCA, ST=California, C=US

Enter key password for <clcert1>

(RETURN if same as keystore password):
[Saving clcerts]

3. Generate a certificate request to be sent to a trusted CA. Use the following
keytool command to generate a certificate request:

>keytool -certreq -v -alias clcert -file clreq -keystore clcerts

Enter keystore password: changeit

Certification request stored in the file: clreq

Submit this to your CA

>more clreq

This command generates the following message:

-----BEGIN NEW CERTIFICATE REQUEST-----

NOTE For clients, using HTTPS, follow the steps 1-6 given below.

Building Security into JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 61

MIICazCCAigCAQAwZTELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExDDAKBgNVBAcT
A1NDQTEOMAwGA1UEChMFdGVzdE8xDzANBgNVBAsTBnRlc3RPVTESMBAGA1UEAxMJVGVzdCBVc2Vy

..

GqdqJvx+mVcgcQkdzap+ykIEcOZ/qQq60rPddF6yK9wnWkez32Y2btGWe598oAAwCwYHKoZIzjgE
AwUAAzAAMC0CFQCPf7TuJLJ+zS/HH+fCcKnFAtmKYwIUZM10c56KrScgledImxGzLIKMsGE=

-----END NEW CERTIFICATE REQUEST-----

4. Send the generated certificate request to a trusted CA and request a signed
certificate. For more information on sending the request to a trusted CA, see
CA Server Administration documentation.

You may verify the returned signed certificate in Base64 encoded X.509 format
(saved for example in calcert.txt file). Note that this certificate is chained as
it is signed by the CA. If you use a pkcs7 format, the keytool may complain
that the certificate us not in X.509 format.

> keytool -printcert -v -file clcert.txt

Certificate[1]:

Owner: CN=Certificate Manager, OU=AppServices, O=Sun
Microsystems, L=SCA, ST=Californa, C=US

Issuer: CN=Certificate Manager, OU=AppServices, O=Sun
Microsystems, L=SCA, ST=Califoria, C=US

Serial number: 1

Valid from: Mon Jun 03 12:00:00 PDT 2002 until: Thu Jun 03
12:00:00 PDT 2004

Certificate fingerprints:

MD5: 6C:8D:A6:E4:55:52:1A:FF:9D:19:44:D7:0F:62:66:95
SHA1:
89:B1:0E:7E:8F:56:B2:34:65:46:15:86:53:7E:3E:6B:4F:9D:84:63

Certificate[2]:
Owner: CN=Test User, OU=testOU, O=testO, L=SCA, ST=California,
C=US
Issuer: CN=Certificate Manager, OU=iWSQA, O=Sun Microsystems,
L=SCA, ST=Califoria, C=US

Serial number: 19

Valid from: Thu Sep 12 18:33:54 PDT 2002 until: Fri Sep 12
18:33:54 PDT 2003

Certificate fingerprints:

Building Security into JAX-RPC Web Services

62 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

MD5: 82:09:8A:DC:E2:85:82:B5:56:98:93:81:97:A9:D5:32
SHA1:
1D:7C:F2:F2:ED:79:A3:62:0A:A2:1B:22:74:11:BF:52:CB:8D:9E:BB

5. Update the keystore with the signed client certificate.

> keytool -import -v -trustcacerts -alias clcert -file clcert.txt
-keystore clcerts -keypass changeit

Displays the following message:

Certificate was added to keystore

[Saving clcerts]

6. Now, you must set up the client Java virtual machine to use this
keystore/password:-Djavax.net.ssl.keyStore=<path-to/clcerts> and
-Djavax.net.ssl.keyStorePassword.

If you are running the client within <java> ant target, you can use the
<sysproperty> element to specify the keystore/password.

For example:

<sysproperty key="javax.net.ssl.keyStore"

value="C:/security/clcerts"/>

<sysproperty key="javax.net.ssl.keyStorePassword"
value="changeit"/>

7. Enable the certificate realm for the server instance.

❍ In the Administration interface, select the server instance in the left pane.

❍ Click the Security node and choose Default Realm to Certificate.

For more information on enabling the certificate alarm, see the Sun ONE
Application Server Administrator’s Guide.

Building Security into JAX-RPC Web Services

Chapter 2 Services and Clients Using JAX-RPC 63

8. Edit the web.xml deployment descriptor to configure the Web service
application to use CLIENT-CERT authentication.

security-constraint>

<web-resource-collection>

<web-resource-name>Protected Area</web-resource-name>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>TesterRole</role-name>

</auth-constraint>

</security-constraint>

<login-config>

 <auth-method> CLIENT-CERT </auth-method>

</login-config>

9. Edit the Sun ONE Application Server specific deployment descriptor
(sun-web.xml) to map the role to the X.509 principal name DN of the client
certificate.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE sun-web-app PUBLIC ’-//Sun Microsystems, Inc.//DTD Sun
ONE Application Server 7.0 Servlet 2.3//EN’

’http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2
_3-0.dtd’

<sun-web-ap>

<security-role-mapping>

 <role-name>TesterRole</role-name>

<principal-name>CN=Test User, OU=testOU, O=testO, L=SCA,
ST=California, C=US</principal-name>

</security-role-mapping>

</sun-web-app>

10. Alternatively, you may want to set an optional assign-groups property that can
be set for the certificate realm configuration to which all certificate users
belong. This will allow you to do the role-mapping to this group name, instead
of having to list the principal name DNs.

http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

JAX-RPC Tools

64 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

❍ In the Administration interface, select the server instance in the left pane.

❍ Click and expand the Security node and the Realms node.

❍ Click on the certificate realm and on the right pane, click on the properties
link to add the property names cert-users with the value assign-groups.

❍ Save and Apply the changes. The server.xml reflects the configuration
settings:

<security-service>

<auth-realm name="certificate"
classname="com.iplanet.ias.security.auth.realm.certificate
.CertificateRealm">

<property value="cert-users" name="assign-groups"/>

</auth-realm>

</security-service>

For more information on configuring the certificate realm, see the Sun ONE
Application Server Administrator’s Guide.

11. Restart the server and run the client to verify the working of client certificate
authentication.

JAX-RPC Tools
JAX-RPC implementation of Sun ONE Application Server includes the following
tools that helps in the development of JAX-RPC clients.

• wscompile Tool

• wsdeploy Tool

wscompile Tool
wscompile is a mapping tool that is bundled with Sun ONE Application Server
which generates stubs, ties, serializers, and other artifacts. You can also use this
tool to generate a WSDL document from the service endpoint definition or produce
a service endpoint definition from the WSDL document.

JAX-RPC Tools

Chapter 2 Services and Clients Using JAX-RPC 65

You have the option of generating only the client-side artifacts such as stubs,
server-side artifacts such as ties, or both client and server-side artifacts. The tool
reads the configuration file that contains information needed to generate the
artifacts.

The syntax of the wscompile command is as follows:

wscompile [options] config_file_name

wscompile Command Options
The following table lists the options that you can use with the wscompile
command. The first column specifies the option that you can use with the
command, and the second column describes the option.

Table 2-1 wscompile Tool Options

Option Description

-gen:client Generates client-side artifacts such as stubs, service interface,
implementation classes, and remote interface.

-gen:server Generates server-side artifacts such as ties, server
configuration file, WSDL file, service definition interface. If
you are using wsdeploy tool, you must not use this option.

-gen:both Generates both client and server-side artifacts at the same
time.

gen Same as gen:client.

-define Defines a service.

JAX-RPC Tools

66 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

-f:<features>/-features:<f
eatures>

Enable the listed features. Features are separated by comma.
List of features supported are:

1. datahandleronly - always map the attachments to data
handler types

2. explicitcontext - turn on explicit service mapping
context

3. infix=<name> - Specify an infix to use for generated
serializers

4. nodatabindings - turn off data bindingss for literal
encoding

5. noencodedtypes - turn off encoding type information

6. nomultirefs - turn off support for multiple references

7. novalidation - turn off validation for imported WSDL
file

8. searchschema - search schema aggressively for
subtypes

9. serializeinterfaces - turn on direct servialization of
interface type

-classpath<classpath_strin
g>

Specify the path of input class files.

cp<classpath_string> Same as classpath.

-d<directory_name> Sets the output directory for all generated files.

-s<directory> Specifies the path where the generated files will be stored.

-g Generates debugging info.

-httpproxy:<host>:<port> Specify HTTP proxy server.

-import Generate interfaces and value types.

-keep Keep the generated .java files after the compilation is
complete.

-model<file> Write internal model to the file.

-nd<directory> Specify the path to store non class generated files.

-O Optimize the generated code.

-verbose Output messages about the compiler action.

Table 2-1 wscompile Tool Options

Option Description

JAX-RPC Tools

Chapter 2 Services and Clients Using JAX-RPC 67

You must use the wscompile command with one of the -import, -gen, and -define
options. Invoking wscompile command with no options will display the usage
information.

Configuration File
The wscompile tool reads the configuration file, which contains information that
describes the Web service. The basic structure of the configuration file is given
below:

<?xml version="1.0" encoding="UTF-8"?>

<configuration

 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

 <service> or <wsdl> or <modelfile>

</configuration>

If you use the <service> element in your configuration file, the wscompile tool
reads the RMI interface that describes the service and generates a WSDL file.

If you use the <wsdl> element in your configuration file, the wscompile tool reads
the service’s WSDL file and generates the service’s RMI interface.

If your configuration file contains a <service> or <wsdl> element, the wscompile
tool generates a model file that contains the internal data structure that describe the
service. If you have already generated a model file in this manner, then you can
reuse it the next time you run the wscompile tool.

For information on the XML schema to create a configuration file, see Appendix A,
“XML Schema Definitions”

Configuration File with RMI Interfaces
<?xml version="1.0" encoding="UTF-8"?>

<configuration
xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">

<service name="[1]"

-version Print version information.

Table 2-1 wscompile Tool Options

Option Description

http://java.sun.com/xml/ns/jax-rpc/ri/config
http://java.sun.com/xml/ns/jax-rpc/ri/config

JAX-RPC Tools

68 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

targetNamespace="[2]"
typeNamespace="[3]">
packageName="[4]">

<interface name="[5]"

 servantName="[6]"
soapAction="[7]"
soapActionBase="[8]"/>

 <typeMappingRegistry> [9] </typeMappingRegistry>

 </service>

 </configuration>

The configuration file contains the following Web services attributes:

• servicename - This attribute is used to generate a properties file that the
servlet-based JAX-RPC runtime uses for dispatching the request to
tie-and-servant combination.

• targetNamespace - This attribute specifies the target name space for the
generated WSDL document.

• typeNamespace - This attribute specifies the target name space for the schema
portion of the generated WSDL document.

• packageName - Specifies the package name for the generated Java classes. For
example, the service interface extending javax.xml.rpc.Service.

• interface name - Specifies the fully qualified name of a Java interface.

• servantName - Speicifies the fully qualified name of a servant class.

• soapAction - String used as the SOAPAction for all operations in the
corresponding port. This is optional.

• soapActionBase - String used as a prefix for the SOAPAction strings for the
operations in the corresponding port.

• typeMappingRegistry - Specifies the type mapping information.

Configuration file with a WSDL document
<?xml version="1.0" encoding="UTF-8"?>

NOTE One generic servlet class
com.sun.xml.rpc.server.http.JAXRPCServlet is used for all
JAX-RPC endpoints.

JAX-RPC Tools

Chapter 2 Services and Clients Using JAX-RPC 69

<configuration
xmlns="http://java.sun.com/jax-rpc-ri/xrpcc-config">

 <wsdl location="[1]"
packageName="[2]">
<typeMappingRegistry>[3] </typeMappingRegistry>

 </wsdl>

 </configuration>

The configuration file with a WSDL document has the following attributes:

• wsdl location - URL pointing to aWSDL document.

• packageName - Specifies a fully qualified name of the Java package for the
generated classes/interfaces.

• typeMappingRegistry - type mapping information.

wsdeploy Tool
The wsdeploy tool generates a deployable WAR file for a service.This tool takes as
input a WAR file for the service.

Syntax of the wsdeploy command is as follows:

wsdeploy [options] war file

wsdeploy Command Options
The following table lists the options that you can use with the wsdeploy command.
The first column lists the options, and the second column describes the option.

Table 2-2 wsdeploy Tool Options

Option Description

-classpath<classpath_strin
g>

Specify the path of input class files.

cp<classpath_string> Same as classpath.

-tmp<directory_name> Specify the path of the temporary directory.

-o<output war file> Specify the path where the generated WAR file will be stored.
This option is required.

-keep Keep the generated .java files after the compilation is
complete.

http://java.sun.com/jax-rpc-ri/xrpcc-config

JAX-RPC Tools

70 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

war file- Typically, you create the WAR file with a development tool or with the
asant war task. The following are the contents of a simple WAR file:

META-INF/MANIFEST.MF
WEB-INF/classes/hello/HelloIF.class
WEB-INF/classes/hello/HelloImpl.class
WEB-INF/jaxrpc-ri.xml
WEB-INF/web.xml

In the example, HelloIF is the service’s RMI interface and HelloImpl is the class
the implements the interface. The web.xml file is the deployment descriptor of a
web component.

The wsdeploy tool examines the deployment descriptor web.xml and
jaxrpc-ri.xml to generate the WAR file. If the deployment descriptor identifies a
model file, the information in the model file is used for generating a WAR file. If
the deployment descriptor does not identify a model file, wsdeploy generates a
model. For information about the XML schema for creating a model file, see
Appendix A, “XML Schema Definitions”.

Behind the scene, wsdeploy tool runs the wscompile tool with -gen:server option.
In other words, the tool generates the server-side artifacts such as ties. This tool can
also generate the service endpoint definition, or a WSDL document.

The jaxrpc-ri.xml File
The jaxrpc-ri.xml file is the JAX-RPC implementation specific configuration file.
This configuration file is read by the wsdeploy tool. The following code lists the
contents of a jaxrpc-ri.xml file for a simple HelloWorld Service.

<?xml version="1.0" encoding="UTF-8"?>

<webServices

 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"
version="1.0
targetNamespaceBase="http://com.test/wsdl"
typeNamespaceBase="http://com.test/types"
urlPatternBase="/ws">
<endpoint

name="HelloWorld"

-verbose Output messages about the compiler action.

-version Print version information.

Table 2-2 wsdeploy Tool Options

Option Description

http://java.sun.com/xml/ns/jax-rpc/ri/dd
http://com.test/wsdl
http://com.test/types

JAX-RPC Tools

Chapter 2 Services and Clients Using JAX-RPC 71

displayName="Hello Service"
description="A simple web service"
interface="samples.webservices.jaxrpc.dynamic.HelloIF"

 implementation="samples.webservices.jaxrpc.dynamic.HelloImpl"/
<endpointMapping

endpointName="HelloWorld"
urlPattern="/dynamic"/>

</webServices>>

The <webServices> element must contain one or more <endpoint> elements. In
this example, note that the interface and implementation attributes of <endpoint>
specify the service’s interface and implementation class. The <endpointMapping>
element associates the service port with an element of the endpoint URL path that
follows the urlPatternBase.

For information about the XML schema for creating the runtime descriptor, see
Appendix A, “XML Schema Definitions”.

Namespace Mappings
This section is for developers who are familiar with WSDL, SOAP, and the
JAX-RPC specifications.

Here is a schema type name example:

schemaType="ns1:SampleType"
xmlns:ns1="http://echoservice.org/types"

When generating a Java type from a schema type, wscompile gets the class name
from the local part of the schema type name.

To specify the package name of the generated Java classes, you define a mapping
between the schema type namespace and the package name. You define this
mapping by adding a <namespaceMappingRegistry> element to the config.xml
file. For example:

<service>

 ...

 <namespaceMappingRegistry>

 <namespaceMapping
namespace="http://echoservice.org/types"
packageName="echoservice.org.types"/>

 </namespaceMappingRegistry>

 ...

http://echoservice.org/types
http://echoservice.org/types

JAX-RPC Tools

72 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

</service>

SOAP Handlers
A handler accesses a SOAP message that represents an RPC request or response.
Handler class must implement the javax.xml.rpc.handler interface. A handler
can manipulate a SOAP message with the APIs of the javax.xml.soap package.

The following are the examples of the tasks performed by a handler:

• Encryption and decryption

• Logging and auditing

• Caching

• Application-specific SOAP header processing

A handler chain is a list of handlers. You may specify one handler chain for the
client and one for the server. On the client, you include the <handlerChains>
element in the jaxrpc-ri.xml file. On the server, you include this element in the
config.xml file.

Here is an example of the <handlerChains> element in the config.xml file:

<handlerChains>

 <chain runAt="server"

 roles= "http://acme.org/auditing
http://acme.org/morphing"

 xmlns:ns1="http://foo/foo-1">

<handler className="acme.MyHandler"

headers ="ns1:foo ns1:bar"/>
<property name="property" value="xyz"/>

</handler>

</chain>

</handlerChains>

http://acme.org/auditing
http://acme.org/morphing
http://foo/foo-1

Java Language Types Supported By JAX-RPC

Chapter 2 Services and Clients Using JAX-RPC 73

Java Language Types Supported By JAX-RPC
JAX-RPC maps types of the Java programming language to XML/WSDL
definitions. For example, JAX-RPC maps the java.lang.String class to the
xsd:string XML data type. You as application developers need not know the
details of these mappings, but you must be aware that not every class in the Java 2
Standard Edition (J2SE) can be used as a method parameter or return type in
JAX-RPC.

J2SE SDK Classes
JAX-RPC supports the following J2SE SDK classes:

• java.lang.Boolean

• java.lang.Byte

• java.lang.Double

• java.lang.Float

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.String

• java.math.BigDecimal

• java.math.BigInteger

• java.util.Calendar

• java.util.Date

This release of JAX-RPC also supports several implementation classes of the
java.util.Collection interface.The following table displays the supported
classes. The first column lists the java.util.Collection subinterfaces, the
second column lists the classes supported by the subinterface.

Table 2-3 Supported Classes

java.util.collection
Subinterfaces

Classes Supported

List Array List

LinkedList

Stack

Vector

Java Language Types Supported By JAX-RPC

74 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Primitives
JAX-RPC supports the following primitive types of the Java programming
language:

• boolean

• byte

• double

• float

• int

• long

• short

Arrays
JAX-RPC also supports arrays with members of supported JAX-RPC types.
Examples of supported arrays are int [] and String []. Also supports
multidimensional arrays, such as BigDecimal [][].

Application Classes
JAX-RPC also supports classes that you have written for your applications. In an
order processing application, for example, you might provide classes named
Order, LineItem, and Product. The JAX-RPC Specification refers to such classes as
value types, because their values (or states) may be passed between clients and
remote services as method parameters or return values.

To be supported by JAX-RPC, an application class must conform to the following
rules:

Map HashMap

Hashtable

Properties

TreeMap

Set HashSet

TreeSet

Table 2-3 Supported Classes

java.util.collection
Subinterfaces

Classes Supported

Java Language Types Supported By JAX-RPC

Chapter 2 Services and Clients Using JAX-RPC 75

• It must have a public default constructor.

• It must not implement (either directly or indirectly) the java.rmi.Remote
interface.

• Its fields must be supported JAX-RPC types.

The class may contain public, private, or protected fields. For its value to be passed
(or returned) during a remote call, a field must meet these requirements:

• A public field cannot be final or transient.

• A non-public field must have corresponding getter and setter methods.

JavaBeans Components
JAX-RPC also supports JavaBeans components, which must conform to the same
set of rules as application classes. In addition, a JavaBeans component must have a
getter and setter method for each bean property. The type of the bean property
must be a supported JAX-RPC type.

Java Language Types Supported By JAX-RPC

76 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

77

Chapter 3

SOAP Clients and Services Using
SAAJ and JAXM

This chapter describes how to use the SOAP with Attachments API for JavaTM

(SAAJ) and the JavaTM API for XML Messaging (JAXM) to build clients that can
send and receive messages, and deploy them to Sun ONE Application Server. This
chapter contains the following sections:

• SOAP Clients

• SOAP Service

SOAP Clients
This section describes the two messaging models in which SOAP clients can be
used; the procedure to develop and deploy such clients. This section describes the
following topics:

• SOAP Client Messaging Models

• Developing a SOAP Client

• Assembling and Deploying a SOAP Client

SOAP Client Messaging Models
You can build SOAP clients using the following two messaging models.

• Client Without a Messaging Provider

• Client With a Messaging Provider

SOAP Clients

78 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Client Without a Messaging Provider
An application that does not use a messaging provider can exchange only
synchronous messages. That is, an application operates in a client role and can
send only request-response messages. This type of client uses the SOAPConnection
method of the SAAJ API. TFigure 3-1he following figure illustrates how
synchronous messages are exchanged between the sender and the receiver without
using a messaging provider.

Figure 3-1 SOAP Message Without Using a Messaging Provider

Clients not using a messaging provider have the following advantages:

• The application can be written using the J2SE platform.

• You do not need to deploy the application in a servlet or a J2EE container.

• No messaging provider configuration is necessary.

Clients not using a messaging provider have the following limitations:

• The client can send only request-response messages.

• The client can act in the client role only.

Sender

Message

SOAP

Endpoint

Receive and
Process
Messages

SOAP
Request

Response
SOAP Message

SOAP Clients

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 79

Client With a Messaging Provider
You must use a messaging provider if you want to be able to get and save requests
that are sent to you at any time. The JAXM API provides the framework to send
and receive messages using a messaging provider.You will need to run the client in
a container, which provides the messaging infrastructure used by the provider. The
following figure Figure 3-2illustrates how asynchronous messages are exchanged
between the sender and the receiver using a messaging provider.

Figure 3-2 SOAP Message Using a Messaging Provider

Clients using messaging provider have the following advantages:

• Clients can assume the roles of a client and a service.

• Clients can hand off message delivery to a provider.

• Clients can send messages to one or more destinations before it delivers the
message to the final recipient. These intermediate message recipients are called
actors and they are specified in the SOAPHeader object of the message.

• Clients can take advantage of any provider-supported SOAP messaging
protocols and ‘Quality of Service’ affecting the types of messages and the
reliability and the quality of service of message delivery.

Sender

Messaging
Provider

Messaging
Provider

Receiver

actor actor actor

SOAP Clients

80 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

SOAP Messages
This section introduces you to the structure and parts of a SOAP message, how you
access these, and how you process SOAP messages. This section describes the
following topics:

• Parts of a SOAP Message

• Accessing Elements of a Message

Parts of a SOAP Message
A SOAP message is an XML document that consists of a SOAPEnvelope, an
optional SOAPHeader, and a SOAPBody. The SOAP message header contains
information that allows the message to be routed through one or more
intermediate nodes before it reaches its final destination.

Figure 3-3 Parts of a SOAP Message

NOTE Sun ONE Application includes a sample JAXM provider that
illustrates how a provider is used to enable ‘fire and forget’
messaging for the sending client. See the Samples documentation for
complete details on how to enable, deploy, and use it. The sample
applications are available at the following location:

install_dir/samples/webservices/jaxm/jaxm-provider/

Future release of Sun ONE Application Server will include JAXM
Providers that support reliable SOAP messaging as well as ebXML
messaging.

SOAP Clients

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 81

The figure, “Parts of a SOAP Message”Figure 3-3, shows the structure and parts of
a SOAP message. Different objects represents each part of a SOAP message.

The SOAPMessage object contains

• A SOAPPart object that contains

❍ A SOAPEnvelope object that contains

• An empty SOAPHeader object - is optional, included for convenience
because, most messages will use it.

• An empty SOAPBody object - can hold the content of the message and
can also contain fault messages that contain status information or
details about a problem with the message.

• AttachmentPart that may contain plain text, or an image file.

The SOAPEnvelope is the root element of the XML document representing the
message. It defines the framework for how the message should be handled and by
whom. XML content starts at the SOAPEnvelope.

SOAP Message

SOAP Part

SOAP Envelope

SOAP Header

SOAP Body

Attachment Part

SOAP Clients

82 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The SOAPHeader is a generic mechanism for adding features to a SOAP message. It
can contain any number of child elements that define extensions to the base
protocol. For example, header child elements might define authentication
information, transaction information, locale information, and so on. The software
that handles the message may, without prior agreement, use this mechanism to
define who should deal with a feature and whether the feature is mandatory or
optional.

The body is a container for mandatory information intended for the ultimate
recipient of the message. A SOAP message may also contain an attachment, which
need not necessarily be an XML document.

Accessing Elements of a Message
You need to access parts of a message when you create the message body or the
attachment part or when you are processing the message.

The SOAPMessage object message contains a SOAPPart object. Use the message
object to retrieve it.

SOAPPart soapPart = message.getSOAPPart();

Next you can use SOAPPart to retrieve the SOAPEnvelope object that it contains.

SOAPEnvelope envelope = soapPart.getEnvelope();

You can now use envelope to retrieve its empty SOAPHeader and SOAPBody

objects.

SOAPHeader header = envelope.getHeader();

SOAPBody body = envelope.getBody();

SOAPBody objects are initially empty.

Namespaces
An XML namespace is a means of qualifying elements and attribute names to
disambiguate from other names in the same document. An explicit XML
Namespace declaration takes the following form:

<prefix:myElement

xmlns:prefix ="URI">

The declaration defines prefix as an alias for the specified URI. In the element
myElement, you can use prefix with any element or attribute to specify that the
element or attribute name belongs to the namespace specified by the URI. The
following line of code is an example of a namespace declaration:

SOAP Clients

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 83

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/”>

This declaration defines SOAP_ENV as an alias for the namespace
http://schemas.xmlsoap.org/soap/envelope/

After defining the alias, you can use it as a prefix to any attribute or element in the
Envelope element.

Pre-defined SOAP Namespaces
SOAP defines two namespaces:

• The SOAPEnvelope, the root element of a SOAP message, has the following
namespace identifier "http://schemas.xmlsoap.org/soap/envelope".

• The SOAP serialization, the URI defining SOAP serialization rules, has the
following namespace identifier:
"http://schemas.xmlsoap.org/soap/encoding”.

When you use SAAJ or JAXM to construct or consume messages, you are
responsible for setting or processing namespaces correctly and for discarding
messages that have incorrect namespaces.

Using Namespaces when Creating a SOAP Message
When you create the body elements or header elements of a SOAP message, you
must use the Name object to specify a well-formed name for the element. You obtain
a Name object by calling the method SOAPEnvelope.createName.

When you call this method, you can pass a local name as a parameter or you can
specify a local name, prefix, and a URI. For example, the following line of code
defines a Name object bodyName.

Name bodyName = MyEnvelope.createName("TradePrice", "GetLTP",
"http://foo.eztrade.com");

This would be equivalent to the namespace declaration:

<GetLTP:TradePrice xmlns:GetLTP= "http://foo.eztrade.com">

The following code shows how you can create a name and associate it with a
SOAPBody element. Note the use and placement of the createName method.

SoapBody body = envelope.getBody();//get body from envelope

Name bodyName = envelope.createName("TradePrice", "GetLTP",
"http://foo.eztrade.com");

SOAPBodyElement gltp = body.addBodyElement(bodyName);

http://schemas.xmlsoap.org/soap/envelope/%E2%80%9D%00
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding%E2%80%9D%00
http://foo.eztrade.com
http://foo.eztrade.com
http://foo.eztrade.com

SOAP Clients

84 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Developing a SOAP Client
Using SAAJ, a client can create and send SOAP messages in a point-to-point model.
JAXM defines the API for xml messaging using a messaging provider. JAXM
depends on the SOAP with Attachments API for Java (SAAJ), which defines the
API for operating on the SOAP with attachments message model in Java. Sun ONE
Application Server does not include a supported JAXM messaging provider. It
does however include along with the sample applications, a simple JAXM provider
that demonstrates how a messaging provider handles asynchronous SOAP
messaging from a client. This section describes the following topics:

• How SOAP Messaging Occurs?

• Creating a SOAP Client

• Assembling and Deploying a SOAP Client

How SOAP Messaging Occurs?
SOAP messaging occurs when a SOAP message, produced by a message factory is
sent to an Endpoint via a Connection. This section describes the following topics:

• Endpoint

• Connection

Endpoint
An endpoint identifies the final destination of a message. An endpoint is defined
by the URLEndpoint class. If you do not use a provider, you must construct or find
an endpoint to which the message is sent.

Constructing an Endpoint
You can initialize an endpoint either by calling its constructor or by looking it up in
a naming service.

The following code uses a constructor to create an URLEndpoint:

myEndpoint = new URLEndpoint("http://host/myServlet")

Using the Endpoint to Address a Message
Specify the endpoint as a parameter to the SOAPConnection.call method, which
you use to send a SOAP message.

http://host/myServlet

SOAP Clients

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 85

Sending a Message to Multiple Endpoints
Administered objects are objects that encapsulate provider-specific configuration
and naming information. If you are using an administered object to define an
endpoint, note that it is possible to associate that administered object with multiple
URLs-each URL capable of processing incoming SOAP messages.

The code sample below associates the endpoint whose lookup name is myEndpoint
with two URLs: http://www.myServlet1/ and http://www.myServlet2/. This
syntax allows you to use a SOAP connection to publish a SOAP message to
multiple endpoints.

imqobjmgr add
-t e
-l "cn=myEndpoint"
-o "imqSOAPEndpointList=http://www.myServlet1/

http://www.myServlet2/"

Connection
To send a SOAP message using SAAJ or JAXM, you must obtain a
SOAPConnection or a ProviderConnection respectively.You can also transport a
SOAP message using the Message Queue; for more information, see the Sun ONE
Message Queue Developer’s Guide.

SOAP Connection
A SOAPConnection allows you to send messages directly to a remote party. You
can obtain a SOAPConnection object simply by calling the static method
SOAPConnectionFactory.newInstance().Neither reliability nor security are
guaranteed over this type of connection.

Provider Connection
A ProviderConnection, which you get from a ProviderConnectionFactory,
creates a connection to a particular messaging provider. When you send a SOAP
message using a provider, the message is forwarded to the provider, and then the
provider is responsible for delivery to its final destination thus ensuring reliable
and secure messaging.

Creating a SOAP Client
Before creating a SOAP client, make sure to set up your client environment. For
more information on setting up your client environment, see “Setting Up the Client
Environment” on page 29.

http://www.myServlet1/
http://www.myServlet2/
http://www.myServlet1/
http://www.myServlet2/

SOAP Clients

86 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

If you are creating a point-to-point client, you must import the javax.xml.soap
package of the SAAJ API. If you are creating a pub/sub client, import the
javax.xml.messaging package of the JAXM API. In addition, you must import
the following packages:

import java.net.*;
import java.io.*;
import java.util.*;

import javax.servlet.http.*;
import javax.servlet.*;

import javax.activation.*;
import javax.naming.*;

Creating a SOAP client and accessing the message involves the following steps:

• Getting a Connection

• Creating a Message

• Adding Content to the Header

• Adding Content to a Message

• Adding an Attachment to the Message (optional)

• Sending a Message

• Retrieving the Content from a Response Message

• Accessing Attachment Part of the Message

Getting a Connection
Stand-alone Client

A client that does not use a messaging provider uses the SOAPConnection object to
create a connection. The message sent using SoapConnection object goes directly
from the sender to the URL that the sender specifies.

You must obtain a SOAPConnectionFactory object that you can use to create your
connection. The SAAJ API makes this easy by providing the
SOAPConnectionFactory class with a default implementation. The following code
illustrates how to get an instance of the implementation:

SOAPConnectionFactory scf = SOAPConnectionFactory.
newInstance();

Now you can use scFactory to create SOAPConnection object.

SOAPConnection con = scf.createConnection();

SOAP Clients

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 87

Creating a Message
To create a message, use a MessageFactory object. If you are creating a stand-alone
client, that is, a client that does not use a messaging provider and also does not run
in a container, you can use the implementation of the MessageFactory class that
the SAAJ API provides. The following code illustrates getting an instance of the
default message factory and then using it to create a message:

MessageFactory mf = MessageFactory.newInstance();

SOAPMessage msg = mf.createMessage();

Message creation takes care of creating the SOAPPart, a required part of the
message as per the SOAP 1.1 specification.

SOAPPart sp = msg.getSOAPPart();

For information on structure and parts of a SOAP message, see “Parts of a SOAP
Message” on page 80.

Adding Content to the Header
You create a SOAPHeaderElement object to add content to the header. The
following code illustrates how to create a SOAPHeaderElement using the
SOAPEnvelope object.

SOAPHeader hdr = envelope.getHeader();

Name headerName = envelope.createName("Purchase Order","PO",
"http://www.sonata.com/order");

SOAPHeaderElement headerElement =
hdr.addHeaderElement(headerName);

NOTE Generally, the default message factory is used to create a message.
However, you can write your own implementation of a message
factory, and plug it in through system properties as explained
below:

• Implement a message factory class by extending
javax.xml.soap.MessageFactory. javax.xml.soap is the
package defined in the SAAJ API.

• Indicate the desired message factory class to be instantiated by
setting the System Property javax.xml.soap.MessageFactory

to the full classname of the message factory class
mypackage.MySOAPMessageFactoryImpl.

http://www.sonata.com/order

SOAP Clients

88 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The headerElement is identified by the Name object headerName. The
addHeaderElement method is used to add or create a header element.

To add content to headerElement, use the addTextNode method as shown in the
code illustration below:

headerElement.addTextNode(“order”);

The SOAPHeader object contains a SOAPHeaderElement object whose content is
“order”.

Adding Content to a Message
You can add content to a SOAPPart object or to one or more AttachmentPart object
or to both parts of a message.

To add content to the body, create a SOAPBodyElement object and add an XML
element that you build with the method SOAPElement.addTextNode. The
following code illustrates adding content to the message:

SOAPEnvelope envelope = sp.getSOAPEnvelope();

SOAPBody bdy = envelope.getSOAPBody();

SOAPBodyElement gltp =
bdy.addBodyElement(envelope.createName("GetLastTradePrice",
“ztrade”, “http://wombat.ztrade.com”));

gltp.addChildElement(envelope.createName("symbol","ztrade",
"http://wombat.ztrade.com")).addTextNode("SUNW");;

The first three lines of the code access the SOAPBody object body, that is used to
create a new SOAPBodyElement object and add it to body. The CreateName method
has the argument Name object that identifies the SOAPBodyElement that is being
added. The last line adds the XML string passed to the method addTextNode.

Adding an Attachment to the Message
The procedure to add attachments to a message is same for both the clients with
and without using a messaging provider. The AttachmentPart object is used to
add attachment part to a message.

You use the SOAPMessage object to create an AttachmentPart object. The
SOAPMessage class has three methods for creating an AttachmentPart object. The
first method allows you to create an AttachmentPart with no content. That is, the
AttachmentPart method setContent is later used to add content to the
attachment.

URL url = new URL(data);
AttachmentPart ap = msg.createAttachmentPart(new
DataHandler(url));

http://wombat.ztrade.com%E2%80%9D%00%00%00
http://wombat.ztrade.com")).addTextNode("SUNW

SOAP Clients

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 89

The setContent method takes two parameters, a Java object for the content and a
String object that identifies the content type. Content is the SOAPBody part of a
message that has a Content-Type header with the value “text/xml” because the
content has to be in XML format. In the AttachmentPart, the type of the content
has to be specified as this object can take any type of content.

Each AttachmentPart has one or more headers associated with it. In the
setContent method, the type of the method used is the type for the header
Content-Type. This is the only header that is required. You can also set other
optional headers, such as Content-Id and Content-Location. For convenience,
JAXM and SAAJ APIs provides get and set methods for the headers Content-type,
Content-Id, and Content-Location. These headers are helpful in accessing a
particular attachment when a message has multiple attachments.

The following code illustrates how you can use the setContent method:

String stringContent = "Update address for Sunny Skies " + "Inc.,
to 10 Upbeat Street, Pleasant Grove, CA 95439";

ap.setContent(stringContent, "text/html");
ap.setContentId("update_address");
msg.addAttachmentPart(ap);

If you also want to attach a jpeg image, the second argument for the setContent
method must be “image/jpeg”. The following code illustrates the use of
setContent method to attach an image:

AttachmentPart ap2 = msg.createAttachmentPart();

byte[] jpegData = . . .;

ByteArrayInputStream stream = new
ByteArrayInputStream(jpegData);

ap2.setContent(stream, "image/jpeg");

msg.addAttachmentPart(ap2);

The other two AttachmentPart methods allow you to create an AttachmentPart

object with content. One of the two methods is very similar to the
AttachmentPart.setContent method. It takes a Java object containing the content
and a String giving the content type. The object may be a String, a stream, a
javax.xml.transform.Source object, or a javax.activation.DataHandler
object.

The other method for creating an AttachmentPart object with content takes a
DataHandler object, which is part of the JavaBeans Activation Framework (JAF).

SOAP Clients

90 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The following code illustrates how you can use DataHandler in content. First you
create a java.net.URL object for the file you want to add as content. Create the
DataHandler object javax.activation.DataHandler object dh initialized with the
URL object and pass it to the method createAttachmentPart.

URL url = new URL("http://greatproducts.com/gizmos/img.jpg");
DataHandler dh = new DataHandler(url);
AttachmentPart ap = msg.createAttachmentPart(dh);
ap.setContentId(“gyro_image”)
msg.addAttachmentPart(ap);

Sending a Message
Stand-alone Client

To send a message, a stand-alone client uses the SOAPConnection method call. This
method takes two arguments, the message being sent and the destination to which
the message should go which is an Endpoint object that contains the URL of the
receiver.

When using SoapConnection, you send message using
javax.xml.soap.SOAPConnection.call() method.

For example:

URL urlEndpoint = new URL(to);

SOAPMessage reply = con.call(msg, urlEndpoint);

Retrieving the Content from a Response Message
To retrieve message content, the client uses the onMessage method. The client
accesses SOAPBody object, using the message to get the envelope and the envelope
to get the body. Access its SOAPBodyElement object because that is the element to
which content was added. To retrieve the content, which was added with the
method Node.addTextNode, you call the method Node.getValue. The getValue
returns the value of the immediate child of the element that calls the method. To
access bodyElement, you need to call the method getChildElement on body. The
following code illustrates how to retrieve contents from a response message:

public SOAPMessage onMessage(SOAPMessage message)

{

SOAPEnvelop env = msg.getSOAPPart().getEnvelope();

env getBody()
.addChildElement(env.createName(“Response”))
.addTextNode(“This is a Response”);

return msg;

http://greatproducts.com/gizmos/img.jpg

SOAP Clients

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 91

}

To retrieve the contents from the message that contains an attachment, you need to
access the attachment. When it is given no argument, the method
SOAPMessage.getAttachments returns a java.util.Iterator object over all the
AttachmentPart objects in a message. The following code prints content of each
AttachmentPart object in the SOAPMessage object message.

java.util.Iterator it = message.getAttachments();

while (it.hasNext()) {

AttachmentPart attachment = (AttachmentPart)it.next();
Object content = attachment.getContent();
String id = attachment.getContentId();
System.out.print("Attachment " + id + " contains: " + content);
System.out.println("");

}

Accessing Attachment Part of the Message
When you receive a message with an attachment, or you wish to change an
attachment to a message, you need to access the attachment part of the message.
The SOAPMesssage.getAttachments method without any attachment returns a
java.util.Iterator object over all AttachmentPart objects in a message. The
following code illustrates accessing the attachment part to get the content of each
AttachmentPart object in the SOAPMessage object message.

java.util.Iterator it = msg.getAttachments();

while (it.hasNext()) {

AttachmentPart ap = it.next();
Object content = ap.getContent();
String id = ap.getContentId();
System.out.print("Attachment " + id + " contains: " + content);
System.out.println("");

}

Assembling and Deploying a SOAP Client
Applications created using JAXM API and SAAJ API are assembled as web
applications (WAR) or J2EE platform based applications (EAR). For more
information on assembling and deploying a web application, see the Sun ONE
Application Server Developer’s Guide to Web Applications.

SOAP Service

92 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

SOAP Service
This section describes how you can write SOAP service and describes how you can
handle exceptions and faults in SOAP messages. This section describes the
following topics:

• Creating a SOAP Service

• Exception and Fault Handling

Creating a SOAP Service
A SOAP service is the final recipient of a SOAP message and is implemented as a
servlet. You can either create your own servlet or you can extend the JAXMServlet
class which is bundled in the javax.xml.messaging package. This section
describes the procedure to create a SOAP service based on the JAXMServlet class.

To create a SOAP service, your servlet must implement either the
ReqRespListener or OneWayListener interfaces. A ReqRespListener requires
that you return a reply.

public class MyServlet extends JAXMServlet implements
ReqRespListener{

...

...

}

Using any of the interfaces, implement a method called onMessage(SOAPMsg).

public SOAPMessage onMessage(SOAP Message msg)

The following code is the complete listing of the SOAP consumer using
JAXMServlet.

public class MyServlet extends JAXMServlet implements
ReqRespListener {

public SOAPMessage onMessage(SOAP Message msg) {

//Process message here

}
}

JAXMServlet will call onMessage after receiving a message using the HTTP POST

method. This saves you the work of implementing your own doPost() method to
convert the incoming message into a SOAP message.

SOAP Service

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 93

The onMessage method needs to disassemble the SOAP message that is passed to it
by the servlet and process its contents. Processing the message involves accessing
the parts of a SOAP message. If there are problems in the processing of the
message, the service needs to create a SOAP fault object and send it back to the
client. For more information on handling faults, see “Fault Handling” on page 93.

The following code illustrates the processing of a SOAP message:

{http://xml.coverpages.org/dom.html

SOAPEnvelope env = reply.getSOAPPart().getEnvelope();

SOAPBody sb = env.getBody();

// create Name object for XElement that we are searching for Name
ElName = env.createName("XElement");

//Get child elements with the name XElement
Iterator it = sb.getChildElements(ElName);

//Get the first matched child element.
//We know there is only one.
SOAPBodyElement sbe = (SOAPBodyElement) it.next();

//Get the value for XElement
MyValue = sbe.getValue(); }

Exception and Fault Handling
On the client’s side, JAXM and SAAJ uses a SOAP exception to handle errors that
occur during the generation of the SOAP request or unmarshalling of the response.
This section describes the following topics:

• Fault Handling

• Defining SOAP Fault

Fault Handling
Server-side code must use the SOAPFault object to handle errors that occur on the
server-side when unmarshalling the request, processing the message, or
marshalling the response. The SOAPFault interface extends the SOAPBodyElement
interface.

http://xml.coverpages.org/dom.html

SOAP Service

94 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

SOAP messages have a specific element and format for error reporting on the
server side: a SOAP message body can include a SOAPFault element to report
errors that occur during the processing of a request. Created on the server side and
sent from the server back to the client, the SOAP message containing the
SOAPFault object reports any unexpected behavior to the originator of the
message.

The SOAPFault element defines the following four subelements:

faultcode
A code that identifies the error. The code is intended for use by software to provide
an algorithmic mechanism for identifying the fault. This element is required.

faultstring
A string that describes the fault identified by the fault code. This element provides
an explanation of the error that is understandable to a human. This element is
required.

faultactor
A URI specifying the source of the fault: who caused the fault. This element is not
required if the message is sent to its final destination without going through any
intermediaries. If a fault occurs at an intermediary, then that fault must include a
faultactor element.

detail
This element carries specific information related to the body element. It must be
present if the contents of the body element could not be successfully processed.
Thus, if this element is missing, the client should infer that the body element was
processed. While this element is not required for any error except a malformed
payload, you can use it in other cases to supply additional information to the client.

Predefined Fault Codes
The SOAP specification lists the following four predefined faultcode values:

VersionMismatch
The processing party found an invalid namespace for the SOAP envelope element;
that is, the namespace of the SOAPEnvelope element was not
http://schemas.xmlsoap.org/soap/envelope/.

MustUnderstand
An immediate child element of the SOAPHeader element was either not understood
or not appropriately processed by the recipient. This elements mustUnderstand
attribute was set to 1 (true).

http://schemas.xmlsoap.org/soap/envelope/

SOAP Service

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 95

Client
The message was incorrectly formed or did not contain the appropriate
information. For example, the message did not have the proper authentication or
payment information. The client should interpret this code to mean that the
message must be changed before it is sent again. If this is the code returned, the
SOAPFault object should probably include a detailEntry object that provides
additional information about the malformed message.

Server
The message could not be processed for reasons that are not connected with its
content. For example, one of the message handlers could not communicate with
another message handler that was upstream and did not respond. Or, the database
that the server needed to access is down. The client should interpret this error to
mean that the transmission could succeed at a later point in time.

Defining SOAP Fault
You can specify the value for faultcode, faultstring, and a faultctor using
methods of the SOAPFault object. The following code illustrates the creation of a
SOAPFault object and sets the faultcode, faultstring, and faultactor

attributes:

SOAPFault fault;

reply = factory.createMessage();

envp = reply.getSOAPPart().getEnvelope(true);

someBody = envp.getBody();

fault = someBody.addFault():

fault.setFaultCode("Server");

fault.setFaultString("Some Server Error");

fault.setFaultActor(“http://xxx.me.com/list/endpoint.esp/”);

reply.saveChanges();

The server can return this object in its reply to an incoming SOAP message in case
of a server error.

The following code illustrates how to define a detail and detail entry object. Note
that you must create a name for the detail entry object.

SOAPFault fault = someBody.addFault();

fault.setFaultCode("Server");

fault.setFaultActor("http://foo.com/uri");

http://xxx.me.com/list/endpoint.esp/%E2%80%9D%00%00
http://foo.com/uri");

SOAP Service

96 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

fault.setFaultString ("Unkown error");

DetailEntry entry =
detail.addEntry(envelope.createName("125detail", "m",
"Someuri");

entry.addTextNode("the message cannot contain the string //");

reply.saveChanges();

Assembling and Deploying a SOAP Service
Applications created using JAXM API and SAAJ API are assembled as web
applications (WAR) or J2EE platform based applications (EAR). For more
information on assembling and deploying a web application, see the Sun ONE
Application Server Developer’s Guide to Web Applications.

Sample Clients and Services
Sample client and services applications are bundled with Sun ONE Application
Server. These samples demonstrate the creation of services and clients that send
and receive XML messages. You can find the samples at the following location.

install_dir/samples/webservices/jaxm

install_dir/imq/demo/jaxm

97

Chapter 4

Clients Using JAXR

Application Server provides the ability for the clients to publish, discover, and
manage content within XML registries using the implementation of JavaTM API for
XML Registry (JAXR).

This chapter describes the procedure to develop clients that can interact with the
registry to perform various operations on the registry. This chapter contains the
following sections:

• Developing a JAXR Client

• Managing Registry Data

• Publishing a Web Service to a UDDI Registry

• Assembling and Deploying a JAXR Client

Developing a JAXR Client
This section describes the steps required to implement a JAXR client that can
perform queries and update a registry.

Before you develop a JAXR client, make sure to setup your client environment. For
detailed information on setting up your client environment, see “Setting Up the
Client Environment” on page 29.

Implementing a JAXR client involves the following steps:

• Getting Access to a Registry

• Establishing a Connection

• Querying a Registry

Developing a JAXR Client

98 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Getting Access to a Registry
You must obtain permission from the registry to access the registry. A JAXR client
can then perform queries, add data to registry, or update registry data. To register
with one of the public UDDI version 2 registries, go to one of the following Web
sites and follow the instructions:

http://uddi.microsoft.com/ (Microsoft)

https://uddi.ibm.com/ubr/registry.html (IBM)

When you register, you will obtain a user name and password. To run samples
bundled with Sun ONE Application Server, you may register with IBM’s UDDI
registry.

Accessing an ebXML Registry
An ebXML registry allows you to publish and discover Web services. Unlike a
UDDI registry, an ebXML registry can store the metadata about a service and
arbitrary content such as, the actual Web service description, that is the WSDL
document.

For more information on ebXML, visit the following URL:

http://www.ebxml.org

Sun ONE Application Server supports JAXR clients to access an ebXML registry
through a third-party JAXR provider. The ebxmlrr-client is a package that
provides an implementation of the JAXR API that is compatible with the OASIS
ebXML Registry V2.x (version 2.0 and 2.1) standard. The ebxmlrr-client package
also includes a Registry Browser application that can graphically browse any
OASIS ebXML V2.x registry.

For more information, visit the following URL:

http://ebxmlrr.sourceforge.net

Establishing a Connection
The first task a JAXR client must perform is, to establish a connection to a registry.
This connection contains the client state and preference information used when the
JAXR provider invokes methods on the registry provider.

http://uddi.microsoft.com/
https://uddi.ibm.com/ubr/registry.html
http://www.ebxml.org
http://ebxmlrr.sourceforge.net

Developing a JAXR Client

Chapter 4 Clients Using JAXR 99

Create a connection from a connection factory. A JAXR provider may supply one
or more pre configured connection factories that clients can look up using the JNDI
API.

The following code illustrates how to establish a connection to a JAXR provider:

import javax.xml.registry.*;

...

public void makeConnection(String queryURL, String publishURL)

{

ConnectionFactory factory = ConnectionFactory.newInstance();

.....

}

In the code above, queryURL and publishURL are the URL of the query and publish
registries respectively.

Setting Properties
The implementation of JAXR API in Sun ONE Application Server allows you to set
a number of properties on a JAXR connection. The following table list the standard
JAXR connection properties and properties specific to implementation of JAXR in
Sun ONE Application Server. The first column shows the name of the property and
the description of that property, the second column shows the data type that you
can use with the property, and the third column shows the default value associated
with the property.

NOTE In order to add data to the registry or to update registry data, the
client must set authentication information on the connection. The
establishment of this authentication information with the registry
provider is specific to that registry provider.

Table 4-1 Standard JAXR Connection Properties

Property Name and Description Data type Default Value

javax.xml.Registry.queryManagerURL

Specifies the URL of the query manager service
within the target registry provider

String None

Developing a JAXR Client

100 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

javax.xml.registry.lifeCycleManagerURL

Specifies the URL of the life cycle manager service
within the target registry provider (for registry
updates)

String Same as the specified
queryManagerURL
value

javax.xml.registry.semanticEquivalences

Specifies semantic equivalences of concepts as one or
more tuples of the ID values of two equivalent
concepts separated by a comma; the tuples are
separated by vertical bars: id1,id2|id3,id4

String None

javax.xml.registry.security.
authenticationMethod

Provides a hint to the JAXR provider on the
authentication method to be used for authenticating
with the registry provider

String None;

UDDI_GET_AUTHTOKEN
is the only supported
value

javax.xml.registry.uddi.maxRows

The maximum number of rows to be returned by find
operations. Specific to UDDI providers

Integer None

javax.xml.registry.postalAddressScheme

The ID of a ClassificationScheme to be used as the
default postal address scheme.

String None

Table 4-2 Sun ONE-specific JAXR Implementation Connection Properties

Property Name and Description Data type Default Value

com.sun.xml.registry.http.proxyHost

Specifies the HTTP proxy host to be used for
accessing external registries.

String Proxy host value
specified in <which
file>?

com.sun.xml.registry.http.proxyPort

Specifies the HTTP proxy port to be used for
accessing external registries; usually 8080

String Proxy port value
specified in <which
file>?

com.sun.xml.registry.https.proxyHost

Specifies the HTTPS proxy host to be used for
accessing external registries

String Same as HTTP proxy
host value

Table 4-1 Standard JAXR Connection Properties

Property Name and Description Data type Default Value

Developing a JAXR Client

Chapter 4 Clients Using JAXR 101

You can set these properties as shown in the code below:

String queryURL =
"http://www-3.ibm.com/services/uddi/v2beta/inquiryapi";

String publishURL=
"https://www-3.ibm.com/services/uddi/v2beta/protect/publishapi";

Properties props = new Properties();

props.setProperty("javax.xml.registry.queryManagerURL",
queryUrl);

props.setProperty("javax.xml.registry.lifeCycleManagerURL",
publishUrl);

Creating a Connection
A client first creates a set of properties that specify the URL or URLs of the registry
or registries being accessed.

com.sun.xml.registry.https.proxyPort

Specifies the HTTPS proxy port to be used for
accessing external registries; usually 8080

String Same as HTTP proxy
port value

com.sun.xml.registry.http.proxyUserName

Specifies the user name for the proxy host for HTTP
proxy authentication, if one is required

String None

com.sun.xml.registry.http.proxyPassword

Specifies the password for the proxy host for HTTP
proxy authentication, if one is required

String None

com.sun.xml.registry.useCache

Tells the JAXR implementation to look for registry
objects in the cache first and then to look in the
registry if not found

Boolean,
passed
in as
String

True

com.sun.xml.registry.useSOAP

Tells the JAXR implementation to use Apache SOAP
rather than the Java API for XML Messaging; may be
useful for debugging

Boolean,
passed
in as
String

False

Table 4-2 Sun ONE-specific JAXR Implementation Connection Properties

Property Name and Description Data type Default Value

http://www-3.ibm.com/services/uddi/v2beta/inquiryapi
https://www-3.ibm.com/services/uddi/v2beta/protect/publishapi

Developing a JAXR Client

102 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

The client then sets the properties for the connection properties and creates the
connection.

factory.setProperties(props);

Connection connection = factory.createConnection();

Obtaining the RegistryService and Managers
The client uses the connection to obtain a RegistryService object and then the
interface or interfaces it will use. The following code illustrates how to obtain the
registry service:

RegistryService rs = connection.getRegistryService();

BusinessQueryManager bqm = rs.getBusinessQueryManager();

BusinessLifeCycleManager blcm =
rs.getBusinessLifeCycleManager();

Setting Client Authentication Information
The following code illustrates how to set the client authorization information for
privileged registry operations:

PasswordAuthentication passwdAuth = new
PasswordAuthentication(username, password.toCharArray());

Set creds = new HashSet();

creds.add(passwdAuth);

Querying a Registry
The client uses the registry by querying it for information about the organization
that have submitted data to it. The client can query the registry based on one or
more of the following criterion:

• findOrganizations, which returns a list of organizations that meet the
specified criteria - often a name pattern or a classification within a classification
scheme.

• findServiceBindings,which returns the service bindings (information about
how to access the service) that are supported by a specified service.

• findService, which returns a set of services offered by a specified
organization.

This section describes the procedure to query a registry based on the following
criterion:

Developing a JAXR Client

Chapter 4 Clients Using JAXR 103

• Finding Organizations by Name

• Finding Organizations by Classification

• Finding Organizations by WSDL Descriptions

• Finding Services and Service Bindings

Finding Organizations by Name
To find an organization by name, you use a combination of find qualifiers (which
affect sorting and pattern matching) and name patterns (which specify the strings
to be searched). The findOrganizations method takes a collection of
findQualifier as its first argument and a collection of namePattern objects as its
second argument.

The following code illustrates the use of findOrganizations method to search for
an organization whose name begins with a specific string qString, and to sort
them in alphabetical order:

Collection findQualifiers = new ArrayList();

findQualifiers.add(FindQualifier.SORT_BY_NAME_DESC);

namePatterns.add(qString);

The above code lines define the find qualifiers and name patterns.

To find an organization using the name, use the findOrganizations() method as
shown in the code illustration below:

BulkResponse response = bqm.findOrganizations(findQualifiers,
namePatterns, null, null, null, null);

Collection orgs = response.getCollection();

Finding Organizations by Classification
To find an organization by classification, you need to establish a classification
within a particular classification scheme and specify the classification as a
parameter to the findOrganizations() method.

Let us assume that you are browsing the UDDI registry and wish to find an
organization that provides services of the NAICS (North American Industry
Classification System) type Computer Systems Design and Related Services in the
United States. To perform this query with JAXR, invoke a findOrganizations()

method with classification listed under the well-known taxonomies NAICS and
ISO 3166 Geographic Code System (ISO 3166). As JAXR provides a taxonomy
service for these classifications, the client can easily access the classification
information needed to be passed as findOrganization() parameters.

Developing a JAXR Client

104 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

ClassificationScheme cScheme =
bqm.findClassificationSchemeByName (null, "ntis-gov:naics");

Classification classification =
(Classification)blcm.createClassification(cScheme, "Snack and
Nonalcoholic Beverage Bars", "722213");

Collection classifications = new ArrayList();

classifications.add(classification);

// make JAXR request

BulkResponse response = bqm.findOrganizations(null, null,
classifications, null, null, null);

Collection orgs = response.getCollection();

Finding Organizations by WSDL Descriptions
You can find organizations based on technical specifications that take the form of
WSDL documents. In JAXR, a concept is used as a proxy to hold the specification.
The client must find the specification concepts first, then the organizations that use
those concepts.

The following code illustrates finding an organization based on the WSDL
specification instances used within a given registry.

String schemeName = "uddi-org:types";

ClassificationScheme uddiOrgTypes =
bqm.findClassificationSchemeByName(null, schemeName);

/*

* Create a classification, specifying the scheme
* and the taxonomy name and value defined for WSDL
* documents by the UDDI specification.

*/

Classification wsdlSpecClassification =
blcm.createClassification(uddiOrgTypes, "wsdlSpec", "wsdlSpec");

ArrayList classifications = new ArrayList();
classifications.add(wsdlSpecClassification);

// Find concepts

BulkResponse br = bqm.findConcepts(null, null, classifications,
null, null);

Next, you must go through the concepts, find the WSDL documents they
correspond to, and display the organizations that use each document:

Developing a JAXR Client

Chapter 4 Clients Using JAXR 105

// Display information about the concepts found

Collection specConcepts = br.getCollection();

Iterator iter = specConcepts.iterator();

if (!iter.hasNext()) {

System.out.println("No WSDL specification concepts found");

} else {

while (iter.hasNext()) {

try{

Concept concept = (Concept) iter.next();
String name = getName(concept);
Collection links = concept.getExternalLinks();
System.out.println("\nSpecification Concept:\n Name: " +name

+ "\n Key: " + concept.getKey().getId() + "\n Description: " +
getDescription(concept));

if (links.size() > 0) {

ExternalLink link =
(ExternalLink) links.iterator().next();
System.out.println("URL of WSDL document: ’"

link.getExternalURI() + "’");

}

// Find organizations that use this concept

ArrayList specConcepts1 = new ArrayList();

specConcepts1.add(concept);

br = bqm.findOrganizations(null, null, null, specConcepts1, null,
null);

Collection orgs = br.getCollection();

// Display information about organizations

... }

Finding Services and Service Bindings
A JAXR client can find an organization’s services and the service bindings
associated with those using the getService() and the getServiceBindings()
method respectively. The following code illustrates the use of the getServices()
and getServiceBindings() method:

Iterator orgIter = orgs.iterator();

Managing Registry Data

106 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

while (orgIter.hasNext()) {

Organization org = (Organization) orgIter.next();

Collection services = org.getServices();

Iterator svcIter = services.iterator();

while (svcIter.hasNext()) {

Service svc = (Service) svcIter.next();

Collection serviceBindings = svc.getServiceBindings();

Iterator sbIter = serviceBindings.iterator();

while (sbIter.hasNext()) {

ServiceBinding sb =

(ServiceBinding) sbIter.next();

}

}

}

Managing Registry Data
A JAXR client can submit data to a registry, modify the existing registry data, and
remove data from the registry. A JAXR client must be authorized to manage the
registry data. A client that has submitted data to the registry can only remove or
modify it.

This section describes the following tasks:

• Getting Authorization from the Registry

• Creating an Organization

• Adding Classifications

• Adding Services and Service Bindings to an Organization

Getting Authorization from the Registry
The JAXR client sends its user name and password to the registry in a set of
credentials on the connection. These credentials may be used by the provider to
authenticate with the registry.

Managing Registry Data

Chapter 4 Clients Using JAXR 107

// Edit to provide your own username and password
String username = "";
String password = "";

// Get authorization from the registry

PasswordAuthentication passwdAuth = new
PasswordAuthentication(username, password.toCharArray());

Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);

Creating an Organization
A JAXR client creates the organization and populates it with the data before saving
it. The Organization object is used to create an organization. This object includes
the following objects:

• A Name object

• A Description object

• A Key object, representing the ID by which the organization is identified to the
registry. The key is created by the registry and not by the user.

• A PrimaryContactObject - is a user object that refers to an authorized user of
the registry. This object includes the following information about the
authorized user:

❍ PersonName, TelephoneNumber, EmailAddress, and/or PostalAddress

❍ A collection of classification objects

❍ Service objects and their associated service bindings objects

The following code illustrates how you can create an organization using the
Organization method:

// Create Organization in memory

Organization org = businessLifeCycleManager.createOrganization
("Sun Microsystems");

// Create User -- maps to Contact for UDDI

User user = businessLifeCycleManager.createUser();

PersonName personName =
businessLifeCycleManager.createPersonName("Bob");

Managing Registry Data

108 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

TelephoneNumber telephoneNumber =
businessLifeCycleManager.createTelephoneNumber();

telephoneNumber.setNumber("650-241-8979");

telephoneNumber.setType("office");

Collection numbers = new ArrayList();

numbers.add(telephoneNumber);

EmailAddress email =
businessLifeCycleManager.createEmailAddress("bob@sun.com",
"office");

Collection emailAddresses = new ArrayList();
emailAddresses.add(email);

user.setPersonName(personName);

Collection telephoneNumbers = new ArrayList();

telephoneNumbers.add(telephoneNumber);

user.setTelephoneNumbers(telephoneNumbers);

user.setEmailAddresses(emailAddresses);

org.setPrimaryContact(user);

Adding Classifications
Organizations commonly belong to one or more classifications within one or more
classification schemes or taxonomies. To establish a classification for an
organization within a taxonomy, the client first locates the taxonomy using the
BusinessQueryManager. The findClassificationSchemeByName method takes a
set of FindQualifier objects as its first argument, but this argument can be null.

// Set classification scheme to NAICS

ClassificationScheme cScheme =
bqm.findClassificationSchemeByName(null, "ntis-gov:naics");

The client then creates a classification. For example, the following code sets up a
classification for the organization within the NAICS taxonomy.

// Create and add classification

Classification classification = (Classification)
blcm.createClassification(cScheme, "Snack and Nonalcoholic
Beverage Bars", "722213");

Managing Registry Data

Chapter 4 Clients Using JAXR 109

Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

Services also use classifications, so you can use similar code to add a classification
to a Service object.

Using Taxonomies
A taxonomy is represented by a ClassificationScheme object. This section
describes how to use the implementation of JAXR in:

• Defining Taxonomies

• Specifying Postal Address

Defining Taxonomies
The JAXR specification requires a JAXR provider to be able to add user-defined
taxonomies that can be used by JAXR clients. The implementation of JAXR in Sun
ONE Application Server uses a simple file-based approach to provide taxonomies
to the JAXR client. These files are read at run time, when the JAXR provider starts
up.

The taxonomy structure is defined by the JAXR Predefined Concepts DTD, which
is declared both in the file jaxrconcepts.dtd and in XML schema form in the file
jaxrconcepts.xsd. The file jaxrconcepts.xml contains the taxonomies for the
implementation of JAXR. All these files are contained in the
install_dir/share/lib/jaxr-impl.jar file.

To add a user-defined taxonomy, follow the procedure given below:

Publish the JAXRClassificationScheme element for the taxonomy as a
ClassificationScheme object in the registry that you will be accessing. For
example, you can publish the ClassificationScheme object to the UDDI Registry
Server. In order to publish a ClassificationScheme object, you must set its name.
You also give the scheme a classification within a known classification scheme such
as uddi-org:types. In the following code line, the name is the first argument of
the LifeCycleManager.createClassificationScheme method call.

ClassificationScheme cScheme =
blcm.createClassificationScheme("MyScheme", "A Classification
Scheme");

ClassificationScheme uddiOrgTypes =
bqm.findClassificationSchemeByName(null, "uddi-org:types");

Managing Registry Data

110 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

if (uddiOrgTypes != null)

{

Classification classification =
blcm.createClassification(uddiOrgTypes,"postalAddress",
"categorization");

postalScheme.addClassification(classification);

ExternalLink externalLink =
blcm.createExternalLink("http://www.mycom.com/myscheme.html","My
Scheme");

postalScheme.addExternalLink(externalLink);

Collection schemes = new ArrayList();

schemes.add(cScheme);

BulkResponse br = blcm.saveClassificationSchemes(schemes);

}

//The BulkResponse object returned by the
saveClassificationSchemes method contains the key for the
classification scheme, which you need to retrieve

if (br.getStatus() == JAXRResponse.STATUS_SUCCESS) {

System.out.println("Saved ClassificationScheme");

Collection schemeKeys = br.getCollection();

Iterator keysIter = schemeKeys.iterator();

while (keysIter.hasNext())

{

javax.xml.registry.infomodel.Key key =
(javax.xml.registry.infomodel.Key) keysIter.next();

System.out.println("The postalScheme key is " + key.getId());

System.out.println("Use this key as the scheme" + " uuid in the
taxonomy file");

}

}

In an XML file, define a taxonomy structure that is compliant with the JAXR
Predefined Concepts DTD. Enter the ClassificationScheme element in your
taxonomy XML file by specifying the returned key ID value as the id attribute and
the name as the name attribute. For example, the opening tag for the
JAXRClassificationScheme element looks something like this (all on one line):

http://www.mycom.com/myscheme.html","My

Managing Registry Data

Chapter 4 Clients Using JAXR 111

<JAXRClassificationScheme id="uuid:nnnnnnnn-nnnn-nnnn-nnnn-
nnnnnnnnnnnn" name="MyScheme">

The ClassificationScheme id must be a UUID.

Enter each JAXRConcept element in your taxonomy XML file by specifying the
following four attributes, in this order:

a. id is the JAXRClassificationScheme id value, followed by a / separator,
followed by the code of the JAXRConcept element

b. name is the name of the JAXRConcept element

c. parent is the immediate parent id (either the ClassificationScheme
id or that of the parent JAXRConcept)

d. code is the JAXRConcept element code value

The first JAXRConcept element in the naics.xml file looks like this (all on one
line):

<JAXRConcept id="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2/11"
name="Agriculture, Forestry, Fishing and Hunting"
parent="uuid:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"
code="11"></JAXRConcept>

To add the user-defined taxonomy structure to the JAXR provider, specify the
system property com.sun.xml.registry.userTaxonomyFilenameswhen you run
your client program. The command line (all on one line) would look like this. A
vertical bar (|) is the file separator.

java myProgram
-DuserTaxonomyFilenames=c:\myfile\xxx.xml|c:\myfile\xxx2.xml

You can use a <sysproperty> tag to set this property in a build.xml file. Or, in
your program, you can set the property as follows:

System.setProperty
("com.sun.xml.registry.userTaxonomyFilenames",
"c:\myfile\xxx.xml|c:\myfile\xxx2.xml");

Specifying Postal Address
The JAXR specification defines a postal address as a structured interface with
attributes for street, city, country, and so on. The UDDI specification, on the other
hand, defines a postal address as a free-form collection of address lines, each of
which may also be assigned a meaning. To map the JAXR PostalAddress format to
a known UDDI address format, you specify the UDDI format as a
ClassificationScheme object and then specify the semantic equivalences
between the concepts in the UDDI format classification scheme and the comments

Managing Registry Data

112 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

in the JAXR PostalAddress classification scheme. The JAXR PostalAddress

classification scheme is provided by the JAXR implementation of Sun ONE
Application Server. A PostalAddress object has the fields streetNumber, street,
city, state, postalCode, and country. These are predefined concepts in the
postalconcepts.xml file, within the ClassificationScheme named
PostalAddressAttributes.

To specify the mapping between the JAXR postal address format and another
format, you need to set two connection properties:

• The javax.xml.registry.postalAddressScheme property, which specifies a
postal address classification scheme for the connection.

• The javax.xml.registry.semanticEquivalences property, which specifies
the semantic equivalences between the JAXR format and the other format.

First, you specify the postal address scheme using the id value from the
JAXRClassificationScheme element (the UUID).

// Set properties for postal address mapping using my scheme
props.setProperty("javax.xml.registry.postalAddressScheme",
uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b");

Next, you specify the mapping from the id of each JAXRConcept element in the
default JAXR postal address scheme to the id of its counterpart in the IBM scheme:

props.setProperty("javax.xml.registry.semanticEquivalences",
urn:uuid:PostalAddressAttributes/StreetNumber," +
"urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/StreetAddressNumb
er|" +
"urn:uuid:PostalAddressAttributes/Street," +
"urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/StreetAddress|" +
"urn:uuid:PostalAddressAttributes/City," +
"urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/City|" +
"urn:uuid:PostalAddressAttributes/State," +
"urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/State|" +
"urn:uuid:PostalAddressAttributes/PostalCode," +
"urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/ZipCode|" +
"urn:uuid:PostalAddressAttributes/Country," +
"urn:uuid:6eaf4b50-4196-11d6-9e2b-000629dc0a2b/Country");

After you create the connection using these properties, you can create a postal
address and assign it to the primary contact of the organization before you publish
the organization.

For example,

Managing Registry Data

Chapter 4 Clients Using JAXR 113

String streetNumber = “99”;
String street = “Imaginary Ave. Suite 33”;
String city = "Imaginary City";
String state = "NY";
String country = "USA";
String postalCode = "00000";
String type = "";
PostalAddress postAddr =
blcm.createPostalAddress(streetNumber, street, city, state, country,
postalCode, type);
Collection postalAddresses = new ArrayList();
postalAddresses.add(postAddr);
primaryContact.setPostalAddresses(postalAddresses);

A JAXR query can then retrieve the postal address using PostalAddress methods,
if the postal address scheme and semantic equivalences for the query are the same
as those specified for the publication. To retrieve postal addresses when you do not
know what postal address scheme was used to publish them, you can retrieve
them as a collection of Slot objects. The JAXRQueryPostal.java sample program
shows how to do this.

Adding Services and Service Bindings to an
Organization
Many organizations add themselves to a registry in order to offer services, so the
JAXR API has facilities to add services and service bindings to an organization.

Like an Organization object, a Service object has a name and a description. Also
like an Organization object, it has a unique key that is generated by the registry
when the service is registered. It may also have classifications associated with it.

A service also commonly has service bindings, which provide information about
how to access the service. A ServiceBinding object normally has a description, an
access URI, and a specification link, which provides the linkage between a service
binding and a technical specification that describes how to use the service using the
service binding.

The following code illustrates how to create a collection of services, add service
bindings to a service, then add the services to the organization. It specifies an
access URI but not a specification link. Because the access URI is not real and
because JAXR by default checks for the validity of any published URI, the binding
sets the validateURI property to false.

// Create services and service

Publishing a Web Service to a UDDI Registry

114 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Collection services = new ArrayList();
Service service = blcm.createService("My Service Name");
InternationalString is = blcm.createInternationalString("My
Service Description");
service.setDescription(is);

// Create service bindings

Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
is = blcm.createInternationalString("My Service Binding " +
"Description");
binding.setDescription(is);

binding.setValidateURI(false);
binding.setAccessURI("http://TheCoffeeBreak.com:8080/sb/");
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization
services.add(service);
org.addServices(services);

Publishing a Web Service to a UDDI Registry
JAXR provides the facility to publish your Web services to the UDDI registry. This
section describes the steps to publish an existing Web service to the registry:

Publishing a service to a registry involves the following steps:

• Creating an Organization

• Creating its classification

• Creating services and service bindings

• Saving the information in the registry

To create a JAXR client that publishes a Web service to the registry, import the
following required packages:

import javax.xml.registry.*;
import javax.xml.registry.infomodel.*;
import java.net.*;
import java.security.*;
import java.util.*;

http://TheCoffeeBreak.com:8080/sb/

Publishing a Web Service to a UDDI Registry

Chapter 4 Clients Using JAXR 115

Create a class that consists of a main method, a makeConnection method that
establishes the connection to the registry, and an executePublish method, that
publishes all the information about the service to the registry. The following code
illustrates the creation of the main class JAXRPublish:

public class JAXRPublish {

Connection connection = null;

public JAXRPublish() {}

public static void main(String[] args) {

String queryURL =
"http://www-3.ibm.com/services/uddi/v2beta/inquiryapi";

String publishURL =
"https://www-3.ibm.com/services/uddi/v2beta/protect/publishapi";

String username = "";

String password = "";

JAXRPublish jp = new JAXRPublish();

jp.makeConnection(queryURL, publishURL);

jp.executePublish(username, password);

}

The JAXR client must establish a connection to the UDDI registry and set the
connection configuration properties. For detailed information, see “Establishing a
Connection” on page 98.

Create the connection, passing it the configuration properties. For detailed
information, see “Creating a Connection” on page 101.

Create an organization, its classification, its services, and save it to the registry.

For more information, see the following sections:

• “Creating an Organization” on page 107

• “Adding Classifications” on page 108

• “Adding Services and Service Bindings to an Organization” on page 113

The following code illustrates the steps to publish a Web service:

public void executePublish(String username, String password) {
RegistryService rs = null;
BusinessLifeCycleManager blcm = null;
BusinessQueryManager bqm = null;

http://www-3.ibm.com/services/uddi/v2beta/inquiryapi
https://www-3.ibm.com/services/uddi/v2beta/protect/publishapi

Publishing a Web Service to a UDDI Registry

116 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

String orgName = "The Coffee Break";
String orgDesc = "Purveyor of the finest coffees. Established 1895";
String contactName = "Jane Doe";
String contactPhone = "(800) 555-1212";
String contactEmail = "jane.doe@TheCoffeeBreak.com";
String serviceName = "My Service Name";
String serviceDesc = "My Service Description";
String serviceBindingDesc = "My Service Binding Description";
String serviceBindingURI = "http://localhost:1024";
String scheme = "ntis-gov:naics";
String conceptName = "Snack and Nonalcoholic Beverage Bars";
String conceptCode = "722213";
try {

java.io.BufferedInputStream bfInput = null;
Properties propTemp = new Properties();
bfInput = new java.io.BufferedInputStream (new
java.io.FileInputStream("jaxr.properties"));
propTemp.load(bfInput);
bfInput.close();orgName = propTemp.getProperty("org-name");
orgDesc = propTemp.getProperty("org-desc");
contactName = propTemp.getProperty("contact-name");
contactPhone = propTemp.getProperty("contact-phone");
contactEmail = propTemp.getProperty("contact-email");
serviceName = propTemp.getProperty("service-name");
serviceDesc = propTemp.getProperty("service-desc");
serviceBindingDesc =
propTemp.getProperty("service-binding-desc");
serviceBindingURI = propTemp.getProperty("service-binding-uri");
scheme = propTemp.getProperty("scheme");
conceptName = propTemp.getProperty("concept");
conceptCode = propTemp.getProperty("concept-code");
}

try {

rs = connection.getRegistryService();
blcm = rs.getBusinessLifeCycleManager();
bqm = rs.getBusinessQueryManager();
System.out.println("Got registry service, query " + "manager, and
life cycle manager");

// Get authorization from the registry

http://localhost:1024

Publishing a Web Service to a UDDI Registry

Chapter 4 Clients Using JAXR 117

PasswordAuthentication passwdAuth = new
PasswordAuthentication(username,password.toCharArray());
Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);
System.out.println("Established security credentials");

// Create organization name and description

Organization org = blcm.createOrganization(orgName);
InternationalString s = blcm.createInternationalString(orgDesc);
org.setDescription(s);

// Create primary contact, set name

User primaryContact = blcm.createUser();
PersonName pName = blcm.createPersonName(contactName);
primaryContact.setPersonName(pName);

// Set primary contact phone number

TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber(contactPhone);
Collection phoneNums = new ArrayList();
phoneNums.add(tNum);
primaryContact.setTelephoneNumbers(phoneNums);

// Set primary contact email address

EmailAddress emailAddress =
blcm.createEmailAddress(contactEmail);
Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

// Set primary contact for organization

org.setPrimaryContact(primaryContact);

// Set classification scheme to NAICS

ClassificationScheme cScheme =
bqm.findClassificationSchemeByName(null,scheme);

if (cScheme != null) {

// Create and add classification

Classification classification = (Classification)
blcm.createClassification(cScheme, conceptName, conceptCode);
Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);
}

Publishing a Web Service to a UDDI Registry

118 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

// Create services and service

Collection services = new ArrayList();
Service service = blcm.createService(serviceName);
InternationalString is =
blcm.createInternationalString(serviceDesc);
service.setDescription(is);

// Create service bindings

Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
is = blcm.createInternationalString(serviceBindingDesc);
binding.setDescription(is);

// allow us to publish a bogus URL without an error

binding.setValidateURI(false);
binding.setAccessURI(serviceBindingURI);
serviceBindings.add(binding);

// Add service bindings to service

service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organization

services.add(service);
org.addServices(services);

// Add organization and submit to registry

// Retrieve key if successful

Collection orgs = new ArrayList();
orgs.add(org);
BulkResponse response = blcm.saveOrganizations(orgs);
Collection exceptions = response.getExceptions();

if (exceptions == null) {

System.out.println("Organization saved");
Collection keys = response.getCollection();
Iterator keyIter = keys.iterator();

if (keyIter.hasNext()) {

Assembling and Deploying a JAXR Client

Chapter 4 Clients Using JAXR 119

javax.xml.registry.infomodel.Key orgKey =
(javax.xml.registry.infomodel.Key) keyIter.next();
String id = orgKey.getId();
System.out.println("Organization key is " + id);
org.setKey(orgKey);

}

}

}

}

Assembling and Deploying a JAXR Client
The following steps describe how you can assemble and deploy a JAXR client:

1. Execute the default target core to compile Java files and build the .jar file. The
.jar file has the JAXR API classes and a wrapper client class.

asant core

2. Build Javadocs. For example:

Execute the following asant command under
install_dir/samples/webservices/jaxr/src/ to create javadocs:

asant javadoc

3. Deploy the client.

a. JAXR can be configured to access various registries. You can use either
your own registry server or you can use public registry servers. If you
choose to use a public registry server, make certain that you can publish to
the registry server. Modify jaxr.properties with the correct parameters.
This file contains the following parameters:

• query-url - Fully qualified inquiry URI for the registry server.

• publish-url - Fully qualified publish URI for the registry server.

• username - Username to publish an organization to the registry server.

• password - Password to publish an organization to the registry server.

• query-string - The search string to search for in the registry.

• key-string - The key of the organization to be deleted from the
registry server.

Assembling and Deploying a JAXR Client

120 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

b. If you wish to publish to the registry server, modify the publish
organization info section in the jaxr.properties, if required.

4. Run the client using the following command:

asant run

Sample JAXR Client
You can find various sample applications that demonstrate the use of JAXR API in
Sun ONE Application Server environment at the following location:

install_dir/samples/webservices/jaxr/

121

Appendix A

XML Schema Definitions

XML Schema Definition (XSD) is a W3C standard for an XML-based type system
known as XML Schema. The language used to define is an XML grammar known
as XML Schema Definition Language. Web services use XML as the underlying
format for representing messages and data. Thus, XSD is a natural choice as the
Web service type system.

For more information on XSD, visit the following URL:

http://www.w3.org/2001/XMLSchema

This appendix provides XSDs for the following files used in developing JAX-RPC
Web services and clients:

• XML Schema for wscompile Configuration File

• XML Schema for Deployment Descriptors

• XML Schema for Exported wscompile Model Files

• XML Schema for Runtime Descriptors

XML Schema for wscompile Configuration File
The following code is the XML Schema used for creating wscompile configuration
file:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://java.sun.com/xml/ns/jax-rpc/ri/config"

targetNamespace="http://java.sun.com/xml/ns/jax-rpc/ri/config"

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/config
http://java.sun.com/xml/ns/jax-rpc/ri/config"

122 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.0">

 <xsd:annotation>

<xsd:documentation>

This is the schema for wscompile configuration files.

The only allowed top-level element is "configuration".

</xsd:documentation>

 </xsd:annotation>

 <xsd:element name="configuration">

 <xsd:annotation>

<xsd:documentation>

The top-level element. It must contain one out of three possible
elements,corresponding to three different ways to feed service
information to the tool.

Elements: (mutually exclusive)

"service" - a service description based on a set of service endpoint
interfaces;

"wsdl" - a WSDL document to import and process;

"modelfile" - a previously saved model file (-model option in
wscompile).

</xsd:documentation>

</xsd:annotation>

 <xsd:complexType>

 <xsd:sequence>

 <xsd:choice>

<xsd:element name="service" type="tns:serviceType"/>

<xsd:element name="wsdl" type="tns:wsdlType"/>

<xsd:element name="modelfile" type="tns:modelfileType"/>

</xsd:choice>

 </xsd:sequence>

Appendix A XML Schema Definitions 123

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="serviceType">

 <xsd:annotation>

 <xsd:documentation>

A description of a service based on a set of Java interfaces (called
"service endpoint interfaces" in the spec).

Attributes:

"name" - service name;

"targetNamespace" - target namespace for the generated WSDL
document;

"typeNamespace" - target namespace for the XML Schema embedded in
the generated WSDL document;

"packageName" - name of the Java package to use by default.

Elements:

"interface"* - a sequence of service endpoint interface
descriptions;

"typeMappingRegistry"? - the type mapping registry to use for
this service;

"handlerChains"? - default handler chains for the endpoints in
this service;

"namespaceMappingRegistry"? - XML namespace to Java package
mapping information.

 </xsd:documentation>

 </xsd:annotation>

<xsd:sequence>

<xsd:element name="interface" type="tns:interfaceType" minOccurs="0"
maxOccurs="unbounded"/>

<xsd:element name="typeMappingRegistry"
type="tns:typeMappingRegistryType" minOccurs="0"/>

<xsd:element name="handlerChains" type="tns:handlerChainsType"
minOccurs="0"/>

124 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

<xsd:element name="namespaceMappingRegistry"
type="tns:namespaceMappingRegistryType" minOccurs="0"/>

</xsd:sequence>

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="targetNamespace" type="xsd:anyURI" use="required"/>

 <xsd:attribute name="typeNamespace" type="xsd:anyURI" use="required"/>

 <xsd:attribute name="packageName" type="xsd:string" use="required"/>

</xsd:complexType>

<xsd:complexType name="interfaceType">

 <xsd:annotation>

<xsd:documentation>

An endpoint definition based on a service endpoint interface.

Attributes:

"name" - name of the service endpoint interface (a Java
interface);

"servantName" (optional) - name of the service endpoint
implementation class;

"soapAction" (optional) - SOAPAction string to use for all
operations in the interface;

"soapActionBase" (optional) - base URI for the SOAPAction string;
the SOAPAction for a given operation will be obtained by
appending the operation name to the value provided here; this
attribute is exclusive with the "soapAction" one.

Elements:

"handlerChains" - specifies the handler chains for this endpoint.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="handlerChains" type="tns:handlerChainsType"
minOccurs="0"/>

</xsd:sequence>

Appendix A XML Schema Definitions 125

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="servantName" type="xsd:string"/>

<xsd:attribute name="soapAction" type="xsd:string"/>

<xsd:attribute name="soapActionBase" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="wsdlType">

<xsd:annotation>

<xsd:documentation>

A description of a service based on an existing WSDL document.

Attributes:

"location" - URL of the WSDL document;

"packageName" - name of the Java package to use by default.

Elements:

"typeMappingRegistry"? - the type mapping registry to use for
this service;

"handlerChains"? - default handler chains for the endpoints in
this service;

"namespaceMappingRegistry"? - XML namespace to Java package
mapping information.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="typeMappingRegistry"
type="tns:typeMappingRegistryType" minOccurs="0"/>

<xsd:element name="handlerChains" type="tns:handlerChainsType"
minOccurs="0"/>

<xsd:element name="namespaceMappingRegistry"
type="tns:namespaceMappingRegistryType" minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="location" type="xsd:anyURI" use="required"/>

<xsd:attribute name="packageName" type="xsd:string" use="required"/>

</xsd:complexType>

126 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

<xsd:complexType name="modelfileType">

<xsd:annotation>

<xsd:documentation>

A description of a service based on an existing model file.

Attributes:

"location" - URL of the model file (typically ending in .xml.gz);

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

</xsd:sequence>

<xsd:attribute name="location" type="xsd:anyURI" use="required"/>

</xsd:complexType>

<xsd:complexType name="handlerChainsType">

<xsd:annotation>

<xsd:documentation>

A set of handlerChains.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="chain" type="tns:chainType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="chainType">

<xsd:annotation>

<xsd:documentation>

A handler chain.

Attributes:

Appendix A XML Schema Definitions 127

"runAt" - specifies whether the chain must run on the client or
the server;

"roles" - the SOAP roles for the chain.

Elements:

"handler"* - a sequence of handlers that form this chain.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="handler" type="tns:handlerType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="runAt" type="tns:runAtType" use="required"/>
<xsd:attribute name="roles" type="tns:roleListType"/>

</xsd:complexType>

<xsd:simpleType name="roleListType">

<xsd:annotation>

<xsd:documentation>

A list of SOAP roles, i.e. a list of URIs.

</xsd:documentation>

</xsd:annotation>

<xsd:list itemType="xsd:anyURI"/>

</xsd:simpleType>

<xsd:complexType name="handlerType">

<xsd:annotation>

<xsd:documentation>

A handler description.

Attributes:

"className" - the name of the handler’s class;

"headers" - the names of the headers consumed by this handler.

Elements:

128 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

"property"* - initialization properties for this handler.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="property" type="tns:propertyType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="className" type="xsd:string" use="required"/>

<xsd:attribute name="headers" type="tns:headerListType"/>

</xsd:complexType>

 <xsd:simpleType name="headerListType">

<xsd:annotation>

<xsd:documentation>

A list of header names, i.e. a list of QNames.

</xsd:documentation>

</xsd:annotation>

<xsd:list itemType="xsd:QName"/>

</xsd:simpleType>

<xsd:complexType name="propertyType">

<xsd:annotation>

<xsd:documentation>

An initialization property for a handler.

Attributes:

"name" - the name of the property;

"value" - its value.

</xsd:documentation>

</xsd:annotation>

 <xsd:sequence>

 </xsd:sequence>

Appendix A XML Schema Definitions 129

 <xsd:attribute name="name" type="xsd:string" use="required"/>

 <xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

<xsd:simpleType name ="runAtType">

<xsd:annotation>

<xsd:documentation>

The places a handler chain can run at, one of "client" or
"server".

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="client"/>

<xsd:enumeration value="server"/>

</xsd:restriction>

 </xsd:simpleType>

<xsd:complexType name="typeMappingRegistryType">

<xsd:annotation>

<xsd:documentation>

A type mapping registry.

Elements:

"import"? - a list of XML Schema documents that describe
user-defined types.

"typeMapping"* - a sequence of type mappings, one per encoding.

"additionalTypes"? - a list of additional Java types that should
be processed even if don’t appear in the interfaces for the
service.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

130 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

<xsd:element name="import" type="tns:importType" minOccurs="0"/>

<xsd:element name="typeMapping" type="tns:typeMappingType"
minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="additionalTypes"
type="tns:additionalTypesType" minOccurs="0"/>

</xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="importType">

<xsd:annotation>

<xsd:documentation>

A list of schema documents to import, usually describing schema
types used by pluggable serializers.

Elements:

"schema"* - a list of schema documents to import.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="schema" type="tns:schemaType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="schemaType">

<xsd:annotation>

<xsd:documentation>

One schema document to be imported.

Attributes:

"namespace" - the namespace that the document describes;
"location" - a URL pointing to the schema document.

</xsd:documentation>

</xsd:annotation>

Appendix A XML Schema Definitions 131

<xsd:sequence>

</xsd:sequence>

<xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>

<xsd:attribute name="location" type="xsd:anyURI" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="typeMappingType">

<xsd:annotation>

<xsd:documentation>

A type mapping for a particular encoding.

Attributes:

"encodingStyle" - the URI denoting the encoding.

Elements:

"entry"* - a list of type mapping entries.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="entry" type="tns:entryType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="encodingStyle" type="xsd:anyURI"
use="required"/>

 </xsd:complexType>

 <xsd:complexType name="entryType">

<xsd:annotation>

<xsd:documentation>

An entry in a type mapping.

Attributes:

132 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

"schemaType" - the name of a schema type;

"javaType" - the name of the corresponding Java class;

"serializerFactory" - the name of the serializer factory class to
use for this type;

"deserializerFactory" - the name of the deserializer factory
class to use for this type.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

</xsd:sequence>

<xsd:attribute name="schemaType" type="xsd:QName" use="required"/>

<xsd:attribute name="javaType" type="xsd:string" use="required"/>

<xsd:attribute name="serializerFactory" type="xsd:string"
use="required"/>

<xsd:attribute name="deserializerFactory" type="xsd:string"
use="required"/>

 </xsd:complexType>

 <xsd:complexType name="additionalTypesType">

<xsd:annotation>

<xsd:documentation>

A list of additional Java types to be processed by the tool..

Elements:

"class"* - a list of classes to be processed.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="class" type="tns:classType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

 </xsd:complexType>

Appendix A XML Schema Definitions 133

 <xsd:complexType name="classType">

<xsd:annotation>

<xsd:documentation>

A Java class description.

Attributes:

"class" - the name of the class.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence> </xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="namespaceMappingRegistryType">

<xsd:annotation>

<xsd:documentation>

A registry mapping XML namespace to/from Java packages.

Elements:

"namespaceMapping"* - a list of mappings.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="namespaceMapping"
type="tns:namespaceMappingType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="namespaceMappingType">

<xsd:annotation>

<xsd:documentation>

134 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

One XML namespace to/from Java package mapping.

Attributes:

"namespace" - XML namespace name;

"packageName" - Java package name.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

</xsd:sequence>

<xsd:attribute name="namespace" type="xsd:anyURI" use="required"/>

<xsd:attribute name="packageName" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:schema>

XML Schema for Deployment Descriptors
The following code is the XML schema for creating Web service deployment
descriptors:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://java.sun.com/xml/ns/jax-rpc/ri/dd"

targetNamespace="http://java.sun.com/xml/ns/jax-rpc/ri/dd"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

version="1.0">

<xsd:annotation>

<xsd:documentation>

This is the schema for the deployment descriptors(jaxrpc-ri.xml).

The top level element must be "webServices".

</xsd:documentation>

</xsd:annotation>

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/dd
http://java.sun.com/xml/ns/jax-rpc/ri/dd

Appendix A XML Schema Definitions 135

 <xsd:element name="webServices">

<xsd:annotation>

<xsd:documentation>

The top-level element.

Attributes:

"version" - version number;

"targetNamespaceBase"? - base URI for thetargetNamespace of the
WSDL documents generated for the endpoints that don’t have their
own model file;

"typeNamespaceBase"? - same as "targetNamespaceBase",but used for
the XML Schema documents embedded in the generated WSDL
documents;

"urlPatternBase"? - base URL pattern for all endpoints; it can be
overridden by using and "endpointMapping" (see below).

For all these base properties, the value used for a particular
endpoint is given by the base value with the endpoint name appended
to it.

Elements:

"endpoint"* - a sequence of endpoint descriptions;

"endpointMapping"* - a sequence of endpoint mappings.

</xsd:documentation>

</xsd:annotation>

 <xsd:complexType>

<xsd:sequence>

<xsd:element name="endpoint"
type="tns:endpointType"minOccurs="0" maxOccurs="unbounded"/>

<xsd:element
name="endpointMapping"type="tns:endpointMappingType"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="version" type="xsd:string"use="required"/>

<xsd:attribute name="targetNamespaceBase" type="xsd:string"/>

<xsd:attribute name="typeNamespaceBase" type="xsd:string"/>

136 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

<xsd:attribute name="urlPatternBase" type="xsd:string"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="endpointType">

<xsd:annotation>

<xsd:documentation>

An endpoint description.

Attributes:

"name" - the name of the endpoint;

"displayName"? - a human-readable name for the endpoint;

"description"? - a description of the endpoint;

"interface"? - the name of the service endpoint interface;

"implementation"? - the name of the service implementation class;

"model"? - a resource pointing to a model file describing the
endpoint.

Elements:

"handlerChains"? - the handler chains for the endpoint.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="handlerChains" type="tns:handlerChainsType"
minOccurs="0"/>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="displayName" type="xsd:string"/>

<xsd:attribute name="description" type="xsd:string"/>

<xsd:attribute name="interface" type="xsd:string"/>

<xsd:attribute name="implementation" type="xsd:string"/>

<xsd:attribute name="model" type="xsd:anyURI"/>

 </xsd:complexType>

Appendix A XML Schema Definitions 137

 <xsd:complexType name="endpointMappingType">

<xsd:annotation>

<xsd:documentation>

An endpoint mapping entry, similar to servlet-mapping in web.xml.

Attributes:

"endpointName" - the name of the endpoint;

"urlPattern" - the URL pattern for the endpoint.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

</xsd:sequence>

<xsd:attribute name="endpointName" type="xsd:string"
use="required"/>

<xsd:attribute name="urlPattern" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="handlerChainsType">

<xsd:annotation>

<xsd:documentation>

A set of handlerChains. In a deployment descriptor, only
server-side chains make sense.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="chain" type="tns:chainType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="chainType">

<xsd:annotation>

138 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

xsd:documentation>

A handler chain.

Attributes:

"runAt" - specifies whether the chain must run on the client or
the server;

"roles" - the SOAP roles for the chain.

Elements:

"handler"* - a sequence of handlers that form this chain.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="handler" type="tns:handlerType" minOccurs="0"
maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="runAt" type="tns:runAtType" use="required"/>

<xsd:attribute name="roles" type="tns:roleListType"/>

 </xsd:complexType>

 <xsd:simpleType name="roleListType">

<xsd:annotation>

<xsd:documentation>

A list of SOAP roles, i.e. a list of URIs.

</xsd:documentation>

</xsd:annotation>

<xsd:list itemType="xsd:anyURI"/>

 </xsd:simpleType>

 <xsd:complexType name="handlerType">

<xsd:annotation>

<xsd:documentation>

A handler description.

Appendix A XML Schema Definitions 139

Attributes:

"className" - the name of the handler’s class;

"headers" - the names of the headers consumed by this handler.

Elements:

"property"* - initialization properties for this handler.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

<xsd:element name="property" type="tns:propertyType"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="className" type="xsd:string" use="required"/>

<xsd:attribute name="headers" type="tns:headerListType"/>

 </xsd:complexType>

 <xsd:simpleType name="headerListType">

<xsd:annotation>

<xsd:documentation>

A list of header names, i.e. a list of QNames.

</xsd:documentation>

</xsd:annotation>

<xsd:list itemType="xsd:QName"/>

 </xsd:simpleType>

 <xsd:complexType name="propertyType">

<xsd:annotation>

<xsd:documentation>

An initialization property for a handler.

Attributes:

"name" - the name of the property;

"value" - its value.

140 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:simpleType name ="runAtType">

<xsd:annotation>

<xsd:documentation>

The places a handler chain can run at, one of "client" or
"server".

</xsd:documentation>

</xsd:annotation>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="client"/>

<xsd:enumeration value="server"/>

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

XML Schema for Exported wscompile Model
Files
The following code is the XML schema for exported wscompile model files:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://java.sun.com/xml/ns/jax-rpc/ri/model"

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/model"

Appendix A XML Schema Definitions 141

targetNamespace="http://java.sun.com/xml/ns/jax-rpc/ri/model"

elementFormDefault="unqualified"

attributeFormDefault="unqualified" version="1.0">

<xsd:annotation>

<xsd:documentation>

This is the schema for exported wscompile model files. An
exported model is a graph of objects, some of which are
"immediate" (e.g. integers, strings). Immediate objects have
exactly one value.

Non-immediate objects have a set of object-valued properties.

</xsd:documentation>

</xsd:annotation>

 <xsd:element name="model" form="qualified">

<xsd:annotation>

<xsd:documentation>

A model is a sequence of definitions, which can be of three
kinds:

"object" - object definition;

"iobject" - immediate object definition;.

"property" - property definition.

In addition, a model has a version number ("version" attribute).

</xsd:documentation>

</xsd:annotation>

 <xsd:complexType>

<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:choice>

<xsd:element name="object" type="tns:objectType"/>

<xsd:element name="iobject" type="tns:iobjectType"/>

<xsd:element name="property" type="tns:propertyType"/>

</xsd:choice>

</xsd:sequence>

http://java.sun.com/xml/ns/jax-rpc/ri/model

142 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

<xsd:attribute name="version" type="xsd:string" use="required"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:complexType name="objectType">

<xsd:annotation>

<xsd:documentation>

Object definition. Contains a unique id as well as a type name
for the object.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence/>

<xsd:attribute name="id" type="xsd:string" use="required"/>

<xsd:attribute name="type" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="iobjectType">

<xsd:annotation>

<xsd:documentation>

Immediate object definition. In addition to id and type, it
contains a value.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence/>

<xsd:attribute name="id" type="xsd:string" use="required"/>

<xsd:attribute name="type" type="xsd:string" use="required"/>

<xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

 <xsd:complexType name="propertyType">

<xsd:annotation>

Appendix A XML Schema Definitions 143

<xsd:documentation>

Property definition. It says that the "subject" (identified by
id) has a property called "name" with the object of id "value" as
its value.

</xsd:documentation>

</xsd:annotation>

<xsd:sequence/>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="subject" type="xsd:string" use="required"/>

<xsd:attribute name="value" type="xsd:string" use="required"/>

 </xsd:complexType>

</xsd:schema>

XML Schema for Runtime Descriptors
The following code is the XML schema for runtime descriptors:

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:tns="http://java.sun.com/xml/ns/jax-rpc/ri/runtime"

targetNamespace="http://java.sun.com/xml/ns/jax-rpc/ri/runtime"

elementFormDefault="qualified"

attributeFormDefault="unqualified"

version="1.0">

<xsd:annotation>

<xsd:documentation>

This is the schema for the runtime descriptors
(jaxrpc-ri-runtime.xml).

The top-level element must be "endpoints".

</xsd:documentation>

</xsd:annotation>

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/runtime
http://java.sun.com/xml/ns/jax-rpc/ri/runtime

144 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

 <xsd:element name="endpoints">

<xsd:annotation>

<xsd:documentation>

The top level element. It contains a "version" attribute and a
sequence of endpoint definitions.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:sequence>

<xsd:element name="endpoint" type="tns:endpointType"
minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="version" type="xsd:string" use="required"/>

</xsd:complexType>

 </xsd:element>

 <xsd:complexType name="endpointType">

<xsd:annotation>

<xsd:documentation>

An endpoint definition has several attributes:

"name" - the endpoint name;

"interface" - the name of the Java interface for the endpoint
(called "service endpoint interface" in the spec);

"implementation" - the name of the endpoint implementation class;

"tie" - the name of the tie class for the endpoint;

"model"? - the name of a resource corresponding to the model file
for the endpoint;

"wsdl"? - the name of a resource corresponding to the WSDL
document for the endpoint;

"service"? - the QName of the WSDL service that owns this
endpoint;

"port"? - the QName of the WSDL port for this endpoint;

"urlpattern" - the URL pattern this endpoint is mapped to.

Appendix A XML Schema Definitions 145

</xsd:documentation>

</xsd:annotation>

<xsd:sequence>

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="interface" type="xsd:string" use="required"/>

<xsd:attribute name="implementation" type="xsd:string"
use="required"/>

<xsd:attribute name="tie" type="xsd:string" use="required"/>

<xsd:attribute name="model" type="xsd:string"/>

<xsd:attribute name="wsdl" type="xsd:anyURI"/>

<xsd:attribute name="service" type="xsd:anyURI"/>

<xsd:attribute name="port" type="xsd:anyURI"/>

<xsd:attribute name="urlpattern" type="xsd:anyURI" use="required"/>

 </xsd:complexType>

</xsd:schema>

146 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

147

Glossary

This glossary provides definitions for common terms used to describe the
Application Server deployment and development environment. For a glossary of
standard J2EE terms, please see the J2EE glossary at:

http://java.sun.com/j2ee/glossary.html

access control The means of securing your Application Server by controlling who
and what has access to it.

ACL Access Control List. ACLs are text files that contain lists identifying who can
access the resources stored on your Application Server. See also general ACL.

activation The process of transferring an enterprise bean's state from secondary
storage to memory.

Administration interface The set of browser based forms used to configure and
administer the Application Server. See also CLI.

administration server An application server instance dedicated to providing the
administrative functions of the Application Server, including deployment,
browser-based administration, and access from the command-line interface (CLI)
and Integrated Development Environment (IDE).

administrative domain Multiple administrative domains is a feature within the
Sun ONE Application Server that allows different administrative users to create
and manage their own domains. A domain is a set of instances, created using a
common set of installed binaries in a single system.

API Applications Program Interface. A set of instructions that a computer
program can use to communicate with other software or hardware that is designed
to interpret that API.

http://java.sun.com/j2ee/glossary.html

148 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

applet A small application written in Java that runs in a web browser. Typically,
applets are called by or embedded in web pages to provide special functionality.
By contrast, a servlet is a small application that runs on a server.

application A group of components packaged into an .ear file with a J2EE
application deployment descriptor. See also component, module.

application client container See container.

application server A reliable, secure, and scalable software platform in which
business applications are run. Application servers typically provide high-level
services to applications, such as component lifecycle, location, and distribution and
transactional resource access,

application tier A conceptual division of a J2EE application:

client tier: The user interface (UI). End users interact with client software (such as a
web browser) to use the application.

server tier: The business logic and presentation logic that make up your application,
defined in the application’s components.

data tier: The data access logic that enables your application to interact with a data
source.

assembly The process of combining discrete components of an application into a
single unit that can be deployed. See also deployment.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with
other work.

attribute A name-value pair in a request object that can be set by a servlet. Also a
name-value pair that modifies an element in an XML file. Contrast with parameter.
More generally, an attribute is a unit of metadata.

auditing The method(s) by which significant events are recorded for subsequent
examination, typically in error or security breach situations.

authentication The process by which an entity (such as a user) proves to another
entity (such as an application) that it is acting on behalf of a specific identity (the
user’s security identity). Sun ONE Application Server supports basic, form-based,
and SSL mutual authentication. See also client authentication, digest authentication,
host-IP authentication, pluggable authentication.

Glossary 149

authorization The process by which access to a method or resource is
determined. Authorization in the J2EE platform depends upon whether the user
associated with a request through authentication is in a given security role. For
example, a human resources application may authorize managers to view personal
employee information for all employees, but allow employees to only view their
own personal information.

backup store A repository for data, typically a file system or database. A backup
store can be monitored by a background thread (or sweeper thread) to remove
unwanted entries.

bean-managed persistence Data transfer between an entity bean's variables and
a data store. The data access logic is typically provided by a developer using Java
Database Connectivity (JDBC) or other data access technologies. See also
container-managed persistence.

bean-managed transaction Where transaction demarcation for an enterprise
bean is controlled programmatically by the developer. See also container-managed
transaction.

BLOB Binary Large OBject. A data type used to store and retrieve complex object
fields. BLOBs are binary or serializable objects, such as pictures, that translate into
large byte arrays, which are then serialized into container-managed persistence
fields.

BMP See bean-managed persistence.

BMT See bean-managed transaction.

broker The Sun ONE Message Queue entity that manages JMS message routing,
delivery, persistence, security, and logging, and which provides an interface that
allows an administrator to monitor and tune performance and resource use.

business logic The code that implements the essential business rules of an
application, rather than data integration or presentation logic.

CA See certificate authority or connector architecture.

150 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

cached rowset A CachedRowSet object permits you to retrieve data from a data
source, then detach from the data source while you examine and modify the data.
A cached row set keeps track both of the original data retrieved, and any changes
made to the data by your application. If the application attempts to update the
original data source, the row set is reconnected to the data source, and only those
rows that have changed are merged back into the database.

Cache Control Directives Cache-control directives are a way for Sun ONE
Application Server to control what information is cached by a proxy server. Using
cache-control directives, you override the default caching of the proxy to protect
sensitive information from being cached, and perhaps retrieved later. For these
directives to work, the proxy server must comply with HTTP 1.1.

callable statement A class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures.

certificate Digital data that specifies the name of an individual, company, or
other entity, and certifies that the public key included in the certificate belongs to
that entity. Both clients and servers can have certificates.

certificate authority A company that sells certificates over the Internet, or a
department responsible for issuing certificates for a company’s intranet or extranet.

cipher A cryptographic algorithm (a mathematical function), used for encryption
or decryption.

CKL Compromised Key List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the key has been compromised. See also CRL.

classloader A Java component responsible for loading Java classes according to
specific rules. See also classpath.

classpath A path that identifies directories and JAR files where Java classes are
stored. See also classloader.

CLI Command-line interface. An interface that enables you to type executable
instructions at a user prompt. See also Administration interface.

client authentication The process of authenticating client certificates by
cryptographically verifying the certificate signature and the certificate chain
leading to the CA on the trust CA list. See also authentication, certificate authority.

Glossary 151

client contract A contract that determines the communication rules between a
client and the EJB container, establishes a uniform development model for
applications that use enterprise beans, and guarantees greater reuse of beans by
standardizing the relationship with the client.

CMP See container-managed persistence.

CMR See container-managed relationship.

CMT See container-managed transaction.

co-locate To position a component in the same memory space as a related
component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit To complete a transaction by sending the required commands to the
database. See rollback, transaction.

component A web application, enterprise bean, message-driven bean,
application client, or connector. See also application, module.

component contract A contract that establishes the relationship between an
enterprise bean and its container.

configuration The process of tuning the server or providing metadata for a
component. Normally, the configuration for a specific component is kept in the
component’s deployment descriptor file. See also administration server,
deployment descriptor.

connection factory An object that produces connection objects that enable a J2EE
component to access a resource. Used to create JMS connections (TopicConnection
or QueueConnection) which allow application code to make use of the provided
JMS implementation. Application code uses the JNDI Service to locate connection
factory objects using a JNDI Name.

Connection Pool allows highly efficient access to a database by caching and
reusing physical connections, thus avoiding connection overhead and allowing a
small number of connections to be shared between a large number of threads. See
also JDBC connection pool

152 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

connector A standard extension mechanism for containers to provide
connectivity to EISs. A connector is specific to an EIS and consists of a resource
adapter and application development tools for EIS connectivity. The resource
adapter is plugged in to a container through its support for system level contracts
defined in the connector architecture.

connector architecture An architecture for the integration of J2EE applications
with EISs. There are two parts to this architecture: a EIS vendor-provided resource
adapter and a J2EE server that allows this resource adapter to plug in. This
architecture defines a set of contracts that a resource adapter has to support to plug
in to a J2EE server, for example, transactions, security and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to a specific type of J2EE component. Sun ONE Application
Server provides web and EJB containers, and supports application client
containers. See also component.

container-managed persistence Where the EJB container is responsible for entity
bean persistence. Data transfer between an entity bean's variables and a data store,
where the data access logic is provided by the Application Server. See also
bean-managed persistence.

container-managed relationship A relationship between fields in a pair of
classes where operations on one side of the relationship affect the other side.

container-managed transaction Where transaction demarcation for an enterprise
bean is specified declaratively and automatically controlled by the EJB container
See also bean-managed transaction.

control descriptor A set of enterprise bean configuration entries that enable you
to specify optional individual property overrides for bean methods, plus enterprise
bean transaction and security properties.

conversational state Where the state of an object changes as the result of repeated
interactions with the same client. See also persistent state.

cookie A small collection of information that can be transmitted to a calling web
browser, then retrieved on each subsequent call from that browser so the server
can recognize calls from the same client. Cookies are domain-specific and can take
advantage of the same web server security features as other data interchange
between your application and the server.

Glossary 153

CORBA Common Object Request Broker Architecture. A standard architecture
definition for object-oriented distributed computing.

COSNaming Service An an IIOP-based naming service.

CosNaming provider To support a global JNDI name space (accessible to IIOP
application clients), Application Server includes J2EE based CosNaming provider
which supports binding of CORBA references (remote EJB references).

create method A method for customizing an enterprise bean at creation.

CRL Certificate Revocation List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the certificate has been revoked. See also CKL.

data access logic Business logic that involves interacting with a data source.

database A generic term for Relational Database Management System (RDBMS).
A software package that enables the creation and manipulation of large amounts of
related, organized data.

database connection A database connection is a communication link with a
database or other data source. Components can create and manipulate several
database connections simultaneously to access data.

data source A handle to a source of data, such as a database. Data sources are
registered with the iPlanet Application Server and then retrieved
programmatically in order to establish connections and interact with the data
source. A data source definition specifies how to connect to the source of data.

DataSource Object A DataSource object has a set of properties that identify and
describe the real world data source that it represents.

declarative security Declaring security properties in the component’s
configuration file and allowing the component’s container (for instance, a bean’s
container or a servlet engine) to manage security implicitly. This type of security
requires no programmatic control. Opposite of programmatic security. See
container-managed persistence.

declarative transaction See container-managed transaction.

decryption The process of transforming encrypted information so that it is
intelligible again.

154 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

delegation An object-oriented technique for using the composition of objects as
an implementation strategy. One object, which is responsible for the result of an
operation, delegates the implementation to another object, its delegatee. For
example, a classloader often delegates the loading of some classes to its parent.

deployment The process of distributing the files required by an application to an
application server to make the application available to run on the application
server. See also assembly.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container options
and describes specific configuration requirements that a deployer must resolve.

destination resource An objects that represents Topic or Queue destinations.
Used by applications to read/write to Queues or publish/subscribe to Topics.
Application code uses the JNDI Service to locate JMS resource objects using a JNDI
Name.

digest authentication A for of authentication that allows the user to authenticate
based on user name and password without sending the user name and password
as cleartext.

digital signature an electronic security mechanism used to authenticate both a
message and the signer.

directory server See Sun ONE Directory Server.

Distinguished Name See DN, DN attribute.

distributable session A user session that is distributable among all servers in a
cluster.

distributed transaction A single transaction that can apply to multiple
heterogeneous databases that may reside on separate servers.

Document Root The document root (sometimes called the primary document
directory) is the central directory that contains all the virtual server’s files you want
to make available to remote clients.

Glossary 155

Domain Registry The Domain Registry is a single data structure that contains
domain-specific information, for all the domains created and configured on an
installation of Application Server, such as domain name, domain location, domain
port, domain host.

DTD Document Type Definition. A description of the structure and properties of
a class of XML files.

DN Distinguished Name. The string representation for the name of an entry in a
directory server.

DN attribute Distinguished Name attribute. A text string that contains
identifying information for an associated user, group, or object.

dynamic redeployment The process of redeploying a component without
restarting the server.

dynamic reloading The process of updating and reloading a component without
restarting the server. By default, servlet, JavaServer Page (JSP), and enterprise bean
components can be dynamically reloaded. Also known as versioning.

EAR file Enterprise ARchive file. An archive file that contains a J2EE application.
EAR files have the .ear extension. See also JAR file.

e-commerce Electronic commerce. A term for business conducted over the
Internet.

EIS Enterprise Information System. This can be interpreted as a packaged
enterprise application, a transaction system, or a user application. Often referred to
as an EIS. Examples of EISs include: R/3, PeopleSoft, Tuxedo, and CICS.

EJB container See container.

EJB QL EJB Query Language. A query language that provides for navigation
across a network of entity beans defined by container-managed relationships.

EJB technology An enterprise bean is a server-side component that encapsulates
the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the
enterprise beans might implement the business logic in methods called
checkInventoryLevel and orderProduct. By invoking these methods, remote
clients can access the inventory services provided by the application. See also
container, entity bean, message-driven bean, and session bean.

156 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

ejbc utility The compiler for enterprise beans. It checks all EJB classes and
interfaces for compliance with the EJB specification, and generates stubs and
skeletons.

element A member of a larger set; for example, a data unit within an array, or a
logic element. In an XML file, it is the basic structural unit. An XML element
contains subelements or data, and may contain attributes.

encapsulate To localize knowledge within a module. Because objects encapsulate
data and implementation, the user of an object can view the object as a black box
that provides services. Instance variables and methods can be added, deleted, or
changed, but if the services provided by the object remain the same, code that uses
the object can continue to use it without being rewritten.

encryption The process of transforming information so it is unintelligible to
anyone but the intended recipient.

entity bean An enterprise bean that relates to physical data, such as a row in a
database. Entity beans are long lived, because they are tied to persistent data.
Entity beans are always transactional and multi-user aware. See message-driven
bean, read-only bean, session bean.

ERP Enterprise Resource Planning. A multi-module software system that
supports enterprise resource planning. An ERP system typically includes a
relational database and applications for managing purchasing, inventory,
personnel, customer service, shipping, financial planning, and other important
aspects of the business.

event A named action that triggers a response from a module or application.

external JDNI resource Allows the JNDI Service to act as a bridge to a remote
JNDI server.

facade Where an application-specific stateful session bean is used to manage
various Enterprise JavaBeans (EJBs).

factory class A class that creates persistence managers. See also connection
factory.

failover A recovery process where a bean can transparently survive a server
crash.

Glossary 157

finder method Method which enables clients to look up a bean or a collection of
beans in a globally available directory.

firewall an electronic boundary that allows a network administrator to restrict
the flow of information across networks in order to enforce security.

File Cache The file cache contains information about files and static file content.
The file cache is turned on by default.

form action handler A specially defined method in servlet or application logic
that performs an action based on a named button on a form.

FQDN Fully Qualified Domain Name. The full name of a system, containing its
hostname and its domain name.

general ACL A named list in the Sun ONE Directory Server that relates a user or
group with one or more permissions. This list can be defined and accessed
arbitrarily to record any set of permissions.

generic servlet A servlet that extends javax.servlet.GenericServlet. Generic
servlets are protocol-independent, meaning that they contain no inherent support
for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple
components. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a
transaction manager and can span multiple databases and processes. The
transaction manager typically uses the XA protocol to interact with the database
backends. See local transaction.

granularity level The approach to dividing an application into pieces. A high level
of granularity means that the application is divided into many smaller, more
narrowly defined Enterprise JavaBeans (EJBs). A low level of granularity means the
application is divided into fewer pieces, producing a larger program.

group A group of users that are related in some way. Group membership is
usually maintained by a local system administrator. See user, role.

handle An object that identifies an enterprise bean. A client may serialize the
handle, and then later deserialize it to obtain a reference to the bean.

158 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Heuristic Decision The transactional mode used by a particular transaction. A
transaction has to either Commit or Rollback.

home interface A mechanism that defines the methods that enable a client to
create and remove an enterprise bean.

host-IP authentication A security mechanism used for of limiting access to the
Administration Server, or the files and directories on a web site by making them
available only to clients using specific computers.

HTML Hypertext Markup Language. A coding markup language used to create
documents that can be displayed by web browsers. Each block of text is
surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP Hypertext Transfer Protocol. The Internet protocol that fetches hypertext
objects from remote hosts. It is based on TCP/IP.

HTTP servlet A servlet that extends javax.servlet.HttpServlet. These
servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

HTTPS HyperText Transmission Protocol, Secure. HTTP for secure transactions.

IDE Integrated Development Environment. Software that allows you to create,
assemble, deploy, and debug code from a single, easy-to-use interface.

IIOP Internet Inter-ORB Protocol. Transport-level protocol used by both Remote
Method Invocation (RMI) over IIOP and Common Object Request Broker
Architecture (CORBA).

IIOP Listener The IIOP listener is a listen socket that listens on a specified port
and accepts incoming connections from CORBA based client application

IP address A structured, numeric identifier for a computer or other device on a
TCP/IP network. The format of an IP address is a 32-bit numeric address written as
four numbers separated by periods. Each number can be zero to 255. For example,
123.231.32.2 could be an IP address.

IMAP Internet Message Access Protocol.

isolation level See transaction isolation level.

Glossary 159

J2EE Java 2 Enterprise Edition. An environment for developing and deploying
multi-tiered, web-based enterprise applications. The J2EE platform consists of a set
of services, application programming interfaces (APIs), and protocols that provide
the functionality for developing these applications.

JAF The JavaBeans Activation Framework (JAF) integrates support for MIME
data types into the Java platform. See Mime Types.

JAR file Java ARchive file. A file used for aggregating many files into one file.
JAR files have the.jar extension.

JAR file contract Java ARchive contract that specifies what information must be
in the enterprise bean package.

JAR file format Java ARchive file format. A platform-independent file format
that aggregates many files into one file. Multiple applets and their requisite
components (class files, images, sounds, and other resource files) can be bundled in
a JAR file and subsequently downloaded to a browser in a single HTTP transaction.
The JAR files format also supports file compression and digital signatures.

JavaBean A portable, platform-independent reusable component model.

Java IDL Java Interface Definition Language. APIs written in the Java
programming language that provide a standards-based compatibility and
connectivity with Common Object Request Broker Architecture (CORBA).

JavaMail session An object used by an application to interact with a mail store.
Application code uses the JNDI Service to locate JavaMail session resources objects
using a JNDI name.

JAXM Java API for XML Messaging. Enables applications to send and receive
document-oriented XML messages using the SOAP standard. These messages can
be with or without attachments.

JAXP Java API for XML Processing. A Java API that supports processing of XML
documents using DOM, SAX, and XSLT. Enables applications to parse and
transform XML documents independent of a particular XML processing
implementation.

JAXR Java API for XML Registry. Provides a uniform and standard Java API for
accessing different kinds of XML registries. Enables users to build, deploy and
discover web services.

160 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

JAX-RPC Java API for XML-based Remote Procedure Calls. Enables developers
to build interoperable web applications and web services based on XML-based
RPC protocols.

JDBC Java Database Connectivity. A standards-based set of classes and
interfaces that enable developers to create data-aware components. JDBC
implements methods for connecting to and interacting with data sources in a
platform- and vendor-independent way.

JDBC connection pool A pool that combines the JDBC data source properties
used to specify a connection to a database with the connection pool properties.

JDBC resource A resource used to connect an application running within the
application server to a database using an existing JDBC connection pool. Consists
of a JNDI name (which is used by the application) and the name of an existing
JDBC connection pool.

JDK Java Development Kit. The software that includes the APIs and tools that
developers need to build applications for those versions of the Java platform that
preceded the Java 2 Platform. See also JDK.

JMS Java Message Service. A standard set of interfaces and semantics that define
how a JMS client accesses the facilities of a JMS message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS-administered object A pre-configured JMS object—a connection factory or
a destination—created by an administrator for use by one or more JMS clients.

The use of administered objects allows JMS clients to be provider-independent;
that is, it isolates them from the proprietary aspects of a provider. These objects are
placed in a JNDI name space by an administrator and are accessed by JMS clients
using JNDI lookups.

JMS client An application (or software component) that interacts with other JMS
clients using a JMS message service to exchange messages.

JMS connection factory The JMS administered object a JMS client uses to create a
connection to a JMS message service.

Glossary 161

JMS destination The physical destination in a JMS message service to which
produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an JMS
administered object that a JMS client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

JMS messages Asynchronous requests, reports, or events that are consumed by
JMS clients. A message has a header (to which additional fields can be added) and
a body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

JMS Service Software that provides delivery services for a JMS messaging
system, including connections to JMS clients, message routing and delivery,
persistence, security, and logging. The message service maintains physical
destinations to which JMS clients send messages, and from which the messages are
delivered to consuming clients.

JNDI Java Naming and Directory Interface. This is a standard extension to the
Java platform, providing Java technology-enabled applications with a unified
interface to multiple naming and directory services in the enterprise. As part of the
Java Enterprise API set, JNDI enables seamless connectivity to heterogeneous
enterprise naming and directory services.

JNDI name A name used to access a resource that has been registered in the JNDI
naming service.

JRE Java Runtime Environment. A subset of the Java Development Kit (JDK)
consisting of the Java virtual machine, the Java core classes, and supporting files
that provides runtime support for applications written in the Java programming
language. See also JDK.

JSP JavaServer Page. A text page written using a combination of HTML or XML
tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard
browser page with the power of a programming language.

jspc utility The compiler for JSPs. It checks all JSPs for compliance with the JSP
specification.

162 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

JTA Java Transaction API. An API that allows applications and J2EE servers to
access transactions.

JTS Java Transaction Service. The Java service for processing transactions.

key-pair file See trust database.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access
protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.
Using Sun ONE Directory Server, a provided LDAP server, you can store all of
your enterprise’s information in a single, centralized repository of directory
information that any application server can access through the network.

LDIF LDAP Data Interchange Format. Format used to represent Sun ONE
Directory Server entries in text form.

lifecycle event A stage in the server life cycle, such as startup or shutdown.

lifecycle module A module that listens for and performs its tasks in response to
events in the server life cycle.

Listener A class, registered with a posting object, that says what to do when an
event occurs.

local database connection The transaction context in a local connection is local to
the current process and to the current data source, not distributed across processes
or across data sources.

local interface An interface that provides a mechanism for a client that is located
in the same Java Virtual Machine (JVM) with a session or entity bean to access that
bean.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted
within a single process. Local transactions work only against a single backend.
Local transactions are typically demarcated using JDBC APIs. See also global
transaction.

mapping The ability to tie an object-oriented model to a relational model of data,
usually the schema of a relational database. The process of converting a schema to
a different structure. Also refers to the mapping of users to security roles.

Glossary 163

MDB See message-driven bean.

message-driven bean An enterprise bean that is an asynchronous message
consumer. A message-driven bean has no state for a specific client, but its instance
variables may contain state across the handling of client messages, including an
open database connection and an object reference to an EJB object. A client accesses
a message-driven bean by sending messages to the destination for which the
message-driven bean is a message listener.

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

metadata Information about a component, such as its name, and specifications
for its behavior.

MIME Data Type MIME (Multi-purpose Internet Mail Extension) types control
what types of multimedia files your system supports.

module A web application, enterprise bean, message-driven bean, application
client, or connector that has been deployed individually, outside an application. See
also application, component, lifecycle module.

NTV Name, Type, Value.

object persistence See persistence.

O/R mapping tool Object-to-relational [database] tool. A mapping tool within
the Application Server Administrative interface that creates XML deployment
descriptors for entity beans.

package A collection of related classes that are stored in a common directory.
They are often literally packaged together in a Java archive JAR file. See also
assembly, deployment.

parameter A name/value pair sent from the client, including form field data,
HTTP header information, and so on, and encapsulated in a request object.
Contrast with attribute. More generally, an argument to a Java method or database-
prepared command.

passivation A method of releasing a bean’s resources from memory without
destroying the bean. In this way, a bean is made to be persistent, and can be
recalled without the overhead of instantiation.

164 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

permission A set of privileges granted or denied to a user or group. See also ACL.

persistence For enterprise beans, the protocol for transferring the state of an
entity bean between its instance variables and an underlying database. Opposite of
transience. For sessions, the session storage mechanism.

persistence manager The entity responsible for the persistence of the entity beans
installed in the container.

persistent state Where the state of an object is kept in persistent storage, usually a
database.

pluggable authentication A mechanism that allows J2EE applications to use the
Java Authentication and Authorization Service (JAAS) feature from the J2SE
platform. Developers can plug in their own authentication mechanisms.

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

pooling The process of providing a number of preconfigured resources to
improve performance. If a resource is pooled, a component can use an existing
instance from the pool rather than instantiating a new one. In the Application
Server, database connections, servlet instances, and enterprise bean instances can
all be pooled.

POP3 Post Office Protocol

prepared command A database command (in SQL) that is precompiled to make
repeated execution more efficient. Prepared commands can contain parameters. A
prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a QUERY, UPDATE, or INSERT
statement that is used repeatedly to fetch data. A prepared statement contains one
or more prepared commands.

presentation layout The format of web page content.

presentation logic Activities that create a page in an application, including
processing a request, generating content in response, and formatting the page for
the client. Usually handled by a web application.

Glossary 165

primary key The unique identifier that enables the client to locate a particular
entity bean.

primary key class name A variable that specifies the fully qualified class name of
a bean’s primary key. Used for JNDI lookups.

principal The identity assigned to an entity as a result of authentication.

private key See public key cryptography.

process Execution sequence of an active program. A process is made up of one or
more threads.

programmatic security The process of controlling security explicitly in code
rather than allowing the component’s container (for instance, a bean’s container or
a servlet engine) to handle it. Opposite of declarative security.

programmer-demarcated transaction See bean-managed transaction.

property A single attribute that defines the behavior of an application
component. In the server.xml file, a property is an element that contains a
name/value pair.

public key cryptography A form of cryptography in which each user has a
public key and a private key. Messages are sent encrypted with the receiver's
public key; the receiver decrypts them using the private key. Using this method,
the private key never has to be revealed to anyone other than the user.

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

QOS QOS (Quality of Service) refers to the performance limits you set for a
server instance or virtual server. For example, if you are an ISP, you might want to
charge different amounts of money for virtual servers depending on how much
bandwidth is provided. You can limit two areas: the amount of bandwidth and the
number of connections.

166 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

RAR file Resource ARchive. A JAR archive that contains a resource adapter.

RDB Relational database.

RDBMS Relational database management system.

read-only bean An entity bean that is never modified by an EJB client. See also
entity bean.

realm A scope over which a common security policy is defined and enforced by
the security administrator of the security service. Also called a security policy domain
or security domain in the J2EE specification.

remote interface One of two interfaces for an Enterprise JavaBean. The remote
interface defines the business methods callable by a client.

request object An object that contains page and session data produced by a
client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager An object that acts as a facilitator between a resource such as a
database or message broker, and client(s) of the resource such as Application
Server processes. Controls globally-available data sources.

resource reference An element in a deployment descriptor that identifies the
component’s coded name for the resource.

response object An object that references the calling client and provides methods
for generating output for the client.

ResultSet An object that implements the java.sql.ResultSet interface.
ResultSets are used to encapsulate a set of rows retrieved from a database or
other source of tabular data.

reusable component A component created so that it can be used in more than
one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation. A Java standard set of APIs that enable
developers to write remote interfaces that can pass objects to remote processes.

RMIC Remote Method Invocation Compiler.

role A functional grouping of subjects in an application, represented by one or
more groups in a deployed environment. See also user, group.

Glossary 167

rollback Cancellation of a transaction.

row A single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or
other source of tabular data. RowSet extends the java.sql.ResultSet interface,
enabling ResultSet to act as a JavaBeans component.

RPC Remote Procedure Call. A mechanism for accessing a remote object or
service.

runtime system The software environment in which programs run. The runtime
system includes all the code necessary to load programs written in the Java
programming language, dynamically link native methods, manage memory, and
handle exceptions. An implementation of the Java virtual machine is included,
which may be a Java interpreter.

SAF Server Application Function. A function that participates in request
processing and other server activities

schema The structure of the underlying database, including the names of tables,
the names and types of columns, index information, and relationship (primary and
foreign key) information.

Secure Socket Layer See SSL.

security A screening mechanism that ensures that application resources are only
accessed by authorized clients.

serializable object An object that can be deconstructed and reconstructed, which
enables it to be stored or distributed among multiple servers.

server instance A Sun ONE Application Server can contain multiple instances in
the same installation on the same machine. Each instance has its own directory
structure, configuration, and deployed applications. Each instance can also contain
multiple virtual servers. See also virtual server.

servlet An instance of the Servlet class. A servlet is a reusable application that
runs on a server. In the Application Server, a servlet acts as the central dispatcher
for each interaction in an application by performing presentation logic, invoking
business logic, and invoking or performing presentation layout.

168 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

servlet engine An internal object that handles all servlet metafunctions.
Collectively, a set of processes that provide services for a servlet, including
instantiation and execution.

servlet runner The part of the servlet engine that invokes a servlet with a request
object and a response object. See servlet engine.

session An object used by a servlet to track a user’s interaction with a web
application across multiple HTTP requests.

session bean An enterprise bean that is created by a client; usually exists only for
the duration of a single client-server session. A session bean performs operations
for the client, such as calculations or accessing other EJBs. While a session bean
may be transactional, it is not recoverable if a system crash occurs. Session bean
objects can be either stateless (not associated with a particular client) or stateful
(associated with a particular client), that is, they can maintain conversational state
across methods and transactions. See also stateful session bean, stateless session
bean.

session cookie A cookie that is returned to the client containing a user session
identifier. See also sticky cookie.

session timeout A specified duration after which the Application Server can
invalidate a user session. See session.

single sign-on A situation where a user’s authentication state can be shared
across multiple J2EE applications in a single virtual server instance.

SMTP Simple Mail Transport Protocol

SNMP SNMP (Simple Network Management Protocol) is a protocol used to
exchange data about network activity. With SNMP, data travels between a
managed device and a network management station (NMS). A managed device is
anything that runs SNMP: hosts, routers, your web server, and other servers on
your network. The NMS is a machine used to remotely manage that network.

SOAP The Simple Object Access Protocol (SOAP) uses a combination of
XML-based data structuring and Hyper Text Transfer Protocol (HTTP) to define a
standardized way of invoking methods in objects distributed in diverse operating
environments across the Internet.

SQL Structured Query Language. A language commonly used in relational
database applications. SQL2 and SQL3 designate versions of the language.

Glossary 169

SSL Secure Sockets Layer. A protocol designed to provide secure
communications on the Internet.

state 1. The circumstances or condition of an entity at any given time. 2. A
distributed data storage mechanism which you can use to store the state of an
application using the Application Server feature interface IState2. See also
conversational state, persistent state.

stateful session bean A session bean that represents a session with a particular
client and which automatically maintains state across multiple client-invoked
methods.

stateless session bean A session bean that represents a stateless service. A
stateless session bean is completely transient and encapsulates a temporary piece
of business logic needed by a specific client for a limited time span.

sticky cookie A cookie that is returned to the client to force it to always connect
to the same server process. See also session cookie.

stored procedure A block of statements written in SQL and stored in a database.
You can use stored procedures to perform any type of database operation, such as
modifying, inserting, or deleting records. The use of stored procedures improves
database performance by reducing the amount of information that is sent over a
network.

streaming A technique for managing how data is communicated through HTTP.
When results are streamed, the first portion of the data is available for use
immediately. When results are not streamed, the whole result must be received
before any part of it can be used. Streaming provides a way to allow large amounts
of data to be returned in a more efficient way, improving the perceived
performance of the application.

system administrator The person who administers Application Server software
and deploys Application Server applications.

Application Server RowSet A RowSet object that incorporates the Application
Server extensions.

Sun ONE Directory Server The Sun ONE version of Lightweight Directory
Access Protocol (LDAP). Every instance of Application Server uses Sun ONE
Directory Server to store shared server information, including information about
users and groups. See also LDAP.

170 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

Sun ONE Message Queue The Sun ONE enterprise messaging system that
implements the Java Message Service (JMS) open standard: it is a JMS provider.

TLS Transport Layer Security. A protocol that provides encryption and
certification at the transport layer, so that data can flow through a secure channel
without requiring significant changes to the client and server applications.

table A named group of related data in rows and columns in a database.

thread An execution sequence inside a process. A process may allow many
simultaneous threads, in which case it is multi-threaded. If a process executes each
thread sequentially, it is single-threaded.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction context A transaction’s scope, either local or global. See local
transaction, global transaction.

transaction isolation level Determines the extent to which concurrent
transactions on a database are visible to one-another.

transaction manager An object that controls a global transaction, normally using
the XA protocol. See global transaction.

transaction A set of database commands that succeed or fail as a group. All the
commands involved must succeed for the entire transaction to succeed.

Transaction Recovery Automatic or manual recovery of distributed transactions.

Transaction Attribute A transaction attribute controls the scope of a transaction.

transience A protocol that releases a resource when it is not being used. Opposite
of persistence.

trust database I security file that contains the public and private keys; also
referred to as the key-pair file.

Glossary 171

URI Universal Resource Identifier. Describes a specific resource at a domain.
Locally described as a subset of a base directory, so that /ham/burger is the base
directory and a URI specifies toppings/cheese.html. A corresponding URL
would be http://domain:port/toppings/cheese.html.

URL Uniform Resource Locator. An address that uniquely identifies an HTML
page or other resource. A web browser uses URLs to specify which pages to
display. A URL describes a transport protocol (for example, HTTP, FTP), a domain
(for example, www.my-domain.com), and optionally a URI.

user A person who uses an application. Programmatically, a user consists of a
user name, password, and set of attributes that enables an application to recognize
a client. See also group, role.

user session A series of user application interactions that are tracked by the
server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

virtual server A virtual web server that serves content targeted for a specific
URL. Multiple virtual servers may serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service can direct incoming web
requests to different virtual servers based on the URL. Also called a virtual host.

A web application can be assigned to a specific virtual server. A server instance can
have multiple virtual servers. See also server instance.

WAR file Web ARchive. A Java archive that contains a web module. WAR files
have the.war extension.

web application A collection of servlets, JavaServer Pages, HTML documents,
and other web resources, which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure.

Sun ONE Application Server also supports some non-Java web application
technologies, such as SHTML and CGI.

web cache An Application Server feature that enables a servlet or JSP to cache its
results for a specific duration in order to improve performance. Subsequent calls to
that servlet or JSP within the duration are given the cached results so that the
servlet or JSP does not have to execute again.

http://domain:port/toppings/cheese.html

172 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

web connector plug-in An extension to a web server that enables it to
communicate with the Application Server.

web container See container.

web module An individually deployed web application. See web application.

web server A host that stores and manages HTML pages and web applications,
but not full J2EE applications. The web server responds to user requests from web
browsers.

Web Server Plugin The web server plugin is an HTTP reverse proxy plugin that
allows you to instruct a Sun One Web Server or Application Server to forward
certain HTTP requests to another server.

web service A service offered via the web. A self-contained, self-describing,
modular application that can accept a request from a system across the Internet or
an intranet, process it, and return a response.

WSDL Web Service Description Language. An XML-based language used to
define web services in a standardized way. It essentially describes three
fundamental properties of a web service: definition of the web service, how to
access that web service, and the location of that web service.

UDDI Universal Description, Discovery, and Integration. Provides worldwide
registry of web services for discovery and integration.

XA protocol A database industry standard protocol for distributed transactions.

XML Extensible Markup Language. A language that uses HTML-style tags to
identify the kinds of information used in documents as well as to format
documents.

173

Index

A
accessing elements 82
adding attachment to message 88

accessing attachment part 91
ant build file

creating 29
ant tool 28

using ant tasks 28
application classes 74
arrays 74
asadmin deploy command 42
assembling and deploying JAX-RPC web services 38

war file 39
asynchronous message 79

B
basic authentication over SSL 56
body object 82
build.xml 29

C
call interface method 49
classification scheme 108
Client Certificate Authentication 60
client environment 29

using ant tasks 28
client jar files 29
client using a messaging provider 79
client without using a messaging provider 78
coffee break example 26
config.xml 67
configuration file 67

web services attributes 40
with a WSDL document 68
with rmi interfaces 67

connection 85
creating a SOAP client 85

accessing attachment part 91
adding attachment to message 88
adding contents to a message 88
creating a message 87
getting a connection 86
retrieve message content 90
sending a message 90

D
developing a JAXR client 97
developing JAX-RPC clients

assemble the client 46
call interface method 49
compile the client 46
dynamic proxy method 48
generated stubs method 43
run the client 47

Section E

174 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

using a WSDL 50
DII client

call interface approach 49
dynamic proxy approach 48

document directories
primary 154

document root 154
document-oriented model 16
dynamic proxy method 48

E
ebXML 18
elements of a SOAP message 80
establishing connection

setting properties 99

F
files

build.xml 29
JAX-RPC runtime descriptor 51
jaxrpc-ri.xml 70

G
generated stubs method 43

I
implementing web services

coffee break example 26
invoking web services 42

creating a SOAP client 85
developing a JAXR client 97

J
J2SE SDK classes 73
Java APIs 21

JAXM 77
JAXR 97
SAAJ 77

JavaBeans components 75
javax.activation.DataHandler 90
javax.xml.rpc.Service 48
javax.xml.soap package 72
javax.xml.soap.SoAPConnection.Call() 90
JAXM 24, 77
JAXMServlet class 92
JAXP 22

DOM 22
SAX 22
XSLT 22
XSLTC 22

JAXR 23, 97
JAXR client

assemble 119
authorization 102
creating connection 101
deploy 119
establishing connection 98
execute 119
getting access to a registry 98
obtaining registry service 102
publishing 119
querying a registry 102
querying registry 102

JAXR connection properties 99
jaxr.properties file 119
JAX-RPC 23

JAX-RPC clients 43
types supported by JAX-RPC 73

JAX-RPC clients
assembling 51
deploying 51
invoking an EJB 52

JAX-RPC sample applications 52
JAX-RPC tools 64

wscompile tool 64
wsdeploy tool 69

Section M

Index 175

JAX-RPC web services 35
configuration file 40

M
managing registry 106

adding classifications 108
adding service and bindings 113
creating organization 107
finding taxonomy 108
getting authorization 106

message endpoint 84
constructing an endpoint 84

message queue 20
message-oriented model 17
MIME (Multi-purpose Internet Mail Extension)

types
definition and accessing page 163

model file 67
mutual authentication over SSL 59

N
namespace mappings 71

O
onMessage method 92
override JAXP 1.1 implementation 31

P
parts of a SOAP message 80

AttachmentPart object 81
body 82
SOAPEnvelope 81
SOAPHeader 82

SOAPMessage 81
SOAPPart 81

predefined faultcode 94
pre-defined SOAP namespaces 83
primary document directory, setting 154
primitive types 74
ProviderConnection object 85

Q
query a registry 102
querying registry

based on WSDL specification 104
find organizations by classification 103
find organizations by description 104
find organizations by name 103
find organizations by services and service

bindings 105

S
SAAJ 24, 77
sample JAXR Client 120
securing web services 55

basic authentication over SSL 56
mutual authentication over SSL 59
security properties 58

security properties 58
securing web services

security properties 58
sending SOAP message 90
service bindings 113
SOAP 17
SOAP client

client using a messaging provider 79
client without a messaging provider 78
samples 96

SOAP client messaging models
client using a messaging provider 79
client without using a messaging provider 78

Section T

176 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

SOAP client scenarios 78
SOAP handlers 72
SOAP message fault handling 93

defining SOAP fault 95
SOAPFault object 93

SOAP serialization 83
SOAP service 92

creating 92
samples 96

SOAPConnection object 85
SOAPEnvelope object 81
SOAPFault subelements 94

detail 94
faultactor 94
faultcode 94
faultstring 94

SOAPHeader object 82
SOAPMessage object 81
SOAPPart object 81
specifying postal address 111
stubs 45
Sun ONE customer support 13
Sun ONE web services features 20
synchronous message 78
syntax of asadmin deploy command 42

T
taxonomy 108

defining 109
ties 45
transactions

attributes 170
type system 121
types supported by JAX-RPC 73

application classes 74
arrays 74
J2SE SDK classes 73
JavaBeans components 75
primitives 74

U
UDDI 18
UDDI, registry 18
using ant tasks 28
using JAXP 1.2 implementation 31
using namespaces 83
using wscompile tool 64
using wsdeploy tool 69

W
war file 39
web service

endpoint 34
web service models

asynchronous 17
synchronous 16

web services 15
assembling and deploying JAX-RPC web

services 38
building clients 42
invoking web services 42
securing web services 55
working of web services 19

web services standards 17
ebXML 18
SOAP 17
UDDI 18
WSDL 18

web.xml
adding security elements 57

working of web services 19
wscompile configuration file 67

with rmi interfaces 67
with wsdl 68

wscompile tool 64
wscompile command options 65

wsdeploy tool 69
jaxrpc-ri.xml file 70
wsdeploy command options 69

WSDL 18

Section X

Index 177

X
XML namespace 82

using name spaces 83
XML schema definition 121
XSD 121

deployment descriptors 134
exported wscompile model files 140
runtime descriptors 143
wscompile configuration 121

Section X

178 Sun ONE Application Server 7 • Developer’s Guide to Web Services • March 2003

	Developer’s Guide to Web Services
	Contents
	About This Document
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Reference Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	About Web Services
	What are Web Services?
	Messaging Models Used in Web Services
	Synchronous Model
	Asynchronous Model

	Standards and Interoperability in Web Services
	SOAP
	WSDL
	UDDI
	ebXML

	A Simple Web Service Scenario
	Support for Web Services in Sun ONE Application Server
	Java APIs for XML and Web Services
	JAXP
	JAX-RPC
	JAXR
	SAAJ
	JAXM

	Implementing Web Services Using Java APIs
	The Coffee Break Example

	Preparing for Developing Web Services and Clients
	Using Ant Tasks
	Setting Up the Client Environment

	Services and Clients Using JAX-RPC
	JAX-RPC Implementation
	Developing JAX-RPC Web Services
	Assembling and Deploying JAX-RPC Web Services
	Invoking JAX-RPC Web Services
	Creating Clients Using Generating Stubs Method
	Creating Clients Using Dynamic Invocation Interface
	Assembling and Deploying a JAX-RPC Client
	Sample Applications

	JAX-RPC Client Invoking an EJB
	Building Security into JAX-RPC Web Services
	Basic Authentication Over SSL
	Adding Security Elements to web.xml
	Setting Security Properties in the Client Code
	Mutual Authentication Over SSL
	Setting Up Client Certificate Authentication for Web Services

	JAX-RPC Tools
	wscompile Tool
	wsdeploy Tool
	Namespace Mappings
	SOAP Handlers

	Java Language Types Supported By JAX-RPC

	SOAP Clients and Services Using SAAJ and JAXM
	SOAP Clients
	SOAP Client Messaging Models
	SOAP Messages
	Developing a SOAP Client
	Assembling and Deploying a SOAP Client

	SOAP Service
	Creating a SOAP Service
	Exception and Fault Handling
	Assembling and Deploying a SOAP Service
	Sample Clients and Services

	Clients Using JAXR
	Developing a JAXR Client
	Getting Access to a Registry
	Establishing a Connection
	Querying a Registry

	Managing Registry Data
	Getting Authorization from the Registry
	Creating an Organization
	Adding Classifications
	Using Taxonomies
	Adding Services and Service Bindings to an Organization

	Publishing a Web Service to a UDDI Registry
	Assembling and Deploying a JAXR Client
	Sample JAXR Client

	XML Schema Definitions
	XML Schema for wscompile Configuration File
	XML Schema for Deployment Descriptors
	XML Schema for Exported wscompile Model Files
	XML Schema for Runtime Descriptors

	Glossary
	Index

