
Deployment Guide
SunTM ONE Directory Server

Version 5.2

816-6700-10
June 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved. U.S. Government Rights - Commercial
software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. This
distribution may include materials developed by third parties.Parts of the product may be derived from Berkeley BSD systems, licensed from the University of
California. UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.Sun, Sun Microsystems, the Sun
logo, Java, Solaris, SunTone, Sun[tm] ONE, The Network is the Computer, the SunTone Certified logo and the Sun[tm] ONE logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Mozilla, Netscape, and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and other
countries. Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the export or
import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly
prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO
BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de Sun Microsystems, Inc., ainsi qu
aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à celles-ci.Cette distribution peut comprendre des composants
développés pardes tierces parties.Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une
marque déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.Sun, Sun Microsystems, le logo Sun, Java, Solaris,
SunTone, Sun[tm] ONE, The Network is the Computer, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des
marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc. Mozilla, Netscape, et Netscape Navigator sont des marques de Netscape Communications Corporation aux Etats-Unis et
dans d’autres pays. Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en matière de
contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs
finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement
interdites. Les exportations ou réexportations vers des pays sous embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations et la liste de ressortissants
spécifiquement désignés, sont rigoureusement interdites.LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS,
DECLARATIONS ET GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE,
Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE
OU A L’ABSENCE DE CONTREFAÇON.

3

Contents

Purpose of This Guide . 9
Prerequisites . 9
Typographical Conventions . 10
Default Paths and Filenames . 10
Downloading Directory Server Tools . 12
Suggested Reading . 12

Part 1 Directory Server Design . 15

Chapter 1 Directory Server Design and Deployment Overview . 17
Directory Design Overview . 17

Design Process Outline . 18
Directory Deployment Overview . 19

Chapter 2 Planning and Accessing Directory Data . 21
Introduction to Directory Data . 21

What Your Directory Might Include . 22
What Your Directory Should Not Include . 23

Defining Your Directory Needs . 23
Accessing Your Directory Data with DSML over HTTP/SOAP . 24

DSMLv2 Over HTTP/SOAP Deployment . 25
Performing a Site Survey . 27

Identifying the Applications That Use Your Directory . 28
Identify How Applications Will Access Your Directory . 30
Identifying Data Sources . 30
Characterizing Your Directory Data . 31
Determining Directory Availability Requirements . 32
Considering a Data Master Server . 32
Determining Data Ownership . 34

4 Sun ONE Directory Server Deployment Guide • June 2003

Determining Data Access . 35
Documenting Your Site Survey . 37
Repeating the Site Survey . 38

Chapter 3 Designing the Schema . 39
Sun ONE Directory Server Schema . 40
Schema Design Process Overview . 41
Mapping Your Data to the Default Schema . 41

Viewing the Default Directory Schema . 41
Matching Data to Schema Elements . 42

Customizing the Schema . 43
When to Extend Your Schema . 44
Getting and Assigning Object Identifiers . 45
Naming Attributes and Object Classes . 45
Strategies for Defining New Object Classes . 46
Strategies for Defining New Attributes . 47
Deleting Schema Elements . 48
Creating Custom Schema Files - Best Practices and Pitfalls . 49

Maintaining Data Consistency . 52
Schema Checking . 52
Selecting Consistent Data Formats . 54
Maintaining Consistency in Replicated Schema . 54

Other Schema Resources . 55

Chapter 4 Designing the Directory Tree . 57
Introduction to the Directory Tree . 57
Designing Your Directory Tree . 58

Choosing a Suffix . 58
Creating Your Directory Tree Structure . 60
Naming Entries . 67

Grouping Directory Entries and Managing Attributes . 70
Static and Dynamic Groups . 71
Managed, Filtered, and Nested Roles . 72
Role Enumeration and Role Membership Enumeration . 74
Role Scope . 74
Role Limitations . 76
Deciding Between Groups and Roles . 77
Managing Attributes with Class of Service (CoS) . 79
About CoS . 80
Cos Definition Entries and CoS Template Entries . 81
CoS Priorities . 83
Pointer CoS, Indirect CoS, and Classic CoS . 83

5

CoS Limitations . 88
Directory Tree Design Examples . 89

Directory Tree for an International Enterprise . 89
Directory Tree for an ISP . 90

Other Directory Tree Resources . 91

Chapter 5 Designing the Directory Topology . 93
Topology Overview . 93
Distributing Your Data . 94

Using Multiple Databases . 94
About Suffixes . 96

About Referrals and Chaining . 100
Using Referrals . 100
Using Chaining . 108
Deciding Between Referrals and Chaining . 110

Chapter 6 Designing the Replication Process . 115
Introduction to Replication . 115

Replication Concepts . 116
Common Replication Scenarios . 125

Single-Master Replication . 125
Multi-Master Replication . 127
Cascading Replication . 134
Mixed Environments . 138
Fractional Replication . 139

Defining a Replication Strategy . 142
Replication Backward Compatibility . 143
Replication Survey . 144
Replication Resource Requirements . 145
Using Replication for High Availability . 146
Using Replication for Local Availability . 147
Using Replication for Load Balancing . 148
Example Replication Strategy for a Small Site . 153
Example Replication Strategy for a Large Site . 154
Replication Strategy for a Large, International Enterprise . 154

Using Replication with Other Directory Features . 155
Replication and Access Control . 155
Replication and Directory Server Plug-Ins . 155
Replication and Chained Suffixes . 157
Schema Replication . 157
Replication and Multiple Password Policies . 159

Replication Monitoring . 159

6 Sun ONE Directory Server Deployment Guide • June 2003

Chapter 7 Designing a Secure Directory . 163
About Security Threats . 164

Unauthorized Access . 164
Unauthorized Tampering . 165
Denial of Service . 165

Analyzing Your Security Needs . 165
Determining Access Rights . 166
Ensuring Data Privacy and Integrity . 167
Conducting Regular Audits . 167
Example Security Needs Analysis . 167

Overview of Security Methods . 168
Selecting Appropriate Authentication Methods . 169

Anonymous Access . 170
Simple Password . 171
Proxy Authorization . 172
Simple Password Over a Secure Connection . 172
Certificate-Based Client Authentication . 173
SASL-Based Client Authentication . 174

Preventing Authentication by Account Inactivation . 174
Designing your Password Policies . 175

Password Policy Features . 176
Configuring Your Password Policies . 179
Designing an Account Lockout Policy . 187
Designing Password Policies in a Replicated Environment . 187

Designing Access Control . 189
About the ACI Format . 190
Default ACIs . 194
Deciding How to Set Permissions . 195
Requesting Effective Rights Information . 198
Tips on Using ACIs . 206
ACI Limitations . 208

Securing Connections With SSL . 209
Encrypting Attributes . 211

What is Attribute Encryption? . 211
Attribute Encryption Implementation . 213
Attribute Encryption and Performance . 214
Attribute Encryption Usage Considerations . 215

Grouping Entries Securely . 216
Using Roles Securely . 217
Using CoS Securely . 217

Securing Configuration Information . 219
Other Security Resources . 220

7

Chapter 8 Monitoring Your Directory . 221
Defining a Monitoring and Event Management Strategy . 222
Directory Server Monitoring Tools . 222
Directory Server Monitoring . 224

Monitoring Directory Server Activity . 224
Monitoring Database Activity . 226
Monitoring Disk Status . 227
Monitoring Replication Activity . 228
Monitoring Indexing Efficiency . 229
Monitoring Security . 230

SNMP Monitoring . 231
About SNMP . 231
SNMP Monitoring in Sun ONE Directory Server . 233

Part 2 Directory Server Deployment Scenario and Reference Architectures 237

Chapter 9 Banking Deployment Scenario . 239
Business Challenge . 239
Deployment Context and Replication Topology . 240

Deployment Context . 240
Replication Topology . 241

Performance Requirements . 244
User Demands . 244
Hardware Guidelines . 245

Schema, Data, and Directory Information Tree Design . 246
Schema . 246
Data . 251
Directory Information Tree . 253

Security Considerations . 257
Implementation . 259

Chapter 10 Architectural Strategies . 263
Addressing Failure and Recovery . 264
Planning a Backup Strategy . 265

Choosing a Backup Method . 265
Choosing a Restoration Method . 270

Sample Replication Topologies . 273
Single Data Center . 273
Two Data Centers . 279
Three Data Centers . 282
Five Data Centers . 286

8 Sun ONE Directory Server Deployment Guide • June 2003

Single Data Center Using the Retro Change Log Plug-In . 290

Appendix A Accessing Data Using DSMLv2 Over HTTP/SOAP . 293
An Empty Anonymous DSML “Ping” Request . 293
A DSML Request Issuing a User Binding . 299
A DSML Search Request . 300

9

About This Guide

SunTM ONE Directory Server 5.2 is a powerful and scalable distributed directory
server based on the industry-standard Lightweight Directory Access Protocol
(LDAP). Sun ONE Directory Server software is part of the Sun Open Net
Environment (Sun ONE), Sun’s standards-based software vision, architecture,
platform, and expertise for building and deploying Services On Demand.

Sun ONE Directory Server is the cornerstone for building a centralized and
distributed data repository that can be used in your intranet, over your extranet
with your trading partners, or over the public Internet to reach your customers.

Purpose of This Guide
This guide provides you with a foundation for planning your directory. The
information provided here is intended primarily for directory decision-makers,
solution designers, and administrators.

This guide is divided into two parts. The first part introduces directory design
concepts, including schema design, the directory tree, topology, replication,
security, and monitoring. The second part presents a Sun ONE Directory Server 5.2
deployment scenario and reference replication architectures, which provide you
with an insight into some of the major concerns and issues you must address.

Prerequisites
Before reading this guide we strongly recommend that you read the online release
notes to obtain the latest information about new features and enhancements in this
release of Sun ONE Directory Server. The release notes can be found at

http://docs.sun.com/doc/816-6703-10/

Typographical Conventions

10 Sun ONE Directory Server Deployment Guide • June 2003

This guide assumes that you are already familiar with basic directory service and
LDAP concepts and that you have read the introduction to Sun ONE Directory
Server material, all of which are presented in the Sun ONE Directory Server Getting
Started Guide.

Typographical Conventions
This section explains the typographical conventions used in this book.

Monospaced font - This typeface is used for literal text, such as the names of
attributes and object classes when they appear in text. It is also used for URLs,
filenames, and examples.

Italic font - This typeface is used for emphasis, for new terms, and for text that you
must substitute for actual values, such as placeholders in path names.

The greater-than symbol (>) is used as a separator when naming an item in a menu
or sub-menu. For example, Object > New > User means that you should select the
User item in the New sub-menu of the Object menu.

Default Paths and Filenames
All path and filename examples in the Sun ONE Directory Server product
documentation are one of the following two forms:

• ServerRoot/... - The ServerRoot is the location of the Sun ONE Directory Server
product. This path contains the shared binary files of Directory Server, Sun
ONE Administration Server, and command line tools.

The actual ServerRoot path depends on your platform, your installation, and
your configuration. The default path depends on the product platform and
packaging as shown in Table 1.

• ServerRoot/slapd-serverID/... - The serverID is the name of the Directory
Server instance that you defined during installation or configuration. This path
contains database and configuration files that are specific to the given instance.

NOTE Notes, Cautions, and Tips highlight important conditions or
limitations. Be sure to read this information before continuing.

Default Paths and Filenames

About This Guide 11

Directory Server instances are located under ServerRoot/slapd-serverID/, where
serverID represents the server identifier given to the instance on creation. For
example, if you gave the name dirserv to your Directory Server, then the actual
path would appear as shown in Table 2. If you have created a Directory Server
instance in a different location, adapt the path accordingly.

NOTE Paths specified in this manual use the forward slash format of UNIX
and commands are specified without file extensions. If you are
using a Windows version of Sun ONE Directory Server, use the
equivalent backslash format. Executable files on Windows systems
generally have the same names with the .exe or .bat extension.

Table 1 Default ServerRoot Paths

Product Installation ServerRoot Path

Solaris 91

1. If you are working on the Solaris Operating Environment and are unsure which version of the Sun ONE
Directory Server software is installed, check for the existence a key package such as SUNWdsvu using the
pkginfo command. For example: pkginfo | grep SUNWdsvu.

/var/mps/serverroot - After configuration, this directory
contains links to the following locations:

• /etc/ds/v5.2 (static configuration files)

• /usr/admserv/mps/admin (Sun ONE Administration
Server binaries)

• /usr/admserv/mps/console (Server Console binaries)

• /usr/ds/v5.2 (Directory Server binaries)

Compressed Archive
Installation on Solaris and
Other Unix Systems

/var/Sun/mps

Zip Installation on
Windows Systems

C:\Program Files\Sun\MPS

Table 2 Default Example dirserv Instance Locations

Product Installation Instance Location

Solaris 9 /var/mps/serverroot/slapd-dirserv

Downloading Directory Server Tools

12 Sun ONE Directory Server Deployment Guide • June 2003

Downloading Directory Server Tools
Some supported platforms provide native tools for accessing Directory Server.
More tools for testing and maintaining LDAP directory servers, download the Sun
ONE Directory Server Resource Kit (DSRK). This software is available at the
following location:

http://wwws.sun.com/software/download/

Installation instructions and reference documentation for the DSRK tools is
available in the Sun ONE Directory Server Resource Kit Tools Reference.

For developing directory client applications, you may also download the Sun ONE
LDAP SDK for C and the Sun ONE LDAP SDK for Java from the same location.

Additionally, Java Naming and Directory Interface (JNDI) technology supports
accessing the Directory Server using LDAP and DSML v2 from Java applications.
Information about JNDI is available from:

http://java.sun.com/products/jndi/

The JNDI Tutorial contains detailed descriptions and examples of how to use JNDI.
It is available at:

http://java.sun.com/products/jndi/tutorial/

Suggested Reading
Sun ONE Directory Server product documentation includes the following
documents delivered in both HTML and PDF:

• Sun ONE Directory Server Getting Started Guide - Provides a quick look at many
key features of Directory Server 5.2.

Compressed Archive
Installation on Solaris
and Other Unix Systems

/usr/Sun/mps/slapd-dirserv

Zip Installation on
Windows Systems

C:\Program Files\Sun\MPS\slapd-dirserv

Table 2 Default Example dirserv Instance Locations (Continued)

Product Installation Instance Location

Suggested Reading

About This Guide 13

• the Sun ONE Directory Server Deployment Guide - Explains how to plan
directory topology, data structure, security, and monitoring, and discusses
example deployments.

• Sun ONE Directory Server Installation and Tuning Guide - Covers installation and
upgrade procedures, and provides tips for optimizing Directory Server
performance.

• Sun ONE Directory Server Administration Guide - Gives the procedures for using
the console and command-line to manage your directory contents and
configure every feature of Directory Server.

• Sun ONE Directory Server Reference Manual - Details the Directory Server
configuration parameters, commands, files, error messages, and schema.

• Sun ONE Directory Server Plug-In API Programming Guide - Demonstrates how
to develop Directory Server plug-ins.

• Sun ONE Directory Server Plug-In API Reference - Details the data structures and
functions of the Directory Server plug-in API.

• Managing Servers with Sun ONE Console - Discusses how to manage servers
using the Sun ONE Administration Server and Java based console.

• Sun ONE Directory Server Resource Kit Tools Reference - Covers installation and
features of the Sun ONE Directory Server Resource Kit, including many useful
tools.

Other useful information can be found on the following Web sites:

• Product documentation online:
http://docs.sun.com/coll/S1_DirectoryServer_52

• Sun software: http://wwws.sun.com/software/

• Sun ONE Services: http://www.sun.com/service/sunps/sunone/

• Sun Support Services: http://www.sun.com/service/support/

• Sun ONE for Developers: http://sunonedev.sun.com/

• Training: http://suned.sun.com/

Suggested Reading

14 Sun ONE Directory Server Deployment Guide • June 2003

NOTE Sun Microsystems Inc., is not responsible for the availability of
third-party Web sites mentioned in this document. Sun
Microsystems Inc., does not endorse and is not responsible or liable
for any content, advertising, products, or other material on or
available from such sites or resources. Sun Microsystems Inc. will
not be responsible or liable for any damage or loss caused or alleged
to be caused by or in connection with use of or reliance on any such
content, goods, or services that are available on or through any such
sites or resources.

15

Part 1

Directory Server Design

This part of the guide introduces directory design concepts and walks you through
the entire design process, including data design and access, schema design, the
directory tree, topology, replication, security, and monitoring. The aim of this part
of the guide is to familiarize you with the design concepts in substantial detail, and
to provide you with an understanding of what you must consider when designing
your directory deployment.

16 Sun ONE Directory Server Deployment Guide • June 2003

17

Chapter 1

Directory Server Design and
Deployment Overview

Sun ONE Directory Server provides a centralized directory service for your
intranet, network, and extranet information. Directory Server integrates with
existing systems and acts as a centralized repository for the consolidation of
employee, customer, supplier, and partner information. You can extend Directory
Server to manage user profiles and preferences, as well as extranet user
authentication.

An introduction to basic LDAP and directory concepts and to Sun ONE Directory
Server is provided in the Sun ONE Directory Server Getting Started Guide. This
chapter provides you with an overview of the directory design and deployment
process, and is divided into the following sections:

• Directory Design Overview

• Directory Deployment Overview

Directory Design Overview
Planning your directory service before actual deployment is the most important
task for ensuring the success of your directory. In the directory design phase you
will gather data about your directory requirements, such as environment and data
sources, users, and the applications that will use the directory. With this data, you
can design a directory service that meets your requirements.

The flexibility of Sun ONE Directory Server allows you to rework your design to
meet unexpected or changing requirements, even after you deploy Directory
Server. That said , the more modifications you can avoid through good design, the
better.

Directory Design Overview

18 Sun ONE Directory Server Deployment Guide • June 2003

Design Process Outline
The design process is broken into six steps:

• Planning and Accessing Directory Data

Your directory will contain data, such as user names, telephone numbers, and
group details. Chapter 2, “Planning and Accessing Directory Data”, helps you
analyze the various sources of data in your organization and understand their
relationship with one another. It describes the types of data you might store in
your directory, how you intend to access that data, and other tasks you need to
perform to design the contents of your Directory Server.

• Designing the Schema

Directory Server is designed to support one or more directory-enabled
applications. These applications have requirements of the data you store in
your directory, such as format requirements. Your directory schema
determines the characteristics of the data stored in your directory. Chapter 3,
“Designing the Schema”, introduces the standard schema shipped with Sun
ONE Directory Server, describes how to customize the schema, and provides
tips for maintaining consistent schema.

• Designing the Directory Tree

Once you decide what data your directory contains, you need to organize and
reference that data. This is the purpose of the directory tree. In Chapter 4,
“Designing the Directory Tree”, the directory tree is introduced. You are
guided through the design of your data hierarchy and introduced to the
mechanisms that help you optimize your entry grouping and attribute
management. Sample directory tree designs are also provided.

• Designing the Directory Topology

Topology design involves determining how you divide your directory tree
among multiple physical Directory Servers and how these servers
communicate with one another. Chapter 5, “Designing the Directory
Topology,” describes the general principles behind topology design, discusses
using multiple databases, describes the mechanisms available for linking your
distributed data together, and explains how Directory Server itself keeps track
of distributed data.

Directory Deployment Overview

Chapter 1 Directory Server Design and Deployment Overview 19

• Designing the Replication Process

With replication, multiple Directory Servers maintain the same directory data
to increase read performance and provide fault tolerance. Chapter 6,
“Designing the Replication Process”, describes how replication works, what
kinds of data you can replicate, common replication scenarios, and tips for
building a highly available directory service.

• Designing a Secure Directory

It is essential that you plan how to protect the data in the directory and design
the other aspects of your service to meet the security requirements of your
users and applications. Chapter 7, “Designing a Secure Directory,” describes
common security threats, provides an overview of security methods, discusses
the steps in analyzing your security needs, and provides tips for designing
access controls and protecting the integrity of your directory data.

• Monitoring Your Directory

Up to this point, you have concentrated on designing a directory service that
addresses your requirements and is as secure as possible. However, if you
cannot monitor your directory service satisfactorily, then you will not be able
to either evaluate the success of your directory service deployment or follow
the day-to-day directory activities. Chapter 8, “Monitoring Your Directory”
discusses how to monitor your directory using SNMP, the Directory Server
Console, the log files, database monitoring, and the replication monitoring
tools provided with Directory Server.

Directory Deployment Overview
After you have designed your directory service, you start the deployment phase.
The deployment phase consists of the following steps:

• Piloting Your Directory

• Putting Your Directory Into Production

Piloting Your Directory
The first step of the deployment phase is installing a server instance as a pilot and
testing whether your service can handle your user load. If the service is not
adequate, adjust your design and pilot it again. Adjust your pilot design until you
have a robust service that you can confidently introduce to your enterprise.

Directory Deployment Overview

20 Sun ONE Directory Server Deployment Guide • June 2003

For a comprehensive overview of creating and implementing a directory pilot,
refer to Understanding and Deploying LDAP Directory Services (T. Howes, M. Smith,
G. Good, Macmillan Technical Publishing, 1999).

Putting Your Directory Into Production
Once you have piloted and tuned the service, you need to develop and execute a
plan for taking the directory service from a pilot to production. Create a production
plan that includes the following:

• An estimate of the resources you need

• A list of the tasks you must perform before installing servers

• A schedule of what needs to be accomplished and when

• A set of criteria for measuring the success of your deployment

For information on administering and maintaining your directory, refer to the Sun
ONE Directory Server Administration Guide.

21

Chapter 2

Planning and Accessing Directory
Data

The data stored in your directory may include user names, e-mail addresses,
telephone numbers, and information about groups users belong to, or it may
contain other types of information. The type of data in your directory determines
how you structure the directory, to whom you allow access to the data, and how
this access is requested and granted. Sun ONE Directory Server 5.2 allows you to
access the directory data either via LDAP or DSML, which opens up the
possibilities in terms of the applications that can interact directly with your
directory data.

This chapter describes the issues and strategies behind planning and accessing
your directory’s data. It includes the following sections:

• Introduction to Directory Data

• Defining Your Directory Needs

• Accessing Your Directory Data with DSML over HTTP/SOAP

• Performing a Site Survey

Introduction to Directory Data
Some types of data are better suited to your directory than others. Ideal data for a
directory has some of the following characteristics:

• It is read more often than written.

Because the directory is tuned for read operations, write operations slow your
server’s performance down.

• It is expressible in attribute-data format (for example, surname=jensen).

Introduction to Directory Data

22 Sun ONE Directory Server Deployment Guide • June 2003

• It is of interest to more than one audience.

For example, an employee’s name or the physical location of a printer can be of
interest to many people and applications.

• It will be accessed from more than one physical location.

For example, an employee’s preference settings for a software application may
not seem to be appropriate for the directory because only a single instance of
the application needs access to the information. However, if the application is
capable of reading preferences from the directory and users might want to
interact with the application according to their preferences from different sites,
then it is very useful to include the preference information in the directory.

What Your Directory Might Include
Examples of data you can put in your directory are:

• Contact information, such as telephone numbers, physical addresses, and
e-mail addresses.

• Descriptive information, such as an employee number, job title, manager or
administrator identification, and job-related interests.

• Organization contact information, such as a telephone number, physical
address, administrator identification, and business description.

• Device information, such as a printer’s physical location, type of printer, and
the number of pages per minute that the printer can produce.

• Contact and billing information for your corporation’s trading partners,
clients, and customers.

• Contract information, such as the customer’s name, due dates, job description,
and pricing information.

• Individual software preferences or software configuration information.

• Resource sites, such as pointers to web servers or the file system of a certain file
or application.

Apart from server administration data, you may want to store the following types
of information in your directory:

• Contract or client account details

• Payroll data

Defining Your Directory Needs

Chapter 2 Planning and Accessing Directory Data 23

• Physical device information

• Home contact information

• Office contact information for the various sites within your enterprise

What Your Directory Should Not Include
Directory Server is perfectly suited to managing large quantities of data that client
applications read and occasionally write, but it is not designed to handle large,
objects, such as images or other media. These objects should be maintained in a file
system. However, your directory can store pointers to these kinds of applications
through the use of FTP, HTTP, or other types of URL.

Because the directory works best for read operations, you should avoid placing
rapidly changing information in the directory. Reducing the number of write
operations occurring in your directory improves overall search performance.

Defining Your Directory Needs
When you design your directory data, try to think not only of the data you
currently require but also what you may include in your directory in the future.
Considering the future needs of your directory during the design process
influences how you structure and distribute the data in your directory.

As you plan, consider these points:

• What do you want to put in your directory today? What immediate problem
do you hope to solve by deploying a directory? What are the immediate needs
of the directory-enabled application you use?

• What do you want to put in your directory in the near future? For example,
your enterprise might use an accounting package that does not currently
support LDAP, but that you know will be LDAP-enabled or DSML-enabled in
the near future. You should identify the data used by applications such as this
and plan for the migration of the data into the directory when the technology
becomes available.

Accessing Your Directory Data with DSML over HTTP/SOAP

24 Sun ONE Directory Server Deployment Guide • June 2003

• What do you think you might want to store in your directory in the future? For
example, if you are a hosting environment, perhaps future customers will have
different data requirements from your current customers. Maybe future
customers will want to use your directory to store JPEG images. While this is
the most difficult case of all to consider, doing so may pay off in unexpected
ways. At a minimum, this kind of planning helps you identify data sources you
might otherwise not have considered.

Accessing Your Directory Data with DSML over
HTTP/SOAP

In contrast to previous versions of Directory Server that only allowed you to access
your directory data using the Lightweight Directory Access Protocol (LDAP), Sun
ONE Directory Server 5.2 also allows you to access your directory data using
Directory Service Markup Language version 2 (DSMLv2) over HTTP/SOAP.

DSMLv2 is a markup language, that is, a vocabulary and schema that enables users
to describe the structure and content of directory services data operations in an
eXtensible Markup Language (XML) document. DSMLv2 standardizes the way
directory services information is represented in XML, and with such a recognized
standard, applications can be written to make use of DSMLv2 and capture the
scalability, replication, security and management strengths of directory services.
Given that DSMLv2 is not an access protocol, DSMLv2 still relies on an access
protocol to actually access the data contained in the directory. Directory Server
supports the use of DSMLv2 over the Hypertext Transfer Protocol (HTTP/1.1) and
uses the Simple Object Access Protocol (SOAP) version 1.1 as a programming
protocol to transport the DSML content.

The fact that it is now possible to access your directory using DSMLv2 over
HTTP/SOAP, changes somewhat the scope of possible applications with which
your directory can interact, as they will not have to be LDAP applications. The
following section presents the new DSMLv2 over HTTP/SOAP access possibilities
in more detail. For examples on how to access and search your data using DSMLv2
over HTTP/SOAP, see Appendix A, “Accessing Data Using DSMLv2 Over
HTTP/SOAP”.

Accessing Your Directory Data with DSML over HTTP/SOAP

Chapter 2 Planning and Accessing Directory Data 25

DSMLv2 Over HTTP/SOAP Deployment
One possible deployment using DSML-enabled Directory Servers and Sun ONE
Web Proxy Server, which would allow non-LDAP clients to interact with your
directory data, is presented in Figure 2-1 on page 25:

Figure 2-1 Sample DSML-Enabled Directory Server Deployment

Sun ONE
Web Proxy

Server

DSML-
Enabled
Master A

Consumer C

DSML requests
over HTTP
(port 80)

DSML requests
over secure HTTP

over SSL
(port 443)

Demilitarized Zone

Intra-enterprise
Sun ONE

Directory Servers
DSML-
Enabled
Master B

Consumer D

Firewall

Firewall

Accessing Your Directory Data with DSML over HTTP/SOAP

26 Sun ONE Directory Server Deployment Guide • June 2003

Update requests in DSML arriving from non-LDAP client applications first cross a
firewall over HTTP port 80 and enter into a demilitarized zone. From there Sun
ONE Web Proxy Server configured as a reverse proxy server enforces the use of
secure HTTP over port 443 for the requests to cross a second firewall and enter the
intranet domain. The requests are then processed by the two master replicas on
Master A and Master B, before being replicated to the non-DSML enabled
Consumers C and D.

The idea behind this deployment is primarily to allow non-LDAP applications to
interact with your directory data by performing directory operations. If the
requests from your clients are solely lookup requests, then it is of no importance as
to whether your DSML-enabled Directory Servers hold read-only or read-write
copies of your data, because both would be able to process the lookup requests.
However, if your non-LDAP client issues modification requests, then it is
important for the DSML-enabled Directory Servers to hold read-write (master
replica) copies of the data. This is because, in the context of replication, the default
behavior for a consumer (which holds a read-only copy of the data) receiving a
modification request, is to return a referral with a list of LDAP URLs for the
possible masters that could satisfy the client’s modification request. Returning an
LDAP URL over HTTP to a non-LDAP client application does not make sense and
would not really fulfill the initial objective of keeping client/directory traffic
LDAP-free, which is why read-write copies are preferable. The deployment
depicted in Figure 2-1 on page 25, holds read-write copies of the data on the
DSML-enabled Directory Servers Master A and Master B that process your client’s
modification requests and then replicate the data to the non-DSML enabled
Consumers C and D.

As previously stated, DSML access over HTTP/SOAP opens up your directory
data to the worlds of XML and web services, but it may do so with increased
security risks. The DSML front end of Directory Server constitutes a restricted
HTTP server, because accepts only DSML HTTP post operations, and rejects
requests that do not conform to the SOAP/DSML specification. Therefore, the
threat is less extensive than for other types of HTTP web server. Nonetheless, we
recommend you take into account the following security considerations when
including DSML-enabled Directory Servers in your deployment:

• Protect your DSML-enabled Directory Servers by implementing a firewall.

• Prefer the use of secure HTTP over SSL on port 443 or implement a web proxy
server solution should you prefer not to impose the use of HTTP over SSL on
your clients.

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 27

Performing a Site Survey
A site survey is a formal method for discovering and characterizing the contents of
your directory. Budget plenty of time for performing a site survey, as data is the
key to your directory architecture. The site survey consists of the following tasks,
which are described briefly here and then in more detail:

• Identify the applications that use your directory.

Determine the directory-enabled applications you deploy and their data needs.

• Identify how the applications will access your directory.

Determine which mode of access - using LDAP or DSML over HTTP/SOAP -
your applications will use.

• Identify data sources.

Survey your enterprise and identify sources of data (such as NT or Netware
directories, PBX systems, human resources databases, e-mail systems, and so
forth).

• Characterize the data your directory needs to contain.

Determine what objects should be present in your directory (for example
people or groups), and what attributes of these objects you need to maintain in
your directory (such as user name and passwords).

• Determine the level of service you need to provide.

Decide how available your directory data needs to be to client applications and
design your architecture accordingly. How available your directory needs to
be affects how you replicate data and configure chaining policies to connect
data stored on remote servers.

For more information about replication, refer to Chapter 6, “Designing the
Replication Process” on page 115. For more information on chaining, refer to
Chapter 5, “Designing the Directory Topology.”

• Identify a data master.

A data master contains the primary source for directory data. This data might
be mirrored to other servers for load balancing and recovery purposes. For
each piece of data, determine its data master.

• Determine data ownership.

For each piece of data, determine the person responsible for ensuring that the
data is up-to-date.

Performing a Site Survey

28 Sun ONE Directory Server Deployment Guide • June 2003

• Determine data access.

If you import data from other sources, develop a strategy for both bulk imports
and incremental updates. As a part of this strategy, try to master data in a
single place, and limit the number of applications that can change the data.
Also, limit the number of people who write to any given piece of data. A
smaller group ensures data integrity while reducing your administrative
overhead.

• Document your site survey.

Because of the number of organizations that can be affected by the directory, it
may be helpful to create a directory deployment team that includes
representatives from each affected organization. This team performs the site
survey.

Corporations generally have a human resources department, an accounting or
accounts receivable department, one or more manufacturing organizations,
one or more sales organizations, and one or more development organizations.
Including representatives from each of these organizations can help you
perform the survey. Furthermore, directly involving all the affected
organizations can help build acceptance for the migration from local data
stores to a centralized directory.

• Repeating the Site Survey

If your enterprise has more than one office you should repeat your site survey
to ensure that each office has been taken into account. It is advisable to set up
site survey teams in each location, who feed their results back into a central site
survey team (comprising representatives from each location).

Identifying the Applications That Use Your
Directory
Generally, the applications that access your directory and the data needs of these
applications drive the planning of your directory contents. Common applications
that may use your directory include:

• Directory browser applications, such as white pages. These kinds of
applications generally access information such as e-mail addresses, telephone
numbers, and employee names.

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 29

• Messaging applications, especially e-mail servers. All e-mail servers require
e-mail addresses, user names, and some routing information to be available in
the directory. Others require more advanced information such as the place on
disk where a user’s mailbox is stored, vacation notification information, and
protocol information (IMAP versus POP, for example).

• Directory-enabled human resources applications. These require more personal
information such as government identification numbers, home addresses,
home telephone numbers, birth dates, salary, and job title.

• Security, web portal, or personalization applications. These kinds of
applications access profile information.

When you examine the applications that will use your directory, look at the types
of information each application uses. The following table gives an example of
applications and the information used by each:

Once you identify the applications and information used by each application, you
can see that some types of data are used by more than one application. Doing this
kind of exercise during the data planning stage can help you avoid data
redundancy problems in your directory and see more clearly what data your
directory dependent applications require.

The final decision you make about the types of data you maintain in your directory
and when you start maintaining it, is affected by these factors:

• The data required by your various legacy applications and your user
population.

Table 2-1 Application Data Needs

Application Class of Data Data

Phone book People Name, e-mail address, phone number,
user ID, password, department number,
manager, mail stop

Web server People, groups User ID, password, group name, group
members, group owner

Calendar server People, meeting
rooms

Name, user ID, cube number, conference
room name

Web portal People, groups Name, User ID, password, group name,
group members.

Performing a Site Survey

30 Sun ONE Directory Server Deployment Guide • June 2003

• The ability of your legacy applications to communicate with an LDAP
directory.

Identify How Applications Will Access Your
Directory
If non-LDAP applications must be able to interact with your directory data by
performing directory operations, consider accessing your directory using DSML
over HTTP/SOAP. However, if your client applications are LDAP applications,
LDAP access will be your choice. The mode of access you choose will depend on
which applications use your directory.

Identifying Data Sources
To identify all of the data that you want to include in your directory, you should
perform a survey of your existing data stores. Your survey should include the
following:

• Identify organizations that provide information.

Locate all the organizations that manage information essential to your
enterprise. Typically this includes your information services, human resources,
payroll, and accounting departments.

• Identify the tools and processes that are information sources.

Some common sources for information are networking operating systems
(Windows, Novell Netware, UNIX NIS), e-mail systems, security systems, PBX
(telephone switching) systems, and human resources applications.

• Determine how centralizing each piece of data affects the management of data.

Centralized data management may require new tools and new processes.
Issues may arise when centralization requires increasing staff in some
organizations and decreasing staff in others.

During your survey, you may come up with a matrix that resembles the following
table, identifying all of the information sources in your enterprise:

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 31

Characterizing Your Directory Data
All of the data you identify for inclusion in your directory can be characterized
according to the following general points:

• Format

• Size

• Number of occurrences in various applications

• Data owner

• Relationship to other directory data

You should study each piece of data you plan to include in your directory to
determine what characteristics it shares with the other pieces of data. This helps
save time during the schema design stage, described in more detail in Chapter 3,
“Designing the Schema.”

For example, you can create a table that characterizes your directory data as
follows:

Table 2-2 Information Sources

Data Source Class of Data Data

Human resources database People Name, address, phone
number, department number,
manager

E-mail system People, Groups Name, e-mail address, user
ID, password, e-mail
preferences

Facilities system Facilities Building names, floor names,
cube numbers, access codes

Table 2-3 Directory Data Characteristics

Data Format Size Owner Related to

Employee Name Text string 128 characters Human
resources

User’s entry

Fax number Phone number 14 digits Facilities User’s entry

Performing a Site Survey

32 Sun ONE Directory Server Deployment Guide • June 2003

Determining Directory Availability Requirements
The level of service you provide, in terms of availability, depends upon the
expectations of the people who rely on directory-enabled applications. To
determine the level of service each application expects, first determine how and
when the application is used.

As your directory evolves, it may need to support a wide variety of service levels,
from production to mission critical. It can be difficult to raise the level of service
after your directory is deployed, so make sure your initial design can meet your
future needs.

For example, if you determine that you need to eliminate the risk of total failure,
you might consider using a multi-master configuration, in which several masters
exist for the same data. The next section discusses determining data masters in
more detail.

Considering a Data Master Server
The data master is the server that is the master source of data. Consider which
server will be the data master when your data resides in more than one physical
site. For example, when you use replication or use applications that cannot
communicate over LDAP, data may be spread over more than one site. If a piece of
data is present in more than one location, you need to decide which server has the
master copy and which server receives updates from this master copy.

Data Mastering for Replication
Sun ONE Directory Server allows you to contain master sources of information on
more than one server. If you use replication, decide which server is the master
source of a piece of data. Sun ONE Directory Server supports multi-master
configurations, in which more than one server can be a master source for the same
piece of data. For more information about replication and multi-master replication,
see “Designing the Replication Process,” on page 115.

E-mail address Text Many
characters

IS department User’s entry

Table 2-3 Directory Data Characteristics

Data Format Size Owner Related to

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 33

In the simplest case, put a master source of all of your data on two Directory
Servers and then replicate that data to one or more consumer servers. Having two
master servers provides safe failover in the event that a server goes off-line. In
more complex cases, you may want to store the data in multiple databases, so that
the entries are mastered by a server close to the applications that will update or
search that data.

Data Mastering Across Multiple Applications
You also need to consider the master source of your data if you have applications
that communicate indirectly with the directory. Keep the processes for changing
data, and the places from which you can change data, as simple as possible. Once
you decide on a single site to master a piece of data, use the same site to master all
of the other data contained there. A single site simplifies troubleshooting if your
databases get out of sync across your enterprise.

Here are some ways you can implement data mastering:

• Master the data in both the directory and all applications that do not use the
directory.

Maintaining multiple masters does not require custom scripts for moving data
in and out of the directory and the other applications. However, if data
changes in one place, someone has to change it on all the other sites.
Maintaining master data in the directory and all applications not using the
directory can result in data being unsynchronized across your enterprise
(which is what your directory is supposed to prevent).

• Master the data in the directory and synchronize data with other applications
using Sun ONE Meta Directory.

Maintaining a data master that synchronizes with other applications makes the
most sense if you are using a variety of different directory and database
applications. Contact your Sun ONE sales representative for more information
about Sun ONE Meta Directory.

Master the data in some application other than the directory and then write
scripts, programs, or gateways to import that data into the directory.

Mastering data in non-directory applications makes the most sense if you can
identify one or two applications that you already use to master your data, and
you want to use your directory only for lookups (for example, for online
corporate telephone books).

Performing a Site Survey

34 Sun ONE Directory Server Deployment Guide • June 2003

How you maintain master copies of your data depends on your specific needs.
However, regardless of the how you maintain data masters, keep it simple and
consistent. For example, you should not attempt to master data in multiple sites,
then automatically exchange data between competing applications. Doing so leads
to a “last change wins” scenario and increases your administrative overhead.

For example, suppose you want to manage an employee’s home telephone
number. Both the LDAP directory and a human resources database store this
information. The human resources application is LDAP enabled, so you can write
an automatic application that transfers data from the LDAP directory to the human
resources database, and vice versa. However, if you attempt to master changes to
that employee’s telephone number in both the LDAP directory and the human
resources data, then the last place where the telephone number was changed
overwrites the information in the other database. This is acceptable as long as the
last application to write the data had the correct information. But if that
information was old or out of date (perhaps because, for example, the human
resources data was reloaded from a backup), then the correct telephone number in
the LDAP directory will be deleted.

Determining Data Ownership
Data ownership refers to the person or organization responsible for making sure the
data is up-to-date. During the data design, decide who can write data to the
directory. Some common strategies for deciding data ownership follow:

• Allow read-only access to the directory for everyone except a small group of
directory content managers.

• Allow individual users to manage some strategic subset of information for
themselves.

This subset of information might include their passwords, descriptive
information about themselves and their role within the organization, their
automobile license plate number, and contact information such as telephone
numbers or office numbers.

• Allow a person’s manager to write to some strategic subset of that person’s
information, such as contact information or job title.

• Allow an organization’s administrator to create and manage entries for that
organization.

This approach makes your organization’s administrators your directory
content managers.

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 35

• Create roles that give groups of people read or write access privileges.

For example, you might create roles for human resources, finance, or
accounting. Allow each of these roles to have read access, write access, or both
to the data needed by the group, such as salary information, government
identification number (in the US, social security number), and home phone
numbers and address.

For more information about roles and grouping entries, refer to “Designing the
Directory Tree,” on page 57.

As you determine who can write to the data, you may find that multiple
individuals need to have write access to the same information. For example, you
will want an information systems (IS) or directory management group to have
write access to employee passwords. You may also want the employees themselves
to have write access to their own passwords. While you generally must give
multiple people write access to the same information, try to keep this group small
and easy to identify. Keeping the group small helps ensure your data’s integrity.

For information on setting access control for your directory, see Chapter 7,
“Designing a Secure Directory,” on page 163.

Determining Data Access
After determining data ownership, decide who can read each piece of data. For
example, you may decide to store an employee’s home phone number in your
directory. This data may be useful for a number of organizations, including the
employee’s manager and human resources. You may want the employee to be able
to read this information for verification purposes. However, home contact
information can be considered sensitive. Therefore, you must determine if you
want this kind of data to be widely available across your enterprise.

For each piece of information that you store in your directory, you must decide the
following:

• Can the data be read anonymously?

The LDAP protocol supports anonymous access, and allows easy lookups for
common information such as office sites, e-mail addresses, and business
telephone numbers. However, anonymous access gives anyone with access to
the directory access to the common information. Consequently, you should use
anonymous access sparingly.

• Can the data be read widely across your enterprise?

Performing a Site Survey

36 Sun ONE Directory Server Deployment Guide • June 2003

You can set up access control so that the client must log in to (or bind to) the
directory to read specific information. Unlike anonymous access, this form of
access control ensures that only members of your organization can view
directory information. It also allows you to capture login information in the
directory’s access log, so you have a record of who accessed the information.

For more information about access control, refer to “Designing Access
Control,” on page 189.

• Can you identify a group of people or applications that need to read the data?

Anyone who has write privileges to the data generally also needs read access
(with the exception of write access to passwords). You may also have data
specific to a particular organization or project group. Identifying these access
needs helps you determine what groups, roles, and access controls your
directory needs.

For information about groups and roles, see Chapter 4, “Designing the
Directory Tree,” on page 57. For information about access controls, see Chapter
7, “Designing a Secure Directory,” on page 163.

As you make these decisions for each piece of directory data, you define a security
policy for your directory. Your decisions depend upon the nature of your site and
the kinds of security already available at your site. For example, if your site has a
firewall or no direct access to the Internet, you may feel freer to support
anonymous access than if you are placing your directory directly on the Internet.

In many countries, data protection laws govern how enterprises must maintain
personal information, and restrict who has access to the personal information. For
example, the laws may prohibit anonymous access to addresses and phone
numbers, or may require that users have the ability to view and correct information
in entries that represent them. Be sure to check with your organization’s legal
department to ensure that your directory deployment follows all necessary laws
for the countries in which your enterprise operates.

The creation of a security policy and the way you implement it is described in
detail in Chapter 7, “Designing a Secure Directory,” on page 163.

Performing a Site Survey

Chapter 2 Planning and Accessing Directory Data 37

Documenting Your Site Survey
Because of the complexity of data design, document the results of your site
surveys. During each step of the site survey we have suggested simple tables for
keeping track of your data. Consider building a master table that outlines your
decisions and outstanding concerns. You can build this table with the
word-processing package of your choice, or use a spreadsheet so that the table’s
contents can easily be sorted and searched.

A basic data tracking example is provided in Table 2-4 on page 37. This table
identifies data ownership and data access for each piece of data identified by the
site survey.

Looking at the row representing the employee name data, we see the following:

• Owner

Human Resources owns this information and is therefore responsible for
updating and changing it.

• Master Server/Application

The PeopleSoft application manages employee name information.

• Self Read/Write

Table 2-4 Data Tracking Table Example for Site Survey Documentation Purposes

Data Name Owner Master
Server
Application

Self
Read/Write

Global Read HR Writable IS Writable

Employee
Name

HR People Soft Read-only Yes
(anonymous)

Yes Yes

User
password

IS Directory
US-1

Read/Write No No Yes

Home
phone
number

HR People Soft Read/Write No Yes No

Employee
location

IS Directory
US-1

Read-only Yes (must log
in)

No Yes

Office
phone
number

Facilities Phone
switch

Read-only Yes
(anonymous)

No No

Performing a Site Survey

38 Sun ONE Directory Server Deployment Guide • June 2003

A person can read their own name, but not write (or change) it.

• Global Read

Employee names can be read anonymously by everyone with access to the
directory.

• HR Writable

Members of the human resources group can change, add, and delete employee
names in the directory.

• IS Writable

Members of the information services group can change, add, and delete
employee names in the directory.

Repeating the Site Survey
Finally, you may need to run more than one site survey, particularly if your
enterprise has offices in multiple cities or countries. You may find your
informational needs to be so complex that you have to allow several different
organizations to keep information at their local offices rather than at a single,
centralized site. In this case, each office that keeps a master copy of information
should run its own site survey. After the site survey process has been completed,
the results of each survey should be returned to a central team (probably consisting
of representatives from each office) for use in the design of the enterprise-wide
data schema model and directory tree.

39

Chapter 3

Designing the Schema

The site survey conducted in Chapter 2 provided information about the data you
plan to store in your directory. Next, you must decide how to represent this data.
The directory schema describes the types of data you can store in your directory.
During schema design, each data element is mapped to an LDAP attribute, and
related elements are gathered into LDAP object classes. Well-designed schema
helps maintain the integrity of the data chained suffix you store in your directory.

This chapter describes how to design schema for your needs, and contains the
following sections:

• Sun ONE Directory Server Schema

• Schema Design Process Overview

• Mapping Your Data to the Default Schema

• Customizing the Schema

• Maintaining Data Consistency

• Other Schema Resources

For more information about the object classes and attributes found in Directory
Server, in addition to the schema files and directory configuration attributes, refer
to the Sun ONE Directory Server Reference Manual. For information on replicating
schema between servers, refer to “Schema Replication,” on page 157.

Sun ONE Directory Server Schema

40 Sun ONE Directory Server Deployment Guide • June 2003

Sun ONE Directory Server Schema
Your directory schema maintains the integrity of the data stored in your directory
by imposing constraints on the size, range, and format of data values. You decide
what types of entries your directory contains (people, devices, organizations, and
so forth) and the attributes available to each entry.

The predefined schema included with Directory Server contains the standard RFC
LDAP schema, additional application-specific schema to support the features of the
server, and Directory Server specific schema extensions. While this schema meets
most directory needs, you may need to extend it with new object classes and
attributes to accommodate the unique needs of your directory. Refer to
“Customizing the Schema,” on page 43 for information on extending the schema.

Directory Server bases its schema format on version 3 of the LDAP protocol
(LDAPv3). This protocol requires directory servers to publish their schemas
through LDAP itself, allowing directory client applications to programmatically
retrieve the schema and adapt their behavior based on it. The global set of schema
for Directory Server can be found in the entry named cn=schema.

The Directory Server schema supports not only the core LDAPv3 schema in RFC
2256, but many other popular product schemas as well. In addition to this,
Directory Server uses a private field in the schema entries called X-ORIGIN, which
describes where the schema entry was defined originally. For example, if a schema
entry is defined in the standard LDAPv3 schema, the X-ORIGIN field refers to
RFC 2252. If the entry is defined by Sun ONE for the Directory Server’s use, the
X-ORIGIN field contains the value Sun ONE Directory Server.

For example, the standard person object class appears in the schema as follows:

objectclasses: (2.5.6.6 NAME 'person' DESC 'Standard Person
Object Class' SUP top MUST (objectlass $ sn $ cn) MAY (description
$ seealso $ telephoneNumber $ userPassword) X-ORIGIN 'RFC 2252')

This schema entry states the object identifier, or OID, for the class (2.5.6.6), the
name of the object class (person), a description of the class (Standard Person
Object Class), then lists the required attributes (objectclass, sn, and cn) and
the allowed attributes (description, seealso, telephoneNumber, and
userPassword).

As is the case for all of the Sun ONE Directory Server’s schema, object classes are
defined and stored directly in Directory Server. This means that you can both
query and change your directory’s schema with standard LDAP operations.

Schema Design Process Overview

Chapter 3 Designing the Schema 41

Schema Design Process Overview
During schema design, you select and define the object classes and attributes used
to represent the entries stored by Directory Server. Schema design involves the
following steps:

• Choosing predefined schema elements to meet as many of your needs as
possible.

• Extending the standard Directory Server schema to define new elements to
meet your remaining needs.

• Planning for schema maintenance.

It is best to use existing schema elements defined in the standard schema provided
with Directory Server. Choosing standard schema elements helps ensure
compatibility with directory-enabled applications. In addition, as the schema is
based on the LDAP standard, you are assured it has been reviewed and agreed to
by a wide number of directory users.

Mapping Your Data to the Default Schema
The data you identified during your site survey, as described in “Performing a Site
Survey,” on page 27, must be mapped to the existing directory default schema.
This section describes how to view the existing default schema and provides a
method for mapping your data to the appropriate existing schema elements.

If you find elements in your schema that do not match the existing default schema,
you may need to create custom object classes and attributes. Refer to “Customizing
the Schema,” on page 43 for more information.

Viewing the Default Directory Schema
The schema provided with Sun ONE Directory Server 5.2 is described in a set of
files stored in the following directory:

ServerRoot/slapd-serverID/config/schema

This directory contains all of the common schema for the Sun ONE products. The
LDAPv3 standard user and organization schema can be found in the 00core.ldif
file. The configuration schema used by earlier versions of the directory can be
found in the 50ns-directory.ldif file.

Mapping Your Data to the Default Schema

42 Sun ONE Directory Server Deployment Guide • June 2003

Matching Data to Schema Elements
The data you identified in your site survey now needs to be mapped to the existing
directory schema. This process involves the following steps:

• Identify the type of object the data describes.

Select an object that best matches the data described in your site survey.
Sometimes, a piece of data can describe multiple objects. You need to
determine if the difference needs to be noted in your directory schema. For
example, a telephone number can describe an employee’s telephone number
and a conference room’s telephone number. It is up to you to determine if these
different sorts of data need to be considered as different objects in your
directory schema.

• Select a similar object class from the default schema.

It is best to use the common object classes, such as groups, people, and
organizations.

• Select a similar attribute from the matching object class.

Select an attribute from within the matching object class that best matches the
piece of data you identified in your site survey.

• Identify the unmatched data from your site survey.

If there are some pieces of data that do not match the object classes and
attributes defined by the default directory schema, you will need to customize
the schema. See “Customizing the Schema,” on page 43 for more information.

For example, the following table maps directory schema elements to the data
identified during the site survey in Chapter 2:

NOTE You should never modify the files in this directory while the server
is running.

It is also important to realize that any changes made manually will
not be replicated until other changes are made using either LDAP or
the Directory Server console.

Table 3-1 Data Mapped to Default Directory Schema

Data Owner Object Class Attribute

Employee name HR person cn(commonName)

Customizing the Schema

Chapter 3 Designing the Schema 43

In the table, the employee name describes a person. In the default directory
schema, we found the person object class, which inherits from the top object class.
This object class allows several attributes, one of which is the cn or commonName
attribute, which describes the full name of the person. This attribute makes the best
match for containing the employee name data.

The user password also describes an aspect of the person object. In the list of
allowed attributes for the person object, we find userPassword.

The home phone number describes an aspect of a person; however, we do not find
an appropriate attribute in the list associated with the person object class.
Analyzing the home phone number more specifically, we can say it describes an
aspect of a person in an organization’s enterprise network. This object corresponds
to the inetOrgPerson object class in the directory schema. The inetOrgPerson
object class inherits from the organizationalPerson object class, which in turn
inherits from the person object class. Among the inetOrgPerson object’s allowed
attributes, we locate the homePhone attribute, which is appropriate for containing
the employee’s home telephone number.

Customizing the Schema
You can extend the standard schema if it proves to be too limited for your directory
needs. The Directory Server Console can help you manage the schema definition.
For more information, refer to Chapter 9, “Extending the Directory Schema” in the
Sun ONE Directory Server Administration Guide.

Keep the following rules in mind when customizing your schema:

• Reuse existing schema elements whenever possible. For a complete list of the
existing schema elements, refer to the “Directory Server Schema” in the Sun
ONE Directory Server Reference Manual.

• Minimize the number of mandatory attributes you define for each object class.

User password IS person userPassword

Home phone number HR inetOrgPerson homePhone

Employee location IS inetOrgPerson localityName

Office phone number Facilities person telephoneNumber

Table 3-1 Data Mapped to Default Directory Schema

Data Owner Object Class Attribute

Customizing the Schema

44 Sun ONE Directory Server Deployment Guide • June 2003

• Do not define more than one object class or attribute for the same purpose.

• Keep the schema as simple as possible.

Your custom object classes and attributes are defined in the following file:

ServerRoot/slapd-serverID/config/schema/99user.ldif

The following sections describe customizing the directory schema in more detail:

• When to Extend Your Schema

• Getting and Assigning Object Identifiers

• Naming Attributes and Object Classes

• Strategies for Defining New Object Classes

• Strategies for Defining New Attributes

• Deleting Schema Elements

• Creating Custom Schema Files - Best Practices and Pitfalls

When to Extend Your Schema
While the object classes and attributes supplied with the Directory Server should
meet most of your needs, you may find that a given object class does not allow you
to store specialized information about your organization. Also, you may need to
extend your schema to support the object classes and attributes required by an
LDAP-enabled application’s unique data needs.

NOTE When customizing the schema, do not modify, delete, or replace
any existing definitions of attributes or object classes in the
standard schema. Doing so can lead to compatibility problems with
other directories or other LDAP client applications.

Customizing the Schema

Chapter 3 Designing the Schema 45

Getting and Assigning Object Identifiers
Each LDAP object class or attribute must be assigned a unique name and object
identifier (OID). When you define a schema, you need an OID unique to your
organization. One OID is enough to meet all of your schema needs. You simply
add another level of hierarchy to create new branches for your attributes and object
classes. Getting and assigning OIDs in your schema involves the following steps:

• Obtain an OID for your organization from the Internet Assigned Numbers
Authority (IANA) or a national organization.

In some countries, corporations already have OIDs assigned to them. If your
organization does not already have an OID, one can be obtained from IANA.
For more information, go to the IANA website at:
http://www.iana.org/cgi-bin/enterprise.pl

• Create an OID registry so you can track OID assignments.

An OID registry is a list you maintain that gives the OIDs and descriptions of
the OIDs used in your directory schema. This ensures that no OID is ever used
for more than one purpose. You should then publish your OID registry with
your schema.

• Create branches in the OID tree to accommodate schema elements.

Create at least two branches under the OID branch or your directory schema,
using OID.1 for attributes and OID.2 for object classes. If you want to define
your own matching rules or controls, you can add new branches as needed
(OID.3 for example).

Naming Attributes and Object Classes
When creating names for new attributes and object classes, make the name as
meaningful as possible. This makes your schema easier to use for Directory Server
administrators.

Avoid naming collisions between your schema elements and existing schema
elements by including a unique prefix on all of your elements. For example,
Example.com Corporation might add the prefix Example before each of their
custom schema elements. They might add a special object class called
ExamplePerson to identify Example.com employees in their directory.

Customizing the Schema

46 Sun ONE Directory Server Deployment Guide • June 2003

Strategies for Defining New Object Classes
There are two ways you can create new object classes:

• You can create many new object classes, one for each object class structure to
which you want to add an attribute.

• You can create a single object class that supports all of the attributes that you
create for your directory. You create this kind of an object class by defining it to
be an AUXILIARY kind of object class.

You may find it easiest to mix the two methods.

For example, suppose your site wants to create the attributes
ExampleDepartmentNumber, and ExampleEmergencyPhoneNumber. You can create
several object classes that allow some subset of these attributes. You might create
an object class called ExamplePerson and have it allow
ExampleDepartmentNumber and ExampleEmergencyPhoneNumber. The parent of
ExamplePerson would be inetOrgPerson. You might then create an object class
called ExampleOrganization and have it also allow ExampleDepartmentNumber
and ExampleEmergencyPhoneNumber. The parent of ExampleOrganization would
be the organization object class.

Your new object classes would appear in LDAPv3 schema format as follows:

objectclasses: (1.3.6.1.4.1.42.2.27.999.1.2.3 NAME 'ExamplePerson'
DESC 'Example Person Object Class' SUP inetorgPerson STRUCTURAL MAY
(ExampleDepartmentNumber $ ExampleEmergencyPhoneNumber))

objectclasses: (1.3.6.1.4.1.42.2.27.999.1.2.4 NAME
'ExampleOrganization' DESC 'Example Organization Object Class' SUP
organization STRUCTURAL MAY (ExampleDepartmentNumber $
ExampleEmergencyPhoneNumber))

Alternatively, you can create a single object class that allows all of these attributes
and use it with any entry on which you want to use these attributes. The single
object class would appear as follows:

objectclasses: (1.3.6.1.4.1.42.2.27.999.1.2.5 NAME 'ExampleEntry'
DESC 'Example Auxiliary Object Class' SUP top AUXILIARY MAY
(ExampleDepartmentNumber $ ExampleEmergencyPhoneNumber))

The new ExampleEntry object class is marked AUXILIARY, meaning that it can be
used with any entry regardless of its structural object class.

Customizing the Schema

Chapter 3 Designing the Schema 47

Choose the strategy for defining new object classes that works for you. Consider
the following when deciding how to implement new object classes:

• Multiple STRUCTURAL object classes result in more schema elements to create
and maintain.

Generally, the number of elements remains small and needs little maintenance.
However, you may find it easier to use a single object class if you plan to add
more than two or three object classes to your schema.

• Multiple STRUCTURAL object classes require a more careful and rigid data
design.

Rigid data design forces you to consider the object class structure on which
every piece of data will be placed. Depending on your personal preferences,
you will find this to be either helpful or cumbersome.

• Single AUXILIARY object classes simplify data design when you have data that
you want to put on more than one type of object class structure.

For example, suppose you want preferredOS on both a person and a group
entry. You may want to create only a single object class to allow this attribute.

• Try to design object classes which relate to real objects and group elements that
constitute sensical groupings.

• Avoid required attributes for new object classes.

Requiring attributes can make your schema inflexible. When you create a new
object class, allow rather than require attributes.

After defining a new object class, you need to decide what attributes it allows and
requires and from what object class(es) it inherits.

Strategies for Defining New Attributes
Add new attributes and new object classes when the existing object classes do not
support all of the information you need to store in a directory entry.

NOTE The OID of the new object classes in the examples is based on the
Sun ONE OID prefix and must not be used in the deployed
product. To create your own new object classes, you must get your
own OID. For more information, refer to “Getting and Assigning
Object Identifiers,” on page 45.

Customizing the Schema

48 Sun ONE Directory Server Deployment Guide • June 2003

Try to use standard attributes whenever possible. Search the attributes that already
exist in the default directory schema and use them in association with a new object
class. Create a new attribute if you cannot find a match in the default directory
schema.

For example, you may find that you want to store more information on a person
entry than the person, organizationalPerson, or inetOrgPerson object classes
support. If you want to store the birth dates in your directory, no attribute exists
within the standard Sun ONE Directory Server schema. You can choose to create a
new attribute called dateOfBirth and allow this attribute to be used on entries
representing people by defining a new auxiliary class which allows this attribute.

Deleting Schema Elements
Do not delete the schema elements shipped with Directory Server. Unused schema
elements represent no operational or administrative overhead. However, by
deleting parts of the standard LDAP schema you may run into compatibility
problems with future installations of Directory Server and other directory-enabled
applications.

If you extend the schema and find that you do not use the new elements, you are
free to delete these unused elements. Before removing schema elements you must
make sure that no entry in the directory uses them. The easiest way to ensure that
no entries are using the schema element you want to delete is to run an ldapsearch
that returns all entries containing that schema element. For example, before
deleting the object class named myObjectClass, you would run the following
ldapsearch command:

ldapsearch -h host -p port -s base "objectclass=myObjectClass"

If you find any such entries, you may delete them or the part that will be removed
from the schema. If you remove the schema definition before removing the entries
that use that definition, you might not be able to modify the entries that use the
definition afterwards. Schema checks on modified entries will also fail unless you
remove the unknown values from the entry.

Customizing the Schema

Chapter 3 Designing the Schema 49

Creating Custom Schema Files - Best Practices
and Pitfalls
You can create custom schema files other than the 99user.ldif file provided with
Directory Server. However, there are several things you need to bear in mind when
creating custom schema files, especially when replication is involved which are
highlighted in the following list:

• When adding new schema elements, all attributes need to be defined before
they can be used in an object class. You can define attributes and object classes
in the same schema file.

• Each custom attribute or object class you create should be defined in only one
schema file. This prevents the server from overriding any previous definitions
when it loads the most recently created schema (as the server loads the schema
in numerical order first, then alphabetical order).

• When defining new schema definitions manually it is best practice to add these
definitions to the 99user.ldif file.

When you update schema elements using LDAP it causes the new elements to
be written automatically to the 99user.ldif file. As a result of this behavior
any other schema definition changes you may have made in custom schema
files may be overwritten, hence the recommended best practice of adding all
your schema definitions to the 99user.ldif file. This way you avoid possible
duplications of schema elements and the danger of schema changes being
overwritten at a later date.

• Given that Directory Server loads schema files in alpha-numerical order, that
is, with numbers being loaded first, make sure that you name your custom
schema files as follows:

[00-99]yourname.ldif

where the number is higher than any directory standard schema already
defined.

If you name your schema file with a number which is lower than the standard
schema files, the server may encounter errors when loading the schema, and
what is more, all standard attributes and object classes will be loaded only after
your custom schema elements have been loaded.

Customizing the Schema

50 Sun ONE Directory Server Deployment Guide • June 2003

• Make sure that the custom schema files you create are not numerically or
alphabetically higher than 99user.ldif as Directory Server uses the highest
sequenced file (numerically, then alphabetically) for its internal schema
management.

If you created a schema file and named it 99zzz.ldif for example, then the
next time you updated the schema using LDAP or the Directory Server
Console, all of the attributes with an X-ORIGIN value of 'user
defined'(usually stored in the 99user.ldif file) would be written to
99zzz.ldif instead. The result would be two LDIF files that contain duplicate
information, and some information in the 99zzz.ldif file might be erased.

• As a general rule of thumb, you should identify the custom schema elements
you are adding with the following two items:

❍ 'user defined' in the X-ORIGIN field of your custom schema files,

❍ AND something which is more descriptive such as
'Example.com Corporation defined' in the X-ORIGIN field, to facilitate
future understanding of the custom schema element context. For example
X-ORIGIN ('user defined' 'Example.com Corporation defined').

If you are manually adding your schema elements and you do not use 'user
defined' in the X-ORIGIN field they will only appear in the read-only section
of the Directory Server Console and you will not be able to use the Console to
edit them.

We recommend using a more descriptive identifier to complement 'user
defined' because it will help you identify and understand the origin of the
new schema and what other schema it relates to. If you have nothing more
descriptive than the 'user defined' value which is added automatically by
the server if you happen to be adding your customer schema definitions using
LDAP or the Directory Server console, then you may have difficulty
understanding what the schema relates to at a later date.

• It is important to propagate any custom schema files you create or modify
manually to all of your servers, because these changes will not be replicated
automatically.

When you make changes to your directory schema, your server keeps a
time-stamp of when the schema was changed. At the beginning of each
replication session the server compares its time stamp with its consumer’s
time-stamp and, if necessary, will push any schema changes. For custom
schema files the server only maintains one time-stamp which is associated with
the 99user.ldif file. This means that any custom schema file changes or

Customizing the Schema

Chapter 3 Designing the Schema 51

additions you make to files other than the 99user.ldif file will not be
replicated to the other servers in your topology. For this reason you must
propogate any custom schema files you create or modify to all other servers to
ensure that all schema information is present throughout the topology.

To propagate any changes to custom schema files you can either:

❍ Replicate the changes by running the schema_push.pl script, which
requires a restart of each server, or

❍ Manually copy these custom schema files to all of your servers, which
requires a restart of each server.

If you choose to allow the replication process to replicate any new custom
schema definitions to all of your servers, make sure that you maintain your
schema on one master only. When schema definitions are replicated to a
consumer server where they do not already exist, they will be stored in the
99user.ldif file as opposed to the custom schema file in which you defined
them. Storing schema elements in the 99user.ldif file of consumers does not
create a problem as long as you ensure that you maintain your schema on one
master server only.

If you choose instead to copy your schema files to each server you must
remember to copy the files EACH time changes are made. If you do not copy
them each time changes are made, it is possible that the changes will be
replicated and stored in the 99user.ldif file on the consumer. Having the
changes in the 99user.ldif file may make schema management difficult, as
some attributes will appear in two separate schema files on a consumer, once
in the original custom schema file you copied from the supplier and again in
the 99user.ldif file after replication.

• If you do not want custom schema elements to be replicated to other servers in
your replication topology, you must:

❍ define the schema elements you do not want to replicate in a separate file,

❍ NOT identify them as 'user defined' in the X-ORIGIN field,

❍ set the nsslapd-schema-repl-useronly attribute to on so that only
schema labeled as 'user defined' in the X-ORIGIN field will be
replicated.

NOTE It is necessary to turn this nsslapd-schema-repl-useronly
attribute to on when replicating to 5.0 or 5.1 Directory Servers.

Maintaining Data Consistency

52 Sun ONE Directory Server Deployment Guide • June 2003

For more information about replicating schema, see “Schema Replication,” on
page 157.

Maintaining Data Consistency
Maintaining data consistency within Directory Server aids LDAP client
applications in locating directory entries. For each type of information you store in
the directory, you should select the required object classes and attributes to
support that information, and always use the same ones. If you use schema objects
inconsistently, it becomes very difficult to locate information in your directory tree
efficiently.

You can maintain schema consistency in the following ways:

• Use schema checking to ensure attributes and object classes conform to the
schema rules.

• Select and apply a consistent data format.

The following sections describe in detail how to maintain consistency within your
schema.

Schema Checking
Schema checking ensures that all new or modified directory entries conform to the
schema rules. When the rules are violated, the directory rejects the requested
change.

By default, the directory enables schema checking. We do not recommend turning
it off on a server that is accepting client updates. For information on turning
schema checking on and off, refer to “Turning Schema Checking On and Off” in
the Sun ONE Directory Server Administration Guide.

NOTE Schema checking only checks that the proper attributes are present.
It does not verify whether attribute values are in the correct syntax
for the attribute. Directory Server 5.2 has an attribute called
nsslapd-valuecheck which allows you to check only those
attributes with the DN syntax. However, this attribute is turned off
by default which which means that no attribute values are checked.

Maintaining Data Consistency

Chapter 3 Designing the Schema 53

With schema checking on, you must be attentive to required and allowed attributes
as defined by the object classes. Object class definitions usually contain at least one
required attribute, and one or more optional attributes. Optional attributes are
attributes that you are allowed, but not required, to add to the directory entry. If
you attempt to add an attribute to an entry that is neither required nor allowed
according to the entry’s object class definition, then Directory Server returns an
object class violation message.

For example, if you define an entry to use the organizationalPerson object class,
then the commonName (cn) and surname (sn) attributes are required for the entry
(you must specify values for these attributes when you create the entry). In
addition, there is a fairly long list of attributes that you can optionally use on the
entry. This list includes such descriptive attributes as telephoneNumber, uid,
streetAddress, and userPassword.

NOTE Bear the following items in mind when configuring the schema
checking functionality:

• Generally speaking you replicate all required attributes for each
entry as defined in the schema, to avoid schema violations, but
should you want to filter out some of the required attributes
using the fractional replication functionality, then you need to
disable schema checking.

• Having schema checking enabled with fractional replication can
prevent you from being able to initialize off line, that is from an
ldif file, because it would not allow you to load the ldif file if
required attributes were filtered out.

• Turning schema checking off may have the added benefit of
improving performance.

• When you have disabled schema checking on a fractional
consumer replica, the whole server instance on which that
fractional consumer replica resides will not enforce schema. As
a result, you should avoid configuring supplier replicas
(read-write) replicas on the same server instance.

• Since schema is pushed by suppliers in fractional replication
configurations, the schema on the fractional consumer replica
will be a copy of the master replica’s schema and therefore, it
will not correspond to the fractional replication configuration
being applied.

Maintaining Data Consistency

54 Sun ONE Directory Server Deployment Guide • June 2003

Selecting Consistent Data Formats
LDAP schema allows you to place any data that you want on any attribute value.
However, it is important to store data consistently in your directory tree by
selecting a format appropriate for your LDAP client applications and directory
users.

With the LDAP protocol and Sun ONE Directory Server, you must represent data
in the data formats specified in RFC 2252.

In addition, the correct LDAP format for telephone numbers is defined in the
following ITU-T Recommendations documents:

• ITU-T Recommendation E.123.

Notation for national and international telephone numbers.

• ITU-T Recommendation E.163.

Numbering plan for the international telephone services.

For example, a US phone number would be formatted as follows:

+1 555 222 1717

The postalAddress attribute expects an attribute value in the form of a multiline
string that uses dollar signs ($) as line delimiters. A properly formatted directory
entry appears as follows:

postalAddress: 1206 Directory Drive$Pleasant View, MN$34200

Maintaining Consistency in Replicated Schema
Consider the following points for maintaining consistent schema in a replicated
environment:

• Do not modify the schema on a consumer server.

If you modify the schema on a consumer server, it will be more recent than the
schema on the master server. Therefore, when the master sends replication
updates to the consumer, you will probably observe a number of replication
errors because the schema on the consumer cannot support the new data.

• In a multi-master replication environment, only modify schema on a single
master server.

Other Schema Resources

Chapter 3 Designing the Schema 55

If you modify the schema on two master servers, the master that was most
recently updated will propagate its version of the schema to the consumer.
This means that the schema on the consumer will be inconsistent with the
schema on the other master.

For more information on schema replication, refer to “Schema Replication,” on
page 157.

Other Schema Resources
Refer to the following links for more information about standard LDAPv3 schema:

• Internet Engineering Task Force (IETF)
http://www.ietf.org

• Understanding and Deploying LDAP Directory Services.
T. Howes, M. Smith, G. Good, Macmillan Technical Publishing, 1999.

• RFC 2252: LDAPv3 Attribute Syntax Definitions
http://www.ietf.org/rfc/rfc2252.txt

• RFC 2256: Summary of the X.500 User Schema for Use with LDAPv3
http://www.ietf.org/rfc/rfc2256.txt

• RFC 2251: Lightweight Directory Access Protocol (v3)
http://www.ietf.org/rfc/rfc2251.txt

NOTE In Directory Server 5.2, the schema file 11rfc2307.ldif has been altered to
conform to rfc2307. This file corresponds to 10rfc2307.ldif (for 5.1 zip
installations). If replication is enabled between 5.2 servers and 5.1 servers,
the rfc2307 schema MUST be corrected on the 5.1 servers, or replication will
not work correctly. Copy the 11rfc2307.ldif file from the 5.2 instance to the
5.1 instances (and remove the 10rfc2307.ldif file.)

Other Schema Resources

56 Sun ONE Directory Server Deployment Guide • June 2003

57

Chapter 4

Designing the Directory Tree

The directory information tree (DIT) provides a way to refer to the data stored in
your directory. The types of information stored, the physical nature of your
enterprise, the applications that use your directory, and the types of replication you
use shape the design of the directory tree. This chapter outlines the steps for
designing your own directory tree, and includes the following sections:

• Introduction to the Directory Tree

• Designing Your Directory Tree

• Grouping Directory Entries and Managing Attributes

• Directory Tree Design Examples

• Other Directory Tree Resources

Introduction to the Directory Tree
The directory tree provides a way for your directory data to be named and referred
to by client applications. The directory tree interacts closely with other design
decisions, including how you distribute, replicate, or control access to directory
data. Designing an adequate directory tree upfront will be less time-consuming
than redesigning an inadequate directory tree after deployment.

A well-designed directory tree provides the following:

• Simplified directory data maintenance

• Flexibility in creating replication policies and access controls

• Support for the applications using your directory

• Simplified directory navigation for users

Designing Your Directory Tree

58 Sun ONE Directory Server Deployment Guide • June 2003

The structure of your directory tree follows the hierarchical LDAP model. Your
directory tree provides a way to organize your data, for example, by group, by
people, or by place. It also determines how you partition data across multiple
servers. For example, each database needs data to be partitioned at the suffix level.
Without the proper directory tree structure, you may not be able to spread your
data across multiple servers as you would like.

In addition to these considerations, you must bear in mind that your replication
configuration possibilities will be restricted by the type of directory tree structure
that you choose. You must carefully define your directory tree partitions for
replication to work, and if you only want to replicate portions of your directory
tree, that desire needs to be taken into account during your directory tree design
process. In the same way, if you plan to use access controls on branch points, you
need to take that into account at directory tree design time.

Designing Your Directory Tree
This section guides you through the major decisions you make during the directory
tree design process. The directory tree design process involves choosing a suffix to
contain your data, determining the hierarchical relationship amongst data entries,
and naming the entries in your directory tree hierarchy. The following sections
describe the directory tree design process in more detail:

• Choosing a Suffix

• Creating Your Directory Tree Structure

• Naming Entries

Choosing a Suffix
The suffix is the name of the entry at the root of your tree, below which you store
your directory data. Your directory can contain more than one suffix. You may
choose to use multiple suffixes if you have two or more directory trees of
information that do not have a natural common root.

By default, the standard Sun ONE Directory Server deployment contains multiple
suffixes, one for storing data and the others for data needed by internal directory
operations (such as configuration information and your directory schema). For
more information on these standard directory suffixes, refer to Chapter 3,
“Creating Your Directory Tree” in the Sun ONE Directory Server Administration
Guide.

Designing Your Directory Tree

Chapter 4 Designing the Directory Tree 59

Suffix Naming Conventions
All entries in your directory should be located below a common base entry that is
called the suffix. You can have more than one suffix in your directory and it is
important to consider the following recommendations for naming the directory
suffix:

• Globally unique

• Static, so that it rarely changes, if ever

• Short, so that entries beneath it are easier to read on screen

• Easy for a person to type and remember

In a single enterprise environment, choose a directory suffix that aligns with a DNS
name or Internet domain name of your enterprise. For example, if your enterprise
owns the domain name of Example.com, then you should use a directory suffix of:

dc=example,dc=com

The dc (domainComponent) attribute represents your suffix by breaking your
domain name into its component parts.

Normally, you can use any attribute that you like to name your suffix. However,
for a hosting organization, we recommend that the suffix contain only the
following attributes:

• c (countryName)

Contains the two-digit code representing the country name, as defined by ISO.

• l (localityName)

Identifies the county, city, or other geographical area where the entry is located
or which is associated with the entry.

• st (stateOrProvinceName)

Identifies the state or province where the entry resides.

• o (organizationName)

Identifies the name of the organization to which the entry belongs.

The presence of these attributes allows for interoperability with subscriber
applications. For example, a hosting organization might use these attributes to
create the following suffix for one of its clients, Example.com:

o=Example.com,st=Washington,c=US

For more information on these attributes, see Table 4-1 on page 62.

Designing Your Directory Tree

60 Sun ONE Directory Server Deployment Guide • June 2003

Using an organization name followed by a country designation is typical of the
X.500 naming convention for suffixes.

Naming Multiple Suffixes
Each suffix that you use with your directory is a unique directory tree. You can
create multiple directory trees stored in separate databases served by Directory
Server. For example, you could create separate suffixes for the Example.com and
the Example2.com and store them in separate databases as illustrated in Figure 4-1
on page 60:

Figure 4-1 Two Suffixes Stored in Two Different Databases

The databases could be stored on a single server or multiple servers depending
upon resource constraints.

Creating Your Directory Tree Structure
You need to decide whether to use a flat or hierarchical tree structure. As a general
rule, strive to make your directory tree as flat as possible. However, a certain
amount of hierarchy can be important later on when you partition data across
multiple databases, prepare replication, and set access controls.

The structure of your tree involves the following steps and considerations:

• Branching Your Directory

• Identifying Branch Points

• Replication Considerations

• Access Control Considerations

dc=Example,dc=com dc=Example2,dc=com

ou=people ou=groups ou=people ou=groups

Database 2Database 1

Designing Your Directory Tree

Chapter 4 Designing the Directory Tree 61

Branching Your Directory
Design your hierarchy to avoid problematic name changes. The flatter a namespace
is, the less likely the names are to change. The likelihood of a name changing is
roughly proportional to the number of components in the name that can
potentially change. The more hierarchical the directory tree, the more components
in the names, and the more likely the names are to change.

The following guidelines are specific to designing your directory tree hierarchy:

• Branch your tree to represent only the largest organizational subdivisions in
your enterprise.

Any such branch points should be limited to divisions (Corporate Information
Services, Customer Support, Sales and Professional Services, and so forth).
Make sure that the divisions you use to branch your directory tree are stable;
do not perform this kind of branching if your enterprise reorganizes
frequently.

• Use functional or generic names rather than actual organizational names for
your branch points.

Names change and you do not want to have to change your directory tree
every time your enterprise renames its divisions. Instead, use generic names
that represent the function of the organization (for example, use Engineering
instead of Widget Research and Development).

• If you have multiple organizations that perform similar functions, try creating
a single branch point for that function instead of branching based along
divisional lines.

For example, even if you have multiple marketing organizations, each of which
is responsible for a specific product line, create a single Marketing subtree. All
marketing entries then belong to that tree.

Following are specific guidelines for the enterprise and hosting environment.

Branching in an Enterprise Environment
Name changes can be avoided if you base your directory tree structure on
information that is not likely to change. For example, base the structure on types of
objects in the tree rather than organizations. Some of the objects you might use to
define your structure are:

• ou=people

• ou=groups

• ou=contracts

Designing Your Directory Tree

62 Sun ONE Directory Server Deployment Guide • June 2003

• ou=employees

• ou=services

A directory tree organized using these objects in an example enterprise
Example.com, might appear as illustrated in Figure 4-2 on page 62:

Figure 4-2 Sample Directory Information Tree Using 5 Branching Points

It is wise to try to use only the traditional attributes (shown in Table 4-1 on page
62). Using traditional attributes increases the likelihood of retaining compatibility
with third-party LDAP client applications. Using the traditional attributes also
means that they will be known to the default directory schema, which makes it
easier to build entries for the branch DN.

Table 4-1 Traditional DN Branch Point Attributes

Attribute Name Definition

c A country name.

o An organization name. This attribute is typically used to
represent a large divisional branching such as a corporate
division, academic discipline (the humanities, the sciences),
subsidiary, or other major branching within the enterprise. You
should also use this attribute to represent a domain name as
discussed in “Suffix Naming Conventions,” on page 59.

ou An organizational unit. This attribute is typically used to
represent a smaller divisional branching of your enterprise than
an organization. Organizational units are generally subordinate
to the preceding organization.

st A state or province name.

l A locality, such as a city, country, office, or facility name.

dc A domain component as discussed in “Suffix Naming
Conventions,” on page 59.

ou=people ou=groups ou=services

dc=Example,dc=com

ou=contracts ou=employees

Designing Your Directory Tree

Chapter 4 Designing the Directory Tree 63

Branching in a Hosting Environment
For a hosting environment, create a tree that contains two entries of the object class
organization(o) and one entry of the organizationalUnit(ou) object class
beneath the suffix. For example, the ISP Example.com branches their directory as
illustrated in Figure 4-3 on page 63:

Figure 4-3 ISP Example.com Directory Information Tree

Identifying Branch Points
As you decide how to branch your directory tree, you will need to decide what
attributes you will use to identify the branch points. Remember that a DN is a
unique string composed of attribute-data pairs. For example, the DN of an entry
for Barbara Jensen, an employee of Example.com Corporation, appears as follows:

cn=Barbara Jensen,ou=people,dc=example,dc=com

Each attribute-data pair represents a branch point in your directory tree. For
example, the directory tree for the enterprise Example.com Corporation appears as
illustrated in Figure 4-4 on page 63:

Figure 4-4 Example.com Corporation Directory Information Tree

Likewise the directory tree for ExampleHost.com, an internet host would appear as
illustrated in Figure 4-5 on page 64:

o=Example.com,c=us

o=ISP ou=groupso=Internet

dc=Example,dc=com

ou=people ou=groups

cn=Barbara Jensen cn=Billie Holiday

Designing Your Directory Tree

64 Sun ONE Directory Server Deployment Guide • June 2003

Figure 4-5 ExampleHost.com Internet Host Directory Information Tree

Beneath the suffix entry, o=ExampleHost.com,c=US, the tree is split into three
branches. The ISP branch contains customer data and internal information for
Example.com. The internet branch is the domain tree. The groups branch contains
information about the administrative groups.

It is important to be consistent when choosing attributes for your branch points.
Some LDAP client applications may be confused if the distinguished name (DN)
format is inconsistent across your directory tree. That is, if l (localityName) is
subordinate to o (organizationName)in one part of your directory tree, then
make sure l is subordinate to o in all other parts of your directory.

Replication Considerations
During directory tree design, consider which entries you are replicating. A natural
way to describe a set of entries to be replicated is to specify the distinguished name
(DN) at the top of a subtree and replicate all entries below it. This subtree also
corresponds to a database, a directory partition containing a portion of the
directory data.

For example, in an enterprise environment you can organize your directory tree so
that it corresponds to the network names in your enterprise. Network names tend
not to change, so the directory tree structure will be stable. Further, using network
names to create the top level branches of your directory tree is useful when you use
replication to tie together different directory servers.

NOTE A common mistake is to assume that you search your directory
based on the attributes used in the distinguished name. However,
the distinguished name is only a unique identifier for the directory
entry and cannot be searched against. Instead, search for entries
based on the attribute-data pairs stored in the entry itself.

o=ExampleISP.com,c=us

o=ISP ou=groupso=internet

o=customer o=Example.com

Designing Your Directory Tree

Chapter 4 Designing the Directory Tree 65

For example, Example.com Corporation has three primary networks known as
flightdeck.Example.com, tickets.Example.com, and hanger.Example.com.
They initially branch their directory tree as illustrated in Figure 4-6 on page 65:

Figure 4-6 Three Primary Networks in Example.com Corporation DIT

After creating the initial structure of the tree, they create additional branches as
illustrated in Figure 4-7 on page 65:

Figure 4-7 Detailed View of Three Primary Networks in Example.com Corporation DIT

As another example, ExampleISP.com, an ISP company, branch their directory as
illustrated in Figure 4-8 on page 66:

dc=Example,dc=com

dc=flightdeck dc=hangardc=tickets

dc=Example,dc=com

dc=flightdeck dc=hangardc=tickets

ou=people ou=services

ou=groups ou=people

ou=groups ou=people ou=servicesou=groups

Designing Your Directory Tree

66 Sun ONE Directory Server Deployment Guide • June 2003

Figure 4-8 Directory Information Tree for ExampleISP.com

After creating the initial structure of their directory tree, they create additional
branches as illustrated in Figure 4-9 on page 66:

Figure 4-9 Detailed View of the DIT for ExampleISP.com

Both the enterprise and the hosting organization design their data hierarchies
based on information that is not likely to change often.

Access Control Considerations
Introducing hierarchy into your directory tree can be used to enable certain types
of access control. As with replication, it is easier to group together similar entries
and then administer them from a single branch.

o=ExampleISP.com,c=us

o=ISP ou=groupso=internet

o=customer o=ExampleISP.com

ou=groupsou=people

o=ExampleISP.com,c=us

o=ISP ou=groupso=internet

o=customer o=ExampleISP.com

ou=devices

ou=groupsou=people ou=devices

dc=com

dc=customer dc=example

Designing Your Directory Tree

Chapter 4 Designing the Directory Tree 67

You can also enable the distribution of administration through a hierarchical
directory tree. For example, if you want to give an administrator from the
marketing department access to the marketing entries and an administrator from
the sales department access to the sales entries, you can do so through your
directory tree design.

You can set access controls based on the directory content rather than the directory
tree. The ACI filtered target mechanism lets you define a single access control rule
stating that a directory entry has access to all entries containing a particular
attribute value. For example, you could set an ACI filter that gives the sales
administrator access to all the entries containing the attribute ou=Sales.

However, ACI filters can be difficult to manage. You must decide which method of
access control is best suited to your directory: organizational branching in your
directory tree hierarchy, ACI filters, or a combination of the two. To facilitate the
management of ACIs in your directory, Sun ONE Directory Server 5.2 provides
functionality called getEffectiveRights to request which access control rights a
given user has to directory entries and attributes. This getEffectiveRights
functionality helps to ease user administration, access control policy verification,
and debugging and is explained in more detail in Chapter 7, “Designing a Secure
Directory.”

Naming Entries
After designing the hierarchy of your directory tree, you need to decide which
attributes to use when naming the entries within the structure. Generally, names
are created by choosing one or more of the attribute values to form a relative
distinguished name (RDN). The RDN is the left-most DN attribute value. The
attributes you use depend on the type of entry you are naming.

Your entry names should adhere to the following rules:

• The attribute you select for naming should be unlikely to change.

• The name must be unique across your directory. A unique name ensures that a
DN can refer to at most one entry in your directory.

When creating entries, define the RDN within the entry. By defining at least the
RDN within the entry, you can locate the entry more easily. This is because
searches are not performed against the actual DN but rather against the attribute
values stored in the entry itself.

Attribute names have a meaning, so try to use the attribute name that matches the
type of entry it represents. For example, do not use l (locality) to represent an
organization, or c (country) to represent an organizational unit.

Designing Your Directory Tree

68 Sun ONE Directory Server Deployment Guide • June 2003

The following sections provide tips on naming entries:

• Naming Person Entries

• Naming Organization Entries

• Naming Other Kinds of Entries

Naming Person Entries
The person entry’s name, the DN, must be unique. Traditionally, distinguished
names use the commonName, or cn, attribute to name their person entries. That is, an
entry for a person named Babs Jensen might have the distinguished name of:

cn=Babs Jensen,dc=example,dc=com

While allowing you to instantly recognize the person associated with the entry, it
might not be unique in an organization where two people have identical names.
This quickly leads to a problem known as DN name collisions, which are multiple
entries with the same distinguished name.

You can avoid common name collisions by adding a unique identifier to the
common name. For example:

cn=Babs Jensen+employeeNumber=23,dc=example,dc=com

However, this can lead to awkward common names for large directories and can be
difficult to maintain.

A better method is to identify your person entries with some attribute other than
cn. Consider using one of the following attributes:

• uid

Use the uid (userID) attribute to specify some unique value of the person.
Possibilities include a user login ID or an employee number. A subscriber in a
hosting environment should be identified by the uid attribute.

• mail

Use the mail attribute to contain the value for the person’s e-mail address. This
option can lead to awkward DNs that include duplicate attribute values (for
example: mail=bjensen@Example.com, dc=example,dc=com), so you should
use this option only if you cannot find some unique value that you can use
with the uid attribute. For example, you would use the mail attribute instead
of the uid attribute if your enterprise does not assign employee numbers or
user IDs for temporary or contract employees.

Designing Your Directory Tree

Chapter 4 Designing the Directory Tree 69

• employeeNumber

For employees of the inetOrgPerson object class, consider using an employer
assigned attribute value such as employeeNumber.

Whatever you decide to use for an attribute-data pair for person entry RDNs, you
should make sure that they are unique, permanent values.

Considerations for Person Entries in a Hosted Environment
If a person is a subscriber to a service, the entry should be of object class inetUser
and the entry should contain the uid attribute. The attribute must be unique within
a customer subtree.

If a person is part of the hosting organization, represent them as an inetOrgPerson
with the nsManagedPerson object class.

Placing Person Entries in the DIT
Here are some guidelines for placing people entries in your directory tree:

• People in an enterprise should be located in the directory tree below the
organization’s entry.

• Subscribers to a hosting organization need to be below the ou=people branch
for the hosted organization.

Naming Organization Entries
The organization entry name, like other entry names, must be unique. Using the
legal name of the organization along with other attribute values helps ensure the
name is unique. For example, you might name an organization entry as follows:

o=Example.com+st=Washington,o=ISP,c=US

You can also use trademarks; however, they are not guaranteed to be unique.

Grouping Directory Entries and Managing Attributes

70 Sun ONE Directory Server Deployment Guide • June 2003

In a hosting environment, you need to include the following attributes in the
organization’s entry:

• o (organizationName)

• objectClass with values of top, organization, and nsManagedDomain

Naming Other Kinds of Entries
Your directory will contain entries that represent many things, such as localities,
states, countries, devices, servers, network information, and other kinds of data.

For these types of entries, use the commonName (cn) attribute in the RDN if possible.
For example, if you are naming a group entry, name it as follows:

cn=allAdministrators,dc=example,dc=com

However, sometimes you need to name an entry whose object class does not
support the commonName attribute. Instead, use an attribute that is supported by the
entry’s object class.

There does not have to be any correspondence between the attributes used for the
entry’s DN and the attributes actually used in the entry. However, having
identifying attributes visible in the DN simplifies the administration of your
directory tree.

Grouping Directory Entries and Managing
Attributes

Your directory tree organizes the information of your entries hierarchically. This
hierarchy is a type of grouping mechanism, though it is not well suited for
associations between dispersed entries, for organizations that change frequently, or
for data that is repeated in many entries. Directory Server provides you with
groups and roles that are also grouping mechanisms but that offer more flexible
associations between entries.

In addition to these grouping mechanisms, Directory Server provides the class of
service (CoS) mechanism for managing attributes so that they are shared between
entries in a way that is invisible to applications. Like the role mechanism, CoS
generates virtual attributes on the entries as they are retrieved. However, CoS does
not define membership but rather allows related entries to share data for coherence
and space considerations.

These entry grouping and attribute management mechanisms and their associated
advantages and limitations are described in the following sections:

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 71

• Static and Dynamic Groups

• Managed, Filtered, and Nested Roles

• Role Enumeration and Role Membership Enumeration

• Role Scope

• Role Limitations

• Deciding Between Groups and Roles

• Managing Attributes with Class of Service (CoS)

• About CoS

• Cos Definition Entries and CoS Template Entries

• CoS Priorities

• Pointer CoS, Indirect CoS, and Classic CoS

• CoS Limitations

Static and Dynamic Groups
A group is an entry that identifies the other entries that are its members. The scope
of possible members of a group is the entire directory, regardless of where the
group definition entries are located, which makes this grouping mechanism
flexible, especially when your organization is one that undergoes frequent changes.
Once you know the name of a group, it is easy to retrieve all of its member entries.
The following list discusses the characteristics of both static and dynamic groups
and helps you to understand in which cases it might be preferable to use each type
of groups:

• Static groups explicitly name their member entries. An entry that defines a
static group uses the groupOfNames or groupOfUniqueNames object class and
contains the DN of each member as a value of the member or uniqueMember
attribute, respectively. The member attribute contains a DN against which the
server checks to establish group membership and the uniqueMember attribute
syntax comprises a DN followed by an optional unique identifier, against
which the server would conduct its membership check. However, today
Directory Server only supports the groupOfNames (member attribute) native
access control processing. For more information on the syntax of the
uniqueMember attribute refer to RFC 2256: A Summary of the X.500(96) User
Schema for use with LDAPv3 http://www.ietf.org/rfc/rfc2256.txt).

Grouping Directory Entries and Managing Attributes

72 Sun ONE Directory Server Deployment Guide • June 2003

• Static groups are suitable for groups with few members, such as the group of
directory administrators, and as a result not for groups with thousands of
members. We recommend that you avoid creating static groups with more
than 20,000 members, because they will have very poor performance. For
groups of this size and more, we recommend using dynamic groups or roles. If
you must use static groups to define groups with more than 20,000 members,
use groups of groups rather than a single, large, static group.

• Dynamic groups specify a filter, and all entries that match the filter are
members of the given group. These groups are dynamic because membership
is defined every time the filter is evaluated. The definition entry of a dynamic
group belongs to the groupOfUniqueNames and groupOfURLs object classes.
The group members are listed either by one or more filters represented as
LDAP URL values of the memberURL attribute or by one or more DNs as values
of the uniqueMember attribute.

Although both types of groups may identify members anywhere in the directory,
we recommend that the group definitions themselves be located under an
appropriately named node such as ou=Groups. This makes them easy to find, for
example, when defining access control instructions (ACIs) that grant or restrict
access when the bind credentials are members of a group.

Managed, Filtered, and Nested Roles
Roles are a new entry grouping mechanism that automatically identify all roles of
which any entry is a member. Each role has members, or entries that possess the
role. As with groups, you can specify role members either explicitly or
dynamically. When you retrieve any entry in the directory, you can immediately
know the roles to which it belongs, since the roles mechanism automatically
generates the nsRole attribute containing the DN of all role definitions in which
the entry is a member. This overcomes the main disadvantage of the group
mechanism.

The role mechanism is very simple to use from the client perspective because the
directory automatically computes all role membership. Every entry belonging to a
role will be given the nsRole virtual attribute whose values are the DNs of all roles
for which the entry is a member. The nsRole attribute is said to be virtual because

NOTE By inserting the DN of another group against the uniqueMember
attribute of a dynamic group you can place groups inside other
groups, i.e., you can nest groups.

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 73

it is generated on-the-fly by the server and never actually stored in the directory.
This means that evaluating roles is more resource intensive than evaluating groups
because the server does the work for the client application. However, checking role
membership is uniform and is performed transparently on the server side.

Sun ONE Directory Server supports the following three types of roles:

• Managed Roles - Explicitly assign a role to member entries.

• Filtered Roles - Entries are members if they match a specified LDAP filter. In
this way, the role depends upon the attributes contained in each entry.

• Nested Roles - Allow you to create roles that contain other roles.

Managed Roles
Managed roles are similar to static groups, except that membership is defined in
each member entry and not in the role definition entry. With managed roles, the
administrator assigns a given role by adding the nsRoleDN attribute to the
participating entries. The value of this attribute is the DN of the role definition
entry. The static role definition entry only defines the scope of its effect. Members
of that role are entries in the scope that name the DN of the role definition entry in
their nsRoleDN attribute.

Filtered Roles
Filtered roles are similar to dynamic groups: they define a filter that determines the
members of the role. The value of their nsRoleFilter attribute, defines the filtered
role. Whenever the server returns an entry in the scope of a filtered role that
matches its filter string, that entry will contain the generated nsRole attribute
identifying the role.

Nested Roles
A nested role lists the definition entries of other roles and combines all the
members of their roles. In other words, if an entry is a member of a role that is
listed in a nested role, then the entry is also a member of the nested role. Nested
roles allow you to create roles that contain other roles.

Grouping Directory Entries and Managing Attributes

74 Sun ONE Directory Server Deployment Guide • June 2003

Role Enumeration and Role Membership
Enumeration

Role Enumeration
The nsRole attribute is read like any other attribute, and clients may use it to
enumerate all roles to which any entry belongs. The nsRole attribute may only be
used by the roles mechanism and is protected against all modifications. However,
it can be read, so should your security requirements be such that you do not want
to expose your role membership to read access, you may want to define access
controls to protect it against reading.

Role Membership Enumeration
In contrast to previous releases of Directory Server, you can now perform searches
on virtual attributes, which means that it is now possible to perform a search on the
nsRole attribute, and enumerate the members of your role. However, it is
important to bear in mind that non-indexed attributes in a search operation may
have a considerable performance impact. Searches based on equality filters are
likely to be indexed and as a result efficient, but negation searches for example will
not be indexed and will result in poorer performance. Since the nsRoleDN attribute
is indexed by default, searches on managed roles should be relatively efficient.
However, with regard to filtered and nested roles, where filters can contain both
indexed and non-indexed attributes, care should be taken to ensure that the filter
contains at least one indexed attribute so as not to launch a non-indexed search.

Role Scope
In previous releases of Directory Server the scope of role was limited to the subtree
of the role definition. If you wanted to have shared roles across different subtrees,
they had to be at the root of the tree, which meant that cross subtree roles were
limited and complicated to administer. Imagine a engineer working for the
engineering department of a large enterprise Example.com, who needed to access
an application controlled by the sales department. If a role had been created for the
sales administrators to control access to this application within the sales subtree,
then the engineer who did not belong to the sales subtree, but instead the
engineering subtree, had no way of accessing the application in question, as role
scope was strictly subtree limited. Given that groups did not (and still do not) have

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 75

the same scope limitations, the solution would have been to add the engineer to the
group of users in the sales organization that had access to the application.
However, as this solution was necessarily a group based one, the advantages of the
roles mechanism would have been lost as a result.

Sun ONE Directory Server 5.2 provides a new attribute that allows the scope of a
role to be extended beyond the subtree of the role definition entry. This new
single-valued attribute nsRoleScopeDN contains the DN of the scope we want to
add to an existing role.

Our previous example of the engineer working for Example.com requiring access
to a sales application will help illustrate how the scope of a role can now be
extended. Imagine the two main subtrees in the Example.com directory tree:
o=eng,dc=example,dc=com for the engineering subtree and o=sales,
dc=example,dc=com for the sales subtree. To extend the scope of a sales subtree
role called SalesAppManagedRole that governs access to a sales application, to
include an engineer user in the engineering subtree, you would need to do the
following:

1. Create a role for the engineer user in the engineering subtree, for example,
EngineerManagedRole. (In our example we have chosen to create a managed
role but it could just as well have been a filtered or nested role).

2. Create a nested role, for example, SalesAppPlusEngNestedRole, in the sales
subtree to house the newly created EngineerManagedRole role and the initial
SalesAppManagedRole role.

3. Add the new nsRoleScopeDN attribute to the new
SalesAppPlusEngNestedRole nested role, with the DN of the engineering
subtree scope you want to add, i.e. in this case o=eng,dc=example,dc=com.

The new SalesAppPlusEngNestedRole nested role would read as follows:

NOTE The new scope extending nsRoleScopeDN attribute can only be
added to a nested role.

Grouping Directory Entries and Managing Attributes

76 Sun ONE Directory Server Deployment Guide • June 2003

From an access control point of view, it is essential that the necessary permissions
be granted to the engineering user wanting to access the sales application, so that
access can in fact be gained to the SalesAppPlusEngNestedRole role, and in turn
the actual sales application. Similarly, in the context of replication you must be sure
to replicate the entire scope of your role, because if you fail to replicate the
extended scope you will encounter problems.

Role Limitations
When creating roles to support your directory service, you need to be aware of the
following limitations:

• Roles and chaining

If your directory tree is distributed over several servers using the chaining feature,
entries that define roles must be located on the same server as the entries
possessing those roles. If one server, A, receives entries from another server, B,
through chaining, those entries will contain the roles defined on B, but will not be
assigned any of the roles defined on A.

dn:cn=SalesAppPlusEngNestedRole,dc=example,dc=com
objectclass:LDAPsubentry
objectclass:nsRoleDefinition
objectclass:nsComplexRoleDefinition
objectclass:nsNestedRoleDefinition
nsRoleDN:cn=SalesAppManagedRole,o=sales,dc=example,dc=com
nsRoleDN:cn=EngineerManagedRole,o=eng,dc=example,dc=com
nsRoleScopeDN:o=eng,dc=example,dc=com

NOTE By only allowing nested roles to have extended scope, an
administrator who previously managed roles in one domain will
only have rights to make use of the roles that already exist in the
other domain, and will not therefore be able to create an arbitrary
role to appear in arbitrary users in the other domain.

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 77

• Filtered Roles cannot use CoS generated attributes

The filter string of a filtered role cannot be based on the values of a CoS virtual
attribute. For further information see “About CoS,” on page 80. However, the
specifier attribute in a Cos definition may reference the nsRole attribute generated
by a role definition. For further information concerning the creation of role-based
attributes, refer to “Creating Role-Based Attributes” in Chapter 5 of the Sun ONE
Directory Server Administration Guide.

• Extending the Scope of Roles

Only scope your roles to different subtrees on the same server instance. Scoping
roles to other servers may result in unpredictable behavior.

Deciding Between Groups and Roles
The groups and roles mechanisms provide some overlapping functionality that can
lead to some ambiguity. Both methods of grouping entries have advantages and
disadvantages. Generally speaking, the newer roles mechanism is designed to
provide frequently required functionality in a more efficient manner. However,
because the choice of a grouping mechanism influences your server complexity
and determines how your client processes membership information, you need to
plan your grouping mechanism carefully. You must be sure to understand what
type of set membership query and set management operations you will be needing
to perform in order to decide which mechanism fits your needs. The following two
parts in this section present the advantages and disadvantages of both mechanisms
and should guide you in your design choice. We strongly recommend that you
document your design choice to allow administrators to maintain the grouping
policy consistently at a later date.

This section is divided into the following parts:

• Advantages of the Groups Mechanism

• Advantages of the Roles Mechanism

Grouping Directory Entries and Managing Attributes

78 Sun ONE Directory Server Deployment Guide • June 2003

Advantages of the Groups Mechanism
• Static Groups are preferable to roles for enumerating members, when

membership does not exceed 20,000 members.

If you only need to enumerate members of a given set, then it is less costly to
use static groups, provided that the number of members does not exceed
20,000 as static groups with more than this number of members would have a
negative impact on performance. Enumerating members of a static group by
retrieving the member attribute is easier than recovering all entries that share a
role, thus making them more suited to member enumeration operations.

• Static groups are preferable to roles for set management operations such as
assigning and removing members.

If you want to assign a user to a set or remove a user from a set the simplest
grouping mechanism for performing this task is static groups because it does
not involve having special access rights to add the user to the group.

Having the right to create the group entry automatically gives you the right to
assign members to that group, which is not the case for managed and filtered
roles, where the administrator must also have the right to write the nsroledn
attribute to the user entry. The same access right restrictions also apply
indirectly to nested roles, as the ability to create a nested role implies the ability
to be able to pull together other roles that have already been defined.

• Dynamic groups are preferable to roles for use in filter-based ACIs.

If you only need to find all members based on a filter, such as for designating
bind rules in ACIs, use dynamic groups. Although filtered roles are similar to
dynamic groups, they will trigger the roles mechanism and generate the virtual
nsRole attribute. If your client does not need the nsRole value, opting for
dynamic groups will avoid the overhead of this computation.

• Groups are preferable to roles for adding or removing sets into or from existing
sets.

If you want to add or remove a set into or from an existing set, then the groups
mechanism is the simplest to use, as there are no nesting restrictions. The roles
mechanism, on the other hand, only allows nested roles to receive other roles.

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 79

• Groups are preferable to roles if freedom of scope for grouping your entries is
critical to your deployment.

Groups are flexible in terms of scope as the scope for possible members is the
entire directory, regardless of where the group definition entries are located.
Although roles can also extend their scope beyond a given subtree, they can
only do so by adding a scope-extending attribute nsRoleScopeDN to a nested
role, which constitutes a scope extension limitation.

Advantages of the Roles Mechanism
• Roles are preferable to groups if you want to enumerate members of a given set

and find all set membership for a given entry.

The roles mechanism is your best choice for enumerating members of a given
set and finding all set membership for a given entry, as roles push this
information out to the user entry where it can be cached to make subsequent
membership tests more efficient. The server performs all computations, and
the client only needs to read the values of the nsRole attribute. In addition to
this, all types of roles appear in this attribute, allowing the client to process all
roles uniformly. Generally speaking roles can do both operations more
efficiently and with simpler clients than is possible with groups.

• Roles are preferable to groups if you want to integrate your grouping
mechanism with existing Directory Server functionality such as CoS, Password
Policy, Account Inactivation and ACIs.

If you want to use the membership of a set “naturally” in the server, that is,
take advantage of the computation work that the server will automatically do
regarding membership, then the roles mechanism is your best option. This is
ultimately what roles were designed for, which means that they can be used in
resource-orientated ACIs, as a basis for CoS, as part of more complex search
filters, Password Policy, Account Inactivation, etc. Groups do not allow you to
do this kind of integration work.

Managing Attributes with Class of Service (CoS)
As previously stated in the introduction to this section on grouping directory
entries and managing attributes, the class of service (CoS) mechanism allows you
to share attributes between entries in a way that is invisible to applications. CoS
generates virtual attributes on entries as they are retrieved, in the same way as the

Grouping Directory Entries and Managing Attributes

80 Sun ONE Directory Server Deployment Guide • June 2003

roles mechanism. CoS does not define membership, in that it does not group
entries in the way that the roles mechanism does, but rather allows related entries
share data for coherence and space considerations. This section examines the CoS
mechanism in more detail and is divided into the following parts:

• About CoS

• CoS Definition Entries and Template Entries

• CoS Priorities

• Pointer, Indirect, and Classic CoS

• CoS Limitations

About CoS
Imagine a directory containing thousands of entries that all have the same value for
the facsimileTelephoneNumber attribute. Traditionally, to change the fax
number, you would need to update each entry individually, a large job for
administrators that is not only time consuming but also runs the risk of not
updating all entries. Using CoS, the fax number is stored in a single place, and
Directory Server automatically generates the facsimileTelephoneNumber
attribute on every concerned entry as it is returned.

To client applications, a generated CoS attribute is retrieved just as any other
attribute. However, directory administrators now have only a single fax value to
manage. In addition, because there are less values actually stored in the directory,
the database uses less disk space. The CoS mechanism also allows entries to
override a generated value or to generate multiple values for the same attribute.

The generated CoS attributes may be multi-valued from several templates.
Specifiers may designate several template entries, or there may be several CoS
definitions for the same attribute. Alternatively, you may specify template
priorities so that only one value is generated from all chosen templates. For more
information, refer to “Defining Class of Service (CoS)” in Chapter 5 of the Sun ONE
Directory Server Administration Guide.

NOTE As CoS virtual attributes are not indexed, referencing them in an
LDAP search filter may have an impact on performance.

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 81

Roles and the classic CoS can be used together to provide role-based attributes.
These attributes appear on an entry because it possesses a particular role with an
associated class of service template. For example, you could use a role-based
attribute to set the server look through limit on an role-by-role basis.

CoS functionality can be used recursively. In other words, Directory Server lets you
generate attributes through CoS that depend on other attributes generated through
CoS. Complex CoS schemes may simplify client application access to information
and ease administration of repeated attributes, but they also increase management
complexity and degrade server performance. Avoid overly complex CoS schemes,
for example, many indirect CoS schemes can be redefined as classic or pointer CoS.

Finally, avoid changing CoS definitions more often than is strictly necessary.
Modifications to CoS definitions do not take effect immediately, because the server
caches CoS information. Although caching accelerates read access to generated
attribute entries, when changes to CoS information actually occur, the server must
reconstruct the cache, a task that takes some time, usually in the order of seconds.
During cache reconstruction, read operations may still access the old cached
information, rather than the newly modified information, which means that if you
change CoS definitions too frequently, you are likely to be accessing outdated data.

Cos Definition Entries and CoS Template Entries
The CoS mechanism relies on two types of helper entries called the CoS definition
entry and the CoS template entry. This section examines both entries in more detail
and is divided into the following parts:

• CoS Definition Entry

• CoS Template Entry

CoS Definition Entry
The CoS definition entry identifies the type of CoS you are using and the names of
the CoS attribute that will be generated. Like the role definition entry, it inherits
from the LDAPsubentry object class. The location of the definition entry determines
the scope of the CoS deviations, which is the entire subtree below the parent of the
CoS definition entry. All entries in the branch of the definition entry’s parent are
called target entries for the CoS definition. Multiple definitions may exist for the
same CoS attribute, which, as a result, may be multi-valued.

The CoS definition entry is an instance of the cosSuperDefinition object class.
The CoS definition entry also inherits from one of the following object classes to
specify the type of CoS:

Grouping Directory Entries and Managing Attributes

82 Sun ONE Directory Server Deployment Guide • June 2003

• cosPointerDefinition

• cosIndirectDefinition

• cosClassicDefinition

The CoS definition entry contains the attributes specific to each type of CoS for
naming the virtual CoS attribute, the template DN, and the specifier attribute in
target entries, if needed. By default, the CoS mechanism will not override the value
of an existing attribute with the same name as the CoS attribute. However, the
syntax of the CoS definition entry allows you to control this behavior.

CoS Template Entry
The CoS template entry contains the value that will be generated for the CoS
attribute. All entries within the scope of the CoS will use the values defined here.
There may be several templates, each with a different value, in which case the
generated attribute may be multi-valued. The CoS mechanism will select one of
these values based on the contents of both the definition entry and the target entry.

The CoS template entry is an instance of the cosTemplate object class. The CoS
template entry contains the value or values of the attributes generated by the CoS
mechanism. The template entries for a given CoS are stored in the directory tree at
the same level as the CoS definition.

NOTE It is interesting to note that when schema checking is turned on, the
CoS attribute will be generated on all target entries that allow that
attribute. When schema checking is turned off, the CoS attribute will
be generated on all target entries.

NOTE When possible, definition and template entries should be located in
the same place to make for easier management. It is also wise to
name them in a way that suggests the functionality they provide.
For example, a definition entry DN such as
"cn=classicCosGenerateEmployeeType,ou=People,dc=example
,dc=com" is more descriptive than
"cn=ClassicCos1,ou=People,dc=example,dc=com". For more
information about the object classes and attributes associated with
each type of CoS, refer to “ Defining Class of Service (CoS)” in
Chapter 5 of the Sun ONE Directory Server Administration Guide.

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 83

CoS Priorities
It is possible to create CoS schemes that compete with each other to provide an
attribute value. For example, you might have a multi-valued cosSpecifier in
your CoS definition entry. In such a case, you can specify a template priority on
each template entry to determine which template provides the attribute value. Set
the template priority using the cosPriority attribute. This attribute represents the
global priority of a particular template numerically. A priority of zero is the highest
possible priority.

Templates that contain no cosPriority attribute are considered the lowest
possible priority. In the case where two or more templates are considered to supply
an attribute value and they have the same (or no) priority, a value is chosen
arbitrarily.

For example, a CoS template entry appears as follows:

dn: cn=exampleUS,cn=data
objectclass: top
objectclass: cosTemplate
postalCode: 44438
cosPriority: 0

This template entry contains the value for the postalCode attribute. It contains a
priority of zero, which means it has precedence over any other conflicting
templates that define a different postalCode value.

Pointer CoS, Indirect CoS, and Classic CoS
There are three types of CoS that differ in how the template, and thus the generated
value, is selected. The three different types of CoS presented in more detail in this
section are:

• Pointer CoS

• Indirect CoS

• Classic CoS

Pointer CoS
Pointer CoS is the simplest type of CoS, in that the pointer CoS definition entry
gives the DN of a specific template entry of the cosTemplate object class. All target
entries will have the same CoS attribute value, as defined by this template.

Grouping Directory Entries and Managing Attributes

84 Sun ONE Directory Server Deployment Guide • June 2003

Pointer CoS Example
This example shows a CoS that defines a common postal code for all of the entries
stored under dc=example,dc=com. The three entries (CoS definition entry, CoS
template entry and the target entry) for this example are shown in Figure 4-10 on
page 84:

Figure 4-10 Example of a Pointer CoS Definition and Template

The template entry is identified by its DN, cn=exampleUS,cn=data, in the CoS
definition entry. Each time the postalCode attribute is queried on entries under
dc=example,dc=com, Directory Server returns the value available in the template
entry cn=exampleUS,cn=data. Therefore, the postal code will appear with the
entry uid=wholiday,ou=people,dc=example,dc=com, but it is not stored there.
When we imagine a scenario where several shared attributes are generated by CoS
for thousands or millions or entries, instead of existing as real attributes in each
entry, we appreciate the storage space savings and performance gains that CoS
makes possible.

cn=PointerCoS,dc=example,dc=com

cosTemplateDN:cn=exampleUS,cn=data
cosAttribute:postalCode

cn=exampleUS,cn=data

postalCode:44438

uid=wholiday,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
postalCode

CoS Definition Entry

Target Entry

CoS Template Entry

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 85

Indirect CoS
Indirect CoS allows any entry in the directory to be a template and provide the CoS
value. The indirect CoS definition entry identifies an attribute, called the indirect
specifier, whose value in a target entry determines the template used for that entry.
The indirect specifier attribute in the target entry must contain a DN. With indirect
CoS, each target entry may use a different template and thus have a different value
for the CoS attribute.

For example, an indirect CoS that generates the departmentNumber attribute may
use an employee’s manager as the specifier. When retrieving a target entry, the CoS
mechanism will use the DN value of the manager attribute as the template. It will
then generate the departmentNumber attribute for the employee using the same
value as the manager’s department number.

Indirect CoS Example
This example of an indirect CoS uses the manager attribute of the target entry to
identify the template entry. In this way, the CoS mechanism can generate the
departmentNumber attribute of all employees to be the same as their manager’s,
ensuring that it is always up to date. The three entries for this example are shown
in Figure 4-11 on page 86:

CAUTION Avoid overusing indirect CoS. Because templates may be arbitrary
entries anywhere in the directory tree, implementing access control
for indirect CoS can become extremely complex. In deployments
where performance is critical, it is also wise to avoid overusing
indirect CoS due to its resource intensive nature.

In many cases, results that are similar to those made possible by
indirect CoS can be achieved by limiting the location of the target
entries with classic CoS or using the less flexible pointer CoS
mechanism.

Grouping Directory Entries and Managing Attributes

86 Sun ONE Directory Server Deployment Guide • June 2003

Figure 4-11 Example of an Indirect CoS Definition and Template

The indirect CoS definition entry names the specifier attribute, which in this
example, is the manager attribute. William Holiday’s entry is one of the target
entries of this CoS, and his manager attribute contains the DN of cn=Carla
Fuentes,ou=people,dc=example,dc=com. Therefore, Carla Fuentes’ entry is the
template, which in turn provides the departmentNumber attribute value of 318842.

Classic CoS
Classic CoS combines the pointer and indirect CoS behavior. The classic CoS
definition entry identifies the base DN of the template and a specifier attribute. The
value of the specifier attribute in the target entries is then used to construct the DN
of the template entry as follows:

cn=specifierValue,baseDN

The template containing the CoS values is determined by the combination of the
RDN (relative domain name) value of the specifier attribute in the target entry and
the template’s base DN.

Classic CoS templates are entries of the cosTemplate object class to avoid the
performance issue associated with arbitrary indirect CoS templates.

cn=IndirectCoS,dc=example,dc=com

cosIndirectSpecifier:cn=manager
cosAttribute:departmentNumber

uid=cfuentes,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:Carla Fuentes
uid:cfuentes
departmentNumber:318842

uid=wholiday,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
manager:uid=cfuentes,ou=people,
 dc=example,dc=com
departmentNumber:318842

CoS Definition Entry

Target EntryCoS Template Entry

Grouping Directory Entries and Managing Attributes

Chapter 4 Designing the Directory Tree 87

Classic CoS Example
The classic CoS mechanism determines the DN of the template from the base DN
given in the definition entry and the specifier attribute in the target entry. The
value of the specifier attribute will be taken as the cn value in the template DN.
Template DNs for classic CoS must therefore have the following structure:

cn=specifierValue,baseDN

The example inFigure 4-12 on page 87 shows a classis CoS definition that generates
a value for the postal code attribute:

Figure 4-12 Example of a Classic CoS Definition and Template

In this example, the Cos definition entry’s cosSpecifier attribute names the
employeeType attribute. The combination of this attribute and the template DN
identifies the template entry as cn=sales,cn=exampleUS,cn=data. The template
entry then provides the value of the postalCode attribute to the target entry.

cn=ClassicCoS,dc=example,dc=com

cosTemplateDN:cn=ExampleUS,cn=data
cosSpecifier:employeeType
cosAttribute:postalCode

Cn=sales,cn=exampleUS,cn=data

postalCode:44438

uid=wholiday,ou=people,dc=example,dc=com

Objectclass:inetOrgPerson
cn:William Holiday
uid:wholiday
employeeType:sales
postalCode:44438

CoS Definition Entry

Target EntryCoS Template Entry

Grouping Directory Entries and Managing Attributes

88 Sun ONE Directory Server Deployment Guide • June 2003

CoS Limitations
The CoS functionality is a complex mechanism which, for performance and
security reasons, is subject to the following limitations.

• Restricted Subtrees

You cannot create CoS definitions in either the cn=config or cn=schema subtrees.

• Searches in suffixes where an attribute is declared as a CoS generated attribute
will result in an unindexed search.

CoS generated attributes will only result in unindexed searches in suffixes where
they are declared as CoS attributes. This may have a significant impact on
performance. In suffixes where the same attribute is NOT declared as a CoS
attribute, then the search will be indexed.

• Restricted Attribute Types

The following attribute types should not be generated by the CoS mechanism
because they will not have the same behavior as real attributes of the same name:

❍ userPassword - A CoS-generated password value cannot be used to bind
to the directory server.

❍ aci - The directory server will not apply any access control based on the
contents of a virtual ACI value defined by CoS.

❍ objectclass - The directory server will not perform schema checking on
the value of a virtual object class defined by CoS.

❍ nsRoleDN - A CoS-generated nsRoleDN value will not be used by the server
to generate roles.

• All templates must be local

The DNs of template entries, either in a CoS definition or in the specifier of the
target entry, must refer to local entries in the directory. Templates and the values
they contain cannot be retrieved through directory chaining or referrals.

• CoS virtual values cannot be combined with real values

The values of a CoS attribute are never a combination of real values from the entry
and virtual values from the templates. When the CoS overrides a real attribute
value, it replaces all real values with those from the templates. However, the CoS
mechanism can combine virtual values from several CoS definition entries as
described in the “CoS Limitations” section of the Sun ONE Directory Server
Administration Guide.

Directory Tree Design Examples

Chapter 4 Designing the Directory Tree 89

• Filtered Roles cannot use CoS generated attributes

The filter string of a filtered role cannot be based on the values of a CoS virtual
attribute. However, the specifier attribute in a CoS definition may reference the
nsRole attribute generated by a role definition. For more information see the
“Creating Role-Based Attributes” section in the Sun ONE Directory Server
Administration Guide.

• Access Control Instructions (ACIs)

The server controls access to attributes generated by a CoS in exactly the same way
as regular, stored attributes. However, access control rules that depend on the
value of attributes generated by CoS are subject to the conditions described in
“Restricted Attribute Types,” on page 88.

• CoS Cache Latency

The CoS cache is an internal Directory Server structure which keeps all CoS data in
memory to improve performance. This cache is optimized for retrieving CoS data
to be used in computing virtual attributes, even while CoS definition and template
entries are being updated. Therefore, once definition and template entries have
been added or modified, there may be a slight delay before they are taken into
account. This delay depends upon the number and complexity of CoS definitions,
as well as the current server load, but it is usually in the order of a few seconds.
Bear this latency in mind before embarking on overly complex CoS configurations.

Directory Tree Design Examples
The following sections provide examples of directory trees designed to support a
flat hierarchy as well as several examples of more complicated hierarchies.

Directory Tree for an International Enterprise
To support an international enterprise, root your directory tree in your Internet
domain name and then branch your tree for each country where your enterprise
has operations immediately below that root point. In “Suffix Naming
Conventions,” on page 59, you are advised to avoid rooting your directory tree in a
country designator. This is especially true if your enterprise is international in
scope.

Because LDAP places no restrictions on the order of the attributes in your DNs,
you can use the c (countryName) attribute to represent each country branch as
illustrated in Figure 4-13 on page 90:

Directory Tree Design Examples

90 Sun ONE Directory Server Deployment Guide • June 2003

Figure 4-13 Use of c (countryName) Attribute to Represent Countries in a Directory
Information tree

However, some administrators feel that this is stylistically awkward, so instead
you could use the l (locality) attribute to represent different countries as shown
in:

Figure 4-14 Use of l (locality) Attribute to Represent Countries in a Directory Information
Tree

Directory Tree for an ISP
Internet service providers (ISPs) may support multiple enterprises with their
directories. If you are an ISP, consider each of your customers as a unique
enterprise and design their directory trees accordingly. For security reasons, each
account should be provided with a unique directory tree that has a unique suffix
and an independent security policy.

You can assign each customer a separate database, and store these databases on
separate servers. Placing each directory tree in its own database allows you to back
up and restore data for each directory tree without affecting your other customers.

dc=Example.com,dc=com

c=US c=Japan

o=groups o=serviceso=people o=groups o=serviceso=people

dc=Example.com,dc=com

l=US l=Japan

o=groups o=serviceso=people o=groups o=serviceso=people

Other Directory Tree Resources

Chapter 4 Designing the Directory Tree 91

In addition, partitioning helps reduce performance problems caused by disk
contention, and reduces the number of accounts potentially affected by a disk
outage. Figure 4-15 on page 91 below shows the directory tree for Example.com, an
ISP:

Figure 4-15 Directory Tree for Example.com ISP

Other Directory Tree Resources
Take a look at the following links for more information about designing your
directory tree:

• RFC 2247: Using Domains in LDAP/X.500 Distinguished Names
http://www.ietf.org/rfc/rfc2247.txt

• RFC 2253: LDAPv3, UTF-8 String Representation of Distinguished Names
http://www.ietf.org/rfc/rfc2253.txt

o=ExampleISP.com,c=US

o=ISP ou=groupso=internet

o=Example.com.com o=Example2.com.com

ou=groups ou=devicesou=people

o=Example.com

dc=com

dc=customer dc=example

ou=groups ou=devicesou=people

ou=groups ou=devicesou=people

Other Directory Tree Resources

92 Sun ONE Directory Server Deployment Guide • June 2003

93

Chapter 5

Designing the Directory Topology

In Chapter 4, “Designing the Directory Tree,” you designed how your directory
stores entries. Because Directory Server can store a large quantity of entries, you
may need to distribute your entries across more than one server. Your directory’s
topology describes how you divide your directory tree among multiple physical
Directory Servers and how these servers link with one another.

This chapter describes planning the topology of your directory. It contains the
following sections:

• Topology Overview

• Distributing Your Data

• About Referrals and Chaining

Topology Overview
You can design your deployment of Sun ONE Directory Server to support a
distributed directory where the directory tree you designed in Chapter 4,
“Designing the Directory Tree,” is spread across multiple physical Directory
Servers. The way you choose to divide your directory across servers helps you
accomplish the following:

• Achieve the best possible performance for your directory-enabled applications

• Increase the availability of your directory

• Improve the management of your directory

The database is the basic unit you use for jobs such as replication, performing
backups, and restoring data.

Distributing Your Data

94 Sun ONE Directory Server Deployment Guide • June 2003

When you divide your directory among several servers, each server is responsible
for only a part of the directory tree. The distributed directory works similarly to the
Domain Name Service (DNS), which assigns each portion of the DNS namespace to
a particular DNS server. Likewise, you can distribute your directory namespace
across servers while maintaining a directory that, from a client’s point of view,
appears to be a single directory tree.

Sun ONE Directory Server also provides the referral and chaining mechanisms for
linking directory data stored in different databases.

The remainder of this chapter describes databases, referrals, and chaining, and
describes how you can design indexes to improve the performance of your
databases.

Distributing Your Data
Distributing your data allows you to scale your directory across multiple server
instances which, may or may not, depending on your performance requirements,
be stored on several machines, without physically containing those directory
entries on each server in your enterprise. A distributed directory can thus hold a
much larger number of entries than would be possible with a single server.

In addition, you can configure your directory to hide the distributing details from
the user. As far as users and applications are concerned, there is simply a single
directory that answers their directory queries.

The following sections describe the mechanics of data distribution in more detail:

• Using Multiple Databases

• About Suffixes

Using Multiple Databases
Sun ONE Directory Server stores data in LDBM databases. he LDBM database is a
high-performance disk-based database. Each database consists of a set of large files
that contains all of the data assigned to it.

Distributing Your Data

Chapter 5 Designing the Directory Topology 95

You can store different portions of your directory tree in different databases. For
example, your directory tree appears as shown in Figure 5-1:

Figure 5-1 Directory Tree With Three Subsuffixes

You can store the data of the three subsuffixes in three separate databases as shown
in Figure 5-2:

Figure 5-2 Three subsuffixes Stored in Three Separate Databases

When you divide your directory tree among a number of databases, these
databases can then be distributed across multiple servers, which generally equates
to several physical machines to improve performance. For example, the three
databases you created to contain the three subsuffixes of your directory tree can be
stored on two servers as shown in Figure 5-1 on page 95:

dc=Example,dc=com

ou=people ou=servicesou=groups

DB1

DB2

DB3ou=people,dc=Example,dc=com

ou=groups,dc=Example,dc=com

ou=services,dc=Example,dc=com

Distributing Your Data

96 Sun ONE Directory Server Deployment Guide • June 2003

Figure 5-3 Example.com’s Three Databases Stored on Two Servers A and B

Server A contains databases DB1 and DB2 and server B contains database DB3.
Distributing databases across multiple servers reduces the amount of work each
server needs to do. Thus, the directory can be made to scale to a much larger
number of entries than would be possible with a single server.

In addition, Sun ONE Directory Server supports adding databases dynamically,
meaning you can add new databases when your directory needs them without
taking your entire directory off-line.

About Suffixes
Each database contains the data within a suffix of your directory server. You can
create both suffixes and subsuffixes to organize the contents of your directory tree.
A suffix is the entry at the root of a tree. It can be the root of your directory tree or
part of a larger tree you have designed for your directory server.

A sub suffix is a branch underneath a suffix. The data for suffixes and subsuffixes
are contained by databases.

For example, you want to create subsuffixes to represent the distribution of your
directory data. The directory tree for Example.com Corporation appears as shown
in Figure 5-4 on page 97:

Server BServer A

DB1 DB2 DB3

Distributing Your Data

Chapter 5 Designing the Directory Topology 97

Figure 5-4 Example.com Corporation’s Directory Tree

Example.com Corporation decides to split their directory tree across five different
databases as illustrated in Figure 5-5 on page 97:

Figure 5-5 Example.com Corporation’s Directory Tree Split Across Five Databases

o=NetscapeRoot and dc=Example,dc=com are both suffixes. The other
ou=testing,dc=Example,dc=com, ou=development,dc=Example,dc=com, and
ou=partners,ou=development,dc=Example,dc=com suffixes are all subsuffixes of
the dc=Example,dc=com suffix. The suffix dc=Example,dc=com contains the data in
the ou=marketing, branch of the original directory tree.

The suffixes and subsuffixes that result from this division contain entries as shown
in Figure 5-6 on page 98:

dc=Example,dc=com

ou=marketing ou=development ou=testing

ou=partners

o=NetscapeRoot

dc=Example,dc=com

ou=marketing
ou=development ou=testing

ou=partners

o=NetscapeRoot

Distributing Your Data

98 Sun ONE Directory Server Deployment Guide • June 2003

Figure 5-6 Example.com Corporation Suffixes and Associated Entries

Your directory might contain more than one suffix. For example, an ISP called
Example.com might host several websites, one for its own website Example.com
and one for another website called HostedExample2.com. The ISP can choose
between creating one suffix, which houses everything, or two suffixes to separate
the hosted ISP part of the organization from internal Example.com data.

The first solution with just one suffix for all data, would have the directory
information tree as shown in Figure 5-7 on page 99:

o=NetscapeRoot

dc=Example,dc=com

ou=testing,dc=Example,dc=com

ou=development,dc=Example,dc=com

ou=partners,ou=development,dc=Example,dc=com

Distributing Your Data

Chapter 5 Designing the Directory Topology 99

Figure 5-7 ISP Example.com Directory Tree with One Suffix

Whereas the second solution where the ISP creates two suffixes, one corresponding
to the dc=Example,dc=com naming context and one corresponding to the o=ISP
part of the organization would have the directory information tree as shown in
Figure 5-8 on page 99:

Figure 5-8 ISP Example.com’s Directory Tree

The dc=Example,dc=com entry represents a suffix as does the o=ISP entry. The
entries for each hosted ISP, that is, o=Example and o=HostedExample, are
subsuffixes of the o=ISP suffix, with the ou=people and the ou=groups branches as
subsuffixes of each hosted ISP.

o=internet ou=groups

dc=Example,dc=com

o=Example o=HostedExample

ou=people ou=groups

o=ISP

ou=people ou=groups

o=internet ou=groups

dc=Example,dc=com

o=Example o=HostedExample

ou=people ou=groups

o=ISP

ou=people ou=groups

About Referrals and Chaining

100 Sun ONE Directory Server Deployment Guide • June 2003

About Referrals and Chaining
Once your data is distributed over several databases, you need to define the
relationships between the distributed data. You do this using pointers to directory
information held in different databases. The Sun ONE Directory Server provides
the referral and chaining mechansims to help you link your distributed data into a
single directory tree.

• Referrals

The server returns a piece of information to the client application indicating
that the client application needs to contact another server to fulfill the request.

• Chaining

The server contacts other servers on behalf of the client application and returns
the combined results to the client application after finishing the operation.

The following sections describe and compare these two mechanisms in more detail.

Using Referrals
A referral is a piece of information returned by a server that tells a client
application the server to contact to proceed with an operation request. Directory
Server supports three types of referrals:

• Default referral

The directory returns a default referral when a client application presents a DN
for which the server does not have a matching suffix. Default referrals are
configured at server level using the nsslapd-referral attribute.

• Suffix Referrals

A suffix referral, as opposed to a default referral, is a referral stored at database
level. Suffix referrals are configured in the suffix configuration information.
You can set a suffix referral for each suffix, which, generally speaking, means
setting a suffix per database.

• Smart referrals

Smart referrals are stored on entries within the directory itself. Smart referrals
point to Directory Servers that have knowledge of the subtree whose DN
matches the DN of the entry containing the smart referral.

About Referrals and Chaining

Chapter 5 Designing the Directory Topology 101

All referrals are returned in the format of an LDAP uniform resource locator (URL).
The following sections describe the structure of an LDAP referral, and then
describe the three referral types supported by Directory Server.

The Structure of an LDAP Referral
An LDAP referral contains information in the format of an LDAP URL. An LDAP
URL contains the following information:

• The host name of the server to contact.

• The port number of the server.

• The base DN (for search operations) or target DN (for add, delete, and modify
operations).

For example, a client application searches dc=Example,dc=com for entries with a
surname Jensen. A referral returns the following LDAP URL to the client
application:

ldap://europe.Example.com:389/ou=people,l=europe,dc=Example,dc=com

The referral tells the client application to contact the host europe.Example.com on
LDAP port 389 and submit a search rooted at
ou=people,l=europe,dc=Example,dc=com.

The LDAP client application you use determines how a referral is handled. Some
client applications automatically retry the operation on the server to which they
have been referred. Other client applications simply return the referral information
to the user. Most LDAP client applications provided by Sun ONE Directory Server
(such as the command-line utilities) automatically follow the referral. The same
bind credentials you supply on the initial server request are used to access the
referred server.

Most client applications follow a limited number of referrals, or hops. The limit on
the number of referrals followed reduces the time a client application spends trying
to complete a directory lookup request and helps eliminate hung processes caused
by circular referral patterns.

Default Referrals
The directory server determines whether a default referral should be returned by
comparing the DN of the requested directory object against the directory suffixes
supported by the local server. If the DN does not match the supported suffixes, the
directory server returns a default referral.

For example, a directory client requests the following directory entry:

About Referrals and Chaining

102 Sun ONE Directory Server Deployment Guide • June 2003

uid=bjensen,ou=people,dc=Example,dc=com

However, the server manages only entries stored under the
dc=europe,dc=Example,dc=com suffix. The directory returns a referral to the
client that indicates which server to contact for entries stored in the
dc=Example,dc=com suffix. The client then contacts the appropriate server and
resubmits the original request.

You configure the default referral to point to a Directory Server that has more
knowledge about the distribution of your directory. Default referrals for the server
are set by the nsslapd-referral attribute, stored in the dse.ldif configuration
file.

For information on configuring default referrals, see the Setting Default Referrals
section in the Sun ONE Directory Server Administration Guide.

Suffix Referrals
Suffix referrals allow you to configure referrals at the suffix level. This functionality
offers a more detailed level of referral and, with one of the configuration attributes,
allows you to control where updates are actually made. Default referrals for each
database in your directory installation are also set by the nsslapd-referral
attribute in the mapping tree entry of the dse.ldif configuration file.

Imagine you have two major sites in the US, one based in New York and the other
in Los Angeles. A client application sends which concerns the New York site as
follows:

uid=bjensen,ou=people,dc=US,dc=Example,dc=com

You can configure a suffix referral to dc=NewYork,dc=US,dc=Example,dc=com so
that the request can be processed by the suffix which contains the dc=NewYork
subtree.

Suffixes can be configured to operate in four different states, two of which concern
suffix referrals. If you do not require suffix referrals you can choose between the
nsslapd-referral: backend state, where the backend (database) processes all
operations, and the nsslapd-referral: disabled state, where the database is not
available for processing and an error is returned in response to requests made by
the client applications.

However, if you want to configure suffix referrals, then you can choose to
configure two different states. The nsslapd-referral: referral state causes a
referral to be returned for all requests made to this suffix, and the
nsslapd-referral: referral on update state causes the database to be used for
all operations except update requests which will receive a referral. The second
referral on update state is used internally by the server when replication is

About Referrals and Chaining

Chapter 5 Designing the Directory Topology 103

configured to prevent consumers from processing update requests. However,
should you need to restrict access to read operations on certain databases for load
balancing or performance reasons, this suffix referral configuration possibility
would be your solution.

For information on configuring suffix referrals, see the Creating Suffix Referrals
section in the Sun ONE Directory Server Administration Guide. For more information
concerning the configuration attributes

Smart Referrals
Directory Server also allows you to configure your directory to use smart referrals.
Smart referrals allow you to associate a directory entry or directory tree to a specific
LDAP URL. Associating directory entries to specific LDAP URLs allows you to
refer requests to any of the following:

• Same namespace contained on a different server

• Different namespaces on a local server

• Different namespaces on the same server

Unlike default referrals, the smart referrals are stored within the directory itself.
For information on configuring and managing smart referrals, refer to the Creating
Smart Referrals section in the Sun ONE Directory Server Administration Guide.

For example, the directory for the American office of Example.com Corporation
contains the following directory branch point: ou=people,dc=Example,dc=com.

You redirect all requests on this branch to the ou=people branch of the European
office of Example.com Corporation by specifying a smart referral on the ou=people
entry itself. This smart referral appears as follows :

ldap://europe.Example.com:389/ou=people,dc=Example,dc=com

Any requests made to the people branch of the American directory are redirected
to the European directory. An illustration of this smart referral where requests
made to the American directory are redirected to the European directory is shown
in Figure 5-9 on page 104:

About Referrals and Chaining

104 Sun ONE Directory Server Deployment Guide • June 2003

Figure 5-9 Smart Referral From American Directory to European Directory

You can use the same mechanism to redirect queries to a different server that uses a
different namespace. For example, an employee working in the Italian office of
Example.com Corporation makes a request to the European directory for the phone
number of a Example.com employee in America. The referral returned by the
directory follows:

ldap://europe.Example.com:389/ou=US employees,dc=Example,dc=com

Figure 5-10 on page 105 illustrates the smart referral for an Italian employee in the
European office requesting the phone number of an American employee in the
American office.

ou=groups ou=people

dc=Example,dc=com

america.Example.com

europe.Example.com

ou=groups ou=people

dc=Example,dc=com

About Referrals and Chaining

Chapter 5 Designing the Directory Topology 105

Figure 5-10 Smart Referral for Phone Number Request

Finally, if you serve multiple suffixes on the same server, you can redirect queries
from one namespace to another namespace served on the same machine. If you
want to redirect all queries on the local machine for o=Example,c=us to
dc=Example,dc=com, then you would put the following smart referral on the
o=Example,c=us entry:

ldap:///dc=Example,dc=com

as illustrated in Figure 5-11:

Figure 5-11 Smart Referral Traffic

ou=groups ou=people

dc=Example,dc=com

america.Example.com

europe.Example.com

ou=groups ou=people

dc=Example,dc=com

ou=US Employees

ou=groups ou=people

dc=Example,dc=como=Example,c=us

About Referrals and Chaining

106 Sun ONE Directory Server Deployment Guide • June 2003

Since you are redirecting queries from one namespace to another on the same
machine, there is no need to provide the host:port information pair which
usually appears in the URL after the second slash. As a result, because this pair is
empty in the URL, the URL pointing to the same Directory Server contains three
slashes.

For more information on LDAP URLs see the LDAP URLs appendix in the Sun
ONE Directory Server Reference Manual. For more information on how to include
smart URLs on Sun ONE Directory Server entries, see the Setting Referrals section
in the Sun ONE Directory Server Administration Guide.

NOTE To make best use of referrals, do not make the base of your search
below where the referral is configured.

About Referrals and Chaining

Chapter 5 Designing the Directory Topology 107

Tips for Designing Smart Referrals
Consider the following points before using smart referrals:

• Keep the design simple.

Deploying your directory using a complex web of referrals makes
administration difficult. Also, overusing smart referrals can lead to circular
referral patterns. For example, a referral points to an LDAP URL, this LDAP
URL in turn points to another LDAP URL, and so on until a referral
somewhere in the chain points back to the original server. A circular referral
pattern is depicted in Figure 5-12:

Figure 5-12 Incorrect Circular Referral Pattern Caused by the Overuse of Smart Referrals

dc=Example,dc=com

ou=groups ou=people

dc=Example,dc=com

ou=groups ou=people

dc=Example,dc=com

ou=groups ou=people

INCORRECT

About Referrals and Chaining

108 Sun ONE Directory Server Deployment Guide • June 2003

• Redirect at major branch points.

Limit your referral usage to handle redirection at the suffix level of your
directory tree. Smart referrals allow you to redirect lookup requests for leaf
(non-branch) entries to different servers and DNs. As a result, you may be
tempted to use smart referrals as an aliasing mechanism, leading to a complex
and difficult to secure directory structure. By limiting referrals to the suffix or
major branch points of your directory tree, you can limit the number of
referrals that you have to manage, subsequently reducing your directory’s
administrative overhead.

• Consider the security implications.

Access control does not cross referral boundaries. Even if the server where the
request originated allows access to an entry, when a smart referral sends a
client request to another server, the client application may not be allowed
access.

Also, the client credentials need to be available on the server to which the client
is referred for client authentication to take place.

Using Chaining
Chaining is a method for relaying requests to another server. This method is
implemented through chained suffixes. A chained suffix, as described in the
section titled “Distributing Your Data”, contains no data. Instead, it redirects client
application requests to remote servers that contain the data.

During chaining, a server receives a request from a client application for data it
does not contain. Using the chained suffix, the server then contacts other servers on
behalf of the client application and returns the results to the client application. This
operation is illustrated in Figure 5-13 on page 109.

About Referrals and Chaining

Chapter 5 Designing the Directory Topology 109

Figure 5-13 Chaining Operation

Each chained suffix is associated to a remote server holding data. You can also
configure alternate remote servers containing replicas of the data for the chained
suffix to use when there is a failure. For more information on configuring chained
suffixes, refer to the Creating Chained Suffixes section in the Sun ONE Directory
Server Administration Guide.

Chained suffixes provide the following features:

• Invisible access to remote data.

Because the chained suffix takes care of client requests, data distribution is
completely hidden from the client.

• Dynamic management.

You can add or remove a part of the directory from the system while the entire
system remains available to client applications. The chained suffix can
temporarily return referrals to the application until entries have been
redistributed across the directory. You can also implement this functionality
through the suffix itself, which can return a referral rather than forwarding a
client application on to the database.

• Access control.

The chained suffix impersonates the client application, providing the
appropriate authorization identity to the remote server. You can disable user
impersonation on the remote servers when access control evaluation is not
required. For more information regarding access control and chained suffixes
see the Access Control Through Chained Suffixes section in the Sun ONE
Directory Server Administration Guide.

request

result

forwarded request

resultClient

Chained
Suffix

Server A

Database

Server B

About Referrals and Chaining

110 Sun ONE Directory Server Deployment Guide • June 2003

Deciding Between Referrals and Chaining
Both methods of linking your directory partitions have advantages and
disadvantages. The method, or combination of methods, you choose depends upon
the specific needs of your directory.

The main difference between using referrals and using chaining is the location of
the intelligence that knows how to locate the distributed information. In a chained
system, the intelligence is implemented in the servers. In a system that uses
referrals, the intelligence is implemented in the client application.

While chaining reduces client complexity, it does so at the cost of increased server
complexity. Chained servers must work with remote servers and send the results
to directory clients.

With referrals, the client must handle locating the referral and collating search
results. However, referrals offer more flexibility for the writers of client
applications and allow developers to provide better feedback to users about the
progress of a distributed directory operation.

The following sections describe some of the more specific differences between
referrals and chaining in greater detail.

Usage Differences
Some client applications do not support referrals. Chaining allows client
applications to communicate with a single server and still access the data stored on
many servers. Sometimes referrals do not work when a company’s network uses
proxies. For example, a client application has permissions to speak to only one
server inside a firewall. If they are referred to a different server, they will not be
able to contact it successfully.

Also, with referrals a client must authenticate, meaning that the servers to which
clients are being referred need to contain the client credentials. With chaining,
client authentication takes place only once. Clients do not need to authenticate
again on the servers to which their requests are chained.

Evaluating Access Controls
Chaining evaluates access controls differently from referrals. With referrals, a bind
DN entry must exist on all of the target servers. With chaining, the client entry does
not need to be on all of the target servers.

For example, a client sends a search request to server A. Figure 5-14 on page 111
shows how the operation would work using referrals:

About Referrals and Chaining

Chapter 5 Designing the Directory Topology 111

Figure 5-14 Client Application Search Request to Server A Being Redirected to Server B
Through a Referral

In the illustration above, the client application performs the following steps:

1. The client application first binds with Server A.

2. Server A contains an entry for the client that provides a user name and
password, so returns a bind acceptance message. In order for the referral to
work, the client entry must be present on Server A.

3. The client application sends the operation request to Server A.

4. However, Server A does not contain the information requested. Instead, Server
A returns a referral to the client application telling them to contact Server B.

5. The client application then sends a bind request to Server B. To bind
successfully, Server B must also contain an entry for the client application.

6. The bind is successful, and the client application can now resubmit its search
operation to Server B.

Client

Client
Entry

1

Server A

Server B

Client
Entry

2

3

4

5

6

About Referrals and Chaining

112 Sun ONE Directory Server Deployment Guide • June 2003

This approach requires Server B to have a replicated copy of the client’s entry from
Server A.

Chaining solves this problem. A search request using chaining would work as
shown in Figure 5-15 on page 112:

Figure 5-15 Search Request using Chaining

In the illustration above, the following steps are performed:

1. The client application binds with Server A and Server A tries to confirm that
the user name and password are correct.

2. Server A does not contain an entry corresponding to the client application.
Instead, it contains a chained suffix to Server B, which contains the actual entry
of the client. Server A sends a bind request to Server B.

3. Server B sends an acceptance response to Server A.

Client

1

Server A

Server B

Client
Entry

2 3 4

About Referrals and Chaining

Chapter 5 Designing the Directory Topology 113

4. Server A then processes the client application’s request using the chained
suffix. The chained suffix contacts a remote data store located on Server B to
process the search operation.

In a chained system, the entry corresponding to the client application does not
need to be located on the same server as the data the client requests. Figure 5-16 on
page 113 illustrates how two chained suffixes can be used to satisfy a client’s search
request:

Figure 5-16 Chaining Using Two Chained Suffixes to Process a Client’s Search Request

In this illustration, the following steps are performed:

1. The client application binds with Server A and Server A tries to confirm that
the user name and password are correct.

2. Server A does not contain an entry corresponding to the client application.
Instead, it contains a chained suffix to Server B, which contains the actual entry
of the client. Server A sends a bind request to Server B.

3. Server B sends an acceptance response to Server A.

Client

1

Server A

Server B

Client
Entry

2 3

4

Server C

About Referrals and Chaining

114 Sun ONE Directory Server Deployment Guide • June 2003

4. Server A then processes the client application’s request using another chained
suffix. The chained suffix contacts a remote data store located on Server C to
process the search operation.

However, chained suffixes do not support the following access controls:

• Controls that must access the content of the user entry are not supported when
the user entry is located on a different server. This includes access controls
based on groups, filters, and roles.

• Controls based on client IP addresses or DNS domains may be denied. This is
because the chained suffix impersonates the client when it contacts remote
servers. If the remote database contains IP-based access controls, it will
evaluate them using the chained suffix’s domain rather than the original client
domain.

115

Chapter 6

Designing the Replication Process

Replicating your directory contents increases the availability and performance of
your directory. In Chapter 4 and Chapter 5, you made decisions about the design
of your directory tree and your directory topology. This chapter addresses the
physical and geographical location of your data, and specifically, how to use
replication to ensure that your data is available when and where you need it.

This chapter discusses uses for replication and offers advice on designing a
replication strategy for your directory environment. It contains the following
sections:

• Introduction to Replication

• Common Replication Scenarios

• Defining a Replication Strategy

• Using Replication with Other Directory Features

• Replication Monitoring

Introduction to Replication
Replication is the mechanism that automatically copies directory data from one
Directory Server to another. Using replication, you can copy any directory tree or
subtree (stored in its own database) between servers, except the configuration or
monitoring information subtrees.

Replication enables you to provide a highly available directory service, and to
geographically distribute your data. In practical terms, replication brings the
following benefits:

• Fault tolerance/Failover

Introduction to Replication

116 Sun ONE Directory Server Deployment Guide • June 2003

By replicating directory trees to multiple servers, you can ensure your
directory is available even if some hardware, software, or network problem
prevents your directory client applications from accessing a particular
Directory Server. Your clients can be referred to another directory for read and
write operations. Note that to support write failover you must have more than
one master copy of your data in your replication environment.

• Load balancing

By replicating your directory tree across servers, you can reduce the access
load on any given machine, thereby improving server response time.

• Higher performance and reduced response times

By replicating directory entries to a location close to your users, you can vastly
improve directory response times.

• Local data management

Replication allows you to own and manage data locally while sharing it with
other Directory Servers across your enterprise.

Before defining a replication strategy for your directory information, you should
understand how replication works. This section describes:

• Replication Concepts

• Data Consistency

Replication Concepts
When you consider replication, you always start by making the following
fundamental decisions:

• What information you want to replicate.

• Which server or servers hold the master copy of that information.

• Which server or servers hold the read-only copy of the information.

• What should happen when a consumer replica receives modification requests
from client applications; that is, to which server should it refer the request.

These decisions cannot be made effectively without an understanding of how the
Directory Server handles these concepts. For example, when you decide what
information you want to replicate, you need to know what is the smallest
replication unit that the Directory Server can handle.

Introduction to Replication

Chapter 6 Designing the Replication Process 117

To ensure that you fully understand the replication process and the possibilities it
provides you for your Directory Server deployment, the following sections explain
the replication concepts used by Directory Server. This provides a solid framework
for thinking about the global decisions you will need to take.

Replica
A database that participates in replication is defined as a replica. There are several
kinds of replicas:

• Master replica or read-write replica: a read-write database that contains a
master copy of the directory data. A master replica can process update requests
from directory clients.

• Consumer replica: a read-only database that contains a copy of the information
held in the master replica. A consumer replica can process search requests
from directory clients but refers update requests to master replicas.

• Hub replica: a read-only database just like a consumer replica. The difference is
that it is stored on a Directory Server that acts as a supplier of one or more
consumer replicas.

You can configure a Directory Server to manage several replicas. Each replica can
have a different role in replication. For example, you could have a Directory Server
that stores the dc=engineering,dc=example,dc=com suffix in a master replica,
and the dc=sales,dc=example,dc=com suffix in a consumer replica.

Unit of Replication
In Directory Server the smallest unit of replication is the database. The replication
mechanism requires that one database correspond to one suffix. This means that
you cannot replicate a suffix (or namespace) that is distributed over two or more
databases using custom distribution logic. The unit of replication concept applies
to both consumers and suppliers, which means that you cannot replicate two
databases to a consumer holding only one database, and vice versa.

Replica ID
Master replicas require a unique replica identifier (ID) and consumer replicas all
have the same replica ID. The replica ID for masters can be any 16 bit integer
between 1 and 65534, while consumer replicas all have the replica ID of 65535. The
replica ID lies at the heart of the replication mechanism as it identifies to which
replica the changes occurred, thus enabling them to be replicated correctly.

Introduction to Replication

118 Sun ONE Directory Server Deployment Guide • June 2003

Supplier/Consumer
A server that replicates to other servers is called a supplier. A server that is updated
by other servers is called a consumer.

In some cases a server can be both a supplier and a consumer. This is true in the
following cases:

• When the Directory Server manages a combination of master replicas and
consumer replicas.

• When the Directory Server contains a hub replica; that is, it receives updates
from a supplier and replicates the changes to consumer(s). For more
information, refer to “Cascading Replication,” on page 134.

• In multi-master replication, when a master replica is mastered on two different
Directory Servers, each Directory Server acts as a supplier and a consumer of
the other Directory Server. For more information, refer to “Multi-Master
Replication,” on page 127.

When we refer to a server that only plays the role of consumer; that is, it only
contains a consumer replica, we refer to this server as a dedicated consumer.

In Directory Server, replication is always initiated by the supplier, never by the
consumer. We refer to this as supplier-initiated replication, as suppliers push the
data to consumers.

Earlier versions of the Directory Server allowed consumer-initiated replication
where you could configure consumers to pull data from a suppliers. Since the 5.0
release of Directory Server, this has been replaced by a procedure in which the
consumer can prompt the supplier to send updates.

For a master replica, the server must:

• Respond to update (add, delete, modrdn, or modify) requests from directory
clients.

• Maintain historical information and a change log for the replica.

• Initiate replication to consumers.

NOTE If a server hosts several replicas, the replicas may have the same
replica ID, provided that the replica ID is unique between the
masters of a single, replicated naming context or suffix.

Introduction to Replication

Chapter 6 Designing the Replication Process 119

The server containing the master replica is always responsible for recording
the changes made to the master replicas it manages. It makes sure that any
changes are replicated to consumers.

For a hub replica, the server must:

• Respond to read requests.

• Refer update requests to the server that contains the master replica.

• Maintain the historical information for the replica.

• Initiate replication to consumers.

For more information on cascading replication, refer to “Cascading Replication,”
on page 134.

For a consumer replica, the server must:

• Respond to read requests.

• Maintain historical information for the replica.

• Refer update requests to the server that contains the master replica.

Anytime a request to add, delete, or change an entry is received by a consumer,
the request is referred via the client to the server, or servers, that contain the
master replica; that is, the server acting as the supplier in the replication flow.
The supplier performs the request, then replicates the change.

It is possible to configure the consumer or hub replicas not to return a referral,
but to return an error instead if it is desirable for security and performance
reasons to do so. Refer to the Note on page 131 for more information.

Online Replica Promotion and Demotion
Sun ONE Directory Server 5.2 provides online replica promotion and demotion
functionality. Once online promotion or demotion is complete, the servers
immediately start or stop accepting updates. To promote a consumer replica to a
master replica, you need to promote it first to a hub replica and then to a master
replica. The same incremental approach applies to online demotion.

In addition to providing increased flexibility, online replica promotion and
demotion affords you increased failover capabilities. Take the example of a
two-way, multi-master scenario with two hubs configured for additional load
balancing and failover. Should one of the masters go offline, you simply need to
promote one of the hubs to maintain optimal read-write availability, and then,
when the master replica comes back online, a simple demotion back to hub replica
returns you to the original state of affairs.

Introduction to Replication

120 Sun ONE Directory Server Deployment Guide • June 2003

Change Log
Every server acting as a supplier, that is a master replica or a hub replica, maintains
a change log. A change log is a record that describes the modifications that have
occurred on a master replica. The server acting as a supplier then replays these
modifications to its consumers

When an entry is modified, renamed, added or deleted, a change record describing
the LDAP operation that was performed is recorded in the change log.

In earlier versions of Directory Server, the change log was accessible over LDAP.
Now, however, it is intended only for internal use by the server, and is stored in its
own database which means that it is no longer accessible over LDAP. If you have
applications that need to read the change log, you need to use the Retro Change
Log Plug-in for backward compatibility. For more information about the Retro
Change Log Plug-in refer to the Using the Retro Change Log Plug-In section in the
Sun ONE Directory Server Administration Guide.

Replication Identity
When replication occurs between two servers, the server acting as the consumer
authenticates the server acting as supplier when it binds to the consumer to send
replication updates. This authentication process requires that the entry used by the
supplier to bind to the consumer is stored on the consumer server. This entry is
called the Replication Manager entry. When, in the context of replication, the
Directory Server Console refers to DN or bind DN, it is referring to the bind DN of
the Replication Manager Entry.

NOTE Before demoting a hub to a consumer, which will result in the
replica no longer being able to propagate any changes due to the fact
that as a consumer it will not have a change log, you must verify
that the hub is in sync with the other servers. To ensure that the hub
is in sync you can use the replication monitoring tool insync, which
is presented in the section entitled “Replication Monitoring,” on
page 159.

NOTE Care should be taken when planning the change log size because
once entries are purged from the change log, they can no longer be
replicated. You need to consider carefully the type of traffic you
expect to be sure to provide sufficient change log disk space as
different types of changes require different amounts of disk space.

Introduction to Replication

Chapter 6 Designing the Replication Process 121

The Replication Manager entry, or any entry you create to fulfill that role, must
meet the following criteria:

• You must have at least one on every server acting as a consumer (whether they
be dedicated consumers, hubs, or masters in a multi-master environment).

• This entry must not be part of the replicated data for security reasons and
initialization issues.

When you configure replication between two servers, you must identify the
Replication Manager entry on both servers:

• On the server acting as the consumer, you must specify this entry as the one
authorized to perform replication updates, when you configure the consumer
replicas, hub replicas, or master replicas (in the case of multi-master
replication) in your replication topology.

• On the server acting as the supplier, that is all master and hub replicas, when
you configure the replication agreement, you must specify the bind DN of this
entry in the replication agreement.

NOTE This entry has a special user profile that bypasses all access control
rules defined on the consumer server. However, this special user
profile is only valid in the context of replication.

NOTE In the Directory Server Console, this Replication Manager entry is
created by default, although the Directory Server Console does
allow you to create your own should you so desire.

If you are using SSL and replication and want to authenticate then
there are two possible methods:

• When using SSL Server Authentication, you need to have a
Replication Manager entry in the server you are authenticating
to and its associated password for authentication to succeed.

• When using SSL Client Authentication you need to have an
entry in the server you are authenticating to which contains a
certificate. This entry may or may not be mapped to the
Replication Manager entry.

Introduction to Replication

122 Sun ONE Directory Server Deployment Guide • June 2003

Replication Agreement
Directory Servers use replication agreements to define replication. A replication
agreement describes replication between one supplier and one consumer. The
agreement is configured on the supplier. For replication to work it is important to
remember that the replication agreement must be enabled. It identifies:

• The database to replicate.

• The consumer server to which the data is pushed.

• A pointer to a set of attributes to exclude or include from the replicated data if
fractional replication is configured.

• The times during which replication can occur.

• The bind DN and credentials the supplier must use to bind to the consumer,
called the Replication Manager entry (for more information, refer to
“Replication Identity,” on page 120).

• How the connection is secured (SSL, client authentication).

• The group and window sizes to configure the number of changes you can
group into one request and the number of requests that can be sent before
consumer acknowledgement is required.

• Status information about the replication agreement.

• On Solaris and Linux systems, information on the level of compression used in
replication.

Consumer Initialization or Total Update
Consumer initialization, or total update, is the process whereby you physically
copy all data from the server acting as the supplier to the server acting as the
consumer. Once you have created a replication agreement, the consumer within
that agreement needs to be initialized. It is only after consumer initialization is
complete, that the supplier can begin replaying, or replicating the future update
operations to the consumer(s). Under normal operations, the consumer should not
require further initialization; however, if the data on a supplier is restored from
backup for any reason, then you may need to re-initialize some of the consumers

NOTE In Sun ONE Directory Server 5.2 you can choose to disable or enable
existing replication agreements. This can be useful should you
temporarily have no need to use a particular replication agreement,
but want to maintain its configuration for possible future use.

Introduction to Replication

Chapter 6 Designing the Replication Process 123

dependent on that supplier. An example where consumer re-initialization would
be necessary is if the restored supplier was the only supplier for the consumer in
the topology. It is possible to initialize consumers both online and offline
(manually). For further information on the consumer initialization procedures see
the Initializing Replicas section in the Sun ONE Directory Server Administration
Guide. Directory Server 5.2 also offers an advanced binary copy feature which can
be used to clone either master or consumer replicas using the binary backup files
from one server to restore the identical directory contents on another server.
Certain restrictions on this feature make it practical and time efficient only for
replicas with very large database files. For information on the binary backup
procedures and an exhaustive list of the feature’s strict limitations see “Binary
Backup (db2bak),” on page 265.

In a multi-master replication topology, the default behavior of a read-write replica
that has been reinitialized either online or offline from a backup or an ldif file, is to
REFUSE client update requests. Note that this is in contrast to previous versions of
Directory Server. By default the replica will remain in read-only mode indefinitely
and will refer any update operations to other suppliers in the topology. In such a
case, the administrator may configure the replica to begin accepting updates again
in two ways:

• Manually enable read-write mode by using the Directory Server console or
setting the ds5BeginReplicaAcceptUpdates attribute to start. This allows
the administrator to use the insync replication monitoring tool to ensure that
the replica has completely converged with the other suppliers in the topology.
This is the recommended procedure because the administrator can guarantee
that the replica is in sync before allowing update operations.

• Configure the replica to automatically revert to read-write mode after a given
delay specified by the replica specific ds5referralDelayAfterInit attribute.
This procedure presents the risk of allowing update operations on the replica
before it is completely synchronized with the other master replicas, which may
lead to unexpected errors.

For more information on these procedures refer to the the Initializing Replicas
section of the Sun ONE Directory Server Administration Guide. For more information
regarding the replication configuration attributes refer to the replication attributes
listed in the Core Server Configuration Attributes chapter of the Sun ONE Directory
Server Reference Manual.

Introduction to Replication

124 Sun ONE Directory Server Deployment Guide • June 2003

Incremental Update
Incremental update is the process whereby updates are replicated by the supplier
to the consumer following consumer initialization or total update. In contrast to
previous releases of Directory Server, Sun ONE Directory Server 5.2 allows a
consumer to be incrementally updated by several suppliers at once, provided that
the updates themselves originate from different replica IDs. Simultaneous
incremental updates from several suppliers (but different replica IDs) improves the
performance of the incremental update procedure.

Data Consistency
Consistency refers to how closely the contents of replicated databases match each
other at a given point in time. When you set up replication between two servers,
part of the configuration is to schedule updates. With Directory Server, it is always
the server acting as the supplier that determines when consumers need to be
updated, and initiates replication. Replication can take place only after the
consumers have been initialized.

Directory Server offers the option of keeping replicas always synchronized, or of
scheduling updates for a particular time of day, or day in the week. The obvious
advantage of keeping replicas always in sync is that it provides better data
consistency. The cost, however, is the network traffic resulting from the frequent
update operations. This solution is the best in cases where:

• You have a reliable high-speed connection between servers.

• The client requests serviced by your directory are mainly search, read, and
compare operations, with relatively few add and modify operations.

In cases where you can afford to have looser consistency in data, you can choose
the frequency of updates that best suits your needs or lowers the effect on network
traffic. This solution is the best in cases where:

• You have unreliable or intermittently available network connections (such as a
dial-up connection to synchronize replicas).

• The client requests serviced by your directory are mainly add and modify
operations.

• You need to reduce the communication costs.

In the case of multi-master replication, the replicas on each master are said to be
loosely consistent because at any given time, there can be differences in the data
stored on each master. This is true even when you have selected to always keep
replicas in sync, because:

• There is a latency in the propagation of replication updates between masters.

Common Replication Scenarios

Chapter 6 Designing the Replication Process 125

• The master that serviced the add or modify operation does not wait for the
second master to validate it before returning an “operation successful”
message to the client.

Common Replication Scenarios
You need to decide how the updates flow from server to server and how the
servers interact when propagating replication updates to build a replication
strategy which fits your replication requirements. There are five basic scenarios:

• Single-Master Replication

• Multi-Master Replication

• Cascading Replication

• Fractional Replication

• Mixed Environments

The following sections describe these scenarios and provide strategies for deciding
the method that is most appropriate for your environment. You can also combine
these basic scenarios to build the replication topology that best suits your needs.

Single-Master Replication
In the most basic replication configuration, a server acting as a supplier copies a
master replica directly to one or more consumer servers. In this configuration, all
directory modifications are made to the master replica stored on the supplier, and
the consumers contain read-only copies of the data.

The supplier maintains a change log that records all the changes made to the
master replica. The supplier also stores the replication agreement.

The consumer stores the entry corresponding to the Replication Manager entry, so
that the consumer can authenticate the supplier when the supplier binds to send
replication updates.

NOTE Whatever replication scenario you choose to implement, remember
to consider schema replication. See “Schema Replication,” on
page 157 for further information.

Common Replication Scenarios

126 Sun ONE Directory Server Deployment Guide • June 2003

The supplier server must propagate all modifications to the consumer replicas.
Figure 6-1 on page 126 shows this simple configuration.

Figure 6-1 Single-Master Replication

In the example illustrated in Figure 6-1, the ou=people,dc=example,dc=com suffix
receives a large number of search and update requests from clients. Therefore, to
distribute the load, this suffix, which is mastered on Server A, is replicated to a
consumer replica located on Server B.

Server B can process and respond to search requests from clients, but cannot
process requests to modify directory entries. Server B processes modification
requests received from clients by sending a referral to Server A back to the client.

NOTE In replication, the server acting as the consumer stores referral
information about the server acting as the supplier, but does not
forward modification requests from clients to the supplier. The
client must follow the referral sent back by the consumer.

Consumer
Replica

Change
log

Master A
bind DN

(Replication
Manager

Entry)

Server B - Consumer

Server A - Master

Master
Replica

ou=people,dc=example,dc=com

Replication
Agreement

ou=people,dc=example,dc=com

Replication Referral

Common Replication Scenarios

Chapter 6 Designing the Replication Process 127

Although Figure 6-1 shows just one server acting as a consumer, the supplier can
replicate to several consumers. The total number of consumers that a single
supplier can manage depends on the speed of your network and the total number
of entries that are modified on a daily basis.

Multi-Master Replication
In a multi-master replication environment, master replicas of the same information
exist on more than one server. This section on multi-master replication is divided
into the following parts:

• Multi-Master Replication Basic Concepts

• Multi-Master Replication Capabilities

• Fully-Connected, Four-Way, Multi-Master Topology

• Multi-Master Replication over Wide Area Networks (WAN)

Multi-Master Replication Basic Concepts
In a multi-master configuration where master replicas of the same information
exist on more than one server, data can be updated simultaneously in two or more
different locations. This means that each server maintains a change log for the
master replica involved in the replication topology. The changes that occur on each
server are replicated to the other(s). This means that each server plays both roles of
supplier and consumer. Multi-master configurations have the following
advantages:

• Automatic write failover when one supplier is inaccessible.

• Updates are made on a local supplier in a geographically distributed
environment.

When the same data is modified on both servers at approximately the same time,
update reconciliation procedures are applied; i.e. the most recent change takes
precedence. However, some conflicting changes may break the LDAP model,
which will result in the entry being marked as a conflicting entry. To resolve these
“conflicting entries,” the Administrator(s) will need to decide what to do with
these entries and manually update them.

Common Replication Scenarios

128 Sun ONE Directory Server Deployment Guide • June 2003

Although two separate servers can have master copies of the same data, within the
scope of a single replication agreement, there is only ever one supplier and one
consumer. So, to create a multi-master environment between two suppliers that
share responsibility for the same data, you need to create two replication
agreements. Figure 6-1 on page 126 shows this configuration:

Figure 6-2 Multi-Master Replication Configuration (Two Masters)

Supplier A and Supplier B each hold a master replica of the same data and there are
two replication agreements governing the replication flow of this multi-master
configuration.

Directory Server 5.2 supports a maximum of four masters in a multi-master
replication topology. The number of consumers and hubs is theoretically
unlimited, although the number of consumers to which a single supplier can
replicate will depend on the capacity of the supplier server.

Multi-Master Replication Capabilities
Sun ONE Directory Server 5.2 provides a more streamlined, flexible protocol that
makes it easier for you to adapt your deployment to your replication and
performance requirements. Sun ONE Directory Server 5.2 allows you to:

NOTE If the uniqueness of your attributes is important to your
deployment, then we higly recommend that you enable the
Attribute Value Uniqueness plug-in in multi-master replication
environments, as it allows you to reduce the number of naming
conflicts. For more information on the Attribute Value Uniqueness
plug-in see the section entitled “Common Replication Scenarios,” on
page 125.

Supplier A
Example.com

Supplier B
Example.com

Replication Agreement 1

Replication Agreement 2

Common Replication Scenarios

Chapter 6 Designing the Replication Process 129

• Replicate updates based on the replica ID. Replica ID-based updates result in
improved performance in that they make it possible for a consumer to be
updated by multiple suppliers at the same time (provided that the updates
originate from different replica IDs).

• Enable or disable a replication agreement with a given consumer, which
provides you with greater replication configuration flexibility for your
deployment. You can configure certain topologies in the knowledge that
should you, at a later date, wish to modify that topology, you can easily do so.

Fully-Connected, Four-Way, Multi-Master Topology
Figure 6-3 on page 130 shows a fully-connected, four-way, multi-master topology.
Thanks to its four-way master failover configuration, this fully-connected topology
provides a highly-available solution that guarantees data integrity. It is the most
secure in terms of read-write failover capability, but it is worth noting that this
failover capability does not come without overheads in terms of performance. It
will depend on your high-availability requirements as to whether or not you will
want to deploy the fully-connected, multi-master configuration. Should your
high-availability requirements be less stringent, or should you wish to reduce your
replication traffic for performance reasons, you may want to opt for a “lighter”
deployment in terms of read-write failover.

Common Replication Scenarios

130 Sun ONE Directory Server Deployment Guide • June 2003

Figure 6-3 Fully-Connected Four-Way Multi-Master Replication Configuration

In Figure 6-3 the ou=people,dc=example,dc=com suffix is held on four masters to
ensure that it is always available for modification requests. Each master maintains
its own change log. When one of the masters processes a modification request from
a client, it records the operation in its change log. It then sends the replication
update to the other masters, and in turn to the other consumers. This requires that
the masters have replication agreements with each other, as well as with the
consumers. Each master also stores a Replication Manager entry that it uses to
authenticate the other masters when they bind to send replication updates.

Master replica
on Server B

Master Replica
on Server D

Master C Master D

Master BMaster A

 Replication Traffic

Consumer
F

Consumer
E

Consumer
G

Consumer
H

ou=people,dc=example,dc=com

Consumer Replica
on Server F

Consumer Replica
on Server H

Master Replica
on Server A

Master Replica
on Server C

Consumer Replica
on Server E

Consumer Replica
on Server G

Default Referrals:
Master A
Master B
Master C
Master D

Default Referrals:
Master A
Master B
Master C
Master D

Default Referrals:
Master A
Master B
Master C
Master D

Default Referrals:
Master A
Master B
Master C
Master D

ou=people,dc=example,dc=com

ou=people,dc=example,dc=com
ou=people,dc=example,dc=com

ou=people,dc=example,dc=com
ou=people,dc=example,dc=com

ou=people,dc=example,dc=com ou=people,dc=example,dc=com

Common Replication Scenarios

Chapter 6 Designing the Replication Process 131

In Figure 6-3 each consumer stores two entries, corresponding to the Replication
Manager entries, so that they can authenticate the masters when they bind to send
replication updates. It is possible for each consumer to have just one Replication
Manager entry, enabling all masters to use the same Replication Manager entry for
authentication.

The consumers have referrals set up by default for all masters in the topology.
When consumers receive modification requests from the clients, referrals to the
masters are sent back to the clients by the consumers.

To better understand the replication elements you need to configure to deploy this
fully-connected, four-way, multi-master replication topology, Figure 6-4 presents a
detailed view of the replication agreements, change logs, and Replication Manager
entries that you need to set up on master A, and Figure 6-5 provides the same
detailed view for consumer E.

NOTE In replication environments consumers do not forward modification
requests from clients to the servers acting as suppliers. In the event
of a consumer receiving a modification request, the consumer will
return a list containing the URLs of the possible masters that could
satisfy the client’s modification request.

Sun ONE Directory Server 5.2 allows you to control these referrals in
that you can overwrite the referrals set automatically by the server
by adding your own.

Being able to control referrals helps you to optimize your
deployment’s security and performance, in that it:

❍ ensures your referrals point to secure ports only,

❍ allows you to point to a Sun ONE Directory Proxy Server for
load balancing reasons,

❍ allows you to redirect to a local server only in the case of a
deployment with servers separated by a WAN, and

❍ allows you to limit referrals to a subset of masters in 4-way
multi-master topologies.

For information regarding the configuration of referrals see the
Setting Referrals section of the Sun ONE Directory Server
Administration Guide.

Common Replication Scenarios

132 Sun ONE Directory Server Deployment Guide • June 2003

Figure 6-4 Replication Configuration for Master A in the Fully-Connected, Four-Way,
Multi-Master Replication Topology

As we can see in Figure 6-4 the master A requires a master replica, a change log
and Replication Manager entries or bind DNs for masters B, C, and D (in the case
where you do not use the same Replication Manager entry for all four masters). In
addition to the change log and Replication Manager entries, master A also requires
replication agreements for the three other masters B, C, and D, and consumers E
and F.

Change log
Master
Replica

Server A: Master

Master D Bind DN
(Replication

Manager Entry)

Replication
Agreement
Master B

Replication
Agreement
Master C

Replication
Agreement
Master D

Replication
Agreement

Consumer E

Replication
Agreement

 Consumer F

Master C Bind DN
(Replication

Manager Entry)

Master B Bind DN
(Replication

Manager Entry)

Common Replication Scenarios

Chapter 6 Designing the Replication Process 133

Figure 6-5 Replication Configuration for Consumer Server E in Fully-Connected,
Four-Way, Multi-Master Replication Topology

The detailed view of the replication configuration for consumer E presented in
Figure 6-5 shows us that consumer E requires a consumer replica and Replication
Manager entries to authenticate master A and master B when they bind to send
replication updates.

Multi-Master Replication over Wide Area Networks (WAN)
Multi-master replication (MMR) over Wide Area Networks (WAN) is a new
feature of Sun ONE Directory Server 5.2 that will allow for MMR configurations
across geographical boundaries in international, multiple data-center deployments.
Previously master Directory Servers had to be connected via high-speed,
low-latency networks with minimum connection speeds of 100Mb/second, for full
MMR support which ruled out the possibility of MMR over WAN, but this is no
longer the case. Sun ONE Directory Server now supports MMR over WAN, that
means that geographical boundaries no longer constitute a stumbling block for
multi-master replication. The flexibility this new feature will afford large
deployments is immense.

In order to render MMR over WAN a viable deployment possibility, the Sun ONE
Directory Server 5.2 replication protocol now provides for fully asynchronous
support and window and grouping mechanisms. The following section will
examine these mechanisms in more detail.

NOTE Due to differences in protocol, multi-master replication over WAN
is not backward compatible with previous releases of Directory
Server. As a result, in a multi-master replication over WAN
configuration, all Directory Server instances separated by a WAN
must be 5.2 instances.

Consumer
Replica

Server E: Consumer Master A Bind DN
(Replication

Manager Entry)

Master B Bind DN
(Replication

Manager Entry)

Common Replication Scenarios

134 Sun ONE Directory Server Deployment Guide • June 2003

Grouping and Window Mechanisms
To optimize the replication flow, Directory Server allows you to group changes
rather than having to send them individually. It also allows you to specify a certain
number of requests that can be sent to the consumer without the supplier having to
wait for an acknowledgement from the consumer before continuing. You use the
ds5ReplicaTransportGroupSize attribute to specify the number of changes that
can be grouped into a single update request and the
ds5ReplicaTransportWindowSize attribute to specify the number of sendUpdate
requests that can occur before consumer acknowledgement is required. The default
group size is 1 and the default window size is 10, which means that unless
otherwise specified, default replication behavior will not group requests, but will
allow 10 sendUpdate requests to be sent before consumer acknowledgement is
required.

Cascading Replication
In a cascading replication scenario, a server acting as a hub receives updates from a
server acting as a supplier, and replays those updates on consumers. The hub is a
hybrid: it holds a read-only copy of the data, like a consumer and it maintains a
change log like a supplier.

Hubs pass on copies of the master data as they are received from the original
master refer update requests from directory clients to the master.

NOTE Although the viability of MMR over WAN is a direct result of these
protocol improvements, they are equally valid for Local Area
Network (LAN) deployments.

CAUTION Since both the grouping and window mechanisms are based on
entry size, optimizing replication performance is difficult to
configure when you have a variable entry size. If you are aware of a
relatively constant entry size, you can use the grouping and window
mechanisms to optimize incremental and total updates. It is also
important to realize that the performance of your MMR over WAN
replication traffic flow will depend the latency and bandwidth of
your WAN connection.

You will need to analyze all of these factors carefully before
configuring MMR over the WAN.

Common Replication Scenarios

Chapter 6 Designing the Replication Process 135

This cascading replication scenario is illustrated in Figure 6-6:

Figure 6-6 Cascading Replication Scenario

Cascading replication is very useful in the following cases:

• When you need to balance heavy traffic loads: for example, because your
masters need to handle all update traffic, it would put them under a very
heavy load to support all replication traffic to consumers as well. You can
off-load replication traffic to a hub that can service replication updates to a
large number of consumers.

• To reduce connection costs by using a local hub in geographically distributed
environments.

• To increase performance of your directory service: if you direct all client
applications performing read operations to the consumers, and all those
performing update operations to the master, you can remove all of the indexes
(except system indexes) from your hub. This will dramatically increase the
speed of replication between the server acting as the master and the server
acting as the hub.

dc=Example,dc=com

ou=people

ou=groups

dc=Example,dc=com

dc=Example,dc=com

ou=groups

ou=groups
ou=people

ou=people

SUPPLIER

HUB

CONSUMER

Common Replication Scenarios

136 Sun ONE Directory Server Deployment Guide • June 2003

A similar scenario, from a different perspective, is illustrated in Figure 6-7. This
illustration shows how the servers are configured in terms of Replication
Agreements and change logs as well the default referrals.

Figure 6-7 Server Configuration in Cascading Replication

In the example illustrated in Figure 6-7, a server acting as a hub is used to balance
the load of replication updates by sharing it between a server acting as a master
server and the hub.

Change
log

Server A - Master A

Master
Replica Replication

Agreement
Hub

Supplier B

Hub
Replica

Master A
Bind DN

(Replication
Manager

Entry)

Server B - Hub B

Replication Referral

Consumer
Replica

Hub B Bind DN
(Replication

Manager Entry)

Server C - Consumer C

Consumer
Replica

Hub B Bind DN
(Replication

Manager Entry)

Server D - Consumer D

Replication Replication

Change
log

ReferralReferral

Replication
Agreement

Consumer C

Replication
Agreement

Consumer D

Common Replication Scenarios

Chapter 6 Designing the Replication Process 137

The master and the hub both maintain a change log. However, only the master can
process directory modification requests from clients. The hub contains a
Replication Manager entry for Master A, so that Master A can bind to the hub to
send replication updates, and consumers C and D both contain Replication
Manager entries for Hub B, which it uses to authenticate when sending its updates
to the consumers.

The consumer and the hub can process search requests received from clients, but in
the case of modification requests, send the client a referral to the master. Figure 6-7
shows that Consumer C and D have a referral to Master A. These are the automatic
referrals that are created when you create the replication agreement between the
hub and the consumers. You can, however, as we have already stated, choose to
overwrite these referrals should you wish to do so for performance or security
reasons. For more information see Note on page 131.

NOTE You can combine multi-master and cascading replication scenarios.
For example, in the multi-master scenario illustrated in Figure 6-8 on
page 138, Server C and Server D could be hubs that would replicate
to any number of consumers.

Common Replication Scenarios

138 Sun ONE Directory Server Deployment Guide • June 2003

Mixed Environments
You can combine any of the scenarios outlined in the previous sections to best fit
your needs. For example, you could combine a multi-master configuration with a
cascading configuration to produce a topology similar to the scenario illustrated in
Figure 6-8:

Figure 6-8 Combined Multi-Master and Cascading Replication

Master A

ou=people,dc=example,dc=com

Master A

ou=people,dc=example,dc=com

Consumer

ou=people,dc=example,dc=com

Consumer

ou=people,dc=example,dc=com

Consumer

ou=people,dc=example,dc=com

Consumer

ou=people,dc=example,dc=com

Consumer

Supplier

ou=people,dc=example,dc=com

Consumer

Supplier

ou=people,dc=example,dc=com

Master Replica
on Server A

Master Replica
on Server B

Hub Replicas

Replication Traffic

Disabled Replication Agreements

Common Replication Scenarios

Chapter 6 Designing the Replication Process 139

In the example illustrated in Figure 6-8, we have two masters and two hubs
replicating data to four consumers. The hubs are used to balance the load of
replication updates by sharing it between the masters and the hubs. This kind of
configuration can prove to be valuable when you have a heavy load of replication
updates to manage.

As in the example illustrated in Figure 6-7, both the hubs and the masters A and B,
maintain change logs. It is, however, only the masters that can process directory
modification requests from clients. When the hubs or the consumers receive
modification requests from clients, they send the client a referral to the masters, in
order for the request to be processed. The referrals are not indicated in Figure 6-8,
but they exist between each of the four consumers and both masters, as well as
between each of the hubs and the masters. These referrals are automatically created
when you define your topology.

In the example illustrated in Figure 6-8 the dotted lines represent disabled
replication agreements. If these replication agreements are not enabled, then the
topology presented contains a single point of failure, if one of the hubs were to go
off line. Whether or not you decide to enable the replication agreements to provide
full read-write failover, will depend on your high availability requirements, but
you need to be aware that by not enabling the agreements you are exposing
yourself to a single point of failure risk.

Fractional Replication
In previous releases of Directory Server, the smallest unit of replication was the
database and there was no way of replicating only a subset of the information
inside a given database. Although the smallest unit of replication remains the
database, Sun ONE Directory Server 5.2 offers new fractional replication
functionality to cater for replication granularity requirements. This section is
divided into two parts:

• What is Fractional Replication?

• Configuring Fractional Replication

What is Fractional Replication?
Fractional replication allows you to replicate a subset of the attributes of all entries
in a given database from a supplier to a consumer. The following cases are just two
examples of the scenarios where fractional replication can prove to be very useful:

Common Replication Scenarios

140 Sun ONE Directory Server Deployment Guide • June 2003

• When you need to synchronize between intranet and extranet servers and filter
out content for security reasons, fractional replication provides the filtering
functionality.

• When you need to reduce replication costs, fractional replication allows you to
be selective in what you choose to replicate. If your deployment only requires
certain attributes to be available everywhere, then instead of replicating all
attributes, you can use the fractional replication functionality to replicate
required attributes only. For example you may want e-mail and phone
attributes to be replicated but not all the other attributes that exist, particularly
if the other attributes are ones that are modified quite frequently and as a result
generate heavy traffic loads. Fractional replication allows you to filter in the
required attributes and reduce traffic to a minimum. This filtering functionality
can prove to be extremely valuable in replication environments where
Directory Servers are separated by WANs.

Configuring Fractional Replication
In order to set up fractional replication you can either choose to exclude or include
a list of attributes to be replicated, and this can be configured easily from the
console. However, should you, at a later stage, wish to change your fractional
replication configuration, you can do so as long as you remember to disable the
replication agreements before proceeding to make any changes. Once you have
made your changes you will need to enable your replication agreement again and
re-initialize your consumers so that the new configuration is taken into account.

CAUTION The fractional replication functionality provided in Sun ONE
Directory Server 5.2 is not backward compatible with previous
versions of Directory Server. If you are using fractional replication,
you must ensure that all other instances of Directory Server are 5.2
instances.

Common Replication Scenarios

Chapter 6 Designing the Replication Process 141

Generally speaking you replicate all required attributes for each entry as defined in
the schema, to avoid schema violations, but should you want to filter out some of
the required attributes using the fractional replication functionality, then you need
to be sure to disable schema checking. Having schema checking enabled with
fractional replication can prevent you from being able to initialize off line, that is
from an ldif file, because it would not allow you to load the ldif file if required
attributes were filtered out. It is worth noting that turning schema checking off
may have the added benefit of improving performance. It is also important to bear
in mind that when you have disabled schema checking on a fractional consumer
replica, the whole server instance on which that fractional consumer replica resides
will not enforce schema. As a result, you should avoid configuring supplier
(read-write) replicas for different directory information trees on the same server
instance.

Please note also that since schema is pushed by suppliers in fractional replication
configurations, the schema on the fractional consumer replica will be a copy of the
master replica’s schema and, therefore, it will not correspond to the fractional
replication configuration being applied.

CAUTION There are two things to bear in mind when configuring fractional
replication:

• When configuring fractional replication, it is essential that the
server being replicated to be a read-only replica.

• We strongly recommend the use of an exclusion configuration
approach. When we consider the complexity of certain features
such as ACIs, CoS and Roles, and the dependency these features
have on certain attributes, it becomes clear that managing a list
of attributes to exclude is far safer, and less prone to human
error, than managing a list of attributes to include.

Defining a Replication Strategy

142 Sun ONE Directory Server Deployment Guide • June 2003

Defining a Replication Strategy
The replication strategy that you define is determined by the service you want to
provide:

• If high availability is your primary concern, you should create a data center
with multiple directory servers on a single site. You can use single-master
replication to provide read-failover or multi-master replication to provide
write-failover. How to configure replication for high availability is described in
“Using Replication for High Availability,” on page 146.

• If disaster recovery is your primary concern, you will want to create two
distinct data centers, one in each geographical location, separated by WAN.
Each data center will host two masters to provide failover and the fact that
each data center is doubled, will protect you in the event of a disaster in one of
the locations. To maintain write-failover high availability over geographically
distributed sites, you can use four-way multi-master replication over a WAN.

• If local availability is your primary concern, you should use replication to
geographically distribute data to directory servers in local offices around the
world. You can decide to hold a master copy of all information in a single
location, such as the company headquarters, or to let local sites manage the
parts of the DIT that are relevant for them. The type of replication
configuration to set up is described in “Using Replication for Local
Availability,” on page 147.

• In all cases, you probably want to balance the load of requests serviced by your
directory servers, and avoid network congestion. Strategies for load balancing
your directory servers and your network are provided in “Using Replication
for Load Balancing,” on page 148.

To determine your replication strategy, start by performing a survey of your
network, your users, your applications, and how they use the directory service you
can provide. For guidelines on performing this survey, refer to “Replication
Survey.”

Once you understand your replication strategy, you can start deploying your
directory. This is a case where deploying your service in stages will pay large
dividends. By placing your directory into production in stages, you can get a better
sense of the loads that your enterprise places on your directory. Unless you can
base your load analysis on an already operating directory, be prepared to alter
your directory as you develop a better understanding of how your directory is
used.

The following sections describe in more detail the factors affecting your replication
strategy:

Defining a Replication Strategy

Chapter 6 Designing the Replication Process 143

• Replication Backward Compatibility

• Replication Survey

• Replication Resource Requirements

• Using Replication for High Availability

• Using Replication for Local Availability

• Using Replication for Load Balancing

• Example Replication Strategy for a Small Site

• Example Replication Strategy for a Large Site

Replication Backward Compatibility
One of the first things you need to establish is which versions of Directory Server
you will be using in your replication configuration. In order to be sure that your
replication configuration will function correctly we advise you take into account
the information in Table 6-1 on page 143 which presents the possible master and
consumer combinations between the different versions of Directory Server and
their associated restrictions.

Table 6-1 Replication Backwards Compatibility Between 4.x, 5.0/5.1 and 5.2 Versions of
Directory Server

4.x
Consumer

5.0/5.1
Consumer

5.0/5.1
Master

5.2
Consumer

5.2
Master

5.0/5.1/5.2
Hub Supplier

4.x Master Yes Yes Yes Yes Yes No

5.0/5.1 Master No Yes Yes Yes Yes Yes

5.2 Master No Yes Yes Yes Yes Yes

Defining a Replication Strategy

144 Sun ONE Directory Server Deployment Guide • June 2003

Replication Survey
The type of information you need to gather from your survey to help you define
your replication strategy includes:

• Quality of the networks connecting different buildings or remote sites, and the
amount of available bandwidth.

• Physical location of users, how many users are at each site, what is their
activity.

For example, a site that manages human resource databases or financial
information is likely to put a heavier load on your directory than a site
containing engineering staff that uses the directory for simple telephone book
purposes.

• The number of applications that access the directory, and relative percentage of
read/search/compare operations to write operations.

NOTE There are three important issues to bear in mind in terms of
backwards compatibility:

• When you configure a 4.x master to replicate to a 5.x master and
you enable legacy replication on the 5.x master, the 5.x master
will not be able to receive either client updates or replication
updates from other 5.x masters in your topology. It will only
receive replication updates from the 4.x master. However, when
legacy replication is disabled, the 5.x master will resume
fully-operational master replication behavior.

• It is also important to understand that when you are replicating
from a 5.2 server to a 5.0/5.1 the new 5.2 features and
enhancements should not be used as they may result in the
5.0/5.1 servers behaving in unexpected ways.

• The nsslapd-schema-replicate-useronly attribute must be
set to on to make sure that 5.1 servers are not disrupted by 5.2
schema extensions.

Defining a Replication Strategy

Chapter 6 Designing the Replication Process 145

For example, if your messaging server uses the directory, you need to know
how many operations it performs for each e-mail message it handles. Other
products that rely on the directory are typically products such as
authentication applications, or meta-directory applications. For each one you
must find out the type and frequency of operations that are performed in the
directory.

• The number and size of the entries stored in the directory.

The following sections will try to address these issues and guide you through the
important issues you will need to consider when developing your replciation
topology.

Replication Resource Requirements
Using replication requires more resources. Consider the following resource
requirements when defining your replication strategy:

• Disk usage.

On suppliers, the change log is written to after each update operation. For
suppliers containing multiple replicated databases the change log will be used
more frequently, and the disk usage will be even higher.

• Server threads.

Each replication agreement creates two additional threads. The replication
agreement threads are separate from the operational threads. If there are
several replication agreements, the number of threads available to client
applications is reduced, possibly affecting the server performance for the client
applications.

• File descriptors.

The number of file descriptors available to the server is reduced by the change
log (one file descriptor) and each replication agreement (one file descriptor per
agreement).

CAUTION Consumers must be at least equivalent in terms of machine size to
suppliers, to prevent bottlenecks from occurring.

Defining a Replication Strategy

146 Sun ONE Directory Server Deployment Guide • June 2003

Using Replication for High Availability
Use replication to prevent the loss of a single server from causing your directory to
become unavailable. At a minimum you should replicate the local directory tree to
at least one backup server.

Some directory architects argue that you should replicate three times per physical
location for maximum data reliability. How much you use replication for fault
tolerance is up to you, but you should base this decision on the quality of the
hardware and networks used by your directory. Unreliable hardware needs more
backup servers.

If you need to guarantee write-failover for all your directory clients, you should
use a multi-master replication scenario. The grouping and window mechanisms
present in the multi-master replication flow allow you to configure your
replication agreements in such a way as to optimize your replication performance.
However, should read-failover be sufficient, you can use single-master replication.

LDAP client applications can usually be configured to search only one LDAP
server. That is, unless you have written a custom client application to rotate
through LDAP servers located at different DNS hostnames, you can only configure
your LDAP client application to look at a single DNS hostname for a Directory
Server. Therefore, you will probably need to use either DNS round robins or
network sorts to provide fail-over to your backup Directory Servers. For
information on setting up and using DNS round robins or network sorts, see your
DNS documentation.

With regard to maintaining write-failover high availability over two
geographically distributed sites, you can use four-way multi-master replication
over a WAN. You set up two master servers in one location and two master servers
in the second location and configure them to be fully-connected over a WAN, to
safeguard against the eventuality of one master going off line. As with
multi-master replication over a LAN, you can use the grouping and window
mechanisms to optimize your replication performance.

NOTE You should not use replication as a replacement for a regular data
backup policy. For information on backing up your directory data,
refer to Backing Up Data section of the Sun ONE Directory Server
Administration Guide and “Choosing a Backup Method,” on
page 265

Defining a Replication Strategy

Chapter 6 Designing the Replication Process 147

Alternatively, you can use the Sun ONE Directory Proxy Server product. For more
information on Sun ONE Directory Proxy Server, go to
http://www.sun.com/software.

Using Replication for Local Availability
Your need to replicate for local availability is determined by the quality of your
network as well as the activities of your site. In addition, you should carefully
consider the nature of the data contained in your directory and the consequences to
your enterprise in the event that the data becomes temporarily unavailable. The
more mission critical this data is, the less tolerant you can be of outages caused by
poor network connections.

You should use replication for local availability for the following reasons:

• You need a local master copy of the data.

This is an important strategy for large, multinational enterprises that need to
maintain directory information of interest only to the employees in a specific
country. Having a local master copy of the data is also important to any
enterprise where interoffice politics dictate that data be controlled at a
divisional or organizational level.

• You are using unreliable or intermittently available network connections.

Intermittent network connections can occur if you are using unreliable WANs,
such as often occurs in international networks.

• Your networks periodically experience extremely heavy loads that may cause
the performance of your directory to be severely reduced.

For example, enterprises with aging networks may experience these conditions
during normal business hours.

• You want to reduce the network load and work load on the master replica.

Your network may be perfectly reliable and available, but you nevertheless
want to reduce the cost on your network.

Defining a Replication Strategy

148 Sun ONE Directory Server Deployment Guide • June 2003

Using Replication for Load Balancing
Replication can balance the load on your Directory Servers in several ways:

• By spreading your user’s search activities across several servers.

• By dedicating servers to read-only activities (writes occur only on the server
containing the master replica).

• By dedicating special servers to specific tasks, such as supporting mail server
activities.

Figure 6-9 Using Multi-Mastered Replication for Load Balancing

One of the more important reasons to replicate directory data is to balance the
work load of your network. When possible, you should move data to servers that
can be accessed using a reasonably fast and reliable network connection. The most
important considerations are the speed and reliability of the network connection
between your server and your directory users.

Directory entries generally average around one KB in size. Therefore, an entire
entry lookup adds about one KB to your network load each time. If your directory
users perform around ten directory lookups per day, then for every directory user
you will see an increased network load of around 10,000 bytes per day. Given a
slow, heavily loaded, or unreliable WAN, you may need to replicate your directory
tree to a local server.

Supplier A Example.com Supplier B Example.com

Replication Agreement 1

Corporate Applications Client Applications

Defining a Replication Strategy

Chapter 6 Designing the Replication Process 149

You must carefully consider whether the benefit of locally available data is worth
the cost of the increased network load because of replication. For example, if you
are replicating an entire directory tree to a remote site, you are potentially adding a
large strain on your network in comparison to the traffic caused by your users’
directory lookups. This is especially true if your directory tree changes frequently,
yet you have only a few users at the remote site performing a few directory
lookups per day.

For example, consider that your directory tree on average includes in excess of
1,000,000 entries and that it is not unusual for about ten percent of those entries to
change every day. If your average directory entry is only one KB in size, this means
you could be increasing your network load by 100 MB per day. However, if your
remote site has only a few employees, say 100, and they are performing an average
of ten directory lookups a day, then the network load caused by their directory
access is only one MB per day.

Given the difference in loads caused by replication versus that caused by normal
directory usage, you may decide that replication for network load-balancing
purposes is not desirable. On the other hand, you may find that the benefits of
locally available directory data far outweigh any considerations you may have
regarding network loads.

A good compromise between making data available to local sites without
overloading the network is to use scheduled replication. For more information on
data consistency and replication schedules, refer to “Data Consistency,” on
page 124.

Example of Network Load Balancing
Suppose your enterprise has offices in two cities. Each office has specific subtrees
that they manage, as illustrated in Figure 6-10:

Figure 6-10 New York and Los Angeles Subtree Managed in Respective Geographical
Locations

dc=Example,dc=com

l=New York

NEW YORK

dc=Example,dc=com

l=Los Angeles

LOS ANGELES

ou=people ou=people

Defining a Replication Strategy

150 Sun ONE Directory Server Deployment Guide • June 2003

Each office contains a high-speed network, but you are using a dial-up connection
to network between the two cities. To balance your network load:

• Select one server in each office to be the master for the locally managed data.

Replicate locally managed data from that server to the corresponding master in
the remote office. Having a master copy of the data in each location prevents
users from having to perform update and lookup operations over the dial-up
connection, which allows for optimized performance.

• Replicate the directory tree on each master (including data supplied from the
remote office) to at least one local Directory Server to ensure availability of the
directory data.

• Configure cascading replication in each location with an increased number of
consumers dedicated to lookups on the local data to provide further load
balancing.

The New York office has to deal with more New York specific lookups than LA
specific lookups and as a result, our example shows the New York office with
three New York data consumers and one Los Angeles consumer. Following the
same logic, the Los Angeles office has three Los Angeles data consumers and
one New York data consumer.

This network load balancing configuration is illustrated in Figure 6-11 on page 151:

Defining a Replication Strategy

Chapter 6 Designing the Replication Process 151

Figure 6-11 Load Balancing Using Multi-Master and Cascading Replication

NEW YORK

l=LA
Hub

dc=Example,dc=com

ou=people ou=people

l=NY
Hub

New York Data Replication Flow

Los Angeles Data Replication Flow

LEGEND

NEW YORK

l=LA
Master

dc=Example,dc=com

ou=people ou=people

l=NY
Master

l=LA
Hub

dc=Example,dc=com

ou=people ou=people

l=NY
Hub

LOS ANGELES

l=LA
Master

dc=Example,dc=com

ou=people ou=people

l=NY
Master

LOS ANGELES

NEW YORK

l=LA
Consumer

dc=Example,dc=com

ou=people ou=people

l=NY
Consumer

ou=people

l=NY
Consumer

ou=people

l=NY
Consumer

LOS ANGELES

l=LA
Consumer

dc=Example,dc=com

ou=people

l=NY
Consumer

ou=people

l=LA
Consumer

ou=people

l=LA
Consumer

ou=people

Defining a Replication Strategy

152 Sun ONE Directory Server Deployment Guide • June 2003

Example of Load Balancing for Improved Performance
Suppose that your directory must include 15,000,000 entries in support of
10,000,000 users, and that each user performs ten directory lookups a day. Also
assume that you are using a messaging server that handles 250,000,000 mail
messages a day, and that performs five directory lookups for every mail message
that it handles. So, you can expect 1,250,000,000 directory lookups per day just as a
result of mail. Your total combined traffic is, therefore, 1,350,000,000 directory
lookups per day.

Assuming an eight-hour business day, and that your 10,000,000 directory users are
clustered in four time zones, your business day (or peak usage) across four time
zones is 12 hours long. So, you must support 1,350,000,000 directory lookups in a
12-hour day. This equates to 31,250 lookups per second (1,350,000,000 / (60*60*12)).
That is:

Now, assume that you are using a combination of CPU and RAM with your
Directory Servers that allows you to support 5,000 reads per second. Simple
division indicates that you need at least six or seven Directory Servers to support
this load. However, for enterprises with 10,000,000 directory users, you should add
more Directory Servers for local availability purposes.

You could, therefore, replicate as follows:

• Place two Directory Servers in a multi-master configuration in one city to
handle all write traffic.

10,000,000 users 10 lookups per user = 100,000,000 reads/day

250,000,000 messages 5 lookups per message = 1,250,000,000
reads/day

Total reads/day = 1,350,000,000

12-hour day includes
43,200 seconds

Total reads/second = 31,250

NOTE A single Directory Server 5.2 with the appropriate hardware and
configuration is able to sustain much more than the 5,000 reads per
second.

Defining a Replication Strategy

Chapter 6 Designing the Replication Process 153

This configuration assumes that you want a single point of control for all
directory data.

• Use these masters to replicate to one or more hubs.

The read, search, and compare requests serviced by your directory should be
targeted at the consumers, thereby freeing the masters to handle write
requests. For a definition of a hub, refer to “Cascading Replication,” on
page 134.

• Use the hub to replicate to local sites throughout the enterprise.

Replicating to local sites helps balance the work load of your servers and your
WANs, as well as ensuring high availability of directory data. Assume that you
want to replicate to four sites around the country. You then have four
consumers for each hub.

• At each site, replicate at least once to ensure high availability, at least for read
operations.

Use DNS sort to ensure that local users always find a local Directory Server
they can use for directory lookups.

Example Replication Strategy for a Small Site
Suppose your entire enterprise is contained within a single building. This building
has a very fast (100 MB per second) and lightly used network. The network is very
stable and you are reasonably confident of the reliability of your server hardware
and OS platforms. You are also sure that a single server’s performance will easily
handle your site’s load.

In this case, you should replicate at least once to ensure availability in the event
that your primary server is shut down for maintenance or hardware upgrades.
Also, set up a DNS round robin to improve LDAP connection performance in the
event that one of your Directory Servers becomes unavailable. Alternatively, use an
LDAP proxy such as Sun ONE Directory Proxy Server. For more information on
Sun ONE Directory Proxy Server, go to http://www.sun.com/software.

Defining a Replication Strategy

154 Sun ONE Directory Server Deployment Guide • June 2003

Example Replication Strategy for a Large Site
Suppose your entire enterprise is contained within two buildings. Each building
has a very fast (100 MB per second) and lightly used network. The network is very
stable and you are reasonably confident of the reliability of your server hardware
and OS platforms. You are also sure that a single server’s performance will easily
handle the load placed on a server within each building.

Also assume that you have slow (ISDN) connections between the buildings, and
that this connection is very busy during normal business hours.

Your replication strategy follows:

• Choose a single server in one of the two buildings to contain a master copy of
your directory data.

This server should be placed in the building that contains the largest number of
people responsible for the master copy of the directory data. Call this
Building A.

• Replicate at least once within Building A for high availability of your directory
data.

Use a multi-master replication configuration if you need to ensure
write-failover.

• Create two replicas in the second building (Building B).

• If there is no need for close consistency between the master copy of the data
and the replicated copies, schedule replication so that it occurs only during off
peak hours.

Replication Strategy for a Large, International
Enterprise
Suppose your enterprise comprises two major sites - one in France and the other
site in the USA - separated by a WAN. Not only do you need to replicate over a
WAN, but you do not want your partners to have access to all data and want to
filter out certain data. Your connections are very busy during normal business
hours.

Your replication strategy follows:

• Hold master copies of your directory data on servers in both geographical
locations.

Using Replication with Other Directory Features

Chapter 6 Designing the Replication Process 155

• For write-failover within your French and American sites, replicate your data
to a second master located within each geographical location.

• Deploy a fully-connected, four-way, multi-master replication topology
between France and the USA to provide complete high-availability and
write-failover cover across your enterprise deployment.

• Deploy as many consumers as you require in each geographical location to
reduce the load on your masters as far as possible in terms of lookups.

• Set up fractional replication agreements between masters and consumers in
both geographical locations, to filter out the data you do not wish your
partners to access.

• Schedule replication so that it occurs only during off peak hours to help
optimize your bandwidth capabilities.

Using Replication with Other Directory Features
Replication interacts with other Directory Server features to provide advanced
replication features. The following sections describe feature interactions to help
you better design your replication strategy.

Replication and Access Control
The directory stores ACIs as attributes of entries. This means that the ACI is
replicated along with other directory content. This is important because Directory
Server evaluates ACIs locally.

For more information about designing access control for your directory, refer to
Chapter 7, “Designing a Secure Directory,” on page 163.

Replication and Directory Server Plug-Ins
You can use replication with most of the plug-ins delivered with Directory Server.
There are some exceptions and limitations which are listed in the following
sections:

• Replication and the Retro Change Log Plug-In

• Replication and the Referential Integrity Plug-In

Using Replication with Other Directory Features

156 Sun ONE Directory Server Deployment Guide • June 2003

• Replication and Pre-Operation and Post-Operation Plug-Ins

Replication and the Retro Change Log Plug-In
The Retro Change Log Plug-in is supported to provide backward compatibility
with 4.x releases of Directory Server and was not designed to function in a
multi-master replication environment. The Retro Change Log Plug-in stores
changes in the order of arrival on the local server and not in the order in which
these changes were applied to the system. If the Retro Change Log Plug-in is
configured on 2 servers there is no guarantee that the changes will be logged in the
same order with the same sequence numbers. As the order of changes is
fundamental to the replication process, this means that when you are using the
Retro Change Log Plug-in in a multi-master replication context, you can use it to
see what changes have actually been logged, but you should not rely on the actual
content of the changes applied.

Replication and the Referential Integrity Plug-In
You can use the referential integrity plug-in with multi-master replication
provided that this plug-in is enabled on all master replicas.

Replication and Pre-Operation and Post-Operation Plug-Ins
When pre- and post-operation plug-ins are used in a replication context,
replication must be able to detect the order of these pre- and post-operation
plug-ins. You can decide whether or not to make changes to these replication
operations, but it is worth noting that if operations are replicated operations, then
changing them can result in unexpected behavior. For more information on pre-
and post-operation plug-ins, refer to “Extending Client Request Handling” in the
Sun ONE Directory Server Plug-In API Programming Guide.

NOTE By default the referential integrity plug-ins is disabled, so you need
to remember to enable it using the Directory Server Console or the
command line.

Before enabling the referential integrity plug-in on servers issuing
chaining requests, analyze your performance resource, time and
integrity needs, as integrity checks can consume significant
memory and CPU resources.

Using Replication with Other Directory Features

Chapter 6 Designing the Replication Process 157

Replication and Chained Suffixes
When you distribute entries using chaining, the server containing the chained
suffix points to a remote server that contains the actual data, or the farm server. In
this environment, you cannot replicate the chained suffix itself. You can, however,
replicate the database that contains the actual data on the remote server.

You must not use the replication process as a backup for chained suffixes. You
must back up chained suffixes manually. For more information about chaining and
entry distribution, refer to Chapter 5,

Schema Replication
When Directory Server is used in a replicated environment, the schema must be
consistent across all of the directory servers that participate in replication. If the
schema is not consistent across servers, the replication process is likely to generate
many errors.

The best way to guarantee schema consistency is to make schema modifications on
a single master server, even in the case of a multi-master replication environment.

Schema replication happens automatically. If replication has been configured
between a supplier and a consumer, schema replication will happen by default.

The logic used by Directory Server for schema replication is the same in every
replication scenario, and can be described as follows:

NOTE You must configure the replication agreement on the farm server
and not on the multiplexor.

NOTE Directory Server 5.2 offers a new attribute called the
nsslapd-schema-repl-useronly attribute which can be set so that
only user defined schema is replicated, that is, only the schema
which is added over LDAP or added as files with the 'user
defined' value in the X-ORIGIN field. This makes it possible to
reduce the amount of data transferred and thus speed up the
replication of schema.

Using Replication with Other Directory Features

158 Sun ONE Directory Server Deployment Guide • June 2003

1. Before pushing data to the consumers, the supplier checks whether its own
version of the schema is in sync with the version of the schema held by the
consumers.

2. If the schema entries on both supplier and consumers are the same, the
replication operation proceeds.

3. If the version of the schema on the supplier is more recent than the version
stored on the consumer, the supplier replicates its schema to the consumer
before proceeding with the data replication.

It is interesting to note that Directory Server 5.2 has an attribute which allows
you to replicate only user-defined schema, that is schema which has been
added over LDAP or added as a file with an X-ORIGIN value of 'user
defined'. This allows you to reduce the amount of data being transferred
should you so desire, and speed up the schema replication process.

If you make schema modifications on two master servers in a multi-master set,
whichever master was updated last will “win” and its schema will be propagated
to the consumer. This means that you risk losing the modifications you make to
one master, if different modifications are made to the other master at a later stage.
To avoid losing modifications, always make sure you make schema modifications
on one master only.

NOTE Note that in contrast to previous versions of Directory Server, ACIs
present in the schema are now replicated.

NOTE You must never update the schema on a consumer because the
supplier is unable to resolve the conflicts that will occur and
replication will fail. If you do update the schema on a consumer,
and as a result the version of the schema on the supplier is older
than the version on the consumer, you will encounter errors if you
search on a consumer or try to perform an update operation on a
supplier.

Schema should be maintained on a single master in a multi-master
replicated topology. If you are using the standard 99user.ldif file,
these changes will be replicated to all consumers. When you are
using custom schema files, ensure that these files are copied to all
servers after making changes on the master. After copying files, the
server must be restarted. Refer to “Creating Custom Schema Files -
Best Practices and Pitfalls,” on page 49 for more information.

Replication Monitoring

Chapter 6 Designing the Replication Process 159

Changes made to custom schema files are only replicated if the schema is updated
using LDAP or the Directory Server Console. These custom schema files should be
copied to each server in order to maintain the information in the same schema file
on all servers. For more information, refer to “Creating Custom Schema Files - Best
Practices and Pitfalls,” on page 49.

For more information on schema design, refer to Chapter 3, “Designing the
Schema.”

Replication and Multiple Password Policies
In an environment that uses multiple password policies, you need to be sure to
replicate the LDAP subentry that contains the definition of the policy to apply to
the replicated entries. If you fail to do so, the default password policy will be
applied and will of course not work for entries that have been configured to use a
non-default password policy. It is important to understand that if you replicate
these entries to a 5.0/5.1 server, the replication will function correctly, but the
password policy will not be enforced on the 5.0/5.1 server as the possibility of
having multiple password policies is specific to Directory Server 5.2.

Replication Monitoring
Sun ONE Directory Server 5.2 provides replication monitoring tools that allow you
to monitor replication between servers. Being able to monitor replication activity
assists in identifying the causes of replication problems and troubleshooting. All of
the Directory Server replication monitoring tools can be used when LDAPS is
turned on. The three replication monitoring tools are:

• insync

• entrycmp

• repldisc

For more information regarding these replication monitoring tools, refer to the
Replication Monitoring Tools section of the Sun ONE Directory Server Reference
Manual and for more information on the monitoring possibilities afforded to you
by certain replication attributes, see the replication attributes in the Core Server
Configuration Attributes chapter of the Sun ONE Directory Server Reference Manual.

Replication Monitoring

160 Sun ONE Directory Server Deployment Guide • June 2003

insync
The insync tool indicates the state of synchronization between a master replica
and one or more consumer replicas. Being aware of the degree of synchronization
is vital when it comes to managing potential conflicts.

entrycmp
The entrycmp tool allows you to compare the same entry on two or more servers.
An entry is retrieved from the master replica and the entry’s nsuniqueid is used to
retrieve the same entry from a given consumer. All of the entries’ attributes and
values are compared and if everything is identical, the entries are considered to be
the same.

repldisc
The repldisc tool allows you to discover a replication topology. Topology
discovery starts with one server and builds a graph of all known servers within the
topology. The repldisc tool then prints an adjacency matrix describing the
topology. This replication topology discovery tool is useful for large, complex
deployments where it might be difficult to recall the global topology you have
deployed.

NOTE It is important to understand that these tools constitute an LDAP
client, and as such, will need to authenticate to the server and use a
bind DN that has read access to cn=config.

NOTE If the machine on which you are running either insync or entrycmp
cannot reach the host about which it is inquiring, whether this be
due to a firewall, VPN, or other network setup reasons, for example
in a topology with a hub, you may encounter difficulties using the
insync and entrycmp tools.

Replication Monitoring

Chapter 6 Designing the Replication Process 161

NOTE When using the replication monitoring tools, it is important to bear
two things in mind:

❍ First, you must be sure to use either all symbolic names or
all IP addresses when identifying hosts. Using a
combination of the two can be problematic.

❍ Second, when SSL is enabled, the directory on which you
are running the tools must have a copy of all the certificates
used by the other servers in the topology.

Replication Monitoring

162 Sun ONE Directory Server Deployment Guide • June 2003

163

Chapter 7

Designing a Secure Directory

How you secure the data in Directory Server affects all of the previous design
areas. Your security design needs to protect the data contained by your directory
and meet the security and privacy needs of your users and applications.

This chapter describes how to analyze your security needs and explains how to
design your directory to meet these needs. It includes the following sections:

• About Security Threats

• Analyzing Your Security Needs

• Overview of Security Methods

• Selecting Appropriate Authentication Methods

• Preventing Authentication by Account Inactivation

• Designing your Password Policies

• Designing Access Control

• Securing Connections With SSL

• Encrypting Attributes

• Grouping Entries Securely

• Securing Configuration Information

• Other Security Resources

About Security Threats

164 Sun ONE Directory Server Deployment Guide • June 2003

About Security Threats
There are many potential threats to the security of your directory. Understanding
the most common threats helps you plan your overall security design. The most
typical threats to directory security fall into the following three categories:

• Unauthorized Access

• Unauthorized Tampering

• Denial of Service

The remainder of this section provides a brief overview of the most common
security threats to assist you with designing your directory’s security policies.

Unauthorized Access
While it may seem simple to protect your directory from unauthorized access, the
problem can in fact be more complicated. There are several opportunities along the
path of directory information delivery for an unauthorized client to gain access to
data.

For example, an unauthorized client can use another client’s credentials to access
the data. Or an unauthorized client can eavesdrop on the information exchanged
between a legitimate client and Directory Server.

Unauthorized access can occur from inside your company, or if your company is
connected to an extranet or to the Internet, from outside.

The scenarios described here are just a few examples of how an unauthorized client
might access your directory data.

The authentication methods, password policies, and access control mechanisms
provided by the Sun ONE Directory Server offer efficient ways of preventing
unauthorized access. Refer to “Selecting Appropriate Authentication Methods,” on
page 169, “Designing your Password Policies,” on page 175, and “Designing
Access Control,” on page 189, for more information about these topics.

Analyzing Your Security Needs

Chapter 7 Designing a Secure Directory 165

Unauthorized Tampering
If intruders gain access to your directory or intercept communications between
Directory Server and a client application, they have the potential to modify (or
tamper with) your directory data. Your directory is rendered useless if the data can
no longer be trusted by clients, or if the directory itself cannot trust the
modifications and queries it receives from clients.

For example, if your directory cannot detect tampering, an attacker could change a
client’s request to the server (or not forward it) and change the server’s response to
the client. SSL and similar technologies can solve this problem by signing
information at either end of the connection. For more information about using SSL
with Sun ONE Directory Server, refer to “Securing Connections With SSL,” on
page 209.

Denial of Service
With a denial of service attack, the attacker’s goal is to prevent the directory from
providing service to its clients. For example, an attacker might simply use the
system’s resources to prevent them from being used by someone else.

Sun ONE Directory Server offers a way of preventing denial of service attacks by
setting limits on the resources allocated to a particular bind DN. For more
information about setting resource limits based on the user’s bind DN, refer to the
Setting Resource Limits Based on the Bind DN section of the Sun ONE Directory
Server Administration Guide.

Analyzing Your Security Needs
You need to analyze your environment and users to determine your specific
security needs. When you performed your site survey in Chapter 2, “Planning and
Accessing Directory Data” you made some basic decisions about who can read and
write the individual pieces of data in your directory. This information now forms
the basis of your security design.

The way you implement security is also dependent on how you use the directory to
support your business. A directory that serves an intranet does not require the
same security measures as a directory that supports an extranet, or e-commerce
applications that are open to the Internet.

If your directory serves an intranet only, your concerns are:

Analyzing Your Security Needs

166 Sun ONE Directory Server Deployment Guide • June 2003

• To provide users and applications with access to the information they need to
perform their jobs.

• To protect sensitive data regarding employees or your business from general
access.

• To guarantee information integrity.

If your directory serves an extranet, or supports e-commerce applications over the
Internet, in addition to the previous points, your concerns are:

• To offer your customers and business partners a guarantee of privacy.

• To guarantee information integrity.

This section contains the following information about analyzing your security
needs:

• Determining Access Rights

• Ensuring Data Privacy and Integrity

• Conducting Regular Audits

• Example Security Needs Analysis

Determining Access Rights
When you perform your data analysis, you decide what information your users,
groups, partners, customers, and applications need to access.

You may grant access rights in two ways:

• Grant all categories of users the ability to perform self-administration or
delegate management while still protecting your sensitive data.

If you choose this open method, you must concentrate on determining what
data is sensitive or critical to your business.

• Grant each category of users the minimum access they require to do their jobs.

If you choose this restrictive method, you must spend some time
understanding the information needs of each category of user inside, and
possibly outside of your organization.

No matter how you decide to grant access rights, you should create a simple table
that lists the categories of users in your organization and the access rights you
grant to each. You may also want to create a table that lists the sensitive data held
in the directory, and for each piece of data, the steps taken to protect it.

Analyzing Your Security Needs

Chapter 7 Designing a Secure Directory 167

For information about checking the identity of users, refer to “Selecting
Appropriate Authentication Methods,” on page 169. For information about
restricting access to directory information, refer to “Designing Access Control,” on
page 189.

Ensuring Data Privacy and Integrity
When you are using the directory to support exchanges with business partners
over an extranet, or to support e-commerce applications with customers on the
Internet, you must ensure the privacy and the integrity of the data exchanged.

You can do this in several ways, by:

• Encrypting data

• Using certificates to sign data

• Encrypting data transfers

For information about encryption methods provided in the Sun ONE Directory
Server, refer to “Password Storage Scheme,” on page 179 and “Encrypting
Attributes,” on page 211. For information about signing data, refer to “Securing
Connections With SSL,” on page 209.

Conducting Regular Audits
As an extra security measure, you should conduct regular audits to verify the
efficiency of your overall security policy. You can do this by examining the log files
and the information recorded by the SNMP agents. For more information about
monitoring your directory, refer to Chapter 8, “Monitoring Your Directory.”

Example Security Needs Analysis
The examples provided in this section illustrate how the imaginary ISP company
Example.com analyzes its security needs.

Example.com’s business is to offer web hosting and internet access. Part of
Example.com’s activity is to host the directories of client companies. It also
provides internet access to a number of individual subscribers.

Therefore, Example.com has three main categories of information in its directory:

• Example.com internal information

Overview of Security Methods

168 Sun ONE Directory Server Deployment Guide • June 2003

• Information belonging to corporate customers

• Information pertaining to individual subscribers

Example.com needs the following access controls:

• Provide access to the directory administrators of Example2 and Example3 to
their own directory information.

• Implement Example2’s and Example3’s own access control policies for their
directory information.

• Implement a standard access control policy for all individual clients who use
Example.com for Internet access from their homes.

• Deny access to Example.com’s corporate directory to all outsiders.

• Grant read access to Example.com’s directory of subscribers to the world.

Overview of Security Methods
Sun ONE Directory Server offers a number of methods that you can use to design
an overall security policy that is adapted to your needs. Your security policy
should be strong enough to prevent sensitive information from being modified or
retrieved by unauthorized users while simple enough to administer easily. A
complex security policy can lead to mistakes that either prevent people from
accessing information that you want them to access or, worse, allow people to
modify or retrieve directory information that you do not want them to access.

Sun ONE Directory Server provides the following security methods:

• Authentication

A means for one party to verify another’s identity. For example, a client gives a
password to Directory Server during an LDAP bind operation.

• Password policies

Defines the criteria that a password must satisfy to be considered valid, for
example, age, length, and syntax.

• Encryption

Protects the privacy of information. When data is encrypted, it is scrambled in
a way that only the recipient can understand.

• Access control

Selecting Appropriate Authentication Methods

Chapter 7 Designing a Secure Directory 169

Tailors the access rights granted to different directory users, and provides a
means of specifying required credentials or bind attributes.

• Account inactivation

Disables a user account, group of accounts, or an entire domain so that all
authentication attempts are automatically rejected.

• Secure Sockets Layer (SSL)

Maintains the integrity of information. If encryption and message digests are
applied to the information being sent, the recipient can determine that it was
not tampered with during transit.

• Auditing

Allows you to determine if the security of your directory has been
compromised. For example, you can audit the log files maintained by your
directory.

These tools for maintaining security can be used in combination in your security
design. You can also use other features of the directory such as replication and data
distribution to support your security design.

Selecting Appropriate Authentication Methods
A basic decision you need to make regarding your security policy is how users
access Directory Server. Will you allow anonymous access, or will you require
every person who uses Directory Server to bind to the directory?

Sun ONE Directory Server supports the following authentication mechanisms:

• Anonymous Access

• Simple Password

• Proxy Authorization

• Simple Password Over a Secure Connection

• Certificate-Based Client Authentication

• SASL-Based Client Authentication

Directory Server uses the same authentication mechanism for all users, whether
they are people or LDAP-aware applications.

Selecting Appropriate Authentication Methods

170 Sun ONE Directory Server Deployment Guide • June 2003

For information about preventing authentication by a client or group of clients, see
“Preventing Authentication by Account Inactivation,” on page 174.

Anonymous Access
Anonymous access provides the easiest form of access to your directory. It makes
data available to any user of your directory, whether they have authenticated or
not.

However, anonymous access does not allow you to track who is performing what
kinds of searches; only that someone is performing searches. When you allow
anonymous access, anyone who connects to your directory can access the data.

Therefore, if you attempt to block a specific user or group of users from seeing
some kinds of directory data, but you have allowed anonymous access to that data,
then those users can still access the data simply by binding to the directory
anonymously.

You can restrict the privileges of anonymous access. Usually directory
administrators only allow anonymous access for read, search, and compare
privileges (not for write, add, delete, or selfwrite). Often, administrators limit
access to a subset of attributes that contain general information such as names,
telephone numbers, and email addresses. Anonymous access should never be
allowed for more sensitive data such as government identification numbers (social
security numbers in the US), home telephone numbers and addresses, and salary
information.

If a user attempts to bind with an entry that does not contain a user password
attribute, Directory Server either:

• Grants anonymous access if the user does not attempt to provide a password.

• Denies access if the user provides any non-null string for the password.

For example, consider the following ldapsearch command:

% ldapsearch -h ds.example.com -D "cn=joe,dc=Example,dc=com"
-w secretpwd -b "dc=Example,dc=com cn=joe" objectclass=*

Although Directory Server allows anonymous access for read, Joe cannot access his
own entry because it does not contain a password that matches the one he
provided in the ldapsearch command.

Selecting Appropriate Authentication Methods

Chapter 7 Designing a Secure Directory 171

Simple Password
If you have not set up anonymous access, you must authenticate to Directory
Server before you can access the directory contents. With simple password
authentication, a client authenticates to the server by sending a simple, reusable
password.

For example, a client authenticates to Directory Server via a bind operation in
which it provides a distinguished name and its credentials. The server locates the
entry in the directory that corresponds to the client DN and checks whether the
password given by the client matches the value stored with the entry. If it does, the
server authenticates the client. If it does not, the authentication operation fails and
the client receives an error message.

The bind DN often corresponds to the entry of a person. However, some directory
administrators find it useful to bind as an administrative entry rather than as a
person. Directory Server requires the entry used to bind to be of an object class that
allows the userPassword attribute. This ensures that the directory recognizes the
bind DN and password.

Most LDAP clients hide the bind DN from the user because users may find the long
strings of DN characters hard to remember. When a client attempts to hide the bind
DN from the user, it uses a bind algorithm such as the following:

1. The user enters a unique identifier such as a user ID (for example, bjensen).

2. The LDAP client application searches the directory for that identifier and
returns the associated distinguished name (such as
uid=bjensen,ou=people,dc=Example,dc=com).

3. The LDAP client application binds to the directory using the retrieved
distinguished name and the password supplied by the user.

Simple password authentication offers an easy way of authenticating users, but it is
best to restrict its use to your organization’s intranet. It does not offer the level of
security required for transmissions between business partners over an extranet, or
for transmissions with customers out on the Internet.

NOTE The drawback of simple password authentication is that the
password is sent in clear text over the net. If a rogue user is
listening, this can compromise the security of your Directory Server
because that person can impersonate an authorized user.

Selecting Appropriate Authentication Methods

172 Sun ONE Directory Server Deployment Guide • June 2003

Proxy Authorization
The proxy authorization method is a special form of access control: a user that
binds to Directory Server using its own identity is granted through proxy
authorization the rights of another user.

For example, using proxy authorization, directory administrators can request
access to Directory Server by assuming the identity of a regular user. They bind to
the directory using their own credentials, but for purposes of access control
evaluation, are granted the rights of the regular user. This assumed identity is
called the proxy user, and the DN of that user, the proxy DN.

To configure Directory Server to allow proxy requests:

• You must grant the administrators the right to proxy as other users

• You must grant your regular users normal access rights as defined in your
access control policy.

The proxy mechanism is very powerful. One of its main advantages is that you can
enable an LDAP application to use a single thread with a single bind to service
multiple users making requests against the Directory Server. Instead of having to
bind and authenticate for each user, the client application binds to the Directory
Server and uses proxy rights.

For more information on proxy authorization, refer to Chapter 6, “Managing
Access Control” in the Sun ONE Directory Server Administration Guide.

Simple Password Over a Secure Connection
A secure connection uses encryption to make data unreadable to third parties
while it is sent over the network between Directory Server and its clients. Clients
may establish secure connections in either of the following ways:

• Bind to the secure port using the Secure Socket Layer (SSL).

• Bind to the insecure port with anonymous access, and then send the Start TLS
control to begin using Transport Layer Security (TLS).

NOTE You can grant proxy rights to any users of the directory except the
Directory Manager. You should exercise great care when granting
proxy rights because you grant the right to specify any DN (except
the Directory Manager DN) as the proxy DN.

Selecting Appropriate Authentication Methods

Chapter 7 Designing a Secure Directory 173

In either case, the server must have a security certificate, and the client must be
configured to trust this certificate. The server sends its certificate to the client to
perform server authentication using public-key cryptography. As a result, the client
knows that it is connected to the intended server and that the server is not being
tampered with.

The client and server then begin to encrypt all data transmitted through the
connection for privacy. The client sends the bind DN and password on the
encrypted connection to authenticate the user. All further operations are
performed with the identity of the user or with a proxy identity if the bind DN has
proxy rights to other user identities. In all cases, the results of operations are
encrypted when they are returned to the client.

For more information about SSL, refer to “Securing Connections With SSL,” on
page 209. For information about configuring certificates and activating SSL, see
Chapter 11, "Implementing Security" in the Sun ONE Directory Server
Administration Guide.

Certificate-Based Client Authentication
When establishing encrypted connections over SSL or TLS, you can also configure
the server to require client authentication. The client must send its credentials to the
server to confirm the identity of the user. The user's credentials, and not the DN,
are used to determine the bind DN. Client authentication protects against user
impersonation and is the most secure type of connection.

One form of credentials that a client may send is the user's certificate. To perform
certificate-based authentication, the directory must be configured to perform
certificate mapping, and all users must store a copy of their certificate in their
entry. After receiving a user certificate from a client, the server performs a
mapping based on the certificate contents to find a user entry in the directory. This
entry must contain an exact copy of the certificate for the user to be positively
identified. All operations proceed using this entry's DN as the bind DN, and all
results are encrypted over the SSL or TLS connection.

For more information about certificate mapping, see "Using Client Authentication"
in Chapter 10 of the Managing Servers with Sun ONE Console. See also "Configuring
Certificate-Based Authentication in Clients" in Chapter 11 of the Sun ONE Directory
Server Administration Guide.

Preventing Authentication by Account Inactivation

174 Sun ONE Directory Server Deployment Guide • June 2003

SASL-Based Client Authentication
Another type of client authentication during an SSL or TLS connection uses the
Simple Authentication and Security Layer (SASL) to establish the identity of the
client. Directory Server supports the following mechanisms through the generic
security interface of SASL:

• DIGEST-MD5 - This mechanism authenticates clients by comparing a hashed
value sent by the client with a hash of the user's password. However, because
the mechanism must read user passwords, all users wishing to be
authenticated through DIGEST-MD5 must have {CLEAR} passwords in the
directory.

• GSSAPI - Available only on the Solaris Operating Environment, the General
Security Services API (GSSAPI) allows Directory Server to interact with the
Kerberos V5 security system to positively identify a user. The client application
must present its credentials to the Kerberos systems, which in turn validates
the user's identity to Directory Server.

When using either SASL mechanism, the server must also be configured to perform
identity mapping. The SASL credentials are called the Principal, and each
mechanism must have specific mappings to determine the bind DN from the
contents of the Principal. When the Principal is mapped to a single user entry and
the SASL mechanism validates that user's identity, the user's DN is the bind DN for
the connection.

For more information, see "SASL Authentication Through DIGEST-MD5" and
"SASL Authentication Through GSSAPI (Solaris Only)" in Chapter 11 of the Sun
ONE Directory Server Administration Guide.

Preventing Authentication by Account Inactivation
You can temporarily inactivate a user account or a set of accounts. Once
inactivated, a user cannot bind to Directory Server, and the authentication
operation fails.

Account inactivation is implemented through the operational attribute
nsAccountLock. When an entry contains the nsAccountLock attribute with a value
of true, the server rejects the bind.

You use the same procedures for inactivating users and roles. However,
inactivating a role means that you inactivate all of the members of that role and not
the role entry itself. For more information about roles, refer to “Managed, Filtered,
and Nested Roles,” on page 72.

Designing your Password Policies

Chapter 7 Designing a Secure Directory 175

Designing your Password Policies
A password policy is a set of rules that govern how passwords are administered in
a given system. Password policy in Directory Server defines the following:

❍ password change policy

❍ password minimum length

❍ password maximum age

❍ password expiration policy and its associated warning procedure

❍ password syntax check policy

❍ password storage scheme used

❍ password history procedure

❍ password failure record procedure

❍ account lockout procedure

In contrast to previous releases of Directory Server, password policy functionality
provided by Sun ONE Directory Server 5.2 offers increased flexibility in that you
can configure multiple password policies as opposed to one global policy for your
entire directory. You can configure multiple password policies and you can choose
to assign them either to particular users or to whole sets of users using the CoS and
Roles functionality. This affords users and administrators of Directory Server
significantly more scope when it comes to implementing password policy security
measures, because they can tailor password policies to specific users or roles and
thus cater precisely for their complex security requirements.

This section will begin with a presentation of basic password policy features. We
will then take a look at the different ways in which you can configure your
password policy, and examine the order of precedence that governs the application
of multiple password policies. Finally, we will examine account lockout policy and
the implications of designing password policies in a replicated environment. For
detailed information regarding the attributes users have at their disposal to build a
password policy that is suited to their needs, see the Password Policy Attributes
and Account Lockout Attributes sections in the Sun ONE Directory Server Reference
Manual. This section is divided into the following parts:

• Password Policy Features

• Configuring Your Password Policies

• Designing an Account Lockout Policy

Designing your Password Policies

176 Sun ONE Directory Server Deployment Guide • June 2003

• Designing Password Policies in a Replicated Environment

Password Policy Features
This section takes you through the main password policy features and is divided
into the following sub-sections:

❍ User-Defined Passwords

❍ Password Change After First Login or Reset

❍ Password Expiration

❍ Expiration Warning

❍ Password Syntax Checking

❍ Password Length

❍ Password Minimum Age

❍ Password History

❍ Password Storage Scheme

User-Defined Passwords
You can set up your password policy to either allow or not allow users to change
their own passwords. A good password is the key to a strong password policy.
Good passwords do not use trivial words—that is, any word that can be found in a
dictionary, names of pets or children, birthdays, user IDs, or any other information
about the user that can be easily discovered (or stored in the directory itself).

Also, a good password should contain a combination of letters, numbers, and
special characters. Often, however, users simply use passwords that are easy to
remember. This is why some enterprises choose to set passwords for users that
meet the criteria of a “good” password, and do not allow the users to change
passwords.

However, assigning passwords to users takes a substantial amount of an
administrator’s time. In addition, by providing passwords for users rather than
letting them come up with passwords that are meaningful to them and therefore
more easily remembered, you run the risk that the users will write their passwords
down somewhere where they can be discovered. By default, user-defined
passwords are allowed.

Designing your Password Policies

Chapter 7 Designing a Secure Directory 177

Password Change After First Login or Reset
The Directory Server password policy lets you decide whether users must change
their passwords after the first login or after the password is reset by the
administrator.

Often the initial passwords set by the administrator follow some sort of
convention, such as the user’s initials, user ID, or the company name. Once the
convention is discovered, it is usually the first value tried by a hacker trying to
break in. In this case, it is a good idea to require users to change their passwords
after such a change. If you configure this option for your password policy, users
are required to change their password even if user-defined passwords are disabled.
For further information see “User-Defined Passwords,” on page 176.

If you choose not to allow users to change their own passwords, administrator
assigned passwords should not follow any obvious convention and should be
difficult to discover.

By default, users do not need to change their passwords after their login or a reset.

Password Expiration
You can configure your password policy so that users can use the same passwords
indefinitely. Or, you can configure your policy so that passwords expire after a
given time. In general, the longer a password is in use, the more likely it is to be
discovered. On the other hand, if passwords expire too often, users may have
trouble remembering them and resort to writing their passwords down. A
common policy is to have passwords expire every 30 to 90 days.

Directory Server remembers the password expiration configuration even if you
disable password expiration. This means that if you re-enable password expiration,
passwords are valid only for the duration you set before you last disabled the
feature. For example, suppose you set up passwords to expire every 90 days and
then decided to disable password expiration. When you decide to re-enable
password expiration, the default password expiration duration is 90 days because
that is what you had it set to before you disabled the feature.

By default, user passwords never expire.

Designing your Password Policies

178 Sun ONE Directory Server Deployment Guide • June 2003

Expiration Warning
If you choose to set your password policy so that user passwords expire after a
given number of days, it is a good idea to send users a warning before their
passwords expire. You can set your policy so that users are sent a warning 1 to
24,855 days before their passwords expire. Directory Server displays the warning
when the user binds to the server. If password expiration is turned on, by default, a
warning is sent (via an LDAP message) to the user one day before the user’s
password expires, provided the user’s client application supports this feature.

Password Syntax Checking
The password policy establishes syntax guidelines for password strings. The
password syntax-checking mechanism ensures that password strings conform to
the password syntax guidelines established by the password policy. By default,
password syntax checking is turned off.

Password Length
Directory Server allows you to specify a minimum length for user passwords. In
general, shorter passwords are easier to crack. You can require passwords that are
from 2 to 512 characters. A good length for passwords is 8 characters. This is long
enough to be difficult to crack, but short enough so that users can remember the
password without writing it down.

By default the minimum password length is 6 characters. The minimum length of a
password is checked only if password syntax checking is turned on.

Password Minimum Age
You can configure Directory Server to not allow users to change their passwords
for a given time. You can use this feature in conjunction with the
passwordInHistory attribute to discourage users from reusing old passwords.

Setting the password minimum age (passwordMinAge) attribute to 2 days, for
example, prevents users from repeatedly changing their password during a single
session to cycle through the password history and reuse an old password once it is
removed from the history list. You can specify any number from 0 to 24,855 days. A
value of zero (0) indicates that the user can change the password immediately.

Designing your Password Policies

Chapter 7 Designing a Secure Directory 179

Password History
You can configure Directory Server to store a maximum of 24 used passwords by
entering an integer value in the passwordInHistory attribute. If you enter a value
of 0, then the password history function will not be enabled. As a result, no
previously used passwords will be stored and users will be able to reuse
passwords.

If, however, you enter a value between 1 and 24 in the passwordInHistory
attribute, the directory will store that number of old passwords in the
passwordHistory attribute. If a user attempts to reuse one of the passwords
Directory Server has stored, the directory rejects the password. This feature
prevents users from reusing one or two passwords that are easy to remember.

By default, Directory Server does not store any previously used passwords.

Password Storage Scheme
The password storage scheme specifies the type of encryption used to store
Directory Server passwords within the directory. You can specify:

• Clear text (no encryption).

• Secure Hash Algorithm (SHA).

• Salted Secure Hash Algorithm (SSHA). This encryption method is the default
method.

• UNIX CRYPT algorithm.

Although passwords stored in the directory can be protected through the use of
access control information (ACI) instructions, it is still not a good idea to store clear
text passwords in the directory. The crypt algorithm provides compatibility with
UNIX passwords. SSHA is the most secure of the choices and is the default hash
algorithm for Directory Server.

Configuring Your Password Policies
In Sun ONE Directory Server 5.2 you have four password policy options available
to you. Directory Server provides you with a default password policy, which will
be applied automatically, the parameters of which you can change should you
wish to do so. As a backup to the default password policy, Directory Server also
provides a hard-coded password policy, which is applied should the default
password policy be absent or, following modifications, no longer valid. The

Designing your Password Policies

180 Sun ONE Directory Server Deployment Guide • June 2003

attribute values of the hard-coded password policy are the same as the default
password policy values. Otherwise you can choose to define a password policy
and apply it to a particular user, or to a set of users using the CoS and Roles
functionality.

This section will describe each of these password policy options in more detail, and
will explain the order of precedence that governs the application of password
policies when multiple password policies exist for a given user entry. This section
is divided into the following parts:

• Default Password Policy

• Defining Password Policies for Users or Sets of Users

• Multiple Password Policies and Their Order of Precedence

Default Password Policy
The default password policy provided with Sun ONE Directory Server is, as its
name suggests, the password policy that is used should users not design their own.

By default your password policy will enforce the following:

❍ The SSHA storage scheme.

❍ Users can change their passwords.

❍ Users do not have to change their password after their first login or after
the password is reset by the administrator.

❍ Password syntax checks (i.e., compliance with the minimum number of
characters) will not be performed.

❍ Passwords will never expire.

NOTE Should you wish to change any of the default password policy
attribute values, do not forget that in contrast to previous releases of
Directory Server, the password policy attributes are no longer stored
directly under cn=config, but instead under cn=Password
Policy,cn=config.If this entry does not exist then the hard-coded
password policy provided with Directory Server will be applied.

For more information about the password policy attributes see the
Password Policy Attributes section in the Sun ONE Directory Server
Reference Manual.

Designing your Password Policies

Chapter 7 Designing a Secure Directory 181

❍ The maximum age of a password is 100 days but only if you decide to
activate password expiration.

❍ No time needs to elapse between modifications to the password.

❍ If you decide to activate the password expiration mechanism, a password
expiration warning will be sent 1 day before the password is due to expire
on your first bind attempt.

❍ Passwords used will not be recorded.

❍ Users are never locked out of their accounts.

❍ If you decide to activate the account lockout mechanism, then by default
users will be locked out after a maximum number of 3 failed bind attempts,
and the lockout will last for 1 hour.

❍ Password failures are purged from the failure counter after 600 seconds.

How you adapt the default password policy will of course depend on how
stringent your security requirements are. A password policy such as the default
password policy where passwords never expire, where no syntax checks are
performed, and which does not have an account lockout mechanism enabled does
not come without its security risks. You will have to be sure to balance your
security requirements against the management overheads generated by a
demanding password policy. Once you have established your precise security
requirements and deployed a certain password policy solution, you will be able to
analyze its pros and cons, and make changes should you be concerned that your
chosen policy does not provide sufficient security or is proving to be too unwieldy.

Defining Password Policies for Users or Sets of Users
To define a password policy for a given user entry or a set of users a new attribute
called passwordPolicySubentry is used. The value of this attribute is the DN of an
LDAPsubentry that contains the password policy attributes you wish to apply
directly to the user’s entry. This attribute can either be a real attribute, in the sense
that you enter it, or a virtual attribute, in that it is generated by a CoS definition. A
natural way of defining password policies for a set of users is to configure the CoS
definition to provide values for the passwordPolicySubentry attribute in user
entries as a function of the Roles that those user entries have. Assigning password
policies to sets of users by assigning them as a function of the Roles those users
have is not the only possibility you have available to you, but it is the one
presented to you by Directory Server Console.

Designing your Password Policies

182 Sun ONE Directory Server Deployment Guide • June 2003

Defining a Password Policy for a User
When you want to configure a password policy for a given user you must define it
for a particular subtree by adding an LDAP entry whose immediate superior is the
root of the subtree in question.

Imagine that as system administrator of the company Example.com, you want to
apply a more stringent password policy called strictPwdPolicy to a user in the
dc=example,dc=com subtree. The strictPwdPolicy password policy you wish to
apply, in contrast to the default policy, performs syntax checks, enforces the
expiration of passwords after 10 days, and proceeds with account lockout once 3
consecutive bind attempts have failed. You would add the following
passwordPolicySubentry attribute directly to the user entry in the
dc=example,dc=com subtree:

The value of the above passwordPolicySubentry attribute is the DN of the
LDAPsubentry that stores attributes which define the strictPwdPolicy password
policy. This LDAPsubentry for your strictPwdPolicy password policy would
read as follows:

CAUTION Users must not be able to modify their own
passwordPolicySubentry attribute which should be controlled by
an ACI.

passwordPolicySubentry:cn=strictPwdPolicy,dc=example,dc=com

Designing your Password Policies

Chapter 7 Designing a Secure Directory 183

Defining a Password Policy for a Set of Users Using CoS and Roles
Functionality
In the same way, imagine that as system administrator of the company
Example.com, where contractors are assigned to a contractor managed role, and
all in-house employees are assigned to an employee managed role, you decide that
you want to apply your more stringent password policy veryStrictPwdPolicy to
all contractors and a less stringent password policy called normalPwdPolicy to
your employees.

Table 7-1 on page 184 presents your contractor role and employee role
definitions:

dn:cn=strictPwdPolicy,dc=example,dc=com
objectclass:top
objectclass:passwordPolicy
objectclass:LDAPsubentry
passwordStorageScheme:SSHA
passwordChange:on
passwordMustChange:on
passwordCheckSyntax:on
passwordExp:on
passwordMinLength:6
passwordMaxAge:8640000
passwordMinAge:0
passwordWarning:8640000
passwordInHistory:6
passwordLockout:on
passwordMaxFailure:3
passwordUnlock:off
passwordLockoutDuration:3600
passwordResetFailureCount:600

Designing your Password Policies

184 Sun ONE Directory Server Deployment Guide • June 2003

By defining a CoS definition entry and a CoS template entry that contain the
required password policy for both roles, your passwordPolicySubentry attributes
(which point to DN of the LDAPsubentry containing the appropriate password
policy) will be generated for each role.

You will want to create one CoS definition entry that will generate the
passwordPolicySubentry attribute values for each role. The CoS definition entry
you will need to create is presented in Table 7-2 on page 184:

By specifying the following operational qualifier:

Table 7-1 Contractor and Employee Role Definitions

Contractor Role Definition Employee Role Definition

dn:cn=contractorRole,dc=example,dc=com
objectclass:LDAPSubentry
objectclass:nsRoleDefinition
objectclass:nsSimpleRoleDefinition
objectclass:nsManagedRoleDefinition
cn:contractorRole
description:managed role for
contractors

dn:cn=employeeRole,dc=example,dc=com
objectclass:LDAPSubentry
objectclass:nsRoleDefinition
objectclass:nsSimpleRoleDefinition
objectclass:nsManagedRoleDefinition
cn:employeeRole
description:managed role for in-house
employees

NOTE When assigning a password policy to (members of) a role, do NOT
add the passwordPolicySubentry attribute to the role itself , but
instead to the CoS associated with that role.

Table 7-2 CoS Definition Entry for Password Policy

CoS Definition Entry

dn:cn=PwdPol_cosDefinition,dc=example,dc=com
objectclass:top
objectclass:LDAPsubentry
objectclass:cosSuperDefinition
objectclass:cosClassicDefinition
cosTemplateDn:cn=PwdPolTemplContainer,dc=example,dc=com
cosSpecifier:nsRole
cosAttribute:passwordPolicySubentry operational

Designing your Password Policies

Chapter 7 Designing a Secure Directory 185

you are specifying that you want the generated, and therefore virtual, value of the
cosAttribute to override any real attribute that may exist. It is in actual fact
necessary to specify the operational qualifier here. For more information on
Roles and CoS, see Chapter 4, “Designing the Directory Tree.”

Once you have created the CoS definition entry, you will then create the CoS
template entries that contain the values of the virtual passwordPolicySubentry
attributes. In our example, the virtual value of the passwordPolicySubentry
attribute for the contractor managed role will be the dn of the strictPwdPolicy
LDAPsubentry, and the dn of the normalPwdPolicy LDAPsubentry for the
employee managed role. The CoS template entry you will need to create for the
contractor managed role is presented below in Table 7-3 on page 185:

and the CoS template entry you will need to create for the employee managed role
is presented below in Table 7-4 on page 185

cosAttribute:passwordPolicySubentry operational

Table 7-3 CoS Template Entry for Contractor Role

CoS Template Entry for Contractor Role

dn:cn=\"cn=ContractorRole,dc=example,dc=com\",
cn=PwdPolTemplContainer,dc=example,dc=com

objectclass:top
objectclass:extensibleObject
objectclass:costemplate
objectclass:ldapsubentry
cosPriority:1
passwordPolicySubentry:cn=veryStrictPwdPolicy,dc=example,dc=com

Table 7-4 CoS Template Entry for Employee Role

CoS Template Entry for Employee Role

dn:cn=\"cn=EmployeeRole,dc=example,dc=com\",
cn=PwdPolTemplContainer,dc=example,dc=com
objectclass:top
objectclass:extensibleObject
objectclass:costemplate
objectclass:ldapsubentry
cosPriority:1
passwordPolicySubentry:cn:cn=normalPwdPolicy,dc=example,dc=com

Designing your Password Policies

186 Sun ONE Directory Server Deployment Guide • June 2003

The above entries also show that you have decided to store your template entries in
a container called cn=PwdPolTempContainer,dc=example,dc=com which appears
in ldif as follows:

Multiple Password Policies and Their Order of Precedence
Now that Directory Server allows for multiple password policies, we can easily
imagine the scenario where a password policy exists for a user entry while that
same user entry belongs to a role that also has a password policy assigned to it.
Which password policy takes precedence? In order to deploy password policies
that actually correspond to your security needs, you need to understand the order
of precedence that governs their application and how to control that order when
defining your CoS template entries.

There are three main rules of precedence that govern the application of password
policies when a user entry has more than one password policy assigned to it. The
rules are as follows:

1. A password policy generated by a CoS definition will take precedence over a
password policy assigned directly to the same user entry. This is true because
the cosAttribute value defined in the CoS definition entry is obliged to
contain an operational qualifier, which causes the CoS generated password
policy to override any real attributes that may have been assigned directly to
the user. For more information about the Roles and CoS mechanism, see
Chapter 4, “Designing the Directory Tree.”

2. A password policy assigned to a user entry will take precedence over the
default password policy.

dn:cn=PwdPolTempContainer,dc=example,dc=com
objectclass:top
objectclass:nsContainer

NOTE For easier password policy management, we advise you wherever
possible to co-locate the user or set of users to which your password
policy applies and the password policy itself. This will help you
guard against forgetting to replicate the password policy LDAP
subentry.

Designing your Password Policies

Chapter 7 Designing a Secure Directory 187

3. The default password policy, stored under cn=Password Policy,cn=config,
will take precedence over the hard-coded password policy values provided
with Directory Server.

Designing an Account Lockout Policy
Once you have established the password policies for your directory, you can
protect your user passwords from potential threats by configuring an account
lockout policy.

The lockout policy works in conjunction with the password policy to provide
further security. You can set up your password policy so that a specific user is
locked out of the directory after a given number of failed attempts to bind.

The account lockout feature protects against hackers who try to break into the
directory by repeatedly trying to guess a user’s password. Account lockout
counters are local to a directory server. This feature is not designed as a global
lockout from your directory service, which means that even in a replicated
environment, account lockout counters are not replicated.

Designing Password Policies in a Replicated
Environment
Password and account lockout policies are enforced in a replicated environment as
follows:

• Password policies are enforced on the master copy of the data.

• Account lockout is enforced on all servers participating in replication.

CAUTION When you are configuring password policies using CoS, it is
important to establish an order of precedence in the event that a user
entry is affected by more than one CoS generated password policy,
You specify the desired order of precedence by entering the
appropriate value in the cosPriority attribute when you create
your CoS template entry. You assign the highest priority with a
value of 0. CoS templates that contain no cosPriority attribute are
considered lowest priority, and when templates have the same (or
no) cosPriority attribute value, a priority is chosen arbitrarily.
Again, for more information on Roles and CoS, see Chapter 4,
“Designing the Directory Tree.”

Designing your Password Policies

188 Sun ONE Directory Server Deployment Guide • June 2003

Some of the password policy state information in your directory is replicated. The
replicated attributes are:

• passwordHistory

• passwordAllowChangeTime

• passwordExpirationTime

When configuring password policies in a replicated environment, consider the
following points:

• In an environment that uses multiple password policies, you need to be sure to
replicate the LDAP subentry that contains the definition of the policy to apply
to the replicated entries. If you fail to do so, the LDAP subentry containing the
definition of your policy will not exist and the default password policy will be
applied.

• All replicas issue warnings of an impending password expiration. This
information is kept locally on each server, so if a user binds to several replicas
in turn, the user receives the same warning several times. In addition, if the
user changes the password, it may take time for this information to be updated
on the consumer replicas. If a user changes a password and then immediately
rebinds, the bind may fail until the consumer replica registers the changes
made to the master replica.

• You want the same bind behavior to occur on all servers, including suppliers
and consumers. Make sure you create the same password policy configuration
information on each server.

• Account lockout counters may not work as expected in a multi-master
environment, given that they are not replicated.

• Entries that are created for replication (for example, the server identity
Replication Manager entries) need to have passwords that never expire. To
make sure that these special users have passwords that do not expire, add the
passwordExpirationTime attribute to the entry and give it a value of
20380119031407Z (i.e. the maximum value in the valid range).

CAUTION However, the configuration information stored under cn=Password
Policy,cn=config is kept locally and is not replicated. This
information includes the password syntax and the history of
password modifications. Account lockout counters are not replicated
either.

Designing Access Control

Chapter 7 Designing a Secure Directory 189

Designing Access Control
Once you decide on one or more authentication schemes to establish the identity of
directory clients, you need to decide how to use the schemes to protect information
contained in your directory. Access control allows you to specify that certain
clients have access to particular information, while other clients do not.

You specify access control using one or more access control lists (ACL). Your
directory’s ACLs consist of a series of one or more access control information (ACI)
statements that either allow or deny permissions (such as read, write, search,
proxy, add, delete, and compare) to specified entries and their attributes.

Using the ACL, you can set permissions for the following:

❍ The entire directory

❍ A particular subtree of the directory

❍ Specific entries in the directory

❍ A specific set of entry attributes

❍ Any entry that matches a given LDAP search filter

In addition, you can set permissions for a specific user, for all users belonging to a
specific group, or for all users of the directory. You can also define access for a
network location such as an IP address or a DNS name.

This section will examine the Sun ONE Directory Server access control mechanism
and is divided into the following parts:

• About the ACI Format

• Default ACIs

• Deciding How to Set Permissions

• Requesting Effective Rights Information

• Tips on Using ACIs

• ACI Limitations

Designing Access Control

190 Sun ONE Directory Server Deployment Guide • June 2003

About the ACI Format
When designing your security policy, it is helpful to understand how ACIs are
represented in Directory Server. It is also helpful to understand what permissions
you can set in your directory. This section gives you a brief overview of the ACI
mechanism. For a complete description of the ACI format, see the Managing
Access Control chapter of the Sun ONE Directory Server Administration Guide.

Access control instructions are stored in the directory, as attributes of entries. The
aci attribute is an operational attribute; it is available for use on every entry in the
directory, regardless of whether it is defined for the object class of the entry. It is
used by Directory Server to evaluate what rights are granted or denied when it
receives an LDAP request from a client. The aci attribute is returned in an
ldapsearch operation if specifically requested. Directory ACIs take the following
general form:

target permission bind_rule

The ACI variables are defined below:

• target

Specifies the entry (usually a subtree) that the ACI targets, the attribute it
targets, or both. In other words, the target identifies the directory element that
the ACI applies to. An ACI can target only one entry, but it can target multiple
attributes. In addition, the target can contain an LDAP search filter. This allows
you to set permissions for widely scattered entries that contain common
attribute values.

• permission

Identifies the actual permission being set by this ACI. The permission says that
the ACI allows or denies a specific type of directory access, such as read, write,
search, proxy, add, delete, and compare to the specified target.

• bind_rule

Identifies the bind DN or network location to which the permission applies.
The bind rule may also specify an LDAP filter, and if that filter is evaluated to
be true for the binding client application, then the ACI applies to the client
application.

Designing Access Control

Chapter 7 Designing a Secure Directory 191

So, ACIs are expressed as follows:

“For the directory object target, allow or deny permission if the bind_rule is true.”

An example ACI which allows all users search, read and compare permissions for
all attributes would appear as follows:

The permission and bind_rule portions of the ACI are set as a pair, and are also called
an Access Control Rule. You can have multiple permission bind_rule pairs for every
target. This allows you to efficiently set multiple access controls for any given
target. For example:

target (permission bind_rule) (permissions bind_rule)...

For example, you can set a permission that allows anyone binding as Babs Jensen to
write to Babs Jensen’s telephone number. The bind rule in this permission is the
part that states “if you bind as Babs Jensen.” The target is Babs Jensen’s phone
number, and the permission is write access.

Targets
You must decide what entry is targeted by every ACI you create in your directory.
If you target a directory entry that is a directory branch point, then that branch
point, as well as all of its child entries, is included in the scope of the permission.
The advantage of this is that you can place at a high level in the directory tree a
general ACI that effectively applies to entries more likely to be located lower in the
tree. For example, at the level of an organizationalUnit entry or a locality
entry, you could create an ACI that targets entries that include the inetorgperson
object class. You can use this feature to minimize the number of ACIs in the
directory tree by placing general rules at high level branch points. To limit the
scope of more specific rules, you should place them as close as possible to leaf
entries.

If you do not explicitly specify a target entry for the ACI, then the ACI is targeted
to the directory entry that contains the ACI statement. Also, the default set of
attributes targeted by the ACI is any attribute available in the targeted entry’s
object class structure.

For every ACI, you can target only one entry or only those entries that match a
single LDAP search filter.

aci: (targetattr = "*")(version 3.0; acl "my aci"; allow
(search,read,compare) userdn="ldap:///all";)

Designing Access Control

192 Sun ONE Directory Server Deployment Guide • June 2003

In addition to targeting entries, you can also target attributes on the entry. This
allows you to set a permission that applies to only a subset of attribute values. You
can target sets of attributes by explicitly naming those attributes that are targeted,
or by explicitly naming the attributes that are not targeted by the ACI. Use the
latter case if you want to set a permission for all but a few attributes allowed by an
object class structure. The aci attribute is multi-valued, which means that you can
define several ACIs for the same entry or subtree.

Permissions
You allow or deny permissions. In general, you should avoid denying permissions
for the reasons explained in “Allowing or Denying Access,” on page 195.

You can allow or deny the following permissions:

• Read

Indicates whether directory data may be read.

• Write

Indicates whether directory data may be changed or created. This permission
also allows directory data to be deleted, but not the entry itself. To delete an
entire entry, the user must have delete permissions.

• Search

Indicates whether the directory data can be searched. This differs from the read
permission in that read allows directory data to be viewed if it is returned as
part of a search operation. For example, if you allow searching for common
names and read for a person’s room number, then the room number can be
returned as part of the common name search, but the room number cannot,
itself, be searched for. This would prevent people from searching your
directory to see who occupies a particular room.

• Compare

Indicates whether the data may be used in comparison operations. Compare
implies the ability to search, but actual directory information is not returned
from the search. Instead, a simple Boolean value is returned that indicates
whether the compared values match. This is used to match userPassword
attribute values during directory authentication.

• Selfwrite

NOTE ACIs placed in the root DSE entry apply only to that entry.

Designing Access Control

Chapter 7 Designing a Secure Directory 193

Used only for group management. This permission allows users to add or
delete themselves from a group. Selfwrite works with proxy authorization: it
grants the right to add or remove the proxy DN from a group entry (not the
DN of the bound user).

• Add

Indicates whether child entries can be created. This permission allows a user to
create child entries beneath the targeted entry.

• Delete

Indicates whether an entry can be deleted. This permission allows a user to
delete the targeted entry.

• Proxy

Indicates that the user can use any other DN (except Directory Manager) to
access the directory with the rights of this DN.

Bind Rules
The bind rule usually indicates the bind DN subject to the permission. It can also
specify bind attributes such as time of day or IP address.

Bind rules allow you to easily express that the ACI applies only to a user’s own
entry. You can use this to allow users to update their own entries without running
the risk of a user updating another user’s entry.

Using bind rules, you can indicate that the ACI is applicable:

• Only if the bind operation is arriving from a specific IP address or DNS
hostname. This is often used to force all directory updates to occur from a
given machine or network domain.

• If the person binds anonymously. Setting a permission for anonymous bind
means that the permission also applies to anyone who binds to the directory.

• For anyone who successfully binds to the directory. This allows general access
while preventing anonymous access.

• Only if the client has bound as the immediate parent of the entry.

• Only if the entry that the person has bound as meets a specific LDAP search
criteria.

The following keywords are provided to help you express these kinds of access
more easily:

• Parent

Designing Access Control

194 Sun ONE Directory Server Deployment Guide • June 2003

If the bind DN is the immediate parent entry, then the bind rule is true. This
allows you to grant specific permissions that, for example, allow a directory
branch point to manage its immediate child entries.

• Self

If the bind DN is the same as the entry requesting access, then the bind rule is
true. For example, you can grant specific permission that allows individuals to
update their own entries.

• All

The bind rule is true for anyone who has successfully bound to the directory.

• Anyone

The bind rule is true for everyone. This keyword is what allows or denies
anonymous access.

Default ACIs
From an access control design perspective it is important to understand which
default ACIs apply to the directory information you have stored in the userRoot
database, so that you can then decide how best to tailor it to your deployment
needs by modifying them. Whenever you create a new database in the directory,
the top entry has the default ACIs listed below:

• Users can modify their own entry in the directory, but not delete it. They
cannot modify the aci and nsroledn attributes.

• Users have anonymous access to the directory for search, compare, and read
operations.

• The administrator (by default uid=admin,ou=Administrators,
ou=TopologyManagement,o=NetscapeRoot) has all rights except proxy rights.

• All members of the Configuration Administrators group have all rights except
proxy rights.

• All members of the Directory Administrators group have all rights except
proxy rights.

• SIE group.

The o=NetscapeRoot subtree has its own set of default ACIs:

• All members of the Configuration Administrators group have all rights on the
o=NetscapeRoot subtree except proxy rights.

Designing Access Control

Chapter 7 Designing a Secure Directory 195

• Users have anonymous access to the o=NetscapeRoot subtree for search and
read operations.

• Entries under o=NetscapeRoot can define which groups have read, search,
and compare access to them using the value of the uniqueMember attribute.

• All authenticated users have search, compare, and read rights to configuration
attributes that identify the administration server.

For information on how to modify these default settings and implement your
access control policy, see the Sun ONE Directory Server Administration Guide.

Deciding How to Set Permissions
If there are no ACIs present in the directory, then the default policy is not to grant
users access rights of any kind. The exception to this is the directory manager. For
this reason, you must set some ACIs for Directory Server if you want your users to
be able to access your directory. The following sections describe the access control
mechanism provided by Directory Server. For information about how to set ACIs,
see the Managing Access Control chapter of the Sun ONE Directory Server
Administration Guide.

The Precedence Rule
When a user attempts any kind of access to a directory entry, Directory Server
examines the access control set in the directory. To determine access, Directory
Server applies the precedence rule. The rule states that when two conflicting
permissions exist, the permission that denies access always takes precedence over
the permission that grants access.

For example, if you deny write permission at the directory’s root level, and you
make that permission applicable to everyone accessing Directory Server, then no
user can write to the directory regardless of any other permissions that you may
allow. To allow a specific user write permissions to Directory Server, you have to
restrict the scope of the original deny-for-write so that it does not include that user.
Then you have to create an additional allow-for-write permission for the user in
question.

Allowing or Denying Access
You can explicitly allow or deny access to your directory tree. Be careful of
explicitly denying access to Directory Server. Because of the precedence rule, if the
directory finds rules explicitly forbidding access, it will forbid access regardless of
any conflicting permissions that may grant access.

Designing Access Control

196 Sun ONE Directory Server Deployment Guide • June 2003

Limit the scope of your allow access rules to include only the smallest possible
subset of users or client applications. For example, you can set permissions that
allow users to write to any attribute on their directory entry, but then deny all users
except members of the Directory Administrators group the privilege of writing to
the uid attribute. Alternatively, you can write two access rules that allow write
access in the following ways:

• Create one rule that allows write privileges to every attribute except the uid
attribute. This rule should apply to everyone.

• Create one rule that allows write privileges to the uid attribute. This rule
should apply only to members of the Directory Administrators group.

By providing only allow privileges, you avoid the need to set an explicit deny
privilege.

When to Deny Access
You rarely need to set an explicit deny. However, you may find an explicit deny
useful in the following circumstances:

• You have a large directory tree with a complicated ACL spread across it.

For security reasons, you find that you suddenly need to deny access to a
particular user, group, or physical location. Rather than take the time to
carefully examine your existing ACL to understand how to appropriately
restrict the allow permissions, you may want to temporarily set the explicit
deny until you have time to do this analysis. If your ACL has become this
complicated, then, in the long run, the deny ACI only adds to your
administrative burden. As soon as possible, rework your ACL to avoid the
explicit deny and simplify your overall access control scheme.

• You want to restrict access control based on a day of the week or an hour of the
day.

For example, you can deny all writing activities from Sunday at 11:00 p.m.
(2300) to Monday at 1:00 a.m. (0100). From an administrative point of view, it
may be easier to manage an ACI that explicitly restricts time-based access of
this kind than to search through the directory for all the allow for write ACIs
and restrict their scopes in this time frame.

• You want to restrict privileges when you are delegating directory
administration authority to multiple people.

Designing Access Control

Chapter 7 Designing a Secure Directory 197

If you are allowing a person or group of people to manage some part of the
directory tree, but you want to make sure that they do not modify some aspect
of the tree, use an explicit deny. For example, if you want to make sure the Mail
Administrators do not allow write access to the common name attribute, then
set an ACI that explicitly denies write access to the common name attribute.

Where to Place Access Control Rules
Access control rules can be placed on any entry in the directory. Often
administrators place access control rules on entries of type country,
organization, organizationalUnit, inetOrgPerson, or group.

To simplify your ACL administration, group your rules as much as possible. Since
a rule generally applies to its target entry and to all that entry’s children, it is best to
place access control rules on root points in the directory or on directory branch
points, rather than to scatter them across individual leaf (such as person) entries.

Using Filtered Access Control Rules
One of the more powerful features of the Directory Server ACI model is the ability
to use LDAP search filters to set access control. LDAP search filters allow you to set
access to any directory entry that matches a defined set of criteria.

For example, you could allow read access for any entry that contains an
organizationalUnit attribute that is set to Marketing.

NOTE From a performance standpoint it is important to realize that ACIs
are kept in memory and can considerably impact your memory
usage performance. When a server starts all access controls are
brought into memory, although cache limits do not apply to them.
We recommend therefore, that in organizations using repeating
directory tree structures, you optimize the number of ACIs used in
Directory Server by using macro ACIs where possible.

Macros are placeholders that are used to represent a DN, or a
portion of a DN, in an ACI. You can use a macro to represent a DN
in the target portion of the ACI, or in the bind rule portion, or both.
In practice, when Directory Server gets an incoming LDAP
operation, the ACI macros are matched against the resource
targeted by the LDAP operation. If there is a match, the macro is
replaced by the value of the DN of the targeted resource. Directory
Server then evaluates the ACI normally. For more information on
macro ACIs refer to the Managing Access Control chapter of the Sun
ONE Directory Server Administration Guide.

Designing Access Control

198 Sun ONE Directory Server Deployment Guide • June 2003

Filtered access control rules let you use predefine levels of access. For example,
suppose your directory contains home address and telephone number information.
Some people want to publish this information, while others want to be “unlisted.”
You can handle this situation by doing the following:

• Create an attribute on every user’s directory entry called
publishHomeContactInfo.

• Set an access control rule that grants read access to the homePhone and
homePostalAddress attributes only for entries whose
publishHomeContactInfo attribute is set to TRUE (meaning enabled). Use an
LDAP search filter to express the target for this rule.

• Allow your directory users to change the value of their own
publishHomeContactInfo attribute to either TRUE or FALSE. In this way, the
directory user can decide whether this information is publicly available.

For more information about using LDAP search filters, and on using LDAP search
filters with ACIs, see the Sun ONE Directory Server Administration Guide.

Requesting Effective Rights Information
The rich access control model provided by Directory Server is powerful in that
access can be granted to users via many different mechanisms, but this richness,
although very welcome when you are having to configure your access control
policy, means that it can be a complex affair trying to determine what the policy
actually comprises at a later date. Because there are several parameters that can
define the security context of a user, for example, IP address and machine name,
time of day, authentication method, or simply the type of attribute you may be
trying to add, the need to be able to list the entry and attribute permissions
becomes critical. Without this ability to request the rights of a given user to
directory entries and attributes, user administration, access control policy
verification, and debugging would be much more difficult.

Sun ONE Directory Server 5.2 provides a new feature called Effective Rights,
which allows clients to query what access control rights they have to directory
entries and attributes.

Designing Access Control

Chapter 7 Designing a Secure Directory 199

This section examines the effective rights feature in more detail and is divided into
the following sub-sections:

• About the Effective Rights Feature

• Access Control on the Effective Rights Feature

• Understanding the Effective Rights Results

About the Effective Rights Feature
The effective rights feature works via an ldapsearch operation. Note that this
feature requires the ldapsearch utility supplied with the Directory Server
Resource Kit (DSRK).

The rights information you require is specified using a particular option (discussed
below) and the information relative to these rights is returned with your
ldapsearch results. To specify the rights information you require, use the
following elements in your ldapsearch operation:

❍ An Effective Rights control (1.3.6.1.4.4.42.2.27.9.5.2) to specify that
you are requesting effective rights information. You include this control in
your ldapsearch operation using the -J option.

❍ Arequest for an operational attribute aclRights to return access control
effective rights information at both an entry and attribute level.

❍ The -c option of ldapsearch to specify the user whose rights you are
requesting

NOTE It is important to understand that the effective rights information
you obtain with the Effective Rights control corresponds to:

• The ACIs effective at the time of your request

• The authentication method used

• The host machine name and address from which you make the
request

When trying to establish why a given user does or does not have
access to certain data, system administrators or others requesting
the effective rights will have to be sure to reflect all of the user’s
parameters when they initiate their effective rights search operation.

Designing Access Control

200 Sun ONE Directory Server Deployment Guide • June 2003

❍ If necessary, the -X option of ldapsearch to specify the list of attribute
types for which you want to have rights information, if they are not
already being returned with the entry.

The first question you need to ask yourselves when using the effective rights
feature is for which user you are trying to obtain the effective access control rights.
Once you know which user’s rights you require, you can then specify that user
with the -c ldapsearch option. It is worth noting that if you include

-c "dn:"

in your ldapsearch command, you are requesting effective rights for an
anonymous user, and if you have NULL or an empty string for the -c option, that
is -c "", then you are requesting the bound user’s rights.

The next question you need to ask yourself is for which attributes you are
requesting the effective rights. The attributes for which you require rights
information do not necessarily need to exist in the entry. We can imagine the
scenario where an entry does not include the description attribute, but that you
want to know which rights a given user would have on that attribute. To specify
the list of attribute types for which you want rights information, you use the -X
ldapsearch option followed by the attribute name, for example -X description.

The effective rights feature provided with Directory Server also allows you to
specify different levels of access control information. You can choose either to
request only the rights information, only the logging information, or both together.
Since the logging information (which includes a synopsis of the rights information)

NOTE It is only necessary to specify the Effective Rights control if you are
not using the -c or -X options in your ldapsearch operation, as
either of these options will automatically attach the control to your
search.

Also, if there is a NULL value for the Effective Rights control then
Directory Server interprets that to mean that you want to retrieve
both the rights for the current user and rights for the attributes and
entries being returned with the current ldapsearch operation.

NOTE As far as the other parameters that affect access control are
concerned, such as time of day, authentication method, machine
address and name, the functionality simply inherits these
parameters from the user initiating the search operation.

Designing Access Control

Chapter 7 Designing a Secure Directory 201

provides detail down to a permission level, it allows you not only to establish what
access control policy is effective, but also to understand why a given operation may
have been denied or allowed. The subtyping for the operational aclRights
attribute that allows you to specify the information you want to have returned is as
follows:

Access Control on the Effective Rights Feature
In order to successfully obtain the effective rights information, users must have the
access control rights to use the Effective Rights control, and, in order to have any
rights information returned to the user for a given entry, the user will also need
read access to the aclRights attribute. This double layer of access control for the
effective rights feature provides basic protection which can then be more finely
tuned where necessary. By analogy with proxy, if you have read access to the
aclRights attribute in an entry, then you can ask about anyone’s rights to that
entry and its attributes. The logic behind this access control setup is that it makes
sense for the user who manages the resource to know who has rights to that
resource, even if that same user does not actually manage those with the rights.

If a user requesting rights information does not have the rights to use the Effective
Rights control, then the operation will fail and an error message to that effect will
be sent. However, if the user requesting rights information does have the rights to
use the control but lacks the rights to read the aclRights attribute, then the
aclRights attribute will simply be absent from the returned entry. This behavior
reflects the Directory Server’s general search operation behavior.

aclRights Requests the rights information only

aclRightsInfo Requests the logging information only

aclRights aclRightsInfo Requests both the rights and logging
information

CAUTION You cannot use the aclRights attribute in a search filter.

Designing Access Control

202 Sun ONE Directory Server Deployment Guide • June 2003

Understanding the Effective Rights Results
This part presents the effective rights search results and is divided into the
following subparts:

• Rights Information

• Write, Selfwrite_add, and Selfwrite_delete permissions

• Logging Information

Rights Information
The effective rights information is presented according to the following subtypes:

Once the information has been presented down to this level then the permissions
and attribute names are used to subtype and separate the information.

For Sun ONE Directory Server 5.2 the aclRights string appears as follows:

permission:value(permission:value)*

Possible entry level permissions are add, delete, read, write, and proxy while
possible attribute level permissions are read, search, compare, write,
selfwrite_add, selfwrite_delete, and proxy.

NOTE If a proxy control is attached to a Effective Rights control-based
ldapsearch operation, then the effective rights operation will be
authorized as the proxy user. This means that it is the proxy user
which will require rights to use the Effective Rights control, and that
the entries returned will be those entries that the proxy user has the
right to search and see.

aclRights;entrylevel Presents the entry level rights information

aclRights;attributelevel Presents the attribute level rights
information

aclRightsInfo;entrylevel Presents the entry level logging
information

aclRightsInfo;attributelevel Presents the attribute level logging
information

Designing Access Control

Chapter 7 Designing a Secure Directory 203

The aclRights string containing the results of the requested rights information
will either mark these permissions as:

❍ “0” for not granted

❍ “1” for granted or

❍ “?” for cases where the granting of rights depends on the value of the
attribute you are adding, deleting, or replacing. If you see a ?, then you are
advised to consult the logging information to establish exactly why the
permissions will or will not be granted.

❍ “-” to indicate that the attribute in question is a virtual attribute, and
therefore not updatable. The only way to modify a virtual attribute is to
modify the mechanism that generates it.

By way of an example, imagine that you wanted to request the effective rights
(excluding the logging information) for the cn attribute of the user cn=justread in
the cn=peopletestResource subtree. You would run the following ldapsearch
command:

./ldapsearch -D "cn=directory manager" -w secret12
-c "dn:cn=justread,dc=france,dc=sun,dc=com" -p 5200
-b cn=peopletestResource,dc=france,dc=sun,dc=com
objectclass=* cn "aclRights"

If the user cn=justread has only read permissions on the cn attribute, then the
requested effective rights information would appear as follows:

dn: cn=peopleTestResource,dc=france,dc=sun,dc=com
aclRights;attributeLevel;cn:search:0,read:1,compare:0,write:0,
selfwrite_add:0,selfwrite_delete:0,proxy:0
aclRights;entryLevel: add:0,delete:0,read:1,write:0,proxy:0

Write, Selfwrite_add, and Selfwrite_delete permissions
In Sun ONE Directory Server 5.2 only the write attribute level permissions can be
marked with a “?”, although this may change in future releases. For the add and
delete permissions, the entries you can add and delete can depend on the values of
the attributes in the entry. However, instead of returning a “?” should it prove to
be the case, the permission (i.e. “0” or “1”) is returned on the entries as they are
returned with the ldapsearch operation.

CAUTION In future releases of Directory Server new permissions may be
added to this string.

Designing Access Control

204 Sun ONE Directory Server Deployment Guide • June 2003

If the value for a write permission is “1”, then this means that the permission is
granted for both add and delete ldapmodify operations for all values except
possibly the authorization dn value. A value of 0 for a write permission means that
the permission is not granted for either add or delete ldapmodify operations for
any values, except possibly the value of the authorization dn. The permission in
force for the value of the authorization dn is returned explicitly in one of the
selfwrite permissions; that is, either selfwrite_add or selfwrite_delete.

It is necessary to make a distinction between selfwrite-add and
selfwrite-delete attribute level permissions in the effective rights functionality.
Although these permissions do not actually exist as such in the context of ACIs, the
reality of a set of ACIs can be to grant a user selfwrite permission for just the add
or just the delete part of a modify operation. The same distinction is not made for
the write permission because, in contrast to the selfwrite permission where the
value of the attribute being modified is defined, in that it is the authorization dn,
the value of the attribute being modified for a write permission is undefined. When
the effective permission depends on a targattrfilters ACI, we cannot extend
the analysis further, and therefore use the “?” value to indicate that the logging
information should be consulted for more permission detail. Given the relative
complexity of the interdependencies between the write, selfwrite_add, and
selfwrite_delete permissions, Table 7-5 on page 204 explains what the possible
combinations of these three permissions actually mean.

Table 7-5 Effective Rights Interdependencies Between write, selfwrite_add, and selfwrite_delete
Permissions

write selfwrite_add selfwrite_delete Effective Rights Explanation

0 0 0 Cannot add or delete any values of this attribute.

0 0 1 Can only delete the value of the authorization dn.

0 1 0 Can only add the value of the authorization dn.

0 1 1 Can only add or delete the value of the authorization dn.

1 0 0 Can add or delete all values except the authorization dn.

1 0 1 Can delete all values including the authorization dn and can add
all values excluding the authorization dn.

1 1 0 Can add all values including the authorization dn and can delete
all values excluding the authorization dn.

1 1 1 Can add or delete all values of this attribute.

? 0 0 Cannot add or delete the authorization dn value, but may be
able to add or delete other values. Refer to logging information
for further detail regarding the write permission.

Designing Access Control

Chapter 7 Designing a Secure Directory 205

Logging Information
The effective rights logging information provides you with the key to
understanding, and therefore being able to debug access control difficulties. The
logging information contains an access control summary statement, called the
acl_summary, that provides you with the reasons as to why your access control has
either been allowed or denied. The access control summary statement tells you the
following:

• Whether access was allowed or denied

• The permissions granted

• The target entry of the permissions

• The name of the target attribute

• The subject of the rights being requested

• Whether or not the request was made by proxy, and if so, the proxy
authentication DN

• And, most importantly, for debugging purposes, the reason for allowing or
denying access. The possible reasons are listed in Table 7-6 on page 205:

? 0 1 Can delete but cannot add the value of the authorization dn,
and may be able to add or delete other values. Refer to logging
information for further detail regarding the write permission.

? 1 0 Can add but cannot delete the value of the authorization dn,
and may be able to add or delete other values. Refer to logging
information for further detail regarding the write permission.

? 1 1 Can add and delete the value of the authorization dn, and may
be able to modify add or modify delete other values. Refer to
logging information for further detail regarding the write
permission.

Table 7-6 Effective Rights Logging Information Reasons and Their Explanations

Logging Information Reason Explanation of reason

no reason available No reason available to explain why access was allowed or
denied.

Table 7-5 Effective Rights Interdependencies Between write, selfwrite_add, and selfwrite_delete
Permissions

write selfwrite_add selfwrite_delete Effective Rights Explanation

Designing Access Control

206 Sun ONE Directory Server Deployment Guide • June 2003

For the actual log file format see Sun ONE Directory Server Reference Manual.

Tips on Using ACIs
The following tips can help to lower the administrative burden of managing your
directory security model and improve directory performance.

no allow acis No allow ACIs exist which results in denied access.

result cached deny Cached information was used to determine the access denied
decision.

result cached allow Cached information was used to determine the access
allowed decision.

evaluated allow An ACI was evaluated to determine the access allowed
decision. The name of the deciding aci is included in the log
information.

evaluated deny An ACI was evaluated to determine the access denied
decision. The name of the deciding aci is included in the log
information.

no acis matched the
resource

No ACIs match the resource or target, which results in denied
access.

no acis matched the subject No ACIs match the subject requesting access control, which
results in denied access.

allow anyone aci matched
anon user

An ACI with a userdn = "ldap:///anyone" subject
allowed access to the anonymous user.

no matching anyone aci for
anon user

No ACI with a userdn= "ldap:///anyone" subject was
found, and so access for the anonymous user was denied.

user root The user is root DN and is allowed access.

NOTE Write permissions for virtual attributes are not provided, nor is any
associated logging evaluation information, because virtual
attributes are not updatable.

Table 7-6 Effective Rights Logging Information Reasons and Their Explanations

Logging Information Reason Explanation of reason

Designing Access Control

Chapter 7 Designing a Secure Directory 207

Some of the following hints have already been described earlier in this chapter.
They are included here to provide you with a complete list.

• Minimize the number of ACIs in your directory and use macro ACIs where
possible.

Although Directory Server can evaluate over 50,000 ACIs, it is difficult to
manage a large number of ACI statements, and, because ACIs are kept in
memory, overly large numbers of ACIs can make inefficient use of your ACI
memory. A large number of ACIs makes it hard for you to determine
immediately the directory object available to particular clients. Reducing the
number of ACIs in your directory tree, and preferring the use of macro ACIs
where possible, will not only make it easier to manage your access control
policy, but will also improve the efficiency of ACI memory usage.

• Balance allow and deny permissions.

Although the default rule is to deny access to any user who has not been
specifically granted access, you might find that you can save on the number of
ACIs by using one ACI allowing access close to the root of the tree, and a small
number of deny ACIs close to the leaf entries. This scenario can avoid the use
of multiple allow ACIs close to the leaf entries.

• Identify the smallest set of attributes on any given ACI.

This means that if you are allowing or restricting access to a subset of attributes
on an object, determine whether the smallest list is the set of attributes that are
allowed or the set of attributes that are denied. Then express your ACI so that
you are managing the smallest list.

For example, the people object class contains dozens of attributes. If you want
to allow a user to update just one or two of these attributes, then write your
ACI so that it allows write access for just those few attributes. If, however, you
want to allow a user to update all but one or two attributes, then create the ACI
so that it allows write access for everything but a few named attributes.

• Use LDAP search filters cautiously.

Because search filters do not directly name the object that you are managing
access for, their use can result in unexpected surprises, especially as your
directory becomes more complex. If you are using search filters in ACIs, run an
ldapsearch operation using the same filter to make sure you know what the
results of the changes mean to your directory.

• Do not duplicate ACIs in differing parts of your directory tree.

Designing Access Control

208 Sun ONE Directory Server Deployment Guide • June 2003

Watch out for overlapping ACIs. For example, if you have an ACI at your
directory root point that allows a group write access to the commonName and
givenName attributes and another ACI that allows the same group write access
for just the commonName attribute, then consider reworking your ACIs so that
only one control grants the write access for the group.

As your directory grows more complicated, it becomes increasingly easy to
accidentally overlap ACIs in this manner. By avoiding ACI overlap, you make
your security management easier while potentially reducing the total number
of ACIs contained in your directory.

• Name your ACIs.

While naming ACIs is optional, giving each ACI a short, meaningful name
helps you to manage your security model, especially when examining your
ACIs from the Directory Server console.

• Use standard attributes in user entries to determine access rights.

As far as possible, use information that is already part of standard user entries
to define access rights. If you need to create special attributes, consider creating
them as part of a role or Class of Service (CoS) definition. For more information
on roles and CoS, refer to “Grouping Directory Entries and Managing
Attributes,” on page 70.

• Group your ACIs as closely together as possible within your directory.

Try to limit ACI placement to your directory root point and to major directory
branch points. Grouping ACIs helps you manage your total list of ACIs, and
also helps you keep the total number of ACIs in your directory to a minimum.

• Avoid using double negatives, such as deny write if the bind DN is not equal to
cn=Joe.

Although this syntax is perfectly acceptable to the server, it is confusing for a
human administrator.

ACI Limitations
When creating an access control policy for your directory service, you need to be
aware of the following restrictions:

• If your directory tree is distributed over several servers using the chaining
feature, some restrictions apply to the keywords you can use in access control
statements:

Securing Connections With SSL

Chapter 7 Designing a Secure Directory 209

❍ ACIs that depend on group entries (groupdn keyword) must be located on
the same server as the group entry. If the group is dynamic, then all
members of the group must have an entry on the server too. If the group is
static, the members’ entries can be located on remote servers.

❍ ACIs that depend on role definitions (roledn keyword) must be located on
the same server as the role definition entry. Every entry that is intended to
have the role must also be located on the same server.

However, you can do value matching of values stored in the target entry with
values stored in the entry of the bind user (for example, using the userattr
keyword). Access is evaluated normally even if the bind user does not have an
entry on the server that holds the ACI.

For more information on how to chain access control evaluation, see Database
Links and Access Control Evalutation in the Sun ONE Directory Server
Administration Guide.

• Attributes generated by a CoS cannot be used in all ACI keywords.
Specifically, you should not use attributes generated by CoS with the userattr
keyword because the access control rule will not work. For more information
on this keyword, refer to Chapter 4, “Designing the Directory Tree.”

• Access control rules are always evaluated on the local server. Therefore, it is
not necessary to specify the hostname or port number of the server in LDAP
URLs used in ACI keywords. If you do, the LDAP URL will not be taken into
account at all. For more information on LDAP URLs, see LDAP URLs in the
Sun ONE Directory Server Reference Manual.

• The cache settings used for ensuring that the server fits the physical memory
available do not apply to ACI caches, which means that an excessive number of
ACIs may saturate available memory.

When granting proxy rights, you cannot grant a user the right to proxy as the
Directory Manager, nor can you grant proxy rights to the Directory Manager.

Securing Connections With SSL
After designing your authentication scheme for identified users and your access
control scheme for protecting information, you must protect the integrity of the
information in transit over the network between servers and client applications.

Securing Connections With SSL

210 Sun ONE Directory Server Deployment Guide • June 2003

To provide secure communications over the network you can use both the LDAP
and DSML-over-HTTP protocols over the Secure Sockets Layer (SSL). When you
have configured and activated SSL, clients connect to a dedicated secure port
where all communications are encrypted once the SSL connection is established.
Directory Server also supports the Start Transport Layer Security (Start TLS)
control, which allows the client to initiate an encrypted connection over the
standard LDAP port.

By having separate ports, Directory Server supports SSL-secured connections and
non-SSL connections simultaneously.

SSL uses encryption for privacy and hashing of checksums for data integrity. When
establishing an SSL connection, the client application and Directory Server select
the strongest encryption algorithm, called a cipher, in common to their
configurations. Directory Server may use any of the following ciphers:

❍ DES - 56-bit block cipher

❍ 3DES (“triple-DES”) - 156-bit block cipher

❍ RC2 - 128-bit block cipher (or 40-bit export cipher)

❍ RC4 - 128-bit stream cipher (or 40-bit export cipher)

Ciphers are combined with one of the following hashing algorithms:

❍ MD5

❍ SHA-1

For more information about ciphers and hashing algorithms, refer to “Other
Security Resources,” on page 220.

After encryption of the connection has been established, the SSL protocol requires
the server to send its certificate to the client. Using public-key cryptography, the
client can determine the authenticity of the certificate and verify that it was issued
by a certificate authority that the client trusts. By verifying the certificate, the client
can prevent a man-in-the-middle impersonation of the server by a third party.

Now the connection is secure and the server is authenticated to the client. You may
configure the server to further request authentication from the client. Directory
Server supports certificate-based and SASL-based client authentication. These
mechanisms are further described in “Selecting Appropriate Authentication
Methods,” on page 169. Client authentication to the server provides the highest
level of security by ensuring that no third party may intercept or interfere with the
communication between the client and the server.

Encrypting Attributes

Chapter 7 Designing a Secure Directory 211

To enhance the performance for connections using the SSL protocol with
certificate-based authentication, Directory Server 5.2 supports the Sun Crypto
Accelerator Board. This board accelerates SSL key-related calculations, and may be
useful in deployments where client applications repeatedly bind over SSL, search,
and then unbind. SSL accelerator boards may not improve Directory Server
performance when key-related calculations are not the performance bottleneck. In
addition, SSL accelerator boards are most effective if the clients that are
establishing connections are doing so from different machines. If a system
establishes multiple SSL-based connections, it is likely that the SSL caching session
will limit the number of RSA operations, which will in turn limit the benefit that
the accelerator board may provide. For information on how to install and configure
the Sun Crypto Accelerator Board see Appendix B, "Using a Sun Crypto
Accelerator Board" in the Sun ONE Directory Server Installation and Tuning Guide.

For information about configuring and enabling SSL in both Directory Server and
its clients, refer to Chapter 11, "Implementing Security" in the Sun ONE Directory
Server Administration Guide.

Encrypting Attributes
This section presents the attribute encryption functionality new to Sun ONE
Directory Server 5.2 and is divided into the following sub-sections:

• What is Attribute Encryption?

• Attribute Encryption Implementation

• Attribute Encryption and Performance

• Attribute Encryption Usage Considerations

What is Attribute Encryption?
Directory Server provides a variety of features to protect data at access level
(during reads and writes to the directory), including simple password
authentication, certificate-based authentication, Secure Sockets Layer (SSL), and
proxy authorization. However, there is often an additional need for the data stored
in database files, backup files, and ldif files to be protected. Consider a bank storing
4-digit PIN codes in the directory. If the database files were unprotected and were
dumped, unauthorized users could have access to this sensitive information. The
new attribute encryption feature prevents users from accessing this sensitive data
while it is in storage.

Encrypting Attributes

212 Sun ONE Directory Server Deployment Guide • June 2003

Attribute encryption allows you to specify that certain attributes be stored in an
encrypted form. It is configured at the database level, which means that once you
decide to encrypt an attribute, that particular attribute will be encrypted for every
entry in the database. Because attribute encryption occurs at an attribute level
rather than an entry level, the only way to encrypt an entire entry is to encrypt all
of its attributes.

When in storage, encrypted attributes are prefaced with a cipher tag that indicates
the encryption algorithm used. An encrypted attribute using the DES encryption
algorithm would appear as follows:

In addition to protecting data while in storage, attribute encryption also allows you
to export data to another database in encrypted format. However, because the
purpose of attribute encryption is to protect sensitive data only when it is in
storage or being exported, the encryption is always reversible. Encrypted attributes
are therefore decrypted when returned via search requests. Figure 7-1 on page 213
shows a user entry being added to the database, where attribute encryption has
been configured to encrypt the salary attribute.

NOTES 1. Although attribute encryption supports the encryption of the
userPassword attribute, we strongly recommend that you do NOT
use this functionality as the sole means of protecting user passwords.
Ensure that access control to the userPassword attribute is sufficiently
protected. In addition, you should assign an appropriate password
policy to the userPassword attribute, to benefit from the security
provided by the imposed password length, validity, expiration
warnings, checks, history and reset options.

2. If you specify an RDN attribute for encryption, the DN will not be
encrypted. Attribute encryption does not apply to DNs.

{CKM_DES_CBC}3hakc&jla+=snda%

Encrypting Attributes

Chapter 7 Designing a Secure Directory 213

Figure 7-1 Attribute Encryption Logic

Attribute Encryption Implementation
The Directory Server attribute encryption feature supports a wide range of
encryption algorithms, and ensures portability across different platforms. The
required encryption algorithm is specified using the dsEncryptionAlgorithm
attribute. See the Sun ONE Directory Server Reference Manual for further information
regarding attribute encryption configuration attributes.

database

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels
salary=$64,000

dn: cn=Charlene Daniels,ou=People,dc=example,dc=COM
changetype: add
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectClass: inetorgperson
sn: Daniels
cn: Charlene Daniels
uid: CDaniels
salary: $64,000

ldapmodify

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels

salary={DES}2qX28AERbpL8e+Ss2ElnZ4crUb

ldapsearch

Entry in Database

Encrypting Attributes

214 Sun ONE Directory Server Deployment Guide • June 2003

As an additional security measure, attribute encryption uses the private key of the
server’s SSL certificate to generate its own key, which is used to perform the
encryption and decryption operations. This implies that, in order to be able to
encrypt attributes, your server must be running over SSL. The SSL certificate and
its private key are stored securely in the database in that they are protected by a
password, and it is this key database password that is required to authenticate to
the server. It is assumed that whoever has access to this key database password
will be authorized to export decrypted data.

When importing data online with a view to encrypting it, you will already have
provided the key database password to authenticate to the server, and will not be
prompted a second time. If you are importing data offline, Directory Server will
prompt you for the password before it allows you to encrypt the data you are
importing. When decrypting your data (a more security sensitive operation),
Directory Server automatically prompts you for the key database password,
irrespective of whether your export operation be online or offline. This provides an
additional security layer.

Attribute Encryption and Performance
While attribute encryption offers increased data security, it does incur certain
performance costs. Bearing this in mind, you should think carefully about which
attributes require encryption and encrypt only those attributes you consider to be
particularly sensitive.

Because sensitive data can be accessed directly through index files, it is necessary
to encrypt the index keys corresponding to the encrypted attributes, to ensure that
the attributes are fully protected. Given that indexing already has an impact on
Directory Server performance (without the added cost of encrypting index keys), it
is advisable to configure attribute encryption before data is imported or added to
the database for the first time. This procedure will ensure that encrypted attributes
are indexed as such from the outset.

NOTE As long as the certificate does not change, the server will continue to
generate the same key, which will make it possible to transport
(export then import) data from one server instance to another
(provided both server instances have used the same certificate).

Encrypting Attributes

Chapter 7 Designing a Secure Directory 215

Attribute Encryption Usage Considerations
The following list of usage considerations outlines some of the items you must take
into account when using the attribute encryption feature:

• As a general best practice when making attribute encryption configuration
changes, we recommend that you export your data, make the configuration
changes, and then import the newly configured data.

Adopting such a practice will ensure that all configuration changes are taken
into account in their entirety, without any loss in functionality. Failing to adopt
such a practice could result in some functionality loss and thus compromise the
security of your data.

• Modifying attribute encryption configuration on an existing database can have
a significant performance impact.

Imagine for example that you have a database instance with existing data. The
database contains previously stored entries with a sensitive attribute called
mySensitiveAttribute. The value of this attribute is stored in clear text, in the
database and in the index files. If you decide at a later stage that you want to
encrypt the mySensitiveAttribute attribute, all the data in the database
instance must be exported and re-imported into the database to ensure that the
server updates the database and index files taking the attribute encryption
configuration into account. This will have a significant performance impact
that could have been avoided had the mySensitiveAttribute attribute been
encrypted from the beginning.

• When exporting data in decrypted format the export will be refused if an
incorrect password is given.

As a security measure, the server prompts users for passwords if they want to
export data in decrypted format, and refuses the decrypted export operation
should users provide an incorrect password.

• Users can either enter passwords directly or enter a path to the file containing
the password that has the same syntax as the SSL password file.

For more information concerning attribute encryption procedures, see
“Encrypting Attribute Values” in Chapter 2 of the Sun ONE Directory Server
Administration Guide.

Grouping Entries Securely

216 Sun ONE Directory Server Deployment Guide • June 2003

• Algorithm changes are supported, but can result in lost indexing functionality,
if they are not made correctly.

To change the algorithm used to encrypt your data, export your data, make the
attribute encryption configuration changes, and then import your data, to
avoid any functionality loss related to indexing. If you do not follow this
procedure, the indexes created on the basis of the initial encryption algorithm
will no longer function.

Because the encrypted attributes are prefaced with a cipher tag that indicates
the encryption algorithm used, the internal server operations take care of
importing the data. Therefore, Directory Server provides additional security as
it enables you to export data in encrypted form before making the algorithm
change.

• Changing the server’s SSL certificate will result in you no longer being able to
decrypt your encrypted data.

Because the server’s SSL certificate is used by the attribute encryption feature
to generate its own key, which is then used to perform the encryption and
decryption operations, this certificate is required to be able to decrypt
encrypted data. Changing the certificate without decrypting the data
beforehand will result in you no longer being able to decrypt your data. Once
again we recommend the best practice of exporting your data in decrypted
format, changing your certificate and then re-importing your data.

• To transport data in encrypted format, that is, export and import it from one
server instance to another, both server instances must have used the same
certificate.

Grouping Entries Securely
This section deals with the security issues related to grouping entries securely and
contains the following sections:

• Using Roles Securely

• Using CoS Securely

Grouping Entries Securely

Chapter 7 Designing a Secure Directory 217

Using Roles Securely
Not every role is suitable for use within a security context. When creating a new
role, consider how easily the role can be assigned to and removed from an entry.
Sometimes it is appropriate for users to be able to easily add themselves to or
remove themselves from a role. For example, if you had an interest group role
called Mountain Biking, you would want interested users to add themselves or
remove themselves easily.

However, in some security contexts it is inappropriate to have such open roles. For
example, consider account inactivation roles. By default, account inactivation roles
contain ACIs defined for their suffix (for more information about account
inactivation, see the section on Inactivating Users and Roles in the Sun ONE
Directory Server Administration Guide). When creating a role, the server
administrator decides whether or not a user can assign themselves to or remove
themselves from the role.

For example, user A possesses the managed role, MR. The MR role has been locked
using account inactivation through the command line. This means that user A
cannot bind to the server because the nsAccountLock attribute is computed as
“true” for that user. However, suppose the user was already bound and noticed
that he is now locked through the MR role. If there are no ACIs preventing him, the
user can remove the nsRoleDN attribute from his entry and unlock himself.

To prevent users from removing the nsRoleDN attribute, you would need to apply
ACIs. With filtered roles you would have to be sure to protect the part of the filter
that would prevent the user from being able to relinquish the filtered role by
modifying an attribute. The user should not be allowed to add, delete, or modify
the attribute used by the filtered role, and in the same way if the value of the filter
attribute is computed then all the attributes that can modify the value of the filter
attribute should be protected too. As nested roles can be comprised of filtered and
managed roles, the above points should be considered for each of the roles that
comprise the nested role.

Using CoS Securely
Access control for reading applies to both the real and virtual attributes of an entry.
A virtual attribute generated by the Class of Service mechanism is read just as a
normal attribute and should be given read protection in the same way.

However, in order to make the CoS value secure, you must protect all of the
sources of information it uses: the definition entries, the template entries, and the
target entries. The same is true for update operations: write access to each source of
information should be controlled to protect the value that is generated from them.

Grouping Entries Securely

218 Sun ONE Directory Server Deployment Guide • June 2003

The following sections describe the general principals for read and write protection
of data in each of the CoS entries. The detailed procedure for defining individual
access control instructions (ACIs) is described in “Managing Access Control” in the
Sun ONE Directory Server Administration Guide.

Protecting the CoS Definition Entry
Even though the CoS definition entry does not contain the value of the generated
attribute, it provides the information to find that value. Reading the CoS definition
entry would reveal how to find the template entry containing the value, and
writing to this entry would modify how the virtual attribute is generated.

You should therefore define both read and write access control on the CoS
definition entries.

Protecting the CoS Template Entries
The CoS template entry contains the value of the generated CoS attribute.
Therefore, as a minimum, the CoS attribute in the template should be protected for
both reading and updating.

In the case of pointer CoS, there is a single template entry that should not be
allowed to be renamed. In most cases, it is simplest to protect the entire template
entry.

With classic CoS, all template entries have a common parent given in the definition
entry. If only templates are stored in this parent entry, access control to the parent
entry will protect the templates. However, if other entries beneath the parent
require access, the template entries will need to be protected individually.

In the case of indirect CoS, the template may be any entry in the directory,
including user entries that might still need to be accessed. Depending on your
needs, you can either control access to the CoS attribute throughout the directory,
or choose to ensure that the CoS attribute is secure in each entry used as a template.

Protecting the Target Entries of a CoS
All entries in the scope of a CoS definition, for which the virtual CoS attribute will
be generated, also contribute to computing its value.

When the CoS attribute already exists in a target entry, by default, the CoS
mechanism will not override this value. If you do not want this behavior, you
should either define your CoS to override the target entry or protect the CoS
attribute in all potential target entries. For information regarding these procedures
see the Sun ONE Directory Server Administration Guide.

Securing Configuration Information

Chapter 7 Designing a Secure Directory 219

Both indirect and classic CoS also rely on a specifier attribute in the target entry.
This attribute gives the DN or RDN of the template entry to use. You should
protect this attribute either globally throughout the scope of the CoS or
individually on each target entry where needed.

Protecting Other Dependencies
Finally, it is possible to define virtual CoS attributes in terms of other generated
CoS attributes and roles. You will need to understand and protect these
dependencies in order to guarantee the protection of your virtual CoS attribute.

For example, the CoS specifier attribute in a target entry could be nsRole, and
therefore the role definition would also need to be protected. For more
information, see “Grouping Entries Securely,” on page 216.

In general, any attribute or entry that is involved in the computation of the virtual
attribute value should have both read and write access control. For this reason,
complex dependencies should be well planned or simplified to reduce subsequent
complexity of access control implementation. Keeping dependencies on other
virtual attributes to a minimum also improves directory performance and reduces
maintenance.

Securing Configuration Information
For the majority of deployments no additional access controls are required either
for the root DSE entry (which is the entry that is returned for a base object search
with a zero-length DN) or for the subtrees below cn=config, cn=monitor or
cn=schema. The root DSE entry and these subtrees contain attributes that are
automatically generated by Directory Server and used by LDAP clients to
determine the capabilities and configuration of the directory server.

However, one of the root DSE entry attributes called namingContexts contains a
list of the base DNs for each of the Directory Server databases. In addition to this
list, these DNs are also stored in the mapping tree entries below cn=config and
cn=monitor. Should you wish to hide the existence of one or more subtrees and
protect your configuration information for security reasons, it will be necessary to
place:

• An ACI attribute in the entry at the base of the subtree you wish to hide.

• An ACI in the root DSE entry on the namingContexts attribute.

• An ACI on the cn=config and cn=monitor subtrees.

Other Security Resources

220 Sun ONE Directory Server Deployment Guide • June 2003

Other Security Resources
For more information about designing a secure directory, take a look at the
following:

• Sun ONE Middleware Developer Security Resources
http://developer.iplanet.com/tech/security/

• Understanding and Deploying LDAP Directory Services.
T. Howes, M. Smith, G. Good, Macmillan Technical Publishing, 1999.

• SecurityFocus.com
http://www.securityfocus.com/

• Computer Emergency Response Team (CERT) Coordination Center
http://www.cert.org/

• CERT Security Improvement Modules
http://www.cert.org/security-improvement/

221

Chapter 8

Monitoring Your Directory

An effective monitoring and event management strategy is crucial to any
successful Directory Server deployment. Such a strategy defines which events
should be monitored, which tools to use, and what action to take should an event
occur. Having a plan for common-place events helps prevent possible outages and
reduced levels of service, improving the availability and quality of service.

A monitoring and event management strategy should include specific components
of the architecture such as the replication configuration, but should also include
system and network monitoring. This chapter examines what an effective
monitoring strategy should include, and presents the monitoring features within
Sun ONE Directory Server.

This chapter is divided into the following sections:

• Defining a Monitoring and Event Management Strategy

• Directory Server Monitoring Tools

• Directory Server Monitoring

• SNMP Monitoring

NOTE This chapter does not focus on system and network monitoring, as
this is an area not specific to Sun ONE Directory Server.

Defining a Monitoring and Event Management Strategy

222 Sun ONE Directory Server Deployment Guide • June 2003

Defining a Monitoring and Event Management
Strategy

This section provides an outline of the stages involved in defining a monitoring
and event management strategy. The process for defining an effective monitoring
can be broken down into the following steps:

1. Select the appropriate monitoring tools, whether they be operating system
tools, Sun ONE Directory Server monitoring tools, or third party monitoring
tools.

2. Identify the key performance measures to be monitored in the directory
architecture (these are frequently the same as the sizing and tuning attributes).

3. Define what triggers an event or alarm condition when using the monitoring
tools to monitor the key performance measure. This implies defining an
acceptable level of performance or operation for each performance measure.

4. Determine what action should be taken when an alarm condition occurs.

Directory Server Monitoring Tools
This section provides a summary of the monitoring tools available in Directory
Server, and other tools that can be used to monitor Directory Server activity. All of
the key performance measures, described in the next section, can be monitored
using one, or a combination of, these tools.

• Command-Line Tools

Command-line monitoring tools include operating system-specific tools to
monitor performance such as disk usage, LDAP tools such as ldapsearch to
collect server statistics stored in the directory, third party tools, or custom shell
or Perl scripts.

• Directory Server logs

The access, audit, and error logs provided with Sun ONE Directory Server are
a rich source of monitoring information. These logs can be monitored manually
or parsed using custom scripts to extract monitoring information relevant to
your deployment. For information on the Sun ONE scripts that can be used to
access logging information, refer to the Sun ONE DSRK Tools Reference. For
information on viewing and configuring log files refer to the Managing Log
Files chapter in the Sun ONE Directory Server Administration Guide.

Directory Server Monitoring Tools

Chapter 8 Monitoring Your Directory 223

• Directory Server Console

The Sun ONE Directory Server console is useful for monitoring directory
operations in real time via a graphical user interface. The Console provides
general server information, including a resource summary, current resource
usage, connection status, and global database cache information. It also
provides general database information such as the database type, status and
entry cache statistics, cache information, and information relative to each index
file within the database. In addition, the Console provides information relative
to the connections and operations performed on each chained suffix.

• Replication Monitoring Tools

The replication monitoring tools provided with Sun ONE Directory Server
enable you to:

❍ monitor the state of synchronization between a master replica and one or
more consumer replicas

❍ compare the same entry on two or more different replicas, enabling you to
assess replication status

❍ depict your complete replication topology, which is particularly beneficial
when dealing with complex directory deployments

• Simple Network Management Protocol (SNMP)

Directory Server supports monitoring with the Simple Network Management
Protocol (SNMP). SNMP is the standard mechanism for global network control
and monitoring, and enables network administrators to centralize network
monitoring activity.

For a detailed description of SNMP and Directory Server’s SNMP managed
object support see “SNMP Monitoring,” on page 231. For information on how
to set up and configure SNMP refer to the Monitoring Directory Server Using
SNMP chapter of the Sun ONE Directory Server Administration Guide.

Directory Server Monitoring

224 Sun ONE Directory Server Deployment Guide • June 2003

Directory Server Monitoring
The most important step in defining a monitoring and event management strategy
is determining the key performance measures to be monitored on one or more
components in your directory architecture. What you monitor, and to what extent,
will depend largely on the specifics of your deployment.

This section describes the performance measures that should be monitored, and
includes the following:

• Monitoring Directory Server Activity

• Monitoring Database Activity

• Monitoring Disk Status

• Monitoring Replication Activity

• Monitoring Indexing Efficiency

• Monitoring Security

Monitoring Directory Server Activity
Directory Server provides a number of ways in which you can monitor server
status. These include, but are not limited to, the following:

• The Servers and Applications tab of the Sun ONE Console displays general
information regarding your server including the installation date, the version,
the server status (whether or not it is started) and the port numbers.

NOTES • When running ldapsearch commands on the monitoring
information in the cn=monitor branch of the directory, users
must be authenticated and have the appropriate permissions in
order to access the information. Having such permissions is
therefore a prerequisite in defining your monitoring strategy

• Although it is essential to monitor the operating system
environment upon which Sun ONE Directory Server is running
to ensure that the system is running efficiently and not
compromising Directory Server, this area is not covered in this
chapter as it is not specific to Sun ONE Directory Server. Refer
to your operating system documentation for further
information.

Directory Server Monitoring

Chapter 8 Monitoring Your Directory 225

• The Directory Server Console provides access to additional monitoring
information. The Status tab on this console displays the following information:

❍ The startup and current time on the server.

❍ A Resource Summary that details connections, initiated and completed
operations, and entries and bytes sent to clients.

❍ Current Resource Usage information, including active threads, open and
available connections, number of threads waiting to read from the client,
and number of databases in use.

❍ Information on all Open Connections, including when they were opened,
how many connections were started and completed, the distinguished
name used by the client to bind to the server, the state of the connection
(Blocked or Not blocked), and the type of connection (LDAP, or DSML.)

For more information regarding the performance counters available through
Directory Server Console, refer to “Monitoring Your Server From the Directory
Server console” in the Sun ONE Directory Server Administration Guide.

• Running an ldapsearch command on the cn=monitor,cn=config entry
provides access to the same information presented in the Status tab of
Directory Server Console. Note that certain monitoring information is
accessible only if the user issuing the ldapsearch command is bound as
Directory Manager. You can remove this access constraint by reconfiguring the
access control associated with this information. For more detail regarding the
performance counters stored under cn=monitor,cn=config, refer to
“Monitoring Your Server From the Command Line” in the Sun ONE Directory
Server Administration Guide.

• On UNIX systems, the ps command displays processes that are currently
running. This enables you to determine whether the Directory Server slapd
daemon is running. Refer to the ps(1) man page for further information or the
equivalent command line tool documentation provided with your operating
system.

• The ldapsearch command-line utility enables you to test whether Directory
Server is responding to requests. To avoid launching time-consuming,
unindexed searches, it is wise to use base level searches. Where you have more
than one database, it is also wise to create an LDAP query for each database
suffix to test whether or not the database is online and responding.

• Directory Server access logs enable you to monitor server operations and to
establish whether Directory Server is running. For more information on access
log content and connection codes refer to the Access Logs and Connection
Codes section of the Sun ONE Directory Server Reference Manual.

Directory Server Monitoring

226 Sun ONE Directory Server Deployment Guide • June 2003

• The Directory Server error log records the server’s start and stop status, and
enables you to establish that the server is running. For more information about
viewing and configuring log files refer to “Managing Log Files” in the Sun
ONE Directory Server Administration Guide.

Monitoring Database Activity
Monitoring database activity helps to ensure that your database is online and
accessible when it is required. Database monitoring information can be accessed by
running an ldapsearch command on a specific area of the cn=config branch. The
kind of monitoring information provided and the corresponding area of the
cn=config branch are presented in Table 8-1.

The areas of database monitoring information are presented in more detail in the
following section.

• The cn=database,cn=monitor,cn=ldbm database,dn=plugins,cn=config
branch provides access to cache, transaction, locks and log information. For a
complete list of Directory Server configuration attributes, refer to the Core
Server Configuration and the Plug-in Implemented Server Functionality
chapters of the Sun ONE Directory Server Reference Manual.

The type of general database information you monitor will depend on the
specific requirements of your directory deployment. For example, if your
Directory Server frequently handles several simultaneous transactions, you
may want to monitor the maximum number of transactions being handled at a

Table 8-1 Source of Database Monitoring Information in cn=config

Information Area Corresponding Branch of cn=config

General Database
Information

cn=database,cn=monitor,cn=ldbm database,
cn=plugins,cn=config

Database Cache
Information

cn=monitor,cn=ldbm database,cn=plugins,cn=config

Specific Database
Instance Information

cn=monitor,cn=suffixName,cn=ldbm database,
cn=plugins,cn=config

Chained Suffix
Information

cn=monitor,cn=suffixName,cn=chaining database,
cn=plugins,cn=config

Directory Server Monitoring

Chapter 8 Monitoring Your Directory 227

particular time. If this number (defined by the nsslapd-db-max-txns
attribute) approaches the maximum number of transactions allowed (defined
by the nsslapd-db-configured-txns attribute), you may want to increase the
maximum number of transactions allowed, to prevent operations from failing.

• To monitor database cache performance and database indexing performance,
use the Status tab of Directory Server Console or run ldapsearch commands
on the the following branches:

cn=monitor,cn=ldbm database,cn=plugins,cn=config and
cn=monitor,cn=suffixName,cn=ldbm database,cn=plugins,cn=config

For a complete list of the relevant configuration attributes refer to “Core Server
Configuration Attributes” and “Plug-in Implemented Server Functionality”in
the Sun ONE Directory Server Reference Manual.

• The cn=monitor,cn=suffixName,cn=chaining
database,cn=plugins,cn=config branch provides access to information
about connections and the LDAP and bind/unbind operations being
performed. This information is also accessible via the Status tab of Directory
Server Console.

Monitoring Disk Status
Effectively monitoring disk space enables you to prevent the problems associated
with inadequate disk resources. The cn=disk,cn=monitor entry provides access to
the following monitoring information:

• The path to the database instance. Where several database instances reside on
the same disk or an instance refers to several directories on the same disk, the
short path name is displayed.

• The amount of disk space available to the server in MB.

• The status of the disk (normal, low or full). This status is based on the available
space and on the thresholds configured to trigger a disk “low” and disk “full”
warning.

For more information on the cn=disk,cn=monitor attributes as well as the
configurable disk low or full thresholds, refer to the “Core Server Configuration
Attributes” and “Plug-in Implemented Server Functionality” in the Sun ONE
Directory Server Reference Manual.

Directory Server Monitoring

228 Sun ONE Directory Server Deployment Guide • June 2003

Monitoring Replication Activity
Monitoring replication status is an essential element of your global monitoring
strategy. The earlier you become aware of potential replication problems, the
quicker you can resolve those problems and reestablish correct replication
operation.

Sun ONE Directory Server 5.2 provides three replication monitoring tools which
enable you to monitor various aspects of replication functionality. The replication
monitoring tools function as LDAP clients and can be used over a standard or
secure connection (LDAPS.) The following replication monitoring tools are
provided:

• insync

• entrycmp

• repldisc

insync
The insync tool indicates the state of synchronization between a master replica
and one or more consumer replicas. An awareness of the level of synchronization is
vital when it comes to managing potential conflicts.

entrycmp
The entrycmp tool allows you to compare the same entry on two or more different
servers. An entry is retrieved from the master replica and the entry’s nsuniqueid is
used to retrieve the same entry from a given consumer. Entry attributes and values
are compared and, if these are identical, the entries are considered to be the same.

NOTE The machine on which you are running the insync and entrycmp
tools must be able to reach all the specified hosts. If the hosts are
unreachable due to a firewall, VPN, or other network setup reasons,
you will encounter difficulties using these tools. For the same
reason, you should ensure that all the servers are up and running
before attempting to use the replication monitoring tools.

Directory Server Monitoring

Chapter 8 Monitoring Your Directory 229

repldisc
The repldisc tool allows you to discover a replication topology. Topology
discovery starts with one server and constructs a graph of all known servers within
the topology. The repldisc tool then prints an adjacency matrix describing the
topology. This replication topology discovery tool is useful for large, complex
deployments where it might be difficult to recall the global topology you have
deployed.

For more information about the replication monitoring tools, refer to the
Replication Monitoring Tools section of the Sun ONE Directory Server Reference
Manual.

Monitoring Indexing Efficiency
Indexing impacts write performance (when creating indexes) and read
performance (when searching the directory.) It is therefore important to monitor
indexing efficiency to maintain an appropriate balance between write and read
performance. An effective indexing strategy eliminates unnecessary indexes and
maintains only those indexes required for client applications.

Indexing efficiency can be monitored in the following ways:

• By consulting the access logs and monitoring the time unindexed searches take
to complete, you can identify the unindexed searches that have taken a
disproportionate amount of time. The access log also provides additional
information on searches and their filters, enabling you to decide whether it
might be worth creating an index to improve performance.

NOTES • When using the replication monitoring tools, you must use
either all symbolic names or all IP addresses when identifying
hosts. Using a combination of the two can be problematic.

• When running the replication monitoring tools over SSL, the
server on which you are running the tools must have a copy of
all the certificates used by the other servers in the topology.

• These tools are based on LDAP clients, and as such, will need to
authenticate to the server and use a bind DN that has read
access to cn=config. For more information about the
configuration details of these tools and using the tools with SSL
enabled refer to the Monitoring Replication Status section of the
Sun ONE Directory Server Administration Guide.

Directory Server Monitoring

230 Sun ONE Directory Server Deployment Guide • June 2003

• The Status tab of Directory Server Console allows you to monitor the most
frequently used indexes per suffix or chained suffix. It indicates how many
attempts have been made to use the indexes and how many attempts have
been successful. The same monitoring information can be accessed by running
an ldapsearch command on the cn=monitor,cn=suffixName,cn=ldbm
database,cn=plugins,cn=config branch.

A list of configured indexes is available in the Configuration tab of Directory
Server Console (under the Data > suffixName node). Comparing the frequently
used indexes, described above, with the list of configured indexes enables you
you to identify the indexes that are using resources unnecessarily, and to
decide whether they can be removed. If entries contain indexed attributes and
the indexes are not used, removing these indexes will improve add
performance.

For more information on access log content and connection codes refer to the
Access Logs and Connection Codes section of the Sun ONE Directory Server
Reference Manual. For an complete list of Directory Server configuration attributes,
refer to the Core Server Configuration and the Plug-in Implemented Server
Functionality chapters of the Sun ONE Directory Server Reference Manual.

Monitoring Security
Monitoring the security of your deployment is vital in maintaining a secure,
accessible directory. Suggestions on how to monitor Directory Server with a view
to maintaining an acceptable level of security follow:

• Monitoring the number of failed bind attempts alerts you to attempts to break
into your directory. If the SNMP agent is running, failed bind attempts can be
monitored by running an ldapsearch command on the SNMP managed object
counter dsBindSecurityErrors located under cn=snmp,cn=config.

• Monitoring the number of open connections without any activity alerts you to
potential denial of service attacks. The number of current connections and the
number of completed operations can be accessed via the Status tab of Directory
Server Console or by searching the attributes located under cn=monitor.

• The new Effective Rights feature enables clients to query the access control
rights they have to directory entries and attributes. Being able to request the
access rights of a user simplifies user administration, access control policy
verification, and configuration decision making.

SNMP Monitoring

Chapter 8 Monitoring Your Directory 231

The Effective Rights feature would most likely be used periodically rather than
on a day-to-day operations basis. For more detailed information regarding the
Effective Rights feature see “Requesting Effective Rights Information,” on
page 198.

SNMP Monitoring
SNMP is the standard mechanism for global network control and monitoring. It
allows network administrators to centralize network monitoring activities, and can
be used to monitor a wide range of devices in real time. This section describes how
SNMP can be used to monitor Directory Server operation, and contains the
following topics:

• About SNMP

• SNMP Monitoring in Sun ONE Directory Server

About SNMP
SNMP is a protocol used to exchange data about network activity. With SNMP,
data travels between a managed device and a network management station (NMS)
where users manage the network remotely. A managed device is anything that
runs SNMP, such as hosts, routers, and Directory Server. An NMS is usually a
powerful workstation running one or more network management applications. A
network management application usually displays graphical information about
managed devices (which device is up or down, which and how many error
messages were received, and so on).

Information is transferred between the NMS and the managed device through the
use of two types of agents: the subagent and the master agent. The subagent
gathers information about the managed device and passes the information to the
master agent. Sun ONE Directory Server has a subagent. The master agent
exchanges information between the various subagents and the NMS. The master
agent runs on the same host machine as the subagents it talks to.

Multiple subagents can be installed on a host machine. For example, if Directory
Server, Enterprise Server, and Messaging Server are all installed on the same host,
the subagents for each of these servers communicates with the same master agent.
In the Windows environment, the master agent is the SNMP service provided by
the Windows operating system. In the UNIX environment, the master agent is
installed with Sun ONE Administration Server.

SNMP Monitoring

232 Sun ONE Directory Server Deployment Guide • June 2003

Values for SNMP attributes that can be queried are kept on the managed device
and reported to the NMS as necessary. Each attribute or variable is known as a
managed object, which is anything the agent can access and send to the NMS. All
managed objects are defined in a management information base (MIB), which is a
database with a tree-like hierarchy. The top level of the hierarchy contains the most
general information about the network. Each branch below is more specific and
deals with a separate network area.

SNMP exchanges network information in the form of protocol data units (PDUs).
PDUs contain information about variables stored on the managed device. These
variables, also known as managed objects, have values and titles that are reported
to the NMS as necessary. Communication between an NMS and a managed device
takes place in one of two ways:

• NMS-Initiated Communication

• Managed Device-Initiated Communication

Sun ONE Directory Server supports NMS-initiated communication, described in
the following section.

NMS-Initiated Communication
This is the most common type of communication between an NMS and a managed
device. In this type of communication, the NMS either requests information from
the managed device or changes the value of a variable stored on the managed
device.

The following steps make up an NMS-initiated SNMP session:

1. The NMS determines which managed devices and objects must be monitored.

2. The NMS sends a protocol data unit to the managed device’s subagent through
the master agent. This protocol data unit either requests information from the
managed device or tells the subagent to change the values for variables stored
on the managed device.

3. The subagent for the managed device receives the protocol data unit from the
master agent.

4. If the protocol data unit from the NMS is a request for information about
variables, the subagent gives information to the master agent and the master
agent sends it back to the NMS in the form of another protocol data unit. The
NMS then displays the information textually or graphically.

If the protocol data unit from the NMS requests that the subagent set variable
values, the subagent sets these values.

SNMP Monitoring

Chapter 8 Monitoring Your Directory 233

SNMP Monitoring in Sun ONE Directory Server
Directory Server supports SNMP monitoring in two ways:

• Monitoring via an SNMP agent. SNMP attributes are mapped to a statistics file
which is read each time the SNMP agent is queried. This statistics file is not
present if Directory Server is not running.

• Monitoring using the ldapsearch command-line utility. SNMP attributes are
stored under the cn=snmp,cn=monitor entry. The following ldapsearch
command provides a list of all SNMP attributes in Directory Server:

ldapsearch -h host -p port -s base -b "cn=snmp,cn=monitor"
"objectclass=*"

Figure 8-1 shows the two ways in which SNMP monitoring information can be
retrieved from Directory Server.

Figure 8-1 SNMP Monitoring in Directory Server

cn=SNMP,cn=monitor

ldapsearch -b “cn=snmp,cn=monitor”

Statistics file

?

}

SNMP Agent

SNMP functions ...
?

?

SNMP Monitoring

234 Sun ONE Directory Server Deployment Guide • June 2003

For information on where the MIBs are defined, and how to use SNMP refer to the
Monitoring Directory Server Using SNMP chapter of the Sun ONE Directory Server
Administration Guide.

The SNMP managed objects supported by Sun ONE Directory Server are based on
an early draft of the Directory Server Monitoring MIB RFC 2605. The SNMP
operations managed objects returned by the SNMP agent are the same as the
SNMP monitoring attributes returned by an ldapsearch command. These
attributes are described in the “Monitoring Attributes” section of the Sun ONE
Directory Server Reference Manual. Names of attributes returned by the SNMP agent
are prefixed with ds.

In addition to the operations managed objects, Sun ONE Directory Server supports
managed objects related to the interactions between the monitored Directory
Server and its peer Directory Servers. These objects are listed in Table 8-2:

Table 8-2 Interactions Table of Supported SNMP Managed Objects

Managed Object Description

dsTimeOfCreation The value of system “up” time when the entry containing
interaction details of (attempted) interaction between the
Directory Server and a peer Directory Server was created. If
the entry was created before the management network
subsystem was initialized, this object will contain a value of
zero.

dsTimeOfLastAttempt The value of system “up” time when the last attempt was
made to contact this Directory Server. If the last attempt
was made before the network management subsystem was
initialized, this object will contain a value of zero.

dsTimeOfLastSuccess The value of system “up” time when the last attempt made
to contact this Directory Server was successful. If none of
the attempts have been successful, this object will have a
value of zero. If the last successful attempt was made before
the network management subsystem was initialized, this
object will contain a value of zero.

dsFailuresSinceLastSuccess The number of failures since the last successful attempt to
contact this Directory Server. If there have been no
successful attempts, this object will contain the number of
failures since this entry was created.

dsFailures Cumulative failures to contact the peer Directory Server
since the creation of this entry.

dsSuccesses Cumulative successes since the creation of this entry.

dsURL URL of the peer Directory Server.

SNMP Monitoring

Chapter 8 Monitoring Your Directory 235

Sun ONE Directory Server also supports entity related managed objects,
containing information about the current installation of Directory Server. These
managed objects are listed in Table 8-3.

Table 8-3 Entity Table of SNMP Supported Managed Objects

Managed Object Description

dsEntityDescr A general textual description of the installed Directory Server.

dsEntityVers Directory Server version.

dsEntityOrg Organization responsible for this installation of Directory
Server.

dsEntityLocation Physical location of this Directory Server. For example:
hostname, building, number, laboratory number, etc.

dsEntityContact Contact person responsible for the installed Directory Server
and their contact details.

dsEntityName Name assigned to the installation of Directory Server by the
installation site.

SNMP Monitoring

236 Sun ONE Directory Server Deployment Guide • June 2003

237

Part 2

Directory Server Deployment
Scenario and Reference

Architectures

The second part of this guide presents a Sun ONE Directory Server 5.2 deployment
scenario and outlines a number of architectural strategies. Presented from a
business perspective, the deployment scenario may help you understand how Sun
ONE Directory Server 5.2 can be deployed to provide solutions to a given business
challenge. Each architectural strategy, categorized by the number of data centers
(sites) in which your organization has a directory, provides guidelines regarding
the physical location of your data, an appropriate replication topology, in addition
to suggestions related to failover, scalability and backup strategies.

While we advise that you implement your Directory Server deployment with the
help of Sun Professional Services, the following deployment scenario and
architectural strategies should give you an insight into some of the major concerns
and issues you will need to address.

238 Sun ONE Directory Server Deployment Guide • June 2003

239

Chapter 9

Banking Deployment Scenario

Business Challenge
ExampleBank is an international bank which wishes to provide its customers and
employees with e-banking and phone banking facilities. Customers may, for
example, want to check their bank account balance, perform intrabank and
interbank money transfers, check investment portfolios, set up meetings with bank
managers, access the bank’s online news service and change profile information,
while bank employees may want to login to work from home, perform lookups on
the bank’s phone book, change profile information or perform bank transactions
for customers using the bank’s phone banking service. The business challenge for
ExampleBank is to allow its users, customers and employees alike, access to their
range of banking services in a way that guarantees:

• uncompromised security,

• good performance,

• scalability,

• and manageability.

To rise to this business challenge, ExampleBank has deployed Sun ONE Directory
Server 5.2 as the cornerstone of its banking deployment. Directory Server holds all
of ExampleBank’s user authentication and profile data which is used each time a
user authenticates to the bank’s online system whether it be via a portal or over the
phone. The following deployment scenario details how ExampleBank has
implemented Directory Server to achieve their e-banking and phone banking
business objectives and is divided into the following sections:

❍ Deployment Context and Replication Topology

❍ Performance Requirements

❍ Schema, Data, and Directory Information Tree Design

Deployment Context and Replication Topology

240 Sun ONE Directory Server Deployment Guide • June 2003

❍ Security Considerations

❍ Implementation

Deployment Context and Replication Topology

Deployment Context
ExampleBank’s deployment needs to be able to cater for both the e-banking and
phone banking services and ensure that authentication to both services is secure,
manageable, swift and scalable. ExampleBank uses the same stack of products to
cater for both types of access which we examine a little closer in the following
paragraphs.

To access the e-banking facilities ExampleBank users use amongst other things,
Sun ONE Portal Server. The portal runs over Sun ONE Web Servers coupled with
the Sun ONE Identity Server which offers ExampleBank the single sign-on solution
it needs for login manageability. ExampleBank has placed Sun ONE Directory
Proxy Server next in line in the deployment stack, as the Directory Proxy Server,
with its ability to manage referrals to chosen servers caters for Directory Server’s
operational flow load distribution and transparent failover needs. At the bottom of
the deployment stack sits Directory Server, which holds the user profile and
authentication data necessary to conduct banking business.

As regards access to the phone banking facilities ExampleBank users phone a given
number and enter their account number followed by their phone banking pin
number. A special phone banking authentication module contacts Directory Server
to try to find the account number, then verifies if the pin number is correct, and if it
is correct, forwards the call to a member of the phone banking team.

ExampleBank’s banking deployment stack is illustrated in Figure 9-1 on page 241:

Deployment Context and Replication Topology

Chapter 9 Banking Deployment Scenario 241

Figure 9-1 ExampleBank’s Banking Deployment Stack

Replication Topology
This section outlines ExampleBank’s replication strategy and is divided into the
following parts:

• Replication Topology Overview

• Failure and Recovery Scenarios

Browsers
Landline Telephones Wireless Devices

Cell phone
PDA

ExampleBank Web Portal Layer

Sun ONE Portal Server Layer

Sun ONE Web Server Layer

Sun ONE Identity Server Layer (Single Sign-On Layer)

Sun ONE Directory
Proxy Server

Sun ONE Directory
Proxy Server

ExampleBank
Phone Banking
Authentication

Module

Directory Server
Supplier

Directory Server
Supplier

New York Data Center

Directory Server
Supplier

Directory Server
Supplier

Paris Data Center

Deployment Context and Replication Topology

242 Sun ONE Directory Server Deployment Guide • June 2003

Replication Topology Overview
ExampleBank has two major data centers, one in New York and the other in Paris.
Because it is essential that services remain accessible 24 hours a day and that local
write failover needs be catered for, the replication design choice is to have a pair of
masters in each data center. This 4-way master replication topology across two
continents in ExampleBank’s deployment is made possible by the new 4-way
Multi-Master Replication (MMR) over WAN possibilities offered by Sun ONE
Directory Server 5.2. Hubs have also been included in the replication topology to
facilitate load distribution, and the four consumers in each data center allow this
topology to scale for read (lookup) operations. ExampleBank’s replication topology
for its two, cross-continent data center deployment, is illustrated in Figure 9-2 on
page 242:

Figure 9-2 Example Bank’s Two Data Center Replication Topology

Master 1 Master 2

Hub 1 Hub 2

Master 3 Master 4

Hub 3 Hub 4

Default Replication Agreement

Recovery Replication Agreement

Consumer
1

Consumer
3

Consumer
2

Consumer
4

Consumer
5

Consumer
7

Consumer
6

Consumer
8

New York Paris

Deployment Context and Replication Topology

Chapter 9 Banking Deployment Scenario 243

Figure 9-2 on page 242 shows the replication agreements which are enabled by
default, between masters and hubs, and hubs and consumers, in addition to two
recovery replication agreements between masters 1 and 3 and masters 2 and 4, that
could be enabled should a master go offline. Sun ONE Directory Server 5.2 allows
you to configure replication agreements and then enable or disable them as and
when you need to, which offers a welcome degree of topology flexibility. This not
only allows you to prepare for recovery scenarios, but, should you wish to do so,
also allows you to optimize network usage and minimize the number of
modifications actually being sent at any given time.

Failure and Recovery Scenarios
Any number of failures can occur which compromise your deployment, be they
related to network links, the Directory Server process (slapd), hardware,
replication failure or an overburden on the system due to an excess of read or write
operations. It is vital that your replication topology is configured in such a way as
to provide the necessary recovery solutions.

In the event of one master going offline, you would simply enable the appropriate
recovery replication agreement (which you would already have configured but left
disabled) as indicated in Figure 9-2 on page 242. However, should two masters go
offline in the same data center, then you have a number of options open to you.
One recovery solution might be to enable a previously configured replication
agreement between one of the masters in the unaffected data center and one of the
hubs in the impacted data center. Another recovery solution might be to take
advantage of Sun ONE Directory Server 5.2’s online replica promotion and
demotion feature, to promote a hub in the impacted data center to master to
provide local write coverage until the impacted masters are brought back online.
For further information related to sample replication topologies, failure recovery,
and backup strategies see Chapter 10, “Architectural Strategies”. For further
procedural information related to replication see the Managing Replication chapter
in the Sun ONE Directory Server Administration Guide.

NOTE We recommend the use of multiple WAN connections for the
inter-data center links to maintain optimal availability.

Performance Requirements

244 Sun ONE Directory Server Deployment Guide • June 2003

Performance Requirements
Performance is extremely important for ExampleBank as the viability of its
e-banking and telephone banking offer depends largely on the rapidity of its
operations. In addition to good performance, ExampleBank needs the foundation
of its online banking stack to be scalable, as its expected annual growth rate stands
at 6%. Directory Server caters for both of these requirements.

This section outlines the performance requirements of ExampleBank and is divided
into the following subsections:

• User Demands

• Hardware Guidelines

User Demands
ExampleBank’s current user base is 10 million users, of which 10, 000 are
employees. The employee and customer user requirements are described in
Table 9-1. It is on the basis of these requirements that ExampleBank will calculate
the number of writes and reads per second that its online banking stack will have
to manage.

Table 9-1 ExampleBank’s User Demands

User Demand Percentage of
Users Involved

Frequency of Demand Demands per second

Customer Login 70% 4 logins per week 195 logins

Employee Login 100% 3 logins per week 2 logins

Customer Banking
Transaction

100% 1 transaction per week 70 transactions

Customer Account
Balance Consultation

70% 3 balance consultations
per month

25 transactions

User Profile Change 100% 1 data change per month 20 profile changes

Employee Lookup 100% 1 lookup per day 1 lookup

Employee performing
customer transaction

50% 10 transactions per day 8 transactions

Performance Requirements

Chapter 9 Banking Deployment Scenario 245

The transactions described in the preceeding table translate into LDAP operations
as indicated in Table 9-2:

With this in mind, we can conclude that ExampleBank will need to be able to
sustain the following in terms of search, bind and modify operations:

• 687 search operations

• 197 bind operations

• 98 modify operations

Hardware Guidelines
To give you a basic idea of hardware, for this type of deployment, which could be
termed as a medium to large-scale deployment, we suggest the following machine
type comprising:

❍ 8 CPUs,

❍ 32 to 64 GB RAM,

❍ 3 disk arrays configured as RAID, 655 GB, with for example:

• database on first array

• transaction logs on second array

• changelog, access, and error logs on third array

Table 9-2 User Demands and their LDAP Operation Equivalent

User Demand LDAP Operation Equivalent

Login Search + Bind + Search

Banking Transaction Search + Modify

Balance Consultation NOT AN LDAP OPERATION

Profile Change Search + Modify

Lookup Search

Schema, Data, and Directory Information Tree Design

246 Sun ONE Directory Server Deployment Guide • June 2003

Schema, Data, and Directory Information Tree
Design

This section examines ExampleBank’s schema, data, and directory information tree
design in more detail and is divided into the following subsections:

• Schema

• Data

• Directory Information Tree

Schema
ExampleBank needs schema which describes its user profiles, e-banking services,
and phone banking services. This section describes the schema, and is divided into
two subsections:

• Attributes

• Object Classes

Attributes
ExampleBank only distinguishes between customers and employees at an attribute
level using the ebStatus attribute.The attributes relative to user profiles, banking
services and additional portfolio management banking services are listed below in
the following two tables.

NOTE The schema and Directory Information Tree provided in this section
are examples of what you may want to implement and do not
constitute an exhaustive or definitive list. Some of the object classes
and attributes are required by Sun ONE Identity Server and Sun
ONE Portal Server. Refer to the Sun ONE Identity Server and Sun
ONE Portal Server documentation for more information.

Schema, Data, and Directory Information Tree Design

Chapter 9 Banking Deployment Scenario 247

Table 9-3 lists the basic user profile attributes:

Table 9-3 ExampleBank’s Basic User Profile Attributes

Attribute Name Attribute Description Syntax Multivalued
Attribute

ebID ExampleBank unique
identifier for users (both
customers and employees)

Integer No

ebStatus Specifies whether or not a
user is a customer,
employee or contractor.

Directory String Yes

ebPreferredLanguage ExampleBank user’s
preferred language

Directory String No

ebSecondaryLanguage ExampleBank user’s
secondary language

Directory String No

ebAreaCode ExampleBank user’s area
code

Directory String No

ebCurrentAccountNumber ExampleBank user’s
current account number

Integer No

ebSavingsAccountNumber ExampleBank user’s
savings account number

Integer No

ebPhoneBankingPin Specifies the phone
banking pin number

Integer No

ebNewsLetterSubscription Specifies if user subscribes
to Example Bank’s
newsletter

Directory String No

ebNewsLetterType Specifies which newsletter
the user subscribes to

Directory String No

ebEBankingPreferencesFont Specifies the user’s
preferred e-banking font

Directory String No

ebEbankingPreferencesFontSize Specifies the user’s
preferred e-banking font
size

Directory String No

ebPhoneBankingSafeNumber Specifies a safe,
well-known landline
telephone number

Telephone Number No

Schema, Data, and Directory Information Tree Design

248 Sun ONE Directory Server Deployment Guide • June 2003

In addition to ExampleBank’s user profile attributes, the attributes presented in
Table 9-4 specify whether ExampleBank’s services are enabled for a given user.

Table 9-4 ExampleBank’s Service Enabled Attributes

Attribute Name Attribute Description Syntax Multivalued
Attribute

ebPhoneBankingEnabled Specifies if phone
banking services are
enabled or not

Directory String No

ebEBankingEnabled Specifies if e-banking
services are enabled or
not

Directory String No

ebPhoneBankingLoanServicesEnabled Specifies if the Phone
banking loan services
are enabled or not

Directory String No

ebEBankingLoanServicesEnabled Specifies if the
e-banking loan services
are enabled or not

Directory String No

ebEBankingCheckBalanceEnabled Specifies whether the
e-banking balance
check service is enabled

Directory String No

ebEBankingIntraBankTransfersEnabled Specifies whether the
e-banking intrabank
transfer service is
enabled

Directory String No

ebEBankingInterBankTransfersEnabled Specifies whether the
e-banking inter-bank
transfer service is
enabled

Directory String No

ebEBankingChangeProfileEnabled Specifies whether the
e-banking profile
change service is
enabled

Directory String No

ebEBankingPortfolioManagement
Enabled

Specifies whether the
e-banking portfolio
management service is
enabled

Directory String No

ebPhoneBankCheckBalanceEnabled Specifies whether the
phone banking balance
check service is enabled

Directory String No

Schema, Data, and Directory Information Tree Design

Chapter 9 Banking Deployment Scenario 249

Object Classes
The entries in the directory inherit from the inetOrgPerson object class and then
the ebPerson object class. ExampleBank uses the object classes presented in the
following tables:

ebPhoneBankIntraBankTransfers
Enabled

Specifies whether the
phone banking
intrabank transfer
service is enabled

Directory String No

ebPhoneBankInterBankTransfers
Enabled

Specifies whether the
phone banking
inter-bank transfer
service is enabled

Directory String No

ebPhoneBankChangeProfileEnabled Specifies whether the
phone banking profile
change service is
enabled

Directory String No

ebPhoneBankPortfolioManagement
Enabled

Specifies whether the
phone banking
portfolio management
service is enabled

Directory String No

Table 9-5 ebPerson Object Class

Object Class Name ebPerson

Object Class Type Structural

Superior Class inetOrgPerson

Required Attributes ebid

Allowed Attributes ebStatus, ebCurrentAccountNumber,
ebSavingsAccountNumber, ebPreferredLanguage,
ebSecondaryLanguage, ebCustomField1,
ebCustomField2, ebCustomField3,
ebCustomField4, ebAreaCode,
ebNewsletterSubscription, ebNewsLetterType,
ebCheckBalanceEnabled, ebEBankingEnabled,
ebPhoneBankingEnabled

Table 9-4 ExampleBank’s Service Enabled Attributes (Continued)

Schema, Data, and Directory Information Tree Design

250 Sun ONE Directory Server Deployment Guide • June 2003

Table 9-6 ebEBankingUser Object Class

Object Class Name ebEBankingUser

Object Class Type Auxiliary

Superior Class ebPerson

Allowed Attributes ebEBankingCheckBalanceEnabled,ebEBankingIntra
BankTransferEnabled,
ebEBankingInterBankTransferEnabled,
ebEBankingChangeProfileEnabled,
ebEbankingPortfolioManagementEnabled,
ebEBankingLoanServicesEnabled in addition to
additional attributes specific to services being provided.

Table 9-7 ebPhoneBankingUser Object Class

Object Class Name ebPhoneBankingUser

Object Class Type Auxiliary

Superior Class ebPerson

Allowed Attributes ebPhoneBankingPin,
ebPhoneBankCheckBalanceEnabled,
ebPhoneBankIntraTransfersEnabled,
ebPhoneBankInterTransfersEnabled,
ebPhoneBankChangeProfileEnabled,
ebPhoneBankPortfolioManagementEnabled,
ebEBankingLoanServicesEnabled in addition to
additional attributes specific to services being provided.

Schema, Data, and Directory Information Tree Design

Chapter 9 Banking Deployment Scenario 251

Data
Based on the schema we have just examined sample container entries might look as
follows:

dn: dc=eb,dc=com
objectclass:top
objectclass: organization
dc: eb
o:ExampleBank

dn: ou=people, dc=eb,dc=com
ou:people
description: Customers and employees of ExampleBank
objectclass:top
objectclass: organizationalunit
objectclass: example-am-managed-org-unit

Let us imagine that Bill Smith is an employee of ExampleBank and has both
e-banking and phone banking services enabled. However, since his primary mode
of access to his accounts is via the web, Bill Smith requested that he be able to check
his balance and change his address over the phone, but that the other phone
banking services be disabled. His sample entry would appear as follows:

dn:ebid=123456789,ou=people,dc=eb,dc=com
objectclass:top
objectclass:person
objectclass:organizationalPerson
objectclass:inetOrgPerson
objectclass:ebPerson
objectclass:ebEBankingUser
objectclass:ebPhoneBankingUser
objectclass:example-am-web-agent-service
objectclass:example-am-managed-person
objectclass:example-am-user-device
objectclass:inetuser
objectclass:examplePreferences
objectclass:inetOrgPerson
objectclass: sunPortalDesktopPerson
objectclass: sunPortalNetmailPerson
ebid:123456789
displayname:Bill Smith
userPassword:{SSHA}Ek12JHYZ87op9645==
uid: 123456789
inetuserstatus: active
sn:Smith

Schema, Data, and Directory Information Tree Design

252 Sun ONE Directory Server Deployment Guide • June 2003

givenname:William
cn:William F. Smith
mail:Bill.Smith@eb.com
telephonenumber:+1-256-556-5896
facsimiletelephonenumber:+1-256-556-5897
ebStatus:employee
ebAreaCode:CA-17B
ebPreferedLanguage:en
ebSecondaryLanguage:fr
ebCheckingsAccountNumber:133003300
ebSavingsAccountNumber:233003300
ebPhoneBankingEnabled:active
ebPhoneBankingPin:123456
ebEBankingEnabled:active
ebNewsletterSubscription:active
ebNewsletterType:email
ebEBankingCheckBalanceEnabled:active
ebEBankingIntraBankTransfersEnabled:active
ebEBankingInterBankTransfersEnabled:active
ebEBankingChangeProfileEnabled:active
ebEBankingPortfolioManagementEnabled:active
ebEBankingLoanServicesEnabled: inactive
ebPhoneBankCheckBalanceEnabled:active
ebPhoneBankingLoanServicesEnabled: inactive
ebPhoneBankIntraBankTransfersEnabled:inactive
ebPhoneBankInterBankTransfersEnabled:inactive
ebPhoneBankChangeProfileEnabled:active
ebPhoneBankPortfolioManagementEnabled:inactive

Schema, Data, and Directory Information Tree Design

Chapter 9 Banking Deployment Scenario 253

Directory Information Tree
In a desire to guard against the knock-on effect that the frequent reorganizations at
ExampleBank could have on the hierarchical organization of its data, ExampleBank
has decided to opt for a relatively flat directory information tree structure. This
makes a clear distinction between employees, customers and partners by placing
them into separate parts of the information tree, as indicated in Figure 9-3.

Figure 9-3 ExampleBank’s Directory Information Tree

This distinction between customers, employees, and partners is preferred by
ExampleBank for security reasons, as it allows them to implement a separate
security policy for each branch. The distinction also provides more economical and
easier searches, in addition to improved access control management, all of which
translate into optimized performance and improved usability.

In addition to the user management achieved through the directory information
tree and groups mechanism, ExampleBank has chosen to implement the roles
feature supported by Sun ONE Directory Server 5.2. The Directory Server roles
functionality allows you to conveniently place users into meaningful sets of users,

NOTE The directory information tree presented in Figure 9-3 reflects a
design choice that presumes no prior directory structure. As many
enterprises are likely to have a directory structure in place which
does not include the o=enterprise, o=customer, and o=partner
level, implementing such an information tree could involve
non-negligible reworking of the directory structure and associated
overheads. However, in terms of the potential subsequent
performance and usability gains, this may prove to be a worthwhile
investment.

dc=ExampleBank,dc=com

o=enterprise o=customers o=partners

ou=applicationsou=people ou=groups ou=applicationsou=people ou=groups ou=applicationsou=people ou=groups

Schema, Data, and Directory Information Tree Design

254 Sun ONE Directory Server Deployment Guide • June 2003

and can not only be used internally by other Directory Server features such as
access control, account lockout and password policy, but also by external
applications such as, for example, a phone banking or human resources application
that ExampleBank may implement.

Table 9-8 contains a list of roles that might be implemented by ExampleBank to
facilitate user management. This is of course not an exhaustive list, but one which
serves as a starting point for understanding how ExampleBank might consider
grouping users involved in phone banking and e-banking services into roles to
facilitate their management.

Table 9-8 Roles Implemented to Facilitate ExampleBank User Management

Role Name Role Members Role Characteristics

Customer Role All ExampleBank Customers Managed role that groups customers together.

Contractor Role All ExampleBank Contractors Managed role which groups together all
contractors. This role limits access to certain
sensitive employee and customer attributes.

Employee Role All ExampleBank Employees Managed role that groups employees together .

Phone Banking Team
Role

All Phone Banking team
members involved in running
the phone banking service

Managed role which groups together all
members of the phone banking team and
grants access to phone banking attributes in
users’ entries except the
ebPhoneBankingLoanServicesEnabled
attribute.

Trusted Contributor Role All ExampleBank employees
and certain contractors
requiring access to employee
phone book information.

Nested role which extends the scope of the
Employee Role to include those contractors
requiring access to employee phone book data.
Role members have read, search and compare
access to employee phone book data.

e-banking Team Role All e-banking team members
involved in running the
e-banking service

Managed role which groups together all
members of the e-banking team and grants
access to the e-banking attributes in users’
entries except the
ebEBankingLoanServicesEnabled
attribute.

Phone Banking Loan
Manager Role

All Phone Banking Managers
entitled to take loan allocation
decisions.

Managed role which groups together all senior
managers in the Phone Banking Team and
grants access to ALL phone banking attributes
including the
ebPhoneBankingLoanServicesEnabled
attribute.

Schema, Data, and Directory Information Tree Design

Chapter 9 Banking Deployment Scenario 255

The roles listed in Table 9-8 are located under the ou=people subtree of the
o=enterprise, o=customer or o=partner branches of the directory information
tree depending on where they belong. They are managed by a Role Manager entry,
which has access to both the roles and the attributes within those roles. This Role
Manager entry is located under o=enterprise. Access controls are established to
govern the access rights of each role, and the Role Manager.

Code Example 9-1 shows what the Trusted Contributor role entry would look like
in an ldif file, providing a more detailed view of how this role functionality might
be implemented.

e-banking Loan Manager
Role

All e-banking Managers
entitled to take loan allocation
decisions.

Managed role which groups together all senior
managers in the e-Banking Team and grants
access to ALL e-banking attributes including
the ebEBankingLoanServicesEnabled
attribute.

Loan Manager Role All Phone Banking and
e-banking Managers entitled
to take loan allocation
decisions.

Nested role which unifies the Phone Banking
Loan Manager Role and the e-banking Loan
Manager Role. Role members have access to the
ebPhoneBankingLoanServicesEnabled
and ebEBankingLoanServicesEnabled
attributes.

Code Example 9-1 ldif for Trusted Contributor Role Entry

dn:cn=TrustedContributorRole,ou=people,o=enterprise,
dc=ExampleBank,dc=com
objectclass: top
objectclass: LDAPsubentry
objectclass: nsRoleDefinition
objectclass: nsComplexRoleDefinition
objectclass: nsNestedRoleDefinition
cn: TrustedContributorRole
nsRoleScopeDN: o=partners,dc=ExampleBank,dc=com
nsRoleDN: cn=EmployeeRole,o=enterprise,dc=ExampleBank,dc=com
nsRoleDN: cn=ContractorRole,o=partners,dc=ExampleBank,dc=com

Table 9-8 Roles Implemented to Facilitate ExampleBank User Management (Continued)

Schema, Data, and Directory Information Tree Design

256 Sun ONE Directory Server Deployment Guide • June 2003

The access control granting all members of this Trusted Contributor role read,
search and compare access on phone book data, would appear under
o=enterprise,dc=ExampleBank,dc=com as shown in Code Example 9-2:

Figure 9-4 on page 257 provides a global view of the role configuration and how it
fits into the directory information tree structure:

Code Example 9-2 Access Control Granting Read, Search, and Compare Rights to Phone Book Data to all
Trusted Contributor Role Members

aci:(targetattr="telephoneNumber || mail ||facsimileTelephonenumber")(version
3.0; aci "authorize for search,read,compare";allow(search,read,compare)
roledn = "ldap:///cn=TrustedContributorRole,ou=people,o=enterprise,
dc=ExampleBank,dc=com";)

NOTE As this extended scope for roles functionality is new to Directory
Server 5.2, Sun ONE Identity Server 6.0 would not recognize this
new functionality.

Security Considerations

Chapter 9 Banking Deployment Scenario 257

Figure 9-4 ExampleBank’s Roles, Role Manager and Sample Entries

Security Considerations
In a financial environment providing uncompromised security is crucial to success.
With Directory Server as part of its online banking deployment stack,
ExampleBank can offer optimum security in terms of protecting channels,
governing access to data, encrypting sensitive data while in storage, providing
flexible password policies, and optimizing SSL connections.

dc=ExampleBank,dc=com

ou=applicationsou=people ou=groups

ou=applicationsou=people ou=groupsou=applicationsou=people ou=groups

o=enterprise o=partnerso=customers

Role Manager
Entry

Customer
Role

dn:ebid=123456888,
ou=people,dc=eb,

dc=com
Ms Example

Customer Entry

Contractor
Role

Trusted
Contributor Role

(Nested Role
containing Employee
Role with extended
scope, allowing it to

include the
Contractor Role)

Loan Manager Role

(Nested Role
combining e-banking
Loan Manager Role
and Phone Banking
Loan Manage Role)

dn:ebid=123456789,
ou=people,dc=eb,

dc=com
Bill Smith entry

Phone Banking
Loan Manager

Role

Phone Banking
Team Role

Employee
Role

e-banking
Team Role

e-banking
Loan

Manager
Role

Security Considerations

258 Sun ONE Directory Server Deployment Guide • June 2003

This section describes ExampleBank’s security policies and is divided into the
following subsections:

• Securing Communication Channels

• Securing Data in Storage

• Securing Password Authentication

Securing Communication Channels
A first imperative for ExampleBank is to ensure that all communication channels
between the different elements in the deployment stack are secured. To this end,
ExampleBank implements SSL, which ensures the transport security. Furthermore,
to enhance the performance for connections using the Secure Sockets Layer (SSL)
protocol with certificate-based authentication, ExampleBank takes advantage of
the new Sun Crypto Accelerator Board functionality provided with Directory
Server 5.2. For information on how to install and configure the Sun Crypto
Accelerator Board see Appendix B “Using the Sun Crypto Accelerator Board” in
the Sun ONE Directory Server Installation and Tuning Guide.

Securing Data in Storage
A second imperative is to provide maximum protection for sensitive data, such as
pin numbers, when in storage. ExampleBank uses Sun ONE Directory Server 5.2’s
attribute encryption feature to protect data. This attribute encryption feature
allows ExampleBank to specify that certain attributes be stored in an encrypted
form. This feature is configured at database level, which means that once
ExampleBank decides it wants to encrypt an attribute, that particular attribute will
be encrypted for every entry in the database. When in storage, encrypted attributes
are prefaced with a cipher tag which indicates the encryption algorithm used. An
encrypted attribute using the DES encryption algorithm would appear as follows:

It is important to realize from a security standpoint, that because the actual
encryption is at attribute level, rather than entry level, the only way to encrypt an
entire entry would be for ExampleBank to encrypt all of its attributes. It is also
important to understand that because the aim is to protect the sensitive data when
it is in storage, attribute encryption is always reversible, i.e encrypted attributes are
decrypted when returned via search requests, hence the need to secure
communication channels with SSL.

{DES}3hakc&jla+=snda%

Implementation

Chapter 9 Banking Deployment Scenario 259

Sun ONE Directory Server 5.2’s attribute encryption feature provides
ExampleBank with the levels of security it requires in that the feature uses the
private key of the server’s SSL certificate, to generate its own key, which is then
used to perform the encryption and decryption operations. ExampleBank is
therefore obliged to have an SSL configuration in place which provides the
generated key before being able to proceed with encryption, and more importantly
decryption operations. What is more ExampleBank benefits from the fact that the
Directory Server attribute encryption feature is based on the NSS library, in that it
can choose from different encryption algorithms and have guaranteed portability
across different platforms.

Securing Password Authentication
ExampleBank has a user population of employees, customers, contractors and
business partners, all of whom are authenticating to the online banking stack via
the third party single sign-on application. The desire at ExampleBank is to impose
more stringent password policies, on certain users such as contractors, and have
less stringent password policies governing customers and employees. This desire
can be fulfilled due to the fact that the third-party single sign-on application can
take advantage of Sun ONE Directory Server 5.2’s provision for multiple password
policies. Individual password policies can be defined for either a given user or a set
of users. A natural way of assigning a password policy to a set of users is to
configure the CoS definition to provide values for the passwordPolicySubentry
attribute in user entries as a function of the roles that those user entries have.

So, not only does ExampleBank have the ability to tailor password policies to user
security requirements, but it can use the roles which are already defined, to make
for easier password policy management.

Implementation
Rolling out the Sun ONE Directory Server Online banking stack is a large
undertaking, and one which requires extensive planning, analysis, and
organizational support.

Implementation

260 Sun ONE Directory Server Deployment Guide • June 2003

To gain a comprehensive overview of creating and implementing a directory pilot
before you begin your implementation, we highly recommend you refer to
Understanding and Deploying LDAP Directory Services (T. Howes, M. Smith, G. Good,
Macmillan Technical Publishing, 1999).

The complexity of the implementation requires a phased approach, an outline of
which follows. You will need to stagger your implementation over time into logical
phases, which are likely to resemble the following:

• Analyze and Plan Your Directory Infrastructure

The functional and business requirements of the Directory Server
Infrastructure are assessed and analyzed at this stage. This analysis helps
identify any functional gaps that may require system customizing or extension.
A technical review of the production environment of the existing
implementation will be conducted to determine potential issues with
scalability, performance and reliability of the proposed hardware and network
environment.

High-level architecture definition follows on from the above analysis and it is
at this stage that the recommendations for sizing, scaling, performance,
physical distribution, replication and referrals, security, failover, backup, and
synchronization with other data sources and authentication mechanisms are
drawn up.

NOTE We cannot stress enough the need for tight coordination between all
parties involved, whether they be marketing team players who
generate user profile needs information or system designers. This
tight coordination, which will allow you to draw up a common
architecture strategy and benefit from a truly centralized decision
making structure, is the key to the success of your implementation.
To avoid recreating a disparate status quo, this tight coordination
MUST remain the top priority throughout the entire operation.

Adequate training and documentation on both the Sun ONE
support staff side and the customer side help ensure that deliveries
are consistent and constitute the backbone of this tight coordination.

Implementation

Chapter 9 Banking Deployment Scenario 261

• Construct and Design Directory Infrastructure

During this second phase, Sun ONE together with the ExampleBank project
team architect, design and construct the core online banking deployment stack.
The key areas of activity at this stage include determining server sizing and
placements, server configurations, integrating existing backend applications
into the directory infrastructure, planning deployment and administration
processes and identifying any remaining functionality gaps.

• Implement Core Directory Infrastructure

Sun ONE implements and deploys the core Directory Infrastructure to
production during this phase. It is essential that appropriate technology
guidance and mentoring in server configuration and administration are made
available. Together with Sun ONE the project team assesses the impact on end
users and draws up the necessary communication and training plans.

• Enable Enterprise to Employee (E2E) Functionality

The first area of functionality to be enabled is enterprise to employee (E2E)
functionality and typically includes the following tasks in the preliminary
stages:

❍ Provide an LDAP-accessible list of users

❍ Map authoritative sources and clean up user data

❍ Automatically generate standard IDs

❍ Flag terminated accounts

❍ Enable LDAP applications

Implementation

262 Sun ONE Directory Server Deployment Guide • June 2003

❍ Authenticate with intranet applications

Once the above are operational, the finer details of the E2E functionality can be
addressed. Linkages between the different data repositories are automated,
incremental expansion takes place and any security requirements such as
password synchronization are resolved.

The penultimate stage concentrates on providing a scalable single sign-on
architecture for all the web and back-end applications. Implementation testing
follows and must include integration, performance, negative and user
acceptance testing of the E2E functionality. Once again end user impact in
relation to the single sign-on architecture will be assessed and provided for in
terms of appropriate training and communication.

Finally, once the Directory Server Infrastructure is enabled to provide single
sign-on for the platform’s web and back-end applications, the project team will
document the procedures to assist implementing similar E2E functionality for
other applications and business groups within the company.

• Expand Core Directory Server Infrastructure to Support Additional Common
Services

The goal is to continue to expand the support additional common services and
functionality for further E2E, Business-to-Business (B2B), and/or
Business-to-Consumer (B2C) requirements. Specific B2B and B2C functionality
will be defined, designed and implemented as and when the business units’
requirements are determined and approved.

As you can see rolling out a Directory Server deployment stack is no light affair,
and we strongly recommend the involvement of Sun Professional Services, to
optimize your implementation. Contact Sun ONE Professional Services at:
http://www.sun.com/service/sunps/sunone/

263

Chapter 10

Architectural Strategies

There are several factors to take into consideration when planning your directory
deployment. Some of the most important considerations include the physical
location of your data, how and where this data is replicated, what you can do to
minimize failures, and how to react when failures do occur. The architectural
strategies outlined in this chapter provide you with some guidelines.

This chapter is divided into the following sections:

• Addressing Failure and Recovery

• Planning a Backup Strategy

• Sample Replication Topologies

Addressing Failure and Recovery

264 Sun ONE Directory Server Deployment Guide • June 2003

Addressing Failure and Recovery
It is essential to have a strategy in place for providing minimum disruption of
service in the case of failure. For our purposes, failure is defined as anything that
prevents Directory Server from providing the minimum level of service you
require. This section describes the various reasons for which failure can occur,
which will assist you in identifying and managing failures in your deployment.

Failure can be divided into two main areas:

• System unavailable

• System unreliable

The system may be unavailable due to any of the following:

• Network problem - the network may be down, slow or intermittent.

• Process (slapd) problem - the process may be down, busy, restarting, or
unwilling to perform.

• Hardware problem - the hardware may be off, may have failed, or may be
rebooting.

The system may be unreliable due to any of the following:

• Replication failure or latency, causing data to be out of date or
unsynchronized.

• System too busy - an excess of read or write operations may result in unreliable
data.

To maintain the ability to add and modify data in the directory, write operations
should be routed to an alternative server in the event of a writable server becoming
unavailable. Various methods can be used to reroute write operations, including
the Sun ONE Directory Proxy Server.

To maintain the ability to read data in the directory, a suitable load balancing
strategy must be put in place. Both software and hardware load balancing
solutions exist to distribute read load across multiple consumer replicas. Each of
these solutions also has the capability (to varying degrees of completeness and
accuracy) to determine the state of each replica and to manage its participation in
the load balancing topology.

Replicating directory contents increases the availability and performance of
Directory Server. A reliable replication topology will ensure that the most recent
data is available to clients across data centers, even in the case of failure.

Planning a Backup Strategy

Chapter 10 Architectural Strategies 265

In the following sections, failure strategies for read and write operations are
discussed as they relate to each replication topology.

Planning a Backup Strategy
In any failure situation involving data corruption or data loss, it is imperative that
you have a recent backup of your data. If you do not have a recent backup, you will
be required to re-initialize a failed master from another master. For a
comprehensive set of procedures on how to back up your data, refer to Backing Up
Data in the Sun ONE Directory Server Administration Guide.

This section provides a brief overview of what you should consider when planning
a backup and recovery strategy.

Choosing a Backup Method
Sun ONE Directory Server provides two methods of backing up data: binary
backup (db2bak) and backup to an ldif file (db2ldif). Both of these methods have
advantages and limitations, and knowing how to use each method will assist you
in planning an effective backup strategy.

Binary Backup (db2bak)
Binary backup is performed at the file system level. The output of a binary backup
is a set of binary files containing all entries, indexes, the change log and the
transaction log.

Performing a binary backup has the following advantages:

• All suffixes can be backed up at once.

• Binary backup is significantly faster than a backup to ldif.

Binary backup has the following limitations:

• Restoration from a binary backup can be performed only on a server with an
identical configuration. This implies that:

NOTE The dse.ldif configuration file is not backed up in a binary backup. You
should back this file up manually to enable you to restore a previous
configuration.

Planning a Backup Strategy

266 Sun ONE Directory Server Deployment Guide • June 2003

❍ Both machines must use the same hardware and the same operating
system, including any service packs or patches.

❍ Both machines must have the same version of Directory Server installed,
including binary format (32 bits or 64 bits), service pack and patch level.

❍ Both servers must have the same directory tree divided into the same
suffixes. The database files for all suffixes must be copied together,
individual suffixes cannot be copied.

❍ Each suffix must have the same indexes configured on both servers,
including VLV (virtual list view) indexes. The databases for the suffixes
must have the same name.

❍ The Directory Server to be copied must not hold the o=NetscapeRoot
suffix, which means it cannot be a configuration directory for the Sun ONE
Administration Server.

❍ Each server must have the same suffixes configured as replicas, and
replicas must have the same role (master, hub, or consumer) on both
servers. If fractional replication is configured, it must be configured
identically on all master servers.

❍ Attribute encryption must not be used on either server.

For more information on restoring data with the binary restore feature, refer to
Initializing a Replica Using Binary Copy in the Sun ONE Directory Server
Administration Guide.

At a minimum, you should perform a regular binary backup on each set of
coherent machines (machines that have an identical configuration, as defined
previously).

In all of the diagrams that follow in this chapter:

• M = master

• H = hub

• C = consumer

• RA = replication agreement.

NOTE Because it is easier to restore from a local backup, it is recommended that
you perform a binary backup on each server.

Planning a Backup Strategy

Chapter 10 Architectural Strategies 267

Figure 10-1 assumes that M1 and M2 have an identical configuration and that H1
and H2 have an identical configuration. In this scenario, a binary backup would be
performed on M1 and on H1. In the case of failure, either master could be restored
from the binary backup of M1 (db1) and either hub could be restored from the
binary backup of H1 (db2). A master could not be restored from the binary backup
of H1 and a hub could not be restored from the binary backup of M1.

Figure 10-1 Binary Backup

M1 M2

H1 H2

db1

db2

db2bak

db2bak

Planning a Backup Strategy

268 Sun ONE Directory Server Deployment Guide • June 2003

Backup to LDIF (db2ldif)
Backup to ldif is performed at the suffix level. The output of db2ldif is a formatted
ldif file. As such, this process takes longer than a binary backup.

Backup to ldif has the following advantages:

• Backup to ldif can be performed from any server, regardless of its
configuration.

• Restoration from a backup to ldif can be performed on any server, regardless of
its configuration (if the -r option is used to export replication information.)

Backing up using backup to ldif has the following limitations:

• In situations where rapid backup and restoration are required, backup to ldif
may take too long to be viable.

It is recommended that you perform a regular backup using backup to ldif for each
replicated suffix, on a single master in your topology.

In the following diagram, db2ldif -r would be performed for each replicated
suffix, on M1 only, or additionally on H1:

NOTES Replication information is not backed up unless you use the -r option when
running db2ldif.

The dse.ldif configuration file is not backed up in a backup to ldif. You
should back this file up manually to enable you to restore a previous
configuration.

Planning a Backup Strategy

Chapter 10 Architectural Strategies 269

Figure 10-2 Backup Using db2ldif -r

CAUTION It is essential that your backup be performed more frequently than the purge
delay. The purge delay, specified by the nsDS5ReplicaPurgeDelay
attribute, is the period of time, in seconds, after which internal purge
operations are performed on the change log. The default purge delay is
604800 seconds (1 week.) The change log maintains a record of updates,
which may or may not have been replicated.

If your backup is less frequent than the purge delay, the change log may be
cleared before it has been backed up. Changes will therefore be lost if you
use the backup to restore data.

M1 M2

H1 H2

db2ldif -r

dc=us,dc=example,dc=com

dc=uk,dc=example,dc=com

db2ldif -r

db2ldif -r
dc=uk,dc=example,dc=com

Planning a Backup Strategy

270 Sun ONE Directory Server Deployment Guide • June 2003

Choosing a Restoration Method
Sun ONE Directory Server provides two methods of restoring data: binary restore
(bak2db) and restoration from an ldif file (ldif2db). As with the backup methods
discussed previously, both of these methods have advantages and limitations.

Binary Restore (bak2db)
Binary restore copies data at the database level. Restoring data using binary restore
therefore has the following advantages:

• All suffixes can be restored at once.

• Binary restore is significantly faster than restoring from an ldif file.

Restoring data using binary restore has the following limitations:

• Restoration can be performed only on a server with an identical configuration,
as defined on page 265. For more information on restoring data with the binary
restore feature, refer to Initializing a Replica Using Binary Copy in the Sun
ONE Directory Server Administration Guide.

• If you are unaware that your database was corrupt when you performed the
binary backup, you risk restoring a corrupt database, since binary backup
creates an exact copy of the database.

Binary restore is the recommended restoration method if the machines have an
identical configuration, and time is a major consideration.

Figure 10-3 assumes that M1 and M2 have an identical configuration and that H1
and H2 have an identical configuration. In this scenario, either master can be
restored from the binary backup of M1 (db1) and either hub can be restored from
the binary backup of H1 (db2).

Planning a Backup Strategy

Chapter 10 Architectural Strategies 271

Figure 10-3 Binary Restore

Restoration From LDIF (ldif2db)
Restoration from an ldif file is performed at the suffix level. As such, this process
takes longer than a binary restore. Restoration from an ldif file has the following
advantages:

• It can be performed on any server, regardless of its configuration.

• A single ldif file can be used to deploy an entire directory service, regardless of
its replication topology. This is particularly useful for the dynamic expansion
and contraction of a directory service according to anticipated business needs.

Restoration from an ldif file has the following limitations:

• In situations where rapid restoration is required, ldif2db may take too long to
be viable.

M1 M2

H1 H2

db1

db2

bak2db

bak2db bak2db

bak2db

Planning a Backup Strategy

272 Sun ONE Directory Server Deployment Guide • June 2003

In the following diagram, ldif2db can be performed for each replicated suffix, on
M1 only, or additionally on H1:

Figure 10-4 Restore Using ldif2db

M1 M2

H1 H2

ldif2db

dc=us,dc=example,dc=com

dc=uk,dc=example,dc=com

ldif2db

Sample Replication Topologies

Chapter 10 Architectural Strategies 273

Sample Replication Topologies
Your replication topology will be determined by the size of your enterprise and the
physical location of your data centers. For this reason, we have provided sample
replication topologies, categorized by the number of data centers (sites) in which
the organization has a directory.

When you first deploy your directory, you will deploy according to the current
number of entries and the current volume of reads/writes to the directory. As the
number of entries increases, you will need to scale your directory for improved
read performance. Suggestions for scalability are provided for each organization.

These topologies aim to provide continued service in the event of failure of one
component, without immediate manual intervention. In the case of one and two
data centers, local read/write failover is also provided.

Single Data Center
In a single data center, your topology is largely dependent on the anticipated
performance requirements of the directory. In the basic topology suggested, it is
assumed that the deployment warrants at least two servers to handle read and
write operations. Two masters also provide a high-availability solution.

Single Data Center Basic Topology
The topology depicted in Figure 10-5 assumes one data center, with two masters
for read and write performance. In this basic scenario, clients write to either master,
and read from either master.

Figure 10-5 One Data Center - Basic Topology

M1 M2

Replication Agreement

Sample Replication Topologies

274 Sun ONE Directory Server Deployment Guide • June 2003

Single Data Center Scaled For Read Performance
Increased read performance is achieved by adding hubs, and then consumers, as
indicated in Figure 10-6. Hubs are added below the masters first to make adding a
third level of consumers easier. Configuring the second level servers as hubs
immediately will allow consumers to be added below them without having to
reconfigure any of the machines.

Figure 10-6 One Data Center Scaled For Read Performance

M1 M2RA1

H1 H2

RA2 RA3

C1 C1

Replication Agreement

Sample Replication Topologies

Chapter 10 Architectural Strategies 275

Single Data Center Failure Matrix
In the scenario depicted in Figure 10-6, various components may be rendered
unavailable for any one of the reasons described on page 264. These points of
failure, and the related recovery actions are described in table Table 10-1.

Single Data Center Recovery Procedure (One Component)
In a single data center with two masters, read and write capability is maintained if
one master fails. This section describes a sample recovery strategy that can be
applied to reinstate the failed component.

The flowchart depicted in Figure 10-7, and the procedure that follows, assumes
that one master (M1) has failed.

Table 10-1 Single Data Center - Failure Matrix

Failed Component Action

M1 Local writes are routed to M2, via Sun ONE Directory Proxy
Server, client server lists, or a hardware or software load
balancer. M2 continues to replicate to both H1 and H2.

M2 Local writes are routed to M1, via Sun ONE Directory Proxy
Server, client server lists, or a hardware or software load
balancer. M1 continues to replicate to both H1 and H2.

LAN link
supporting RA1

Both masters continue to receive local writes. Conflicts are
resolved at the level of the hubs, assuring that consumers
contain the same data.

H1 or H2 Both masters continue to receive local writes. Conflicts are
resolved at the level of the masters, and replicated through
the alternate hub to all consumers, assuring that consumers
contain the same data

LAN link
supporting RA2

Both masters continue to receive local writes. M2 replicates to
H1 and replication traffic from the hubs to the consumers
continues as normal.

Sample Replication Topologies

276 Sun ONE Directory Server Deployment Guide • June 2003

Figure 10-7 Single Data Center Recovery Sample Procedure (One Component)

Stop M1 (if not already
stopped)

Easy repair (e.g.
replace cable)?

Identify cause of
failure

Make repairYes

Redirect applications

Redirect applications
accessing M1 to point to M2

(via Sun ONE Directory
Proxy Server, client server

lists, or a hardware or
software load balancer)

Recent backup
available?

Reinitialize M1 from
backup

Yes

No

Restart M1

Severe time
constraints?

Perform total
initialization from M2

to M1

No

No

For details on this
procedure, refer to

Performing Online Replica
Initialization in the Sun ONE

Directory Server
Administration Guide

Yes
Online export from H1,

or H2 and import to
M1

Restart M1

Run the insync command to
check that replication is
functioning correctly. For more
information, refer to the
documentation on “Insync” in the
Sun ONE Directory Server
Reference Manual.

Run
insync

Sample Replication Topologies

Chapter 10 Architectural Strategies 277

1. Stop M1 (if it is not already stopped).

2. Identify the cause of the failure. If it is easily repaired (by replacing a network
cable, for example) make the repair.

3. If the problem is more serious and will take time to fix, ensure that any
applications accessing M1 are redirected to point to M2, via Sun ONE
Directory Proxy Server, client server lists, or a hardware or software load
balancer.

4. If a recent backup is available, re-initialize M1 from the backup.

5. If a recent backup is not available, restart M1 and perform a total initialization
from M2 to M1. For details on this procedure, refer to Performing Online
Replica Initialization in the Sun ONE Directory Server Administration Guide.

6. If a recent backup is not available, and time considerations prevent you from
performing a total initialization, perform an online export from H1, or H2, and
an import (ldif2db) to M1.

7. Start M1 (if it is not already started.)

8. Set M1 to read/write mode (if it is in read-only mode.)

9. Use the insync command to check that replication is now functioning
correctly. For more information, refer to the documentation on “Insync” in the
Sun ONE Directory Server Reference Manual.

Single Data Center Recovery Procedure (Two Components)
In the event of two masters failing in this scenario, write capability is lost. If the
failure is serious and will take a long time to repair, it is necessary to implement a
strategy that will provide write capability as rapidly as possible.

The following procedure assumes that both M1 and M2 have failed, and are
unrecoverable in the near term. Note that you need to assess the quickest and least
complicated method of recovery. This procedure depicts server promotion as the
least complicated method, for illustration purposes.

NOTE Performing an online export will impact the performance of the
server. It is therefore recommended that you use a hub for the
export, rather than the master, M2, which is currently the only
server available for write operations.

Sample Replication Topologies

278 Sun ONE Directory Server Deployment Guide • June 2003

1. Promote H1 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Sun ONE Directory Server
Administration Guide.

2. Ensure that any applications that were accessing either M1 or M2 are
redirected to point to the new master.

3. Add a replication agreement between the new master and H2 to ensure that
modifications continue to be replicated to the consumers.

Sample Replication Topologies

Chapter 10 Architectural Strategies 279

Two Data Centers
When data is shared across sites, an effective replication topology is imperative, for
both performance and failover.

Two Data Centers Basic Topology
The topology depicted in Figure 10-8 assumes two masters and two hubs in each
data center, for optimized read and write performance. Configuring the second
level servers as hubs immediately will allow consumers to be added below them
without having to reconfigure any of the machines.

In this scenario, it is recommended that the replication agreements RA1 and RA2
are configured over separate network links. This configuration will enable
replication to continue across data centers, in the case of one of the network links
becoming unavailable or unreliable.

Figure 10-8 Two Data Centers Basic Topology

M1 M2

H1

M3 M4RA2

RA1

Replication Agreement

H2 H3 H4

New York London

Sample Replication Topologies

280 Sun ONE Directory Server Deployment Guide • June 2003

Two Data Centers Scaled For Read Performance
As in the scenario for one data center, increased read performance is achieved by
adding hubs, and then consumers, as indicated in Figure 10-6.

In this scenario, it is recommended that the replication agreements RA1 and RA2
are configured over separate network links. This configuration will enable
replication to continue across data centers, in the case of one of the network links
becoming unavailable or unreliable.

Figure 10-9 Two Data Centers Scaled For Read Performance

M1 M2

H1 H2

M3 M4

H3 H4

RA2

RA1

Replication Agreement

C1 C3C2 C4 C5 C7C6 C8

New York London

Sample Replication Topologies

Chapter 10 Architectural Strategies 281

Two Data Centers Recovery Scenarios
For the deployment depicted in Figure 10-9, if one master fails, the same recovery
strategy can be applied as described for a single data center. The replication
agreements between M1 and M4, and between M2 and M3, will ensure that both
data centers continue to receive replicated updates, even if one of the masters in the
data center is not available.

If more than one master fails, however, an advanced recovery strategy is required.
This involves the creation of recovery replication agreements, that are disabled by
default but can be enabled rapidly in the event of a failure.

This recovery strategy is illustrated in Figure 10-10.

Figure 10-10 Two Data Centers Recovery Replication Agreements

M1 M2

H1 H2

M3 M4

H3 H4

RA2

RA1

Default Replication Agreement

Recovery Replication Agreement

C1 C3C2 C4 C5 C7C6 C8

New York London

Sample Replication Topologies

282 Sun ONE Directory Server Deployment Guide • June 2003

The recovery strategy applied will depend on which combination of components
fails. However, once you have a basic strategy in place to cope with multiple
failures, you can apply that strategy should other components fail.

In the sample topology depicted in Figure 10-10, assume that both masters in the
New York data center fail. The recovery strategy in this scenario would be as
follows:

1. Enable the recovery replication agreement between M3 and H2.

This ensures that remote writes on the London site continue to be replicated to
the New York site.

2. Promote H2 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Sun ONE Directory Server
Administration Guide.

This ensures that write-capability is maintained on the New York site.

3. Create a replication agreement between the new promoted master (was H2)
and M3.

This ensures that writes on the New York site continue to be replicated to the
London site.

4. Enable the recovery replication agreement between H2 and H1 (one direction
only.)

This ensures that H1 continues to receive updates from the entire replication
topology.

Three Data Centers
Directory Server 5.2 supports 4-way multi-master replication. In an enterprise
spread over three main geographical regions, you have the possibility of two
masters in one data center and one in each of the others. How you divide this
directory capacity will be determined (amongst other issues) by the relative
volume of read and write traffic anticipated in each data center.

Three Data Centers Basic Topology
The topology depicted in Figure 10-11 assumes that the New York data center
receives the largest number of read and write requests, although local read and
write requests are possible in each of the three data centers.

Sample Replication Topologies

Chapter 10 Architectural Strategies 283

Figure 10-11 Three Data Centers Basic Topology

M3

M1

H3 H4

M2

M4

H1 H2

H5 H6

London Tokyo

New York

Replication Agreement

Sample Replication Topologies

284 Sun ONE Directory Server Deployment Guide • June 2003

Three Data Centers Scaled For Read Performance
As in the previous scenarios, increased read performance is achieved by adding
hubs and consumers, once again taking into account the anticipated performance
requirements across the different data centers. The recommended topology is
indicated in Figure 10-12.

Figure 10-12 Three Data Centers Scaled For Read Performance

M3

M1

H3 H4

M2

M4

H1 H2

H5 H6

London Tokyo

New York

C1 C2 C3

C5 C6 C7

C4

Replication Agreement

C8

Sample Replication Topologies

Chapter 10 Architectural Strategies 285

Three Data Centers Recovery Scenarios
As was the case for two data centers, if more than one master fails, a recovery
strategy involving the creation of recovery replication agreements is required.
These agreements are disabled by default but can be enabled rapidly in the event of
a failure, as shown in Figure 10-13.

Figure 10-13 Three Data Centers Recovery Replication Agreements

M3

M1

H3 H4

M2

M4

H1 H2

H5 H6

London Tokyo

New York

C1 C2 C3

C5 C6 C7

C4

Default Replication Agreement

Recovery Replication Agreement

Sample Replication Topologies

286 Sun ONE Directory Server Deployment Guide • June 2003

Three Data Centers Recovery Procedure (One Component)
In the scenario depicted in Figure 10-13, losing one master in either London or
Tokyo implies that local write capability is lost. The following procedure assumes
that M3 (London) has failed.

1. Promote H4 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Sun ONE Directory Server
Administration Guide.

2. Enable the recovery replication agreement from H4 to H3, to ensure that local
writes are replicated to all local consumers.

3. Enable the recovery replication agreements between M1 and H4 to ensure that
local writes are replicated to remote data centers and that remote writes are
replicated to local consumers.

4. Ensure that any applications that were accessing M3 are redirected to point to
the new master.

Five Data Centers
Sun ONE Directory Server 5.2 supports 4-way multi-master replication. In an
enterprise spread over five main geographical regions, you must assess which
region has the lowest requirements in terms of local update performance. This
region will not have a master server and will redirect writes to one of the masters in
the other regions.

Five Data Centers Basic Topology
The topology depicted in Figure 10-14 assumes that the Sydney data center
receives the smallest number of write requests. Local read requests are possible in
each of the five data centers.

NOTE This procedure is an intermediate solution that will provide
immediate local read and write capability, while you set about
repairing M3.

Sample Replication Topologies

Chapter 10 Architectural Strategies 287

Figure 10-14 Five Data Centers Basic Topology

M1

H1

New York

M2

H2

London

H5

H6

Sydney

M4

H4

M3

H3

Tokyo

Frankfurt

Default Replication Agreement

Sample Replication Topologies

288 Sun ONE Directory Server Deployment Guide • June 2003

Five Data Centers Scaled For Read Performance
As in the previous scenarios, increased read performance is achieved by adding
hubs and consumers, once again taking into account the anticipated performance
requirements across the different data centers.

Five Data Centers Recovery Scenarios
As was the case for two data centers, if more than one master fails, a recovery
strategy involving the creation of recovery replication agreements is required.
These agreements are disabled by default but can be enabled rapidly in the event of
a failure, as shown in Figure 10-15 on page 289.

Five Data Centers Recovery Procedure (One Component)
In the scenario depicted in Figure 10-15, losing a master in any data center implies
that local write capability is lost. The following procedure assumes that M1
(New York) has failed.

1. Promote H1 to a writable master. For information on how to do this, refer to
“Promoting or Demoting Replicas” in the Sun ONE Directory Server
Administration Guide.

2. Enable the recovery replication agreement from M2 to H1, to ensure that local
writes are replicated to remote data centers and that remote writes are
replicated to local consumers.

3. Ensure that any applications that were accessing M1 are redirected to point to
the new master.

NOTE This procedure is an intermediate solution that will provide
immediate local read and write capability, while you set about
repairing M1.

Sample Replication Topologies

Chapter 10 Architectural Strategies 289

Figure 10-15 Five Data Centers Recovery Replication Agreements

M1

H1

New York

M2

H2

London

H5

H6

Sydney

M4

H4

M3

H3

Tokyo

Frankfurt

Default Replication Agreement

Recovery Replication Agreement

Sample Replication Topologies

290 Sun ONE Directory Server Deployment Guide • June 2003

Single Data Center Using the Retro Change Log
Plug-In
The previous topology for a single data center does not take into account the use of
the retro change log plug-in. Compatibility with this plug-in implies that a
multi-master replication topology can not be deployed. For more information on
the retro change log plug-in, refer to Using the Retro Change Log Plug-In in the
Sun ONE Directory Server Administration Guide.

Retro Change Log Plug-in Basic Topology
If multi-master replication cannot be deployed, the basic topology depicted in
Figure 10-16 is suggested.

Figure 10-16 One Data Center Using the Retro Change Log Plug-in

M1

H1

Default Replication Agreement

Sample Replication Topologies

Chapter 10 Architectural Strategies 291

Retro Change Log Plug-in Scaled For Read Performance
As in the standard single data center topology, increased read performance is
achieved by adding hubs, and then consumers, as indicated in Figure 10-17.

Figure 10-17 One Data Center Using the Retro Change Log Plug-in (Scaled)

Retro Change Log Plug-in Recovery Procedure
For the deployment depicted in Figure 10-17, the following strategy can be applied
if the master server fails:

1. Stop M1 (if it is not already stopped).

2. Promote H1 or H2 to a master server. For information on how to do this, refer
to “Promoting or Demoting Replicas” in the Sun ONE Directory Server
Administration Guide.

3. Enable the retro change log plug-in on the new master (M2.)

M1

H1

C1

H2

C1

Default Replication Agreement

Sample Replication Topologies

292 Sun ONE Directory Server Deployment Guide • June 2003

4. Restore the backup retro change log on M2.

5. Restart the server.

6. Add a replication agreement between M2 and the remaining hub to ensure that
modifications continue to be replicated to the hub.

This recovery strategy is illustrated in Figure 10-18.

Figure 10-18 One Data Center Using the Retro Change Log Plug-in (Recovery)

M1

M2
(was H1)

C1

H2

C2

Default Replication Agreement

Recovery Replication Agreement

293

Appendix A

Accessing Data Using DSMLv2 Over
HTTP/SOAP

Sun ONE Directory Server 5.2 supports DSMLv2, which maps the majority of the
query/update functionality of LDAP version 3 to XML, SOAP and HTTP. Being
able to perform directory operations in DSMLv2 extends the reach of your
directory data directly into the worlds of XML and web services. This section is
designed to give you an insight into how you can perform directory operations
using DSMLv2 over SOAP/HTTP and contains the following examples:

• An Empty Anonymous DSML “Ping” Request

• A DSML Request Issuing a User Binding

• A DSML Search Request

For a complete list of DSML related attributes and information about the DSMLv2
standard, refer to the Sun ONE Directory Server Reference Manual. For DSML related
procedures refer to the Sun ONE Directory Server Administration Guide.

An Empty Anonymous DSML “Ping” Request
Before issuing DSML requests over HTTP/SOAP you need to ensure that the
DSML front end is enabled by sending an empty DSML batch request to your
directory. An empty DSML batch request would read as follows:

CAUTION The content-length: header in the following examples contains
the exact length of the DSMLv2 request. In order for these examples
to function correctly, make sure either that the editor you use
respects these content lengths or that you modify them accordingly.

294 Sun ONE Directory Server Deployment Guide • June 2003

POST /dsml HTTP/1.1
content-length: 451
HOST: hostMachine
SOAPAction: ""
Content-Type: text/xml
Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’>

<soap-env:Body>
<batchRequest

xmlns=’urn:oasis:names:tc:DSML:2:0:core’
requestID=’Ping!’>
<!-- empty batch request -->

</batchRequest>
</soap-env:Body>

</soap-env:Envelope>

Appendix A Accessing Data Using DSMLv2 Over HTTP/SOAP 295

The first section of this DSML request is the HTTP section:

and is comprised of the HTTP method line

POST /dsml HTTP/1.1

followed by a number of HTTP headers. The HTTP method line specifies the HTTP
method request and URL to be used by the DSML front end. POST is the only HTTP
method request accepted by the DSML front end, whereas the /dsml URL,
although the default URL for Directory Server, can be configured with any other
valid URL. The HTTP headers that follow, specify the remaining details of the
DSML request. The header

content-length: 451

gives the exact length of the SOAP/DSML request,and the header

HOST: hostMachine

specifies the name of the host Directory Server being contacted. The header

SOAPAction:

is mandatory and informs the directory that you want to perform a DSML request
on the HTTP/SOAP stack. It may however, be left empty. The header

Content-Type: text/xml

must have a value of text/xml which defines the content as XML. Finally the
header

Connection: close

specifies that the connection will be closed once the request has been satisfied, in
contrast to the default HTTP/1.1 behavior that maintains connections open.

The following constitutes the SOAP/DSML section of the request:

POST /dsml HTTP/1.1
content-length: 451
HOST: hostMachine
SOAPAction: ""
Content-Type: text/xml
Connection: close

296 Sun ONE Directory Server Deployment Guide • June 2003

The DSML request begins with the XML prolog header,

<?xml version=’1.0’ encoding=’UTF-8’?>

which specifies that the request must be encoded with the UTF-8 character set, and
then continues with the SOAP envelope and body element that contain the
mandatory inclusion of the XML schema, XML schema instance and SOAP
namespaces as follows:

<soap-env:Envelope
xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’>

<soap-env:Body>

The DSML batch request element

<batchRequest

marks the beginning of the DSML batch request, is immediately followed by the
mandatory inclusion of the DSMLv2 namespace,

xmlns=’urn:oasis:names:tc:DSML:2:0:core’.

and is optionally identified by the following request ID

requestID=’Ping!’>

<?xml version=’1.0’ encoding=’UTF-8’?>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’>

<soap-env:Body>
<batchRequest

xmlns=’urn:oasis:names:tc:DSML:2:0:core’
requestID=’Ping!’>
<!-- empty batch request -->

</batchRequest>
</soap-env:Body>

</soap-env:Envelope>

Appendix A Accessing Data Using DSMLv2 Over HTTP/SOAP 297

The empty batch request

<!-- empty batch request -->.
is XML commented as such, and the SOAP/DSML batch request is closed using the
following close batch request, close SOAP body, and close SOAP envelope
elements:

</batchRequest>
</soap-env:Body>

</soap-env:Envelope>

CAUTION Maximum limits exist for the number of clients connecting
simultaneously to the directory and for the size of the DSML
requests. The limit for the number of clients is managed by the
ds-dsml-poolsize and ds-dsml-poolmaxsize attributes and the
request size limit by the ds-dsmll-requestmaxsize attribute. For
more information regarding DSML-related attributes, refer to the
Sun ONE Directory Server Reference Manual.

298 Sun ONE Directory Server Deployment Guide • June 2003

If the DSML front end is enabled, an empty DSML response, such as the one below
will be returned.

However, if nothing is returned, then you can conclude that the front end is
disabled.

HTTP/1.1 200 OK
Cache-control: no-cache
Connection: close
Date: Mon, 09 Sep 2002 13:56:49 GMT
Accept-Ranges: none
Server: Sun-ONE-Directory/5.2
Content-Type: text/xml; charset="utf-8"
Content-Length: 500

<?xml version=’1.0’ encoding=’UTF-8’ ?>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’
>

<soap-env:Body>
<batchResponse

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns=’urn:oasis:names:tc:DSML:2:0:core’
requestID=’Ping!’
>

</batchResponse>
</soap-env:Body>
</soap-env:Envelope>

NOTE The DSML front end is disabled by default. To enable it you should
change the value of the nsslapd-pluginEnabled attribute under the
cn=DSMLv2-SOAP-HTTP,cn=frontends,cn=plugins,cn=config
entry in the dse.ldif file to on. You can also modify the
ds-hdsml-port and ds-hdsml-root attributes, but this is optional.
For information on how to enable the DSML front end, refer to the
Sun ONE Directory Server Administration Guide.

Appendix A Accessing Data Using DSMLv2 Over HTTP/SOAP 299

A DSML Request Issuing a User Binding
To issue a DSML request you can choose, as with the LDAP protocol, either to bind
to the directory as a given user or access anonymously. If you want to bind to the
directory as a given user, your DSML request will include an HTTP authorization
header containing a uid and a password that will then be mapped to a dn.

An HTTP authorization request would read as follows:

This example shows the HTTP authorization header transporting the uid easter
and the password egg, which, in clear, would appear as easter:egg, and encoded
in base64 as:

Authorization: Basic ZWFzdGVyOmVnZw==

NOTE For information on how to configure the identity mapping refer to
the Sun ONE Directory Server Administration Guide.

POST /dsml HTTP/1.1
content-length: 578
Content-Type: text/xml; charset="utf-8"
HOST: hostMachine
Authorization: Basic ZWFzdGVyOmVnZw==
SOAPAction: ""
Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’>
<soap-env:Body>

<batchRequest
xmlns=’urn:oasis:names:tc:DSML:2:0:core’
<extendedRequest>

<requestName>1.3.6.1.4.1.4203.1.11.3</requestName>
</extendedRequest>

</batchRequest>
</soap-env:Body>

</soap-env:Envelope>

300 Sun ONE Directory Server Deployment Guide • June 2003

Should you want to access anonymously, no HTTP authorization header including
the password and uid would be required. However, it is worth bearing in mind
that anonymous access is often subject to strict access controls, and that you would
be likely to encounter data access restrictions. Similarly, you can issue DSML
requests to perform LDAP operations by LDAP proxy. It is interesting to note that
as DSML requests are managed on a batch basis, if you decide to issue requests by
LDAP proxy, then the required DSML proxy authorization request must be the
first in a given batch of requests.

A DSML Search Request
Once you have established that your DSML front end is enabled you can start
performing directory operations. A sample DSML base object search request on the
root DSE entry for the namingContexts, supportedLDAPversion, vendorName,
vendorVersion, and supportedSASLMechanisms attributes would read as follows:

Appendix A Accessing Data Using DSMLv2 Over HTTP/SOAP 301

POST /dsml HTTP/1.1
HOST: hostMachine
Content-Length: 1081
Content-Type: text/xml
SOAPAction: ""
Connection: close

<?xml version=’1.0’ encoding=’UTF-8’?>
<soap-env:Envelope

xmlns:xsd=’http://www.w3.org/2001/XMLSchema’
xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’
xmlns:soap-env=’http://schemas.xmlsoap.org/soap/envelope/’
>
<soap-env:Body>

<batchRequest
xmlns=’urn:oasis:names:tc:DSML:2:0:core’
requestID=’Batch of search requests’
>
<searchRequest

dn=""
requestID="search on Root DSE"
scope="baseObject"
derefAliases="neverDerefAliases"
typesOnly="false"
>
<filter>

<present name="objectClass"/>
</filter>
<attributes>

<attribute name="namingContexts"/>
<attribute name="supportedLDAPversion"/>
<attribute name="vendorName"/>
<attribute name="vendorVersion"/>
<attribute name="supportedSASLMechanisms"/>

</attributes>
</searchRequest>

</batchRequest>
</soap-env:Body>

</soap-env:Envelope>

302 Sun ONE Directory Server Deployment Guide • June 2003

With the following attribute-data pairs:

dn=""
requestID="search on Root DSE"

this search operation requests data under the root DSE entry and is identified with
an optional request ID attribute. The attribute-data pair:

scope="baseObject"

specifies that the search is a base object search while the attribute-data pair:

derefAliases="neverDerefAliases"

specifies that the aliases should not be dereferenced while searching or locating the
base object of the search, which is in fact the only derefAliases value supported
by Directory Server.

The attribute-data pair:

typesOnly="false"

specifies that both the attribute names and their values be returned, as opposed to
typesOnly="true", which will return attribute names only. The default value for
this attribute is false.

For the entry to match the filter, the presence of objectclass filter is used as follows:

<filter>
<present name="objectClass"/>

</filter>

and is followed by the list of desired attributes:

<attributes>
<attribute name="namingContexts"/>
<attribute name="supportedLDAPversion"/>
<attribute name="vendorName"/>
<attribute name="vendorVersion"/>
<attribute name="supportedSASLMechanisms"/>

</attributes>

303

Index

A
access

anonymous 169, 170
determining general types of 169
precedence rule 195

access control
ACI attribute 190
password protection and 179
roles 217

access control information (ACI) 189
bind rules 190, 192, 193
filtered rules 197
format 190–194
permission 190
target 190, 191
where to place 197

access rights
granting 166

account inactivation 174
account lockout 187
ACI attribute 190
ACI instruction

password protection and 179
ACI. See access control information
Administration Server

master agents and 231
agents

subagent 231
anonymous access 169, 170

for read 35
overview 170

applications 28
attribute

ACI 190
defining in schema 47
required and allowed 53
values 54

attribute-data pair 21
attributes

naming 45
audits, for security 167
authentication methods 169

anonymous access 170
proxy authorization 172
simple password 171

B
backup

binary 265
methods 265
planning 265
to ldif 268

bak2db 270
binary backup 265
binary restore 270
bind rules 190, 192, 193
branch point

DN attributes 63
for international trees 89
for replication and referrals 64

304 Sun ONE Directory Server Deployment Guide • June 2003

network names 64

C
c attribute 89
cascading replication 134
chained suffixes 108
chaining 108–109

and referrals 110
roles limitation 76

change log 120
checking password syntax 178
class of service (CoS)

access control 89
cache 89
classic 87
filtered role limitation 89
indirect 85
limitations 88
pointer 84
template entry 82

classic CoS 87
clients

bind algorithm 171
cn attribute. See commonName attribute
commonName attribute 53, 68, 70
consumer replica 117
consumer server 119

role 119
CoS template entry 82
country attribute 89, 197
custom schema files 49

D
data

accessing 24, 35
backing up 265, 268
consistency 52
examples of 22

management 149
ownership 34
planning 21
privacy 167
restoring 270

data master 32
across multiple applications 33
for replication 32

database
chaining 94
LDBM 94
multiple 95

db2bak 265
db2ldif 268
default referrals 101
default schema

customizing 43
extending 44
mapping data to 41
viewing 41

deleting schema 48
design process 18
directory applications 28

browsers 28
directory data

accessing 24, 35
examples of 22
mastering 32
ownership 34
planning 21

directory design
overview 17–19

directory server
piloting 19

directory tree
access control considerations 66
branch point

DN attributes 63
for international trees 89
for replication and referrals 64
network names 64

branching 61
creating structure 60
design

choosing a suffix 58

Index 305

examples
international enterprise 89
ISP 90

replication considerations 64
disaster recovery 142
distinguished name

collisions 68
DIT. See directory tree
DN name collisions 68
DSML 24
DSRK tools, downloading 12
dynamic groups 72

E
encryption

password 179
Salted SHA 179
SHA 179

entries
naming 67
non-person 70
organization 69
person 68

entry distribution 94
multiple databases 94
suffixes 96

expiration of passwords
overview 177
warning message 178

extending the schema 44

F
failure 264
filtered access control rules 197

G
group attribute 197
groups

dynamic 72
static 71

H
high availability 146, 147
hub replica 117
hub supplier 134

I
indirect CoS 85
inetOrgPerson attribute 197
installation location 11

L
LDAP referrals 101
load balancing 148

M
mail attribute 68
managed devices 231
managed object 232
master agent 231
master replica 117
multi-master replication 127–134
multiple databases 95

306 Sun ONE Directory Server Deployment Guide • June 2003

N
naming entries 67

organization 69
people 68

network management station (NMS) 232
network names, branching to reflect 64
network, load balancing 148

O
object classes

defining in schema 46
naming 45
standard 40

object identifiers. See OIDs
OID registry 45
OIDs

obtaining and assigning 45
organization attribute 197
organizationalPerson object class 53
organizationalUnit attribute 197

P
password policies 179

change after reset 177
design 175
expiration warning 178
password expiration 177
password history 179
password length 178
password storage scheme 179
replication of 187
syntax checking 178

password storage scheme
configuring 179

passwords
changing after reset 177
encryption of 179
expiration 177

expiration warning 178
history 179
minimum length 178
reusing 179
simple 171
syntax checking 178

PDUs 232
performance

replication and 135
permissions

allowing 195
bind rules 190, 192, 193
denying 195
on ACIs 190
precedence rule 195

person entries 68
pointer CoS 84
precedence rule 195
protocol data units. See PDUs
proxy authentication 172
proxy authorization 172
proxy DN 172

R
referrals 100–108

and chaining 110
branching to support 64
default 101
LDAP 101
smart referrals 103

replicas 117
consumer 117
hub 117
master 117

replication 115–158
access control 155
branching to support 64
cascading 134
change log 120
consumer server 119
consumer-initiated 118
data consistency 124

Index 307

data master 32
database links 157
disaster recovery 142
high availability 147
hub server 134
load balancing 148
local availability 147
local data management and 149
maintaining schema consistency in 54
overview 115
password policies 187
performance 135
replication manager 120
resource requirements 145
schema 157
server plug-ins 155
single-master 125
site survey 144
strategy 142
supplier bind DN 120
supplier-initiated 118

replication examples
large sites 154
load balancing 152
small sites 153

replication manager 120
replication topologies 273–292

five data centers 286
one data center 273
three data centers 282
two data centers 279
using retro changelog 290

restore
binary 270

restoring data 270
reusing passwords 179
roles 72–77

access control 217
chaining limitation 76
compared to groups 77
CoS limitation 77
limitations 76

root suffix 96

S
Salted SHA encryption 179
schema

adding new attributes 47
assigning OIDs 45
checking 52
consistency 52–54
custom files 49
customizing 43
deleting elements 48
designing 41
extending 44
mapping date to 41
matching data to 42
naming attributes 45
naming elements 45
naming object classes 45
object class strategies 46
standard 40–??
viewing default 41

schema replication 157
security

conducting audits 167
security methods 168
security policy 36
security threats 164

denial of service 165
unauthorized access 164
unauthorized tampering 165

serverRoot 10
SHA encryption 179
Simple Network Management Protocol. See SNMP
simple password 171
single-master replication 125
site survey 27

availability requirements 32
characterizing data 31
documenting 37
identifying access methods 30
identifying applications 28
identifying data sources 30
network capabilities 144

smart referrals 103
sn attribute 53

308 Sun ONE Directory Server Deployment Guide • June 2003

SNMP
agents 231
managed devices 231
managed objects 232
master agent 231
NMS-initiated communication 232
overview 231
subagent 231

standard object classes 40
standard schema 40
static groups 71
streetAddress attribute 53
sub suffix 96
subagents 231
suffix

naming conventions 59
root suffix 96
sub suffix 96

supplier bind DN 120
surname attribute 53
syntax

password 178

T
telephoneNumber attribute 53
template entry. See CoS template entry.
topology

overview 93

U
uid attribute 53, 68
user authentication 171
userPassword attribute 53

W
warning, password expiration 178

	Purpose of This Guide
	Prerequisites
	Typographical Conventions
	Default Paths and Filenames
	Downloading Directory Server Tools
	Suggested Reading
	Directory Server Design
	Directory Server Design and Deployment Overview
	Directory Design Overview
	Design Process Outline

	Directory Deployment Overview
	Piloting Your Directory
	Putting Your Directory Into Production

	Planning and Accessing Directory Data
	Introduction to Directory Data
	What Your Directory Might Include
	What Your Directory Should Not Include

	Defining Your Directory Needs
	Accessing Your Directory Data with DSML over HTTP/SOAP
	DSMLv2 Over HTTP/SOAP Deployment

	Performing a Site Survey
	Identifying the Applications That Use Your Directory
	Identify How Applications Will Access Your Directory
	Identifying Data Sources
	Characterizing Your Directory Data
	Determining Directory Availability Requirements
	Considering a Data Master Server
	Data Mastering for Replication
	Data Mastering Across Multiple Applications

	Determining Data Ownership
	Determining Data Access
	Documenting Your Site Survey
	Repeating the Site Survey

	Designing the Schema
	Sun ONE Directory Server Schema
	Schema Design Process Overview
	Mapping Your Data to the Default Schema
	Viewing the Default Directory Schema
	Matching Data to Schema Elements

	Customizing the Schema
	When to Extend Your Schema
	Getting and Assigning Object Identifiers
	Naming Attributes and Object Classes
	Strategies for Defining New Object Classes
	Strategies for Defining New Attributes
	Deleting Schema Elements
	Creating Custom Schema Files - Best Practices and Pitfalls

	Maintaining Data Consistency
	Schema Checking
	Selecting Consistent Data Formats
	Maintaining Consistency in Replicated Schema

	Other Schema Resources

	Designing the Directory Tree
	Introduction to the Directory Tree
	Designing Your Directory Tree
	Choosing a Suffix
	Suffix Naming Conventions
	Naming Multiple Suffixes

	Creating Your Directory Tree Structure
	Branching Your Directory
	Identifying Branch Points
	Replication Considerations
	Access Control Considerations

	Naming Entries
	Naming Person Entries
	Naming Organization Entries
	Naming Other Kinds of Entries

	Grouping Directory Entries and Managing Attributes
	Static and Dynamic Groups
	Managed, Filtered, and Nested Roles
	Managed Roles
	Filtered Roles
	Nested Roles

	Role Enumeration and Role Membership Enumeration
	Role Enumeration
	Role Membership Enumeration

	Role Scope
	Role Limitations
	Deciding Between Groups and Roles
	Advantages of the Groups Mechanism
	Advantages of the Roles Mechanism

	Managing Attributes with Class of Service (CoS)
	About CoS
	Cos Definition Entries and CoS Template Entries
	CoS Definition Entry
	CoS Template Entry

	CoS Priorities
	Pointer CoS, Indirect CoS, and Classic CoS
	Pointer CoS
	Indirect CoS
	Classic CoS

	CoS Limitations

	Directory Tree Design Examples
	Directory Tree for an International Enterprise
	Directory Tree for an ISP

	Other Directory Tree Resources

	Designing the Directory Topology
	Topology Overview
	Distributing Your Data
	Using Multiple Databases
	About Suffixes

	About Referrals and Chaining
	Using Referrals
	The Structure of an LDAP Referral
	Default Referrals
	Suffix Referrals
	Smart Referrals
	Tips for Designing Smart Referrals

	Using Chaining
	Deciding Between Referrals and Chaining
	Usage Differences
	Evaluating Access Controls

	Designing the Replication Process
	Introduction to Replication
	Replication Concepts
	Replica
	Unit of Replication
	Replica ID
	Supplier/Consumer
	Online Replica Promotion and Demotion
	Change Log
	Replication Identity
	Replication Agreement
	Consumer Initialization or Total Update
	Incremental Update
	Data Consistency

	Common Replication Scenarios
	Single-Master Replication
	Multi-Master Replication
	Multi-Master Replication Basic Concepts
	Multi-Master Replication Capabilities
	Fully-Connected, Four-Way, Multi-Master Topology
	Multi-Master Replication over Wide Area Networks (WAN)
	Grouping and Window Mechanisms

	Cascading Replication
	Mixed Environments
	Fractional Replication
	What is Fractional Replication?
	Configuring Fractional Replication

	Defining a Replication Strategy
	Replication Backward Compatibility
	Replication Survey
	Replication Resource Requirements
	Using Replication for High Availability
	Using Replication for Local Availability
	Using Replication for Load Balancing
	Example of Network Load Balancing
	Example of Load Balancing for Improved Performance

	Example Replication Strategy for a Small Site
	Example Replication Strategy for a Large Site
	Replication Strategy for a Large, International Enterprise

	Using Replication with Other Directory Features
	Replication and Access Control
	Replication and Directory Server Plug-Ins
	Replication and the Retro Change Log Plug-In
	Replication and the Referential Integrity Plug-In
	Replication and Pre-Operation and Post-Operation Plug-Ins

	Replication and Chained Suffixes
	Schema Replication
	Replication and Multiple Password Policies

	Replication Monitoring
	insync
	entrycmp
	repldisc

	Designing a Secure Directory
	About Security Threats
	Unauthorized Access
	Unauthorized Tampering
	Denial of Service

	Analyzing Your Security Needs
	Determining Access Rights
	Ensuring Data Privacy and Integrity
	Conducting Regular Audits
	Example Security Needs Analysis

	Overview of Security Methods
	Selecting Appropriate Authentication Methods
	Anonymous Access
	Simple Password
	Proxy Authorization
	Simple Password Over a Secure Connection
	Certificate-Based Client Authentication
	SASL-Based Client Authentication

	Preventing Authentication by Account Inactivation
	Designing your Password Policies
	Password Policy Features
	User-Defined Passwords
	Password Change After First Login or Reset
	Password Expiration
	Expiration Warning
	Password Syntax Checking
	Password Length
	Password Minimum Age
	Password History
	Password Storage Scheme

	Configuring Your Password Policies
	Default Password Policy
	Defining Password Policies for Users or Sets of Users
	Multiple Password Policies and Their Order of Precedence

	Designing an Account Lockout Policy
	Designing Password Policies in a Replicated Environment

	Designing Access Control
	About the ACI Format
	Targets
	Permissions
	Bind Rules

	Default ACIs
	Deciding How to Set Permissions
	The Precedence Rule
	Allowing or Denying Access
	When to Deny Access
	Where to Place Access Control Rules
	Using Filtered Access Control Rules

	Requesting Effective Rights Information
	About the Effective Rights Feature
	Access Control on the Effective Rights Feature
	Understanding the Effective Rights Results

	Tips on Using ACIs
	ACI Limitations

	Securing Connections With SSL
	Encrypting Attributes
	What is Attribute Encryption?
	Attribute Encryption Implementation
	Attribute Encryption and Performance
	Attribute Encryption Usage Considerations

	Grouping Entries Securely
	Using Roles Securely
	Using CoS Securely
	Protecting the CoS Definition Entry
	Protecting the CoS Template Entries
	Protecting the Target Entries of a CoS
	Protecting Other Dependencies

	Securing Configuration Information
	Other Security Resources

	Monitoring Your Directory
	Defining a Monitoring and Event Management Strategy
	Directory Server Monitoring Tools
	Directory Server Monitoring
	Monitoring Directory Server Activity
	Monitoring Database Activity
	Monitoring Disk Status
	Monitoring Replication Activity
	insync
	entrycmp
	repldisc

	Monitoring Indexing Efficiency
	Monitoring Security

	SNMP Monitoring
	About SNMP
	NMS-Initiated Communication

	SNMP Monitoring in Sun ONE Directory Server

	Directory Server Deployment Scenario and Reference Architectures
	Banking Deployment Scenario
	Business Challenge
	Deployment Context and Replication Topology
	Deployment Context
	Replication Topology
	Replication Topology Overview
	Failure and Recovery Scenarios

	Performance Requirements
	User Demands
	Hardware Guidelines

	Schema, Data, and Directory Information Tree Design
	Schema
	Attributes
	Object Classes

	Data
	Directory Information Tree

	Security Considerations
	Securing Communication Channels
	Securing Data in Storage
	Securing Password Authentication

	Implementation

	Architectural Strategies
	Addressing Failure and Recovery
	Planning a Backup Strategy
	Choosing a Backup Method
	Binary Backup (db2bak)
	Backup to LDIF (db2ldif)

	Choosing a Restoration Method
	Binary Restore (bak2db)
	Restoration From LDIF (ldif2db)

	Sample Replication Topologies
	Single Data Center
	Single Data Center Basic Topology
	Single Data Center Scaled For Read Performance
	Single Data Center Failure Matrix
	Single Data Center Recovery Procedure (One Component)
	Single Data Center Recovery Procedure (Two Components)

	Two Data Centers
	Two Data Centers Basic Topology
	Two Data Centers Scaled For Read Performance
	Two Data Centers Recovery Scenarios

	Three Data Centers
	Three Data Centers Basic Topology
	Three Data Centers Scaled For Read Performance
	Three Data Centers Recovery Scenarios
	Three Data Centers Recovery Procedure (One Component)

	Five Data Centers
	Five Data Centers Basic Topology
	Five Data Centers Scaled For Read Performance
	Five Data Centers Recovery Scenarios
	Five Data Centers Recovery Procedure (One Component)

	Single Data Center Using the Retro Change Log Plug-In
	Retro Change Log Plug-in Basic Topology
	Retro Change Log Plug-in Scaled For Read Performance
	Retro Change Log Plug-in Recovery Procedure

	Accessing Data Using DSMLv2 Over HTTP/SOAP
	An Empty Anonymous DSML “Ping” Request
	A DSML Request Issuing a User Binding
	A DSML Search Request

