Developer’'s Guide to Web
Services

Sun™ ONE Application Server

Version 7

817-2174-10
March 2003

Copyright 2003 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun ONE, iPlanet, and all Sun, Java, and Sun ONE based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.
Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of Sun
Microsystems, Inc. and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc. Tous droits réserveés.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun ONE, et iPlanet sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et d’autre pays.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.
Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent I'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut étre reproduite sous quelque forme ou par
quelque moyen que ce soit sans I'autorisation écrite préalable de Sun Microsystems, Inc. et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ETAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRESENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE A LA VENTE, OU A
UN BUT PARTICULIER OU DE NON CONTREFAGON SONT EXCLUES, EXCEPTE DANS LA MESURE OU DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES A LA LOI.

Contents

AbouUt This DOCUMENT . ..o e e e e e e e 7
Who Should Use ThiS GUIE o e 7
Using the DOCUMENTAtION e e e e e e e 8
How This Guide ISOrganized i e 10
Reference INformation e 11
Documentation CONVENTIONS ettt ettt 11
General CONVENLIONSttt e e e e e e e e e e e e e e 11
Conventions Referring to DIreCtoriest e 13
Chapter 1 AbouUut Web ServiCes e 15
What are Web SErVICES? . ..o e 15
Messaging Models Used in Web SErvViCest e e e 16
Synchronous Model 16
Asynchronous Model 17
Standards and Interoperability in Web Services i 17
SO A P L 17
KA £ 18
UD Dl i 18
B XML L 18
A Simple Web Service SCENariot 19
Support for Web Services in Sun ONE Application Server i, 20
Java APIs for XML and Web Services 21
JAXK P 22
JA X RP C 23
L 23
S A A o e 24
JAXM L 24

4

Implementing Web Services Using Java APIS 25

The Coffee Break EXampPleo e 26
Preparing for Developing Web Servicesand Clients 28
USING ANE TaSKS . . .o e e 28
Setting Up the Client Environment e 29
Chapter 2 Services and Clients Using JAX-RPC i e 33
JAX-RPC IMplementation 33
Developing JAX-RPC Web SEIVICESttt e e e 35
JAX-RPC Web Services USINg aWSDLot e 37
Assembling and Deploying JAX-RPC WeDb Servicest 38
INVOKING JAX-RPC WED SEIVICES . . .o e e e e e 42
Creating Clients Using Generating Stubs Method 43
Generating the StUDS 45
Coding the ClIeNt 45
Compiling the CHent Code e 46
Assembling the Client Classes intoa JARfile i, 46
Running the Client e 47
Creating Clients Using Dynamic Invocation Interface 47
Creating JAX-RPC Client Using a DynamiC Proxyc.ouuiiiiiniiniinainnn. 48
Creating a JAX-RPC Client Using the Call Interface i it 49
Assembling and Deploying a JAX-RPC ClHent 51
Sample ApPlICAtiONS 52
JAX-RPC Client InvoKing an EJB 52
Building Security into JAX-RPC Web Services e 55
Basic Authentication OVEr SSL 56
Adding Security Elementsto web.xml 57
Setting Security Propertiesinthe ClientCode i 58
Mutual Authentication OVEr SSL e 59
Setting Up Client Certificate Authentication for Web Services 60
JAX-RPC TO0IS it 64
WSCOMPIlE TO0l . . 64
wsconpi | @ Command OPLiONSt 65
Configuration File 67
WSAEPIOY TOOl . . 69
wsdepl oy Command OPLtIONSottt 69
Namespace MapPiNgSo ottt e e 71
SOAP HaNGIErS 72
Java Language Types Supported By JAX-RPC 73
Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 77
SOAP ClIENtS o 77

Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

SOAP Client Messaging Models e 77

Client Without a Messaging Provider i e 78
Client With a Messaging Provider i 79
SOAP MBSSAGES . . ottt ettt e e e e e 80
Parts 0f @ SOAP MeESSA0Eottt ettt e e e e e e 80
Accessing Elements of a MESSageot 82
Developing a SOAP Client e 84
How SOAP MeSsaging OCCUIS?ottt ettt e e e e ettt e e 84
Creating @a SOAP Cliento e 85
Assembling and Deploying a SOAP Client e 91
SO AP SBIVICE . ittt 92
Creating @ SOAP SEIVICE . .. ittt e e 92
Exception and Fault Handling e 93
Fault Handling o 93
Defining SOAP Fault 95
Assembling and Deploying a SOAP SErVicet 96
Sample Clients and SErvViCeS i 96
Chapter 4 Clients Using JAXRo e 97
Developing aJAXR ClHENt 97
Getting ACCESS 10 @ REQISIIYo 98
Accessing an ebXML RegISIIYt 98
Establishing a CoNNECtiON o e 98
QUENYINg a ReGISIIY . ..o 102
Finding Organizations by Name e 103
Finding Organizations by Classification i i 103
Finding Organizations by WSDL Descriptions ...t 104
Finding Services and Service BiNAiNgSot 105
Managing Registry Datat e 106
Getting Authorization fromthe Registry 106
Creating an Organizationt e 107
Adding ClassifiCations 108
USING TaXONOMUES . . oottt ettt et e e e e e e e e e e e e e e e e 109
Defining TaXONOMIESottt et e e e e e e 109
Specifying Postal AdAress o 111
Adding Services and Service Bindings to an Organization oo, 113
Publishing a Web Service to a UDDI RegQiStry oot 114
Assembling and Deploying aJAXR Client 119
Sample JAXR Client o 120
Appendix A XML Schema Definitions i 121
XML Schema for wscompile Configuration File o i 121
XML Schema for Deployment DesCriptors 134

6

XML Schema for Exported wscompile Model Files
XML Schema for Runtime DesCriptorst e e

Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

About This Document

This guide describes how to create and run Web services and Java™ based clients

that invoke them on Sun™ Open Net Environment (Sun ONE) Application Server
7. In addition to describing programming concepts and tasks, this guide offers
sample code, implementation tips, reference material, and a glossary.

This preface contains information about the following topics:
= Who Should Use This Guide

e Using the Documentation

< How This Guide Is Organized

= Reference Information

= Documentation Conventions

« Product Support

Who Should Use This Guide

The intended audience for this guide are the information technology developers in
a corporate enterprise who develop and publish Web services, and build clients
that invoke them.

This guide assumes you are familiar with the following topics:

Java(2) Platform, Enterprise Edition™ specification

HTML

Java™ and XML programming

Java APIs as defined in specifications for EJB™, JSP™, and JDBC™

Using the Documentation

= Software development processes, including debugging and source code
control

Using the Documentation

The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs. sun. conl

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Table 1 Application Server Documentation Roadmap

For information about See the following
Late-breaking information about the software and the Release Notes
documentation

Supported platforms and environments Platform Summary
Introduction to the application server, including new Getting Started Guide

features, general installation information, migration details,
and architectural overview

Installing Sun ONE Application Server and its various Installation Guide
components (sample applications, Administration interface,
Sun ONE Message Queue).

Creating and implementing J2EE applications that follow Developer’s Guide
the open Java standards model on the Application Server 7.

Includes general information about application design,

developer tools, security, assembly, deployment,

debugging, and creating lifecycle modules.

Creating and implementing J2EE applications that follow Developer’s Guide to Web
the open Java standards model for web applications on the Applications
Application Server 7. Discusses web application

programming concepts and tasks, and provides sample

code, implementation tips, and reference material.

Creating and implementing J2EE applications that follow Developer’s Guide to
the open Java standards model for EJBs on the Application Enterprise JavaBeans
Server 7. Discusses EJB programming concepts and tasks, Technology

and provides sample code, implementation tips, and

reference material.

8 Sun ONE Application Server 7 « Developer's Guide to Web Services ¢« March 2003

http://docs.sun.com/

Table 1

Using the Documentation

Application Server Documentation Roadmap (Continued)

For information about

See the following

Creating Web services and clients in Application Server
environment.

Creating clients that access J2EE applications on the Sun
ONE Application Server.

J2EE features such as JDBC, JNDI, JTS, JMS, JavaMail,
resources, and connectors

Creating custom NSAPI plug-ins
Performing the following administration tasks:

= Using the Administration interface and the command
line interface

= Configuring server preferences

= Using server instances

= Monitoring and logging server activity
= Configuring the web server plug-in

= Configuring the Java Messaging Service
= Using J2EE features

= Configuring support for CORBA-based clients
= Configuring database connectivity

= Configuring transaction management

= Configuring the web container

= Deploying applications

= Managing virtual servers

Editing server configuration files

Configuring and administering security for the Application
Server 7 operational environment. Includes information on
general security, certificates, and SSL/TLS encryption.
Web-core-based security is also addressed.

Configuring and administering service provider
implementation for J2EE CA connectors for the Application
Server 7. Includes information about the Administration
Tool, DTDs and provides sample XML files.

Developer’s Guide to Web
Services

Developer’s Guide to Clients

Developer’s Guide to J2EE
Features and Services

Developer’s Guide to NSAPI

Administrator’s Guide

Administrator’s
Configuration File Reference

Administrator’s Guide to
Security

J2EE CA Service Provider
Implementation
Administrator’s Guide

About This Document

How This Guide Is Organized

Table 1 Application Server Documentation Roadmap (Continued)

For information about See the following

Migrating your applications to the new Sun ONE Migration Guide
Application Server 7 programming model from the

Netscape Application Server version 2.1, including a

sample migration of an Online Bank application provided

with Sun ONE Application Server

Using Sun ONE Message Queue The Sun ONE Message

Queue documentation at

http://docs.iplanet.com/d
ocs/manuals/javamg.html

How This Guide Is Organized

This guide provides instructions for the development and the deployment of Web
services to Sun ONE Application Server. The guide also provides information on
developing client applications that can invoke Web services.

Chapter 1, “About Web Services”

This chapter introduces you to Web services and the standards used in
implementing Web services. Also discusses about the working of Web services
in the Sun ONE Application Server environment.

Chapter 2, “Services and Clients Using JAX-RPC”

This chapter describes the procedure to develop, deploy, execute JAX-RPC
Web services and clients that access such services.

Chapter 3, “SOAP Clients and Services Using SAAJ and JAXM”

This chapter introduces you to the SAAJ and JAXM APIs, how to use these
APIs to develop message-oriented services and clients in Sun ONE Application
Server environment.

Chapter 4, “Clients Using JAXR”

This chapter introduces you to the JAXR API, how to use the API to build
clients, and how to manage the registry data.

Appendix A, “XML Schema Definitions”

This appendix provides XML Schema Definitions for the various configuration
files used in developing JAX-RPC Web services and clients.

10 Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

http://docs.iplanet.com/d

Reference Information

Finally, a Glossary and Index are provided.

Reference Information

In addition to the information in the Sun ONE Application Server documentation
collection listed in “Using the Documentation” on page 8", we recommend the
following resources:

General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Web Services:

Java Web Services, by David Chappell and Tyler Jewell, O’Reilly Publishing
Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Java API Specifications:

http://java. sun. coni xm / downl oad. ht m

Java Web Services Tutorial:

http://java. sun. conl webservi ces/ docs/ 1.0/ tutorial/index. htm

Documentation Conventions

This section describes the types of conventions used throughout this guide:
= General Conventions

= Conventions Referring to Directories

General Conventions

The following general conventions are used in this guide:

About This Document 11

http://java.sun.com/xml/download.html
http://java.sun.com/webservices/docs/1.0/tutorial/index.html

Documentation Conventions

File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

URLs are given in the format:
http://server.domain/path/file.html

In these URLS, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

Font conventions include:

o The nonospace font is used for sample code and code listings, APl and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

o Italic type is used for code variables.

o Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

o Boldtype is used as either a paragraph lead-in or to indicate words used in
the literal sense.

Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 13.

By default, the location of install_dir on most platforms is:
o Solaris 8 non-package-based Evaluation installations:
user’s hone directory/sun/appserver?
o Solaris unbundled, non-evaluation installations:
/ opt / SUN\Wappserver 7
o Windows, all installations:
C:\ Sun\ AppServer 7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 13
for exceptions and additional information.

Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following path:

default_config_dir/ domai ns/ domain/ instance

12 Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

http://server.domain/path/file.html

Documentation Conventions

= UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories

By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

« For Solaris 9, bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

o install_dir refersto/ usr/ appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

o default_config_dir refers to/ var/ appser ver/ domai ns, which is the default
location for any domains that are created.

o install_config_dir refers to / et c/ appser ver/ confi g, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

= For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

o install_dir refers to / opt / SUN\Wappser ver 7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

o default_config_dir refers to/ var/ opt / SUN\WVappser ver 7/ donai ns which is
the default location for any domains that are created.

o install_config_dir refers to/ et c/ opt / SUNWappser ver 7/ conf i g, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support

If you have problems with your system, contact customer support using one of the
following mechanisms:

About This Document 13

Documentation Conventions

= The online support web site at:
http://ww. sun. coni supportrai ni ng/

= The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

= Description of the problem, including the situation where the problem occurs
and its impact on your operation

= Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

= Detailed steps on the methods you have used to reproduce the problem

< Any error logs or core dumps

14 Sun ONE Application Server 7 « Developer's Guide to Web Services ¢« March 2003

http://www.sun.com/supportraining/

Chapter 1

About Web Services

This chapter introduces you to Web services, standards used in implementing Web
services, and summarizes the process of building such services.

This chapter describes the following topics:

= What are Web Services?

< Messaging Models Used in Web Services

« Standards and Interoperability in Web Services

= Support for Web Services in Sun ONE Application Server
= A Simple Web Service Scenario

= Java APIs for XML and Web Services

= Implementing Web Services Using Java APIs

= Preparing for Developing Web Services and Clients

What are Web Services?

A Web service is a modular application that you can describe, publish, locate, and
invoke across the web. A Web service perform functions, which can be anything
from simple requests to complicated business processes. Once a Web service is
deployed, other applications or other Web services can discover and invoke the
deployed service.

15

Messaging Models Used in Web Services

Web services are invoked using Simple Object Access Protocol (SOAP) messages.
SOARP is a lightweight messaging protocol that allows objects of any kind, on any
platform, written in any language to cross-communicate. SOAP messages are
encoded in eXtensible Markup Language (XML) and typically transported over
HTTP. Unlike other distributed computing technologies, Web services are loosely
coupled and can dynamically locate and interact with other components on the
internet to provide services.

A Web service is invoked using an XML message such as a SOAP message through
a well-defined message exchange pattern. The message exchange pattern is defined
in a Web Services Description Language (WSDL) document by a description of the
data required to invoke the service.

Messaging Models Used in Web Services

This section describes the two principal messaging models used in Web services.
The two Web service messaging models are distinguished by their
request-response operation handling.

This section describes the following Web services models:
e Synchronous Model

= Asynchronous Model

Synchronous Model

Synchronous means that every time a client accesses a Web service application, the
client receives a SOAP response. Synchronous is request-response operation.
Synchronous services are designed when client applications require a more
immediate response to a request. Web services that rely on synchronous
communication are usually Remote Procedure Call (RPC)-oriented. Java™ API for
XML-based RPC (JAX-RPC) and SOAP with Attachments API for Java'™ (SAAJ)
use the synchronous model for communication.

16 Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

Standards and Interoperability in Web Services

Asynchronous Model

Asynchronous means that the client which invokes a Web service, does not or can
not wait for a response. Thus, asynchronous is one-way operation. The client sends
a request in the form of an XML message. The Web service receives the message
and processes it, sending the results when it completes its processing. An
asynchronous send requires a messaging provider which is not supported in Sun
ONE Application Server. Asynchronous receive is supported in the application

server using the Java™ API for XML Messaging (JAXM).

Standards and Interoperability in Web Services

Web services are based on a set of standard protocols and technologies, so that all
the components of a Web service understand how to communicate. This section
describes the following standards.

= SOAP
- WSDL
= UDDI
= ebXML

SOAP

Simple Object Access Protocol (SOAP) is a lightweight protocol that allows
exchange of information in a distributed environment. It plays a very important
role in the communication mechanism for Web services. It provides a standard
packaging structure for transporting XML documents using a variety of standard
internet technologies including SMTP, HTTP, and FTP.

For more information about SOAP 1.1 specification, visit the following URL:
http://ww. w3. or g/ TR/ soap

Chapter 1 About Web Services 17

http://www.w3.org/TR/soap

Standards and Interoperability in Web Services

WSDL

Web Services Description Language (WSDL) is an XML-based specification schema
for describing a Web service. WSDL defines Web services as a set of endpoints or
ports operating on messages. A port is defined by associating a network address
with a reusable binding, and a collection of ports define a service. The message can
be either message-style or RPC-style. WSDL is extensible to allow the description
of endpoints and their associated messages regardless of what message formats or
network protocols are used to communicate.

For more information about WSDL specification, visit the following URL:
http://ww. wW3. or g/ TR/ wsdl

UDDI

Universal Description, Discovery, and Integration (UDDI) standard provides a
mechanism for businesses to describe themselves and the types of services they
provide and allows these to register themselves in a UDDI registry. Using SOAP
messages, other businesses can search, query, or discover registered businesses.
Having discovered other suitable businesses to partner with, businesses can then
integrate their services with their partners and provide service to their customers.

For more information about UDDI 2.0 specification, visit the following URL:
http://ww. uddi.org

ebXML

electronic business eXtensible Markup Language (ebXML) defines core
components, business processes, registry and repository, messaging services,
trading partner agreements, and security. ebXML defines standards by extending
all three of the previous standards to achieve e-business partner interoperability
for document exchange. ebXML message service extends SOAP 1.1 with
attachment for use as the base messaging protocol to achieve reliability and other
guality of service aspects.

ebXML Collaboration Partner Profile and Agreement (CPP and CPA) describe
partner interactions for the e-business scenario in a complete manner.

An ebXML Registry and Repository enables the storing and sharing of information
between parties to allow e-business collaboration. Sun ONE Application Server
supports clients to access an ebXML registry through a third-party provider.

18 Sun ONE Application Server 7 « Developer's Guide to Web Services ¢« March 2003

http://www.w3.org/TR/wsdl
http://www.uddi.org

A Simple Web Service Scenario

For more information on ebXML, visit the following URL.:
http://ww. ebxm . org

A Simple Web Service Scenario

The following figure illustrates the working of a simple Web service in Sun ONE
Application Server environment.

Figure 1-1 Web services in Sun ONE Application Server Environment

Web Service Provider

Web Server
SOAP
HTTP Server)
Processing
Register/Publish Node
Service Computer

oo s e r et "7 Providing <-- ¥ €q--
X Web Services
! WSDL Interface

or
ebXML

Registry &
Repository

A

v Definition :
uDDI _/ !
Registry \

SOAP Request

. Response
_Service . \
Discovery -~ web Service %gm eustﬁlrl X
y : Client /'We% Service :
: R, - - .> <. e e e e e e e e e e e e e e e e e e - N

The typical working of Web services is explained in the following steps:

1. Once the Web service application is ready to accept requests, the Web service is
registered with a registry, such as a UDDI registry or an ebXML registry and
repository. Describe the Web service using a WSDL.

Chapter 1 About Web Services 19

http://www.ebxml.org

Support for Web Services in Sun ONE Application Server

2. Another service or a user locates this registered service and requests by
guerying the registry.

3. The requesting service or a user writes an application to bind the registered
service using SOAP.

4. The client discovers the Web service that is registered with the registry.

5. The request from a client to a Web service arrives in the form of an XML
document.

6. The Web service receives the request and processes the request.

7. The Web service calls one or more Enterprise JavaBeans (EJBs) components to
perform business data processing.

8. The EJB components perform their processing calling external systems.
9. The EJB components return data to the service.
10. The Web service then marshals this return value into an XML document.

11. The Web service returns the XML document to the client on a response.

Support for Web Services in Sun ONE
Application Server

Support for Web services in Sun ONE Application Server, is primarily through the
implementation of different JAX* APIs. Sun ONE Application Server delivers the
runtime environment and tools to develop, deploy, and host RPC and
document-oriented Web services. Sun ONE Application Server provides the
facility to publish Web services into a UDDI registry and discover the registered
services. In addition, Sun ONE Application Server enables integration of reliable
messaging into Web services using Sun ONE MQ 3.0.1 (Message Queue).

For more information on the Java APIs, see “Java APIs for XML and Web Services”
on page 21.

Sun ONE Application Server includes the following features:

= Sun ONE Application Server includes command-line tools to perform the
following tasks:

20 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Java APIs for XML and Web Services

o Generate client side stubs and server-side tie classes which interface with
the application server at runtime. You can generate stubs and tie-classes
using the wsconpi | e and wsdepl oy tools provided with Sun ONE
Application Server. For more information on using these tools, see
“JAX-RPC Tools” on page 64.

o Convert Java interfaces-to-WSDL and vice versa.

o Anttasks to develop and deploy Web services to Sun ONE Application
Server.

= Provides Sun ONE Studio 4, a graphical user interface, that helps in the
development and deployment of Web services and clients.

For instructions on how to use Sun ONE Studio to build Web services and
clients, see the Sun ONE Studio Building Web Services documentation. The Sun
ONE Studio documentation is available at the following URL.:

http://docs. sun. coni sour ce/ 816- 7862/ i ndex. ht m
Unsupported Features in Sun ONE Application Server
Sun ONE Application Server does not support the following features:

= Does not include any registry servers but, is certified with the Sun ONE
Registry Server as well as tested with external UDDI registry.

= Does not support any Web services security protocols, instead relies on web
container’s security.

= Does not include a messaging provider that enforces reliable messaging
between the client and the server.

Java APIs for XML and Web Services

Support for developing Web services on Sun ONE Application Server is primarily
based on the implementation of Java APIs for XML and Web services. These APls
provide specific XML and/or SOAP capabilities required to access or deliver Web
services from the Java platforms. This section describes each API as delivered in
Sun ONE Application Server.

For detailed information on the Java APIs and the programming concepts, visit the
following URL.:

http://java. sun. conl webservi ces/ docs/1.0/tutorial/index. htm

Chapter 1 About Web Services 21

http://docs.sun.com/source/816-7862/index.html
http://java.sun.com/webservices/docs/1.0/tutorial/index.html

Java APIs for XML and Web Services

22

The following table lists the Java APIs supported by Sun ONE Application Server.
The first column lists the Java APls and the second column shows the version
number of the Java API.

Table 1-1 Java APIs for XML and Web Services supported in Sun ONE Application

Server
Java API Version Number
JAXP 11,12
JAX-RPC 1.0
JAXR 1.0
SAAJ 11
JAXM 11

JAXP

The Java™ API for XML Processing (JAXP) supports the processing of XML
documents using Simple API for XML (SAX) and Document Object Model (DOM),
along with a pluggable interface to an XML Stylesheet Language Transformations
(XSLT) engine. JAXP enables applications to parse and transform XML documents
independent of a particular XML processing implementation. Depending on the
needs of the application, developers have the flexibility to swap between XML
processors, such as high performance vs. memory conservative parsers, without
making application code changes. Thus, application and tools developers can
rapidly and easily XML-enable their Java applications for e-commerce, application
integration, and dynamic web publishing. JAXP 1.2 implementation in Sun ONE
Application Server has support for XML schema and an XML compiler (XSLTC).

JAXP 1.2 is required for the other Java APIs for XML and Web services in Sun ONE
Application Server. JDK 1.4 bundles an implementation of JAXP 1.1. Sun ONE
Application Server bundles JAXP 1.2 implementation. To override the classes in
JAXP implementation in JDK 1.4, see “Overriding the JAXP Implementation” on
page 31.

For more information about JAXP, visit the following URLSs:
http://java.sun.conixm /tutorial _intro.htn
http://java. sun.conf xm / xm _j axp. ht

Sun ONE Application Server 7 « Developer's Guide to Web Services « March 2003

http://java.sun.com/xml/tutorial_intro.html
http://java.sun.com/xml/xml_jaxp.html

Java APIs for XML and Web Services

JAX-RPC

The Java API for XML-based RPC (JAX-RPC) enables developers to build SOAP
based interoperable and portable Web services. JAX-RPC provides an easy to
develop programming model for the development of SOAP based synchronous
Web services. Developers use the RPC programming model to develop clients and
endpoints. For typical scenarios, developers are not exposed to the complexity of
the underlying runtime mechanisms, such as SOAP protocol level mechanisms,
marshalling, and unmarshalling.

A JAX-RPC runtime system or a library abstracts these runtime mechanisms for
programming Web services. A JAX-RPC client can use stubs-based, dynamic
proxy, or dynamic invocation interface (DII) programming models to invoke a
heterogeneous Web services application. JAX-RPC provides support for document
based messaging. Using JAX-RPC, any MIME encoded content can be carried as
part of a SOAP message with attachments. This enables exchange of XML
document, images, and other MIME types across Web services. JAX-RPC supports
HTTP level session management and SSL based security mechanisms. This enables
in the development of secured Web services.

Sun ONE Application Server provides support for development and deployment
of JAX-RPC Web services and clients. In addition to providing implementation for
JAX-RPC API, application server provides tools support for WSDL to Java and Java
to WSDL mapping as part of the development of clients and services.

For detailed information on JAX-RPC, visit the following URL.:
http://java. sun. conml xnl /j axrpc/index. ht m

JAXR

The Java™ API for XML Registries (JAXR) provides standard Java API for
accessing different kinds of XML registries in a uniform manner. An XML registry
is an enabling infrastructure for building, deploying, and discovering Web
services.

Currently, there are a variety of specifications for XML registries including
pre-eminently, the ebXML Registry and Repository standard, which is being
developed by OASIS and U.N.Z/CEFACT and the UDDI specification, which is
being developed by a vendor consortium.

JAXR enables Java software programmers to use a single, easy-to-use abstraction
API to access a variety of XML registries. Simplicity and ease of use are facilitated
within JAXR by a unified JAXR information model, which describes content and
metadata within XML registries.

Chapter 1 About Web Services 23

http://java.sun.com/xml/jaxrpc/index.html

Java APIs for XML and Web Services

JAXR provides rich metadata capabilities for classification and association, as well
as rich query capabilities. As an abstraction-based API, JAXR gives developers the
ability to write registry client programs that are portable across different target
registries.

Sun ONE Application Server provides implementation for JAXR 1.0 version. This
version of the JAXR specification includes detailed bindings between the JAXR
information model and both the ebXML Registry and the UDDI Registry v2.0
specifications.

For detailed information on JAXR visit the following URL:
http://java.sun.conl xm /jaxr/index. htmn

SAAJ

The SOAP with Attachments API for Java™ (SAAJ) enables developers to produce
and consume messages conforming to the SOAP 1.1 specification and SOAP with
Attachments note. This APl is derived from the j ava. xnl . soap package originally
defined in the JAXM 1.0 specification.

Sun ONE Application Server provides support for SAAJ API 1.1. For more
information on SAAJ 1.1 API, visit the following URL.:

http://java. sun. conl xm / downl oads/ saaj . ht m

JAXM

Java™ API for XML Messaging (JAXM) defines the API for xml messaging using a
messaging provider. JAXM API enables applications to send and receive
document-oriented XML messages. JAXM implements SOAP 1.1 with attachments
messaging so that developers can focus on building, sending, receiving, and
retrieving messages, avoiding programming low level communication routines.

Sun ONE Application Server implements the JAXM 1.1 API that enables
applications to send and receive asynchronous messages using a messaging
provider.

For detailed information on JAXM visit the following URL:
http://java. sun.conl xm /jaxm i ndex. ht m

24 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://java.sun.com/xml/jaxr/index.html
http://java.sun.com/xml/downloads/saaj.html
http://java.sun.com/xml/jaxm/index.html

Implementing Web Services Using Java APIs

Implementing Web Services Using Java APIs

The following figureFigure 1-2 illustrates the role of standard Java APIs in

implementing Web services.

Figure 1-2

Implementing Web Services Using Java APIs

Web Server JSP/Servlet Application
N Organization B Server
Organization A 9
Sends a XML Process & Incorporate JDBC
Request . Transform Session DBMS
> document[XML to Java Information
Request —
JAXP BB J2EE Existing
- | - . .
Commector Applicationg
Process & Ié\g:sr%%rate
XML Transform .
| Information AXM
Receives \¢— document Java to XML <J Web
Response
JAX-RPC ;
T T SAAJ Service
JAXR JAXR!
Publish / discovery Publish / discovery
Service registry & SOAP
|—’ repositgory Y 4—‘ Se?)é(?/ilfep WSDL
(UDDI or ebXML) request and
response _/\

SOAP messaging is the protocol for Web services. JAXP API allows you to access
and parse XML data. The main goal of JAXP is to provide an interface that lets the
you create, manipulate, and use standard XML parsers without reference to the
underlying implementation, allowing you to create parser-neutral code, and
deferring parser selection to runtime.

JAX-RPC aids you in building XML-based requests such as SOAP requests, used
for sending and receiving method calls using XML-based protocols. JAX-RPC API
provides the high level framework to expose Java functionality as Web services
that can be consumed by SOAP clients or as the way to consuming SOAP services

Chapter 1

About Web Services 25

Implementing Web Services Using Java APIs

and clients. In the typical JAX-RPC use case, the developer does not have to deal
with XML and SOAP programming, thus enabling rapid application development.
This not only does XML to Java mapping and vice-versa, also avoids you to interact
directly with the XML representation of the call.

JAXM provides the framework for such XML data to interact between two
applications. That is, JAXM allows the transfer of complete XML documents
between two separate Web services. SOAP provides the underlying format of
messages transferred between the applications. JAXM being a lightweight API,
abstracts away the underlying message infrastructure. Hence it is easy to develop
JAXM messages packaged via SOAP, which allows you to access SOAP messages
quickly and easily.

SAAJ API allows you to manipulate simple SOAP messages. It can be used in
combination with JAX-RPC, which is the J2EE standard API for sending and
receiving SOAP messages, to represent literal XML document fragments. SAAJ is
an integral part of the JAX-RPC, but you can also use it with other APIs such as
JAXM.

The difference between JAXM and JAX-RPC is, JAXM supports the development of
message-oriented middle ware-type applications, that allows you to focus on
sending and receiving messages. Whereas, JAX-RPC supports the application for
RPC behavior. JAX-RPC provides the Java interface to XML RPC calls as defined in
SOAP.

The Coffee Break Example

The Coffee Break example demonstrates how each of the Java APIs for XML and
Web services can be used.

Figure 1-3 Coffee Break Web Service Using Java APls

26 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

order_coffee

Implementing Web Services Using Java APIs

Coffee Coffee
Distributor Distributor
Web Web
Service Service

register_service
reguest_prices JAXR
JAXM JAX-RPC

Coffee Break find_service Registry
Server E— Server
-
JAXR
HTTF

Coffee Break
Client

The following steps describes the working of the Coffee Break Web service.

The Coffee Break server obtains the information about the various types of
coffees it sells and the prices associated, by querying the distributors at startup
and on demand.

The Coffee Break server uses JAXM messaging to communicate with one of its
distributors. It has been dealing with this distributor for some time and has
previously made the necessary arrangements for performing request-response
JAXM messaging. The two parties have agreed to exchange four kinds of XML
messages and have set up the DTDs that these messages will follow.

The Coffee Break server uses JAXR to send a query searching for coffee
distributors that support JAX-RPC to the Registry Server.

Chapter 1 About Web Services 27

Preparing for Developing Web Services and Clients

= The Coffee Break server requests the price lists from each of the coffee
distributors. The server makes the appropriate remote procedure calls and
waits for the response, which is a JavaBean component representing a price list.
The JAXM distributor returns the price lists as XML documents.

= Upon receiving the responses, the Coffee Break server processes the price lists
from the JavaBean components returned by calls to the distributors.

= The Coffee Break Server creates a local database of distributors.

< When an order is placed, suborders are sent to one or more distributors using
the distributor’s preferred protocol.

The code examples for the coffee break server is installed at
install_dir/sanpl es/ webser vi ces/ cb. For more information on using the sample,
see the sample application document.

Preparing for Developing Web Services and

Clients

This section describes the pre-requisites to develop Web services and clients. This
section presents the following topics:

e Using Ant Tasks
e Setting Up the Client Environment

Using Ant Tasks

You can use the automated assembly features available through Ant, a Java-based
build tool available through the Apache Software Foundation:

http://jakarta. apache. org/ ant/

Ant is a java-based build tool that is extended using Java classes. Instead of using
shell commands, the configuration files are XML-based, calling out a target tree
where tasks get executed. Each task is run by an object that implements a particular
task interface.

In order to use ant tasks in your client environment, perform the following tasks:

28 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

http://jakarta.apache.org/ant/

Preparing for Developing Web Services and Clients

< Include install_dir/appser ver 7/ bi n in the PATH environment variable. The
Ant script provided with Sun ONE Application Server, asant , is located in this
directory. For details on how to use asant , see the sample applications
documentation in the

install_dir/appser ver 7/ sanpl es/ docs/ ant . ht ni

For more information on using Ant tasks in Sun ONE Application Server
environment, see the Sun ONE Application Server Developer’s Guide.

Creating the build.xml File
Ant commands operate under the control of a build file, normally called
bui I d. xn , that defines the processing steps required.

The bui I d. xnl file provides several targets that support optional development
activities. This build file includes targets for compiling the application, deploying
the application to the application server, redeploying the modified application to
the application server, and removing old copies of the application to regenerate
their content.

For more information on creating an ant build file, see the Apache Ant Manual at:

http://jakarta. apache. org/ ant/ manual /i ndex. ht m

Setting Up the Client Environment

A client uses various jar files that are bundled with Sun ONE Application Server.
This section describes how to setup your client environment:

If you are developing a client application in the system where you have installed
Sun ONE Application Server, the required jar files are included to help the
development of a client.

If your client development environment is different from that of the system where
Sun ONE Application Server is installed, you must perform the following steps:

If you are using version 1.3 of Java 2 SDK, perform the following steps:
1. Copy the following jar files to your client development environment.
o mail.jar -JavaMail API. Installed at install_dir/share/lib

o activation.jar -JavaBeans Activation Framework. Installed at
install_dir/share/ i b.

o fscontext.jar -Contains the file system service provider. Installed at
install_dir/share/lib.

Chapter 1 About Web Services 29

http://jakarta.apache.org/ant/manual/index.html

Preparing for Developing Web Services and Clients

u}

u]

j axm api . j ar - Java APl for XML Messaging. Installed at
install_dir/share/ i b.

j axrpc-api . j ar -Java API for XML-based RPC. Installed at
install_dir/share/lib.

jaxrpc-inpl.jar -Java APl for XML-based RPC implementation.
Installed at install_dir/share/ i b.

jaxr-api.jar -Java API for XML Registry. Installed at
install_dir/share/ | i b.

jaxr-inpl.jar -Java APl for XML Registry implementation. Installed at
install_dir/share/lib.

saaj . -api.jar -SOAP runtime API. Installed at install_dir/share/ | i b.

saaj -impl .jar - SOAP implementation. Installed at
install_dir/share/ i b.

comons- | oggi ng. j ar - Contains a logging library package. Installed at
install_dir/share/ i b.

j axp-api.jar - Thejavax. xm . parsers andjavax. xm . transform
components of JAXP. These packages contain the APIs that give
applications a consistent way to obtain instances of XML processing
implementations.

sax.jar - The APIs and helper classes for the Simple APl for XML (SAX),
used for serial access to XML data.

dom j ar - The APIs and helper classes for the Document Object Model
(DOM), used to create an in-memory tree structure from the XML data.

xer cesl npl . j ar - The implementation classes for the SAX and DOM
parsers, as well as xer ces-specific implementations of the JAXP APIs.

xal an. j ar - The "classic” (interpreting) XSLT processor.

xsltc.jar -The compiling XSLT processor.

2. Add the following jar files to the starting of your classpath. These jar files must
appear first in the classpath to avoid using any other parser:

0

u]

u]

u]

j axp-api.jar
domj ar
sax.jar

xerceslmpl . jar

30 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Preparing for Developing Web Services and Clients

o xalan.jar
o Xxsltc.jar

3. Add the rest of the jar files also to your classpath.

If you are using version 1.4 of Java 2 SDK for developing clients, perform the
following step:

Copy all the jar files listed in Step 1, except the following to your client
development environment and add them to your classpath.

o jaxp-api.jar

o domjar

o sax.jar

o xerceslnpl.jar
o xalan.jar

o Xxsltc.jar

The J2SE 1.4 is the first version of the JDK that bundles an implementation of JAXP
1.1. This allows developers to write applications without having to provide a
parser and XSLT processor with their application. However, to override this
implementation of JDK with a newer version, you need to use the ‘Endorsed
Standards Override Mechanism’.

Overriding the JAXP Implementation
To use the JAXP 1.2 implementation, copy the following jar files into
Java_home/j re/ | i b/ endor sed/ directory:

o domjar

o sax.jar

o xerceslnpl.jar
o xalan.jar

o xsltc.jar

If the / endor sed directory does not exist, you must create it.

NOTE The jaxp-api . j ar file should not be copied, because it contains
high-level APIs that are not subject to change.

Chapter 1 About Web Services 31

Preparing for Developing Web Services and Clients

32

The jar files must exist in Java_home/j re/ | i b/ endor sed/ directory to override
earlier versions of the Xal an libraries that are a standard part of the 1.4 platform.
Because of that special requirement, it is not possible to specify these libraries using
the -cl asspat h option on the j ava/ j avac command line.

Alternatively, you can use the j ava. endor sed. di r s system property to
dynamically add those jar files to the JVM when you start your client development.
Using that system property gives you flexibility of using different implementations
for different applications.

For more information on how to use ‘Endorsed Standards Override Mechanism’,
visit the following URL:

http://java. sun. conlj 2se/ 1. 4/ docs/ gui de/ st andar ds

Sun ONE Application Server 7 « Developer's Guide to Web Services « March 2003

http://java.sun.com/j2se/1.4/docs/guide/standards

Chapter 2

Services and Clients Using JAX-RPC

Thi chapter describes the procedure to develop, assemble, and deploy RPC-based
Web services in Sun ONE Application Server 7 environment; how to build clients
that invoke such services.

This chapter contains the following sections:

= JAX-RPC Implementation

< Developing JAX-RPC Web Services

< Assembling and Deploying JAX-RPC Web Services
< Invoking JAX-RPC Web Services

= JAX-RPC Client Invoking an EJB

= Building Security into JAX-RPC Web Services

= JAX-RPC Tools

= Java Language Types Supported By JAX-RPC

JAX-RPC Implementation

Java™ API for XML-based RPC (JAX-RPC) is an API for building Web services
and clients that use remote procedure calls (RPC) and XML. The RPC mechanism
enables clients to execute procedures on other systems in a distributed
environment. In JAX-RPC, a remote procedure call is represented by an
XML-based protocol such as SOAP. The SOAP specification defines envelope
structure, encoding rules, and a convention for representing remote procedure
calls and responses. These calls and responses are transmitted as SOAP messages
over HTTP. For more information on SOAP messages, see “SOAP Messages” on
page 80.

33

JAX-RPC Implementation

JAX-RPC uses technologies HTTP, SOAP, and the WSDL defined by the World
Wide Web Consortium (W3C), which makes it possible for a JAX-RPC client to
access a Web service that is not running on the Java platform and vice versa. Sun
ONE Application Server implementation of the JAX-RPC API uses HTTP as the
transport protocol. The implementation also provides necessary tools to generate
stubs, ties, and other artifacts needed on the client-side and the server-side. See
“JAX-RPC Tools” on page 64.

Implementation of JAX-RPC in Sun ONE Application Server provides the
following benefits to the developers:

= Enables JAX-RPC clients to invoke Web services developed across
heterogeneous platforms.

= Developers are not exposed to the complexity of the underlying runtime
mechanisms such as, SOAP protocol level mechanisms, marshalling, and
unmarshalling. A JAX-RPC runtime system or a library abstracts these runtime
mechanisms for the Web services programming model. This simplifies Web
service development.

= Provides support for WSDL to Java and Java to WSDL mapping as part of the
development of Web service’s endpoints and clients. (A Web service’s
endpoint is the address at which the Web service can be reached using a
specific protocol or a data format, from where its methods can be invoked.)

= Supports the J2SE SDK classes, application classes that you have written, and
JavaBean components. For more information, see “Java Language Types
Supported By JAX-RPC” on page 73.

= Enables a Web service endpoint to be developed using the Servelt model. A
Web service endpoint is deployed on the application server. These endpoints
are described using a WSDL document.

< AJAX-RPC client can use stubs-based, dynamic proxy, or dynamic invocation
interface (DII) programming models to invoke a heterogeneous Web service
endpoint. See“Invoking JAX-RPC Web Services” on page 42.

= Provides wsconpi | e and wsdepl oy tools to help in the development of Web
services and clients. See “JAX-RPC Tools” on page 64.

34 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Developing JAX-RPC Web Services

Developing JAX-RPC Web Services

JAX-RPC Web services are synchronous services which means that, every time a
client invokes a JAX-RPC Web services operation, it always receives a SOAP
response, even if the method that implements the operation returns void. For more
information on the Web services operation, see “Messaging Models Used in Web
Services” on page 16.

Web services deployed to Sun ONE Application Server can be accessed by any type
of client such as an application client, any J2EE component performing the role of a
client, any J2SE-based client, or a .net client.

The following steps describe the procedure to create JAX-RPC Web services using
the Java interface and its implementation:

1.

Define a class that represents the remote interface to the service; this is the
service endpoint interface. This class contains the signature for the methods
that a client may invoke on the service. The service endpoint interface extends
the j ava. rm . Renot e interface and its methods must throw

j ava. rm . Renot eExcept i on. The following code illustrates the creation of a
service endpoint interface.

package hell o;

import java.rm . Renote;
import java.rm . Renot eException;

public interface Hell ol F extends Renot e{
public String sayHello(String S) throws RenpteException;
}

In the code illustration above, the name of the package file is hel | o, and the
service definition interface is Hel | ol F. j ava.

A service endpoint is deployed in a container that implements the JAX-RPC
runtime system.

Write the service implementation class. The service implementation class is an
ordinary Java class. Invocation is done inside the servelt container. The code
illustration below shows how to write the service implementation class.

package hell o;
public class Hellolnpl inplenents HellolF {
public String message = “Hell o0”;

public String sayHello(String S) {

Chapter 2 Services and Clients Using JAX-RPC 35

Developing JAX-RPC Web Services

return nmessage + S

}
}

3. Inorder to handle the communication between the client and the service
endpoint, JAX-RPC needs various classes, interfaces, and other files on both
the client-side and the server-side. JAX-RPC implementation in Sun ONE
Application Server provides the wsconpi | e tool to generate these artifacts.

The wsconpi | e tool uses the configuration file, confi g. xnl to read the
interface and implementation class, for generating client-side and server-side
artifacts. The wsconpi | e tool also creates the WSDL description for the service.

The configuration file of the example is given below:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration

xm ns="http://java. sun. com xm /ns/jax-rpc/ri/config">
<servi ce nane="Hel | oWorl| d”
t ar get NaneSpace="http:// hell 0. org/ Hel | oWor| d. wsdl "
t ypeNameSpace="http://hello.org/ hello/type”

packageNane="hel | 0” >

<interface nane="hel |l o. Hel | ol F*

servant Name="hel | o. Hel | ol npl "/ >
</ service>

</configuration>

For information about the configuration file, see “Configuration File” on
page 67.

For information about the XML schema for creating a configuration file, see
Appendix A, “XML Schema Definitions”.

The following is the syntax to run the wsconpi | e tool:

wsconpil e -gen: both -d build/client -classpath build/shared
config. xm

Stubs and ties are the most important artifacts that the wsconpi | e tool
generates. Stubs and ties are the classes that enable the communication
between a service endpoint and a client. The stub class sits on the client side,
between the service client and the JAX-RPC client runtime system. The stub
class is responsible for converting a request from a JAX-RPC service client to a
SOAP message and sending it across to the service endpoint using the

36 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

http://java.sun.com/xml/ns/jax-rpc/ri/config
http://hello.org/HelloWorld.wsdl%E2%80%9D
http://hello.org/hello/type%E2%80%9D

Developing JAX-RPC Web Services

specified protocol. It also converts the response from the service endpoint,
which it receives in the form of a SOAP message, to the format required by the
client. Converting a client request to SOAP format is called marshalling;
converting back from SOAP format to a client response is unmarshalling.

Similarly, the tie class resides on the server side, between the service endpoint
and the JAX-RPC runtime system. The tie class handles marshalling and
unmarshalling the data between the service endpoint class and the SOAP
format. A stub is a local object that acts as a proxy for the service endpoint.

You can use an ant build file (bui | d. xm) to compile the service, generate
server-side artifacts and create a portable war file. You can find a sample
bui I d. xn file at the following location:

install_dir/sanpl es/ webser vi ces/ j axr pc/ si npl e/ src

For more information on creating a bui | d. xml file, see “Creating the
build.xml File” on page 29.

4. Assemble and deploy the service to Sun ONE Application Server. See
“Assembling and Deploying JAX-RPC Web Services” on page 38.

5. Write the client side application that invokes the service. See “Invoking
JAX-RPC Web Services” on page 42.

JAX-RPC Web Services Using a WSDL

You can create a JAX-RPC Web service using an existing WSDL document. In this
method, the wsconpi | e tool generates the service definition interface for the Web
service using the WSDL. The WSDL port Type is mapped to the Java service
definition interface. To generate the service interface from the WSDL, use the
wsconpi | e command with -i mport option, passing it the location of the WSDL
document. Alternatively, you can store the information required to generate the
service definition interface in a configuration file by name confi g. xnl . The
config.xm, typically stores the location of the WSDL that you wish to access.

The following wsconpi | e command reads the confi g. xm to generate the service
definition interface:

wsconpi | e -gen: server -inport <config.xm >
The configuration file with a WSDL document has the following format:
<?xm version="1.0" encodi ng="UTF-8"?>

<configuration
xm ns="http://java.sun.com jax-rpc-ri/xrpcc-config">

Chapter 2 Services and Clients Using JAX-RPC 37

http://java.sun.com/jax-rpc-ri/xrpcc-config">

Assembling and Deploying JAX-RPC Web Services

<wsdl location="[1]"
packageNane="[2] ">
<t ypeMappi ngRegi stry>[3] </typeMappi ngRegi stry>

</ wsdl >
</ configuration>

The configuration file with a WSDL document has the following attributes:
= wsdl |ocation-URL pointing to a WSDL document.

= packageName - Specifies a fully qualified name of the Java package for the
generated classes/interfaces.

= typeMappi ngRegi stry - The type mapping registry used for this service.

For information on the XML schema for creating a configuration file, see
Appendix A, “XML Schema Definitions”.

The code below is the configuration file of the sample and is located at:
install_dir/sanpl es/ webser vi ces/j axr pc/ si npl e

<?xm version="1.0" encodi ng="UTF- 8" ?>

<configuration
xm ns="http://java. sun.com xm /ns/jax-rpc/ri/config">

<wsdl | ocation="Hel |l oWrld.wsdl"
packageNane="sanpl es. webser vi ces. j axrpc. si npl e"/ >
</ confi guration>

After you generate the service interface, perform Step 2 to Step 5 under the section,
“Developing JAX-RPC Web Services” on page 35.

Assembling and Deploying JAX-RPC Web
Services

A JAX-RPC Web service application can be assembled and deployed to Sun ONE
Application Server as a WAR file. A WAR file contains the files needed for the web
application in compressed form.

The following steps describe the procedure to assemble and deploy a Web services
application to Sun ONE Application Server.

38 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

http://java.sun.com/xml/ns/jax-rpc/ri/config

Assembling and Deploying JAX-RPC Web Services

Create the WAR file. To create a WAR file that contains the service code, create
abui | d. xnl file, specifying the cr eat e- war command for the t ar get - nane.
The following code is a sample bui | d. xnl file that creates a WAR file:

<target nanme="create-war" depends="conpile-server"
descri pti on="Packages the WAR file">
<echo nmessage="Creating the WAR ..."/>
<delete file="../${portable-war}" />
<del ete dir="${assenbl e}/ VEB-| NF" />
<copy todir="3%{assenbl e}/ WEB- | NF/ cl asses/" >
<fileset dir="${build}/shared/" includes="**/* class" />
</ copy>
<copy file="web.xm" todir="%{assenbl e}/ VEB-I NF" />
<copy file="jaxrpc-ri.xm" todir="%{assenbl e}/ WEB-I NF" />
<jar jarfile="${assenbl e}/ ${portabl e-war}" >
<fileset dir="%{assenble}" includes="WEB-INF/ **" />
</jar>

<nmove file="%${assenbl e}/ ${portable-war}" todir="../" />
</target>

This XML file when executed, bundles the files into a WAR file named

hel | o- port abl e. war . This WAR file is not ready for deployment because it
does not contain the tie classes. A WAR (web application archive) file contains
a complete web application in compressed form.

A special directory under the document root, VEB- | NF, contains everything
related to the application that is not in the public document tree of the
application. No file contained in VEB- | NF can be served directly to the client.
The contents of VEB- | NF include:

o/ VEB- I NF/ cl asses/ *, the directory for servlet and other classes.

o/ WEB- I NF/ I i b/*jar, the directory for JAR files containing beans and other
utility classes.

Chapter 2 Services and Clients Using JAX-RPC 39

Assembling and Deploying JAX-RPC Web Services

o/ WEB-1I NF/ web. xm and/WEB- | NF/ sun-web. xm , XML-based deployment
descriptors that specify the web application configuration, including
mappings, initialization parameters, and security constraints.

The web application directory structure follows the structure outlined in the
J2EE specification.

In the example, the hel | o- port abl e. war contains the following files:
o WEB-INF/classes/hello/Hel | ol F. cl ass

o WEB-INF/cl asses/ hel |l o/ Hel | ol npl . cl ass

o WEB-INF/jaxrpc-ri.xm

o VEB- | NF/ web. xm

2. Define the configuration file that specifies the name of the service and its
service endpoint interface and the class. The name of the configuration file
must be j axr pc-ri . xn . The following configuration file is the configuration
file of the example.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<webServi ces

xm ns="http://java. sun. com xm / ns/jax-rpc/ri/dd"
version="1.0"

t ar get NanespaceBase="http:// hell 0. org/ wsdl "

t ypeNanespaceBase="http://hell o. org/types"

url Patt ernBase="/ws">

<endpoi nt

nanme="Hel | oWor | d"
di spl ayNane="Hel | oWworl d Servi ce"
description="A sinple web service"
i nterface="sanpl es. webservi ces. j axrpc. si npl e. Hel | ol F"
i mpl ement at i on="sanpl es. webservi ces. j axr pc. si npl e.
Hel | ol npl "/ >
<endpoi nt Mappi ng
endpoi nt Nane="Hel | oWor | d"
url Pattern="/sinple"/>
</ webServi ces>
The configuration file contains the following webSer vi ces attributes:

o ThewebSer vi ces element includes nane, t ypeNanespace, and
t ar get Namespace attributes.

40 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://java.sun.com/xml/ns/jax-rpc/ri/dd
http://hello.org/wsdl
http://hello.org/types

Assembling and Deploying JAX-RPC Web Services

- The nane attribute is used to generate the WSDL file for publication in
a public registry.

« ThetypeNanespace attribute defines the namespace in WSDL
document for types generated by the wsconpi | e tool.

« Thetarget Namespace attribute is used for qualifying everything else
in the WSDL document.

For information about the XML schema for creating a runtime configuration
file, see Appendix A, “XML Schema Definitions”.

Create web. xm deployment descriptor file to include the information required
for deploying a service, such as mapping the service to an URL, specifying the
location of the configuration file in the WAR file, etc. For more information on
the deployment descriptors, see the Sun ONE Application Server Developer’s
Guide.

For general information about DTD files and XML, see the XML specification
at:

http://ww. w3. or g/ TR/ REC- xm
The following is the deployment descriptor of the example:
<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE web- app

PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application
2.3/ EN'

"http://java. sun. com dt d/ web-app_2_3. dtd">
<web- app>
<di spl ay- nane>Hel | o Worl d Appl i cation</di spl ay- nane>

<descripti on>A web application containing a sinple JAX-RPC
endpoi nt </ descri pti on>

<sessi on-confi g>
<sessi on-ti meout >60</ sessi on-ti neout >
</ sessi on-confi g>
</ web- app>

For information about the XML schema for creating deployment descriptors,
see Appendix A, “XML Schema Definitions”.

Web services applications have a directory structure, all accessible from a
mapping to the application’s document root (for example, Zhel | o).

Chapter 2 Services and Clients Using JAX-RPC 41

http://www.w3.org/TR/REC-xml
http://java.sun.com/dtd/web-app_2_3.dtd

Invoking JAX-RPC Web Services

4. Use the wsdepl oy tool to create a deployable WAR module. The wsdepl oy tool
executes the wsconpi | e tool to generate the stubs, tie classes and other
necessary classes.

wsdepl oy -keep tnpdir tenpdir -o hello.war hello-portable.war
The wsdeploy command when executed, performs the following tasks:
o Reads the hel | o- port abl e. war file as input

o Gets information from the j axrpc-ri . xnl file that’s inside the
hel | o- port abl e. war file

o Generates the tie classes for the service
o Generates a WSDL file named Hel | oVor | d. wsdl

o Assembles the tie classes, the Hel | ovor | d. wsdl file, and the contents of
hel | o- port abl e. war file into a deployable WAR file.

See “wsdeploy Tool” on page 69 for information on using the wsdepl oy
command-line tool.

5. Use the asadni n depl oy command to deploy the WAR module.
For example,

asadm n> depl oy --user adm n --password adnin --host | ocal host
--port 4848 --type web --instance serverl
/ sun/ appserver 7/ sanpl es/ webser vi ces/ j axrpc/ si npl e/ Hel | 0. war

For more information on using the asadni n command-line tool, see the Sun
ONE Application Server Developer’s Guide.

Invoking JAX-RPC Web Services

Invoking a Web service essentially refers to the actions that a client application
performs to access a Web service. Web services deployed to Sun ONE Application
Server can be accessed by any client. That is, any J2EE component within the
application server can take the role of a client. Any application or an application
client can access Web services. A client can use Apache SOAP libraries to make a
call to a Web service or it could be a .net client.

This section describes the procedures to develop JAX-RPC clients that can invoke
JAX-RPC Web services deployed to Sun ONE Application Server.

42 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Invoking JAX-RPC Web Services

JAX-RPC clients are applications that use the JAX-RPC APIs and runtime for
invoking a Web service. These clients import the service using WSDL and can
invoke a service that has been defined and deployed on a non-Java platform.
JAX-RPC defines the j avax. xn . rpc. Servi ce interface to model the Web service
from a client’s perspective. You can use either J2SE or J2EE client programming
model to develop JAX-RPC clients.

The main steps in invoking a Web service are listed below:

1. Add the Java client JAR files to the client jar path. For more information on
how to add the jar files to the classpath, see “Setting Up the Client
Environment” on page 29.

2. Create a Java-based service client.

3. Assemble and deploy your client application. See “Assembling and Deploying
a JAX-RPC Client” on page 51.

4. Execute your Java client to invoke the Web service.

You can create JAX-RPC clients using the stubs method, a dynamic proxy, or the
call interface method. This section discusses the following topics:

= Creating Clients Using Generating Stubs Method
= Creating Clients Using Dynamic Invocation Interface
o Creating JAX-RPC Client Using a Dynamic Proxy
o Creating a JAX-RPC Client Using the Call Interface
< Assembling and Deploying a JAX-RPC Client

Creating Clients Using Generating Stubs Method

Stubs are used when a JAX-RPC client knows what method to call and how to call
it, such as what parameters to pass. Invoking a remote method through a stub is
like invoking a remote method using the Java Remote Method Invocation (RMI)
system. A stub simplifies the remote method calls by making them appear like
local method calls. A local stub object is used to represent a remote object. To make
a remote method call, a JAX-RPC client makes the method call on the local stub.

A stub class is a mapping of a port in the WSDL that describes the Web service. It
must therefore implement the service definition interface that reflects the methods
of the associated por t Type. Thus the client has strongly typed, early-bound access
to the Web service endpoint.

Chapter 2 Services and Clients Using JAX-RPC 43

Invoking JAX-RPC Web Services

The stub must also implement the j avax. xn . r pc. St ub interface, which provides
the facility for the client to configure the stub dynamically.

Typically, a JAX-RPC client performs the following steps. These steps are
illustrated in the figure “JAX-RPC Client Model”.

1. The client calls the stub.
2. The stub redirects the call to the appropriate Web service.
3. The server catches the call and redirects it to a framework.

4. The framework wraps the actual implementation of the service, then calls the
Web service on behalf of the client.

5. The framework returns the call to the server.
6. The Web service, in turn, returns the information to the originating client stub.
7. Finally, the client stub returns the information to the client application.

JAX-RPC Client Model

Client @ @ JAX-RPC
@ Servlets

N
Client Stubs JAX-RPC
Skeleton

N2

N
Protocol orotocal

SOAP, HTTP... SOAP, HTTH...
v

1 [

=t - = = 1 RPC Calls via SOAP

The following sections describe these steps:

= Generating the Stubs

< Coding the Client

e Compiling the Client Code

= Assembling the Client Classes into a JAR file

44 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Invoking JAX-RPC Web Services

< Running the Client

Generating the Stubs

You can use the wsconpi | e tool to generate the stubs for the client. In addition to
generating the stubs, the wsconpi | e tool also generates the ties for the server. To
generate stubs, set the PATH to the install_dir/ shar e/ bi n directory. Run the tool
using the following syntax:

wsconpile -gen:client -d build/client -classpath build/shared
config.xm

For more information on wsconpi | e tool, see “wscompile Tool” on page 64.

There are two ways to generate the stubs. The stubs can be generated from the
service endpoint definition or from a WSDL document. The wsconpi | e command
above uses the service endpoint definition to generate the stubs.

Coding the Client

Make sure to add the necessary jar files to the classpath. For more information, see
“Setting Up the Client Environment” on page 29.

The client performs the following steps:
1. Obtain an instance of the interface stub.

2. Set the endpoint property of the stub to point to the service endpoint of the
Web service.

3. Call the method.

In this example, the stubs are generated using the service endpoint definition. You
provide the configuration information using the JAX-RPC implementation’s
client-side APl j avax. xn . r pc. St ub.

The following code illustrates the above mentioned steps:
package hell o;

i mport javax.xm .rpc. Stub;

public class Hellodient {
public static void nmain(String[] args) {
try {

Hel | ol F_Stub stub =
(Hel I ol F_St ub) (newHel | oWor | d_I npl (). getHel Il ol FPort ());

stub. _setProperty(javax.xm .rpc. Stub. ENDPO NT_ADDRESS PROPERTY,
args[0]);

Chapter 2 Services and Clients Using JAX-RPC 45

Invoking JAX-RPC Web Services

System out . printl n(stub.sayHel | o("Duke!"));
conmand- | i ne}
catch (Exception ex) ({

ex. printStackTrace();

}

In the code illustration above, the Hel | oCl i ent is a stand-alone program that calls
the sayHel | o method of the Hel | oWor | d service. It makes this call through a stub,
a local object that acts as a proxy for the remote service. In the code listing, note the
names of the Hel | ol F_St ub and Hel | oWor | dI npl classes, which were generated
by the wsconpi | e tool. The Hel | ol F prefix matches the name of the service
definition interface and the Hel | owr | d prefix corresponds to the service name
specified in the configuration file. The Hel | oWor | dI npl class is the implementation
of a service as described in the JAX-RPC specification. The client gets a reference to
the stub by calling the get Hel | ol F method of the Hel | owor | dI mpl class, which
was created when you ran the wsconpi | e tool.

The args[0] parameter of the st ub. _set Property method is a URI that denotes
the address of the target service port.

Compiling the Client Code

NOTE Be sure to run the wsconpi | e and the wsdepl oy tools before you
compile the client code. The client code refers to the generated by
the wsconpi | e tool.

wsconpile -gen:client -d build/client -classpath
bui | d/ shared config. xm

To compile the client, go to the directory where you have the client code saved and
type the following command:

asant conpile

This command compiles the Java source code.
Assembling the Client Classes into a JAR file

You can use the asant tool to assemble the client classes into a JAR file. asant isa
command-line interface tool. Type the following command:

46 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Invoking JAX-RPC Web Services

asant jar

This command creates the client jar file.

Running the Client
Use the asant tool to run the client. Type the following command:

asant run
The r un target of asant executes this command:
java -classpath cpath client endpoint

cpath - The classpath includes the client jar file that you have created, as well as
several other JAR files that are part of the JAX-RPC implementation.

NOTE In order to run the client remotely, all of these JAR files must reside
on the remote client system.

endpoint- ht t p: / /| ocal host : 8080/ j axr pc- hel | o/ j axrpc/ Hel | ol F

The j axr pc- hel | o portion of the URL is the context of the servlet that implements
the Hel | oWor | d service. This portion corresponds to the prefix of the

j axrpc-hel | o. war file. The j axr pc string matches the value of the

<ur| - patt er n> element of the sun- web. xm deployment descriptor. And finally,
Hel | ol F is the name of the interface that defines the service.

You can accomplish the task of compiling, assembling and deploying, and running
aclient through a bui | d. xm file. The bui | d. xm file for the sample bundled with
Sun ONE Application Server is available at the following location:

install_dir/sanpl es/ webser vi ces/j axrpc/ si npl e/ src

Creating Clients Using Dynamic Invocation
Interface

Using Dynamic Invocation Interface (DII), a client can call a service or a remote
procedure. The client can discover the name of the service or the procedure at
runtime, making use of a service broker that can dynamically look up the service
and its remote procedures.

Chapter 2 Services and Clients Using JAX-RPC 47

http://localhost:8080/jaxrpc-hello/jaxrpc/HelloIF

Invoking JAX-RPC Web Services

The j avax. xnl . r pc. Ser vi ce encapsulates two types of dynamic invocation that
do not require any generated code. This section describes the procedure to create
dynamic clients.

= Creating JAX-RPC Client Using a Dynamic Proxy
= Creating a JAX-RPC Client Using the Call Interface

Creating JAX-RPC Client Using a Dynamic Proxy

A JAX-RPC client can interact with a Web service using a dynamic proxy. A
dynamic proxy is a class that dynamically supports service endpoints at runtime,
without having pre generated stubs. A client creates dynamic proxies by calling the
get Port () method of the javax. xni . r pc. Servi ce interface. The client calls its
get Port () method, passing in the Java service definition interface and the
corresponding Web service port name. It passes back a dynamically built and
configured implementation of the service definition interface-a dynamically built
stub.

For more information on dynamic proxies, visit the following URL.:
http://java. sun.conij2se/ 1. 3/ docs/ gui de/refl ection/proxy. htm

The steps given below explains the procedure to create a dynamic proxy client.

1. Make sure to add necessary jar files to the classpath. For more information on
adding jar files to the classpath, see “Setting Up the Client Environment” on
page 29.

2. Create a client class that uses a dynamic proxy to invoke the service.

public class Hellodient {

3. Define the name of the service, the port name and the name of the WSDL that
contains the information about the Web service you wish to access.

String Ul String = endpoint;

String nanmeSpaceUri = "http://proxy.org/ wsdl/HelloWrld";
String serviceNane = "Hel | oWorl d";

String portNane = "Hellol FPort";

URL hel | oWwsdl Url = new URL(Url String);

4. Obtain an instance of the default implementation for Ser vi ceFact or y object.
Servi ceFactory serviceFactory = Servi ceFactory. newl nstance();

Servi ce hel |l oService =servi ceFactory. createServi ce(hell owsdl Ul ,
new QName(nameSpacelri, servi ceName));

48 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

http://java.sun.com/j2se/1.3/docs/guide/reflection/proxy.html
http://proxy.org/wsdl/HelloWorld

Invoking JAX-RPC Web Services

5. Getadynamic proxy for the object.

Hel I ol F nyProxy =(Hell ol F)helloService.getPort(new
Nane(nameSpacelri, port Nanme), proxy. Hell ol F. cl ass);

In the code illustration, the get Port () method is passed in an interface
definition that will be used as a template for building a runtime instance of a
dynamic proxy.

6. Invoke the service using
java.lang.refl ect. | nvocati onHandl er. | nvoke();

System out . printl n(myProxy. sayHel | o("Buzz"));

Creating a JAX-RPC Client Using the Call Interface

In the Call Interface approach, a client dynamically discovers services, configures
the remote calls, and executes the calls.The client uses the j avax. xnm . r pc. Cal |
interface for the dynamic invocation of a JAX-RPC service. At runtime, the client
uses the DIl to call remote procedures on the Web service.

DIl Cal I object method supports two types of invocation, namely, synchronous
request-response and one-way mode. In the synchronous request-response mode,
the client uses the invoke method of the call object to make a remote method. The
client then waits until the operation is complete, that is, until a response is
returned. In one-way method, the client uses the i nvokeOneWay method of the call
object to make a remote call.

The steps given below explains the procedure to create a client that can invoke a
Web service using the call interface approach:

1. Make sure to include the necessary jar files to the classpath. For more
information, see “Setting Up the Client Environment” on page 29.

2. When you create a dynamic client, define the name of the service that you wish
to access and the port name. Then, you create a service factory using the
Servi ceFact ory. newl nst ance() method. The
Servi ceFact ory. newl nst ance() method is supported by the JAXR API to
define a service. For more information, see “Adding Services and Service
Bindings to an Organization” on page 113.

private static String gnameService = "Hel | oWrl d";
private static String gnamePort = "Hell ol F*;

ServiceFactory factory = ServiceFactory. newl nstance();

Service service = factory. createServi ce(new
ame(gnaneServi ce)) ;

Chapter 2 Services and Clients Using JAX-RPC 49

Invoking JAX-RPC Web Services

3. Create a Servi ce object from the factory.

Service service = Factory. createService(new
ane(gnaneServi ce)) ;

4. Create aCal | object from the ser vi ce and pass the name of the port and the
operation you want to execute.

Q\anme port = new QN\ane(qgnanmePort);

Call call = service.createCall();
cal | . set Port TypeName(port);
cal | . set Tar get Endpoi nt Addr ess(endpoi nt);

5. Set the property prior to making the actual method call. The set Property
method is used to set standard properties that are listed in the JAX-RPC
specification.

call.setProperty(Call.SQAPACTI ON_USE PROPERTY, new
Bool ean(true));

cal | . set Property(Call.SOAPACTI ON_URI _PROPERTY, "");

cal | . set Property(ENCODI NG_STYLE_PROPERTY, URI _ENCODI NG);
Qame QNAME_TYPE_STRI NG = new QNanme(NS_XSD, "string");
cal | . set Ret ur nType(QNAVE_TYPE_STRI NG) ;

6. Set the operation name.

cal | . set Oper ati onNane(new

\ane(BODY_NAMESPACE_VALUE, "sayHel 1 0"));
call.addParaneter("String_1", ONAME_TYPE_STRI NG
Par amet er Mode. I N) ;

String[] parans = { new String("Duke!") };

The addPar anet er method is used to add a parameter and the type for the
operation specified in the set Oper at i onName method. Note that the values of
these parameters are obtained from the WSDL document for the service.

7. Usethe Call.invoke() method to invoke the service.
String result = (String)call.invoke(parans);

The i nvoke method invokes the operation specified in the set Oper at i onNane
method using a synchronous request-response interaction mode. The method
call specifies the input parameters for the invocation.

Creating a JAX-RPC Client Using a WSDL
The following steps describes the procedure to create a dynamic client that uses the
WSDL to locate a Web service and invoke the service.

50 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Invoking JAX-RPC Web Services

Create a service factory using the Ser vi ceFact ory. newl nst ance() method.
Servi ceFactory serviceFactory = Servi ceFactory. newl nstance();
Create a ser vi ce object from the factory. Pass the name of the WSDL.
String naneSpaceUri = “http://hello.org/wsdl”;

URL hel I oWsdl URL = new URL(URLstri ng);

Create a ser vi ceNane object and pass the name of the service that you wish to
invoke.

String serviceNane = “Hel |l oWorl d”;
Create a por t Name object and specify the port name.
String portNane = “Hell ol Fport”;

Create an Oper at i onName object and specify the name of the operation in the
service that you wish to execute.

String operationNanme = “sayHel |l 0”;

Create a service, passing it the WSDL location and the name of the service that
you want to invoke.

Service hell oService =
servi ceFactory. creat eServi ce(hel | oWwsdl URL, new
Nare(nanmeSpaceUri, serviceNane"));

Create a Cal | object, pass it the name of the port and the operation that you
want to execute.

Call call = helloService.createCall (portNane, operationNane);
Invoke the service using the Cal | . | nvoke() method.

String result = String call.lnvoke(helloService);

Assembling and Deploying a JAX-RPC Client

JAX-RPC Clients can be bundled into a deployable WAR file using the wsdepl oy
command tool. The wsdepl oy command reads the JAX-RPC runtime descriptor
jaxrpc-ri.xnl file and the web application deployment descriptor web. xm file.
Assembling and deploying a JAX-RPC client involves the following steps:

Create the JAX-RPC runtime descriptor file. The name of the file must be
jaxrpc-ri.xnl.See “The jaxrpc-ri.xml File” on page 70.

Chapter 2 Services and Clients Using JAX-RPC 51

http://hello.org/wsdl%E2%80%9D%00

JAX-RPC Client Invoking an EJB

2. JAX-RPC client is a web module. Create a web module deployment descriptor
web. xnm . For information on web. xni file, see the Sun ONE Application Server
Developer’s Guide to Web Applications.

3. Use the wsdepl oy command tool to create a deployable WAR file. For
information about wsdepl oy command tool, see “wsdeploy Tool” on page 69.

4. Deploy the WAR file using asadmin deploy command.

You can accomplish the task of assembling and deploying, and running a JAX-RPC
client through an ant bui | d. xnl file. The bui | d. xnl file for the samples are
bundled with Sun ONE Application Server which is available at the following
location:

install_dir/sanpl es/ webser vi ces/j ax-rpc/sinple/src

Sample Applications

< install_dir/sanpl es/ webser vi ces/ j axr pc/ pr oxy - contains a sample dynamic
proxy client application that illustrates the basics of creating, deploying, and
accessing a Web service.

= install_dir/sanpl es/ webser vi ces/ j axr pc/ dynani ¢ - contains a dynamic
invocation interface client that illustrates the basics of creating, deploying, and
accessing a Web service.

JAX-RPC Client Invoking an EJB

This section describes the procedure to create a stand-alone JAX-RPC client that
makes a remote call on a JAX-RPC service. This service locates a stateles session
bean and invokes a method on the bean.

NOTE These instructions apply to the development of JAX-RPC services
only in the J2EE 1.3.1 environment.

The main steps to invoke an EJB are listed below:

1. Create a stateless session bean. See the Sun ONE Application Server Developer’s
Guide to Enterprise Java Beans for detailed instructions on creating a stateless
session bean.

52 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

JAX-RPC Client Invoking an EJB

Create a JAX-RPC Web service that performs a lookup on the EJB. The
following code illustrates how a Web services application can make a remote
call on the EJB:

public String sayHello(String name) {

Context initial = new Initial Context();

Context myEnv = (Context)initial.lookup("java:conp/env");

oj ect objref = nyEnv.| ookup("ejb/SinpleGeeting");

Greeti ngHone hone =

(G eeti ngHone) Port abl eRenpt eObj ect . narrow obj ref , G eet i ngHone. cl
ass);

}

Chapter 2 Services and Clients Using JAX-RPC 53

JAX-RPC Client Invoking an EJB

3. Create a stand-alone client that makes a remote call on the JAX-RPC service.
The following code is an example of the client that makes a remote call on the
EJB.

package sanpl es. webservices.jaxrpc.toejb.client;

i mport javax. nam ng. Cont ext;

i mport javax. nami ng. | nitial Context;

i mport javax.rm . Portabl eRenpt eObj ect;

i mport sanpl es. webservices.jaxrpc.toejb.ejb.*;

public class GeetingCdient {

public static void main(String[] args) {
try {

Context initial = new Initial Context();
Context myEnv = (Context)initial.lookup("java:conp/env");
oj ect objref = nyEnv. | ookup("ejb/SinpleGeeting");

G eeti ngHonme hone =
(G eetingHoe) Por t abl eRenpt eCbj ect . narr ow obj ref , G eet i ngHone. cl
ass);

Greeting salutation = hone.create();

System out. println(sal utation.sayHey("Buzz"));
System exit(0);

} catch (Exception ex) {

Systemerr. println("Caught an unexpected exception!");
ex. printStackTrace(); }

} // main

You can find the complete code listing for the sample at:
install_dir/sanpl es/ webservi ces/j ax-rpc/toejb/src/

4. Assemble the service and the client. See “Assembling and Deploying JAX-RPC
Web Services” on page 38 and “Assembling and Deploying a JAX-RPC Client”
on page 51.

5. Deploy the session bean by performing the following steps:

o Edit the deployment descriptor files (ej b-j ar. xm and
sun-ej b-jar. xnm).

54 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Building Security into JAX-RPC Web Services

o Execute an Ant build command (such as build jar) to reassemble the JAR

module.

o Use the asadni n deploy command to deploy the JAR module. For
example, the following command deploys an EJB application as a
stand-alone module:

asadmi n deploy --type ejb --instance instl nyEJB.jar

Deploy the JAX-RPC service. See “Assembling and Deploying JAX-RPC Web

Services” on page 38.

Run the JAX-RPC client using the asant command.
asant run

Building Security into JAX-RPC Web Services

This section describes the procedure to provide security to a JAX-RPC service
application, by providing security to the web container that contains the
application, using HTTP/SSL for basic and mutual authentication. For more
information on authentication, see the Sun ONE Application Server Developer’s Guide
to Web Applications.

This section presents the following topics:

Basic Authentication Over SSL

Adding Security Elements to web.xml

Setting Security Properties in the Client Code

Mutual Authentication Over SSL

Setting Up Client Certificate Authentication for Web Services

You must perform the following steps to configure a JAX-RPC Web service
endpoint for HTTP/S basic and mutual authentication:

Use keyt ool , which is part of the J2SE SDK, to generate certificates and
keystrokes.

Add security elements to sun- web. xnl deployment descriptor.
Add some properties in the client code.

Build and run the Web service.

Chapter 2 Services and Clients Using JAX-RPC

55

Building Security into JAX-RPC Web Services

56

Basic Authentication Over SSL

Follow the steps below to configure a Web service for basic authentication over
HTTP/S:

1. Configure a certificate and enable SSL on HTTP listener for your server. For
more information on configuring a certificate and enabling SSL on HTTP, see
“Administering Certificates” and “Turning Security On” sections respectively,
in the Sun ONE Application Server Administrator’s Guide to Security.

A HTTP client uses a repository of trusted Certificate Authorities (CA) during
the SSL handshake to validate server certificate. It is important that the CA of
your server certificate be a trusted CA for the client.

2. For the J2SE 1.4 based clients which includes JSSE based clients, such as Web
services applications, you need to import the certificate of your server’s CA
into JSSE cacerts database. Use the command line tool, the keyt ool to import
the trusted CA certificate.

The following code illustrates how you can import the certificate of your CA
into the trusted CA database of your J2SE-based client:

keytool -inmport -v -alias "CM5-CA" -file cnsca.cer -keystore
cacerts

For more information on using keyt ool , run keyt ool command with - hel p
option or visit the following URL.:

http://java. sun. conl products/jdk/ 1. 2/ docs/ t ool docs/ sol ari s/ keyto
ol .htm

Sun ONE Application Server 7 « Developer's Guide to Web Services « March 2003

http://java.sun.com/products/jdk/1.2/docs/tooldocs/solaris/keyto

Building Security into JAX-RPC Web Services

3. Enter keystore password: changei t

Onner: CN=Certificate Manager, OU=AppServices, O=Sun
M crosystens, L=SCA, ST=California, C=US

I ssuer: CN=Certificate Manager, OU=AppServices, O=Sun
M crosystens, L=SCA, ST=California, C=US

Serial nunber: 1

Valid from Mn Jun 03 12:00: 00 PDT 2002 until: Thu Jun 03
12: 00: 00 PDT 2004

Certificate fingerprints:

MD5: 6C: 8D: A6: E4: 55: 52: 1A: FF: 9D: 19: 44: D7: OF: 62: 66: 95

SHAL: 89: B1: OE: 7E: 8F: 56: B2: 34: 65: 46: 15: 86: 53: 7E: 3E: 6B: 4F: 9D: 84: 63
Trust this certificate? [no]: yes

Certificate was added to keystore

[Savi ng cacerts]

4. Configure the server instance to use appropriate realm and make sure the
realm has users you would like to permit the Web services access.

For Example, to set up the flat file of users, follow the steps below in the
Administration interface:

o Select the server instance and click on the Security node in the left pane.

o Select the drop-down box for the Default Realm in the right pane and
choose the option “file”.

o Select the Realms in the left pane and click on the file realm to add the
users to the file realm.

o Apply your changes. Now, the server’s flat file user database is ready to
use.

For detailed information on Configuring the server instance to use the realm,
see the Sun ONE Application Server Administrator’s Guide.

Adding Security Elements to web.xml

Enable Basic Authentication for the web application and specify a security
constraint to enforce authentication. For more information on security elements in
web. xn , see the Sun ONE Application Server Developer’s Guide to Web Applications.

Chapter 2 Services and Clients Using JAX-RPC 57

Building Security into JAX-RPC Web Services

Here is an example of how you can configure the Basic Authentication for the Web
service servelt-based end point. This security-constraint allows principals with the
role “ServiceUser” which is mapped to user “bob” in the sun- web. xn .

The WEB- | NF/ web. xm :

<security-constraint>

<web-resource-col |l ecti on>
<web- r esour ce- nane>Secur eHel | o</ web- r esour ce- nane>
<ur| -pattern>/security</url-pattern>
<ht t p- net hod>GET</ ht t p- met hod>
<ht t p- net hod>PCOST</ ht t p- net hod>
</ web-resource-col | ecti on>

<aut h- const rai nt >
<r ol e- name>manager </ r ol e- nane>

</ aut h- constrai nt >
</ security-constraint>
<l ogi n-config>
<aut h- net hod>BASI C</ aut h- met hod>
</l ogi n-confi g>
The WEB- | NF/ sun-web. xm :

<sun- web- app>
<security-rol e- mppi ng>

<r ol e- nane>Ser vi ceRol e</ r ol e- nane>
<pri nci pal - nane>bob</ pri nci pal - name>

</ security-rol e- mappi ng>
</ sun- web- app>

5. Set the security properties for the J2SE-based client. For step-by-step
instructions, see “Setting Security Properties in the Client Code” on page 58.

Setting Security Properties in the Client Code

For basic authentication over SSL, the client code must set several security-related
properties.

58 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Building Security into JAX-RPC Web Services

trustStore Property
The client specifies the t r ust St or e property as follows:

System set Property(“javax. net.ssl.trustStore”, trustStore);

trustStorePassword Property

The t r ust St or ePasswor d property is the password of the J2SE SDK keystore. In

the previous section, you specified the default password changei t when running
keyt ool . The client sets the t r ust St or ePasswor d property in the following code
illustration:

System set Property(“j avax. net. ssl.trust St orePassword”,
trust St or ePasswor d) ;

Username and Password Properties
The username and password values correspond to the manager role. The client sets
the user nane and passwor d properties as follows:

stub. _set Property(javax.xm . rpc. Stub. USERNAME_PROPERTY, usernane);
stub._setProperty(javax.xml.rpc.Stub.PASSWORD_PROPERTY, password);

Mutual Authentication Over SSL

To configure and create a JAX-RPC service with mutual authentication, follow all
of the steps in the “Basic Authentication Over SSL” on page 56. Then, follow these
steps:

1. Export the generated client certificate.
The following code illustrates how to export the client certificates.

$Java_home/ bi n/ keyt ool -export -alias -client -storepass changeit
-file client.cer -keysnttore client. keystore

2. Import the client certificate into the server’s keystore.

$Java_home/ bi n/ keyt ool -import -v -trustcacerts -alias -client
-file client.cert -keystore server.keystore -keypass changeit
- storepass changeit

3. Run the application using asant tool.

asant run

Chapter 2 Services and Clients Using JAX-RPC 59

Building Security into JAX-RPC Web Services

Setting Up Client Certificate Authentication for
Web Services

This section describes how you can configure a Web service that uses Client
Certificate Authentication with Sun ONE Application Server.

NOTE For clients, using HTTPS, follow the steps 1-6 given below.

1. Follow the steps 1 and 2 described under “Basic Authentication Over SSL” on
page 56.

2. For J2SE-based clients, generate a key-pair for the client certificate using the
keytool. The key-pairs are stored in a keystore. The following code line
illustrates how to generate a key-pair:

> keytool -genkey -v -alias clcert -dnanme ' CN=Test User,
OUtest U, O=testO, L=SCA, S=California, C=US\

-keystore clcerts -keypass changeit
The command execution, displays the following information:

Generating 1,024 bit DSA key pair and sel f-signed certificate
(SHALW t hDSA)

for: CN=Test User, OU=testQU, O=testQ L=SCA, ST=California, C=US
Enter key password for <clcertl>

(RETURN i f sane as keystore password):
[Savi ng cl certs]

3. Generate a certificate request to be sent to a trusted CA. Use the following
keyt ool command to generate a certificate request:

>keytool -certreq -v -alias clcert -file clreq -keystore clcerts
Enter keystore password: changei t

Certification request stored in the file: cl r eq

Submit this to your CA

>more clreq

This command generates the following message:

60 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Building Security into JAX-RPC Web Services

M | Caz CCAI g CAQAWZTEL MAk GA1UEBhMCVVIMK Ez ARBgNVBAQ TCKNhbA b 3JuaVEx DDAKBgNVBAC T
ALNDQT EOVAWGAL UEChMFdGVz dE8x Dz ANBgNVBAS TBnR ¢ 3RPVTESMBAGALUEAXMIVGVZ dCBVCE 2y

Ggdglvx+mvcgckdzap+ykl EcQz/ qQq60r PddF6y KOwnWkez32Y2bt GAe5980AAWCOWYHKOZI zj gE
AWUAAZ AAMCOCFQCPf 7TuJLJ+zS/ HH+f CcKnFAt mKYwl UZMLOc56Kr Scgl edl mxGzLI KMs GE=

4. Send the generated certificate request to a trusted CA and request a signed
certificate. For more information on sending the request to a trusted CA, see
CA Server Administration documentation.

You may verify the returned signed certificate in Base64 encoded X.509 format
(saved for example in cal cert . t xt file). Note that this certificate is chained as
it is signed by the CA. If you use a pkcs7 format, the keyt ool may complain
that the certificate us not in X.509 format.

> keytool -printcert -v -file clcert.txt

Certificate[1]:

Onner: CN=Certificate Manager, OU=AppServices, O=Sun
M crosystens, L=SCA, ST=Californa, C=US

I ssuer: CN=Certificate Manager, OU=AppServices, O=Sun
M crosystens, L=SCA, ST=Califoria, C=US

Serial number: 1

Valid from Mn Jun 03 12:00: 00 PDT 2002 until: Thu Jun 03
12: 00: 00 PDT 2004

Certificate fingerprints:

MD5: 6C. 8D: A6: E4: 55: 52: 1A: FF: 9D: 19: 44: D7: OF: 62: 66: 95
SHAL:
89: B1: OE: 7E: 8F: 56: B2: 34: 65: 46: 15: 86: 53: 7E: 3E: 6B: 4F: 9D: 84: 63

Certificate[2]:

Omer: CN=Test User, OUtestQU, O=testO L=SCA, ST=California,
C=USs

I ssuer: CN=Certificate Manager, OU=i WBQA, O=Sun M cr osyst ens,
L=SCA, ST=Califoria, C=US

Serial nunber: 19

Valid from Thu Sep 12 18:33:54 PDT 2002 until: Fri Sep 12
18: 33: 54 PDT 2003

Certificate fingerprints:

Chapter 2 Services and Clients Using JAX-RPC 61

Building Security into JAX-RPC Web Services

MD5: 82:09: 8A: DC. E2: 85: 82: B5: 56: 98: 93: 81: 97: A9: Db: 32

SHA1:

1D: 7C. F2: F2: ED: 79: A3: 62: 0A: A2: 1B: 22: 74: 11: BF: 52: CB: 8D. 9E: BB
5. Update the keystore with the signed client certificate.

> keytool -inport -v -trustcacerts -alias clcert -file clcert.txt
-keystore clcerts -keypass changeit

Displays the following message:
Certificate was added to keystore
[Savi ng cl certs]

6. Now, you must set up the client Java virtual machine to use this
keystore/password:- Dj avax. net . ssl . keySt or e=<pat h-t o/ cl cert s> and
- Dj avax. net . ssl . keySt or ePasswor d.

If you are running the client within <j ava> ant target, you can use the
<sysproperty> element to specify the keystore/password.

For example:
<sysproperty key="javax. net.ssl.keyStore"

val ue="C:/security/clcerts"/>

<sysproperty key="javax. net. ssl . keySt or ePasswor d"
val ue="changei t"/ >

7. Enable the certificate realm for the server instance.
o Inthe Administration interface, select the server instance in the left pane.
o Click the Security node and choose Default Realm to Certificate.

For more information on enabling the certificate alarm, see the Sun ONE
Application Server Administrator’s Guide.

62 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

10.

Building Security into JAX-RPC Web Services

Edit the web. xnl deployment descriptor to configure the Web service
application to use CLIENT-CERT authentication.

security-constraint>
<web-resource-col | ecti on>

<web- r esour ce- nane>Pr ot ect ed Ar ea</ web-resour ce- nane>
<url-pattern>/*</url-pattern>

<ht t p- net hod>GET</ ht t p- net hod>

<ht t p- met hod>POST</ ht t p- met hod>

</ web-resource-col | ecti on>
<aut h-constrai nt >

<r ol e- name>Test er Rol e</ r ol e- name>
</ aut h-constrai nt >
</ security-constraint>
<l ogi n-confi g>
<aut h- met hod> CLI| ENT- CERT </ aut h- met hod>
</l ogi n-config>

Edit the Sun ONE Application Server specific deployment descriptor
(sun-web. xn) to map the role to the X.509 principal name DN of the client
certificate.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE sun-web-app PUBLIC '-//Sun M crosystens, Inc.//DID Sun
ONE Application Server 7.0 Servlet 2.3//EN

"http://ww. sun. conf sof t war e/ sunone/ appser ver/ dt ds/ sun- web- app_2
_3-0.dtd’

<sun- web- ap>
<security-rol e- mappi ng>
<rol e- nanme>Test er Rol e</ r ol e- nane>

<princi pal - nane>CN=Test User, OU=testQU, O=testO L=SCA
ST=Cal i forni a, C=US</pri nci pal - nane>

</ security-rol e- mappi ng>
</ sun- web- app>

Alternatively, you may want to set an optional assign-groups property that can
be set for the certificate realm configuration to which all certificate users
belong. This will allow you to do the role-mapping to this group name, instead
of having to list the principal name DNs.

Chapter 2 Services and Clients Using JAX-RPC 63

http://www.sun.com/software/sunone/appserver/dtds/sun-web-app_2

JAX-RPC Tools

o Inthe Administration interface, select the server instance in the left pane.
o Click and expand the Security node and the Realms node.

o Click on the certificate realm and on the right pane, click on the properties
link to add the property names cert - user s with the value assign-groups.

o Save and Apply the changes. The server.xml reflects the configuration
settings:

<security-service>

<aut h-real m nane="certificate"
cl assname="com i pl anet.ias.security.auth.real mcertificate
.CertificateReal ni>

<property val ue="cert-users" nane="assign-groups"/>
</ aut h-real nm»
</ security-service>

For more information on configuring the certificate realm, see the Sun ONE
Application Server Administrator’s Guide.

11. Restart the server and run the client to verify the working of client certificate
authentication.

JAX-RPC Tools

JAX-RPC implementation of Sun ONE Application Server includes the following
tools that helps in the development of JAX-RPC clients.

= wscompile Tool

< wsdeploy Tool

wscompile Tool

wsconpi | e is a mapping tool that is bundled with Sun ONE Application Server
which generates stubs, ties, serializers, and other artifacts. You can also use this
tool to generate a WSDL document from the service endpoint definition or produce
a service endpoint definition from the WSDL document.

64 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

JAX-RPC Tools

You have the option of generating only the client-side artifacts such as stubs,
server-side artifacts such as ties, or both client and server-side artifacts. The tool
reads the configuration file that contains information needed to generate the
artifacts.

The syntax of the wsconpi | e command is as follows:

wsconpi | e [options] config_file_name

wsconpi | e Command Options

The following table lists the options that you can use with the wsconpi | e
command. The first column specifies the option that you can use with the
command, and the second column describes the option.

Table 2-1 wscompile Tool Options

Option Description

-gen:client Generates client-side artifacts such as stubs, service interface,
implementation classes, and remote interface.

-gen: server Generates server-side artifacts such as ties, server
configuration file, WSDL file, service definition interface. If
you are using wsdepl oy tool, you must not use this option.

-gen: both Generates both client and server-side artifacts at the same
time.

gen Same as gen:client.

-define Defines a service.

Chapter 2 Services and Clients Using JAX-RPC

65

JAX-RPC Tools

Table 2-1 wscompile Tool Options

Option Description

-f:<features>/-features: <f Enable the listed features. Features are separated by comma.
eat ures> List of features supported are:

1. dat ahandl er onl y - always map the attachments to data
handler types

2. explicitcontext -turn on explicit service mapping
context

3. i nfix=<nane> - Specify an infix to use for generated
serializers

4. nodat abi ndi ngs - turn off data bindingss for literal
encoding

5. noencodedt ypes - turn off encoding type information
6. nomul tirefs -turn off support for multiple references

7. noval i dati on - turn off validation for imported WSDL
file

8. sear chschema - search schema aggressively for
subtypes

9. serializeinterfaces -turnondirectservialization of
interface type

-cl asspat h<cl asspat h_strin Specify the path of input class files.

g>

cp<cl asspat h_string> Same as classpath.

-d<directory_nanme> Sets the output directory for all generated files.
-s<directory> Specifies the path where the generated files will be stored.
-g Generates debugging info.

- htt pproxy: <host >: <port > Specify HTTP proxy server.

-inport Generate interfaces and value types.

- keep Keep the generated .java files after the compilation is
complete.

-nmodel <file> Write internal model to the file.

-nd<di rectory> Specify the path to store non class generated files.

-0 Optimize the generated code.

-verbose Output messages about the compiler action.

66 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

JAX-RPC Tools

Table 2-1 wscompile Tool Options

Option Description

-version Print version information.

You must use the wsconpi | e command with one of the -i nport, -gen, and -def i ne
options. Invoking wsconpi | e command with no options will display the usage
information.

Configuration File

The wsconpi | e tool reads the configuration file, which contains information that
describes the Web service. The basic structure of the configuration file is given
below:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<configuration
xm ns="http://java. sun.com xm /ns/jax-rpc/ri/config">
<service> or <wsdl> or <nodelfile>
</ confi guration>

If you use the <ser vi ce> element in your configuration file, the wsconpi | e tool
reads the RMI interface that describes the service and generates a WSDL file.

If you use the <wsdl > element in your configuration file, the wsconpi | e tool reads
the service’s WSDL file and generates the service’s RMI interface.

If your configuration file contains a <ser vi ce> or <wsdl > element, the wsconpi | e
tool generates a model file that contains the internal data structure that describe the
service. If you have already generated a model file in this manner, then you can
reuse it the next time you run the wsconpi | e tool.

For information on the XML schema to create a configuration file, see Appendix A,
“XML Schema Definitions”

Configuration File with RMI Interfaces

<?xm version="1.0" encodi ng="UTF-8"?>

<configuration
xm ns="http://java.sun. com xm /ns/jax-rpc/ri/config">

<servi ce name="[1]"

Chapter 2 Services and Clients Using JAX-RPC 67

http://java.sun.com/xml/ns/jax-rpc/ri/config
http://java.sun.com/xml/ns/jax-rpc/ri/config

JAX-RPC Tools

t ar get Nanespace="[2]"
t ypeNamespace="[3] ">
packageNane="[4] ">

<interface nane="[5]"

servant Nane="[6] "
soapAction="[7]"
soapActi onBase="[8]"/>

<t ypeMappi ngRegi stry> [9] </typeMappi ngRegi stry>
</ servi ce>
</ confi guration>

The configuration file contains the following Web services attributes:

= servi cename - This attribute is used to generate a properties file that the
servlet-based JAX-RPC runtime uses for dispatching the request to
tie-and-servant combination.

= target Namespace - This attribute specifies the target name space for the
generated WSDL document.

= typeNanespace - This attribute specifies the target name space for the schema
portion of the generated WSDL document.

= packageNane - Specifies the package name for the generated Java classes. For
example, the service interface extending j avax. xm . r pc. Servi ce.

= interface nane - Specifies the fully qualified name of a Java interface.
= servant Name - Speicifies the fully qualified name of a servant class.

= soapActi on - String used as the SOAPAct i on for all operations in the
corresponding port. This is optional.

= soapActi onBase - String used as a prefix for the SOAPAct i on strings for the
operations in the corresponding port.

e typeMappi ngRegi st ry - Specifies the type mapping information.

NOTE One generic servlet class
com sun. xm . rpc. server. http. JAXRPCSer vl et is used for all
JAX-RPC endpoints.

Configuration file with a WSDL document
<?xm version="1.0" encodi ng="UTF- 8" ?>

68 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

JAX-RPC Tools

<configuration
xm ns="http://java. sun.com jax-rpc-ri/xrpcc-config">

<wsdl |ocation="[1]"
packageNane="[2] ">
<t ypeMappi ngRegi stry>[3] </typeMappi ngRegi stry>

</ wsdl >

</ confi guration>
The configuration file with a WSDL document has the following attributes:
e wsdl |ocation-URL pointing to awSDL document.

= packageNare - Specifies a fully qualified name of the Java package for the
generated classes/interfaces.

= typeMappi ngRegi stry - type mapping information.

wsdeploy Tool

The wsdepl oy tool generates a deployable WAR file for a service.This tool takes as
input a WAR file for the service.

Syntax of the wsdepl oy command is as follows:

wsdepl oy [options] war file

wsdepl oy Command Options

The following table lists the options that you can use with the wsdepl oy command.

The first column lists the options, and the second column describes the option.

Table 2-2 wsdeploy Tool Options

Option Description

-cl asspat h<cl asspat h_strin Specify the path of input class files.

g>

cp<cl asspat h_string> Same as classpath.

-t nmp<di r ect ory_namne> Specify the path of the temporary directory.

-o<out put war file> Specify the path where the generated WAR file will be stored.
This option is required.

-keep Keep the generated .java files after the compilation is

complete.

Chapter 2 Services and Clients Using JAX-RPC 69

http://java.sun.com/jax-rpc-ri/xrpcc-config

JAX-RPC Tools

Table 2-2 wsdeploy Tool Options

Option Description
-verbose Output messages about the compiler action.
-version Print version information.

war file- Typically, you create the WAR file with a development tool or with the
asant war task. The following are the contents of a simple WAR file:

META- | NF/ MANI FEST. M-

VEEB- | NF/ cl asses/ hel | o/ Hel | ol F. cl ass
VEB- | NF/ cl asses/ hel | o/ Hel | ol npl . cl ass
VEB- | NF/ j axrpc-ri . xm

VEB- | NF/ web. xm

In the example, Hel | ol Fis the service’s RMI interface and Hel | ol npl is the class
the implements the interface. The web. xmi file is the deployment descriptor of a
web component.

The wsdepl oy tool examines the deployment descriptor web. xm and
jaxrpc-ri.xnl togenerate the WAR file. If the deployment descriptor identifies a
model file, the information in the model file is used for generating a WAR file. If
the deployment descriptor does not identify a model file, wsdeploy generates a
model. For information about the XML schema for creating a model file, see
Appendix A, “XML Schema Definitions”.

Behind the scene, wsdepl oy tool runs the wsconpi | e tool with -gen: ser ver option.
In other words, the tool generates the server-side artifacts such as ties. This tool can
also generate the service endpoint definition, or a WSDL document.

The jaxrpc-ri.xml File

The jaxrpc-ri.xn fileisthe JAX-RPC implementation specific configuration file.
This configuration file is read by the wsdepl! oy tool. The following code lists the
contents of aj axrpc-ri.xm file for a simple Hel | oWor | d Ser vi ce.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<webServi ces

xm ns="http://java. sun. com xm / ns/jax-rpc/ri/dd"
version="1.0
t ar get NanespaceBase="http://comtest/wsdl"
t ypeNamespaceBase="http://comtest/types"
url Patt ernBase="/ws">
<endpoi nt
narme="Hel | oWor | d"

70 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://java.sun.com/xml/ns/jax-rpc/ri/dd
http://com.test/wsdl
http://com.test/types

JAX-RPC Tools

di spl ayNane="Hel | o Service"
description="A sinple web service"
i nterface="sanpl es. webservi ces. j axrpc. dynam c. Hel | ol F"
i mpl ement ati on="sanpl es. webservi ces. j axr pc. dynam c. Hel | ol npl "/
<endpoi nt Mappi ng

endpoi nt Name="Hel | oWor | d"
url Pattern="/dynam c"/ >
</ webServi ces>>

The <webSer vi ces> element must contain one or more <endpoi nt > elements. In
this example, note that the interface and implementation attributes of <endpoi nt >
specify the service’s interface and implementation class. The <endpoi nt Mappi ng>
element associates the service port with an element of the endpoint URL path that
follows the ur | Pat t er nBase.

For information about the XML schema for creating the runtime descriptor, see
Appendix A, “XML Schema Definitions”.

Namespace Mappings

This section is for developers who are familiar with WSDL, SOAP, and the
JAX-RPC specifications.

Here is a schema type name example:

schemaType="ns1: Sanpl eType"
xm ns:nsl="http://echoservice.org/types"

When generating a Java type from a schema type, wsconpi | e gets the class name
from the local part of the schema type name.

To specify the package name of the generated Java classes, you define a mapping
between the schema type namespace and the package name. You define this
mapping by adding a <nanespaceMappi ngRegi st ry> element to the confi g. xm
file. For example:

<servi ce>

<nanmespaceMappi ngRegi stry>

<nanmespaceMappi ng
namespace="http://echoservice. org/types”
packageNane="echoservi ce. org. types"/ >

</ nanespaceMappi ngRegi stry>

Chapter 2 Services and Clients Using JAX-RPC 71

http://echoservice.org/types
http://echoservice.org/types

JAX-RPC Tools

</ service>

SOAP Handlers

A handler accesses a SOAP message that represents an RPC request or response.
Handler class must implement the j avax. xm . r pc. handl er interface. A handler
can manipulate a SOAP message with the APIs of the javax. xm . soap package.

The following are the examples of the tasks performed by a handler:

Encryption and decryption

Logging and auditing

Caching

Application-specific SOAP header processing

A handler chain is a list of handlers. You may specify one handler chain for the
client and one for the server. On the client, you include the <handl er Chai ns>
elementinthej axrpc-ri.xnl file. On the server, you include this element in the
config. xnl file

Here is an example of the <handl er Chai ns> element in the confi g. xnm file:

<handl er Chai ns>

<chai n runAt ="server"

roles= "http://acne.org/auditing
http://acme. or g/ nmor phi ng"
xm ns: nsl="http://foolfoo-1">

<handl er cl assNane="acne. MyHandl er"

headers ="nsl1l:foo nsl:bar"/>
<property nane="property" val ue="xyz"/>

</ handl er >

</ chai n>

</ handl er Chai ns>

72 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://acme.org/auditing
http://acme.org/morphing
http://foo/foo-1

Java Language Types Supported By JAX-RPC

Java Language Types Supported By JAX-RPC

JAX-RPC maps types of the Java programming language to XML/WSDL
definitions. For example, JAX-RPC maps the j ava. | ang. Stri ng class to the

xsd: st ri ng XML data type. You as application developers need not know the
details of these mappings, but you must be aware that not every class in the Java 2
Standard Edition (J2SE) can be used as a method parameter or return type in
JAX-RPC.

J2SE SDK Classes
JAX-RPC supports the following J2SE SDK classes:

* java.l ang. Bool ean

* java.lang.Byte

* java.lang. Doubl e

* java.lang. Fl oat

* java.lang.Integer

e« java.lang. Long

* java.lang. Short

* java.lang.String

* java. math. Bi gDeci nal
e java.nmath. Bi gl nteger
* java.util.Cal endar

e java.util.Date

This release of JAX-RPC also supports several implementation classes of the
java.util.Col | ection interface.The following table displays the supported
classes. The first column lists the j ava. uti | . Col | ecti on subinterfaces, the
second column lists the classes supported by the subinterface.

Table 2-3 Supported Classes

java.util.collection Classes Supported
Subinterfaces

Li st Array List
LinkedList
Stack

Vector

Chapter 2 Services and Clients Using JAX-RPC 73

Java Language Types Supported By JAX-RPC

Table 2-3 Supported Classes

java.util.collection Classes Supported

Subinterfaces

Map HashMap
Hashtable
Properties
TreeMap

Set HashSet
TreeSet

Primitives

JAX-RPC supports the following primitive types of the Java programming
language:

= boolean
e byte

= double
- float

e int

< long

= short
Arrays

JAX-RPC also supports arrays with members of supported JAX-RPC types.
Examples of supported arrays are int [] and String []. Also supports
multidimensional arrays, such as BigDecimal [][].

Application Classes

JAX-RPC also supports classes that you have written for your applications. In an
order processing application, for example, you might provide classes named
Order, Lineltem, and Product. The JAX-RPC Specification refers to such classes as
value types, because their values (or states) may be passed between clients and
remote services as method parameters or return values.

To be supported by JAX-RPC, an application class must conform to the following
rules:

74 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Java Language Types Supported By JAX-RPC

= It must have a public default constructor.

= It must not implement (either directly or indirectly) the j ava. rmi . Renot e
interface.

= Its fields must be supported JAX-RPC types.

The class may contain public, private, or protected fields. For its value to be passed
(or returned) during a remote call, a field must meet these requirements:

< A public field cannot be final or transient.

< A non-public field must have corresponding getter and setter methods.

JavaBeans Components

JAX-RPC also supports JavaBeans components, which must conform to the same
set of rules as application classes. In addition, a JavaBeans component must have a
getter and setter method for each bean property. The type of the bean property
must be a supported JAX-RPC type.

Chapter 2 Services and Clients Using JAX-RPC 75

Java Language Types Supported By JAX-RPC

76 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Chapter 3

SOAP Clients and Services Using
SAAJ and JAXM

This chapter describes how to use the SOAP with Attachments API for Java™

(SAA)) and the Java™ API for XML Messaging (JAXM) to build clients that can
send and receive messages, and deploy them to Sun ONE Application Server. This
chapter contains the following sections:

e SOAP Clients
e SOAP Service

SOAP Clients

This section describes the two messaging models in which SOAP clients can be
used; the procedure to develop and deploy such clients. This section describes the
following topics:

< SOAP Client Messaging Models
= Developing a SOAP Client
= Assembling and Deploying a SOAP Client

SOAP Client Messaging Models

You can build SOAP clients using the following two messaging models.
= Client Without a Messaging Provider
= Client With a Messaging Provider

77

SOAP Clients

Client Without a Messaging Provider

An application that does not use a messaging provider can exchange only
synchronous messages. That is, an application operates in a client role and can
send only request-response messages. This type of client uses the SOAPConnect i on
method of the SAAJ API. TFigure 3-1he following figure illustrates how
synchronous messages are exchanged between the sender and the receiver without
using a messaging provider.

Figure 3-1 SOAP Message Without Using a Messaging Provider

Sender
SOAP
Endpoint
Request
SOAP Receive and
Message Process
Messages

Response

SOAP Message

Clients not using a messaging provider have the following advantages:

= The application can be written using the J2SE platform.

= You do not need to deploy the application in a servlet or a J2EE container.
< No messaging provider configuration is necessary.

Clients not using a messaging provider have the following limitations:

= The client can send only request-response messages.

= The client can act in the client role only.

78 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

SOAP Clients

Client With a Messaging Provider

You must use a messaging provider if you want to be able to get and save requests
that are sent to you at any time. The JAXM API provides the framework to send
and receive messages using a messaging provider.You will need to run the clientin
a container, which provides the messaging infrastructure used by the provider. The
following figure Figure 3-2illustrates how asynchronous messages are exchanged
between the sender and the receiver using a messaging provider.

Figure 3-2 SOAP Message Using a Messaging Provider

Messaging Messaging
2 P i
Provider —» —> —> —> RENIIRS
actor actor actor
Sender Receiver

Clients using messaging provider have the following advantages:
= Clients can assume the roles of a client and a service.
= Clients can hand off message delivery to a provider.

= Clients can send messages to one or more destinations before it delivers the
message to the final recipient. These intermediate message recipients are called
actors and they are specified in the SOAPHeader object of the message.

= Clients can take advantage of any provider-supported SOAP messaging
protocols and ‘Quality of Service’ affecting the types of messages and the
reliability and the quality of service of message delivery.

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 79

SOAP Clients

NOTE Sun ONE Application includes a sample JAXM provider that
illustrates how a provider is used to enable ‘fire and forget’
messaging for the sending client. See the Samples documentation for
complete details on how to enable, deploy, and use it. The sample
applications are available at the following location:

install_dir/sanpl es/ webser vi ces/ j axm j axm provi der/

Future release of Sun ONE Application Server will include JAXM
Providers that support reliable SOAP messaging as well as ebXML
messaging.

SOAP Messages

This section introduces you to the structure and parts of a SOAP message, how you
access these, and how you process SOAP messages. This section describes the
following topics:

« Parts of a SOAP Message

= Accessing Elements of a Message

Parts of a SOAP Message

A SOAP message is an XML document that consists of a SOAPEnvel ope, an
optional SOAPHeader , and a SOAPBody. The SOAP message header contains
information that allows the message to be routed through one or more
intermediate nodes before it reaches its final destination.

Figure 3-3 Parts of a SOAP Message

80 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

SOAP Message

SOAP Part

SOAP Clients

/ SOAP Envelope \

_

SOAP Header
SOAP Body

/

A\

The figure, “Parts of a SOAP Message”Figure 3-3, shows the structure and parts of
a SOAP message. Different objects represents each part of a SOAP message.

The SOAPMessage object contains

e A SOAPPart object that contains

o A SOAPEnvel ope object that contains

« Anempty SOAPHeader object - is optional, included for convenience
because, most messages will use it.

+ An empty SOAPBody object - can hold the content of the message and
can also contain fault messages that contain status information or
details about a problem with the message.

e Attachnent Part that may contain plain text, or an image file.

The SOAPEnvel ope is the root element of the XML document representing the
message. It defines the framework for how the message should be handled and by
whom. XML content starts at the SOAPEnvel ope.

Chapter 3

SOAP Clients and Services Using SAAJ and JAXM 81

SOAP Clients

The SOAPHeader is a generic mechanism for adding features to a SOAP message. It
can contain any number of child elements that define extensions to the base
protocol. For example, header child elements might define authentication
information, transaction information, locale information, and so on. The software
that handles the message may, without prior agreement, use this mechanism to
define who should deal with a feature and whether the feature is mandatory or
optional.

The body is a container for mandatory information intended for the ultimate
recipient of the message. A SOAP message may also contain an attachment, which
need not necessarily be an XML document.

Accessing Elements of a Message

You need to access parts of a message when you create the message body or the
attachment part or when you are processing the message.

The SOAPMessage object message contains a SOAPPart object. Use the nessage
object to retrieve it.

SCAPPart soapPart = nessage. get SOAPPart () ;
Next you can use SOAPPar t to retrieve the SOAPEnvel ope object that it contains.
SCAPEnvel ope envel ope = soapPart. get Envel ope();

You can now use envel ope to retrieve its empty SOAPHeader and SOAPBody
objects.

SCAPHeader header = envel ope. get Header () ;
SOAPBody body = envel ope. get Body();
SCQAPBody objects are initially enpty.
Namespaces
An XML namespace is a means of qualifying elements and attribute names to

disambiguate from other names in the same document. An explicit XML
Nanmespace declaration takes the following form:

<prefi x: myEl enent
xm ns:prefix ="URI">

The declaration defines pr ef i x as an alias for the specified URI. In the element
myEl ement , you can use prefix with any element or attribute to specify that the
element or attribute name belongs to the namespace specified by the URI. The
following line of code is an example of a namespace declaration:

82 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

SOAP Clients

<SQOAP- ENV: Envel ope
xm ns: SCAP- ENV="htt p: // schemas. xrl soap. or g/ soap/ envel ope/ " >

This declaration defines SOAP_ENV as an alias for the namespace
http://schemas. xm soap. or g/ soap/ envel ope/

After defining the alias, you can use it as a prefix to any attribute or element in the
Envel ope element.

Pre-defined SOAP Namespaces
SOAP defines two namespaces:

= The SOAPEnvel ope, the root element of a SOAP message, has the following
namespace identifier "ht t p: / / schemas. xnl soap. or g/ soap/ envel ope".

< The SOAP serialization, the URI defining SOAP serialization rules, has the
following namespace identifier:
"http://schemas. xm soap. or g/ soap/ encodi ng”.

When you use SAAJ or JAXM to construct or consume messages, you are
responsible for setting or processing namespaces correctly and for discarding
messages that have incorrect namespaces.

Using Namespaces when Creating a SOAP Message

When you create the body elements or header elements of a SOAP message, you
must use the Nare object to specify a well-formed name for the element. You obtain
a Nane object by calling the method SOAPEnvel ope. cr eat eNane.

When you call this method, you can pass a local name as a parameter or you can
specify a local name, prefix, and a URI. For example, the following line of code
defines a Nane object bodyNane.

Narme bodyNanme = MyEnvel ope. creat eNane(" TradePrice", "GetLTP",
"http://foo.eztrade.conl);

This would be equivalent to the namespace declaration:
<Cet LTP: TradePrice xm ns: Get LTP= "http://foo. eztrade. cont'>

The following code shows how you can create a name and associate it with a
SOAPBody element. Note the use and placement of the cr eat eNanme method.

SoapBody body = envel ope. get Body();//get body from envel ope

Narme bodyNanme = envel ope. creat eNanme(" TradePrice", "GetLTP",
"http://foo. eztrade. cont);

SCAPBodyEl ement gltp = body. addBodyEl enent (bodyNane) ;

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 83

http://schemas.xmlsoap.org/soap/envelope/%E2%80%9D%00
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope
http://schemas.xmlsoap.org/soap/encoding%E2%80%9D%00
http://foo.eztrade.com
http://foo.eztrade.com
http://foo.eztrade.com

SOAP Clients

Developing a SOAP Client

Using SAAJ, a client can create and send SOAP messages in a point-to-point model.
JAXM defines the API for xml messaging using a messaging provider. JAXM
depends on the SOAP with Attachments API for Java (SAAJ), which defines the
API for operating on the SOAP with attachments message model in Java. Sun ONE
Application Server does not include a supported JAXM messaging provider. It
does however include along with the sample applications, a simple JAXM provider
that demonstrates how a messaging provider handles asynchronous SOAP
messaging from a client. This section describes the following topics:

= How SOAP Messaging Occurs?
= Creating a SOAP Client
< Assembling and Deploying a SOAP Client

How SOAP Messaging Occurs?

SOAP messaging occurs when a SOAP message, produced by a message factory is
sent to an Endpoi nt via a Connect i on. This section describes the following topics:
< Endpoint

< Connection

Endpoint

An endpoint identifies the final destination of a message. An endpoint is defined
by the URLEndpoi nt class. If you do not use a provider, you must construct or find
an endpoint to which the message is sent.

Constructing an Endpoint
You can initialize an endpoint either by calling its constructor or by looking it up in
a naming service.

The following code uses a constructor to create an URLEndpoi nt ;
nyEndpoi nt = new URLEndpoi nt ("http://host/ nyServlet")
Using the Endpoint to Address a Message

Specify the endpoint as a parameter to the SOAPConnect i on. cal | method, which
you use to send a SOAP message.

84 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://host/myServlet

SOAP Clients

Sending a Message to Multiple Endpoints

Administered objects are objects that encapsulate provider-specific configuration
and naming information. If you are using an administered object to define an
endpoint, note that it is possible to associate that administered object with multiple
URLs-each URL capable of processing incoming SOAP messages.

The code sample below associates the endpoint whose lookup name is nyEndpoi nt
with two URLs: ht t p: / / www. mySer vl et 1/ and http://ww. nyServl et 2/ . This
syntax allows you to use a SOAP connection to publish a SOAP message to
multiple endpoints.

i mgobj ngr add
-t e
-1 "cn=myEndpoi nt"
-0 "i MSCAPENndpoi nt Li st =htt p: // www. nySer vl et 1/
http://ww. nmyServlet2/"

Connection

To send a SOAP message using SAAJ or JAXM, you must obtain a

SOAPConnect i on or a Provi der Connect i on respectively. You can also transport a
SOAP message using the Message Queue; for more information, see the Sun ONE
Message Queue Developer’s Guide.

SOAP Connection

A SOAPConnect i on allows you to send messages directly to a remote party. You
can obtain a SOAPConnect i on object simply by calling the static method
SOAPConnect i onFact ory. newl nst ance() . Neither reliability nor security are
guaranteed over this type of connection.

Provider Connection

A Provi der Connect i on, which you get from a Pr ovi der Connect i onFact ory,
creates a connection to a particular messaging provider. When you send a SOAP
message using a provider, the message is forwarded to the provider, and then the
provider is responsible for delivery to its final destination thus ensuring reliable
and secure messaging.

Creating a SOAP Client

Before creating a SOAP client, make sure to set up your client environment. For
more information on setting up your client environment, see “Setting Up the Client
Environment” on page 29.

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 85

http://www.myServlet1/
http://www.myServlet2/
http://www.myServlet1/
http://www.myServlet2/

SOAP Clients

86

If you are creating a point-to-point client, you must import the j avax. xm . soap
package of the SAAJ API. If you are creating a pub/sub client, import the

j avax. xnl . nessagi ng package of the JAXM API. In addition, you must import
the following packages:

i mport
i mport
i mport

i mport
i mport

i mport
i mport

java. net.*;
java.io.*;
java.util.*;

j avax.
j avax.

j avax.
j avax.

servlet. http.*;
servl et. *;

activation.*;
nam ng. *;

Creating a SOAP client and accessing the message involves the following steps:

= Getting a Connection

= Creating a Message

= Adding Content to the Header

< Adding Content to a Message

< Adding an Attachment to the Message (optional)

< Sending a Message

= Retrieving the Content from a Response Message

= Accessing Attachment Part of the Message

Getting a Connection
Stand-alone Client

A client that does not use a messaging provider uses the SOAPConnect i on object to
create a connection. The message sent using SoapConnect i on object goes directly
from the sender to the URL that the sender specifies.

You must obtain a SOAPConnect i onFact ory object that you can use to create your
connection. The SAAJ APl makes this easy by providing the
SOAPConnect i onFact ory class with a default implementation. The following code
illustrates how to get an instance of the implementation:

SOAPConnect i onFact ory scf = SOAPConnecti onFactory.
new nst ance();

Now you can use scFact or y to create SOAPConnect i on object.

SCQAPConnecti on con = scf.createConnection();

Sun ONE Application Server 7 « Developer's Guide to Web Services « March 2003

SOAP Clients

Creating a Message

To create a message, use a MessageFact or y object. If you are creating a stand-alone
client, that is, a client that does not use a messaging provider and also does not run
in a container, you can use the implementation of the MessageFact or y class that
the SAAJ API provides. The following code illustrates getting an instance of the
default message factory and then using it to create a message:

MessageFactory nf = MessageFactory. newl nstance();
SCAPMessage nmsg = nf.creat eMessage();

Message creation takes care of creating the SOAPPar t , a required part of the
message as per the SOAP 1.1 specification.

SQAPPart sp = nsg. get SOAPPart ();

NOTE Generally, the default message factory is used to create a message.
However, you can write your own implementation of a message
factory, and plug it in through system properties as explained
below:

< Implement a message factory class by extending
j avax. xnl . soap. MessageFact ory.j avax. xni . soap is the
package defined in the SAAJ API.

= Indicate the desired message factory class to be instantiated by
setting the System Property j avax. xm . soap. MessageFact ory
to the full classname of the message factory class
nmypackage. My SOAPMessageFact oryl npl .

For information on structure and parts of a SOAP message, see “Parts of a SOAP
Message” on page 80.

Adding Content to the Header

You create a SOAPHeader El enment object to add content to the header. The
following code illustrates how to create a SOAPHeader El enent using the
SOAPENnvel ope object.

SCAPHeader hdr = envel ope. get Header () ;

Name header Name = envel ope. creat eNane(" Purchase Order","PO',
"http://ww. sonata. conf order");

SQOAPHeader El enent header El enent =
hdr . addHeader El enent (header Nane) ;

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 87

http://www.sonata.com/order

SOAP Clients

The header El enent is identified by the Name object header Nane. The
addHeader El enent method is used to add or create a header element.

To add content to header El enent , use the addText Node method as shown in the
code illustration below:

header El ement . addText Node(“ order”);

The SOAPHeader object contains a SOAPHeader El ement object whose content is
“order”.

Adding Content to a Message

You can add content to a SOAPPar t object or to one or more At t achment Part object
or to both parts of a message.

To add content to the body, create a SOAPBodyEl enent object and add an XML
element that you build with the method SOAPE!I enent . addText Node. The
following code illustrates adding content to the message:

SCAPEnvel ope envel ope = sp. get SOAPEnvel ope();
SOAPBody bdy = envel ope. get SOAPBody() ;

SCQAPBodyE!l enent gltp =
bdy. addBodyEl ement (envel ope. cr eat eNanme(" Get Last TradePri ce",
“ztrade”, “http://wonbat. ztrade. coni));

gl t p. addChi | dEI enent (envel ope. cr eat eNane("synbol ", "zt rade",
"http://wonbat. ztrade. coni)). addText Node(" SUNW) ; ;

The first three lines of the code access the SOAPBody object body, that is used to
create a new SOAPBodyE!l enent object and add it to body. The Cr eat eName method
has the argument Nane object that identifies the SOAPBodyEl enent that is being
added. The last line adds the XML string passed to the method addText Node.

Adding an Attachment to the Message

The procedure to add attachments to a message is same for both the clients with
and without using a messaging provider. The At t achnment Part object is used to
add attachment part to a message.

You use the SOAPMessage object to create an At t achnment Part object. The
SOAPMessage class has three methods for creating an At t achnent Part object. The
first method allows you to create an At t achnent Part with no content. That is, the
At t achnent Part method set Cont ent is later used to add content to the
attachment.

URL url = new URL(data);
Attachment Part ap = nsg. creat eAttachment Part (new
Dat aHandl er (url));

88 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

http://wombat.ztrade.com%E2%80%9D%00%00%00
http://wombat.ztrade.com")).addTextNode("SUNW

SOAP Clients

The set Cont ent method takes two parameters, a Java object for the content and a
String object that identifies the content type. Content is the SOAPBody part of a
message that has a Cont ent - Type header with the value “text/xml” because the
content has to be in XML format. In the At t achnment Par t , the type of the content
has to be specified as this object can take any type of content.

Each At t achnent Part has one or more headers associated with it. In the

set Cont ent method, the type of the method used is the type for the header
Content-Type. This is the only header that is required. You can also set other
optional headers, such as Content-ld and Content-Location. For convenience,
JAXM and SAAJ APIs provides get and set methods for the headers Content-type,
Content-Id, and Content-Location. These headers are helpful in accessing a
particular attachment when a message has multiple attachments.

The following code illustrates how you can use the set Cont ent method:

String stringContent = "Update address for Sunny Skies " + "Inc.,
to 10 Upbeat Street, Pleasant G ove, CA 95439";

ap. setContent (stringContent, "text/htm");
ap. set Cont ent | d("updat e_addr ess") ;
nmsg. addAt t achnent Par t (ap) ;

If you also want to attach a jpeg image, the second argument for the set Cont ent
method must be “image/jpeg”. The following code illustrates the use of
set Cont ent method to attach an image:

Attachment Part ap2 = nsg. createAttachnment Part ();
byte[] jpegbata = . . .;

Byt eArrayl nput Stream stream = new
Byt eArrayl nput St rean(j pegDat a) ;

ap2. set Content (stream "image/jpeg");

nsg. addAt t achment Part (ap2) ;
The other two At t achment Part methods allow you to create an At t achment Par t
object with content. One of the two methods is very similar to the
Attachnment Part. set Cont ent method. It takes a Java object containing the content
and a String giving the content type. The object may be a String, a stream, a

javax. xm .t ransf or m Sour ce object, or a j avax. acti vati on. Dat aHandl er
object.

The other method for creating an At t achnent Par t object with content takes a
Dat aHandl er object, which is part of the JavaBeans Activation Framework (JAF).

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 89

SOAP Clients

The following code illustrates how you can use Dat aHandl er in content. First you
create aj ava. net. URL object for the file you want to add as content. Create the
Dat aHandl er objectj avax. acti vati on.Dat aHand! er object dh initialized with the
URL object and pass it to the method cr eat eAt t achnent Part .

URL url = new URL("http://greatproducts.com giznos/ing.jpg");
Dat aHandl er dh = new Dat aHandl er (url);

Attachment Part ap = nsg. createAttachnent Part (dh);

ap. set Content 1 d(“gyro_i mage”)

nsg. addAt t achnment Part (ap) ;

Sending a Message
Stand-alone Client

To send a message, a stand-alone client uses the SOAPConnect i on method call. This
method takes two arguments, the message being sent and the destination to which
the message should go which is an Endpoi nt object that contains the URL of the
receiver.

When using SoapConnect i on, you send message using
j avax. xnl . soap. SOAPConnecti on. cal | () method.

For example:
URL url Endpoi nt = new URL(tO);
SOAPMessage reply = con. cal | (nsg, url Endpoint);

Retrieving the Content from a Response Message

To retrieve message content, the client uses the onMessage method. The client
accesses SOAPBody object, using the message to get the envelope and the envelope
to get the body. Access its SOAPBodyEl ermrent object because that is the element to
which content was added. To retrieve the content, which was added with the
method Node. addText Node, you call the method Node. get Val ue. The get Val ue
returns the value of the immediate child of the element that calls the method. To
access bodyEl ement , you need to call the method get Chi | dEl enent on body. The
following code illustrates how to retrieve contents from a response message:

publ i ¢ SCAPMessage onMessage(SOAPMessage nessage)
{
SCQAPEnvel op env = nsg. get SOAPPart (). get Envel ope();

env get Body()
.addChi | dEl ermrent (env. cr eat eNanme(“ Response”))
.addText Node(“This is a Response”);

return nsg;

90 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://greatproducts.com/gizmos/img.jpg

SOAP Clients

}

To retrieve the contents from the message that contains an attachment, you need to
access the attachment. When it is given no argument, the method

SOAPMessage. get At t achment s returnsaj ava. util . Iterator object over all the
Att achment Par t objects in a message. The following code prints content of each
Att achment Par t object in the SOAPMessage object nessage.

java.util.lterator it = nessage.getAttachnments();
while (it.hasNext()) {

AttachnmentPart attachment = (AttachnmentPart)it.next();

oj ect content = attachnent. get Content();

String id = attachnment. get Contentld();
Systemout.print("Attachnent " +id + " contains: " + content);
Systemout.println("");

}

Accessing Attachment Part of the Message

When you receive a message with an attachment, or you wish to change an
attachment to a message, you need to access the attachment part of the message.
The SOAPMesssage. get At t achment s method without any attachment returns a
java.util.Iterator objectoverall Attachnent Part objects in a message. The
following code illustrates accessing the attachment part to get the content of each
At t achnment Part object in the SOAPMessage object message.

java.util.lterator it = nsg.getAttachments();
while (it.hasNext()) {

AttachmentPart ap = it.next();

Obj ect content = ap.getContent();

String id = ap.getContentld();

Systemout.print("Attachnent " +id + " contains: " + content);
Systemout.println("");

Assembling and Deploying a SOAP Client

Applications created using JAXM APl and SAAJ API are assembled as web
applications (WAR) or J2EE platform based applications (EAR). For more
information on assembling and deploying a web application, see the Sun ONE
Application Server Developer’s Guide to Web Applications.

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 91

SOAP Service

SOAP Service

This section describes how you can write SOAP service and describes how you can
handle exceptions and faults in SOAP messages. This section describes the
following topics:

= Creating a SOAP Service

= Exception and Fault Handling

Creating a SOAP Service

A SOAP service is the final recipient of a SOAP message and is implemented as a
servlet. You can either create your own servlet or you can extend the JAXMser vl et
class which is bundled in the j avax. xm . nessagi ng package. This section

describes the procedure to create a SOAP service based on the JAXMser vl et class.

To create a SOAP service, your servlet must implement either the
RegRespLi st ener or OneWayLi st ener interfaces. A ReqRespLi st ener requires
that you return a reply.

public class MyServl et extends JAXMservl et inplenents
ReqgRespLi st ener {

}
Using any of the interfaces, implement a method called onMessage(SOAPMs Q).

publ i c SCAPMessage onMessage(SCAP Message nsgQ)

The following code is the complete listing of the SOAP consumer using
JAXMBer vl et .

public class MyServl et extends JAXMservl et inplenents
RegRespLi st ener {

publ i ¢ SCAPMessage onMessage(SOAP Message nsg) {

/1 Process nessage here

}
}

JAXVser vl et will call onMessage after receiving a message using the HTTP POST
method. This saves you the work of implementing your own doPost () method to
convert the incoming message into a SOAP message.

92 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

SOAP Service

The onMessage method needs to disassemble the SOAP message that is passed to it
by the servlet and process its contents. Processing the message involves accessing
the parts of a SOAP message. If there are problems in the processing of the
message, the service needs to create a SOAP fault object and send it back to the
client. For more information on handling faults, see “Fault Handling” on page 93.

The following code illustrates the processing of a SOAP message:
{http://xm .coverpages. org/ dom ht ni
SCQAPEnvel ope env = reply. get SOAPPart (). get Envel ope();
SCAPBody sb = env. get Body();

/'l create Name object for XEl enent that we are searching for Name
El Name = env. creat eNane(" XEl enment ") ;

/1 Get child elenents with the nane XEl enent
Iterator it = sb. getChil dEl enents(El Nane);

/1Get the first matched child el ement.
/ /W know there is only one.
SCAPBodyEl ement sbe = (SOAPBodyEl enent) it.next();

/1 Get the value for XEl enent
MyVal ue = sbhe. getValue(); }

Exception and Fault Handling

On the client’s side, JAXM and SAAJ uses a SOAP exception to handle errors that
occur during the generation of the SOAP request or unmarshalling of the response.
This section describes the following topics:

e Fault Handling
= Defining SOAP Fault

Fault Handling

Server-side code must use the SOAPFaul t object to handle errors that occur on the
server-side when unmarshalling the request, processing the message, or
marshalling the response. The SOAPFaul t interface extends the SOAPBodyEl erment
interface.

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 93

http://xml.coverpages.org/dom.html

SOAP Service

SOAP messages have a specific element and format for error reporting on the
server side: a SOAP message body can include a SOAPFaul t element to report
errors that occur during the processing of a request. Created on the server side and
sent from the server back to the client, the SOAP message containing the

SOAPFaul t object reports any unexpected behavior to the originator of the
message.

The SOAPFaul t element defines the following four subelements:

faultcode
A code that identifies the error. The code is intended for use by software to provide
an algorithmic mechanism for identifying the fault. This element is required.

faultstring

A string that describes the fault identified by the fault code. This element provides
an explanation of the error that is understandable to a human. This element is
required.

faultactor

A URI specifying the source of the fault: who caused the fault. This element is not
required if the message is sent to its final destination without going through any
intermediaries. If a fault occurs at an intermediary, then that fault must include a
faul t act or element.

detail

This element carries specific information related to the body element. It must be
present if the contents of the body element could not be successfully processed.
Thus, if this element is missing, the client should infer that the body element was
processed. While this element is not required for any error except a malformed
payload, you can use it in other cases to supply additional information to the client.

Predefined Fault Codes
The SOAP specification lists the following four predefined faultcode values:

VersionMismatch

The processing party found an invalid namespace for the SOAP envelope element;
that is, the namespace of the SOAPEnvel ope element was not

http://schemas. xm soap. or g/ soap/ envel ope/ .

MustUnderstand

An immediate child element of the SOAPHeader element was either not understood
or not appropriately processed by the recipient. This elements nmust Under st and
attribute was set to 1 (true).

94 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://schemas.xmlsoap.org/soap/envelope/

SOAP Service

Client

The message was incorrectly formed or did not contain the appropriate
information. For example, the message did not have the proper authentication or
payment information. The client should interpret this code to mean that the
message must be changed before it is sent again. If this is the code returned, the
SOAPFaul t object should probably include a det ai | Ent ry object that provides
additional information about the malformed message.

Server

The message could not be processed for reasons that are not connected with its
content. For example, one of the message handlers could not communicate with
another message handler that was upstream and did not respond. Or, the database
that the server needed to access is down. The client should interpret this error to
mean that the transmission could succeed at a later point in time.

Defining SOAP Fault

You can specify the value for faultcode, f aul t string, and af aul t ct or using
methods of the SOAPFaul t object. The following code illustrates the creation of a
SOAPFaul t object and sets the f aul t code, faul t stri ng, and f aul t act or
attributes:

SOAPFaul t fault;

reply = factory. creat eMessage();

envp = reply.get SOAPPart (). get Envel ope(true);

sonmeBody = envp. get Body();

fault = soneBody. addFaul t():

faul t. set Faul t Code(" Server");

fault.setFaul tString("Sonme Server Error");

fault.setFaul t Actor(“http://xxx.ne.conllist/endpoint.esp/”);
reply. saveChanges();

The server can return this object in its reply to an incoming SOAP message in case
of a server error.

The following code illustrates how to define a detail and detail entry object. Note
that you must create a name for the detail entry object.

SQAPFaul t fault = soneBody. addFaul t();
fault. set Faul t Code(" Server");
fault.setFault Actor("http://foo.comuri");

Chapter 3 SOAP Clients and Services Using SAAJ and JAXM 95

http://xxx.me.com/list/endpoint.esp/%E2%80%9D%00%00
http://foo.com/uri");

SOAP Service

fault.setFaul tString ("Unkown error");

Detail Entry entry =
det ai | . addEntry(envel ope. creat eNane("125detai |l ", "ni,
"Someuri");

entry. addText Node("t he nessage cannot contain the string //");

reply. saveChanges();

Assembling and Deploying a SOAP Service

Applications created using JAXM API and SAAJ API are assembled as web
applications (WAR) or J2EE platform based applications (EAR). For more
information on assembling and deploying a web application, see the Sun ONE
Application Server Developer’s Guide to Web Applications.

Sample Clients and Services

Sample client and services applications are bundled with Sun ONE Application
Server. These samples demonstrate the creation of services and clients that send
and receive XML messages. You can find the samples at the following location.

install_dir/sanpl es/ webser vi ces/j axm

install_dir/i ng/ deno/ j axm

96 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Chapter 4

Clients Using JAXR

Application Server provides the ability for the clients to publish, discover, and

manage content within XML registries using the implementation of Java'™ API for
XML Registry (JAXR).

This chapter describes the procedure to develop clients that can interact with the
registry to perform various operations on the registry. This chapter contains the
following sections:

< Developing a JAXR Client

< Managing Registry Data

= Publishing a Web Service to a UDDI Registry
= Assembling and Deploying a JAXR Client

Developing a JAXR Client

This section describes the steps required to implement a JAXR client that can
perform queries and update a registry.

Before you develop a JAXR client, make sure to setup your client environment. For
detailed information on setting up your client environment, see “Setting Up the
Client Environment” on page 29.

Implementing a JAXR client involves the following steps:
= Getting Access to a Registry
= Establishing a Connection

= Querying a Registry

97

Developing a JAXR Client

Getting Access to a Registry

You must obtain permission from the registry to access the registry. A JAXR client
can then perform queries, add data to registry, or update registry data. To register
with one of the public UDDI version 2 registries, go to one of the following Web
sites and follow the instructions:

http://uddi.nicrosoft.com (Microsoft)
https://uddi.ibmcomubr/registry. htnl (IBM)

When you register, you will obtain a user name and password. To run samples
bundled with Sun ONE Application Server, you may register with IBM’s UDDI
registry.

Accessing an ebXML Registry

An ebXML registry allows you to publish and discover Web services. Unlike a
UDDI registry, an ebXML registry can store the metadata about a service and
arbitrary content such as, the actual Web service description, that is the WSDL
document.

For more information on ebXML, visit the following URL:
http://ww. ebxn . org

Sun ONE Application Server supports JAXR clients to access an ebXML registry
through a third-party JAXR provider. The ebxni rr-cl i ent is a package that
provides an implementation of the JAXR API that is compatible with the OASIS
ebXML Registry V2.x (version 2.0 and 2.1) standard. The ebxni rr-cl i ent package
also includes a Registry Browser application that can graphically browse any
OASIS ebXML V2.x registry.

For more information, visit the following URL:

http://ebxm rr. sourceforge. net

Establishing a Connection

The first task a JAXR client must perform is, to establish a connection to a registry.
This connection contains the client state and preference information used when the
JAXR provider invokes methods on the registry provider.

98 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://uddi.microsoft.com/
https://uddi.ibm.com/ubr/registry.html
http://www.ebxml.org
http://ebxmlrr.sourceforge.net

Developing a JAXR Client

NOTE In order to add data to the registry or to update registry data, the
client must set authentication information on the connection. The
establishment of this authentication information with the registry
provider is specific to that registry provider.

Create a connection from a connection factory. A JAXR provider may supply one
or more pre configured connection factories that clients can look up using the JNDI
API.

The following code illustrates how to establish a connection to a JAXR provider:

import javax.xm .registry.*;

public void makeConnection(String queryURL, String publishURL)
{

Connecti onFactory factory = Connecti onFactory. newl nstance();

In the code above, quer yURL and publ i shURL are the URL of the query and publish
registries respectively.

Setting Properties

The implementation of JAXR API in Sun ONE Application Server allows you to set
a number of properties on a JAXR connection. The following table list the standard
JAXR connection properties and properties specific to implementation of JAXR in
Sun ONE Application Server. The first column shows the name of the property and
the description of that property, the second column shows the data type that you
can use with the property, and the third column shows the default value associated
with the property.

Table 4-1 Standard JAXR Connection Properties

Property Name and Description Data type Default Value

javax. xm . Regi stry. quer yManager URL String None

Specifies the URL of the query manager service
within the target registry provider

Chapter 4 Clients Using JAXR 99

Developing a JAXR Client

100

Table 4-1 Standard JAXR Connection Properties

Property Name and Description Data type Default Value

javax. xm .registry.lifeCycl eManager URL String Same as the specified
. . . M URL

Specifies the URL of the life cycle manager service 3;?:: anager

within the target registry provider (for registry

updates)

javax.xm . registry. semanti cEqui val ences String None

Specifies semantic equivalences of concepts as one or

more tuples of the ID values of two equivalent

concepts separated by a comma; the tuples are

separated by vertical bars: id1,id2 | id3,id4

javax. xm .registry.security. String None;

aut henti cati onMet hod UDDI _GET_AUTHTOKEN

Provides a hint to the JAXR provider on the is the only supported

authentication method to be used for authenticating value

with the registry provider

javax. xm . regi stry. uddi . maxRows I nt eger None

The maximum number of rows to be returned by find

operations. Specific to UDDI providers

javax. xm . registry. post al Addr essSchene String None

The ID of a ClassificationScheme to be used as the
default postal address scheme.

Table 4-2 Sun ONE-specific JAXR Implementation Connection Properties

Property Name and Description Data type Default Value
com sun. xn . regi stry. http. proxyHost String Proxy host value

- ified in <which
Specifies the HTTP proxy host to be used for :ﬁgﬁ;'e 1N =whic
accessing external registries. '
comsun. xnm . regi stry. http. proxyPort String Proxy port value

- specified in <which
Specifies the HTTP proxy port to be used for fiFI)e>’)
accessing external registries; usually 8080 '
com sun. xm . regi stry. https. proxyHost String Same as HTTP proxy

Specifies the HTTPS proxy host to be used for
accessing external registries

host value

Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

Developing a JAXR Client

Table 4-2 Sun ONE-specific JAXR Implementation Connection Properties

Property Name and Description Data type Default Value
com sun. xm . regi stry. https. proxyPort String Same as HTTP proxy
- port value
Specifies the HTTPS proxy port to be used for
accessing external registries; usually 8080
com sun. xm .regi stry. http. proxyUserName String None
Specifies the user name for the proxy host for HTTP
proxy authentication, if one is required
com sun. xm . regi stry. http. proxyPassword String None
Specifies the password for the proxy host for HTTP
proxy authentication, if one is required
com sun. xm . regi stry. useCache Bool ean, True
. . . passed
Tells the JAXR implementation to look for registry in as
objects in the cache first and then to look in the String
registry if not found
com sun. xm . regi stry. useSCAP Bool ean, False
. . d
Tells the JAXR implementation to use Apache SOAP ipilszg
rather than the Java API for XML Messaging; may be String

useful for debugging

You can set these properties as shown in the code below:

String queryURL =

"http://wwe 3.i bm conl servi ces/ uddi/v2beta/inquiryapi";

String publishURL=

"https://ww 3. i bm coni services/uddi/v2betal protect/publishapi"”;

Properties props = new Properties();

props. set Property("javax. xm . regi stry. quer yManager URL",

queryUrl);

props. set Property("javax. xm .registry.|ifeCycl eManager URL",

publ i shurl);

Creating a Connection

A client first creates a set of properties that specify the URL or URLSs of the registry

or registries being accessed.

Chapter 4 Clients Using JAXR 101

http://www-3.ibm.com/services/uddi/v2beta/inquiryapi
https://www-3.ibm.com/services/uddi/v2beta/protect/publishapi

Developing a JAXR Client

The client then sets the properties for the connection properties and creates the
connection.

factory. set Properties(props);

Connecti on connection = factory. createConnection();

Obtaining the RegistryService and Managers

The client uses the connection to obtain a Regi st r ySer vi ce object and then the
interface or interfaces it will use. The following code illustrates how to obtain the
registry service:

Regi stryService rs = connection. get Regi stryService();
Busi nessQuer yManager bgm = rs. get Busi nessQuer yManager () ;
Busi nessLi f eCycl eManager blcm =

rs. get Busi nessLi f eCycl eManager () ;

Setting Client Authentication Information
The following code illustrates how to set the client authorization information for
privileged registry operations:

Passwor dAut henti cati on passwdAuth = new
Passwor dAut hent i cati on(usernanme, password.toCharArray());

Set creds = new HashSet ();
creds. add(passwdAut h) ;

Querying a Registry

The client uses the registry by querying it for information about the organization
that have submitted data to it. The client can query the registry based on one or
more of the following criterion:

< findO gani zati ons, which returns a list of organizations that meet the
specified criteria - often a name pattern or a classification within a classification
scheme.

= findServiceBi ndi ngs, which returns the service bindings (information about
how to access the service) that are supported by a specified service.

< findService, which returns a set of services offered by a specified
organization.

This section describes the procedure to query a registry based on the following
criterion:

102 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Developing a JAXR Client

< Finding Organizations by Name
= Finding Organizations by Classification
= Finding Organizations by WSDL Descriptions

= Finding Services and Service Bindings

Finding Organizations by Name

To find an organization by name, you use a combination of find qualifiers (which
affect sorting and pattern matching) and name patterns (which specify the strings
to be searched). The fi ndOr gani zat i ons method takes a collection of
findQualifier asitsfirstargument and a collection of nanePat t er n objects as its
second argument.

The following code illustrates the use of fi ndOr gani zat i ons method to search for
an organization whose name begins with a specific string qSt ri ng, and to sort
them in alphabetical order:

Col l ection findQualifiers = new ArrayList();
findQualifiers.add(Fi ndQualifier.SORT_BY_NAVE DESC);
nanePatterns. add(qStri ng);

The above code lines define the find qualifiers and name patterns.

To find an organization using the name, use the f i ndOr gani zat i ons() method as
shown in the code illustration below:

Bul kResponse response = bgm fi ndOrgani zati ons(findQualifiers,
nanePatterns, null, null, null, null);

Col l ection orgs = response. get Col | ection();

Finding Organizations by Classification

To find an organization by classification, you need to establish a classification
within a particular classification scheme and specify the classification as a
parameter to the fi ndOr gani zat i ons() method.

Let us assume that you are browsing the UDDI registry and wish to find an
organization that provides services of the NAICS (North American Industry
Classification System) type Computer Systems Design and Related Services in the
United States. To perform this query with JAXR, invoke a fi ndOr gani zat i ons()
method with classification listed under the well-known taxonomies NAICS and
ISO 3166 Geographic Code System (ISO 3166). As JAXR provides a taxonomy
service for these classifications, the client can easily access the classification
information needed to be passed as f i ndOr gani zati on() parameters.

Chapter 4 Clients Using JAXR 103

Developing a JAXR Client

Cl assi ficati onSchene cSchene =
bgm fi ndd assi fi cati onSchemeByNanme (null, "ntis-gov:naics");

Classification classification =
(Cassification)blcmcreated assification(cSchene, "Snack and
Nonal cohol i ¢ Beverage Bars", "722213");

Col l ection classifications = new ArraylList();
cl assifications.add(cl assification);
/1 make JAXR request

Bul kResponse response = bgm findOr gani zati ons(null, null,
classifications, null, null, null);

Col | ection orgs = response. getCol | ection();

Finding Organizations by WSDL Descriptions

You can find organizations based on technical specifications that take the form of
WSDL documents. In JAXR, a concept is used as a proxy to hold the specification.
The client must find the specification concepts first, then the organizations that use
those concepts.

The following code illustrates finding an organization based on the WSDL
specification instances used within a given registry.

String schemeNane = "uddi-org:types";

Cl assi ficati onScheme uddi OrgTypes =
bgm fi ndd assi fi cati onSchenmeByName(nul |, scheneNane) ;

/*

* Create a classification, specifying the schene
* and the taxonomy nanme and val ue defined for WSDL
* docunments by the UDDI specification.

*/

Cl assification wsdl Specd assification =
bl cm creat ed assi fi cati on(uddi OrgTypes, "wsdl Spec", "wsdl Spec");

ArraylLi st classifications = new ArrayList();
cl assifications. add(wsdl SpecCl assification);

/1 Find concepts

Bul kResponse br = bgm findConcepts(null, null, classifications,
null, null);

Next, you must go through the concepts, find the WSDL documents they
correspond to, and display the organizations that use each document:

104 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Developing a JAXR Client

/1 Display information about the concepts found

Col | ecti on specConcepts = br.getCollection();

Iterator iter = specConcepts.iterator();

if (liter.hasNext()) {
Systemout.println("No WSDL specification concepts found");
} else {
while (iter.hasNext()) {

try{

Concept concept = (Concept) iter.next();

String nane = get Nanme(concept);

Col l ection links = concept. get Ext er nal Li nks();

Systemout. println("\nSpecification Concept:\n Nane: " +name
+ "\'n Key: " + concept.getKey().getld() + "\n Description: " +
get Descri pti on(concept));

if (links.size() > 0) {

External Link link =

(External Link) links.iterator().next();

Systemout.println("URL of WSDL docunent: '"
link.getExternal URI () + "' ");

}

/1 Find organi zations that use this concept
ArrayLi st specConceptsl = new ArrayList();
specConcept sl. add(concept);

br = bgm fi ndOrgani zations(null, null, null, specConceptsl, null,
nul I');

Col I ection orgs = br.getCollection();
/1 Display informati on about organizations

}

Finding Services and Service Bindings

A JAXR client can find an organization’s services and the service bindings
associated with those using the get Ser vi ce() and the get Ser vi ceBi ndi ngs()
method respectively. The following code illustrates the use of the get Ser vi ces()
and get Ser vi ceBi ndi ngs() method:

Iterator orglter = orgs.iterator();

Chapter 4 Clients Using JAXR 105

Managing Registry Data

while (orglter.hasNext()) {
Organi zation org = (Organi zation) orglter.next();
Col | ection services = org. get Services();
Iterator svclter = services.iterator();
while (svclter.hasNext()) {
Service svc = (Service) svclter.next();
Col | ection serviceBi ndi ngs = svc. get Servi ceBi ndi ngs() ;
Iterator sblter = serviceBindings.iterator();
while (sblter.hasNext()) {
Servi ceBinding sb =

(ServiceBi nding) sblter.next();

Managing Registry Data

A JAXR client can submit data to a registry, modify the existing registry data, and
remove data from the registry. A JAXR client must be authorized to manage the
registry data. A client that has submitted data to the registry can only remove or
modify it.

This section describes the following tasks:

= Getting Authorization from the Registry
= Creating an Organization

e Adding Classifications

< Adding Services and Service Bindings to an Organization

Getting Authorization from the Registry

The JAXR client sends its user name and password to the registry in a set of
credentials on the connection. These credentials may be used by the provider to
authenticate with the registry.

106 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Managing Registry Data

/1 Edit to provide your own usernanme and password
String usernane = "";
String password = "";

/1 Get authorization fromthe registry

Passwor dAut hent i cati on passwdAuth = new
Passwor dAut hent i cati on(usernane, password.toCharArray());

Set creds = new HashSet ();
creds. add(passwdAut h) ;
connecti on. set Credenti al s(creds);

Creating an Organization

A JAXR client creates the organization and populates it with the data before saving
it. The Or gani zat i on object is used to create an organization. This object includes
the following objects:

< A Nane object
e ADescription object

= A Key object, representing the ID by which the organization is identified to the
registry. The key is created by the registry and not by the user.

e APrimaryContact Obj ect -is a user object that refers to an authorized user of
the registry. This object includes the following information about the
authorized user:

o PersonName, TelephoneNumber, EmailAddress, and/or PostalAddress
o Acollection of classification objects
o Service objects and their associated service bindings objects

The following code illustrates how you can create an organization using the
Or gani zat i on method:

/1l Create Organi zation in nenory

Organi zation org = busi nessLi feCycl eManager. creat eOrgani zati on
("Sun M crosystens");

/1l Create User -- maps to Contact for UDDI
User user = businessLifeCycl eManager. createUser();

Per sonNanme per sonNane =
busi nessLi f eCycl eManager . cr eat ePer sonName(" Bob") ;

Chapter 4 Clients Using JAXR 107

Managing Registry Data

Tel ephoneNunber t el ephoneNunber =
busi nessLi f eCycl eManager . cr eat eTel ephoneNunber () ;

t el ephoneNunber . set Nunber (" 650- 241-8979") ;
t el ephoneNunber. set Type("of fice");

Col I ecti on nunbers = new ArrayList();
nunmber s. add(t el ephoneNunber) ;

Emai | Address emai |l =
busi nesslLi f eCycl eManager . cr eat eEmai | Addr ess(" bob@un. cont',
"of fice");

Col | ection enmil Addresses = new ArrayList();
emai | Addr esses. add(enui |) ;

user . set Per sonNane(per sonNane) ;

Col I ection tel ephoneNunbers = new ArraylList();
t el ephoneNunber s. add(t el ephoneNunber) ;

user. set Tel ephoneNunber s(t el ephoneNunbers);
user. set Emai | Addr esses(enai | Addr esses) ;

org. set Pri maryCont act (user);

Adding Classifications

Organizations commonly belong to one or more classifications within one or more
classification schemes or taxonomies. To establish a classification for an
organization within a taxonomy, the client first locates the taxonomy using the
Busi nessQuer yManager . The fi ndd assi fi cati onSchemeByName method takes a
set of Fi ndQual i fi er objects as its first argument, but this argument can be null.

// Set classification schene to NAICS

Cl assi ficationSchene cSchene =
bgm fi ndd assi fi cati onSchemeByName(nul |, "ntis-gov:naics");

The client then creates a classification. For example, the following code sets up a
classification for the organization within the NAICS taxonomy.

/!l Create and add cl assification

Classification classification = (O assification)
bl cm creat e assi ficati on(cSchene, "Snack and Nonal coholic
Beverage Bars", "722213");

108 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Managing Registry Data

Col l ection classifications = new ArrayList();
cl assifications.add(cl assification);
org. addd assi fications(classifications);

Services also use classifications, so you can use similar code to add a classification
to a Ser vi ce object.

Using Taxonomies

A taxonomy is represented by a O assi fi cat i onSchene object. This section
describes how to use the implementation of JAXR in:

= Defining Taxonomies

= Specifying Postal Address

Defining Taxonomies

The JAXR specification requires a JAXR provider to be able to add user-defined

taxonomies that can be used by JAXR clients. The implementation of JAXR in Sun
ONE Application Server uses a simple file-based approach to provide taxonomies
to the JAXR client. These files are read at run time, when the JAXR provider starts

up.

The taxonomy structure is defined by the JAXR Predefined Concepts DTD, which
is declared both in the file j axr concept s. dt d and in XML schema form in the file
j axrconcept s. xsd. The file j axrconcepts. xn contains the taxonomies for the
implementation of JAXR. All these files are contained in the
install_dir/share/lib/jaxr-inpl.jar file.

To add a user-defined taxonomy, follow the procedure given below:

Publish the JAXRC assi fi cati onSchene element for the taxonomy as a

Cl assi fi cati onSchene object in the registry that you will be accessing. For
example, you can publish the O assi fi cat i onSchemne object to the UDDI Registry
Server. In order to publish ad assi fi cat i onSchene object, you must set its name.
You also give the scheme a classification within a known classification scheme such
as uddi - or g: t ypes. In the following code line, the name is the first argument of
the Li f eCycl eManager . creat ed assi fi cati onScheme method call.

Cl assificati onScheme cSchene =
bl cm creat ed assi fi cati onScheme("MySchene", "A C assification
Schene") ;

Cl assificati onScheme uddi OrgTypes =
bgm fi ndC assi fi cati onSchemeByNanme(nul |, "uddi-org:types");

Chapter 4 Clients Using JAXR 109

Managing Registry Data

if (uddi OgTypes !'= null)
{

Classification classification =
bl cm creat ed assi fi cati on(uddi Or gTypes, "post al Addr ess"
"categorization");

post al Schene. addC assi fi cation(cl assification);

Ext ernal Li nk external Link =
bl cm cr eat eExt er nal Li nk("http://ww. mycom com nmyschene. htm ", " My
Schene") ;

post al Schene. addExt er nal Li nk(ext er nal Li nk) ;

Col I ection schemes = new ArrayList();

schenes. add(cSchene) ;

Bul kResponse br = bl cm saved assi ficati onSchenmes(schenes);

}

// The Bul kResponse obj ect returned by the
saved assi ficati onSchenes nethod contains the key for the
classification scheme, which you need to retrieve

if (br.getStatus() == JAXRResponse. STATUS_SUCCESS) {
Systemout. println("Saved d assificati onScheme");
Col | ecti on schenmeKeys = br.getCollection();

Iterator keyslter = scheneKeys.iterator();

whil e (keyslter.hasNext())

{

javax.xm . registry.infonodel . Key key =
(javax.xm . regi stry.infonodel . Key) keyslter.next();

System out. println("The postal Schene key is " + key.getld());

Systemout.println("Use this key as the scheme”" + " uuid in the
taxonony file");

}

}

In an XML file, define a taxonomy structure that is compliant with the JAXR
Predefined Concepts DTD. Enter the C assi fi cati onSchene element in your
taxonomy XML file by specifying the returned key ID value as the id attribute and
the name as the name attribute. For example, the opening tag for the

JAXRO assi fi cati onSchene element looks something like this (all on one line):

110 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://www.mycom.com/myscheme.html","My

Managing Registry Data

<JAXRC assi ficationSchene i d="uui d: nnnnnnnn- nnnn- nnnn- nnnn-
nnnnnnnnnnnn" name="M/Schene" >

The d assi fi cati onSchene i d must be a UUID.

Enter each JAXRConcept element in your taxonomy XML file by specifying the
following four attributes, in this order:

a. idistheJAXRCO assificationSchene id value, followed by a / separator,
followed by the code of the JAXRConcept element

b. nane is the name of the JAXRConcept element

c. parent isthe immediate parent id (either the C assi fi cati onSchemne
i d or that of the parent JAXRConcept)

d. code is the JAXRConcept element code value

The first JAXRConcept element in the nai cs. xnl file looks like this (all on one
line):

<JAXRConcept id="uui d: COB9FE13- 179F- 413D- 8A5B- 5004DB8E5BB2/ 11"
name="Agricul ture, Forestry, Fishing and Hunting"

par ent =" uui d: COB9FE13- 179F- 413D- 8A5B- 5004DB8E5BB2"
code="11"></ JAXRConcept >

To add the user-defined taxonomy structure to the JAXR provider, specify the
system property com sun. xnl . r egi st ry. user TaxononyFi | enames when you run
your client program. The command line (all on one line) would look like this. A
vertical bar (]) is the file separator.

java myProgram
- Duser TaxononyFi | enanes=c: \ nyfil e\ xxx. xm | c:\nmyfil e\ xxx2.xm

You can use a <syspr oper t y> tag to set this property ina bui | d. xnl file. Or, in
your program, you can set the property as follows:

System set Property
("com sun. xm . regi stry. user TaxononyFi | enanes”,
"ci\nyfilelxxx. xm | c:\nyfilelxxx2. xm");

Specifying Postal Address

The JAXR specification defines a postal address as a structured interface with
attributes for street, city, country, and so on. The UDDI specification, on the other
hand, defines a postal address as a free-form collection of address lines, each of
which may also be assigned a meaning. To map the JAXR PostalAddress format to
a known UDDI address format, you specify the UDDI format as a

C assi fi cati onSchene object and then specify the semantic equivalences
between the concepts in the UDDI format classification scheme and the comments

Chapter 4 Clients Using JAXR 111

Managing Registry Data

in the JAXR Post al Addr ess classification scheme. The JAXR Post al Addr ess
classification scheme is provided by the JAXR implementation of Sun ONE
Application Server. A Post al Addr ess object has the fields st r eet Nunber, street,
city, st ate, post al Code, and count ry. These are predefined concepts in the
post al concept s. xml file, within the C assi fi cat i onSchenme named

Post al AddressAttri butes.

To specify the mapping between the JAXR postal address format and another
format, you need to set two connection properties:

e The javax. xnl .registry. post al Addr essSchene property, which specifies a
postal address classification scheme for the connection.

e Thejavax.xm .registry.semanti cEqui val ences property, which specifies
the semantic equivalences between the JAXR format and the other format.

First, you specify the postal address scheme using the id value from the
JAXRC assi fi cati onScheme element (the UUID).

/1l Set properties for postal address mappi ng using ny schene
props. set Property("javax. xm . regi stry. post al Addr essSchene",
uui d: 6eaf 4b50- 4196- 11d6- 9e2b- 000629dc0a2b") ;

Next, you specify the mapping from the id of each JAXRConcept element in the
default JAXR postal address scheme to the id of its counterpart in the IBM scheme:

props. set Property("javax. xm .regi stry. semanti cequi val ences",

urn: uui d: Post al Addr essAttri butes/ Street Nunber, " +

"urn: uui d: 6eaf 4b50-4196- 11d6- 9e2b- 000629dc0a2b/ St r eet Addr essNunb
er|" +

"urn: uui d: Post al AddressAttri butes/ Street," +

"urn: uui d: 6eaf 4b50- 4196- 11d6- 9e2b- 000629dc0a2b/ St r eet Address| " +
"urn: uui d: Post al AddressAttributes/City," +

"urn: uui d: 6eaf 4b50- 4196- 11d6- 9e2b- 000629dc0a2b/ City|" +

"urn: uui d: Post al AddressAttributes/ State," +

"urn: uui d: 6eaf 4b50-4196- 11d6- 9e2b- 000629dc0a2b/ St ate| " +

"urn: uui d: Post al Addr essAttri but es/ Post al Code, " +

"urn: uui d: 6eaf 4b50- 4196- 11d6- 9e2b- 000629dc0a2b/ Zi pCode| " +

"urn: uui d: Post al AddressAttributes/ Country, " +

"urn: uui d: 6eaf 4b50- 4196- 11d6- 9e2b- 000629dc0a2b/ Country");

After you create the connection using these properties, you can create a postal
address and assign it to the primary contact of the organization before you publish
the organization.

For example,

112 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Managing Registry Data

String street Number = “99”

String street = “lmagi nary Ave. Suite 33”;

String city = "lImaginary Cty";

String state = "NY";

String country = "USA"

String postal Code = "00000";

String type = "";

Post al Addr ess post Addr =

bl cm cr eat ePost al Addr ess(street Nunber, street, city, state, country,
post al Code, type);

Col | ecti on postal Addresses = new ArraylList();

post al Addr esses. add(post Addr) ;

pri maryCont act . set Post al Addr esses(post al Addr esses) ;

A JAXR query can then retrieve the postal address using Post al Addr ess methods,
if the postal address scheme and semantic equivalences for the query are the same
as those specified for the publication. To retrieve postal addresses when you do not
know what postal address scheme was used to publish them, you can retrieve
them as a collection of Sl ot objects. The JAXRQuer yPost al . j ava sample program
shows how to do this.

Adding Services and Service Bindings to an
Organization

Many organizations add themselves to a registry in order to offer services, so the
JAXR API has facilities to add services and service bindings to an organization.

Like an Or gani zat i on object, a Ser vi ce object has a name and a description. Also
like an Or gani zat i on object, it has a unique key that is generated by the registry
when the service is registered. It may also have classifications associated with it.

A service also commonly has service bindings, which provide information about
how to access the service. A Ser vi ceBi ndi ng object normally has a description, an
access URI, and a specification link, which provides the linkage between a service
binding and a technical specification that describes how to use the service using the
service binding.

The following code illustrates how to create a collection of services, add service
bindings to a service, then add the services to the organization. It specifies an
access URI but not a specification link. Because the access URI is not real and
because JAXR by default checks for the validity of any published URI, the binding
sets the val i dat eURI property to false.

|/l Create services and service

Chapter 4 Clients Using JAXR 113

Publishing a Web Service to a UDDI Registry

Col I ection services = new ArrayList();

Service service = blcmcreateService("My Service Nanme");
International String is = blcmcreatelnternational String("MW
Service Description");

service. setDescription(is);

/'l Create service bindings

Col | ection serviceBindings = new ArrayList();
Servi ceBi ndi ng bi nding = bl cm createServi ceBi ndi ng();

is = blcmcreatelnternational String("My Service Binding " +
"Description");

bi ndi ng. set Description(is);

bi ndi ng. set Val i dat eURI (f al se);
bi ndi ng. set AccessURI (" htt p:// TheCof f eeBr eak. com 8080/ sb/ ") ;
servi ceBi ndi ngs. add(bi ndi ng) ;

/1 Add service bindings to service
servi ce. addSer vi ceBi ndi ngs(servi ceBi ndi ngs) ;

/1 Add service to services, then add services to organi zation
servi ces. add(service);
org. addSer vi ces(services);

Publishing a Web Service to a UDDI Registry

JAXR provides the facility to publish your Web services to the UDDI registry. This
section describes the steps to publish an existing Web service to the registry:

Publishing a service to a registry involves the following steps:
« Creating an Organization

= Creating its classification

< Creating services and service bindings

= Saving the information in the registry

To create a JAXR client that publishes a Web service to the registry, import the
following required packages:

import javax.xm .registry.*;

import javax.xm .registry.infonodel.*;
i mport java.net.*;

import java.security.*;

inmport java.util.*;

114 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

http://TheCoffeeBreak.com:8080/sb/

Publishing a Web Service to a UDDI Registry

Create a class that consists of a main method, a nekeConnect i on method that
establishes the connection to the registry, and an execut ePubl i sh method, that
publishes all the information about the service to the registry. The following code
illustrates the creation of the main class JAXRPubl i sh:

public class JAXRPublish {

Connecti on connection = null;

public JAXRPublish() {}

public static void nmain(String[] args) {

String queryURL =
"http://wwe 3.i bm conml servi ces/uddi/v2betal/inquiryapi";

String publishURL =
"https://ww« 3.1 bm coni servi ces/ uddi /v2bet a/ prot ect/ publishapi”;

String usernane = "";
String password = "";
JAXRPubl i sh jp = new JAXRPublish();
j p. makeConnecti on(queryURL, publishURL);
j p- execut ePubl i sh(user nane, password);
}

The JAXR client must establish a connection to the UDDI registry and set the
connection configuration properties. For detailed information, see “Establishing a
Connection” on page 98.

Create the connection, passing it the configuration properties. For detailed
information, see “Creating a Connection” on page 101.

Create an organization, its classification, its services, and save it to the registry.
For more information, see the following sections:

= “Creating an Organization” on page 107

< “Adding Classifications” on page 108

e “Adding Services and Service Bindings to an Organization” on page 113
The following code illustrates the steps to publish a Web service:

public void executePublish(String username, String password) {
Regi stryService rs = null;

Busi nessLi f eCycl eManager bl cm = nul | ;

Busi nessQuer yManager bgm = nul | ;

Chapter 4 Clients Using JAXR 115

http://www-3.ibm.com/services/uddi/v2beta/inquiryapi
https://www-3.ibm.com/services/uddi/v2beta/protect/publishapi

Publishing a Web Service to a UDDI Registry

String orgNanme = "The Coffee Break";
String orgbesc = "Purveyor of the finest coffees. Established 1895";

String contactNanme = "Jane Doe";

String contact Phone = "(800) 555-1212";

String contactEmail = "jane. doe@heCof f eeBreak. coni';

String serviceName = "My Service Nane";

String servicebDesc = "My Service Description”;

String serviceBi ndingDesc = "My Service Bi ndi ng Description”;
String serviceBindingURI = "http://Iocal host:1024";

String schene = "ntis-gov: nai cs";

String concept Name = "Snack and Nonal cohol i c Beverage Bars";
String concept Code = "722213";

try {

java.io. Buf f eredl nput St ream bf I nput = nul | ;

Properties propTenp = new Properties();

bf Input = new java.io. Bufferedl nput Stream (new
java.io.FilelnputStrean("jaxr.properties"));

propTenp. | oad(bf I nput);

bf I nput . cl ose(); orgNanme = propTenp. get Property("org-name");
orgDesc = propTenp. get Property("org-desc");

cont act Name = propTenp. get Property("contact-nane");

cont act Phone = propTenp. get Property("contact - phone");
contact Emai | = propTenp. get Property("contact-enail");

servi ceNanme = propTenp. get Property("service-nanme");

servi ceDesc = propTenp. get Property("service-desc");

servi ceBi ndi ngDesc =

propTenp. get Property("servi ce- bi ndi ng-desc");

servi ceBi ndi ngURI = propTenp. get Property("service-binding-uri");
schene = propTenp. get Property("schene");

concept Name = propTenp. get Property("concept");

concept Code = propTenp. get Property("concept-code");

}

try {

rs = connection. get Regi stryService();

bl cm = rs. get Busi nessLi f eCycl eManager () ;

bgm = rs. get Busi nessQuer yManager () ;

Systemout.println("Got registry service, query " + "nanager, and
life cycle manager");

/1 Get authorization fromthe registry

116 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

http://localhost:1024

if

Publishing a Web Service to a UDDI Registry

Passwor dAut hent i cati on passwdAuth = new

Passwor dAut hent i cat i on(user name, password. toCharArray());
Set creds = new HashSet ();

creds. add(passwdAut h) ;

connecti on. set Credenti al s(creds);

Systemout. println("Established security credential s");

/1 Create organi zati on nane and description

Organi zation org = blcm creat eOrgani zati on(orgNane) ;

International String s = blcmcreatelnternational String(orgDesc);

org. set Description(s);
/1l Create primary contact, set nane

User primaryContact = blcm createUser();
Per sonNanme pNane = bl cm creat ePer sonName(cont act Nane) ;
pri mar yCont act . set Per sonName(pNane) ;

/1 Set primary contact phone nunber

Tel ephoneNunber t Num = bl cm creat eTel ephoneNunber () ;
t Num set Nunber (cont act Phone) ;

Col | ection phoneNums = new Arraylist();

phoneNuns. add(t Nunj ;

pri maryCont act . set Tel ephoneNunber s(phoneNuns) ;

/1 Set primary contact enmmil address

Enmi | Address enmi | Address =

bl cm creat eEnni | Address(contact Enai |);

Col | ection enunil Addresses = new ArraylList();

emai | Addr esses. add(enni | Addr ess) ;

pri maryCont act . set Ermai | Addr esses(enai | Addr esses) ;

/1 Set primary contact for organization
org. set Pri maryCont act (pri maryContact);
/1 Set classification schene to NAICS

Cl assi ficationSchene cSchene =
bgm fi ndd assi fi cati onSchemeByNane(nul | , schene) ;

(cSchene '= null) {
/!l Create and add cl assification

Classification classification = (O assification)

bl cm creat ed assi fi cati on(cSchene, concept Name, concept Code);
Col l ection classifications = new ArraylList();

cl assifications.add(cl assification);

org.addd assifications(classifications);

}

Chapter 4 Clients Using JAXR

117

Publishing a Web Service to a UDDI Registry

/!l Create services and service

Col I ection services = new ArrayList();

Service service = blcmcreateService(servi ceNane);
International String is =

bl cm creat el nternational String(serviceDesc);
service. setDescription(is);

/1 Create service bindings

Col | ecti on serviceBindings = new ArrayLi st();

Servi ceBi ndi ng binding = bl cm createServi ceBi ndi ng();

is = blcmcreatelnternational String(servi ceBi ndi ngbDesc);
bi ndi ng. set Description(is);

/1 allow us to publish a bogus URL without an error

bi ndi ng. set Val i dat eURI (f al se) ;
bi ndi ng. set AccessURI (servi ceBi ndi ngURI) ;
servi ceBi ndi ngs. add(bi ndi ng) ;

/1 Add service bindings to service

servi ce. addSer vi ceBi ndi ngs(servi ceBi ndi ngs) ;

/1 Add service to services, then add services to organization

servi ces. add(service);
org. addServi ces(services);

/1 Add organi zation and submit to registry
/1l Retrieve key if successful

Coll ection orgs = new ArraylList();

orgs. add(org);

Bul kResponse response = bl cm saveOrgani zati ons(orgs);
Col | ecti on exceptions = response. get Exceptions();

if (exceptions == null) {

System out. println("Organi zati on saved");
Col | ection keys = response. get Col | ection();
Iterator keylter = keys.iterator();

if (keylter.hasNext()) {

118 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Assembling and Deploying a JAXR Client

javax. xm . regi stry. i nfonodel . Key orgKey =
(javax.xm . registry.infonodel . Key) keylter.next();
String id = orgKey.getld();
Systemout.println("Organi zation key is " + id);
org. set Key(orgKey) ;

}

Assembling and Deploying a JAXR Client

The following steps describe how you can assemble and deploy a JAXR client:

1.

Execute the default target cor e to compile Java files and build the .jar file. The
Jar file has the JAXR API classes and a wrapper client class.

asant core
Build Javadocs. For example:

Execute the following asant command under
install_dir/sanpl es/ webser vi ces/j axr/src/ to create javadocs:

asant javadoc
Deploy the client.

a. JAXR can be configured to access various registries. You can use either
your own registry server or you can use public registry servers. If you
choose to use a public registry server, make certain that you can publish to
the registry server. Modify j axr . properti es with the correct parameters.
This file contains the following parameters:

« query-url - Fully qualified inquiry URI for the registry server.

e publish-url -Fully qualified publish URI for the registry server.

- username - Username to publish an organization to the registry server.
« password - Password to publish an organization to the registry server.
» query-string - The search string to search for in the registry.

» key-string - The key of the organization to be deleted from the
registry server.

Chapter 4 Clients Using JAXR 119

Assembling and Deploying a JAXR Client

b. If you wish to publish to the registry server, modify the publish
organization info section in the j axr . properti es, if required.

4. Run the client using the following command:

asant run

Sample JAXR Client

You can find various sample applications that demonstrate the use of JAXR APl in
Sun ONE Application Server environment at the following location:

install_dir/sanpl es/ webser vi ces/ j axr/

120 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

Appendix A

XML Schema Definitions

XML Schema Definition (XSD) is a W3C standard for an XML-based type system
known as XML Schema. The language used to define is an XML grammar known
as XML Schema Definition Language. Web services use XML as the underlying
format for representing messages and data. Thus, XSD is a natural choice as the
Web service type system.

For more information on XSD, visit the following URL:
http://ww. w3. or g/ 2001/ XMLSchena

This appendix provides XSDs for the following files used in developing JAX-RPC
Web services and clients:

< XML Schema for wscompile Configuration File
< XML Schema for Deployment Descriptors
e XML Schema for Exported wscompile Model Files

= XML Schema for Runtime Descriptors

XML Schema for wscompile Configuration File

The following code is the XML Schema used for creating wscompile configuration
file:

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns:tns="http://java. sun.com xm /ns/jax-rpc/ri/config"

t ar get Nanespace="http://java. sun. com xm / ns/jax-rpc/ri/config"

121

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/config
http://java.sun.com/xml/ns/jax-rpc/ri/config"

el ement For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed"
version="1.0">

<xsd: annot ati on>
<xsd: docunent at i on>
This is the schema for wsconpile configuration files.
The only allowed top-level elenent is "configuration".
</ xsd: docunent at i on>

</ xsd: annot at i on>

<xsd: el ement name="confi guration">
<xsd: annot ati on>

<xsd: docunent ati on>

The top-level elenent. It nust contain one out of three possible
el enment s, corresponding to three different ways to feed service

information to the tool

El enents: (nmutually excl usive)

"service" - a service description based on a set of service endpoint
interfaces;

"wsdl" - a WSDL docunent to inport and process

"model file" - a previously saved nodel file (-nbdel option in
wsconpi | e) .

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>

<xsd: choi ce>

<xsd: el ement nanme="service" type="tns:serviceType"/>

<xsd: el ement name="wsdl" type="tns: wsdl Type"/>

<xsd: el ement name="nodel file" type="tns:nodelfil eType"/>

</ xsd: choi ce>

</ xsd: sequence>

122 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

</ xsd: conpl exType>

</ xsd: el enent >

<xsd: conpl exType nane="servi ceType">
<xsd: annot ati on>
<xsd: docunent ati on>

A description of a service based on a set of Java interfaces (called
"service endpoint interfaces" in the spec).

Attributes:
"name" - service nane;
"t arget Nanespace" - target nanespace for the generated WSDL
docunent ;
"typeNanmespace" - target nanespace for the XM. Schena enbedded in
t he generated WSDL docunent;
"packageNanme" - name of the Java package to use by default.

El ement s:

"interface"* - a sequence of service endpoint interface
descri ptions;

"t ypeMappi ngRegi stry"? - the type mapping registry to use for
this service;

"handl er Chai ns"? - default handl er chains for the endpoints in
this service;

"namespaceMappi ngRegi stry"? - XM. namespace to Java package
mappi ng i nformation.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>

<xsd: el ement nanme="interface" type="tns:interfaceType" m nCccurs="0"
maxQOccur s="unbounded"/ >

<xsd: el ement nanme="t ypeMappi ngRegi stry"
type="tns:typeMappi ngRegi stryType" m nCccurs="0"/>

<xsd: el ement nanme="handl er Chai ns" type="tns: handl er Chai nsType"
m nCccur s="0"/>

Appendix A XML Schema Definitions 123

124

<xsd: el ement nanme="namespaceMappi ngRegi stry"
t ype="t ns: nanespaceMappi ngRegi stryType" m nCccurs="0"/>

</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="t ar get Nanespace" type="xsd: anyURl " use="required"/>
<xsd: attribute nane="t ypeNanespace" type="xsd:anyURl" use="required"/>
<xsd: attribute nane="packageNanme" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="interfaceType">
<xsd: annot ati on>
<xsd: docunent ati on>

An endpoi nt definition based on a service endpoint interface

Attributes:
"name" - nane of the service endpoint interface (a Java
interface);

"servant Nanme" (optional) - nanme of the service endpoint
i mpl enent ati on cl ass;

"soapAction" (optional) - SOAPAction string to use for al
operations in the interface;

"soapActi onBase" (optional) - base URI for the SOAPAction string
the SOAPAction for a given operation will be obtained by
appendi ng the operation nanme to the value provided here; this
attribute is exclusive with the "soapAction" one.

El enent s:
"handl er Chai ns" - specifies the handl er chains for this endpoint.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement nanme="handl er Chai ns" type="t ns: handl er Chai nsType"
m nCccurs="0"/>

</ xsd: sequence>

Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

<xsd: attribute name="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="servant Name" type="xsd:string"/>
<xsd:attribute name="soapAction" type="xsd:string"/>

<xsd: attribute nane="soapActi onBase" type="xsd:string"/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="wsdl Type" >
<xsd: annot ati on>
<xsd: docunent at i on>
A description of a service based on an existing WSDL docunent.
Attributes:
"location" - URL of the WSDL docunent;
"packageNane" - name of the Java package to use by default.
El ement s:

"t ypeMappi ngRegi stry"? - the type napping registry to use for
this service;

"handl er Chai ns"? - default handler chains for the endpoints in
this service;

"namespaceMappi ngRegi stry"? - XM namespace to Java package
mappi ng i nformation.

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

<xsd: el ement nane="t ypeMappi ngRegi stry"
type="tns:typeMappi hgRegi stryType" m nCccurs="0"/>

<xsd: el ement nanme="handl er Chai ns" type="t ns: handl er Chai nsType"
m nCccurs="0"/>

<xsd: el ement nane="nanmespaceMappi ngRegi stry"
t ype="t ns: nanespaceMappi ngRegi stryType" m nCccurs="0"/>

</ xsd: sequence>
<xsd:attribute nane="location" type="xsd:anyUR " use="required"/>
<xsd: attribute name="packageNanme" type="xsd:string" use="required"/>

</ xsd: conpl exType>

Appendix A XML Schema Definitions 125

<xsd: conpl exType nane="nodel fil eType">
<xsd: annot at i on>
<xsd: docunent at i on>
A description of a service based on an existing nodel file.
Attributes:
"l ocation" - URL of the nodel file (typically ending in .xm.gz);
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
</ xsd: sequence>
<xsd:attribute nane="location" type="xsd:anyUR " use="required"/>
</ xsd: conpl exType>
<xsd: conpl exType nanme="handl er Chai nsType" >
<xsd: annot at i on>
<xsd: docunent at i on>
A set of handl er Chai ns.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement nanme="chai n" type="tns:chai nType" m nCccurs="0"
maxCccur s="unbounded"/ >

</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType nane="chai nType">
<xsd: annot at i on>

<xsd: docunent at i on>

A handl er chain.

Attributes:

126 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

"runAt"
t he server;

"rol es"”
El enent s:
"handl er"* a sequence
</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>

<xsd: el enent nane="handl er"
maxQccur s="unbounded"/ >

</ xsd: sequence>

<xsd: attribute nanme="runAt"
<xsd: attribute nane="rol es"

</ xsd: conpl exType>
<xsd: si npl eType name="rol eLi st Type" >
<xsd: annot ati on>
<xsd: docunent at i on>
Alist of SOAP roles, i.e.
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: i st

</ xsd: si npl eType>

<xsd: conpl exType nane="handl er Type">
<xsd: annot ati on>
<xsd: docunent ati on>
A handl er descri ption.
Attributes:
"cl assName" -
"headers" -

El enent s:

speci fi es whether the chain nust

a list

run on the client or

the SOAP roles for the chain.

of handlers that formthis chain.

type="tns: handl er Type" m nCccurs="0"

type="tns: runAt Type" use="required"/>
type="tns:rol eLi st Type"/ >

of URIs.

i tenilype="xsd: anyURl "/ >

the nane of the handler’s class;

t he names of the headers consuned by this handler.

Appendix A XML Schema Definitions 127

"property"* - initialization properties for this handler.
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

<xsd: el enent nane="property" type="tns:propertyType" m nCccurs="0"
maxQccur s="unbounded"/ >

</ xsd: sequence>
<xsd: attribute name="cl assName" type="xsd:string" use="required"/>
<xsd:attribute name="headers" type="tns: headerLi st Type"/>

</ xsd: conpl exType>

<xsd: si npl eType nanme="header Li st Type" >
<xsd: annot ati on>
<xsd: documnent at i on>
A list of header names, i.e. a list of QNanes.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:list itenType="xsd: QNane"/>
</ xsd: si npl eType>

<xsd: conpl exType nanme="propertyType">
<xsd: annot ati on>
<xsd: docunent ati on>

An initialization property for a handler.

Attributes:
"name"” the name of the property;
"value" - its value

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

</ xsd: sequence>

Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

<xsd: attribute nanme="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="val ue" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: si npl eType name ="runAt Type">
<xsd: annot ati on>
<xsd: docunent ati on>

The places a handler chain can run at, one of "client"
"server".

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd:restriction base="xsd:string">
<xsd: enuneration value="client"/>
<xsd: enuner ati on val ue="server"/>
</ xsd:restriction>

</ xsd: si npl eType>

<xsd: conpl exType nanme="typeMappi ngRegi stryType" >
<xsd: annot ati on>
<xsd: docunent ati on>
A type nmapping registry.

El enent s:

or

"inmport"? - a list of XM. Schema documents that describe

user - defi ned types.

"typeMappi ng"* - a sequence of type mappi ngs, one per encoding

"additional Types"? - a list of additional Java types that shoul d
be processed even if don't appear in the interfaces for the

servi ce.
</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>

Appendix A XML Schema Definitions 129

<xsd: el ement name="inport" type="tns:inportType" m nCccurs="0"/>

<xsd: el emrent nanme="typeMappi ng" type="tns:typeMappi ngType"
m nCccur s="0" maxCccur s="unbounded"/ >

<xsd: el ement nane="addi ti onal Types"
type="tns: addi ti onal TypesType" m nCccurs="0"/>

</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType nanme="i nport Type">
<xsd: annot ati on>
<xsd: docunent ati on>

A list of schema docunents to inport, usually describing schema
types used by pluggabl e serializers.

El enent s:
"schema"* - a list of schema docunments to inport.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement name="schema" type="tns: schemaType" ni nCccurs="0"
maxCccur s="unbounded"/ >

</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType nane="schenmaType" >
<xsd: annot ati on>
<xsd: docunent ati on>

One schema docunent to be inported

Attributes:
"namespace" - the nanespace that the docunent describes;
"l ocation" - a URL pointing to the schema docunent.

</ xsd: docunent ati on>

</ xsd: annot ati on>

130 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

<xsd: sequence>

</ xsd: sequence>

<xsd: attribute nanme="nanespace" type="xsd:anyURl" use="required"/>
<xsd: attribute nane="location" type="xsd:anyURI " use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="typeMappi ngType" >
<xsd: annot at i on>
<xsd: docunent ati on>
A type mapping for a particul ar encoding.
Attributes:
"encodi ngStyle" - the URI denoting the encoding.
El ement s:
"entry"* - a list of type napping entries.
</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: sequence>

<xsd: el ement name="entry" type="tns:entryType" mi nCccurs="0"
maxCccur s="unbounded"/ >

</ xsd: sequence>

<xsd:attribute name="encodi ngStyl e" type="xsd: anyURl"
use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="entryType">
<xsd: annot at i on>
<xsd: docunent at i on>
An entry in a type mapping
Attributes:

Appendix A XML Schema Definitions 131

"schemaType" - the name of a schema type
"javaType" - the name of the correspondi ng Java cl ass;

"serializerFactory" - the name of the serializer factory class to
use for this type

"deserializerFactory" - the name of the deserializer factory
class to use for this type

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>

</ xsd: sequence>

<xsd: attribute nanme="schemaType" type="xsd: QName" use="required"/>
<xsd: attribute nane="javaType" type="xsd:string" use="required"/>

<xsd:attribute nanme="serializerFactory" type="xsd:string"
use="required"/>

<xsd: attribute nane="deserializerFactory" type="xsd:string"
use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="addi ti onal TypesType" >
<xsd: annot at i on>
<xsd: docunent ati on>
A list of additional Java types to be processed by the tool.
El enent s:
"class"* - a list of classes to be processed
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement nane="cl ass" type="tns:classType" ni nCccurs="0"
maxQOccur s="unbounded"/ >

</ xsd: sequence>

</ xsd: conpl exType>

132 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

<xsd: conpl exType nane="cl assType">
<xsd: annot at i on>
<xsd: docunent ati on>
A Java cl ass description.
Attributes:
"class" - the nane of the cl ass.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence> </ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="namespaceMappi ngRegi stryType" >
<xsd: annot at i on>
<xsd: docunent at i on>
A registry mappi ng XM. nanmespace to/from Java packages
El ement s:
"nanmespaceMappi ng"* - a list of mappings.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>

<xsd: el ement name="namespaceMappi ng"
t ype="t ns: nanespaceMappi ngType" m nCccurs="0"
maxQccur s="unbounded"/ >

</ xsd: sequence>

</ xsd: conpl exType>
<xsd: conpl exType nane="nanmespaceMappi ngType" >

<xsd: annot at i on>

<xsd: docunent ati on>

Appendix A XML Schema Definitions 133

One XML nanespace to/ from Java package mappi ng

Attributes:
"namespace” - XM. nanespace nane;
"packageNane" - Java package nane.

</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: sequence>

</ xsd: sequence>

<xsd:attribute name="nanmespace" type="xsd:anyURl" use="required"/>
<xsd: attribute name="packageName" type="xsd:string" use="required"/>
</ xsd: conpl exType>

</ xsd: schema>

XML Schema for Deployment Descriptors

The following code is the XML schema for creating Web service deployment
descriptors:

<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns:tns="http://java. sun.conm xm /ns/jax-rpc/ri/dd"
t ar get Nanespace="http://java. sun. com xm / ns/jax-rpc/ri/dd"
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="1.0">
<xsd: annot at i on>
<xsd: docunent at i on>
This is the schema for the depl oynent descriptors(jaxrpc-ri.xm).
The top | evel element nust be "webServices".
</ xsd: docunent at i on>

</ xsd: annot at i on>

134 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/dd
http://java.sun.com/xml/ns/jax-rpc/ri/dd

<xsd: el enent nane="webServi ces" >
<xsd: annot ati on>
<xsd: docunent ati on>
The top-level elenent.
Attributes:
"version" - version nunber;

"t ar get NanespaceBase"? - base URl for thetarget Nanespace of the
WSDL docunents generated for the endpoints that don’t have their
own nodel file;

"t ypeNanespaceBase"? - sane as "tar get NanespaceBase", but used for
the XM. Schena docunents enbedded in the generated WSDL
docunent s;

"url PatternBase"? - base URL pattern for all endpoints; it can be
overridden by using and "endpoi nt Mappi ng" (see bel ow).

For all these base properties, the value used for a particular
endpoint is given by the base value with the endpoi nt nane appended
toit.

El ement s:
"endpoint"* - a sequence of endpoint descriptions;
"endpoi nt Mappi ng"* - a sequence of endpoint mappi ngs.
</ xsd: docunent at i on>

</ xsd: annot at i on>

<xsd: conpl exType>
<xsd: sequence>

<xsd: el emrent nane="endpoint"
t ype="t ns: endpoi nt Type" m nCccur s="0" maxCccur s="unbounded"/ >

<xsd: el enent
name="endpoi nt Mappi ng"type="t ns: endpoi nt Mappi ngType"
m nCccur s="0" maxCccur s="unbounded"/ >

</ xsd: sequence>
<xsd: attribute name="versi on" type="xsd:string"use="required"/>
<xsd:attribute name="t ar get NamespaceBase" type="xsd:string"/>

<xsd: attribute nane="t ypeNanespaceBase" type="xsd:string"/>

Appendix A XML Schema Definitions 135

<xsd:attribute nanme="url PatternBase" type="xsd:string"/>
</ xsd: conpl exType>

</ xsd: el enent >

<xsd: conpl exType nanme="endpoi nt Type" >

<xsd: annot at i on>

<xsd: docunent ati on>
An endpoi nt description.

Attributes:
"name" - the nane of the endpoint;
"di spl ayNane"? - a human-readabl e nanme for the endpoint;
"description"? - a description of the endpoint;
"interface"? - the name of the service endpoint interface
"inplenentation"? - the name of the service inplenentation class;

"model "? - a resource pointing to a nodel file describing the
endpoi nt.

El ement s:
"handl er Chai ns"? - the handl er chains for the endpoint.
</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement nane="handl er Chai ns" type="tns: handl er Chai nsType"
m nQccur s="0"/>

</ xsd: sequence>

<xsd: attribute nanme="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="di spl ayName" type="xsd:string"/>
<xsd:attribute name="description" type="xsd:string"/>
<xsd:attribute name="interface" type="xsd:string"/>
<xsd:attribute name="inpl enentati on" type="xsd:string"/>
<xsd:attribute name="nodel" type="xsd:anyURl "/>

</ xsd: conpl exType>

136 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

<xsd: conpl exType nane="endpoi nt Mappi ngType" >
<xsd: annot at i on>
<xsd: docunent at i on>
An endpoi nt mapping entry, sinmilar to servlet-mapping in web.xm .
Attributes:
"endpoi nt Name" - the nane of the endpoint;
"urlPattern' - the URL pattern for the endpoint.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
</ xsd: sequence>

<xsd: attribute nane="endpoi nt Nane" type="xsd: string"
use="required"/>

<xsd:attribute name="url Pattern" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="handl er Chai nsType" >
<xsd: annot ati on>
<xsd: docunent ati on>

A set of handl erChains. In a deploynent descriptor, only
server-si de chai ns make sense

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>

<xsd: el ement nanme="chai n" type="tns:chai nType" mi nCccurs="0"
maxCccur s="unbounded"/ >

</ xsd: sequence>

</ xsd: conpl exType>

<xsd: conpl exType nane="chai nType">

<xsd: annot at i on>

Appendix A XML Schema Definitions 137

138

xsd: docunent ati on>

A handl er chain.

Attributes:
"runAt" - specifies whether the chain nust run on the client or
t he server;
"roles" - the SCQAP roles for the chain.

El ement s:

"handl er"* - a sequence of handlers that formthis chain.
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement name="handl er" type="tns: handl er Type" m nCccurs="0"
maxCQccur s="unbounded"/ >

</ xsd: sequence>
<xsd:attribute name="runAt" type="tns:runAtType" use="required"/>
<xsd: attribute nane="rol es" type="tns:roleListType"/>

</ xsd: conpl exType>

<xsd: si npl eType name="rol eLi st Type" >
<xsd: annot ati on>
<xsd: docunent ati on>
Alist of SOAP roles, i.e. alist of URIs.
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd:list itenType="xsd:anyURl "/ >
</ xsd: si npl eType>

<xsd: conpl exType nane="handl er Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

A handl er descri ption.

Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

Attributes:

"cl assName" - the nanme of the handler’s class;

"headers" - the nanmes of the headers consuned by this handler
El enent s:

"property"* - initialization properties for this handler.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: el ement name="property" type="tns: propertyType"
m nCccur s="0" naxCccur s="unbounded"/ >

</ xsd: sequence>
<xsd: attribute name="cl assName" type="xsd:string" use="required"/>

<xsd: attribute nanme="headers" type="tns: headerLi st Type"/>

</ xsd: conpl exType>

<xsd: si npl eType nane="header Li st Type" >

<xsd: annot ati on>
<xsd: docunent ati on>
A list of header nanes, i.e. a list of QNanes.
</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: list itenType="xsd: QNane"/>

</ xsd: si npl eType>

<xsd: conpl exType nane="propertyType">

<xsd: annot at i on>
<xsd: docunent ati on>

An initialization property for a handler.

Attributes:
"name" - the name of the property;
"val ue" - its value

Appendix A XML Schema Definitions 139

</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: sequence>

</ xsd: sequence>

<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute nane="val ue" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: si npl eType nane ="runAt Type">
<xsd: annot ati on>
<xsd: docunent ati on>

The pl aces a handl er chain can run at, one of "client" or
"server".

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd: enuner ation val ue="client"/>
<xsd: enurer ati on val ue="server"/>
</xsd:restriction>

</ xsd: si npl eType>

</ xsd: schema>

XML Schema for Exported wscompile Model
Files

The following code is the XML schema for exported wscompile model files:
<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"

xm ns:tns="http://java.sun.com xm / ns/jax-rpc/ri/nmodel "

140 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/model"

t ar get Nanespace="http://java. sun. com xm / ns/jax-rpc/ri/ nodel "
el ement For nDef aul t =" unqual i fi ed"

attri but eFor nDef aul t ="unqual i fi ed" version="1.0">

<xsd: annot at i on>

<xsd: docunent at i on>

This is the schema for exported wsconpile nodel files. An
exported nodel is a graph of objects, sonme of which are
"immedi ate" (e.g. integers, strings). |medi ate objects have
exactly one val ue.

Non-i nmedi at e obj ects have a set of object-valued properties.
</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: el ement nanme="nodel " form="qualified">
<xsd: annot at i on>
<xsd: docunent ati on>

A nodel is a sequence of definitions, which can be of three

ki nds:
"object" - object definition;
"iobject" - inmmediate object definition;.

"property" - property definition
In addition, a nobdel has a version nunber ("version" attribute).
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence m nCccurs="0" maxQCccurs="unbounded" >
<xsd: choi ce>
<xsd: el ement nane="object" type="tns: objectType"/>
<xsd: el ement nanme="iobj ect" type="tns:iobjectType"/>
<xsd: el ement name="property" type="tns:propertyType"/>
</ xsd: choi ce>

</ xsd: sequence>

Appendix A XML Schema Definitions 141

http://java.sun.com/xml/ns/jax-rpc/ri/model

<xsd: attribute name="version" type="xsd:string" use="required"/>
</ xsd: conpl exType>

</ xsd: el enent >

<xsd: conpl exType nane="obj ect Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

hj ect definition. Contains a unique id as well as a type nane
for the object.

</ xsd: docunent at i on>

</ xsd: annot ati on>

<xsd: sequence/ >

<xsd:attribute nane="id" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="i obj ect Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

I mredi ate object definition. In addition to id and type, it
contains a val ue

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence/ >
<xsd:attribute nane="id" type="xsd:string" use="required"/>
<xsd:attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute name="val ue" type="xsd:string" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="propertyType">

<xsd: annot at i on>

142 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

<xsd: docunent ati on>

Property definition. It says that the "subject” (identified by
id) has a property called "name" with the object of id "value" as
its val ue.

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence/ >

<xsd:attribute name="nanme" type="xsd:string" use="required"/>

<xsd: attribute nanme="subject" type="xsd:string" use="required"/>

<xsd: attribute nane="val ue" type="xsd:string" use="required"/>
</ xsd: conpl exType>

</ xsd: schema>

XML Schema for Runtime Descriptors

The following code is the XML schema for runtime descriptors:
<?xm version="1.0" encodi ng="UTF-8"?>
<xsd: schema
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schema"
xm ns:tns="http://java.sun.com xm /ns/jax-rpc/ri/runtinme"
t ar get Nanespace="http://java. sun. com xm /ns/jax-rpc/ri/runti me"
el ement For nDef aul t ="qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed"
version="1.0">
<xsd: annot at i on>
<xsd: docunent at i on>

This is the schema for the runtime descriptors
(jaxrpc-ri-runtime.xnm).

The top-level elenment nmust be "endpoints".
</ xsd: docunent ati on>

</ xsd: annot ati on>

Appendix A XML Schema Definitions 143

http://www.w3.org/2001/XMLSchema
http://java.sun.com/xml/ns/jax-rpc/ri/runtime
http://java.sun.com/xml/ns/jax-rpc/ri/runtime

144

<xsd: el emrent name="endpoi nts">
<xsd: annot at i on>
<xsd: docunent ati on>

The top level elenment. It contains a "version" attribute and a
sequence of endpoint definitions.

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement nane="endpoi nt" type="tns: endpoi nt Type"
m nCccur s="0" naxCccur s="unbounded"/ >

</ xsd: sequence>
<xsd: attribute nanme="version" type="xsd:string" use="required"/>
</ xsd: conpl exType>

</ xsd: el enent >

<xsd: conpl exType nanme="endpoi nt Type" >
<xsd: annot at i on>
<xsd: docunent ati on>
An endpoi nt definition has several attributes:
"name" - the endpoi nt nane;

"interface" - the nane of the Java interface for the endpoint
(called "service endpoint interface" in the spec);

"inpl enentation" - the nane of the endpoint inplenentation class;
"tie" - the name of the tie class for the endpoint;

"model "? - the name of a resource corresponding to the nodel file
for the endpoint;

"wsdl"? - the nane of a resource corresponding to the WSDL
docunent for the endpoint;

"service"? - the QNane of the WBDL service that owns this
endpoi nt ;

"port"? - the QNane of the WSDL port for this endpoint;
"urlpattern” - the URL pattern this endpoint is mapped to

Sun ONE Application Server 7 « Developer's Guide to Web Services ¢ March 2003

</ xsd: docunent ati on>

</ xsd: annot at i on>

<xsd: sequence>

</ xsd: sequence>

<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd:attribute name="interface" type="xsd:string" use="required"/>

<xsd: attribute name="inpl ement ati on" type="xsd:string"
use="required"/>

<xsd:attribute name="tie" type="xsd:string" use="required"/>

<xsd: attribute nane="nodel " type="xsd:string"/>

<xsd:attribute name="wsdl" type="xsd:anyURl "/>

<xsd:attribute name="service" type="xsd:anyURl "/>

<xsd:attribute name="port" type="xsd:anyURl "/>

<xsd:attribute name="url pattern" type="xsd:anyURI" use="required"/>
</ xsd: conpl exType>

</ xsd: schema>

Appendix A XML Schema Definitions 145

146 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Glossary

This glossary provides definitions for common terms used to describe the
Application Server deployment and development environment. For a glossary of
standard J2EE terms, please see the J2EE glossary at:

http://java. sun. conlj 2ee/ gl ossary. ht m

access control The means of securing your Application Server by controlling who
and what has access to it.

ACL Access Control List. ACLs are text files that contain lists identifying who can
access the resources stored on your Application Server. See also general ACL.

activation The process of transferring an enterprise bean's state from secondary
storage to memory.

Administration interface The set of browser based forms used to configure and
administer the Application Server. See also CLI.

administration server An application server instance dedicated to providing the
administrative functions of the Application Server, including deployment,
browser-based administration, and access from the command-line interface (CLI)
and Integrated Development Environment (IDE).

administrative domain Multiple administrative domains is a feature within the
Sun ONE Application Server that allows different administrative users to create
and manage their own domains. A domain is a set of instances, created using a
common set of installed binaries in a single system.

APl Applications Program Interface. A set of instructions that a computer

program can use to communicate with other software or hardware that is designed
to interpret that API.

147

http://java.sun.com/j2ee/glossary.html

applet A small application written in Java that runs in a web browser. Typically,
applets are called by or embedded in web pages to provide special functionality.
By contrast, a servlet is a small application that runs on a server.

application A group of components packaged into an . ear file with a J2EE
application deployment descriptor. See also component, module.

application client container See container.

application server A reliable, secure, and scalable software platform in which
business applications are run. Application servers typically provide high-level
services to applications, such as component lifecycle, location, and distribution and
transactional resource access,

application tier A conceptual division of a J2EE application:

client tier: The user interface (Ul). End users interact with client software (such as a
web browser) to use the application.

server tier: The business logic and presentation logic that make up your application,
defined in the application’s components.

data tier: The data access logic that enables your application to interact with a data
source.

assembly The process of combining discrete components of an application into a
single unit that can be deployed. See also deployment.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with
other work.

attribute A name-value pair in a request object that can be set by a servlet. Also a
name-value pair that modifies an element in an XML file. Contrast with parameter.
More generally, an attribute is a unit of metadata.

auditing The method(s) by which significant events are recorded for subsequent
examination, typically in error or security breach situations.

authentication The process by which an entity (such as a user) proves to another
entity (such as an application) that it is acting on behalf of a specific identity (the
user’s security identity). Sun ONE Application Server supports basic, form-based,
and SSL mutual authentication. See also client authentication, digest authentication,
host-IP authentication, pluggable authentication.

148 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

authorization The process by which access to a method or resource is
determined. Authorization in the J2EE platform depends upon whether the user
associated with a request through authentication is in a given security role. For
example, a human resources application may authorize managers to view personal
employee information for all employees, but allow employees to only view their
own personal information.

backup store A repository for data, typically a file system or database. A backup
store can be monitored by a background thread (or sweeper thread) to remove
unwanted entries.

bean-managed persistence Data transfer between an entity bean's variables and
a data store. The data access logic is typically provided by a developer using Java
Database Connectivity (JDBC) or other data access technologies. See also
container-managed persistence.

bean-managed transaction Where transaction demarcation for an enterprise
bean is controlled programmatically by the developer. See also container-managed
transaction.

BLOB Binary Large OBject. A data type used to store and retrieve complex object
fields. BLOBs are binary or serializable objects, such as pictures, that translate into
large byte arrays, which are then serialized into container-managed persistence
fields.

BMP See bean-managed persistence.

BMT See bean-managed transaction.

broker The Sun ONE Message Queue entity that manages JMS message routing,
delivery, persistence, security, and logging, and which provides an interface that
allows an administrator to monitor and tune performance and resource use.

business logic The code that implements the essential business rules of an
application, rather than data integration or presentation logic.

CA See certificate authority or connector architecture.

Glossary 149

cached rowset A CachedRowSet object permits you to retrieve data from a data
source, then detach from the data source while you examine and modify the data.
A cached row set keeps track both of the original data retrieved, and any changes
made to the data by your application. If the application attempts to update the
original data source, the row set is reconnected to the data source, and only those
rows that have changed are merged back into the database.

Cache Control Directives Cache-control directives are a way for Sun ONE
Application Server to control what information is cached by a proxy server. Using
cache-control directives, you override the default caching of the proxy to protect
sensitive information from being cached, and perhaps retrieved later. For these
directives to work, the proxy server must comply with HTTP 1.1.

callable statement A class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures.

certificate Digital data that specifies the name of an individual, company, or
other entity, and certifies that the public key included in the certificate belongs to
that entity. Both clients and servers can have certificates.

certificate authority A company that sells certificates over the Internet, or a
department responsible for issuing certificates for a company’s intranet or extranet.

cipher A cryptographic algorithm (a mathematical function), used for encryption
or decryption.

CKL Compromised Key List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the key has been compromised. See also CRL.

classloader A Java component responsible for loading Java classes according to
specific rules. See also classpath.

classpath A path that identifies directories and JAR files where Java classes are
stored. See also classloader.

CLI Command-line interface. An interface that enables you to type executable
instructions at a user prompt. See also Administration interface.

client authentication The process of authenticating client certificates by

cryptographically verifying the certificate signature and the certificate chain
leading to the CA on the trust CA list. See also authentication, certificate authority.

150 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

client contract A contract that determines the communication rules between a
client and the EJB container, establishes a uniform development model for
applications that use enterprise beans, and guarantees greater reuse of beans by
standardizing the relationship with the client.

CMP See container-managed persistence.
CMR See container-managed relationship.
CMT See container-managed transaction.

co-locate To position a component in the same memory space as a related
component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit To complete a transaction by sending the required commands to the
database. See rollback, transaction.

component A web application, enterprise bean, message-driven bean,
application client, or connector. See also application, module.

component contract A contract that establishes the relationship between an
enterprise bean and its container.

configuration The process of tuning the server or providing metadata for a
component. Normally, the configuration for a specific component is kept in the
component’s deployment descriptor file. See also administration server,
deployment descriptor.

connection factory An object that produces connection objects that enable a J2EE
component to access a resource. Used to create JMS connections (TopicConnection
or QueueConnection) which allow application code to make use of the provided
JMS implementation. Application code uses the JNDI Service to locate connection
factory objects using a JNDI Name.

Connection Pool allows highly efficient access to a database by caching and
reusing physical connections, thus avoiding connection overhead and allowing a
small number of connections to be shared between a large number of threads. See
also JDBC connection pool

Glossary 151

152

connector A standard extension mechanism for containers to provide
connectivity to EISs. A connector is specific to an EIS and consists of a resource
adapter and application development tools for EIS connectivity. The resource
adapter is plugged in to a container through its support for system level contracts
defined in the connector architecture.

connector architecture An architecture for the integration of J2EE applications
with EISs. There are two parts to this architecture: a EIS vendor-provided resource
adapter and a J2EE server that allows this resource adapter to plug in. This
architecture defines a set of contracts that a resource adapter has to support to plug
in to a J2EE server, for example, transactions, security and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to a specific type of J2EE component. Sun ONE Application
Server provides web and EJB containers, and supports application client
containers. See also component.

container-managed persistence Where the EJB container is responsible for entity
bean persistence. Data transfer between an entity bean's variables and a data store,
where the data access logic is provided by the Application Server. See also
bean-managed persistence.

container-managed relationship A relationship between fields in a pair of
classes where operations on one side of the relationship affect the other side.

container-managed transaction Where transaction demarcation for an enterprise
bean is specified declaratively and automatically controlled by the EJB container
See also bean-managed transaction.

control descriptor A set of enterprise bean configuration entries that enable you
to specify optional individual property overrides for bean methods, plus enterprise
bean transaction and security properties.

conversational state Where the state of an object changes as the result of repeated
interactions with the same client. See also persistent state.

cookie A small collection of information that can be transmitted to a calling web
browser, then retrieved on each subsequent call from that browser so the server
can recognize calls from the same client. Cookies are domain-specific and can take
advantage of the same web server security features as other data interchange
between your application and the server.

Sun ONE Application Server 7 « Developer’s Guide to Web Services « March 2003

CORBA Common Object Request Broker Architecture. A standard architecture
definition for object-oriented distributed computing.

COSNaming Service An an IIOP-based naming service.

CosNaming provider To support a global INDI name space (accessible to [1OP
application clients), Application Server includes J2EE based CosNaming provider
which supports binding of CORBA references (remote EJB references).

create method A method for customizing an enterprise bean at creation.

CRL Certificate Revocation List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the certificate has been revoked. See also CKL.

data access logic Business logic that involves interacting with a data source.

database A generic term for Relational Database Management System (RDBMS).
A software package that enables the creation and manipulation of large amounts of
related, organized data.

database connection A database connection is a communication link with a
database or other data source. Components can create and manipulate several
database connections simultaneously to access data.

data source A handle to a source of data, such as a database. Data sources are
registered with the iPlanet Application Server and then retrieved
programmatically in order to establish connections and interact with the data
source. A data source definition specifies how to connect to the source of data.

DataSource Object A DataSource object has a set of properties that identify and
describe the real world data source that it represents.

declarative security Declaring security properties in the component’s
configuration file and allowing the component’s container (for instance, a bean’s
container or a servlet engine) to manage security implicitly. This type of security
requires no programmatic control. Opposite of programmatic security. See
container-managed persistence.

declarative transaction See container-managed transaction.
decryption The process of transforming encrypted information so that it is

intelligible again.

Glossary 153

delegation An object-oriented technique for using the composition of objects as
an implementation strategy. One object, which is responsible for the result of an
operation, delegates the implementation to another object, its delegatee. For
example, a classloader often delegates the loading of some classes to its parent.

deployment The process of distributing the files required by an application to an
application server to make the application available to run on the application
server. See also assembly.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container options
and describes specific configuration requirements that a deployer must resolve.

destination resource An objects that represents Topic or Queue destinations.
Used by applications to read/write to Queues or publish/subscribe to Topics.
Application code uses the JNDI Service to locate JMS resource objects using a JNDI
Name.

digest authentication A for of authentication that allows the user to authenticate
based on user name and password without sending the user name and password
as cleartext.

digital signature an electronic security mechanism used to authenticate both a
message and the signer.

directory server See Sun ONE Directory Server.
Distinguished Name See DN, DN attribute.

distributable session A user session that is distributable among all servers in a
cluster.

distributed transaction A single transaction that can apply to multiple
heterogeneous databases that may reside on separate servers.

Document Root The document root (sometimes called the primary document

directory) is the central directory that contains all the virtual server’s files you want
to make available to remote clients.

154 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

Domain Registry The Domain Registry is a single data structure that contains
domain-specific information, for all the domains created and configured on an
installation of Application Server, such as domain name, domain location, domain
port, domain host.

DTD Document Type Definition. A description of the structure and properties of
a class of XML files.

DN Distinguished Name. The string representation for the name of an entry in a
directory server.

DN attribute Distinguished Name attribute. A text string that contains
identifying information for an associated user, group, or object.

dynamic redeployment The process of redeploying a component without
restarting the server.

dynamic reloading The process of updating and reloading a component without
restarting the server. By default, servlet, JavaServer Page (JSP), and enterprise bean
components can be dynamically reloaded. Also known as versioning.

EAR file Enterprise ARchive file. An archive file that contains a J2EE application.
EAR files have the . ear extension. See also JAR file.

e-commerce Electronic commerce. A term for business conducted over the
Internet.

EIS Enterprise Information System. This can be interpreted as a packaged
enterprise application, a transaction system, or a user application. Often referred to
as an EIS. Examples of EISs include: R/3, PeopleSoft, Tuxedo, and CICS.

EJB container See container.

EJB QL EJB Query Language. A query language that provides for navigation
across a network of entity beans defined by container-managed relationships.

EJB technology An enterprise bean is a server-side component that encapsulates
the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the
enterprise beans might implement the business logic in methods called

checkl nvent oryLevel and or der Pr oduct . By invoking these methods, remote
clients can access the inventory services provided by the application. See also
container, entity bean, message-driven bean, and session bean.

Glossary 155

ejbc utility The compiler for enterprise beans. It checks all EJB classes and
interfaces for compliance with the EJB specification, and generates stubs and
skeletons.

element A member of a larger set; for example, a data unit within an array, or a
logic element. In an XML file, it is the basic structural unit. An XML element
contains subelements or data, and may contain attributes.

encapsulate To localize knowledge within a module. Because objects encapsulate
data and implementation, the user of an object can view the object as a black box
that provides services. Instance variables and methods can be added, deleted, or
changed, but if the services provided by the object remain the same, code that uses
the object can continue to use it without being rewritten.

encryption The process of transforming information so it is unintelligible to
anyone but the intended recipient.

entity bean An enterprise bean that relates to physical data, such as a row in a
database. Entity beans are long lived, because they are tied to persistent data.
Entity beans are always transactional and multi-user aware. See message-driven
bean, read-only bean, session bean.

ERP Enterprise Resource Planning. A multi-module software system that
supports enterprise resource planning. An ERP system typically includes a
relational database and applications for managing purchasing, inventory,
personnel, customer service, shipping, financial planning, and other important
aspects of the business.

event A named action that triggers a response from a module or application.

external JDNI resource Allows the JNDI Service to act as a bridge to a remote
JNDI server.

facade Where an application-specific stateful session bean is used to manage
various Enterprise JavaBeans (EJBS).

factory class A class that creates persistence managers. See also connection
factory.

failover A recovery process where a bean can transparently survive a server
crash.

156 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

finder method Method which enables clients to look up a bean or a collection of
beans in a globally available directory.

firewall an electronic boundary that allows a network administrator to restrict
the flow of information across networks in order to enforce security.

File Cache The file cache contains information about files and static file content.
The file cache is turned on by default.

form action handler A specially defined method in servlet or application logic
that performs an action based on a named button on a form.

FQDN Fully Qualified Domain Name. The full name of a system, containing its
hostname and its domain name.

general ACL A named list in the Sun ONE Directory Server that relates a user or
group with one or more permissions. This list can be defined and accessed
arbitrarily to record any set of permissions.

generic servlet A servletthat extendsj avax. servl et. Generi cSer vl et . Generic
servlets are protocol-independent, meaning that they contain no inherent support
for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple
components. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a
transaction manager and can span multiple databases and processes. The
transaction manager typically uses the XA protocol to interact with the database
backends. See local transaction.

granularity level The approach to dividing an application into pieces. A high level
of granularity means that the application is divided into many smaller, more
narrowly defined Enterprise JavaBeans (EJBs). A low level of granularity means the
application is divided into fewer pieces, producing a larger program.

group A group of users that are related in some way. Group membership is
usually maintained by a local system administrator. See user, role.

handle An object that identifies an enterprise bean. A client may serialize the
handle, and then later deserialize it to obtain a reference to the bean.

Glossary 157

Heuristic Decision The transactional mode used by a particular transaction. A
transaction has to either Commit or Rollback.

home interface A mechanism that defines the methods that enable a client to
create and remove an enterprise bean.

host-1P authentication A security mechanism used for of limiting access to the
Administration Server, or the files and directories on a web site by making them
available only to clients using specific computers.

HTML Hypertext Markup Language. A coding markup language used to create
documents that can be displayed by web browsers. Each block of text is
surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP Hypertext Transfer Protocol. The Internet protocol that fetches hypertext
objects from remote hosts. It is based on TCP/IP.

HTTP servlet A servlet that extendsj avax. servl et. Htt pServl et . These
servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

HTTPS HyperText Transmission Protocol, Secure. HTTP for secure transactions.

IDE Integrated Development Environment. Software that allows you to create,
assemble, deploy, and debug code from a single, easy-to-use interface.

IIOP Internet Inter-ORB Protocol. Transport-level protocol used by both Remote
Method Invocation (RMI) over IIOP and Common Object Request Broker
Architecture (CORBA).

I1OP Listener The IIOP listener is a listen socket that listens on a specified port
and accepts incoming connections from CORBA based client application

IP address A structured, numeric identifier for a computer or other device on a
TCP/IP network. The format of an IP address is a 32-bit numeric address written as
four numbers separated by periods. Each number can be zero to 255. For example,
123.231.32.2 could be an IP address.

IMAP Internet Message Access Protocol.

isolation level See transaction isolation level.

158 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

J2EE Java 2 Enterprise Edition. An environment for developing and deploying
multi-tiered, web-based enterprise applications. The J2EE platform consists of a set
of services, application programming interfaces (APIs), and protocols that provide
the functionality for developing these applications.

JAF The JavaBeans Activation Framework (JAF) integrates support for MIME
data types into the Java platform. See Mime Types.

JAR file Java ARchive file. A file used for aggregating many files into one file.
JAR files have the.j ar extension.

JAR file contract Java ARchive contract that specifies what information must be
in the enterprise bean package.

JAR file format Java ARchive file format. A platform-independent file format
that aggregates many files into one file. Multiple applets and their requisite
components (class files, images, sounds, and other resource files) can be bundled in
a JAR file and subsequently downloaded to a browser in a single HTTP transaction.
The JAR files format also supports file compression and digital signatures.

JavaBean A portable, platform-independent reusable component model.

Java IDL Java Interface Definition Language. APls written in the Java
programming language that provide a standards-based compatibility and
connectivity with Common Object Request Broker Architecture (CORBA).

JavaMail session An object used by an application to interact with a mail store.
Application code uses the JNDI Service to locate JavaMail session resources objects
using a JNDI name.

JAXM Java API for XML Messaging. Enables applications to send and receive
document-oriented XML messages using the SOAP standard. These messages can
be with or without attachments.

JAXP Java API for XML Processing. A Java API that supports processing of XML
documents using DOM, SAX, and XSLT. Enables applications to parse and
transform XML documents independent of a particular XML processing
implementation.

JAXR Java API for XML Registry. Provides a uniform and standard Java API for

accessing different kinds of XML registries. Enables users to build, deploy and
discover web services.

Glossary 159

JAX-RPC Java API for XML-based Remote Procedure Calls. Enables developers
to build interoperable web applications and web services based on XML-based
RPC protocols.

JDBC Java Database Connectivity. A standards-based set of classes and
interfaces that enable developers to create data-aware components. JDBC
implements methods for connecting to and interacting with data sources in a
platform- and vendor-independent way.

JDBC connection pool A pool that combines the JDBC data source properties
used to specify a connection to a database with the connection pool properties.

JDBC resource A resource used to connect an application running within the
application server to a database using an existing JDBC connection pool. Consists
of a JNDI name (which is used by the application) and the name of an existing
JDBC connection pool.

JDK Java Development Kit. The software that includes the APIs and tools that
developers need to build applications for those versions of the Java platform that
preceded the Java 2 Platform. See also JDK.

JMS Java Message Service. A standard set of interfaces and semantics that define
how a JMS client accesses the facilities of a JMS message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS-administered object A pre-configured JMS object—a connection factory or
a destination—created by an administrator for use by one or more JMS clients.

The use of administered objects allows JMS clients to be provider-independent;
that is, it isolates them from the proprietary aspects of a provider. These objects are
placed in a JNDI name space by an administrator and are accessed by JMS clients
using JNDI lookups.

JMS client An application (or software component) that interacts with other JMS
clients using a JMS message service to exchange messages.

JMS connection factory The JMS administered object a JMS client uses to create a
connection to a JMS message service.

160 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

JMS destination The physical destination in a JMS message service to which
produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an JMS
administered object that a JMS client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

JMS messages Asynchronous requests, reports, or events that are consumed by
JMS clients. A message has a header (to which additional fields can be added) and
a body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

JMS Service Software that provides delivery services for a JIMS messaging
system, including connections to JMS clients, message routing and delivery,
persistence, security, and logging. The message service maintains physical
destinations to which JMS clients send messages, and from which the messages are
delivered to consuming clients.

JNDI Java Naming and Directory Interface. This is a standard extension to the
Java platform, providing Java technology-enabled applications with a unified
interface to multiple naming and directory services in the enterprise. As part of the
Java Enterprise API set, INDI enables seamless connectivity to heterogeneous
enterprise naming and directory services.

JNDI name A name used to access a resource that has been registered in the JNDI
naming service.

JRE Java Runtime Environment. A subset of the Java Development Kit (JDK)
consisting of the Java virtual machine, the Java core classes, and supporting files
that provides runtime support for applications written in the Java programming
language. See also JDK.

JSP JavaServer Page. A text page written using a combination of HTML or XML
tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard
browser page with the power of a programming language.

jspc utility The compiler for JSPs. It checks all JSPs for compliance with the JSP
specification.

Glossary 161

162

JTA Java Transaction API. An API that allows applications and J2EE servers to
access transactions.

JTS Java Transaction Service. The Java service for processing transactions.
key-pair file See trust database.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access
protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.
Using Sun ONE Directory Server, a provided LDAP server, you can store all of
your enterprise’s information in a single, centralized repository of directory
information that any application server can access through the network.

LDIF LDAP Data Interchange Format. Format used to represent Sun ONE
Directory Server entries in text form.

lifecycle event A stage in the server life cycle, such as startup or shutdown.

lifecycle module A module that listens for and performs its tasks in response to
events in the server life cycle.

Listener A class, registered with a posting object, that says what to do when an
event occurs.

local database connection The transaction context in a local connection is local to
the current process and to the current data source, not distributed across processes
or across data sources.

local interface An interface that provides a mechanism for a client that is located
in the same Java Virtual Machine (JVM) with a session or entity bean to access that
bean.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted
within a single process. Local transactions work only against a single backend.
Local transactions are typically demarcated using JDBC APIs. See also global
transaction.

mapping The ability to tie an object-oriented model to a relational model of data,
usually the schema of a relational database. The process of converting a schema to
a different structure. Also refers to the mapping of users to security roles.

Sun ONE Application Server 7 « Developer’s Guide to Web Services « March 2003

MDB See message-driven bean.

message-driven bean An enterprise bean that is an asynchronous message
consumer. A message-driven bean has no state for a specific client, but its instance
variables may contain state across the handling of client messages, including an
open database connection and an object reference to an EJB object. A client accesses
a message-driven bean by sending messages to the destination for which the
message-driven bean is a message listener.

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

metadata Information about a component, such as its name, and specifications
for its behavior.

MIME Data Type MIME (Multi-purpose Internet Mail Extension) types control
what types of multimedia files your system supports.

module A web application, enterprise bean, message-driven bean, application
client, or connector that has been deployed individually, outside an application. See
also application, component, lifecycle module.

NTV Name, Type, Value.
object persistence See persistence.

O/R mapping tool Object-to-relational [database] tool. A mapping tool within
the Application Server Administrative interface that creates XML deployment
descriptors for entity beans.

package A collection of related classes that are stored in a common directory.
They are often literally packaged together in a Java archive JAR file. See also
assembly, deployment.

parameter A name/value pair sent from the client, including form field data,
HTTP header information, and so on, and encapsulated in a request object.
Contrast with attribute. More generally, an argument to a Java method or database-
prepared command.

passivation A method of releasing a bean’s resources from memory without

destroying the bean. In this way, a bean is made to be persistent, and can be
recalled without the overhead of instantiation.

Glossary 163

permission A set of privileges granted or denied to a user or group. See also ACL.

persistence For enterprise beans, the protocol for transferring the state of an
entity bean between its instance variables and an underlying database. Opposite of
transience. For sessions, the session storage mechanism.

persistence manager The entity responsible for the persistence of the entity beans
installed in the container.

persistent state Where the state of an object is kept in persistent storage, usually a
database.

pluggable authentication A mechanism that allows J2EE applications to use the
Java Authentication and Authorization Service (JAAS) feature from the J2SE
platform. Developers can plug in their own authentication mechanisms.

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

pooling The process of providing a number of preconfigured resources to
improve performance. If a resource is pooled, a component can use an existing
instance from the pool rather than instantiating a new one. In the Application
Server, database connections, servlet instances, and enterprise bean instances can
all be pooled.

POP3 Post Office Protocol

prepared command A database command (in SQL) that is precompiled to make
repeated execution more efficient. Prepared commands can contain parameters. A
prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a QUERY, UPDATE, or | NSERT
statement that is used repeatedly to fetch data. A prepared statement contains one
or more prepared commands.

presentation layout The format of web page content.

presentation logic Activities that create a page in an application, including

processing a request, generating content in response, and formatting the page for
the client. Usually handled by a web application.

164 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

primary key The unique identifier that enables the client to locate a particular
entity bean.

primary key class name A variable that specifies the fully qualified class name of
a bean’s primary key. Used for JNDI lookups.

principal The identity assigned to an entity as a result of authentication.
private key See public key cryptography.

process Execution sequence of an active program. A process is made up of one or
more threads.

programmatic security The process of controlling security explicitly in code
rather than allowing the component’s container (for instance, a bean’s container or
a servlet engine) to handle it. Opposite of declarative security.

programmer-demarcated transaction See bean-managed transaction.

property A single attribute that defines the behavior of an application
component. In the server. xnl file, a property is an element that contains a
name/value pair.

public key cryptography A form of cryptography in which each user has a
public key and a private key. Messages are sent encrypted with the receiver's
public key; the receiver decrypts them using the private key. Using this method,
the private key never has to be revealed to anyone other than the user.

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

QOS QOS (Quality of Service) refers to the performance limits you set for a
server instance or virtual server. For example, if you are an ISP, you might want to
charge different amounts of money for virtual servers depending on how much
bandwidth is provided. You can limit two areas: the amount of bandwidth and the
number of connections.

Glossary 165

RAR file Resource ARchive. A JAR archive that contains a resource adapter.
RDB Relational database.
RDBMS Relational database management system.

read-only bean An entity bean that is never modified by an EJB client. See also
entity bean.

realm A scope over which a common security policy is defined and enforced by
the security administrator of the security service. Also called a security policy domain
or security domain in the J2EE specification.

remote interface One of two interfaces for an Enterprise JavaBean. The remote
interface defines the business methods callable by a client.

request object An object that contains page and session data produced by a
client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager An object that acts as a facilitator between a resource such as a
database or message broker, and client(s) of the resource such as Application
Server processes. Controls globally-available data sources.

resource reference An element in a deployment descriptor that identifies the
component’s coded name for the resource.

response object An object that references the calling client and provides methods
for generating output for the client.

ResultSet An object that implements the j ava. sql . Resul t Set interface.
Resul t Set s are used to encapsulate a set of rows retrieved from a database or
other source of tabular data.

reusable component A component created so that it can be used in more than
one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation. A Java standard set of APIs that enable
developers to write remote interfaces that can pass objects to remote processes.

RMIC Remote Method Invocation Compiler.

role A functional grouping of subjects in an application, represented by one or
more groups in a deployed environment. See also user, group.

166 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

rollback Cancellation of a transaction.
row A single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or
other source of tabular data. RowSet extends the j ava. sql . Resul t Set interface,
enabling Resul t Set to act as a JavaBeans component.

RPC Remote Procedure Call. A mechanism for accessing a remote object or
service.

runtime system The software environment in which programs run. The runtime
system includes all the code necessary to load programs written in the Java
programming language, dynamically link native methods, manage memory, and
handle exceptions. An implementation of the Java virtual machine is included,
which may be a Java interpreter.

SAF Server Application Function. A function that participates in request
processing and other server activities

schema The structure of the underlying database, including the names of tables,
the names and types of columns, index information, and relationship (primary and
foreign key) information.

Secure Socket Layer See SSL.

security A screening mechanism that ensures that application resources are only
accessed by authorized clients.

serializable object An object that can be deconstructed and reconstructed, which
enables it to be stored or distributed among multiple servers.

server instance A Sun ONE Application Server can contain multiple instances in
the same installation on the same machine. Each instance has its own directory
structure, configuration, and deployed applications. Each instance can also contain
multiple virtual servers. See also virtual server.

servlet An instance of the Servl et class. A servlet is a reusable application that
runs on a server. In the Application Server, a servlet acts as the central dispatcher
for each interaction in an application by performing presentation logic, invoking
business logic, and invoking or performing presentation layout.

Glossary 167

servlet engine An internal object that handles all servlet metafunctions.
Collectively, a set of processes that provide services for a servlet, including
instantiation and execution.

servlet runner The part of the servlet engine that invokes a servlet with a request
object and a response object. See servlet engine.

session An object used by a servlet to track a user’s interaction with a web
application across multiple HTTP requests.

session bean An enterprise bean that is created by a client; usually exists only for
the duration of a single client-server session. A session bean performs operations
for the client, such as calculations or accessing other EJBs. While a session bean
may be transactional, it is not recoverable if a system crash occurs. Session bean
objects can be either stateless (not associated with a particular client) or stateful
(associated with a particular client), that is, they can maintain conversational state
across methods and transactions. See also stateful session bean, stateless session
bean.

session cookie A cookie that is returned to the client containing a user session
identifier. See also sticky cookie.

session timeout A specified duration after which the Application Server can
invalidate a user session. See session.

single sign-on A situation where a user’s authentication state can be shared
across multiple J2EE applications in a single virtual server instance.

SMTP Simple Mail Transport Protocol

SNMP SNMP (Simple Network Management Protocol) is a protocol used to
exchange data about network activity. With SNMP, data travels between a
managed device and a network management station (NMS). A managed device is
anything that runs SNMP: hosts, routers, your web server, and other servers on
your network. The NMS is a machine used to remotely manage that network.

SOAP The Simple Object Access Protocol (SOAP) uses a combination of
XML-based data structuring and Hyper Text Transfer Protocol (HTTP) to define a
standardized way of invoking methods in objects distributed in diverse operating
environments across the Internet.

SQL Structured Query Language. A language commonly used in relational
database applications. SQL2 and SQL3 designate versions of the language.

168 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

SSL Secure Sockets Layer. A protocol designed to provide secure
communications on the Internet.

state 1. The circumstances or condition of an entity at any given time. 2. A
distributed data storage mechanism which you can use to store the state of an
application using the Application Server feature interface | St at e2. See also
conversational state, persistent state.

stateful session bean A session bean that represents a session with a particular
client and which automatically maintains state across multiple client-invoked
methods.

stateless session bean A session bean that represents a stateless service. A
stateless session bean is completely transient and encapsulates a temporary piece
of business logic needed by a specific client for a limited time span.

sticky cookie A cookie that is returned to the client to force it to always connect
to the same server process. See also session cookie.

stored procedure A block of statements written in SQL and stored in a database.
You can use stored procedures to perform any type of database operation, such as
modifying, inserting, or deleting records. The use of stored procedures improves
database performance by reducing the amount of information that is sent over a
network.

streaming A technique for managing how data is communicated through HTTP.
When results are streamed, the first portion of the data is available for use
immediately. When results are not streamed, the whole result must be received
before any part of it can be used. Streaming provides a way to allow large amounts
of data to be returned in a more efficient way, improving the perceived
performance of the application.

system administrator The person who administers Application Server software
and deploys Application Server applications.

Application Server RowSet A RowSet object that incorporates the Application
Server extensions.

Sun ONE Directory Server The Sun ONE version of Lightweight Directory
Access Protocol (LDAP). Every instance of Application Server uses Sun ONE
Directory Server to store shared server information, including information about
users and groups. See also LDAP.

Glossary 169

Sun ONE Message Queue The Sun ONE enterprise messaging system that
implements the Java Message Service (JMS) open standard: it is a JMS provider.

TLS Transport Layer Security. A protocol that provides encryption and
certification at the transport layer, so that data can flow through a secure channel
without requiring significant changes to the client and server applications.

table A named group of related data in rows and columns in a database.

thread An execution sequence inside a process. A process may allow many
simultaneous threads, in which case it is multi-threaded. If a process executes each
thread sequentially, it is single-threaded.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction context A transaction’s scope, either local or global. See local
transaction, global transaction.

transaction isolation level Determines the extent to which concurrent
transactions on a database are visible to one-another.

transaction manager An object that controls a global transaction, normally using
the XA protocol. See global transaction.

transaction A set of database commands that succeed or fail as a group. All the
commands involved must succeed for the entire transaction to succeed.

Transaction Recovery Automatic or manual recovery of distributed transactions.
Transaction Attribute A transaction attribute controls the scope of a transaction.

transience A protocol that releases a resource when it is not being used. Opposite
of persistence.

trust database | security file that contains the public and private keys; also
referred to as the key-pair file.

170 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

URI Universal Resource Identifier. Describes a specific resource at a domain.
Locally described as a subset of a base directory, so that / hant bur ger is the base
directory and a URI specifies t oppi ngs/ cheese. ht nl . A corresponding URL
would be htt p: // domai n: port/toppi ngs/ cheese. htni .

URL Uniform Resource Locator. An address that uniquely identifies an HTML
page or other resource. A web browser uses URLS to specify which pages to
display. A URL describes a transport protocol (for example, HTTP, FTP), a domain
(for example, www. my- domai n. com), and optionally a URI.

user A person who uses an application. Programmatically, a user consists of a
user name, password, and set of attributes that enables an application to recognize
a client. See also group, role.

user session A series of user application interactions that are tracked by the
server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

virtual server A virtual web server that serves content targeted for a specific
URL. Multiple virtual servers may serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service can direct incoming web
requests to different virtual servers based on the URL. Also called a virtual host.

A web application can be assigned to a specific virtual server. A server instance can
have multiple virtual servers. See also server instance.

WAR file Web ARchive. A Java archive that contains a web module. WAR files
have the.war extension.

web application A collection of servlets, JavaServer Pages, HTML documents,
and other web resources, which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure.

Sun ONE Application Server also supports some non-Java web application
technologies, such as SHTML and CGl.

web cache An Application Server feature that enables a servlet or JSP to cache its
results for a specific duration in order to improve performance. Subsequent calls to
that servlet or JSP within the duration are given the cached results so that the
servlet or JSP does not have to execute again.

Glossary 171

http://domain:port/toppings/cheese.html

web connector plug-in An extension to a web server that enables it to
communicate with the Application Server.

web container See container.
web module An individually deployed web application. See web application.

web server A host that stores and manages HTML pages and web applications,
but not full J2EE applications. The web server responds to user requests from web
browsers.

Web Server Plugin The web server plugin is an HTTP reverse proxy plugin that
allows you to instruct a Sun One Web Server or Application Server to forward
certain HTTP requests to another server.

web service A service offered via the web. A self-contained, self-describing,
modular application that can accept a request from a system across the Internet or
an intranet, process it, and return a response.

WSDL Web Service Description Language. An XML-based language used to
define web services in a standardized way. It essentially describes three
fundamental properties of a web service: definition of the web service, how to
access that web service, and the location of that web service.

UDDI Universal Description, Discovery, and Integration. Provides worldwide
registry of web services for discovery and integration.

XA protocol A database industry standard protocol for distributed transactions.
XML Extensible Markup Language. A language that uses HTML-style tags to

identify the kinds of information used in documents as well as to format
documents.

172 Sun ONE Application Server 7 « Developer’'s Guide to Web Services * March 2003

A

accessing elements 82
adding attachment to message 88
accessing attachment part 91
ant build file
creating 29
ant tool 28
using ant tasks 28
application classes 74
arrays 74
asadmin deploy command 42

assembling and deploying JAX-RPC web services 38
war file 39

asynchronous message 79

B

basic authentication over SSL 56
body object 82
build.xml 29

C

call interface method 49
classification scheme 108

Client Certificate Authentication 60
client environment 29

Index

using ant tasks 28
client jar files 29
client using a messaging provider 79
client without using a messaging provider 78
coffee break example 26
config.xml 67
configuration file 67
web services attributes 40
with a WSDL document 68
with rmi interfaces 67
connection 85
creating a SOAP client 85
accessing attachment part 91
adding attachment to message 88
adding contents to a message 88
creating a message 87
getting a connection 86
retrieve message content 90
sending a message 90

D

developing a JAXR client 97

developing JAX-RPC clients
assemble the client 46
call interface method 49
compile the client 46
dynamic proxy method 48
generated stubs method 43
run the client 47

173

Section E

using a WSDL 50
DIl client

call interface approach 49

dynamic proxy approach 48
document directories

primary 154
document root 154
document-oriented model 16
dynamic proxy method 48

E

ebXML 18
elements of a SOAP message 80

establishing connection
setting properties 99

F

files
build.xml 29
JAX-RPC runtime descriptor 51
jaxrpc-ri.xml 70

G

generated stubs method 43

implementing web services
coffee break example 26

invoking web services 42
creating a SOAP client 85
developing a JAXR client 97

J

J2SE SDK classes 73
Java APIs 21

JAXM 77

JAXR 97

SAAJ 77
JavaBeans components 75
javax.activation.DataHandler 90
javax.xml.rpc.Service 48
javax.xml.soap package 72

javax.xml.soap.SoAPConnection.Call() 90

JAXM 24,77
JAXMServlet class 92
JAXP 22
DOM 22
SAX 22
XSLT 22
XSLTC 22
JAXR 23,97
JAXR client
assemble 119
authorization 102
creating connection 101
deploy 119
establishing connection 98
execute 119
getting access to a registry 98
obtaining registry service 102
publishing 119
querying a registry 102
querying registry 102
JAXR connection properties 99
jaxr.properties file 119
JAX-RPC 23
JAX-RPC clients 43
types supported by JAX-RPC 73
JAX-RPC clients
assembling 51
deploying 51
invoking an EJB 52
JAX-RPC sample applications 52
JAX-RPC tools 64
wscompile tool 64
wsdeploy tool 69

174 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

JAX-RPC web services 35
configuration file 40

M

managing registry 106
adding classifications 108
adding service and bindings 113
creating organization 107
finding taxonomy 108
getting authorization 106

message endpoint 84
constructing an endpoint 84

message queue 20
message-oriented model 17
MIME (Multi-purpose Internet Mail Extension)

types
definition and accessing page 163

model file 67
mutual authentication over SSL 59

N

namespace mappings 71

O

onMessage method 92
override JAXP 1.1 implementation 31

P

parts of a SOAP message 80
AttachmentPart object 81
body 82
SOAPEnNvelope 81
SOAPHeader 82

Section M

SOAPMessage 81
SOAPPart 81

predefined faultcode 94

pre-defined SOAP namespaces 83
primary document directory, setting 154
primitive types 74

ProviderConnection object 85

Q

query a registry 102

querying registry
based on WSDL specification 104
find organizations by classification 103
find organizations by description 104
find organizations by name 103
find organizations by services and service

bindings 105

S

SAA] 24,77

sample JAXR Client 120

securing web services 55
basic authentication over SSL 56
mutual authentication over SSL 59
security properties 58

security properties 58
securing web services

security properties 58

sending SOAP message 90

service bindings 113

SOAP 17

SOAP client
client using a messaging provider 79
client without a messaging provider 78
samples 96

SOAP client messaging models
client using a messaging provider 79
client without using a messaging provider 78

Index 175

Section T

SOAP client scenarios 78
SOAP handlers 72

SOAP message fault handling 93
defining SOAP fault 95
SOAPFault object 93

SOAP serialization 83

SOAP service 92
creating 92
samples 96

SOAPConnection object 85

SOAPENvelope object 81

SOAPFault subelements 94
detail 94
faultactor 94
faultcode 94
faultstring 94

SOAPHeader object 82

SOAPMessage object 81

SOAPPart object 81

specifying postal address 111

stubs 45

Sun ONE customer support 13

Sun ONE web services features 20

synchronous message 78

syntax of asadmin deploy command 42

T
taxonomy 108

defining 109
ties 45

transactions
attributes 170

type system 121

types supported by JAX-RPC 73
application classes 74
arrays 74
J2SE SDK classes 73
JavaBeans components 75
primitives 74

U

uDDI 18

UDDI, registry 18

using ant tasks 28

using JAXP 1.2 implementation 31
using namespaces 83

using wscompile tool 64

using wsdeploy tool 69

W

war file 39

web service
endpoint 34

web service models
asynchronous 17
synchronous 16

web services 15

assembling and deploying JAX-RPC web

services 38

building clients 42

invoking web services 42

securing web services 55

working of web services 19
web services standards 17

ebXML 18

SOAP 17

uDDI 18

WSDL 18
web.xml

adding security elements 57
working of web services 19
wscompile configuration file 67

with rmi interfaces 67

with wsdl 68
wscompile tool 64

wscompile command options 65
wsdeploy tool 69

jaxrpc-ri.xml file 70

wsdeploy command options 69
WSDL 18

176 Sun ONE Application Server 7 « Developer’'s Guide to Web Services « March 2003

Section X

X

XML namespace 82
using name spaces 83

XML schema definition 121

XSD 121
deployment descriptors 134
exported wscompile model files 140
runtime descriptors 143
wscompile configuration 121

Index 177

Section X

178 Sun ONE Application Server 7 « Developer’'s Guide to Web Services ¢ March 2003

	Developer’s Guide to Web Services
	Contents
	About This Document
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Reference Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	About Web Services
	What are Web Services?
	Messaging Models Used in Web Services
	Synchronous Model
	Asynchronous Model

	Standards and Interoperability in Web Services
	SOAP
	WSDL
	UDDI
	ebXML

	A Simple Web Service Scenario
	Support for Web Services in Sun ONE Application Server
	Java APIs for XML and Web Services
	JAXP
	JAX-RPC
	JAXR
	SAAJ
	JAXM

	Implementing Web Services Using Java APIs
	The Coffee Break Example

	Preparing for Developing Web Services and Clients
	Using Ant Tasks
	Setting Up the Client Environment

	Services and Clients Using JAX-RPC
	JAX-RPC Implementation
	Developing JAX-RPC Web Services
	Assembling and Deploying JAX-RPC Web Services
	Invoking JAX-RPC Web Services
	Creating Clients Using Generating Stubs Method
	Creating Clients Using Dynamic Invocation Interface
	Assembling and Deploying a JAX-RPC Client
	Sample Applications

	JAX-RPC Client Invoking an EJB
	Building Security into JAX-RPC Web Services
	Basic Authentication Over SSL
	Adding Security Elements to web.xml
	Setting Security Properties in the Client Code
	Mutual Authentication Over SSL
	Setting Up Client Certificate Authentication for Web Services

	JAX-RPC Tools
	wscompile Tool
	wsdeploy Tool
	Namespace Mappings
	SOAP Handlers

	Java Language Types Supported By JAX-RPC

	SOAP Clients and Services Using SAAJ and JAXM
	SOAP Clients
	SOAP Client Messaging Models
	SOAP Messages
	Developing a SOAP Client
	Assembling and Deploying a SOAP Client

	SOAP Service
	Creating a SOAP Service
	Exception and Fault Handling
	Assembling and Deploying a SOAP Service
	Sample Clients and Services

	Clients Using JAXR
	Developing a JAXR Client
	Getting Access to a Registry
	Establishing a Connection
	Querying a Registry

	Managing Registry Data
	Getting Authorization from the Registry
	Creating an Organization
	Adding Classifications
	Using Taxonomies
	Adding Services and Service Bindings to an Organization

	Publishing a Web Service to a UDDI Registry
	Assembling and Deploying a JAXR Client
	Sample JAXR Client

	XML Schema Definitions
	XML Schema for wscompile Configuration File
	XML Schema for Deployment Descriptors
	XML Schema for Exported wscompile Model Files
	XML Schema for Runtime Descriptors

	Glossary
	Index

