
Developer’s Guide
Sun™ ONE Message Queue

Version 3.0.1

817-0355-10
October, 2002

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and
one or more additional patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying distribution, and decompilation. No part of this product may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, iPlanet, JDK, Java Naming and Directory Interface, and the Java Coffee Cup logo
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.
and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

__

Copyright © 2002 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En particulier, et
sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à
http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis
et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et
licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, iPlanet, JDK, Java Naming and Directory Interface, et le logo Java Coffee Cup sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d'autres pays. Les produits protant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

3

Contents

List of Figures . 7

List of Tables . 9

List of Procedures . 11

List of Code Examples . 13

Preface . 15
Audience for This Guide . 15
Organization of This Guide . 16
Conventions . 17

Text Conventions . 17
Directory Variable Conventions . 18

Other Documentation Resources . 19
The MQ Documentation Set . 19
JavaDoc . 20
Example Client Applications . 20
The Java Message Service (JMS) Specification . 20
The Java XML Messaging (JAXM) Specification . 21
Books on JMS Programming . 21

Chapter 1 Overview . 23
What Is Sun ONE Message Queue? . 23
Product Editions . 24

Platform Edition . 24
Enterprise Edition . 25

MQ Messaging System Architecture . 26

4 Sun ONE Message Queue • Developer’s Guide • October, 2002

The JMS Programming Model . 28
JMS Programming Interface . 28

Message . 28
Destination . 30
ConnectionFactory . 31
Connection . 31
Session . 31
Message Producer . 31
Message Consumer . 32
Message Listener . 32

Administered Objects . 32
JMS Client Setup Operations . 33

JMS Client Design Issues . 34
Programming Domains . 34
JMS Provider Independence . 36
Client Identifiers . 36
Reliable Messaging . 37

Acknowledgements/Transactions . 37
Persistent Storage . 39

Performance Trade-offs . 39
Message Consumption: Synchronous and Asynchronous . 40
Message Selection . 40
Message Order and Priority . 40

JMS/J2EE Programming: Message-driven Beans . 41
Message-driven Beans . 41
Application Server Support . 43

Chapter 2 Quick Start Tutorial . 45
Setting Up Your Environment . 45

Setting the JAVA_HOME Variable . 46
Setting the CLASSPATH Variable . 46

Starting and Testing the MQ Message Server . 48
Developing a Simple Client Application . 50
Compiling and Running a Client Application . 53
Example Application Code . 54

JMS Examples . 54
JAXM Examples . 56

5

Chapter 3 Using Administered Objects . 57
JNDI Lookup of Administered Objects . 58

Looking Up ConnectionFactory Objects . 59
Looking Up Destination Objects . 60

Instantiating Administered Objects . 60
Instantiating ConnectionFactory Objects . 61
Instantiating Destination Objects . 62

Starting Client Applications With Overrides . 63

Chapter 4 Optimizing Clients . 65
Message Production and Consumption . 65

Message Production . 66
Message Consumption . 67

MQ Client Runtime Configurable Properties . 69
Connection Specification . 70
Auto-reconnect Behavior . 72
Client Identification . 73
Message Header Overrides . 74
Reliability And Flow Control . 76
Queue Browser Behavior . 78
Application Server Support . 78
JMS-defined Properties Support . 79

Performance Issues . 80
Managing Flow Control . 80

Factors Affecting Performance . 80
Impact of Flow Control Settings . 82

Managing Threads . 83

Chapter 5 Working With SOAP Messages . 85
What is SOAP . 85

SOAP and the JAVA for XML Messaging API . 86
The Transport Layer . 87
The SOAP Layer . 87
The Provider Layer . 88
The Profiles Layer . 89

The SOAP Message . 89
SOAP Packaging Models . 90

6 Sun ONE Message Queue • Developer’s Guide • October, 2002

SOAP Messaging in JAVA . 93
The SOAP Message Object . 93

Inherited Methods . 95
Namespaces . 97

Destination, Message Factory, and Connection Objects . 99
Endpoint . 100
Message Factory . 101
Connection . 101

Using JAXM Administered Objects . 102
SOAP Messaging Models and Examples . 104

SOAP Messaging Programming Models . 104
Point-to-Point Connections . 105
Provider Connections . 106

Working with Attachments . 107
Exception and Fault Handling . 108
Writing a SOAP Client . 108
Writing a SOAP Service . 111

Disassembling Messages . 113
Handling Attachments . 114
Replying to Messages . 114
Handling SOAP Faults . 114

Integrating SOAP and MQ . 118
Example 1: Deferring SOAP Processing . 119
Example 2: Publishing SOAP Messages . 122
Code Samples . 124

Appendix A Administered Object Attributes . 131
ConnectionFactory Administered Object . 131
Destination Administered Objects . 133
Endpoint Administered Objects . 133

Index . 135

7

List of Figures

Figure 1-1 MQ System Architecture . 27

Figure 1-2 JMS Programming Objects . 28

Figure 1-3 Messaging with MDBs . 42

Figure 4-1 Messaging Operations . 66

Figure 4-2 Message Delivery to MQ Client Runtime . 67

Figure 5-1 SOAP Messaging Layers . 86

Figure 5-2 SOAP Interoperability . 88

Figure 5-3 SOAP Message Without Attachments . 91

Figure 5-4 SOAP Message with Attachments . 92

Figure 5-5 SOAP Message Object . 94

Figure 5-6 Request-Reply Messaging . 105

Figure 5-7 One-way Messaging . 106

Figure 5-8 SOAP Fault Element . 115

Figure 5-9 Deferring SOAP Processing . 120

Figure 5-10 Publishing a SOAP Message . 123

8 Sun ONE Message Queue • Developer’s Guide • October, 2002

9

List of Tables

Table 1 Book Contents . 16

Table 2 Document Conventions . 17

Table 3 MQ Directory Variables . 18

Table 4 MQ Documentation Set . 19

Table 1-1 JMS-defined Message Header . 29

Table 1-2 Message Body Types . 30

Table 1-3 JMS Programming Objects . 35

Table 2-1 jar File Locations . 46

Table 2-2 jar Files Needed in CLASSPATH . 47

Table 2-3 JMS Sample Programs . 54

Table 2-4 MQ-supplied Example Applications . 55

Table 2-5 SOAP Messaging Example Applications . 56

Table 4-1 Connection Factory Attributes: Connection Specification . 71

Table 4-2 Connection Factory Attributes: Auto-reconnect Behavior . 72

Table 4-3 Connection Factory Attributes: Client Identification . 74

Table 4-4 Connection Factory Attributes: Message Header Overrides . 75

Table 4-5 Connection Factory Attributes: Reliability and Flow Control . 76

Table 4-6 Connection Factory Attributes: Queue Browser Behavior . 78

Table 4-7 Connection Factory Attributes: Application Server Support . 78

Table 4-8 Connection Factory Attributes: JMS-defined Properties Support 79

Table 4-9 Effect of Setting Flow Control Attributes . 82

Table 5-1 Inherited Methods . 95

Table 5-2 SOAP Administered Object Information . 102

Table 5-3 JAXMServlet Methods . 112

Table 5-4 SOAP Faultcode Values . 116

Table A-1 Connection Factory Attributes . 131

Table A-2 Destination Attributes . 133

Table A-3 Endpoint Attributes . 134

10 Sun ONE Message Queue • Developer’s Guide • October, 2002

11

List of Procedures

To set up a JMS client to produce messages . 33

To set up a JMS client to consume messages . 33

To start a broker . 48

To test a broker . 48

To program the HelloWorldMessage example application . 50

To compile and run the HelloWorldMessage application . 53

To perform a JNDI lookup of a ConnectionFactory object . 59

To perform a JNDI lookup of a Destination object . 60

To directly instantiate and configure a ConnectionFactory object . 61

To directly instantiate and configure a Destination object . 63

To create and add an attachment . 107

To transform the SOAP message into a JMS message and send the JMS message 120

To receive the JMS message, transform it into a SOAP message, and process it: 121

12 Sun ONE Message Queue • Developer’s Guide • October, 2002

13

List of Code Examples

Looking Up a ConnectionFactory Object . 60

Instantiating a ConnectionFactory Object . 62

Instantiating a Destination Object . 63

Explicit Namespace Declarations . 97

Adding an Endpoint Administered Object . 103

Looking up an Endpoint Administered Object . 104

Skeleton Message Consumer . 111

A Simple Ping Message Service . 112

Processing a SOAP Message . 113

Sending a JMS Message with a SOAP Payload . 124

Receiving a JMS Message with a SOAP Payload . 127

14 Sun ONE Message Queue • Developer’s Guide • October, 2002

15

Preface

This book provides information about the concepts and procedures needed by a
developer of messaging applications in a Sun™ ONE Message Queue (MQ)
environment.

This preface contains the following sections:

• Audience for This Guide

• Organization of This Guide

• Conventions

• Other Documentation Resources

Audience for This Guide
This guide is meant principally for developers of applications that exchange
messages using an MQ messaging system.

These applications use the Java Message Service (JMS) Application Programming
Interface (API). and possibly the Java XML Messaging (JAXM) API, to create, send,
receive, and read messages. The JMS and JAXM specifications are open standards.

This Developer’s Guide assumes that you are familiar with the JMS API’s and with
JMS programming guidelines. Its purpose is to help you optimize your JMS client
applications by making best use of the features and flexibility of an MQ messaging
system.

This Developer’s Guide assumes no familiarity, however, with the JAXM APIs or
with JAXM programming guidelines. This material is described in Chapter 5,
“Working With SOAP Messages,” which only assumes basic knowledge of XML.

Organization of This Guide

16 Sun ONE Message Queue • Developer’s Guide • October, 2002

Organization of This Guide
This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

Table 1 Book Contents

Chapter Description

Chapter 1, “Overview” A high level overview of Sun ONE Message Queue and of
JMS concepts and programming issues.

Chapter 2, “Quick Start
Tutorial”

A tutorial that acquaints you with the MQ development
environment using a simple example client application.

Chapter 3, “Using
Administered Objects”

Describes how to use MQ administered objects in both a
provider- independent and provider-specific way.

Chapter 4, “Optimizing
Clients”

Explains features of the MQ client runtime and how they can
be used to optimize a client application.

Chapter 5, “Working
With SOAP Messages”

Explains how you send and receive SOAP messages with and
without MQ support.

Appendix A,
“Administered Object
Attributes”

Summarizes and documents administered object attributes.

Conventions

Preface 17

Conventions
This section provides information about the conventions used in this document.

Text Conventions

Table 2 Document Conventions

Format Description

italics Italicized text represents a placeholder. Substitute an
appropriate clause or value where you see italic text.
Italicized text is also used to designate a document title, for
emphasis, or for a word or phrase being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names,
error message text, class names, method names (including all
elements in the signature), package names, reserved words,
and URL’s.

[] Square brackets to indicate optional values in a command line
syntax statement.

ALL CAPS Text in all capitals represents file system types (GIF, TXT,
HTML and so forth), environment variables (IMQ_HOME),
or acronyms (MQ, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A
means press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S
means press the Esc key, release it, then press the S key.

Conventions

18 Sun ONE Message Queue • Developer’s Guide • October, 2002

Directory Variable Conventions
MQ makes use of three directory variables; how they are set varies from platform
to platform. Table 3 describes these variables and summarizes how they are used
on the Solaris, Windows, and Linux platforms.

Table 3 MQ Directory Variables

Variable Description

IMQ_HOME This is generally used in MQ documentation to refer to the
root MQ installation directory:

• On Solaris, there is no root MQ installation directory.
Therefore, IMQ_HOME is not used in MQ documentation to
refer to file locations on Solaris.

• On Solaris, for Sun ONE Application Server, Evaluation
Edition, the root MQ installation directory is:
root Application Server installation directory/imq.

• On Windows, the root MQ installation directory is set by
the MQ installer (by default, as C:\Program
Files\Sun Microsystems\Message Queue 3.0).

• On Windows, for Sun ONE Application Server, the root
MQ installation directory is:
root Application Server installation directory/imq.

• On Linux, the root MQ installation directory is, by default:
/opt/imq.

IMQ_VARHOME This is the /var directory in which MQ temporary or
dynamically-created configuration and data files are stored. It
can be set as an environment variable to point to any
directory.

• On Solaris, IMQ_VARHOME defaults to the /var/imq
directory.

• On Solaris, for Sun ONE Application Server, Evaluation
Edition, IMQ_VARHOME defaults to IMQ_HOME/var.

• On Windows IMQ_VARHOME defaults to IMQ_HOME/var.

• On Windows, for Sun ONE Application Server,
IMQ_VARHOME defaults to IMQ_HOME/var.

• On Linux, IMQ_VARHOME defaults to IMQ_HOME/var.

Other Documentation Resources

Preface 19

In this guide, IMQ_HOME, IMQ_VARHOME, and IMQ_JAVAHOME are shown without
platform-specific environment variable notation or syntax (for example, $IMQ_HOME
on UNIX). All path names use UNIX file separator notation (/).

Other Documentation Resources
In addition to this guide, MQ provides additional documentation resources.

The MQ Documentation Set
The documents that comprise the MQ documentation set are listed in Table 4 in the
order in which you would normally use them.

IMQ_JAVAHOME This is an environment variable that points to the location of
the Java runtime (JRE 1.4) required by MQ executables:

• On Solaris, IMQ_JAVAHOME defaults to the
/usr/j2se/jre directory, but a user can optionally set
the value to wherever JRE 1.4 resides.

• On Windows, IMQ_JAVAHOME defaults to
IMQ_HOME/jre, but a user can optionally set the value to
wherever JRE 1.4 resides.

• On Linux, IMQ_JAVAHOME defaults to the
/usr/java/j2sdk1.0/jre directory, but a user can
optionally set the value to wherever JRE 1.4 resides.

Table 4 MQ Documentation Set

Document Audience Description

MQ Installation Guide Developers and
administrators

Explains how to install MQ software
on Solaris, Linux, and Windows
platforms.

Release Notes Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well
as technical notes.

Table 3 MQ Directory Variables (Continued)

Variable Description

Other Documentation Resources

20 Sun ONE Message Queue • Developer’s Guide • October, 2002

JavaDoc
JMS and MQ API documentation in JavaDoc format, is provided at the following
location:

IMQ_HOME/javadoc/index.html

(/usr/share/javadoc/imq/index.html on Solaris)

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as
MQ-specific API’s for MQ administered objects (see Chapter 3, “Using
Administered Objects”), which are of value to developers of messaging
applications.

Example Client Applications
A number of example applications that provide sample client application code are
included in the following location:

IMQ_HOME/demo (/usr/demo/imq on Solaris)

See the README file located in that directory and in each of its subdirectories.

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:

http://java.sun.com/products/jms/docs.html

The specification includes sample client code.

MQ Developer’s Guide Developers Provides a quick-start tutorial and
programming information relevant to
the MQ implementation of JMS.

MQ Administrator’s Guide Administrators, also
recommended for
developers

Provides background and
information needed to perform
administration tasks using MQ
administration tools.

Table 4 MQ Documentation Set (Continued)

Document Audience Description

Other Documentation Resources

Preface 21

The Java XML Messaging (JAXM) Specification
The JAXM specification can be found at the following location:

http://java.sun.com/xml/downloads/jaxm.htm

The specification includes sample client code.

Books on JMS Programming
For background on using the JMS API, you can consult the following
publicly-available books:

• Java Message Service by Richard Monson-Haefel and David A. Chappell,
O’Reilly and Associates, Inc., Sebastopol, CA

• Professional JMS Programming by Scott Grant, Michael P. Kovacs, Meeraj
Kunnumpurath, Silvano Maffeis, K. Scott Morrison, Gopalan Suresh Raj, Paul
Giotta, and James McGovern, Wrox Press Inc., ISBN: 1861004931

• Practical Java Message Service by Tarak Modi, Manning Publications, ISBN:
1930110138

Other Documentation Resources

22 Sun ONE Message Queue • Developer’s Guide • October, 2002

23

Chapter 1

Overview

This chapter provides an overall introduction to Sun™ ONE Message Queue (MQ)
and to JMS concepts and programming issues of interest to developers.

What Is Sun ONE Message Queue?
The MQ product is a standards-based solution to the problem of inter-application
communication and reliable message delivery. MQ is an enterprise messaging
system that implements the Java Message Service (JMS) open standard: it is a JMS
provider.

With Sun ONE Message Queue software, processes running on different platforms
and operating systems can connect to a common MQ message service to send and
receive information. Application developers are free to focus on the business logic
of their applications, rather than on the low-level details of how their applications
communicate across a network.

MQ has features which exceed the minimum requirements of the JMS specification.
Among these features are the following:

Centralized administration Provides both command-line and GUI tools for
administering an MQ message service and managing application-specific aspects
of messaging, such as destinations and security.

Scalable message service Allows you to service increasing numbers of JMS
clients (components or applications) by balancing the load among a number of MQ
message service components (brokers) working in tandem (multi-broker cluster).

Tunable performance Lets you increase performance of the MQ message service
when less reliability of delivery is acceptable.

Product Editions

24 Sun ONE Message Queue • Developer’s Guide • October, 2002

Multiple transports Supports the ability of JMS clients to communicate with each
other over a number of different transports, including TCP and HTTP, and using
secure (SSL) connections.

JNDI support Supports both file-based and LDAP directory services as object
stores and user repositories.

SOAP messaging support Supports creation and delivery of SOAP
messages—messages that conform to the Simple Object Access Protocol (SOAP)
specification— via JMS messaging. SOAP allows for the exchange of structured
XML data between peers in a distributed environment. See Chapter 5, “Working
With SOAP Messages” on page 85 for more information.

See the MQ 3.0.1 Release Notes for documentation of JMS compliance-related issues.

Product Editions
The Sun ONE Message Queue product is available in two editions: Platform and
Enterprise—each corresponding to a different licensed capacity, as described
below. (To upgrade MQ from one edition to another, see the instructions in the MQ
Installation Guide.)

Platform Edition
This edition can be downloaded free from the Sun website and is also bundled with
the latest Sun ONE Application Server platform. The Platform Edition places no
limit on the number of JMS client connections supported by each MQ message
service. It comes with two licenses, as described below:

• a basic license. This license provides basic JMS support (it’s a full JMS
provider), but does not include such enterprise features as load balancing
(multi-broker message service), HTTP/HTTPS connections, secure connection
services, scalable connection capability, and multiple queue delivery policies.
The license has an unlimited duration, and can therefore be used in less
demanding production environments.

Product Editions

Chapter 1 Overview 25

• a 90-day trial enterprise license. This license includes all enterprise features
(such as support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, and
multiple queue delivery policies) not included in the basic license. However,
the license has a limited 90-day duration enforced by the software, making it
suitable for evaluating the enterprise features available in the Enterprise
Edition of the product (see “Enterprise Edition” on page 25).

Enterprise Edition
This edition is for deploying and running messaging applications in a production
environment. It includes support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, and
multiple queue delivery policies. You can also use the Enterprise Edition for
developing, debugging, and load testing messaging applications and components.
The Enterprise Edition has an unlimited duration license that places no limit on the
number of brokers in a multi-broker message service, but specifies the number of
CPU’s that are supported.

NOTE The 90-day trial license can be enabled by starting the MQ
message service—an MQ broker instance—with the -license
command line option (see the MQ Administrator’s Guide) and
passing “try” as the license to use:

imqbrokerd -license try

You must use this option each time you start the broker instance,
otherwise it defaults back to the basic Platform Edition license.

NOTE For all editions of MQ, a portion of the product—the client
runtime—can be freely redistributed for commercial use. All other
files in the product cannot be redistributed. The portion that can be
freely redistributed allows a licensee to develop a JMS client (one
which can be connected to an MQ message server) that they can sell
to a third party without incurring any MQ licensing fees. The third
party will either need to purchase their own version of MQ to access
an MQ message server or make a connection to yet another party
that has an MQ message server installed and running.

MQ Messaging System Architecture

26 Sun ONE Message Queue • Developer’s Guide • October, 2002

MQ Messaging System Architecture
This section briefly describes the main parts of an MQ messaging system. While as
a developer, you do not need to be familiar with the details of all of these parts or
how they interact, a high-level understanding of the basic architecture will help
you understand features of the system that impact JMS client design and
development.

The main parts of an MQ messaging system, shown in Figure 1-1, are the
following:

MQ message server The MQ message server is the heart of a messaging system.
It consists of one or more brokers which provide delivery services for the system.
These services include connections to JMS clients, message routing and delivery,
persistence, security, and logging. The message server maintains physical
destinations to which clients send messages, and from which the messages are
delivered to consuming clients. The MQ message server is described in detail in the
MQ Administrator’s Guide.

MQ client runtime The MQ client runtime provides JMS clients with an interface
to the MQ message server—it supplies clients with all the JMS programming
objects introduced in “The JMS Programming Model” on page 28. It supports all
operations needed for clients to send messages to destinations and to receive
messages from such destinations. The MQ client runtime is described in detail in
Chapter 4, “Optimizing Clients.”

MQ Messaging System Architecture

Chapter 1 Overview 27

Figure 1-1 MQ System Architecture

MQ administered objects Administered Objects encapsulate provider-specific
implementation and configuration information in objects that are used by JMS
clients. Administered objects are generally created and configured by an
administrator, stored in a name service, accessed by clients through standard JNDI
lookup code, and then used in a provider-independent manner. They can also be
instantiated by clients, in which case they are used in a provider-specific manner.
Configuration of the MQ client runtime is performed through administered object
attributes, as described in Chapter 4, “Optimizing Clients.”

MQ administration MQ provides a number of administration tools for managing
an MQ messaging system. These tools are used to manage the message server,
create and store administered objects, manage security, manage messaging
application resources, and manage persistent data. These tools are generally used
by MQ administrators and are described in the MQ Administrator’s Guide.

Object Store

MQ Message Server

JMS Client

MQ
Client Runtime

MQ
Administration

Broker
Brokers

Destinations

Administered
Objects

MQ Messaging System

The JMS Programming Model

28 Sun ONE Message Queue • Developer’s Guide • October, 2002

The JMS Programming Model
This section briefly describes the programming model of the JMS specification. It is
meant as a review of the most important concepts and terminology used in
programming JMS clients.

JMS Programming Interface
In the JMS programming model, JMS clients (components or applications) interact
using a JMS application programming interface (API) to send and receive
messages. This section introduces the objects that implement the JMS API and that
are used to set up a JMS client for delivery of messages (see “JMS Client Setup
Operations” on page 33). The main interface objects are shown in Figure 1-2 and
described in the following paragraphs.

Message
In the MQ product, data is exchanged using JMS messages—messages that
conform to the JMS specification. According to the JMS specification, a message is
composed of three parts: a header, properties, and a body.

Properties are optional—they provide values that clients can use to filter messages.
A body is also optional—it contains the actual data to be exchanged.

Figure 1-2 JMS Programming Objects

Connection

Sessions

MessageProducers

MessageConsumers

MessageListener

JMS
Message Service

Message
Routing and

Delivery

Physical Destinations

Message

JMS Client

ConnectionFactory

Destinations

The JMS Programming Model

Chapter 1 Overview 29

Header
A header is required of every message. Header fields contain values used for
routing and identifying messages.

Some header field values are set automatically by MQ during the process of
producing and delivering a message, some depend on settings of message
producers specified when the message producers are created in the client, and
others are set on a message by message basis by the client using JMS API’s. The
following table lists the header fields defined (and required) by JMS, as well as how
they are set.

Properties
When data is sent between two processes, other information besides the payload
data can be sent with it. These descriptive fields, or properties, can provide
additional information about the data, including which process created it, the time
it was created, and information that uniquely identifies the structure of each piece
of data. Properties (which can be thought of as an extension of the header) consist
of property name and property value pairs, as specified by a JMS client.

Table 1-1 JMS-defined Message Header

Header Field Set By: Default

JMSDestination Client, for each message producer or
message

JMSDeliveryMode Client, for each message producer or
message

Persistent

JMSExpiration Client, for each message producer or
message

time to live is 0
(no expiration)

JMSPriority Client, for each message producer or
message

4 (normal)

JMSMessageID Provider, automatically

JMSTimestamp Provider, automatically

JMSRedelivered Provider, automatically

JMSCorrelationID Client, for each message

JMSReplyTo Client, for each message

JMSType Client, for each message

The JMS Programming Model

30 Sun ONE Message Queue • Developer’s Guide • October, 2002

Having registered an interest in a particular destination, consuming clients can
fine-tune their selection by specifying certain property values as selection criteria.
For instance, a client might indicate an interest in Payroll messages (rather than
Facilities) but only Payroll items concerning part-time employees located in New
Jersey. Messages that do not meet the specified criteria are not delivered to the
consumer.

Message Body Types
JMS specifies six classes (or types) of messages that a JMS provider must support,
as described in the following table:

Destination
A Destination is a JMS administered object (see “Administered Objects” on
page 32) that identifies a physical destination in a JMS message service. A physical
destination is a JMS message service entity to which producers send messages and
from which consumers receive messages. The message service provides the routing
and delivery for messages sent to a physical destination. A Destination
administered object encapsulates provider-specific naming conventions for
physical destinations. This lets JMS clients be provider independent.

Table 1-2 Message Body Types

Type Description

Message a message without a message body.

StreamMessage a message whose body contains a stream of Java primitive
values. It is filled and read sequentially.

MapMessage a message whose body contains a set of name-value pairs.
The order of entries is not defined.

TextMessage a message whose body contains a Java string, for example an
XML message.

ObjectMessage a message whose body contains a serialized Java object.

BytesMessage a message whose body contains a stream of uninterpreted
bytes.

The JMS Programming Model

Chapter 1 Overview 31

ConnectionFactory
A ConnectionFactory is a JMS administered object (see “Administered Objects”
on page 32) that encapsulates provider-specific connection configuration
information. A client uses it to create a connection over which messages are
delivered. JMS administered objects can either be acquired through a Java Naming
and Directory Service (JNDI) lookup or directly instantiated using
provider-specific classes.

Connection
A Connection is a JMS client’s active connection to a JMS message service. Both
allocation of communication resources and authentication of a client take place
when a connection is created. Hence it is a relatively heavy-weight object, and most
clients do all their messaging with a single connection. A connection is used to
create sessions.

Session
A Session is a single-threaded context for producing and consuming messages.
While there is no restriction on the number of threads that can use a session, the
session should not be used concurrently by multiple threads. It is used to create the
message producers and consumers that send and receive messages, and defines a
serial order for the messages it delivers. A session supports reliable delivery
through a number of acknowledgement options or by using transactions. A
transacted session can combine a series of sequential operations into a single
transaction that can span a number of producers and consumers.

Message Producer
A client uses a MessageProducer to send messages to a physical destination. A
MessageProducer object is normally created by passing a Destination
administered object to a session’s methods for creating a message producer. (If you
create a message producer that does not reference a specific destination, then you
must specify a destination for each message you produce.) A client can specify a
default delivery mode, priority, and time-to-live for a message producer that
govern all messages sent by a producer, except when explicitly over-ridden.

The JMS Programming Model

32 Sun ONE Message Queue • Developer’s Guide • October, 2002

Message Consumer
A client uses a MessageConsumer to receive messages from a physical destination.
It is created by passing a Destination administered object to a session’s methods
for creating a message consumer. A message consumer can have a message selector
that allows the message service to deliver only those messages to the message
consumer that match the selection criteria. A message consumer can support either
synchronous or asynchronous consumption of messages (see “Message
Consumption: Synchronous and Asynchronous” on page 40).

Message Listener
A JMS client uses a MessageListener object to consume messages
asynchronously. The MessageListener is registered with a message consumer. A
client consumes a message when a session thread invokes the onMessage()
method of the MessageListener object.

Administered Objects
Two of the objects described in the “The JMS Programming Model” on page 28
depend on how a JMS provider implements a JMS message service. The connection
factory object depends on the underlying protocols and mechanisms used by the
provider to deliver messages, and the destination object depends on the specific
naming conventions and capabilities of the physical destinations used by the
provider.

Normally these provider-specific characteristics would make JMS application
dependent on a specific JMS implementation. To make JMS application
provider-independent, however, the JMS specification requires that
provider-specific implementation and configuration information be encapsulated
in what are called administered objects. These objects can then be accessed in a
standardized, non-provider-specific way.

Administered objects are created and configured by an administrator, stored in a
name service, and accessed by JMS clients through standard Java Naming and
Directory Service (JNDI) lookup code. Using administered objects in this way
makes JMS application provider-independent.

JMS provides for two general types of administered objects: connection factories
and destinations. Both encapsulate provider-specific information, but they have
very different uses within a JMS client. A connection factory is used to create
connections to a message server, while destination objects are used to identify
physical destinations used by the JMS message service.

The JMS Programming Model

Chapter 1 Overview 33

For more information on administered objects, see Chapter 3, “Using Administered
Objects.”

JMS Client Setup Operations
There is a general approach within the JMS programming model for setting up a
JMS client to produce or consume messages. It uses the JMS programming interface
objects described in the previous section.

The general procedures for producing and consuming messages are introduced
below. The procedures have a number of common steps which need not be
duplicated if a client is both producing and consuming messages.

➤ To set up a JMS client to produce messages

1. Use JNDI to find a ConnectionFactory object. (You can also directly
instantiate a ConnectionFactory object and set its attribute values.)

2. Use the ConnectionFactory object to create a Connection object.

3. Use the Connection object to create one or more Session objects.

4. Use JNDI to find one or more Destination objects. (You can also directly
instantiate a Destination object and set its name attribute.)

5. Use a Session object and a Destination object to create any needed
MessageProducer objects. (You can create a MessageProducer object without
specifying a Destination object, but then you have to specify a Destination
object for each message that you produce.)

At this point the client has the basic setup needed to produce messages.

➤ To set up a JMS client to consume messages

1. Use JNDI to find a ConnectionFactory object. (You can also directly
instantiate a ConnectionFactory object and set its attribute values.)

2. Use the ConnectionFactory object to create a Connection object.

3. Use the Connection object to create one or more Session objects.

4. Use JNDI to find one or more Destination objects. (You can also directly
instantiate a Destination object and set its name attribute.)

5. Use a Session object and a Destination object to create any needed
MessageConsumer objects.

JMS Client Design Issues

34 Sun ONE Message Queue • Developer’s Guide • October, 2002

6. If needed, instantiate a MessageListener object and register it with a
MessageConsumer object.

7. Tell the Connection object to start delivery of messages. This allows messages
to be delivered to the client for consumption.

At this point the client has the basic setup needed to consume messages.

JMS Client Design Issues
This section is a review of a number of JMS messaging issues that impact JMS client
design.

Programming Domains
JMS supports two distinct message delivery models: point-to-point and
publish/subscribe.

Point-to-Point (Queue Destinations) A message is delivered from a producer to
one consumer. In this delivery model, the destination is a queue. Messages are first
delivered to the queue destination, then delivered from the queue, one at a time,
depending on the queue’s delivery policy (see Chapter 2 in the MQ Administrator’s
Guide), to one of the consumers registered for the queue. Any number of producers
can send messages to a queue destination, but each message is guaranteed to be
delivered to—and successfully consumed by—only one consumer. If there are no
consumers registered for a queue destination, the queue holds messages it receives,
and delivers them when a consumer registers for the queue.

Publish/Subscribe (Topic destinations) A message is delivered from a producer
to any number of consumers. In this delivery model, the destination is a topic.
Messages are first delivered to the topic destination, then delivered to all active
consumers that have subscribed to the topic. Any number of producers can send
messages to a topic destination, and each message can be delivered to any number
of subscribed consumers. Topic destinations also support the notion of durable
subscriptions. A durable subscription represents a consumer that is registered with
the topic destination but can be inactive at the time that messages are delivered.
When the consumer subsequently becomes active, it receives the messages. If there
are no consumers registered for a topic destination, the topic does not hold
messages it receives, unless it has durable subscriptions for inactive consumers.

JMS Client Design Issues

Chapter 1 Overview 35

These two message delivery models are handled using different API objects—with
slightly different semantics—representing different programming domains, as
shown in Table 1-3.

You can program both point-to-point and publish/subscribe messaging using the
unified domain objects that conform to the JMS 1.1 specification (shown in the first
column of Table 1-3). The JMS 1.1 specification, provides a simplified approach to
JMS client programming as compared to JMS 1.02. In particular, a JMS client can
perform both point-to-point and publish/subscribe messaging over the same
connection and within the same session, and can include both queues and topics in
the same transaction.

In short, a JMS client developer need not make a choice between the separate
point-to-point and publish/subscribe programming domains of JMS 1.0.2, opting
instead for the simpler, unified domain approach of JMS 1.1. This is the preferred
approach, however the JMS 1.1 specification continues to support the separate JMS
1.02 programming domains. (In fact, the example applications included with the
MQ product as well as the code examples provided in this book all use the separate
JMS 1.02 programming domains.)

Table 1-3 JMS Programming Objects

Base Type
(Unified Domain)

Point-to-Point Domain Publish/Subscribe Domain

Destination (Queue or Topic)1

1. Depending on programming approach, you might specify a particular destination type.

Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

NOTE Developers of applications that run in the Sun ONE Application
Server environment are limited to using the JMS 1.0.2 API. This is
because the Sun ONE Application Server complies with the J2EE 1.3
specification, which supports only JMS 1.0.2. This means that any
JMS messaging performed in servlets and EJBs—including
message-driven beans (see “Message-driven Beans” on
page 41)—must be based on the domain-specific JMS APIs.

JMS Client Design Issues

36 Sun ONE Message Queue • Developer’s Guide • October, 2002

JMS Provider Independence
JMS specifies the use of administered objects (see “Administered Objects” on
page 32) to support the development of JMS clients that are portable to other JMS
providers. Administered objects allow clients to use logical names to look up and
reference provider-specific objects. In this way application does not need to know
specific naming or addressing syntax or configurable properties used by a
provider. This makes the code provider-independent.

Administered objects are MQ system objects created and configured by an MQ
administrator. These objects are placed in a JNDI directory service, and a JMS client
accesses them using a JNDI lookup.

MQ administered objects can also be instantiated by the client, rather than looked
up in a JNDI directory service. This has the drawback of requiring the application
developer to use provider-specific API’s. It also undermines the ability of an MQ
administrator to successfully control and manage an MQ message server.

For more information on administered objects, see Chapter 3, “Using Administered
Objects.”.

Client Identifiers
JMS providers must support the notion of a client identifier, which associates a JMS
client’s connection to a message service with state information maintained by the
message service on behalf of the client. By definition, a client identifier is unique,
and applies to only one user at a time. Client identifiers are used in combination
with a durable subscription name (see “Publish/Subscribe (Topic destinations)” on
page 34) to make sure that each durable subscription corresponds to only one user.

The JMS specification allows client identifiers to be set by the client through an API
method call, but recommends setting it administratively using a connection factory
administered object (see “Administered Objects” on page 32). If hard wired into a
connection factory, however, each user would then need an individual connection
factory to have a unique identity.

MQ provides a way for the client identifier to be both ConnectionFactory and user
specific using a special variable substitution syntax that you can configure in a
ConnectionFactory object (see “Client Identification” on page 73). When used this
way, a single ConnectionFactory object can be used by multiple users who create
durable subscriptions, without fear of naming conflicts or lack of security. A user's
durable subscriptions are therefore protected from accidental erasure or
unavailability due to another user having set the wrong client identifier.

JMS Client Design Issues

Chapter 1 Overview 37

For deployed applications, the client identifier must either be programmatically set
by the client, using the JMS API, or administratively configured in the
ConnectionFactory objects used by the client.

In any case, in order to create a durable subscription, a client identifier must be
either programmatically set by the client, using the JMS API, or administratively
configured in the ConnectionFactory objects used by the client.

Reliable Messaging
JMS defines two delivery modes:

Persistent messages These messages are guaranteed to be delivered and
successfully consumed once and only once. Reliability is at a premium for such
messages.

Non-persistent messages These messages are guaranteed to be delivered at most
once. Reliability is not a major concern for such messages.

There are two aspects of assuring reliability in the case of persistent messages. One
is to assure that their delivery to and from a message service is successful. The
other is to assure that the message service does not lose persistent messages before
delivering them to consumers.

Acknowledgements/Transactions
Reliable messaging depends on guaranteeing the successful delivery of persistent
messages to and from a destination. This can be achieved using either of two
general mechanisms supported by an MQ session: acknowledgements or
transactions. In the case of transactions, these can either be local or distributed,
under the control of a distributed transaction manager.

Acknowledgements
A session can be configured to use acknowledgements to assure reliable delivery.

In the case of a producer, this means that the message service acknowledges
delivery of a persistent message to its destination before the producer’s send()
method returns. In the case of a consumer, this means that the client acknowledges
delivery and consumption of a persistent message from a destination before the
message service deletes the message from that destination.

JMS Client Design Issues

38 Sun ONE Message Queue • Developer’s Guide • October, 2002

Local Transactions
A session can also be configured as transacted, in which case the production and/or
consumption of one or more messages can be grouped into an atomic unit—a
transaction. The JMS API provides methods for initiating, committing, or rolling
back a transaction.

As messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when the client
issues a call to commit the transaction. If a particular send or receive operation
within the transaction fails, an exception is raised. The application can handle the
exception by ignoring it, retrying the operation, or rolling back the entire
transaction. When a transaction is committed, all the successful operations are
completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a local transaction is always a single session. That is, one or more
producer or consumer operations performed in the context of a single session can
be grouped into a single local transaction.

Since transactions span only a single session, you cannot have an end-to-end
transaction encompassing both the production and consumption of a message. (In
other words, the delivery of a message to a destination and the subsequent delivery
of the message to a client cannot be placed in a single transaction.)

Distributed Transactions
MQ also supports distributed transactions. That is, the production and consumption
of messages can be part of a larger, distributed transaction that includes operations
involving other resource managers, such as database systems. In distributed
transactions, a distributed transaction manager tracks and manages operations
performed by multiple resource managers (such as a message service and a
database manager) using a two-phase commit protocol defined in the Java
Transaction API (JTA), XA Resource API specification. In the Java world, interaction
between resource managers and a distributed transaction manager are described in
the JTA specification.

Support for distributed transactions means that messaging clients can participate
in distributed transactions through the XAResource interface defined by JTA. This
interface defines a number of methods for implementing two-phase commit. While
the API calls are made on the client side, the MQ broker tracks the various send
and receive operations within the distributed transaction, tracks the transactional
state, and completes the messaging operations only in coordination with a
distributed transaction manager—provided by a Java Transaction Service (JTS).

As with local transactions, the client can handle exceptions by ignoring them,
retrying operations, or rolling back an entire distributed transaction.

JMS Client Design Issues

Chapter 1 Overview 39

MQ implements support for distributed transactions through an XA connection
factory, which lets you create XA connections, which in turn lets you create XA
sessions (see “The JMS Programming Model” on page 28). In addition, support for
distributed transactions requires either a third party JTS or a J2EE-compliant
Application Server (that provides JTS).

Persistent Storage
The other important aspect of reliability is assuring that once persistent messages
are delivered to their destinations, the message service does not lose them before
they are delivered to consumers. This means that upon delivery of a persistent
message to its destination, the message service must place it in a persistent data
store. If the message service goes down for any reason, it can recover the message
and deliver it to the appropriate consumers. While this adds overhead to message
delivery, it also adds reliability.

A message service must also store durable subscriptions. This is because to
guarantee delivery in the case of topic destinations, it is not sufficient to recover
only persistent messages. The message service must also recover information about
durable subscriptions for a topic, otherwise it would not be able to deliver a
message to durable subscribers when they become active.

Messaging applications that are concerned about guaranteeing delivery of
persistent messages must either employ queue destinations or employ durable
subscriptions to topic destinations.

Performance Trade-offs
The more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is a
significant design consideration. You can maximize performance and throughput by
choosing to produce and consume non-persistent messages. On the other hand,
you can maximize reliability by producing and consuming persistent messages in a
transaction using a transacted session. Between these extremes are a number of
options, depending on the needs of an application, including the use of
MQ-specific persistence and acknowledgement properties (see “Performance
Issues” on page 80).

JMS Client Design Issues

40 Sun ONE Message Queue • Developer’s Guide • October, 2002

Message Consumption: Synchronous and
Asynchronous
There are two ways a JMS client can consume messages: either synchronously or
asynchronously.

In synchronous consumption, a client gets a message by invoking the receive()
method of a MessageConsumer object. The client thread blocks until the method
returns. This means that if no message is available, the client blocks until a message
does become available or until the receive() method times out (if it was called
with a time-out specified). In this model, a client thread can only consume
messages one at a time (synchronously).

In asynchronous consumption, a client registers a MessageListener object with a
message consumer. The message listener is like a call-back object. A client
consumes a message when the session invokes the onMessage() method of the
MessageListener object. In this model, the client thread does not block (message is
asynchronously consumed) because the thread listening for and consuming the
message belongs to the MQ client runtime.

Message Selection
JMS provides a mechanism by which a message service can perform message
filtering and routing based on criteria placed in message selectors. A producing
client can place application-specific properties in the message, and a consuming
client can indicate its interest in messages using selection criteria based on such
properties. This simplifies the work of the client and eliminates the overhead of
delivering messages to clients that don’t need them. However, it adds some
additional overhead to the message service processing the selection criteria.
Message selector syntax and semantics are outlined in the JMS specification.

Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to
be delivered to a consumer in the order they were sent. However, if they are
assigned different priorities, a messaging system will attempt to deliver higher
priority messages first.

JMS/J2EE Programming: Message-driven Beans

Chapter 1 Overview 41

Beyond this, the ordering of messages consumed by a client can have only a rough
relationship to the order in which they were produced. This is because the delivery
of messages to a number of destinations and the delivery from those destinations
can depend on a number of issues that affect timing, such as the order in which the
messages are sent, the sessions from which they are sent, whether the messages are
persistent, the lifetime of the messages, the priority of the messages, the message
delivery policy of queue destinations (see the MQ Administrator’s Guide), and
message service availability.

JMS/J2EE Programming: Message-driven Beans
In addition to the general JMS client programming model introduced in “The JMS
Programming Model” on page 28, there is a more specialized adaptation of JMS
used in the context of Java 2 Enterprise Edition (J2EE) applications. This specialized
JMS client is called a message-driven bean and is one of a family of Enterprise
JavaBeans (EJB) components specified in the EJB 2.0 Specification
(http://java.sun.com/products/ejb/docs.html).

The need for message-driven beans arises out of the fact that other EJB components
(session beans and entity beans) can only be called synchronously. These EJB
components have no mechanism for receiving messages asynchronously, since
they are only accessed through standard EJB interfaces.

However, asynchronous messaging is a requirement of many enterprise
applications. Most such applications require that server-side components be able to
communicate and respond to each other without tying up server resources. Hence,
the need for an EJB component that can receive messages and consume them
without being tightly coupled to the producer of the message. This capability is
needed for any application in which server-side components must respond to
application events. In enterprise applications, this capability must also scale under
increasing load.

Message-driven Beans
A message-driven bean (MDB) is a specialized EJB component supported by a
specialized EJB container (a software environment that provides distributed
services for the components it supports).

JMS/J2EE Programming: Message-driven Beans

42 Sun ONE Message Queue • Developer’s Guide • October, 2002

Message-driven Bean The MDB is a JMS message consumer that implements the
JMS MessageListener interface. The onMessage method (written by the MDB
developer) is invoked when a message is received by the MDB container. The
onMessage() method consumes the message, just as the onMessage() method of a
standard MessageListener object would. You do not remotely invoke methods on
MDB’s—like you do on other EJB components—therefore there are no home or
remote interfaces associated with them. The MDB can consume messages from a
single destination. The messages can be produced by standalone JMS applications,
JMS components, EJB components, or Web components, as shown in Figure 1-3 on
page 42.

Figure 1-3 Messaging with MDBs

MDB Container The MDB is supported by a specialized EJB container,
responsible for creating instances of the MDB and setting them up for
asynchronous consumption of messages. This involves setting up a connection
with the message service (including authentication), creating a pool of sessions
associated with a given destination, and managing the distribution of messages as
they are received among the pool of sessions and associated MDB instances. Since
the container controls the life-cycle of MDB instances, it manages the pool of MDB
instances so as to accommodate incoming message loads.

EJB Container

EJB
Instance

MDB Container

MDB
MDBMDB

Instance onMessage
method

JMS Message Service

Message
Routing and

Delivery

Destinations

JMS
Component

or
Application

JMS
Message
Producers

JMS
Message
Consumer

JMS/J2EE Programming: Message-driven Beans

Chapter 1 Overview 43

Associated with an MDB is a deployment descriptor that specifies the JNDI lookup
names for the administered objects used by the container in setting up message
consumption: a connection factory and a destination. The deployment descriptor
might also include other information that can be used by deployment tools to
configure the container. Each such container supports instances of only a single
MDB.

Application Server Support
In J2EE architecture (see the J2EE Platform Specification located at
http://java.sun.com/j2ee/download.html#platformspec), EJB containers are
hosted by application servers. An application server provides resources needed by
the various containers: transaction managers, persistence managers, name services,
and, in the case of messaging and MDB’s, a JMS provider.

In the Sun ONE Application Server, messaging resources are provided by Sun
ONE Message Queue. This means that an MQ messaging system (see “MQ
Messaging System Architecture” on page 26) is integrated into the Sun ONE
Application Server, providing the support needed to send JMS messages to MDB’s
and other JMS messaging components that run in the application server
environment.

JMS/J2EE Programming: Message-driven Beans

44 Sun ONE Message Queue • Developer’s Guide • October, 2002

45

Chapter 2

Quick Start Tutorial

This chapter provides a quick introduction to JMS client programming in a Sun™
ONE Message Queue (MQ) environment. It consists of a tutorial-style description
of procedures used to create, compile, and run a simple HelloWorldMessage
example application.

This chapter covers the following procedures:

• setting up your environment

• starting and testing a broker

• developing a simple client application

• compiling and running a client application

For the purpose of this tutorial it is sufficient to run the MQ message server in a
default configuration. For instructions on configuring an MQ message server,
please refer to the MQ Administrator’s Guide.

The minimum JDK level required to compile and run MQ clients is 1.2.2.

Setting Up Your Environment
You need to set a number of environment variables when compiling and running a
JMS client. This section explains the settings of the JAVA_HOME and CLASSPATH
variables. The IMQ_HOME variable, where used, refers to the directory where MQ is
installed

Setting Up Your Environment

46 Sun ONE Message Queue • Developer’s Guide • October, 2002

Setting the JAVA_HOME Variable
You must set the JAVA_HOME variable to the directory where you installed the J2SE
SDK (Java2 Standard Edition Software Development Kit).

Setting the CLASSPATH Variable
The value of CLASSPATH depends on the following factors:

❍ the platform on which you compile or run

❍ whether you are compiling or running a JMS application

❍ whether your application is a SOAP client or a SOAP servlet

❍ whether your application uses the SOAP/JMS transformer utilities

❍ the JDK version you are using (which affects JNDI support).

Table 2-1 specifies the directories where jar files are to be found on the different
platforms:

Table 2-1 jar File Locations

Platform Directory

Solaris /usr/share/lib/

Solaris:
Sun ONE Application Server, Evaluation Edition

$IMQ_HOME/lib/

Windows %IMQ_HOME%\lib\

Linux $IMQ_HOME/lib/

Setting Up Your Environment

Chapter 2 Quick Start Tutorial 47

Table 2-2 lists the jar files you need to compile and run different kinds of code.

A client application must be able to access JNDI jar files (jndi.jar) even if the
application does not use JNDI directly to look up MQ administered objects. This is
because JNDI is referenced by methods belonging to the Destination and
ConnectionFactory classes.

JNDI jar files are bundled with JDK 1.4. Thus, if you are using this JDK, you do not
have to add jndi.jar to your CLASSPATH setting. However, if you are using an
earlier version of the JDK, you must include jndi.jar in your classpath.

If you are using JNDI to look up MQ administered objects, you must also include
the following files in your CLASSPATH setting:

• if you are using the file-system context (with any JDK version), you must
include the fscontext.jar file.

Table 2-2 jar Files Needed in CLASSPATH

Code To Compile To Run Discussion

JMS client jms.jar
imq.jar
jndi.jar

jms.jar
imq.jar
Directory
containing
compiled Java
app or ’.’

See discussion of JNDI jar
files, following this table.

SOAP Client saaj-api.jar
activation.jar

saaj-api.jar
Directory
containing
compiled Java
app or ’.’

SOAP Servlet jaxm-api.jar
saaj-api.jar
activation.jar

SOAP servlets can run in the
App Server 7 without
additional runtime support.

code using
SOAP/JMS
transformer
utilities

imqxm.jar
(and jars for JMS
and SOAP clients)

Also add the appropriate jar
files mentioned in this table
for the kind of code you are
writing.

Starting and Testing the MQ Message Server

48 Sun ONE Message Queue • Developer’s Guide • October, 2002

• if you are using the LDAP context

❍ with JDK 1.2 or 1.3, include the ldap.jar, ldabbp.jar, and
fscontext.jar files.

❍ with JDK 1.4, all files are already bundled with this JDK.

Starting and Testing the MQ Message Server
This tutorial assumes that you do not have an MQ message server currently
running. A message server consists of one or more brokers—the software
component that routes and delivers messages.

(If you run the broker as a UNIX startup process or Windows service, then it is
already running and you can skip to “To test a broker” below.)

➤ To start a broker

1. In a terminal window, change directory to IMQ_HOME/bin (/usr/bin on
Solaris).

2. Run the broker (imqbrokerd) command as shown below.

IMQ_HOME/bin/imqbrokerd -tty

(/usr/bin/imqbrokerd -tty on Solaris)

The -tty option causes all logged messages to be displayed to the terminal
console (in addition to the log file).

The broker will start and display a few messages before displaying the
message, “imqbroker@host:7676 ready.” It is now ready and available for
clients to use.

➤ To test a broker

One simple way to check the broker startup is by using the MQ Command
(imqcmd) utility to display information about the broker.

1. In a separate terminal window, change directory to IMQ_HOME/bin (/usr/bin
on Solaris).

Starting and Testing the MQ Message Server

Chapter 2 Quick Start Tutorial 49

2. Run imqcmd with the arguments shown below.

IMQ_HOME/bin/imqcmd query bkr -u admin -p admin

(/usr/bin/imqcmd query bkr -u admin -p admin on Solaris)

The output displayed should be similar to what is shown below.

Querying the broker specified by:

Host Primary Port

localhost 7676

Auto Create Queues true
Auto Create Topics true
Auto Create Queue Delivery Policy Single
Cluster Broker List (active) myhost/111.222.333.444:7676 imqbroker
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL
Current Number of Messages in System 0
Current Size of Messages in System 0
Instance Name imqbroker
Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) 0 (unlimited)
Max Message Size (bytes) 70m
Max Number of Messages in System 0 (unlimited)
Max Size of Messages in System 0 (unlimited)
Primary Port 7676
Version 3.0.1

Successfully queried the broker.

Developing a Simple Client Application

50 Sun ONE Message Queue • Developer’s Guide • October, 2002

Developing a Simple Client Application
This section leads you through the steps used to create a simple “Hello World”
application that sends a message to a queue destination and then retrieves the
same message from the queue. You can find this HelloWorldMessage application
at IMQ_HOME/demo/jms (/usr/demo/imq/jms on Solaris).

The following steps highlight Java programming language code that you use to set
up a client to send and receive messages:

➤ To program the HelloWorldMessage example application

1. Import the interfaces and MQ implementation classes for the JMS API.

The javax.jms package defines all the JMS interfaces necessary to develop a
JMS client.

import javax.jms.*;

2. Instantiate an MQ QueueConnectionFactory administered object.

A QueueConnectionFactory object encapsulates all the MQ-specific
configuration properties for creating QueueConnection connections to an MQ
message server.

QueueConnectionFactory myQConnFactory =
new com.sun.messaging.QueueConnectionFactory();

ConnectionFactory administered objects can also be accessed through a JNDI
lookup (see “Looking Up ConnectionFactory Objects” on page 59). This
approach makes the client code JMS-provider independent and also allows for
a centrally administered messaging system.

3. Create a connection to the MQ message server.

A QueueConnection object is the active connection to the MQ message server
in the Point-To-Point programming domain.

QueueConnection myQConn =
myQConnFactory.createQueueConnection();

4. Create a session within the connection.

A QueueSession object is a single-threaded context for producing and
consuming messages. It enables clients to create producers and consumers of
messages for a queue destination.

Developing a Simple Client Application

Chapter 2 Quick Start Tutorial 51

QueueSession myQSess = myQConn.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

The myQSess object created above is non-transacted and automatically
acknowledges messages upon consumption by a consumer.

5. Instantiate an MQ queue administered object corresponding to a queue
destination in the MQ message server.

Destination administered objects encapsulate provider-specific destination
naming syntax and behavior. The code below instantiates a queue
administered object for a physical queue destination named “world”.

Queue myQueue = new.com.sun.messaging.Queue("world");

Destination administered objects can also be accessed through a JNDI lookup
(see “Looking Up Destination Objects” on page 60). This approach makes the
client code JMS-provider independent and also allows for a centrally
administered messaging system.

6. Create a QueueSender message producer.

This message producer, associated with myQueue, is used to send messages to
the queue destination named “world”.

QueueSender myQueueSender = myQSess.createSender(myQueue);

7. Create and send a message to the queue.

You create a TextMessage object using the QueueSession object and populate
it with a string representing the data of the message. Then you use the
QueueSender object to send the message to the “world” queue destination.

TextMessage myTextMsg = myQSess.createTextMessage();
myTextMsg.setText("Hello World");
System.out.println(“Sending Message: “ + myTextMsg.getText());
myQueueSender.send(myTextMsg);

8. Create a QueueReceiver message consumer.

This message consumer, associated with myQueue, is used to receive messages
from the queue destination named “world”.

QueueReceiver myQueueReceiver =
myQSess.createReceiver(myQueue);

Developing a Simple Client Application

52 Sun ONE Message Queue • Developer’s Guide • October, 2002

9. Start the QueueConnection you created in Step 3.

Messages for consumption by a client can only be delivered over a connection
that has been started (while messages produced by a client can be delivered to
a destination without starting a connection, as in Step 7.

myQConn.start();

10. Receive a message from the queue.

You receive a message from the “world” queue destination using the
QueueReceiver object. The code, below, is an example of a synchronous
consumption of messages (see “Message Consumption: Synchronous and
Asynchronous” on page 40). For samples of asynchronous consumption see
Table 2-3 on page 54.

Message msg = myQueueReceiver.receive();

11. Retrieve the contents of the message.

Once the message is received successfully, its contents can be retrieved.

if (msg instanceof TextMessage) {
TextMessage txtMsg = (TextMessage) msg;
System.out.println("Read Message: " + txtMsg.getText());

}

12. Close the session and connection resources.

myQSess.close();
myQConn.close();

Compiling and Running a Client Application

Chapter 2 Quick Start Tutorial 53

Compiling and Running a Client Application
To compile and run JMS clients in an MQ environment, it is recommended that you
use the Java2 SDK Standard Edition v1.4, though versions 1.3 and 1.2 are also
supported. The recommended SDK can be downloaded from the following
location:

http://java.sun.com/j2se/1.4

Be sure that you have set the CLASSPATH environment variable correctly, as
described in “Setting the CLASSPATH Variable” on page 46, before attempting to
compile or run a client application.

The following instructions are based on the HelloWorldMessage application
created in “Developing a Simple Client Application” on page 50, and also located
in the MQ 3.0.1 example applications directory:

IMQ_HOME/demo/jms (/usr/demo/imq/jms on Solaris)

➤ To compile and run the HelloWorldMessage application

1. Make the directory containing the application your current directory.

The MQ 3.0.1 example applications directory on Solaris is not writable by
users, so copy the HelloWorldMessage application to a writable directory and
make that directory your current directory.

2. Compile the HelloWorldMessage application as shown below.

JAVA_HOME/bin/javac HelloWorldMessage.java

This step results in the HelloWorldMessage.class file being created in the
current directory.

3. Run the HelloWorldMessage application:

JAVA_HOME/bin/java HellowWorldMessage

The following output is displayed when you run HelloWorldMessage.

Sending Message: Hello World

Read Message: Hello World

Example Application Code

54 Sun ONE Message Queue • Developer’s Guide • October, 2002

Example Application Code
The example applications provided by MQ 3.0.1 consist of both JMS messaging
applications as well as JAXM messaging examples (see “Working With SOAP
Messages” on page 85 for more information).

JMS Examples
A listing of the code in the HelloWorldMessage tutorial example can be found,
along with code from a number of other example applications, at the following
location:

IMQ_HOME/demo/jms (/usr/demo/imq/jms on Solaris)

The directory includes a README file that describes each example application and
how to run it. The examples include standard JMS sample programs as well as
MQ-supplied example applications. They are summarized in the following two
tables.

Table 2-3 is a listing and brief description of the JMS sample programs.

Table 2-3 JMS Sample Programs

Name of Example Application Description

SenderToQueue Sends a text message using a queue.

SynchQueueReceiver Synchronously receives a text message using a queue.

SynchTopicExample Publishes and synchronously receives a text message
using a topic.

AsynchQueueReceiver Asynchronously receives a number of text messages
using a message listener.

AsynchTopicExample Publishes five text messages to a topic and
asynchronously gets them using a message listener.

MessageFormats Writes and reads messages in five supported message
formats.

MessageConversion Shows that for some message formats, you can write a
message using one data type and read it using
another.

ObjectMessages Shows that objects are copied into messages, not
passed by reference.

Example Application Code

Chapter 2 Quick Start Tutorial 55

Table 2-4 is a listing and brief description of the MQ-supplied example
applications.

BytesMessages Shows how to write, then read, a Bytes Message of
indeterminate length.

MessageHeadersTopic Illustrates the use of the JMS message header fields.

TopicSelectors Shows how to use message properties as message
selectors.

DurableSubscriberExample Shows how you can create a durable subscriber that
retains messages published to a topic while the
subscriber is inactive.

AckEquivExample Shows how to ensure that a message will not be
acknowledged until processing is complete.

TransactedExample Demonstrates the use of transactions in a simulated
e-commerce application.

RequestReplyQueue Demonstrates use of the JMS request/reply facility.

Table 2-4 MQ-supplied Example Applications
Name of Example Application Description

HelloWorldMessage Sends and receives a “Hello World” message.

XMLMessageExample Reads an XML document from a file, sends it to a
queue, processes the message from the queue as an
XML document, and converts it to a DOM object.

SimpleChat Illustrates how MQ can be used to create a simple GUI
chat application.

SimpleJNDIClient Illustrates how a client would use JNDI lookups to
access administered objects created by an
administrator and placed in an object store (see the
Administration Console tutorial in the MQ
Administrator’s Guide).

Table 2-3 JMS Sample Programs (Continued)

Name of Example Application Description

Example Application Code

56 Sun ONE Message Queue • Developer’s Guide • October, 2002

JAXM Examples
A number of examples illustrating how to send and receive SOAP messages are
provided at the following location:

IMQ_HOME/demo/jaxm (/usr/demo/imq/jaxm on Solaris)

The directory includes a README file that describes each example application and
how to run it. These example applications are summarized in Table 2-5.

Table 2-5 SOAP Messaging Example Applications
Name of Example Application Description

SendSOAPMessage A standalone client that sends a SOAP message.

SOAPEchoServlet A servlet that echoes a SOAP message.

SendSOAPMessageWithJMS A standalone client that constructs a SOAP message,
wraps it as a JMS message, and then publishes this
message to a topic.

ReceiveSOAPMessageWithJMS A JMS message listener that subscribes to a topic
where it receives a JMS-wrapped SOAP message,
which it then converts to a SOAP message.

SOAPtoJMSServlet A servlet that receives a SOAP message, wraps it as a
JMS message and publishes it to a topic.

57

Chapter 3

Using Administered Objects

Administered objects encapsulate provider-specific implementation and
configuration information in objects that are used by JMS clients.

Sun™ ONE Message Queue (MQ) provides two types of JMS administered
objects—connection factory and destination—as well as a JAXM administered
object. While all encapsulate provider-specific information, they have very
different uses.

ConnectionFactory and XAConnectionFactory (distributed transaction) objects
are used to create connections to the MQ message server. Destination objects
(which represent physical destinations) are used to create JMS message consumers
and producers (see “Developing a Simple Client Application” on page 50). The
JAXM endpoint administered object is used to send SOAP messages (see
Chapter 5, “Working With SOAP Messages”).

There are two approaches to the use of administered objects:

• They can be created and configured by an administrator, stored in an object
store, accessed by clients through standard JNDI lookup code, and then used in
a provider-independent manner.

• They can be instantiated and configured by a developer when writing
application code. In this case, they are used in a provider-specific manner.

NOTE In the case where JMS clients are J2EE components, JNDI
resources are provided by the J2EE container, and JNDI lookup
code might differ from that shown in this chapter. Please consult
your J2EE provider documentation for such details.

JNDI Lookup of Administered Objects

58 Sun ONE Message Queue • Developer’s Guide • October, 2002

The approach you take in using administered objects depends on the environment
in which your application will be run and how much control you want your client
to have over MQ-specific configuration details. This chapter describes these two
approaches and explains how to code your JMS client for each.

JNDI Lookup of Administered Objects
If you wish an application to be run under controlled conditions in a centrally
administered messaging environment, then MQ administered objects should be
created and configured by an administrator. This makes it possible for the
administrator to do the following:

• control the behavior of connections by requiring clients to access
pre-configured ConnectionFactory (and XAConnectionFactory) objects
through a JNDI lookup.

• control the proliferation of physical destinations by requiring clients to access
only Destination objects that correspond to existing physical destinations.

This approach gives the administrator control over message server and client
runtime configuration details, and at the same time allows clients to be JMS
provider-independent: they do not have to know about provider-specific syntax
and object naming conventions or provider-specific configuration properties.

An administrator creates administered objects in an object store using MQ
administration tools, as described in the MQ Administrator’s Guide. When creating
an administered object, the administrator can specify that it be read only—that is,
clients cannot change MQ-specific configuration values specified when the object
was created. In other words, application code cannot set attribute values on
read-only administered objects, nor can they be overridden using client startup
options, as described in “Starting Client Applications With Overrides” on page 63.

While it is possible for clients to instantiate ConnectionFactory (and
XAConnectionFactory) and destination administered objects on their own, this
practice undermines the basic purpose of an administered object—to allow an
administrator to control the broker resources required by an application and to
tune application performance. Instantiating administered objects also makes a
client provider specific.

JNDI Lookup of Administered Objects

Chapter 3 Using Administered Objects 59

Looking Up ConnectionFactory Objects

➤ To perform a JNDI lookup of a ConnectionFactory object

1. Create an initial context for the JNDI lookup.

The details of how you create this context depend on whether you are using a
file-system object store or an LDAP serverO for your MQ administered objects.
The code below assumes a file-system store. For information about the
corresponding LDAP object store attributes, see the MQ Administrator’s Guide.

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put (Context.PROVIDER_URL,

"file:///c:/imq_admin_objects");
Context ctx = new InitialContext(env);

You can also set an environment by specifying system properties on the
command line, rather than programmatically, as shown above. For
instructions, see the README file in the jms subdirectory of the example
applications directory:

IMQ_HOME/demo/jms (/usr/demo/imq/jms on Solaris)

If you use system properties to set the environment, then you initialize the
context without providing the env parameter:

Context ctx = new InitialContext();

2. Perform a JNDI lookup on the “lookup” name under which the
ConnectionFactory or XAConnectionFactory object was stored in the JNDI
object store.

QueueConnectionFactory myQConnFactory = (QueueConnectionFactory)
ctx.lookup(“cn=MyQueueConnectionFactory”);

It is recommended that you use this connection factory as originally
configured. For a discussion of ConnectionFactory and
XAConnectionFactory object configuration properties, see “MQ Client
Runtime Configurable Properties” on page 69 and for a complete list of
properties, see “ConnectionFactory Administered Object” on page 131.

Instantiating Administered Objects

60 Sun ONE Message Queue • Developer’s Guide • October, 2002

3. Use the ConnectionFactory to create a connection object.

QueueConnection myQConn =
myQConnFactory.createQueueConnection();

The code in the previous steps is shown in Code Example 3-1.

Looking Up Destination Objects

➤ To perform a JNDI lookup of a Destination object

1. Using the same initial context used in performing the ConnectionFactory
lookup, Perform a JNDI lookup on the “lookup” name under which the
Destination object was stored in the JNDI object store.

Queue myQ =
(Queue) ctx.lookup(“cn=MyQueueDestination”);

Instantiating Administered Objects
If you do not wish an application to be run under controlled conditions in a
centrally administered environment, then you can instantiate and configure
administered objects in application code.

While this approach gives you, the developer, control over message server and
client runtime configuration details, it also means that your clients are not
supported by other JMS providers. Typically, you might instantiate administered
objects in application code in the following situations:

Code Example 3-1 Looking Up a ConnectionFactory Object

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put (Context.PROVIDER_URL,

"file:///c:/imq_admin_objects");
Context ctx = new InitialContext(env);
QueueConnectionFactory myQConnFactory = (QueueConnectionFactory)

ctx.lookup("cn=MyQueueConnectionFactory");
QueueConnection myQConn =

myQConnFactory.createQueueConnection();

Instantiating Administered Objects

Chapter 3 Using Administered Objects 61

• You are in the early stages of development in which there is no real need to
create, configure, and store administered objects. You just want to develop and
debug your application without involving JNDI lookups.

• You are not concerned about your clients being supported by other JMS
providers.

Instantiating administered objects in application code means you are hard-coding
configuration values into your application. You give up the flexibility of having an
administrator reconfigure the administered objects to achieve higher performance
or throughput after an application has been deployed.

Instantiating ConnectionFactory Objects
There are two object constructors for instantiating MQ ConnectionFactory
administered objects, one for each programming domain:

• Publish/subscribe (Topic) domain

new com.sun.messaging.TopicConnectionFactory();

Instantiates a TopicConnectionFactory with a default configuration (creates
Topic TCP-based connections to a broker running on “localhost” at port
number 7676).

• Point to point (Queue) domain

new com.sun.messaging.QueueConnectionFactory();

Instantiates a QueueConnectionFactory with a default configuration (creates
Queue TCP-based connections to a broker running on “localhost” at port
number 7676).

➤ To directly instantiate and configure a ConnectionFactory object

1. Instantiate a Topic or Queue ConnectionFactory object using the appropriate
constructor.

com.sun.messaging.QueueConnectionFactory myQConnFactory =
new com.sun.messaging.QueueConnectionFactory();

2. Configure the ConnectionFactory object.

myQConnFactory.setProperty("imqBrokerHostName", "new_hostname");
myQConnFactory.setProperty("imqBrokerHostPort", "7878");

For a discussion of ConnectionFactory configuration properties, see “MQ
Client Runtime Configurable Properties” on page 69 and for a complete list of
properties, see “ConnectionFactory Administered Object” on page 131.

Instantiating Administered Objects

62 Sun ONE Message Queue • Developer’s Guide • October, 2002

3. Use the ConnectionFactory to create a Connection object.

QueueConnection myQConn =
myQConnFactory.createQueueConnection();

The code in the previous steps is shown in Code Example 3-2.

Instantiating Destination Objects
There are two object constructors for instantiating MQ Destination administered
objects, one for each programming domain:

• Publish/subscribe (Topic) domain

new com.sun.messaging.Topic();

Instantiates a Topic with the default destination name of
“Untitled_Destination_Object”.

• Point to point (Queue) domain

new com.sun.messaging.Queue();

Instantiates a Queue with the default destination name of
“Untitled_Destination_Object”.

Code Example 3-2 Instantiating a ConnectionFactory Object

com.sun.messaging.QueueConnectionFactory myQConnFactory =
new com.sun.messaging.QueueConnectionFactory();

try {
myQConnFactory.setProperty("imqBrokerHostName", "new_host");
myQConnFactory.setProperty("imqBrokerHostPort", "7878");

} catch (JMSException je) {
}
QueueConnection myQConn =

myQConnFactory.createQueueConnection();

Starting Client Applications With Overrides

Chapter 3 Using Administered Objects 63

➤ To directly instantiate and configure a Destination object

1. Instantiate a Topic or Queue Destination object using the appropriate
constructor.

com.sun.messaging.Queue myQueue = new com.sun.messaging.Queue();

2. Configure the Destination object.

myQueue.setProperty("imqDestinationName", "new_queue_name");

3. After creating a session, you use the Destination object to create a
MessageProducer or MessageConsumer object.

QueueSender qs = qSession.createSender((Queue)myQueue);

The code is shown in Code Example 3-3.

Starting Client Applications With Overrides
As with any Java application, you can start messaging applications using the
command-line to specify system properties. This mechanism can be used, as well,
to override attribute values of MQ administered objects used in application code.
You can override the configuration of MQ administered objects accessed through a
JNDI lookup as well as MQ administered objects instantiated and configured using
setProperty() methods in application code.

To override administered object settings, use the following command line syntax:

java [[-Dattribute=value]...] clientAppName

where attribute corresponds to any of the ConnectionFactory administered
object attributes documented in “MQ Client Runtime Configurable Properties” on
page 69.

Code Example 3-3 Instantiating a Destination Object

com.sun.messaging.Queue myQueue = new com.sun.messaging.Queue();
try {

myQueue.setProperty("imqDestinationName", "new_queue_name");
} catch (JMSException je) {
}
...
QueueSender qs = qSession.createSender((Queue)myQueue);
...

Starting Client Applications With Overrides

64 Sun ONE Message Queue • Developer’s Guide • October, 2002

For example, if you want a client to connect to a different broker than that specified
in a ConnectionFactory administered object accessed in the application code, you
can start up the client using command line overrides to set the imqBrokerHostName
and imqBrokerHostPort of another broker.

It is also possible to set system properties within application code using the
System.setProperty() method. This method will override attribute values of MQ
administered objects in the same way that command line options do.

If an administered object has been set as read-only, however, the values of its
attributes cannot be changed using either command-line overrides or the
System.setProperty() method. Any such overrides will simply be ignored.

65

Chapter 4

Optimizing Clients

The performance of JMS clients depends both on the inherent design of these
applications and on the features and capabilities of the Sun™ ONE Message Queue
(MQ) client runtime.

This chapter describes how the MQ client runtime supports the messaging
capabilities of JMS clients, with special emphasis on properties and behaviors that
you can configure to improve performance and message throughput.

The chapter covers the following topics:

• message production and consumption

• configurable properties of the MQ client runtime

• factors that affect performance

Message Production and Consumption
The MQ client runtime provides JMS clients with an interface to the MQ message
server—it supplies these clients with all the JMS programming objects introduced
in “The JMS Programming Model” on page 28. It supports all operations needed
for clients to send messages to destinations and to receive messages from such
destinations.

This section provides a high level description of how the MQ client runtime
supports message production and consumption. Figure 4-1 on page 66 illustrates
how message production and consumption involve an interaction between clients
and the MQ client runtime, while message delivery involves an interaction
between the MQ client runtime and the MQ message server.

Message Production and Consumption

66 Sun ONE Message Queue • Developer’s Guide • October, 2002

Figure 4-1 Messaging Operations

Once a client has created a connection to a broker, created a session as a
single-threaded context for message delivery, and created the MessageProducer
and MessageConsumer objects needed to access particular destinations in a
message server, production (sending) and consumption (receiving) of messages
can proceed.

Message Production
In message production, a message is created by the client, and sent over a
connection to a destination on a broker. If the message delivery mode of the
MessageProducer object has been set to persistent (guaranteed delivery, once and
only once), the client thread blocks until the broker acknowledges that the message
was delivered to its destination and stored in the broker’s persistent data store. If
the message is not persistent, no broker acknowledgement message (referred to as
“Ack” in property names) is returned by the broker, and the client thread does not
block.

In the case of persistent messages, to increase throughput, you can set the
connection to not require broker acknowledgement (see imqAckOnProduce
property, Table 4-7 on page 78), but this eliminates the guarantee that persistent
messages are reliably delivered.

MQ Message Server

Broker
Brokers

Destinations

Message
consumption

Message
production

Message
delivery

JMS Client

MQ
Client Runtime

Message Production and Consumption

Chapter 4 Optimizing Clients 67

Message Consumption
Message consumption is more complex than production. Messages arriving at a
destination on a broker are delivered over a connection to the MQ client runtime
under the following conditions:

• the client has set up a consumer for the given destination

• the selection criteria for the consumer, if any, match that of messages arriving
at the given destination

• the connection has been told to start delivery of messages.

Messages delivered over the connection are distributed to the appropriate MQ
sessions where they are queued up to be consumed by the appropriate
MessageConsumer objects, as shown in Figure 4-2.

Figure 4-2 Message Delivery to MQ Client Runtime

NOTE Because the flow of messages delivered to the client runtime is
metered at the connection level (see “Message flow metering” on
page 81), a large number of messages delivered to one session can
adversely affect the delivery of messages to other sessions on the
same connection. Hence, message consumers that are expected to
have very different message throughput levels should use different
connections.

Broker

Connection

Destinations

Client
Runtime

Session 3

Session 2

Session 1

Message
Consumers

Message Production and Consumption

68 Sun ONE Message Queue • Developer’s Guide • October, 2002

Messages are fetched off each session queue one at a time (a session is single
threaded) and consumed either synchronously (by a client thread invoking the
receive method) or asynchronously (by the session thread invoking the
onMessage method of a MessageListener object).

When a broker delivers messages to the client runtime, it marks the messages
accordingly, but does not really know if they have been consumed. Therefore, the
broker waits for the client to acknowledge receipt of a message before deleting the
message from the broker’s destination. If a connection fails, and another connection
is subsequently established, the broker will re-deliver all previously delivered but
unacknowledged messages, marking them with a Redeliver flag.

In accordance with the JMS specification, there are three acknowledgment options
that a client developer can set for a client session:

• AUTO_ACKNOWLEDGE: the session automatically acknowledges each message
consumed by the client.

• CLIENT_ACKNOWLEDGE: the client explicitly acknowledges after one or more
messages have been consumed. This option gives the client the most control.
This acknowledgement takes place by invoking the acknowledge() method of
a message object, causing the session to acknowledge all messages that have
been consumed by the session up to that point in time. (This could include
messages consumed asynchronously by many different message listeners in
the session, independent of the order in which they were consumed.)

• DUPS_OK_ACKNOWLEDGE: the session acknowledges after ten messages have
been consumed (this value is not currently configurable) and doesn’t guarantee
that messages are delivered and consumed only once. Clients use this mode if
they don’t care if messages are processed more than once.

Each of the three acknowledgement options requires a different level of processing
and bandwidth overhead. Automatic acknowledge consumes the most overhead
and guarantees reliability on a message by message basis, while
DUPS_OK_ACKNOWLEDGE consumes the least overhead, but allows for duplicate
delivery of messages.

In the case of the AUTO_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE options, the threads
performing the acknowledgement, or committing a transaction, will block, waiting
for the broker to return a control message acknowledging receipt of the client
acknowledgement. This broker acknowledgement (referred to as “Ack” in
property names) guarantees that the broker has deleted the corresponding
persistent message and will not send it twice—which could happen were the client
or broker to fail, or the connection to fail, at the wrong time.

MQ Client Runtime Configurable Properties

Chapter 4 Optimizing Clients 69

To increase throughput, you can set the connection to not require broker
acknowledgement of client acknowledgements (see imqAckOnAcknowledge
property, Table 4-5 on page 76), but this eliminates the guarantee that persistent
messages are reliably delivered.

MQ Client Runtime Configurable Properties
The MQ client runtime supports all the operations described in “Message
Production and Consumption” on page 65. It also provides a number of
configurable properties that you can use to optimize resources, performance, and
message throughput. These properties correspond to attributes of the
ConnectionFactory object used to create physical connections between a JMS
client and an MQ message server.

A ConnectionFactory object has no physical representation in a broker—it is used
simply to enable the client to establish connections with a broker. The
ConnectionFactory object is also used to specify behaviors of the connection and
of the client runtime using the connection to access a broker. The
ConnectionFactory object can also be used to manage MQ message server
resources by overriding message header values set by clients.

If you wish to support distributed transactions (see “Local Transactions” on
page 38), you need to use a special XAConnectionFactory object that supports
distributed transactions.

ConnectionFactory administered objects are created by adminstrators or
instantiated in the application, as described in Chapter 3, “Using Administered
Objects.”

NOTE In the DUPS_OK_ACKNOWLEDGE mode, the session does not wait for
broker acknowledgements. This option is used in JMS clients in
which duplicate messages are not a problem. Also, there is a JMS
API (recover Session) by which a client can explicitly request
redelivery of messages that have been received but not yet
acknowledged by the client. When redelivering such messages, the
broker marks them with a Redeliver flag.

MQ Client Runtime Configurable Properties

70 Sun ONE Message Queue • Developer’s Guide • October, 2002

By configuring a ConnectionFactory administered object, you specify the
attribute values (the properties) common to all the connections that it produces.
ConnectionFactory and XAConnectionFactory objects share the same set of
attributes. These attributes are grouped into a number of categories, depending on
the behaviors they affect:

• Connection specification

• Auto-reconnect behavior

• Client identification

• Message header overrides

• Reliability and flow control

• Queue browser behavior

• Application server support

• JMS-defined properties support

Each of these categories is discussed in the following sections with a description of
the ConnectionFactory (or XAConnectionFactory) attributes each includes. The
attribute values are set using MQ administration tools, as described in the MQ
Administrator’s Guide.

Connection Specification
Connections are specified by a broker’s host name, the port number at which its
Port Mapper resides (or at which a specific connection service resides), and the
kind of connection service it supports. The behavior of a connection might require
setting additional attribute values, depending on the connection type (the protocol
used by the connection service).

MQ Client Runtime Configurable Properties

Chapter 4 Optimizing Clients 71

The attributes that affect connection behavior are described in Table 4-1.

Table 4-1 Connection Factory Attributes: Connection Specification

Attribute/property name Description

imqConnectionType Specifies transport protocol of the connection service
used by the client. Supported types are TCP, TLS, HTTP.
Default: TCP

imqAckTimeout Specifies the maximum time in milliseconds that the
client runtime will wait for any broker
acknowledgement before throwing an exception. A
value of 0 means there is no time-out. Default: 0

In some situations, for example, the first time a broker
authenticates a user against an LDAP user repository
over a secure (SSL) connection, it can take upwards of 30
seconds to complete authentication. If imqAckTimeout
is set too small, the client runtime can time out.

imqBrokerHostName Specifies the broker host name to which to connect (if
imqConnectionType is either TCP or TLS).
Default: localhost

imqBrokerHostPort Specifies the broker host port (if imqConnectionType
is either TCP or TLS). Default: 7676

imqBrokerServicePort Specifies a port on which a connection should be
attempted (if imqConnectionType is either TCP or
TLS), bypassing a connection through the broker host
port (Port Mapper port). This attribute is used mainly to
provide for connections through a firewall, in which
case you want to minimize the number of open ports. To
use this feature, you have to start a specific service on a
specific port using the broker’s connection service
configuration properties (see MQ Administrator’s Guide).
Default: 0 (not used)

imqSSLIsHostTrusted Specifies whether the host is trusted (if
imqConnectionType is TLS). Default: true

imqConnectionURL Specifies the URL that will be used to connect to the MQ
message server (if imqConnectionType is HTTP). A
typical value (HTTPS connection) might be
https://hostName:port/imq/tunnel

Default: http://localhost/imq/tunnel

MQ Client Runtime Configurable Properties

72 Sun ONE Message Queue • Developer’s Guide • October, 2002

Auto-reconnect Behavior
MQ provides an automatic reconnect capability. If enabled, and if a connection
fails, MQ maintains objects provided by the client runtime (sessions, message
consumers, message producers, and so forth) while attempting to re-establish the
connection. However, in circumstances where the client-side state cannot be fully
restored on the broker upon reconnect (for example, when using transacted
sessions or temporary destinations—which exist only for the duration of a
connection) , auto-reconnect does not take place, and the connection exception
handler is called instead. In such cases, application code has to catch the exception,
reconnect, and restore state.

The impact of auto-reconnect is different for message production and message
consumption.

Message Production
During reconnect, producers cannot send messages. The production of messages
(or any operation that involves communication with the message server) is blocked
until the connection is re-established.

Message Consumption
Auto-reconnect is supported for AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE
sessions, but not for CLIENT_ACKNOWLEDGE sessions (JMS message ordering cannot
be guaranteed). After the connection is re-established the broker will redeliver all
unacknowledged messages it had previously delivered, marking them with a
Redeliver flag. JMS application code can use this flag to determine if any message
has already been consumed (but not yet acknowledged).

In the case of non-durable subscribers, however, some messages will not be
received during a reconnect operation. This is because the message server does not
hold messages for non-durable subscribers once their connections have been
closed. Thus, any messages produced for these subscribers during a reconnect will
not be delivered once the connection has been re-established.

The attributes that affect auto-connect behavior are described in Table 4-2.

Table 4-2 Connection Factory Attributes: Auto-reconnect Behavior

Attribute/property name Description

imqReconnect Specifies whether the client runtime will attempt to
reconnect to the broker if the connection is lost.
Default: false

MQ Client Runtime Configurable Properties

Chapter 4 Optimizing Clients 73

Client Identification
Clients need to be identified to a broker both for authentication purposes and to
keep track of durable subscriptions (see “Client Identifiers” on page 36).

For authentication purposes MQ provides a default user name and password.
These are a convenience for developers who do not wish to explicitly populate a
user repository (see the MQ Administrator’s Guide) to perform application testing.

To keep track of durable subscriptions, MQ uses a unique client identification
(ClientID). If a durable subscriber is inactive at the time that messages are
delivered to a topic destination, the broker retains messages for that subscriber and
delivers them when the subscriber once again becomes active. The only way for the
broker to identify the subscriber is through its ClientID.

There are a number of ways that the ClientID can be set for a connection. For
example, application code can use the setClientID() method of a Connection
object. The ClientID must be set before using the connection in any way; once the
connection is used, the ClientID cannot be set or reset.

Setting the ClientID in application, however, is not optimal. Each user needs a
unique identification: this implies some centralized coordination. MQ therefore
provides a imqConfiguredClientID attribute on the ConnectionFactory object.
This attribute can be used to provide a unique ClientID to each user. To use this
feature, the value of imqConfiguredClientID is set as follows:

imqConfiguredClientID=${u}string

where the special reserved characters, ${u}, provide a unique user identification
during the user authentication stage of establishing a connection, and string is a
text value unique to the ConnectionFactory object. When used properly, the MQ
message server will substitute u:username for the u, resulting in a user-specific
ClientID.

imqReconnectDelay Specifies the time between successive attempts of the
client runtime to reconnect to the MQ message server (if
imqReconnect=true). Default: 30000
milliseconds

imqReconnectRetries Specifies the number of attempts the client runtime will
make to reconnect to the broker (if
imqReconnect=true). A value of 0 indicates that the
number of retries is not limited. Default: 0

Table 4-2 Connection Factory Attributes: Auto-reconnect Behavior (Continued)

Attribute/property name Description

MQ Client Runtime Configurable Properties

74 Sun ONE Message Queue • Developer’s Guide • October, 2002

The ${u} must be the first four characters of the attribute value. If anything other
than “u” is encountered, it will result in an JMS exception upon connection
creation. When ${} is used anywhere else in the attribute value, it is treated as
plain text and no variable substitution is performed.

An additional attribute, imqDisableSetClientID, can be set to true to disallow
clients that use the connection factory from changing the configured ClientID
through the setClientID() method of the Connection object.

It is required that you set the client identifier whenever using durable
subscriptions in deployed applications, either programmatically using the
setClientID() method or using the imqConfiguredClientID attribute of the
ConnectionFactory object.

The attributes that affect client identification are described in Table 4-3.

Message Header Overrides
An MQ administrator can override JMS message header fields that specify the
persistence, lifetime, and priority of messages. Specifically, values in the following
fields can be overridden (see “The Java XML Messaging (JAXM) Specification” on
page 21):

• JMSDeliveryMode (message persistence/non-persistence)

• JMSExpiration (message lifetime)

• JMSPriority (message priority—an integer from 0 to 9)

Table 4-3 Connection Factory Attributes: Client Identification

Attribute/property name Description

imqDefaultUsername Specifies the default user name that will be used to
authenticate with the broker. Default: guest

imqDefaultPassword Specifies the default password that will be used to
authenticate with the broker. Default: guest

imqConfiguredClientID Specifies the value of an administratively configured
ClientID. Default: null

imqDisableSetClientID Specifies if client is prevented from changing the
ClientID using the setClientID() method in the JMS
API. Default: false

MQ Client Runtime Configurable Properties

Chapter 4 Optimizing Clients 75

The ability to override message header values gives an MQ administrator more
control over the resources of an MQ message server. Overriding these fields,
however, has the risk of interfering with application-specific requirements (for
example, message persistence). So this capability should only be used in
consultation with the appropriate application users or designers.

MQ allows message header overrides at the level of a connection: overrides apply
to all messages produced in the context of a given connection, and are configured
by setting attributes of the corresponding connection factory administered object.
These attributes are described in Table 4-4.

Table 4-4 Connection Factory Attributes: Message Header Overrides

Attribute/property name Description

imqOverrideJMSDeliveryMode Specifies whether client-set JMSDeliveryMode
field can be overridden. Default: false

imqJMSDeliveryMode Specifies the override value of JMSDeliveryMode.
Values are 1 (non-persistent) and 2 (persistent).
Default: 2

imqOverrideJMSExpiration Specifies whether client-set JMSExpiration field
can be overridden. Default: false

imqJMSExpiration Specifies the override value of JMSExpiration (in
milliseconds).
Default: 0 (does not expire)

imqOverrideJMSPriority Specifies whether client-set JMSPriority field
can be overridden. Default: false

imqJMSPriority Specifies the override value of JMSPriority (an
integer from 0 to 9). Default: 4 (normal)

imqOverrideJMSHeadersTo
TemporaryDestinations

Specifies whether overrides apply to temporary
destinations. Default: false

MQ Client Runtime Configurable Properties

76 Sun ONE Message Queue • Developer’s Guide • October, 2002

Reliability And Flow Control
A number of attributes determine the use and flow of MQ control messages by the
client runtime, especially broker acknowledgements (referred to as “Ack” in the
attribute names).

The attributes that affect reliability and flow control are described in Table 4-5. For
an extended discussion of these settings and the effect of various permutations, see
“Managing Flow Control” on page 80.

Table 4-5 Connection Factory Attributes: Reliability and Flow Control

Attribute/property name Description

imqAckOnProduce If set to true, the broker acknowledges receipt of all
JMS messages (persistent and non-persistent) from
producing client, and producing client thread will block
waiting for those acknowledgements (referred to as
“Ack” in property name).

If set to false, broker does not acknowledge receipt of
any JMS message (persistent or non-persistent) from
producing client, and producing client thread will not
block waiting for broker acknowledgements.

If not specified, broker acknowledges receipt of
persistent messages only, and producing client thread
will block waiting for those acknowledgements.

Default: not specified

imqAckOnAcknowledge If set to true, broker acknowledges all consuming
client acknowledgements, and consuming client thread
will block waiting for such broker acknowledgements
(referred to as “Ack” in property name).

If set to false, broker does not acknowledge any
consuming client acknowledgements, and consuming
client thread will not block waiting for such broker
acknowledgements.

If not specified, broker acknowledges consuming client
acknowledgements for AUTO_ACKNOWLEDGE and
CLIENT_ACKNOWLEDGE mode (and consuming client
thread will block waiting for such broker
acknowledgements), but does not acknowledge
consuming client acknowledgements for
DUPES_OK_ACKNOWLEDGE mode (and consuming
client thread will not block.)

Default: not specified

MQ Client Runtime Configurable Properties

Chapter 4 Optimizing Clients 77

imqFlowControlCount Specifies the number of JMS messages in a metered
batch. When this number of JMS messages is delivered
to the client runtime, delivery is temporarily
suspended, allowing any control messages that had
been held up to be delivered. Payload message delivery
is resumed upon notification by the client runtime, and
continues until the count is again reached.

If the count is set to 0 then there is no restriction in the
number of JMS messages in a metered batch. A
non-zero setting allows the client runtime to meter
message flow so that MQ control messages are not
blocked by heavy JMS message delivery.
Default: 100

imqFlowControlIsLimited If enabled (value = true), the imqFlowControlLimit
value is used to control message flow.

Default: false

imqFlowControlLimit Specifies a limit on the number of unconsumed
messages that can be delivered to a client runtime. Note
however, that unless imqFlowControlIsLimited is
enabled, this limit is not checked.

When the number of JMS messages delivered to the
client runtime (in accordance with the flow metering
governed by imqFlowControlCount) exceeds the
limit, message delivery stops. It is resumed only when
the number of unconsumed messages drops below the
value set with this property.

This limit prevents a consuming client that is taking a
long time to process messages from being overwhelmed
with pending messages that might cause it to run out of
memory.

Default: 1000

Table 4-5 Connection Factory Attributes: Reliability and Flow Control (Continued)

Attribute/property name Description

MQ Client Runtime Configurable Properties

78 Sun ONE Message Queue • Developer’s Guide • October, 2002

Queue Browser Behavior
The attributes that affect queue browsing for the client runtime are described in
Table 4-6.

Application Server Support
The behavior of sessions running in an application server environment is affected
by the attribute described in Table 4-7. For background see the JMS specification.

Table 4-6 Connection Factory Attributes: Queue Browser Behavior

Attribute/property name Description

imqQueueBrowserMax
MessagesPerRetrieve

Specifies the maximum number of messages that the
client runtime will retrieve at one time, when browsing
the contents of a queue destination. Default: 1000

imqQueueBrowserRetrieve
Timeout

Specifies the maximum time that the client runtime will
wait to retrieve messages, when browsing the contents
of a queue destination, before throwing an exception.
Default: 60000 milliseconds.

Table 4-7 Connection Factory Attributes: Application Server Support

Attribute/property name Description

imqLoadMaxToServerSession Used only for JMS application server facilities.

Specifies whether an MQ ConnectionConsumer
should load up to the maxMessages number of
messages into a ServerSession’s session
(value=true), or load only a single message at a
time (value=false). Default: true

MQ Client Runtime Configurable Properties

Chapter 4 Optimizing Clients 79

JMS-defined Properties Support
JMS-defined properties are property names reserved by JMS, and which a JMS
provider can choose to support (see “The Java XML Messaging (JAXM)
Specification” on page 21). These properties enhance client programming
capabilities.

The JMS-defined properties supported by MQ are described in Table 4-8.

Table 4-8 Connection Factory Attributes: JMS-defined Properties Support

Attribute/property name Description

imqSetJMSXUserID Specifies whether MQ should set the JMS-defined
property, JMSXUserID (identity of user sending the
message), on produced messages. Default: false

imqSetJMSXAppID Specifies whether MQ should set the JMS-defined
property, JMSXAppID (identity of application sending
the message), on produced messages. Default: false

imqSetJMSXProducerTXID Specifies whether MQ should set the JMS-defined
property, JMSXProducerTXID (transaction identifier
of the transaction within which this message was
produced), on produced messages. Default: false

imqSetJMSXConsumerTXID Specifies whether MQ should set the JMS-defined
property, JMSXConsumerTXID (transaction identifier
of the transaction within which this message was
consumed), on consumed messages. Default: false

imqSetJMSXRcvTimestamp Specifies whether MQ should set the JMS-defined
property, JMSXRcvTimestamp (the time the message is
delivered to the consumer), on consumed messages.
Default: false

Performance Issues

80 Sun ONE Message Queue • Developer’s Guide • October, 2002

Performance Issues
This section describes ways that you can improve performance by managing
message flow and controlling the proliferation of threads.

Managing Flow Control
Because of the mechanisms by which messages are delivered to and from a broker,
and because of the MQ control messages used to assure reliable delivery, there are
a number of factors that affect message flow and consumption. These include
delivery mode, acknowledgement mode, message flow metering, message flow
limits, and number of sessions. Although these factors are quite distinct, their
interactions can complicate the task of balancing reliability with performance.
Specifically, because JMS client messages and MQ control messages flow across the
same connection between the client and the broker, you need to understand how to
balance the requirement for reliability with the need for throughput.

Factors Affecting Performance
A number of factors can affect message flow--that is, the flow of messages from the
broker to a client; this section describes these factors and the connection factory
attributes that help manage flow control.

Delivery mode The delivery mode specifies whether a message is to be delivered
at most once (non-persistent) or once and only once (persistent). These different
reliability requirements imply different degrees of overhead. Specifically, the
management of persistent messages requires greater use of broker control
messages flowing across a connection.

Client acknowledgement mode The setting of this mode affects the number of
client and broker acknowledgement messages passing over a connection:

• In the AUTO_ACKNOWLEDGE mode, a client acknowledgement and broker
acknowledgement are required for each consumed message, and the delivery
thread blocks waiting for the broker acknowledgement.

If you set this mode, it is possible that a message could be partially processed
and lost if the system fails and the message consumer is a synchronous
receiver. To avoid this, the client can use the CLIENT_ACKNOWLEDGE mode or a
transacted session to guarantee no message is lost if the system fails.

Performance Issues

Chapter 4 Optimizing Clients 81

• In the CLIENT_ACKNOWLEDGE mode client acknowledgements and broker
acknowledgements are batched (rather than being sent one by one). This
conserves connection bandwidth and generally reduces the overhead for
broker acknowledgements.

• In the DUPS_OK_ACKNOWLEDGE mode, throughput is improved even further,
because client acknowledgements are batched and because the client thread
does not block (broker acknowledgements are not requested). However, in this
case, the same message can be delivered and consumed more than once.

Message flow metering Because messages sent and received by JMS clients (JMS
messages) and MQ control messages pass over the same client-broker connection,
delays may occur in the delivery of control messages such as broker
acknowledgements as these are held up by the delivery of JMS messages. To
prevent this type of congestion, MQ meters the flow of JMS messages across
connections: JMS messages are batched (as specified with the
imqFlowControlCount property) so that only a set number are delivered; when the
batch of messages has been delivered, delivery of JMS messages is suspended and
pending control messages are delivered. Another batch of JMS messages is then
delivered, followed by any pending control messages.

You can specify the number of messages allowed in a batch of JMS messages by
setting the imqFlowControlCount property (Table 4-5 on page 76). By default, this
limit is set to 100 messages.

Message flow limits MQ client runtime code can handle only a limited number
of delivered JMS messages before encountering local resource limitations, such as
memory. When this limit is approached, performance suffers. Hence, MQ lets you
limit the number of messages queued up in sessions awaiting consumption by
controlling the flow of JMS messages to the client.

You can specify the number of JMS messages the client runtime is prepared to hold
before asking for more messages from the broker by setting the
imqFlowControlLimit property (Table 4-5 on page 76). By default this property is
set to 1000. But, this limit is only checked if you also set the property
imqFlowControlIsLimited to true. If you set both these properties appropriately,
the client runtime will wait until the number of un-consumed messages drops
below this limit before requesting that the delivery of JMS messages be resumed.
Message delivery then continues until the threshold value is exceeded. So, to take
an example, if imqFlowControlIsLimited is enabled, imqFlowControlLimit is set
to 100, and imqFlowControlCount is set to 10, the broker will send messages to the
client runtime in batches of ten messages until the total number of unconsumed
messages handed to the client runtime totals 110. Then delivery will stop until the
number of unconsumed messages dips below 100. When it does, another batch of
ten messages is delivered.

Performance Issues

82 Sun ONE Message Queue • Developer’s Guide • October, 2002

Impact of Flow Control Settings
Table 4-9 describes the effect of various settings for the connection factory
attributes imqFlowControlIsLimited, imqFlowControlLimit, and
imqFlowControlCount.Note particularly the difference between the first (default)
case and the second case.

In short, you need to set imqFlowControlIsLimited to true if you want to protect
the client runtime from message overrun. The maximum number of unconsumed
messages the client runtime can hold is given by the sum of imqFlowControlLimit
and imqFlowControlCount.

Table 4-9 Effect of Setting Flow Control Attributes

isLimited FlowControlLimit FlowControlCount Effect

false 1000 100 These are the default settings.
Messages from the broker are
grouped into batches of 100
messages. Provides the opportunity
for control messages to be inserted
into the flow of JMS messages, but
does not check the specified limits
and therefore does not protect the
client runtime from being overrun
by messages.

true 1000 100 The client runtime is limited to
holding no more than 1,100
unconsumed messages. When the
client runtime holds fewer than 1000
messages, it asks the broker for up to
100 more.

true 0 100 The client runtime is limited to 100
unconsumed messages. The client
runtime asks for a batch of up to 100
messages and does not ask for more
until it has run out of messages to
process.

true 10 50 The client runtime is limited to 60
unconsumed messages. When the
client runtime holds less than 10
messages, it asks the broker for
another batch of up to 50.

Performance Issues

Chapter 4 Optimizing Clients 83

In balancing the requirements of throughput, memory use, and the timely
processing of control messages, keep the following guidelines in mind:

• Large imqFlowControlLimit results in faster performance but greater use of
client runtime memory.

• Small imqFlowControlLimit results in slower performance but less use of
client runtime memory.

• Large imqFlowControlCount results in greater use of client runtime memory.
Control messages may be delayed in reaching the client runtime.

• Small imqFlowControlCount results in less use of client runtime memory.
Control messages are promptly delivered.

These points can be summarized by the following precepts:

• The value of imqFlowControlLimit should be determined by the size of the
messages and by how much memory the client runtime can use.

• The value of imqFlowControlCount should be kept low if the client is doing
operations that require many responses from the broker; for example, the client
is using the CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE modes, persistent
messages, transactions, queue browsers, or if the client is adding or removing
consumers. If, on the other hand, the client has only simple consumers on a
connection using DUPS_OK mode, you can increase imqFlowControlCount
without compromising performance.

Don’t forget that the number of messages queued up in a session is a function of
the number of message consumers using the session and the message load for each
consumer. If a client is exhibiting delays in producing or consuming messages, you
can normally improve performance by redesigning the application to distribute
message producers and consumers among a larger number of sessions or to
distribute sessions among a larger number of connections.

Managing Threads
The JMS specification mandates that only one thread can use a single session.
Violating this requirement can result in a deadlocked client, and it is strongly
recommended that you do not do so.

Performance Issues

84 Sun ONE Message Queue • Developer’s Guide • October, 2002

Each JMS session in MQ uses a thread to deliver messages to message consumers.
If you create several message consumers in a session, messages are serially
delivered to these consumers. If sharing a session amongst several message
consumers causes some consumers to be starved of message flow due to excessive
flow to other consumers, it might be necessary to separate the consumers into
different sessions.

If you need to reduce the number of threads used, you can do so by having fewer
connections and fewer sessions. If you want to share sessions among threads, you
will need to write your own pooling mechanism. Sharing sessions might affect
performance; this depends on the dynamics of your system. For a quick test, have
all of your publishers and subscribers use the same static connection and static
session, and see how the system behaves.

If you are running on Solaris, you may be able to run with the same number (or
more) threads by using the following vm options with the client:

• Xss128K This decreases the meory size of the heap.

• xconcurrentIO This improves thread performance in the 1.3 VM.

85

Chapter 5

Working With SOAP Messages

Using Sun™ ONE Message Queue (MQ), you can send JMS messages that contain
a SOAP payload. This allows you to transport SOAP messages reliably and to
publish SOAP messages to JMS subscribers. This chapter explains how you do the
following:

• Send and receive SOAP messages without using MQ

• Send and receive JMS messages that contain a SOAP payload

This chapter begins with an overview of SOAP processing and describes the Java
API for SOAP with attachments (JAXM). You need to know this information to
process SOAP messages. The chapter concludes by explaining how you can create
a JMS message that contains a SOAP message payload.

If you are familiar with the SOAP specification, you can skip the introductory
section and start by reading “SOAP Messaging in JAVA” on page 93.

What is SOAP
SOAP, the Simple Object Access Protocol, is a protocol that allows the exchange of
structured data between peers in a decentralized, distributed environment. The
structure of the data being exchanged is specified by an XML scheme.

The fact that SOAP messages are encoded in XML makes SOAP messages portable,
because XML is a portable, system-independent way of representing data. By
representing data using XML, you can access data from legacy systems as well as
share your data with other enterprises. The data integration offered by XML also
makes this technology a natural for web-based computing such as web services.
Firewalls can recognize SOAP packets based on their content type
(text/xml-SOAP) and can filter messages based on information exposed in the
SOAP message header.

What is SOAP

86 Sun ONE Message Queue • Developer’s Guide • October, 2002

The SOAP specification describes a set of conventions for exchanging XML
messages. As such, it forms a natural foundation for web services that also need to
exchange information encoded in XML. Although any two partners could define
their own protocol for carrying on this exchange, having a standard such as SOAP
allows developers to build the generic pieces that support this exchange. These
pieces might be software that adds functionality to the basic SOAP exchange, or
might be tools that administer SOAP messaging, or might even comprise parts of
an operating system that supports SOAP processing. Once this support is put in
place, other developers can focus on creating the web services themselves.

The SOAP protocol is fully described at http://www.w3org/TR/SOAP. This
section restricts itself to discussing the reasons why you would use SOAP and to
describing some basic concepts that will make it easier to work with the JAXM API.

SOAP and the JAVA for XML Messaging API
The JAVA API for XML messaging (JAXM) is a JAVA-based API that enforces
compliance to the SOAP standard. When you use this API to assemble and
disassemble SOAP messages, it ensures the construction of syntactically correct
SOAP messages. JAXM also makes it possible to automate message processing
when several applications need to handle different parts of a message before
forwarding it to the next recipient.

 Figure 5-1 shows the layers that can come into play in the implementation of
SOAP messaging. This chapter focuses on the SOAP and language implementation
layers.

Figure 5-1 SOAP Messaging Layers

Wire Transport Protocol

SOAP With Attachments

Provider
(Language Implementation)

Provider
(Delivery Semantics)

Profile
(Messaging Semantics)

SOAP
Messaging

What is SOAP

Chapter 5 Working With SOAP Messages 87

The sections that follow describe each layer shown in the preceding figure in
greater detail. The rest of this chapter focuses on the SOAP and language
implementation layers.

The Transport Layer
Underlying any messaging system is the transport or wire protocol that governs
the serialization of the message as it is sent across a wire and the interpretation of
the message bits when it gets to the other side. Although SOAP messages can be
sent using any number of protocols, the SOAP specification defines only the
binding with HTTP. SOAP uses the HTTP request/response message model. It
provides SOAP request parameters in an HTTP request and SOAP response
parameters in an HTTP response. The HTTP binding has the advantage of allowing
SOAP messages to go through firewalls.

The SOAP Layer
Above the transport layer is the SOAP layer. This layer, which is defined in the
SOAP Specification, specifies the XML scheme used to identify the message parts:
envelope, header, body, and attachments. All SOAP message parts and contents,
except for the attachments, are written in XML. The following sample SOAP
message shows how XML tags are used to define a SOAP message:

The wire transport and SOAP layers are actually sufficient to do SOAP messaging.
You could create an XML document that defines the message you want to send,
and you could write http commands to send the message from one side and to
receive it on the other. In this case, the client is limited to sending synchronous
messages to a specified URL. Unfortunately, the scope and reliability of this kind of
messaging is severely restricted. To overcome these limitations, the provider and
profile layers are added to SOAP messaging.

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap,org/soap/envelope/"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DIS</symbol>

</m:GetLastTradePrice>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

What is SOAP

88 Sun ONE Message Queue • Developer’s Guide • October, 2002

The Provider Layer
In Figure 5-1 the provider is shown as two pieces of functionality: a language
implementation and delivery semantics.

A provider language implementation allows you to create XML messages that
conform to SOAP, using API calls. For example, any implementation of JAXM,
allows a Java client to define the SOAP message and all its parts as Java objects. The
client would also use JAXM to create a connection and use it to send the message.
Likewise, a web service written in Java could use the same (or another)
implementation of the JAXM API to receive the message, to disassemble it, and to
acknowledge its receipt.

Messaging Semantics
In addition to a language implementation, a SOAP provider can offer services that
relate to message delivery. These could include reliability, persistence, security,
and administrative control. These services will be provided for SOAP messaging
by MQ in future releases.

Interoperability
Because SOAP providers must all construct and deconstruct messages as defined
by the SOAP specification, clients and services using SOAP are interoperable. That
is, as shown in Figure 5-2, the client and the service doing SOAP messaging do not
need to be written in the same language nor do they need to use the same SOAP
provider. It is only the packaging of the message that must be standard.

Figure 5-2 SOAP Interoperability

SOAP Messaging
 Client

JAXM API
SOAP

Provider
SOAP

Provider

SOAP
Msg

HTTP

HTTP

JAXM Service

What is SOAP

Chapter 5 Working With SOAP Messages 89

In order for a JAXM client or service to interoperate with a service or client using a
different provider, the parties must agree on two things:

• they must use the same transport bindings--that is, the same wire protocol.

• they must use the same profile in constructing the SOAP message being sent

 Profiles provide additional processing information, as described next.

The Profiles Layer
The final, profile, layer of SOAP messaging governs messaging semantics between
business partners who use SOAP messaging with SOAP providers. A profile is an
industry standard, such as "ebxml", which defines additional rules for message
processing. A provider can add profile information to the header of a message
when its message factory creates the message. (The SOAP message header is the
primary means of SOAP messaging extensibility.) Support for the ebxml profile
will be added in future releases of MQ.

The SOAP Message
Having surveyed the SOAP messaging layers, let’s examine the SOAP message
itself. Although the work of rendering a SOAP message in XML is taken care of by
the JAXM libraries, you must still understand its structure in order to make the
JAXM calls in the right order.

A SOAP message is an XML document that consists of a SOAP envelope, an
optional SOAP header, and a SOAP body. The SOAP message header contains
information that allows the message to be routed through one or more
intermediate nodes before it reaches its final destination.

• The envelope is the root element of the XML document representing the
message. It defines the framework for how the message should be handled and
by whom. Once it encounters the Envelope element, the SOAP processor
knows that the XML is a SOAP message and can then look for the individual
parts of the message.

What is SOAP

90 Sun ONE Message Queue • Developer’s Guide • October, 2002

• The header is a generic mechanism for adding features to a SOAP message. It
can contain any number of child elements that define extensions to the base
protocol. For example, header child elements might define authentication
information, transaction information, locale information, and so on. The actors,
the software that handle the message may, without prior agreement, use this
mechanism to define who should deal with a feature and whether the feature is
mandatory or optional.

• The body is a container for mandatory information intended for the ultimate
recipient of the message.

A SOAP message may also contain an attachment, which does not have to be in
XML. For more information, see “SOAP Packaging Models” next.

A SOAP message is constructed like a nested matrioshka doll. When you use
JAXM to assemble or disassemble a message, you need to make the API calls in the
appropriate order to get to the message part that interests you. For example, in
order to add content to the message, you need to get to the body part of the
message. To do this you need to work through the nested layers: SOAP part, SOAP
envelope, SOAP body, until you get to the SOAP body element that you will use to
specify your data. For more information, see “The SOAP Message Object” on
page 93.

SOAP Packaging Models
The SOAP specification describes two models of SOAP messages: one that is
encoded entirely in XML and one that allows the sender to add an attachment
containing non-XML data. You should look over the following two figures and
note the parts of the SOAP message for each model. When you use JAXM to define
SOAP messages and their parts, it will be helpful for you to be familiar with this
information.

Figure 5-3 shows the SOAP model without attachments. This package includes a
SOAP envelope, a header, and a body. The header is optional.

What is SOAP

Chapter 5 Working With SOAP Messages 91

Figure 5-3 SOAP Message Without Attachments

When you construct a SOAP message using JAXM, you do not have to specify
which model you’re following. If you add an attachment, a message like that
shown in Figure 5-4 is constructed; if you don’t, a message like that shown in
Figure 5-3 is constructed.

Figure 5-4 shows a SOAP Message with attachments. The attachment part can
contain any kind of content: image files, plain text, and so on. The sender of a
message can choose whether to create a SOAP message with attachments. The
message receiver can also choose whether to consume an attachment.

A message that contains one or more attachments is enclosed in a MIME envelope
that contains all the parts of the message. In JAXM, the MIME envelope is
automatically produced whenever the client creates an attachment part. If you add
an attachment to a message, you are responsible for specifying (in the MIME
header) the type of data in the attachment.

Communication Protocol Envelope

Envelope

Header

Body

SOAP1.1 Message Package

HTTP, SMTP, ...Communication Protocol Envelope

What is SOAP

92 Sun ONE Message Queue • Developer’s Guide • October, 2002

Figure 5-4 SOAP Message with Attachments

SOAP Part

Envelope

Header

Body

MIME Envelope

Communication Protocol Envelope

Attachment Part

SOAP Attachment
(XML or non-XML)

HTTP, SMTP, ...

SOAP Messaging in JAVA

Chapter 5 Working With SOAP Messages 93

SOAP Messaging in JAVA
The SOAP specification does not provide a programming model or even an API for
the construction of SOAP messages; it simply defines the XML schema to be used
in packaging a SOAP message.

 JAXM is an application programming interface that can be implemented to
support a programming model for SOAP messaging and to furnish Java objects
that application or tool writers can use to construct, send, receive, and examine
SOAP messages. JAXM defines two packages:

• javax.xml.soap: you use the objects in this package to define the parts of a
SOAP message and to assemble and disassemble SOAP messages. You can also
use this package to send a SOAP message without the support of a provider.

• javax.xml.messaging: you use the objects in this package to send a SOAP
message using a provider and to receive SOAP messages.

This chapter focuses on the javax.xml.soap package and how you use the objects
and methods it defines

• to assemble and disassemble SOAP messages

• to send and receive these messages.

It also explains how you can use the JMS API and MQ to send and receive JMS
messages that carry SOAP message payloads.

The SOAP Message Object
A SOAP Message Object is a tree of objects as shown in Figure 5-5. The classes or
interfaces from which these objects are derived are all defined in the
javax.xml.soap package.

SOAP Messaging in JAVA

94 Sun ONE Message Queue • Developer’s Guide • October, 2002

Figure 5-5 SOAP Message Object

As shown in the figure, the SOAPMessage object is a collection of objects divided in
two parts: a SOAP part and an attachment part. The main thing to remember is that
the attachment part can contain non-xml data.

The SOAP part of the message contains an envelope that contains a body (which
can contain data or fault information) and an optional header. When you use JAXM
to create a SOAP message, the SOAP part, envelope, and body are created for you:
you need only create the body elements. To do that you need to get to the parent of
the body element, the SOAP body.

SOAP Message

SOAP Part Attachment
Part

MIME
Headers

SOAP
 Envelope

SOAP
Header

SOAP
Body

SOAP Body
Element

SOAP
Fault

SOAP Header
Element Detail

Detail
Entry

MIME
Header

Attachment

SOAP Messaging in JAVA

Chapter 5 Working With SOAP Messages 95

In order to reach any object in the SOAPMessage tree, you must traverse the tree
starting from the root, as shown in the following lines of code. For example,
assuming we have created the SOAPMessage MyMsg, here are the calls you would
have to make in order to get the SOAP body:

SOAPPart MyPart = MyMsg.getSOAPPart();

SOAPEnvelope MyEnv = MyPart.getEnvelope();

SOAPBody MyBody = envelope.getBody();

At this point, you can create a name for a body element (as described in
“Namespaces” on page 97) and add the body element to the SOAPMessage.

For example, the following code line creates a name (a representation of an XML
tag) for a body element:

Name bodyName = envelope.createName("Temperature");

The next code line adds the body element to the body:

SOAPBodyElement myTemp = MyBody.addBodyElement(bodyName);

Finally, this code line defines some data for the body element bodyName:

myTemp.addTextNode("98.6");

Inherited Methods
The elements of a SOAP message form a tree. Each node in that tree implements
the Node interface and, starting at the envelope level, each node implements the
SOAPElement interface as well. The resulting shared methods are described in
Table 5-1.

Table 5-1 Inherited Methods

Inherited From Method Name Purpose

SOAPElement addAttribute(Name, String) Add an attribute with the specified Name object
and string value.

addChildElement(Name)

addChildElement(String,
String)

addChildElement(String,
String, String)

Create a new SOAPElement object, initialized
with the given Name object, and add the new
element.

(Use the Envelope.createName method to
create a Name object.)

addNameSpaceDeclaration
(String, String)

Add a namespace declaration with the specified
prefix and URI.

SOAP Messaging in JAVA

96 Sun ONE Message Queue • Developer’s Guide • October, 2002

addTextnode(String) Create a new Text object initialized with the
given String and add it to this SOAPElement
object.

getAllAttributes() Return an iterator over all the attribute names in
this object.

getAttributeValue(Name) Return the value of the specified attribute.

getChildElements() Return an iterator over all the immediate content
of this element.

getChildElements(Name) Return an iterator over all the child elements with
the specified name.

getElementName() Return the name of this object.

getEncodingStyle() Return the encoding style for this object.

getNameSpacePrefixes() Return an iterator of namespace prefixes.

getNamespaceURI(String) Return the URI of the namespace with the given
prefix.

removeAttribute(Name) Remove the specified attribute.

removeNamespaceDeclaration
(String)

Remove the namespace declaration that
corresponds to the specified prefix.

setEncodingStyle(String) Set the encoding style for this object to that
specified by String.

Node detachNode() Remove this Node object from the tree.

getParentElement() Return the parent element of this Node object.

getValue Return the value of the immediate child of this
Node object if a child exists and its value is text.

recycleNode() Notify the implementation that his Node object is
no longer being used and is free for reuse.

setParentElement
(SOAPElement)

Set the parent of this object to that specified by the
SOAPElement parameter.

Table 5-1 Inherited Methods (Continued)

Inherited From Method Name Purpose

SOAP Messaging in JAVA

Chapter 5 Working With SOAP Messages 97

Namespaces
An XML namespace is a means of qualifying element and attribute names to
disambiguate them from other names in the same document. This section provides
a brief description of XML namespaces and how they are used in SOAP. For
complete information, see http://www.w3.org/TR/REC-xml-names/.

An explicit XML namespace declaration takes the following form

<prefix:myElement

xmlns:prefix ="URI">

The declaration defines prefix as an alias for the specified URI. In the element
myElement, you can use prefix with any element or attribute to specify that the
element or attribute name belongs to the namespace specified by the URI.

The following is an example of a namespace declaration:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

This declaration defines SOAP_ENV as an alias for the namespace

http://schemas.xmlsoap.org/soap/envelope/

After defining the alias, you can use it as a prefix to any attribute or element in the
Envelope element. In Code Example 5-1, the elements <Envelope> and <Body>
and the attribute encodingStyle all belong to the SOAP namespace specified by
the URI "http://schemas.xmlsoap.org/soap/envelope/".

Code Example 5-1 Explicit Namespace Declarations

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>

<HeaderA
 xmlns="HeaderURI"
 SOAP-ENV:mustUnderstand="0">

The text of the header
</HeaderA>

 </SOAP-ENV:Header>
<SOAP-ENV:Body>

.

.

.
</SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

SOAP Messaging in JAVA

98 Sun ONE Message Queue • Developer’s Guide • October, 2002

Note that the URI that defines the namespace does not have to point to an actual
location; its purpose is to disambiguate attribute and element names.

 Pre-defined SOAP Namespaces
SOAP defines two namespaces:

• The SOAP envelope, the root element of a SOAP message, has the following
namespace identifier

"http://schemas.xmlsoap.org/soap/envelope"

• The SOAP serialization, the URI defining SOAP’s serialization rules, has the
following namespace identifier

"http://schemas.xmlsoap.org/soap/encoding"

When you use JAXM to construct or consume messages, you are responsible for
setting or processing namespaces correctly and for discarding messages that have
incorrect namespaces.

Using Namespaces when Creating a SOAP Name
When you create the body elements or header elements of a SOAP message, you
must use the Name object to specify a well-formed name for the element. You obtain
a Name object by calling the method SOAPEnvelope.createName.

When you call this method, you can pass a local name as a parameter or you can
specify a local name, prefix, and uri. For example, the following line of code defines
a name object bodyName.

Name bodyName = MyEnvelope.createName("TradePrice",
"GetLTP",
"http://foo.eztrade.com");

This would be equivalent to the namespace declaration:

<GetLTP:TradePrice xmlns:GetLTP= "http://foo.eztrade.com">

The following code shows how you create a name and associate it with a SOAPBody
element. Note the use and placement of the createName method.

SoapBody body = envelope.getBody();//get body from envelope

Name bodyName = envelope.createName("TradePrice", "GetLTP",
"http://foo.eztrade.com");

SOAPBodyElement gltp = body.addBodyElement(bodyName);

SOAP Messaging in JAVA

Chapter 5 Working With SOAP Messages 99

Parsing Name Objects
For any given Name object, you can use the following Name methods to parse the
name:

• getQualifiedName returns "prefix:LocalName", for the given name, this would
be GetLTP:TradePrice.

• getURI would return "http://foo.eztrade.com".

• getLocalName would return "TradePrice".

• getPrefix would return "GetLTP".

Destination, Message Factory, and Connection
Objects
SOAP messaging occurs when a SOAP message, produced by a message factory, is
sent to an endpoint via a connection.

• If you are working without a provider, you must do the following:

❍ Create a SOAPConnectionFactory object.

❍ Create a SOAPConnection object.

❍ Create an Endpoint object that represents the message’s destination.

❍ Create a MessageFactory object and use it to create a message.

❍ Populate the message.

❍ Send the message.

• If you are working with a provider, you must do the following:

❍ Create a ProviderConnectionFactory object.

❍ Get a ProviderConnection object from the provider connection factory.

❍ Get a MessageFactory object from the provider connection and use it to
create a message.

❍ Populate the message.

❍ Send the message.

SOAP Messaging in JAVA

100 Sun ONE Message Queue • Developer’s Guide • October, 2002

The following three sections describe endpoint, message factory, and connection
objects in greater detail.

Endpoint
An endpoint identifies the final destination of a message. An endpoint is defined
either by the Endpoint class (if you use a provider) or by the URLEndpoint class (if
you don’t use a provider).)

Constructing an Endpoint
You can initialize an endpoint either by calling its constructor or by looking it up in
a naming service. For information about creating administered objects for
endpoints, see “Using JAXM Administered Objects” on page 102.

The following code uses a constructor to create a URLEndpoint:

myEndpoint = new URLEndpoint("http://somehost/myServlet");

Using the Endpoint to Address a Message

If you are using a provider, the Message Factory creating the message includes the
endpoint specification in the message header.

If you do not use a provider, you can specify the endpoint as a parameter to the
SOAPConnection.call method, which you use to send a SOAP message.

Sending a Message to Multiple Endpoints
If you are using an administered object to define an endpoint, note that it is
possible to associate that administered object with multiple URL’s--each URL, is
capable of processing incoming SOAP messages. The code sample below associates
the endpoint whose lookup name is myEndpoint with two URL’s:
http://www.myServlet1/ and http://www.myServlet2/.

This syntax allows you to use a SOAP connection to publish a SOAP message to
multiple endpoints. For additional information about the endpoint administered
object, see “Using JAXM Administered Objects” on page 102.

imqobjmgr add
-t e
-l "cn=myEndpoint"
-o "imqSOAPEndpointList=http://www.myServlet1/

http://www.myServlet2/"

SOAP Messaging in JAVA

Chapter 5 Working With SOAP Messages 101

Message Factory
You use a Message Factory to create a SOAP message.

• If you are using a provider, you should create a message factory by using the
createMessageFactory method of your provider connection. For example, if
con is a provider connection, the following code creates a message factory, mf:

MessageFactory mf = con.createMessageFactory(xProfile);

The profile parameter you pass to the createMessageFactory method
determines what addressing and other information is placed in the message
header for messages created by the message factory.

• If you are not using a provider, you can instantiate a message factory directly;
for example:

MessageFactory mf = MessageFactory.newInstance();

Connection
To send a SOAP message using JAXM, you must obtain either a SOAPConnection
or a ProviderConnection. You can also transport a SOAP message using MQ; for
more information, see “Integrating SOAP and MQ” on page 118.

SOAP Connection
A SOAPConnection allows you to send messages directly to a remote party. You
can obtain a SOAPConnection object simply by calling the static method
SOAPConnectionFactory.newInstance(). Neither reliability nor security are
guaranteed over this type of connection.

Provider Connection
A ProviderConnection, which you get from a ProviderConnectionFactory,
creates a connection to a particular messaging provider. When you send a SOAP
message using a provider, the message is forwarded to the provider, and then the
provider is responsible for delivery to its final destination. The provider guarantees
reliable, secure messaging. (MQ does not currently offer SOAP provider support.)

Using JAXM Administered Objects

102 Sun ONE Message Queue • Developer’s Guide • October, 2002

Using JAXM Administered Objects
Administered objects are objects that encapsulate provider-specific configuration and
naming information. For endpoint objects, you have the choice either to instantiate
such an object or to create an administered object and associate it with an endpoint
object instance.

The main benefit of creating an endpoint through a JNDI lookup is to isolate
endpoint URL’s from the code, allowing the application to switch the destination
without recompiling the code. A secondary benefit is provider independence.

Creating an administered object for a SOAP element is the same as creating an
administered object in MQ: you use the Object Manager (imqobjmgr) utility to
specify the lookup name of the object, its attributes, and its type.

Table 5-2 lists and describes the attributes and other information that you need to
specify when you create an endpoint administered object. Remember to specify all
attributes as strings.

Table 5-2 SOAP Administered Object Information

Option Description

-o "attribute=val" Use this option to specify three possible attributes for an
endpoint administered object:

• A URL list

-o "imqSOAPEndpointList = "url1 url2urln"

The list may contain one or more space-separated url’s.If it
contains more than one, the message is broadcast to all the
urls. Each URL should be associated with a servlet that can
receive and process a SOAP message.

• A name

-o "imqEndpointName=SomeName"

If you don’t specify a name, the name
Untitled_Endpoint_Object is used by default.

• A description

-o "imqEndpointDescription=my endpoints for
broadcast"

If you don’t specify a description, the default value "A
description for the endpoint object" is
supplied by default.

Using JAXM Administered Objects

Chapter 5 Working With SOAP Messages 103

Code Example 5-2 shows how you use the imqobjmgr command to create an
administered object for an endpoint and add it to an object store. The -i option
specifies the name of an input file that defines object store attributes (-j option).

-l "cn=lookupName" Use this option to specify the lookup name of the endpoint.

-t type Use this option to specify the object’s type. This is always e for
an endpoint.

-i filename Use this option to specify the name of an input file containing
imqobjmgr commands. Such an input file is typically used to
specify object store attributes.

-j "attribute=val" Use this option to specify object store attributes. You can also
specify these in an input file. Use the -i option to specify the
input file.

Code Example 5-2 Adding an Endpoint Administered Object

imgobjmgr add
-t e
-l "cn=myEndpoint"
-o "imqSOAPEndpointList=http://www.myServlet/

 http://www.myServlet2/"
-o "imqEndpointName=MyBroadcastEndpoint"
-i MyObjStoreAttrs

Table 5-2 SOAP Administered Object Information (Continued)

Option Description

SOAP Messaging Models and Examples

104 Sun ONE Message Queue • Developer’s Guide • October, 2002

Having created the administered object and added it to an object store, you can
now use it when you want to use an endpoint in your JAXM application. In Code
Example 5-3, you first create an initial context for the JNDI lookup and then you
look up the desired object.

You can also list, delete, and update administered objects. For additional
information, please see MQ Administrator’s Guide.

SOAP Messaging Models and Examples
This section explains how you use JAXM to send and receive a SOAP message. It is
also possible to construct a SOAP message using JAXM and to send it as the
payload of a JMS message. For information, see “Integrating SOAP and MQ” on
page 118.

JAXM supplies two models that you can use to do SOAP messaging: one uses the
SOAPConnection object and the other uses the ProviderConnection object. MQ
does not currently support the ProviderConnection object.

SOAP Messaging Programming Models
This section provides a brief summary of the programming models used in SOAP
messaging using JAXM.

A SOAP message is sent to an endpoint by way of a connection. There are two
types of connections: point-to-point connections (implemented by the
SOAPConnection class) and provider connections (implemented by the
ProviderConnection class).

Code Example 5-3 Looking up an Endpoint Administered Object

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put (Context.PROVIDER_URL,

"file:///c:/imq_admin_objects");
Context ctx = new InitialContext(env);
Endpoint mySOAPEndpoint = (Endpoint)

 ctx.lookup("cn=myEndpoint");

SOAP Messaging Models and Examples

Chapter 5 Working With SOAP Messages 105

Point-to-Point Connections
You use point-to-point connections to establish a request-reply messaging model.
The request-reply model is illustrated in Figure 5-6.

Figure 5-6 Request-Reply Messaging

Using this model, the client does the following:

• Creates an endpoint that specifies the URL that will be passed to the
SOAPConnection.call method that sends the message.

See “Endpoint” on page 100 for a discussion of the different ways of creating
an endpoint.

• Creates a SOAPConnection factory and obtains a SOAP connection.

• Creates a message factory and uses it to create a SOAP message

• Creates a name for the content of the message and adds the content to the
message.

• Uses the SOAPConnection.call method to send the message.

It is assumed that the client will ignore the SOAPMessage object returned by the call
method because the only reason this object is returned is to unblock the client.

The JAXM service listening for a request-reply message uses a ReqRespListener
object to receive messages.

Sender

SOAP Message

SOAPEndpoint

Receive
and

process
message

Sender
blocks

Sender Call returns

SOAP Messaging Models and Examples

106 Sun ONE Message Queue • Developer’s Guide • October, 2002

For a detailed example of a client that does point-to-point messaging, see “Writing
a SOAP Client” on page 108.

Provider Connections
You use a provider connection to implement one-way messaging. Figure 5-7
illustrates the one-way messaging model.

Figure 5-7 One-way Messaging

As opposed to the point-to-point model, the final destination for the message is
written into the message header by the provider. (When the administrator
configures the messaging provider, she can supply a list of Endpoint objects. When
a client uses the provider to send messages, the provider sends the messages only
to those parties represented by Endpoint objects in its messaging provider’s list.)

A message sent by means of a provider connection is always routed through an
intermediate destination in the provider before it is forwarded to its final
destination. The provider is also responsible for the reliability of the transmission
and the privacy of the message.

Using this model, the client does the following:

• Creates a provider connection factory and gets a connection.

• Creates a message factory and creates a new message.

• Creates a name for the content and adds content to the message.

• Sends the message. (The send method is asynchronous and returns
immediately.)

Sender

Messaging
Provider

SOAPEndpoint

SOAP
Message

SOAP Messaging Models and Examples

Chapter 5 Working With SOAP Messages 107

The JAXM service listening for a one way message uses a OnewayListener object
to receive messages asynchronously.

Working with Attachments
If a message contains any data that is not XML, you must add it to the message as
an attachment. A message can have any number of attachment parts. Each
attachment part can contain anything from plain text to image files.

To create an attachment, you must create a URL object that specifies the location of
the file that you want to attach to the SOAP message. You must also create a data
handler that will be used to interpret the data in the attachment. Finally, you need
to add the attachment to the SOAP message.

To create and add an attachment part to the message, you need to use the
JavaBeans Activation Framework (JAF) API. This API allows you to determine the
type of an arbitrary piece of data, encapsulate access to it, discover the operations
available on it, and activate a bean that can perform these operations. You must
include the activation.jar library in your application code in order to work with
the JavaBeans Activation Framework.

➤ To create and add an attachment

1. Create a URL object and initialize it to contain the location of the file that you
want to attach to the SOAP message.

URL url = new URL("http://wombats.com/img.jpg");

2. Create a data handler and initialize it with a default handler, passing the URL
as the location of the data source for the handler.

DataHandler dh = new DataHandler(url);

3. Create an attachment part that is initialized with the data handler containing
the url for the image.

AttachmentPart ap1 = message.createAttachmentPart(dh);

4. Add the attachment part to the SOAP message.

myMessage.addAttachmentPart(ap1);

After creating the attachment and adding it to the message, you can send the
message in the usual way.

SOAP Messaging Models and Examples

108 Sun ONE Message Queue • Developer’s Guide • October, 2002

If you are using JMS to send the message, you can use the
SOAPMessageIntoJMSMessage conversion utility to convert a SOAP message that
has an attachment into a JMS message that you can send to a JMS queue of topic
using MQ.

Exception and Fault Handling
A SOAP application can use two error reporting mechanisms: SOAP exceptions
and SOAP faults:

• Use a SOAP exception to handle errors that occur on the client side during the
generation of the soap request or the unmarshalling of the response.

• Use a SOAP fault to handle errors that occur on the server side when
unmarshalling the request, processing the message, or marshalling the
response. In response to such an error, server-side code should create a SOAP
message that contains a fault element, rather than a body element, and then it
should send that SOAP message back to the originator of the message. If the
message receiver is not the ultimate destination for the message, it should
identify itself as the soapactor so that the message sender knows where the
error occurred. For additional information, see “Handling SOAP Faults” on
page 114.

Writing a SOAP Client
The following steps show the calls you have to make to write a SOAP client for
point-to-point messaging.

1. Get an instance of a SOAPConnectionFactory:

SOAPConnectionFactory myFct = SOAPConnectionFactory.newInstance();

2. Get a SOAP connection from the SOAPConnectionFactory object:

SOAPConnection myCon = myFct.createConnection();

The myCon object that is returned will be used to send the message.

3. Get a MessageFactory object to create a message:

MessageFactory myMsgFct = MessageFactory.newInstance();

SOAP Messaging Models and Examples

Chapter 5 Working With SOAP Messages 109

4. Use the message factory to create a message.

SOAPMessage message = myMsgFct.createMessage();

The message that is created has all the parts that are shown in the next figure.

At this point, the message has no content. To add content to the message, you
need to create a SOAP body element, define a name and content for it, and then
add it to the SOAP body.

Remember that to access any part of the message, you need to traverse the tree,
calling a get method on the parent element to obtain the child. For example, to
reach the SOAP body, you start by getting the SOAP part and SOAP envelope:

SOAPPart mySPart = message.getSOAPPart();

SOAPEnvelope myEnvp = mySPart.getEnvelope();

5. Now, you can get the body element from the myEnvp object:

SOAPBody body = myEnvp.getBody();

The children that you will add to the body element define the content of the
message. (You can add content to the SOAP header in the same way.)

SOAP Message

SOAP Part

SOAP
 Envelope

SOAP
Header

SOAP
Body

SOAP Messaging Models and Examples

110 Sun ONE Message Queue • Developer’s Guide • October, 2002

6. When you add an element to a SOAP body (or header), you must first create a
name for it by calling the envelope.createName method. This method returns
a Name object, which you must then pass as a parameter to the method that
creates the body element (or the header element).

Name bodyName = envelope.createName("GetLastTradePrice", "m",
 "http://eztrade.com")

SOAPBodyElement gltp = body.addBodyElement(bodyName);

7. Now, we’ll create another body element to add to the gltp element:

Name myContent = envelope.createName("symbol");

SOAPElement mySymbol = gltp.addChildElement(myContent);

8. And now you can define data for the body element mySymbol:

mySymbol.addTextNode("SUNW");

The resulting SOAP message object is equivalent to this XML scheme:

9. Every time you send a message or write to it, the message is automatically
saved. However if you change a message you have received or one that you
have already sent, this would be the point when you would need to update the
message by saving all your changes. For example:

message.saveChanges();

10. Before you send the message, you must create a URLEndpoint object with the
URL of the endpoint to which the message is to be sent. (If you use a profile
that adds addressing information to the message header, you do not need to do
this.)

URLEndpoint endPt = new
 URLEndpoint("http://eztrade.com//quotes");

<SOAP-ENV: Envelope
xmlns:SOAPENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="http://eztrade.com">
<symbol>SUNW</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV: Envelope>

SOAP Messaging Models and Examples

Chapter 5 Working With SOAP Messages 111

11. Now, you can send the message:

SOAPMessage reply = myCon.call(message, endPt);

The reply message (reply) is received on the same connection.

12. Finally, you need to close the SOAPConnection object when it is no longer
needed:

myCon.close();

Writing a SOAP Service
A SOAP service represents the final recipient of a SOAP message and should
currently be implemented as a servlet. You can write your own servlet or you can
extend the JAXMServlet class, which is furnished in the soap.messaging package
for your convenience. This section describes the task of writing a SOAP service
based on the JAXMServlet class.

Your servlet must implement either the ReqRespListener or OneWayListener
interfaces. The difference between these two is that ReqRespListener requires that
you return a reply.

Using either of these interfaces, you must implement a method called
onMessage(SOAPMsg). JAXMservlet will call onMessage after receiving a message
using the HTTP POST method, which saves you the work of implementing your
own doPost() method to convert the incoming message into a SOAP message.

Code Example 5-4 shows the basic structure of a SOAP service that uses the JAXM
servlet utility class.

Code Example 5-4 Skeleton Message Consumer

public class MyServlet extends JAXMServlet implements
ReqRespListener

{
public SOAPMessage onMessage(SOAP Message msg)
{ //Process message here
}

}

SOAP Messaging Models and Examples

112 Sun ONE Message Queue • Developer’s Guide • October, 2002

Code Example 5-5 shows a simple ping message service:

Table 5-3 describes the methods that the JAXM servlet uses. If you were to write
your own servlet, you would need to provide methods that performed similar
work. In extending JAXMServlet, you may need to override the Init method and
the SetMessageFactory method; you must implement the onMessage method.

Code Example 5-5 A Simple Ping Message Service

public class SOAPEchoServlet extends JAXMServlet
implements ReqRespListener{

public SOAPMessage onMessage(SOAPMessage mySoapMessage) {
return mySoapMessage

}
}

Table 5-3 JAXMServlet Methods

Method Description

void init
(ServletConfig)

Passes the ServletConfig object to its parent’s
constructor and creates a default messageFactory
object.

If you want incoming messages to be constructed
according to a certain profile, you must call the
SetMessageFactory method and specify the profile it
should use in constructing SOAP messages.

void doPost
(HTTPRequest,
HTTPResponse

Gets the body of the HTTP request and creates a SOAP
message according to the default or specified
MessageFactory profile.

Calls the onMessage() method of an appropriate listener,
passing the SOAP message as a parameter.

It is recommended that you do not override this method.

void
setMessageFactory
(MessageFactory)

Sets the MessageFactory object. This is the object used
to create the SOAP message that is passed to the
onMessage method.

MimeHeaders
getHeaders
(HTTPRequest)

Returns a MimeHeaders object that contains the headers
in the given HTTPRequest object.

SOAP Messaging Models and Examples

Chapter 5 Working With SOAP Messages 113

Disassembling Messages
The onMessage method needs to disassemble the SOAP message that is passed to it
by the servlet and process its contents in an appropriate manner. If there are
problems in the processing of the message, the service needs to create a SOAP fault
object and send it back to the client as described in “Handling SOAP Faults” on
page 114.

Processing the SOAP message may involve working with the headers as well as
locating the body elements and dealing with their contents. The following code
sample shows how you might disassemble a SOAP message in the body of your
onMessage method. Basically, you need to use a Document Object Model (DOM)
API to parse through the SOAP message.

See http://xml.coverpages.org/dom.html for more information about the
DOM API.

void putHeaders
(mimeHeaders,
HTTPresponse)

 Sets the given HTTPResponse object with the headers in
the given MimeHeaders object

onMessage
(SOAPMesssage)

User-defined method that is called by the servlet when the
SOAP message is received. Normally this method needs to
disassemble the SOAP message passed to it and to send a
reply back to the client (if the servlet implements the
ReqRespListener interface.)

Code Example 5-6 Processing a SOAP Message

{http://xml.coverpages.org/dom.html
SOAPEnvelope env = reply.getSOAPPart().getEnvelope();
SOAPBody sb = env.getBody();

// create Name object for XElement that we are searching for
Name ElName = env.createName("XElement");

//Get child elements with the name XElement
 Iterator it = sb.getChildElements(ElName);

//Get the first matched child element.
//We know there is only one.

 SOAPBodyElement sbe = (SOAPBodyElement) it.next();

Table 5-3 JAXMServlet Methods (Continued)

Method Description

SOAP Messaging Models and Examples

114 Sun ONE Message Queue • Developer’s Guide • October, 2002

Handling Attachments
A SOAP message may have attachments. For sample code that shows you how to
create and add an attachment, see Code Example 5-7 on page 124. For sample code
that shows you how to receive and process an attachment, see Code Example 5-8
on page 127.

In handling attachments, you will need to use the Java Activation Framework API.
See http://java.sun.com/products/javabeans/glasgow/jaf.html for more
information.

Replying to Messages
In replying to messages, you are simply taking on the client role, now from the
server side.

Handling SOAP Faults
Server-side code must use a SOAP fault object to handle errors that occur on the
server side when unmarshalling the request, processing the message, or
marshalling the response. The SOAPFault interface extends the SOAPBodyElement
interface.

SOAP messages have a specific element and format for error reporting on the
server side: a SOAP message body can include a SOAP fault element to report
errors that happen during the processing of a request. Created on the server side
and sent from the server back to the client, the SOAP message containing the
SOAPFault object reports any unexpected behavior to the originator of the
message.

Within a SOAP message object, the SOAP fault object is a child of the SOAP body,
as shown in Figure 5-8. Detail and detail entry objects are only needed if one needs
to report that the body of the received message was malformed or contained
inappropriate data. In such a case, the detail entry object is used to describe the
malformed data.

//Get the value for XElement
 MyValue = sbe.getValue();
}

Code Example 5-6 Processing a SOAP Message (Continued)

{http://xml.coverpages.org/dom.html
SOAPEnvelope env = reply.getSOAPPart().getEnvelope();

SOAP Messaging Models and Examples

Chapter 5 Working With SOAP Messages 115

Figure 5-8 SOAP Fault Element

The SOAP Fault element defines the following four subelements:

• faultcode

A code (qualified name) that identifies the error. The code is intended for use
by software to provide an algorithmic mechanism for identifying the fault.
Predefined fault codes are listed in Table 5-4 on page 116. This element is
required.

• faultstring

A string that describes the fault identified by the fault code. This element is
intended to provide an explanation of the error that is understandable to a
human. This element is required.

SOAP Message

SOAP Part

SOAP
 Envelope

SOAP
Body

SOAP
Fault

Detail

Detail
Entry

SOAP Messaging Models and Examples

116 Sun ONE Message Queue • Developer’s Guide • October, 2002

• faultactor

A URI specifying the source of the fault: the actor that caused the fault along
the message path. This element is not required if the message is sent to its final
destination without going through any intermediaries. If a fault occurs at an
intermediary, then that fault must include a faultactor element.

• detail

This element carries specific information related to the Body element. It must
be present if the contents of the Body element could not be successfully
processed. Thus, if this element is missing, the client should infer that the body
element was processed. While this element is not required for any error except
a malformed payload, you can use it in other cases to supply additional
information to the client.

Predefined Fault Codes
The SOAP specification lists four predefined faultcode values. The namespace
identifier for these is http://schemas.xmlsoap.org/soap/envelope/.

Table 5-4 SOAP Faultcode Values

Faultcode Name Meaning

VersionMismatch The processing party found an invalid namespace for the
SOAP envelope element; that is, the namespace of the SOAP
envelope element was not
http://schemas.xmlsoap.org/soap/envelope/.

MustUnderstand An immediate child element of the SOAP Header element
was either not understood or not appropriately processed by
the recipient. This element’s mustUnderstand attribute was
set to 1 (true).

Client The message was incorrectly formed or did not contain the
appropriate information. For example, the message did not
have the proper authentication or payment information. The
client should interpret this code to mean that the message
must be changed before it is sent again.

If this is the code returned, the SOAPFault object should
probably include a detailEntry object that provides
additional information about the malformed message.

SOAP Messaging Models and Examples

Chapter 5 Working With SOAP Messages 117

These standard fault codes represent classes of faults. You can extend these by
appending a period to the code and adding an additional name. For example: you
could define a Server.OutOfMemory code, a Server.Down code, etc.

Defining a SOAP Fault
Using JAXM you can specify the value for faultcode, faultstring, and
faultactor using methods of the SOAPFault object. The following code creates a
SOAP fault object and sets the faultcode, faultstring, and faultactor
attributes:

The server can return this object in its reply to an incoming SOAP message in case
of a server error.

Server The message could not be processed for reasons that are not
connected with its content. For example, one of the message
handlers could not communicate with another message
handler that was upstream and did not respond. Or, the
database that the server needed to access is down. The client
should interpret this error to mean that the transmission
could succeed at a later point in time.

SOAPFault fault;
reply = factory.createMessage();
envp = reply.getSOAPPart().getEnvelope(true);
someBody = envp.getBody();
fault = someBody.addFault():
fault.setFaultCode("Server");
fault.setFaultString("Some Server Error");
fault.setFaultActor(http://xxx.me.com/list/endpoint.esp/)
reply.saveChanges();

Table 5-4 SOAP Faultcode Values (Continued)

Faultcode Name Meaning

Integrating SOAP and MQ

118 Sun ONE Message Queue • Developer’s Guide • October, 2002

The next code sample shows how to define a detail and detail entry object. Note
that you must create a name for the detail entry object.

Integrating SOAP and MQ
This section explains how you can send, receive, and process a JMS message that
contains a SOAP payload.

MQ provides a utility to help you send and receive SOAP messages using the JMS
API. With the support it provides, you can convert a SOAP message into a JMS
message in order to take advantage of MQ’s reliable messaging service, and then
convert it back into a SOAP message on the receiving side and process it as such
using the JAXM API.

To send, receive, and process a JMS message that contains a SOAP payload you
must do the following:

• Import the library com.sun.messaging.xml.MessageTransformer. This is
the utility whose methods you will use to convert SOAP messages to JMS
messages and vice versa.

• Before you transport a SOAP message, you must call the
MessageTransformer.SOAPMessageIntoJMSMessage method. This method
transforms the SOAP message into a JMS message. You then send the resulting
JMS message as you would a normal JMS message. For programming
simplicity, it would be best to select a destination that is dedicated to receiving
SOAP messages. That is, you should create a particular queue or topic as a
destination for your SOAP message and then send only SOAP messages to this
destination.

SOAPFault fault = someBody.addFault();
fault.setFaultCode("Server");
fault.setFaultActor("http://foo.com/uri");
fault.setFaultString ("Unkown error");
Detail myDetail = fault.addDetail();
detail.addDetailEntry(envelope.createName("125detail", "m",

"Someuri")).addTextNode("the message cannot contain
the string //");

reply.saveChanges();

Integrating SOAP and MQ

Chapter 5 Working With SOAP Messages 119

Transforming a SOAP message into a JMS message involves making a call like
the following:

Message myMsg= MessageTransformer.SOAPMessageIntoJMSMessage
(SOAPMessage, Session);

The Session argument specifies the session to be used in producing the
Message.

• On the receiving side, you get the JMS message containing the SOAP payload
as you would a normal JMS message. You then call the
MessageTransformer.SOAPMessageFromJMSMessage utility to extract the
SOAP message, and then use JAXM to disassemble the SOAP message and do
any further processing. For example, to obtain the SOAPMessage make a call
like the following

SOAPMessage myMsg= MessageTransformer.SOAPMessageFromJMSMessage
 (Message, MessageFactory);

The MessageFactory argument specifies a message factory that the utility
should use to construct the SOAPMessage from the given JMS Message.

The following sections offer several use cases and code examples to illustrate this
process.

Example 1: Deferring SOAP Processing
In the first example, illustrated in Figure 5-9, an incoming SOAP message is
received by a servlet. After receiving the SOAP message, the servlet MyServlet
uses the MessageTransformer utility to transform the message into a JMS
message, and (reliably) forwards it to an application that receives it, turns it back
into a SOAP message, and processes the contents of the SOAP message.

 For information on how the servlet receives the SOAP message, see “Writing a
SOAP Service” on page 111.

Integrating SOAP and MQ

120 Sun ONE Message Queue • Developer’s Guide • October, 2002

Figure 5-9 Deferring SOAP Processing

➤ To transform the SOAP message into a JMS message and send the JMS message

1. Instantiate a ConnectionFactory object and set its attribute values, for
example:

QueueConnectionFactory myQConnFact =
new com.sun.messaging.QueueConnectionFactory();

2. Use the ConnectionFactory object to create a Connection object.

QueueConnection myQConn =
 myQConnFact.createQueueConnection();

3. Use the Connection object to create a Session object.

QueueSession myQSess = myQConn.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

4. Instantiate an MQ Destination administered object corresponding to a physical
destination in the MQ Message Service. In this example, the administered
object is mySOAPQueue and the physical destination to which it refers is
myPSOAPQ.

Queue mySOAPQueue = new com.sun.messaging.Queue("myPSOAPQ");

SOAPMsg

MyServlet

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

JMSMsg

JMSMsg

//process SOAP message here

SOAPMessageFromJMSMessage
(myJMS, myFactory)MyListener

MQ Broker

Integrating SOAP and MQ

Chapter 5 Working With SOAP Messages 121

5. Use the MessageTransformer utility, as shown, to transform the SOAP
message into a JMS message. For example, given a SOAP message named
MySOAPMsg,

Message MyJMS = MessageTransformer.SOAPMessageIntoJMSMessage
(MySOAPMsg, MyQSess);

6. Create a QueueSender message producer.

This message producer, associated with mySOAPQueue, is used to send
messages to the queue destination named myPSOAPQ.

QueueSender myQueueSender = myQSess.createSender(mySOAPQueue);

7. Send a message to the queue.

myQueueSender.send(myJMS);

➤ To receive the JMS message, transform it into a SOAP message, and process it:

1. Instantiate a ConnectionFactory object and set its attribute values.

QueueConnectioFactory myQConnFact = new
com.sun.messaging.QueueConnectionFactory();

2. Use the ConnectionFactory object to create a Connection object.

QueueConnection myQConn = myQConnFact.createQueueConnection();

3. Use the Connection object to create one or more Session objects.

QueueSession myRQSess = myQConn.createQueueSession(false,
 session.AUTO_ACKNOWLEDGE);

4. Instantiate a Destination object and set its name attribute.

Queue myRQueue = new com.sun.messaging.Queue("mySOAPQ");

5. Use a Session object and a Destination object to create any needed
MessageConsumer objects.

QueueReceiver myQueueReceiver =
myRQSess.createReceiver(myRQueue);

6. If needed, instantiate a MessageListener object and register it with a
MessageConsumer object.

7. Start the QueueConnection you created in Step 2. Messages for consumption
by a client can only be delivered over a connection that has been started.

myQConn.start();

Integrating SOAP and MQ

122 Sun ONE Message Queue • Developer’s Guide • October, 2002

8. Receive a message from the queue

The code, below, is an example of a synchronous consumption of messages.

Message myJMS = myQueueReceiver.receive();

9. Use the Message Transformer to convert the JMS message back to a SOAP
message.

SOAPMessage MySoap =
 MessageTransformer.SOAPMessageFromJMSMessage

(myJMS, MyMsgFactory);

If you specify null for the MessageFactory argument, the default Message
Factory is used to construct the SOAP Message.

10. Disassemble the SOAP message in preparation for further processing. See “The
SOAP Message Object” on page 93 for information.

Example 2: Publishing SOAP Messages
In the next example, illustrated in Figure 5-10, an incoming SOAP message is
received by a servlet. The servlet packages the SOAP message as a JMS message
and (reliably) forwards it to a topic. Each application that subscribes to this topic,
receives the JMS message, turns it back into a SOAP message, and processes its
contents.

Integrating SOAP and MQ

Chapter 5 Working With SOAP Messages 123

Figure 5-10 Publishing a SOAP Message

The code that accomplishes this is exactly the same as in the previous example,
except that instead of sending the JMS message to a queue, you send it to a topic.
For an example of publishing a SOAP message using MQ, see Code Example 5-7 on
page 124.

SOAPMsg

MyServlet

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

JMSMsg

JMSMsg

MyListener1

SOAPMessageFromJMSMessage
(myJMS, myFactory)

\\process message here

MyListener2

SOAPMessageFromJMSMessage
(myJMS, myFactory)

\\process message here

MyListener3

SOAPMessageFromJMSMessage
(myJMS, myFactory)

\\process message here

MQ Broker

Integrating SOAP and MQ

124 Sun ONE Message Queue • Developer’s Guide • October, 2002

Code Samples
This section includes and describes two code samples: one that sends a JMS
message with a SOAP payload, and another that receives the JMS/SOAP message
and processes the SOAP message.

Code Example 5-7 illustrates the use of the JMS API, the JAXM API, and the JAF
API to send a SOAP message with attachments as the payload to a JMS message.
The code shown for the SendSOAPMessageWithJMS includes the following
methods:

• a constructor that calls the init method to initialize all the JMS objects
required to publish a message.

• a send method that creates the SOAP message and an attachment, converts the
SOAP message into a JMS message, and publishes the JMS message.

• a close method that closes the connection

• a main method that calls the send and close methods.

Code Example 5-7 Sending a JMS Message with a SOAP Payload

//Libraries needed to build SOAP message
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.AttachmentPart;
import javax.xml.soap.Name

//Libraries needed to work with attachments (Java Activation Framework API)
import java.net.URL;
import javax.activation.DataHandler;

//Libraries needed to convert the SOAP message to a JMS message and to send it
import com.sun.messaging.xml.MessageTransformer;
import com.sun.messaging.BasicConnectionFactory;

//Libraries needed to set up a JMS connection and to send a message
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;
import javax.jms.JMSException;
import javax.jms.Session;
import javax.jms.Message;
import javax.jms.TopicSession;
import javax.jms.Topic;
import javax.jms.TopicPublisher;

Integrating SOAP and MQ

Chapter 5 Working With SOAP Messages 125

//Define class that sends JMS message with SOAP payload
public class SendSOAPMessageWithJMS{

TopicConnectionFactory tcf = null;
TopicConnection tc = null;
TopicSession session = null;
Topic topic = null;
TopicPublisher publisher = null;

//default constructor method
public SendSOAPMessageWithJMS(String topicName){
init(topicName);
}

//Method to nitialize JMS Connection, Session, Topic, and Publisher
public void init(String topicName) {
try {
tcf = new com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
publisher = session.createPublisher(topic);
}

//Method to create and send the SOAP/JMS message
public void send() throws Exception{
MessageFactory mf = MessageFactory.newInstance(); //create default factory
SOAPMessage soapMessage=mfcreateMessage(); //create SOAP message object
SOAPPart soapPart = soapMessage.getSOAPPart();//start to drill down to body
SOAPEnvelope soapEnvelope = soapPart.getEnvelope(); //first the envelope
SOAPBody soapBody = soapEnvelope.getBody();
Name myName = soapEnvelope.createName("HelloWorld", "hw",

 http;//www.sun.com/imq’); //name for body element
SOAPElement element = soapBody.addChildElement(myName); //add body element
element.addTextNode("Welcome to SUnOne Web Services."); //add text value

//Create an attachment with the Java Framework Activation API
URL url = new URL("http://java.sun.com/webservices/");
DataHandler dh = new DataHnadler (url);
AttachmentPart ap = soapMessage.createAttachmentPart(dh);

//Set content type and ID
ap.setContentType("text/html");
ap.setContentID(’cid-001");

//Add attachment to the SOAP message
soapMessage.addAttachmentPart(ap);
soapMessage.saveChanges();

//Convert SOAP to JMS message.
Message m = MessageTransformer.SOAPMessageIntoJMSMessage(soapMessage,

 session);

Code Example 5-7 Sending a JMS Message with a SOAP Payload (Continued)

Integrating SOAP and MQ

126 Sun ONE Message Queue • Developer’s Guide • October, 2002

Code Example 5-8 illustrates the use of the JMS API, the JAXM API, and the DOM
API to receive a SOAP message with attachments as the payload to a JMS message.
The code shown for the ReceiveSOAPMessageWithJMS includes the following
methods:

• a constructor that calls the init method to initialize all the JMS objects needed
to receive a message.

• an onMessage method that delivers the message and which is called by the
listener. The onMessage method also calls the message transformer utility to
convert the JMS message into a SOAP message and then uses the JAXM API to
process the SOAP body and the JAXM and DOM API to process the message
attachments.

• a main method that initializes the ReceiveSOAPMessageWithJMS class.

//Publish JMS message
publisher.publish(m);

//Close JMS connection
public void close() throws JMSException {
tc.close();

}

//Main program to send SOAP message with JMS
public static void main (String[] args) {
try {
String topicName = System.getProperty("TopicName");
if(topicName == null) {
topicName = "test";

}

SendSOAPMEssageWithJMS ssm = new SendSOAPMEssageWithJMS(topicName);
ssm.send();
ssm.close();

}
catch (Exception e) {
e.printStackTrace();

}
}

}

Code Example 5-7 Sending a JMS Message with a SOAP Payload (Continued)

Integrating SOAP and MQ

Chapter 5 Working With SOAP Messages 127

Code Example 5-8 Receiving a JMS Message with a SOAP Payload

//Libraries that support SOAP processing
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.AttachmentPart

//Library containing the JMS to SOAP transformer
import com.sun.messaging.xml.MessageTransformer;

//Libraries for JMS messaging support
import com.sun.messaging.TopicConnectionFactory

//Interfaces for JMS messaging
import javax.jms.MessageListener;
import javax.jms.TopicConnection;
import javax.jms.TopicSession;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.Topic;
import javax.jms.JMSException;
import javax.jms.TopicSubscriber

//Library to support parsing attachment part (from DOM API)
import java.util.iterator;

public class ReceiveSOAPMessageWithJMS implements MessageListener{
TopicConnectionFactory tcf = null;
TopicConnection tc = null;
TopicSession session = null;
Topic topic = null;
TopicSubscriber subscriber = null;
MessageFactory messageFactory = null;

//Default constructor
public ReceiveSOAPMessageWithJMS(String topicName) {
init(topicName);

}
//Set up JMS connection and related objects
public void init(String topicName){
try {
//Construct default SOAP message factory
messageFactory = MessageFactory.newInstance();

//JMS set up
tcf = new. com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSesstion(false, Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);
tc.start();

System.out.println("ready to receive SOAP m essages...");
}catch (Exception jmse){

Integrating SOAP and MQ

128 Sun ONE Message Queue • Developer’s Guide • October, 2002

jmse.printStackTrace();
}

}

//JMS messages are delivered to the onMessage method
public void onMessage(Message message){
try {
//Convert JMS to SOAP message
SOAPMessage soapMessage = MessageTransformer.SOAPMessageFromJMSMessage

(message, messageFactory);

//Print attchment counts
System.out.println("message received! Attachment counts:

" + soapMessage.countAttachments());

//Get attachment parts of the SOAP message
Iterator iterator = soapMessage.getAttachments();
while (iterator.hasNext()) {
//Get next attachment
AttachmentPart ap = (AttachmentPart) iterator.next();

//Get content type
String contentType = ap.getContentType();
System.out.println("content type: " + conent TYpe);

//Get content id
String contentID = ap.getContentID();
System.out.println("content Id:" + contentId);

//Check to see if this is text
if(contentType.indexOf"text")>=0 {
//Get and print string content if it is a text attachment
String content = (String) ap.getContent();
System.outprintln("*** attachment content: " + content);

}
}

}catch (Exception e) {
e.printStackTrace();

}
}

Code Example 5-8 Receiving a JMS Message with a SOAP Payload (Continued)

Integrating SOAP and MQ

Chapter 5 Working With SOAP Messages 129

//Main method to start sample receiver
public static void main (String[] args){
try {
String topicName = System.getProperty("TopicName");
if(topicName == null) {
topicName = "test";

}
ReceiveSOAPMessageWithJMS rsm = new ReceiveSOAPMessageWithJMS(topicName);

}catch (Exception e) {
e.printStackTrace();
}

}
}

Code Example 5-8 Receiving a JMS Message with a SOAP Payload (Continued)

Integrating SOAP and MQ

130 Sun ONE Message Queue • Developer’s Guide • October, 2002

131

Appendix A

Administered Object Attributes

This appendix provides reference tables for the attributes of the
ConnectionFactory, XAConnectionFactory, destination, and endpoint
administered objects.

ConnectionFactory Administered Object
Table A-1 summarizes the configurable properties of both ConnectionFactory
and XAConnectionFactory administered objects. The attributes are presented in
alphabetical order for quick reference. For groupings of these attributes in
functional categories, and a description of each, see “MQ Client Runtime
Configurable Properties” on page 69.

Table A-1 Connection Factory Attributes

Attribute/property name Type Default Value Reference

imqAckOnAcknowledge String not specified Table 4-5 on page 76

imqAckOnProduce String not specified Table 4-5 on page 76

imqAckTimeout String 0 millisecs Table 4-1 on page 71

imqBrokerHostName String localhost Table 4-1 on page 71

imqBrokerHostPort Integer 7676 Table 4-1 on page 71

imqBrokerServicePort Integer 0 Table 4-1 on page 71

imqConfiguredClientID String not specified Table 4-3 on page 74

imqConnectionType String TCP Table 4-1 on page 71

imqConnectionURL String http://localhost/
imq/tunnel

Table 4-1 on page 71

ConnectionFactory Administered Object

132 Sun ONE Message Queue • Developer’s Guide • October, 2002

imqDefaultPassword String guest Table 4-3 on page 74

imqDefaultUsername String guest Table 4-3 on page 74

imqDisableSetClientID Boolean false Table 4-3 on page 74

imqFlowControlCount Integer 100 Table 4-5 on page 76

imqFlowControlIsLimited Boolean false Table 4-5 on page 76

imqFlowControlLimit Integer 1000 Table 4-5 on page 76

imqJMSDeliveryMode Integer 2 (persistent) Table 4-4 on page 75

imqJMSExpiration Long 0 (does not expire) Table 4-4 on page 75

imqJMSPriority Integer 4 (normal) Table 4-4 on page 75

imqLoadMaxToServerSession Boolean true Table 4-7 on page 78

imqOverrideJMSDeliveryMode Boolean false Table 4-4 on page 75

imqOverrideJMSExpiration Boolean false Table 4-4 on page 75

imqOverrideJMSPriority Boolean false Table 4-4 on page 75

imqOverrideJMSHeadersTo
TemporaryDestinations

Boolean false Table 4-4 on page 75

imqQueueBrowserMaxMessages
PerRetrieve

Integer 1000 Table 4-6 on page 78

imqQueueBrowserRetrieveTimeout Long 60,000 millisecs Table 4-6 on page 78

imqReconnect Boolean false Table 4-2 on page 72

imqReconnectDelay Integer 30,000 millisecs Table 4-2 on page 72

imqReconnectRetries Integer 0 Table 4-2 on page 72

imqSetJMSXAppID Boolean false Table 4-8 on page 79

imqSetJMSXConsumerTXID Boolean false Table 4-8 on page 79

imqSetJMSXProducerTXID Boolean false Table 4-8 on page 79

imqSetJMSXRcvTimestamp Boolean false Table 4-8 on page 79

imqSetJMSXUserID Boolean false Table 4-8 on page 79

imqSSLIsHostTrusted Boolean true Table 4-1 on page 71

Table A-1 Connection Factory Attributes (Continued)

Attribute/property name Type Default Value Reference

Destination Administered Objects

Appendix A Administered Object Attributes 133

For more information on using ConnectionFactory administered objects see
Chapter 3, “Using Administered Objects.”

Destination Administered Objects
A destination administered object represents a physical destination (a queue or a
topic) in a broker to which the publicly-named destination object corresponds. Its
only attribute is the physical destination’s internal, provider-specific name. By
creating a destination object, you allow a client’s MessageConsumer and/or
MessageProducer objects to access the corresponding physical destination.

For more information on Destination administered objects see Chapter 3, “Using
Administered Objects.”

Endpoint Administered Objects
An endpoint administered object represents an endpoint object. By creating an
administered object for an endpoint, you allow the endpoint to be accessed
through a look-up operation while isolating specific endpoint information from
application code or particular provider requirements. You can set one or more
attributes for an endpoint administered object. These are described in Table A-3.

Table A-2 Destination Attributes

Attribute/property name Type Default

imqDestinationDescription String A Description for the
Destination Object

imqDestinationName String1

1. Destination names can contain only alphanumeric characters (no spaces) and must begin with an alphabetic
character or the characters “_” and/or “$”.

Untitled_Destination_Object

Endpoint Administered Objects

134 Sun ONE Message Queue • Developer’s Guide • October, 2002

For additional information about endpoint administered objects, see “Using JAXM
Administered Objects” on page 102.

Table A-3 Endpoint Attributes

Attribute Name Type Description

imqSOAPEndpointList String A list containing one or more url’s delimited
by spaces. This list contains the url’s of all
endpoints to which you want to broadcast a
SOAP message. Each URL should be
associated with a servlet that can receive and
process a SOAP message.

imqEndpointName String The name of the endpoint object.

Default: Untitled_Endpoint_Object

imqEndpointDescription String A description of the endpoint and its use.

Default: A description for the
endpoint object.

135

Index

A
acknowledgements

about 37
broker, See broker acknowledgements
client, See client acknowledgements
wait period for 131

administered objects
about 27, 32, 57
connection factory, See connection factory

administered objects
destination, See destination administered objects
instantiation of 60
JAXM, for 102
JNDI lookup of 58
provider independence, and 58
types 32
types of 57
XA connection factory, See connection factory

administered objects
administration tools 27
application servers 43
applications, See JMS clients
AUTO_ACKNOWLEDGE mode 68
auto-reconnect

behavior 72
connection factory attributes, and 72

B
broker acknowledgements

about 66
on produce 76, 131
wait period for client 71

C
client acknowledgements

about 68
effect on performance 81
modes, See client acknowledgement modes

client acknowledgment modes
AUTO_ACKNOWLEDGE 68
CLIENT_ACKNOWLEDGE 68
DUPS_OK_ACKNOWLEDGE 68

client applications, See JMS clients
client identifier (ClientID)

about 73
setting in connection factory 73
setting programmatically 73

client runtime
about 26
message consumption, and 67
message production, and 66

CLIENT_ACKNOWLEDGE mode 68

Section D

136 Sun ONE Message Queue • Developer’s Guide • October, 2002

components
EJB 41
MDB 42

connection factory administered objects
about 31
attributes 70
ClientID, and 36
instantiation of 61
JNDI lookup 32
JNDI lookup of 59
overriding attribute values 63
overriding message header fields 75

connections
about 31
auto-reconnect, See auto-reconnect

consumers 32
containers

EJB 42
MDB 42

D
delivery modes

effects on performance 80
non-persistent 37
persistent 37

delivery, reliable 37
destination administered objects

about 30
attributes 133
instantiation of 62
lookup of 60

directory variables
IMQ_HOME 18
IMQ_JAVAHOME 19
IMQ_VARHOME 18

distributed transactions
about 38
XA resource manager 38
See also XA connection factories

domains 34
DUPS_OK_ACKNOWLEDGE mode 68
durable subscribers, See durable subscriptions

durable subscriptions
about 34
ClientID, and 36

E
editions, product

about 24
enterprise 25
platform 24

enterprise edition 25
environment variables, See directory variables

F
flow count, message 81
flow limit, message 81

I
IMQ_HOME directory variable 18
IMQ_JAVAHOME directory variable 19
IMQ_VARHOME directory variable 18
imqAckOnAcknowledge attribute 76, 131
imqAckOnProduce attribute 76, 131
imqAckTimeout attribute 71, 131
imqBrokerHostName attribute 71, 131
imqBrokerHostPort attribute 71, 131
imqBrokerServicetPort attribute 71, 131
imqConfiguredClientID attribute 74, 131
imqConnectionType attribute 71, 131
imqConnectionURL attribute 71, 131
imqDefaultPassword attribute 74, 132
imqDefaultUsername attribute 74, 132
imqDestinationDescription attribute 133
imqDestinationName attribute 133
imqDisableSetClientID attribute 74, 132

Section J

Index 137

imqEndpointDescription attribute 134
imqEndpointName attribute 134
imqFlowControlCount attribute 77, 132
imqFlowControlIsLimited attribute 77, 132
imqFlowControlLimit attribute 77, 132
imqJMSDeliveryMode attribute 75, 132
imqJMSExpiration attribute 75, 132
imqJMSPriority attribute 75, 132
imqLoadMaxToServerSession attribute 78, 132
imqOverrideJMSDeliveryMode attribute 75, 132
imqOverrideJMSExpiration attribute 75, 132
imqOverrideJMSHeadersToTemporaryDestinations

attribute 75, 132
imqOverrideJMSPriority attribute 75, 132
imqQueueBrowserMax MessagesPerRetrieve

attribute 78, 132
imqQueueBrowserRetrieveTimeout attribute 78, 132
imqReconnect attribute 72, 132
imqReconnectDelay attribute 73, 132
imqReconnectRetries attribute 73, 132
imqSetJMSXAppID attribute 79, 132
imqSetJMSXConsumerTXID attribute 79, 132
imqSetJMSXProducerTXID attribute 79, 132
imqSetJMSXRcvTimestamp attribute 79, 132
imqSetJMSXUserID attribute 79, 132
imqSOAPEndpointList attribute 134
imqSSLIsHostTrusted attribute 71, 132

J
J2EE applications

EJB specification 41
JMS, and 41
message-driven beans, See message driven-beans

JAF API 107
JAXM API

about 93
client code 108
exception handling 108
fault handling 108, 114
javax.xml.messaging package 93

javax.xml.soap package 93
JAXM servlet 111
programming model for SOAP 86, 93, 104
service code 111

JAXM servlet 111
JAXM specification 15, 21
JMS API 28
JMS clients

about 28
client runtime, and 26
compiling 53
development steps 50
examples 54
performance, See performance
programming model 28
provider-independence 36
running 53
setup summary 33
system properties, and 63

JMS specification 15, 20
JMSCorrelationID message header field 29
JMSDeliveryMode message header field 29, 74
JMSDestination message header field 29
JMSExpiration message header field 29, 74
JMSMessageID message header field 29
JMSPriority message header field 29, 74
JMSRedelivered message header field 29
JMSReplyTo message header field 29
JMSTimestamp message header field 29
JMSType message header field 29
JNDI

administered objects, and 36
connection factory lookup 32, 59
destination lookup 60
message-driven beans, and 43
MQ support of 24

L
LDAP object store 59
licenses

for MQ editions 24

Section M

138 Sun ONE Message Queue • Developer’s Guide • October, 2002

listeners 42
listeners, message

about 32
asynchronous consumption, and 68

M
MDB See message-driven beans
message consumers 32
message consumption

about 67
asynchronous 40
synchronous 40

message delivery models 34
message headers

fields 29
overrides 74

message listeners, See listeners
message producers 31
message-driven beans

about 42
application server support 43
deployment descriptor 43
MDB container 42

MessageFactory object 112
messages

about 28
body 30
consumption of, See message consumption
delivery models 34
delivery modes, See delivery modes
delivery of 65
duplicate sends 68
flow count 81
flow limits 81
headers, See message headers
listeners for, See listeners, message
ordering of 41
persistent 37
persistent storage 39
point-to-point delivery 34
prioritizing 41

production of 66
properties of 29
publish/subscribe delivery 34
reliable delivery of 37
selection and filtering of 40
SOAP payloads, with 118

messaging system, architecture 26
MimeHeaders object 112
MQ message server 26

N
namespaces, in SOAP 97

O
object stores

administered objects, and 57
file system 59
LDAP server 59

OnewayListener object 107
onMessage() method 112

P
passwords, default 74, 132
performance

effect of delivery mode 80
effect of sessions and connections on 83
factors affecting 80
message flow count 81
message flow limit 81
message service resources 75

persistence
about 39
delivery modes, See delivery modes
persistent messages 37

platform edition 24

Section Q

Index 139

point-to-point delivery 34
producers 31
programming domains 34
provider independence

about 36
administered objects, and 58

publish/subscribe delivery 34

Q
queue destinations 34

R
reconnect, automatic See auto-reconnect
reliable delivery 37
ReqRespListener object 105

S
selection, of messages 40
ServletConfig object 112
sessions

about 31
acknowledgement options for 37
transacted 37

Simple Object Access Protocol (SOAP) 24
SOAP message

attachments to 107
disassembling 113
envelope 89
header 90
MIME envelope for 91
models of 90
Name object 99
payload to JMS message, as 118
SOAPMessage object 93
structure of 90

SOAP messaging
attachments, using 107
client code 108
connections 101
endpoints 100
exception handling 108
fault codes 115
fault handling 108, 114
layers of 86
message factories 101
namespaces 97
point-to-point connections 105
programming models 104
protocol for 85
provider connections 106
service code 111
SOAPMessageFromJMSMessage method 119
SOAPMessageIntoJMSMessage utility 118

system properties, setting 63

T
topic destinations 34
transactions

about 37
distributed, See distributed transactions

U
URLEndpoint object 110
user names 74, 132

W
web services 85

Section X

140 Sun ONE Message Queue • Developer’s Guide • October, 2002

X
XA connection factories

about 39
See also connection factory administered objects

XA resource manager, See distributed transactions

	Contents
	List of Figures
	List of Tables
	List of Procedures
	List of Code Examples
	Preface
	Audience for This Guide
	Organization of This Guide
	Conventions
	Text Conventions
	Directory Variable Conventions

	Other Documentation Resources
	The MQ Documentation Set
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification
	The Java XML Messaging (JAXM) Specification
	Books on JMS Programming

	1 Overview
	What Is Sun ONE Message Queue?
	Product Editions
	Platform Edition
	Enterprise Edition

	MQ Messaging System Architecture
	The JMS Programming Model
	JMS Programming Interface
	Message
	Destination
	ConnectionFactory
	Connection
	Session
	Message Producer
	Message Consumer
	Message Listener

	Administered Objects
	JMS Client Setup Operations
	To set up a JMS client to produce messages
	To set up a JMS client to consume messages

	JMS Client Design Issues
	Programming Domains
	JMS Provider Independence
	Client Identifiers
	Reliable Messaging
	Acknowledgements/Transactions
	Persistent Storage

	Performance Trade-offs
	Message Consumption: Synchronous and Asynchronous
	Message Selection
	Message Order and Priority

	JMS/J2EE Programming: Message-driven Beans
	Message-driven Beans
	Application Server Support

	2 Quick Start Tutorial
	Setting Up Your Environment
	Setting the JAVA_HOME Variable
	Setting the CLASSPATH Variable

	Starting and Testing the MQ Message Server
	To start a broker
	To test a broker

	Developing a Simple Client Application
	To program the HelloWorldMessage example application

	Compiling and Running a Client Application
	To compile and run the HelloWorldMessage application

	Example Application Code
	JMS Examples
	JAXM Examples

	3 Using Administered Objects
	JNDI Lookup of Administered Objects
	Looking Up ConnectionFactory Objects
	To perform a JNDI lookup of a ConnectionFactory object

	Looking Up Destination Objects
	To perform a JNDI lookup of a Destination object

	Instantiating Administered Objects
	Instantiating ConnectionFactory Objects
	To directly instantiate and configure a ConnectionFactory object

	Instantiating Destination Objects
	To directly instantiate and configure a Destination object

	Starting Client Applications With Overrides

	4 Optimizing Clients
	Message Production and Consumption
	Message Production
	Message Consumption

	MQ Client Runtime Configurable Properties
	Connection Specification
	Auto-reconnect Behavior
	Client Identification
	Message Header Overrides
	Reliability And Flow Control
	Queue Browser Behavior
	Application Server Support
	JMS-defined Properties Support

	Performance Issues
	Managing Flow Control
	Factors Affecting Performance
	Impact of Flow Control Settings

	Managing Threads

	5 Working With SOAP Messages
	What is SOAP
	SOAP and the JAVA for XML Messaging API
	The Transport Layer
	The SOAP Layer
	The Provider Layer
	The Profiles Layer

	The SOAP Message
	SOAP Packaging Models

	SOAP Messaging in JAVA
	The SOAP Message Object
	Inherited Methods
	Namespaces

	Destination, Message Factory, and Connection Objects
	Endpoint
	Message Factory
	Connection

	Using JAXM Administered Objects
	SOAP Messaging Models and Examples
	SOAP Messaging Programming Models
	Point-to-Point Connections
	Provider Connections

	Working with Attachments
	To create and add an attachment

	Exception and Fault Handling
	Writing a SOAP Client
	Writing a SOAP Service
	Disassembling Messages
	Handling Attachments
	Replying to Messages
	Handling SOAP Faults

	Integrating SOAP and MQ
	Example 1: Deferring SOAP Processing
	To transform the SOAP message into a JMS message and send the JMS message
	To receive the JMS message, transform it into a SOAP message, and process it:

	Example 2: Publishing SOAP Messages
	Code Samples

	A Administered Object Attributes
	ConnectionFactory Administered Object
	Destination Administered Objects
	Endpoint Administered Objects

	Index
	A
	B
	C
	D
	E
	F
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X

