Veritas™ Cluster Server Agents for Veritas™ Volume Replicator Configuration Guide

Solaris

5.1

Veritas™ Cluster Server Agents for Veritas™ Volume Replicator Configuration Guide

The software described in this book is furnished under a license agreement and may be used only in accordance with the terms of the agreement.

Product version: 5.1

Document version: 5.1.0

Legal Notice

Copyright © 2009 Symantec Corporation. All rights reserved.

Symantec, the Symantec Logo, Veritas, Veritas Storage Foundation are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering. No part of this document may be reproduced in any form by any means without prior written authorization of Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in Commercial Computer Software or Commercial Computer Software Documentation", as applicable, and any successor regulations. Any use, modification, reproduction release, performance, display or disclosure of the Licensed Software and Documentation by the U.S. Government shall be solely in accordance with the terms of this Agreement.

Symantec Corporation 350 Ellis Street Mountain View, CA 94043

http://www.symantec.com

Technical Support

Symantec Technical Support maintains support centers globally. Technical Support's primary role is to respond to specific queries about product features and functionality. The Technical Support group also creates content for our online Knowledge Base. The Technical Support group works collaboratively with the other functional areas within Symantec to answer your questions in a timely fashion. For example, the Technical Support group works with Product Engineering and Symantec Security Response to provide alerting services and virus definition updates.

Symantec's maintenance offerings include the following:

- A range of support options that give you the flexibility to select the right amount of service for any size organization
- Telephone and Web-based support that provides rapid response and up-to-the-minute information
- Upgrade assurance that delivers automatic software upgrade protection
- Global support that is available 24 hours a day, 7 days a week
- Advanced features, including Account Management Services

For information about Symantec's Maintenance Programs, you can visit our Web site at the following URL:

www.symantec.com/business/support/index.jsp

Contacting Technical Support

Customers with a current maintenance agreement may access Technical Support information at the following URL:

www.symantec.com/business/support/contact techsupp static.jsp

Before contacting Technical Support, make sure you have satisfied the system requirements that are listed in your product documentation. Also, you should be at the computer on which the problem occurred, in case it is necessary to replicate the problem.

When you contact Technical Support, please have the following information available:

- Product release level
- Hardware information
- Available memory, disk space, and NIC information
- Operating system

- Version and patch level
- Network topology
- Router, gateway, and IP address information
- Problem description:
 - Error messages and log files
 - Troubleshooting that was performed before contacting Symantec
 - Recent software configuration changes and network changes

Licensing and registration

If your Symantec product requires registration or a license key, access our non-technical support Web page at the following URL:

customercare.symantec.com

Customer service

Customer Care information is available at the following URL:

www.symantec.com/customercare

Customer Service is available to assist with the following types of issues:

- Questions regarding product licensing or serialization
- Product registration updates, such as address or name changes
- General product information (features, language availability, local dealers)
- Latest information about product updates and upgrades
- Information about upgrade assurance and maintenance contracts
- Information about the Symantec Buying Programs
- Advice about Symantec's technical support options
- Nontechnical presales questions
- Issues that are related to CD-ROMs or manuals

Documentation feedback

Your feedback on product documentation is important to us. Send suggestions for improvements and reports on errors or omissions. Include the title and document version (located on the second page), and chapter and section titles of the text on which you are reporting. Send feedback to:

sfha docs@symantec.com

Maintenance agreement resources

If you want to contact Symantec regarding an existing maintenance agreement, please contact the maintenance agreement administration team for your region as follows:

Asia-Pacific and Japan customercare_apac@symantec.com

Europe, Middle-East, and Africa semea@symantec.com

North America and Latin America supportsolutions@symantec.com

Additional enterprise services

Symantec offers a comprehensive set of services that allow you to maximize your investment in Symantec products and to develop your knowledge, expertise, and global insight, which enable you to manage your business risks proactively.

Enterprise services that are available include the following:

Symantec Early Warning Solutions
These solutions provide early warning of cyber attacks, comprehensive threat

analysis, and countermeasures to prevent attacks before they occur.

Managed Security Services These services remove the burden of managing and monitoring security devices

and events, ensuring rapid response to real threats.

Consulting Services Symantec Consulting Services provide on-site technical expertise from

Symantec and its trusted partners. Symantec Consulting Services offer a variety of prepackaged and customizable options that include assessment, design, implementation, monitoring, and management capabilities. Each is focused on establishing and maintaining the integrity and availability of your IT resources.

Educational Services Educational Services provide a full array of technical training, security

education, security certification, and awareness communication programs.

To access more information about Enterprise services, please visit our Web site at the following URL:

www.symantec.com

Select your country or language from the site index.

Contents

Technical Su	pport	4
Chapter 1	Overview of the VCS agents for VVR	9
	Introducing the VCS agents for VVR	9
	How the agents for failover applications work	
	RVG agent	11
	RVGPrimary agent	14
	RVGSnapshot	20
	How the agents for parallel applications work	23
	RVGShared agent	23
	RVGLogowner agent	26
	RVGSharedPri agent	29
	How the agents for hybrid applications work	32
	Overview of how to configure VVR in a VCS environment	32
	Generic VVR setup in a VCS environment	33
	Example VVR configuration in a VCS environment	34
Chapter 2	Configuring the agents for high availability	35
	Requirements for configuring VVR in a VCS environment	35
	Best practices for setting up the agents	36
	Example configuration for a failover application	37
	Example configuration for a parallel application	37
	Example—Setting up VVR in a VCS environment	39
	Setting up the VVR configuration	39
	Verifying the VVR replication state	42
	Configuring the agents for failover applications	42
	Configuring the agents for parallel applications	49
	Configuring the agents for a bunker replication configuration	52
	VCS configuration for a bunker using the STORAGE	
	protocol	52
	VCS configuration for a bunker using IP	55
	Administering the service groups	55
Index		57

Chapter 1

Overview of the VCS agents for VVR

This chapter includes the following topics:

- Introducing the VCS agents for VVR
- How the agents for failover applications work
- How the agents for parallel applications work
- How the agents for hybrid applications work
- Overview of how to configure VVR in a VCS environment
- Generic VVR setup in a VCS environment
- Example VVR configuration in a VCS environment

Introducing the VCS agents for VVR

VCS provides agents that manage applications and resources in a cluster.

The different types of agents follow:

■ VCS comes packaged (bundled) with a set of agents that enable VCS to provide high availability. These include agents for mount points, IP addresses, file systems, VVR, and virtual environments. These agents are immediately available to you after install VCS.

For more information about VCS bundled agents, refer to the following guides:

- Veritas Cluster Server Bundled Agents Reference Guide
- Veritas Cluster Server Agents for Veritas Volume Replicator Configuration Guide

- VCS also provides a set of agents that enable high availability for key enterprise applications and third-party products, which includes the following:
 - Databases
 - Replication solutions
 - Middleware solutions
 - Enterprise applications

These agents are available in the Agent Pack, which is updated quarterly. For more information about VCS agents for enterprise applications, refer to the individual agent's guide, the Agent Pack, or contact Symantec consulting services.

 Symantec consulting services can create custom agents for applications that the current set of VCS agents do not support. You can also develop custom agents for your environment. Creating custom agents requires knowledge of VCS, scripting skills, and basic programming logic. For more information about creating VCS agents, refer to the Veritas Cluster Server Agent Developers Guide or contact Symantec consulting services.

Agents are processes that manage predefined resource types. When an agent is started, it obtains configuration information from the Veritas Cluster Server (VCS). It then periodically monitors the resources and updates VCS with the resource status.

Typically agents do the following:

- Bring resources online
- Take resources offline
- Monitor resources and report any state changes to VCS

The VCS Agents for VVR monitor and manage Replicated Volume Groups (RVGs). Each agent includes VCS-type declarations and agent executables, which represent a resource type. The VCS Agents for VVR include:

Agents for failover applications

Review the following:

- See "How the agents for failover applications work" on page 11.
- See "RVG agent" on page 11.
- See "RVGPrimary agent" on page 14.
- See "RVGSnapshot" on page 20.

Agents for parallel applications

Review the following:

- See "How the agents for parallel applications work" on page 23.
- See "RVGShared agent" on page 23.
- See "RVGLogowner agent" on page 26.
- See "RVGSharedPri agent" on page 29.

How the agents for failover applications work

The agents for failover applications include the following:

- RVG agent
- RVGPrimary agent
- RVGSnapshot

RVG agent

Brings the RVG online, monitors read and write access to the RVG, and takes the RVG offline. This is a failover resource. The RVG agent enables replication between clusters. It manages the Primary VVR node in one cluster and the Secondary VVR node in another cluster. Each node can be failed over in its respective cluster. In this way, replication is made highly available.

The RVG works with the RVGPrimary agent to provide failover of the Primary VVR node to the Secondary VVR node. If a disaster occurs on the Primary VVR node and all the nodes in the Primary cluster are unavailable, the RVG agent does not fail over the Primary role from the Primary VVR node to the Secondary VVR node. Using a VCS global cluster enables you to fail over the Primary role from a Primary VVR node to a Secondary VVR node.

The RVG agent includes the following key features:

- Removes potential single points of failure by enabling Primary and Secondary VVR nodes to be clustered.
- Enables you to bring a service group online to start VCS-managed applications that use VVR.
- Continues replication after a node in a cluster fails without losing updates.
- Ensures that VVR can be added to any VCS cluster by including the RVG resource type definitions.

An example configuration file for this agent that can be used as a guide when creating your configuration is located at:

/etc/VRTSvcs/conf/sample vvr/RVG

Note: This release does not support the attributes Primary, SRL, and RLinks of the RVG agent. If you have a configuration from a previous release, you must remove these attributes during the upgrade or the configuration will fail.

Resource dependencies

The RVG resource represents the RVG (Replicated Volume Group) in the RDS (Replicated Data Set). The RVG resource is dependent on the DiskGroup resource. The RVG resource is also dependent on the IP resources that it uses for replication.

In a VVR environment, higher-level application resources, such as Mount, that would typically depend on a Volume resource must depend on the associated RVG resource.

Refer to the Veritas Cluster Server Administrator's Guide for more information on dependencies.

Mount **RVG** DiskGroup IΡ

Sample service group for an RVG resource Figure 1-1

Agent functions

The RVG agent has the following agent functions:

Online Verifies whether the DiskGroup agent has recovered the RVG. If not,

NIC

recovers and starts the data volumes and the Storage Replicator Log (SRL), recovers the RVG, recovers all RLINKs in the RVG, and then starts the RVG.

Offline Stops the RVG.

Monitors the state of the RVG using the vxprint command. Monitor

The RVG resource monitors an RVG for local access only. It does not

monitor replication.

Clean Stops the RVG.

Info Gives the information about the replication status for the Replicated Data

Set (RDS).

The info entry point displays information about the replication status of an RDS. By default, the info interval is set to zero. To change the default info interval, use the following command:

hatype -modify resourcetype name InfoInterval interval

For example, to set the info interval to 60 seconds for the RVG resource type, enter:

hatype -modify RVG InfoInterval 60

The info interval indicates how frequently VCS executes the info entry point to update the replication status. In the above example, the info interval is set to 60, so VCS updates the replication status every 60 seconds. To display the output of the info entry point, use the following command:

hares -value resource name ResourceInfo

The output of the info entry point is also logged in the file /var/VRTSvcs/log/engine_A.log.

State definitions

The RVG agent has the following state definitions:

ONLINE Indicates that the RVG is in ENABLED/ACTIVE state.

OFFLINE Indicates that the RVG is in DISABLED/CLEAN state.

FAULTED The RVG resource fails if the RVG is not in the ENABLED/ACTIVE state.

Agent attributes

Table 1-1 The required attributes for the RVG agent

Attribute	Description	
RVG	The name of the RVG being monitored.	
	Type and dimension: string-scalar	
DiskGroup	The disk group that this RVG is associated with.	
	Type and dimension: string-scalar	
StorageDG	The name of the bunker disk group.	
	Type and dimension: string-scalar	
StorageRVG	The name of the bunker RVG.	
	Type and dimension: string-scalar	
StorageHostIds	A space-separated list of the hostids of each node in the bunker cluster.	
	Type and dimension: string-keylist	

Resource type definitions

The RVG agent resource type definition follows.

```
type RVG (
    static int NumThreads = 1
    static str ArgList[] = { RVG, DiskGroup }
    str RVG
    str DiskGroup
    str StorageRVG
    str StorageDG
    str StorageHostIds
)
```

RVGPrimary agent

Attempts to migrate or takeover a Secondary to a Primary upon an application failover. The RVGPrimary agent enables migration and takeover of a VVR replicated data set in a VCS environment. Bringing a resource of type RVGPrimary online causes the RVG on the local host to become a primary. The agent is useful when hosts in both the primary and secondary side are clustered, in particular a VCS replicated data cluster or a VCS global cluster, to completely automate the availability of writable replicated disks to a VCS-managed application.

The RVGPrimary agent includes the following key features:

- Removes the manual steps of migrating a VVR primary and secondary roles when failing over applications across a wide area.
- Minimizes the need for resynchronizing replicated volumes by attempting a migration before attempting a hard takeover.
- Waits for the two sides of a replicated data set to become completely synchronized before migrating roles.
- Supports an automatic fast failback resynchronization of a downed primary if it later returns after a takeover.

A sample configuration file for this agent that can be used as a guide when creating your configuration is located at /etc/VRTSvcs/conf/sample_vvr/RVGPrimary.

Resource dependencies

You usually use the RVGPrimary agent in conjunction with the RVG agent in two groups with an online local hard group dependency. The parent group contains the resources that manage the actual application and file systems and as the RVGPrimary resource. The child group contains the resources managing the storage infrastructure, which include the RVG and DiskGroup type resources.

Refer to the Veritas Cluster Server Administrator's Guide for more information on detailed setup of a VVR environment using the RVGPrimary agent.

Oracle IΡ Mount Mount Mount RVGPrimary NIC Application service group that is online on the Primary online local hard dependency RVG DiskGroup ΙP NIC Replication service group that is online at both Primary and Secondary

Figure 1-2 Sample service group for an RVGPrimary resource

Agent functions

The RVGPrimary agent has the following agent functions:

Online Determines the current role of the RVG. If the role is Secondary it attempts a migrate. It waits for any outstanding writes from the original Primary. If the original Primary is down, it attempts a takeover. If the RVG is a Primary, it performs no actions and goes online

Offline Performs no actions.

Monitor Performs no actions. The RVG agents monitors the actual RVG.

Clean Performs no actions.

State definitions

The RVGPrimary agent has the following state definitions:

ONLLINE Indicates that the role of the RVG is Primary. **FAULTED**

The RVG agents monitors the actual RVG. Accidental migration of a VVR Primary outside of VCS causes other resources to fault immediately, such as Mount. No special monitoring by this agent is necessary.

Agent attributes

Table 1-2 The required attributes for the RVGPrimary agent

Attribute	Description
RvgResourceName	The name of the RVG resource type that this agent promotes. The name RVG resource type which has been configured using the RVG agent. Type and dimension: string-scalar
AutoTakeover	A flag to indicate whether the agent should perform a takeover on online if the original Primary is down. Type and dimension: integer-scalar
AutoResync	A flag to indicate whether the agent should attempt to automatically perform a fast-failback resynchronization of the original Primary after a takeover and after the original Primary returns. Type and dimension: integer-scalar

Resource type definition

The RVGPrimary resource type definition follows.

```
type RVGPrimary (
    static keylist SupportedActions = { fbsync }
    static int NumThreads = 1
    static int OnlineRetryLimit = 1
    static str ArgList[] = { RvqResourceName, AutoTakeover, AutoResync }
    str RvgResourceName
    int AutoTakeover = 1
    int AutoResync = 0
```

Using the RVGPrimary agent for migration and takeover

The RVGPrimary agent can now handle the migration and takeover when you have multiple secondary sites that you have configured for VCS disaster recovery and global failover (n-way GCO).

After the first failover succeeds, the rlinks from remaining secondaries to the new primary need to be attached. Attach these rlinks before trying subsequent failovers and to be ready for the next failovers to succeed.

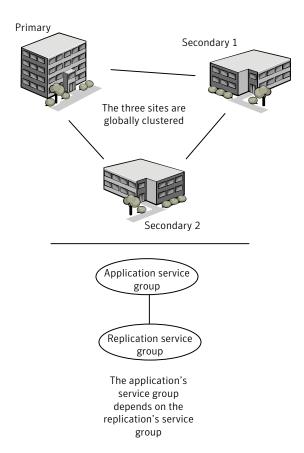
Consider an example of a disaster recovery (DR) setup where two DR sites are configured as follows:

- Primary RVG: PRI RVG
 - PRI RVG has the following rlinks:
 - rlk SEC RVG1
 - rlk SEC RVG2
- Secondary RVG: SEC RVG1

SEC RVG1 has the following rlinks:

- rlk PRI RVG
- rlk SEC RVG2
- Secondary RVG: SEC RVG2

SEC_RVG2 has the following rlinks:


- rlk_PRI_RVG
- rlk_SEC_RVG1

When the Primary site is failed over to secondary site, SEC_RVG1 becomes new primary.

Use the vradmin or vxrlink commands to attach the following rlinks:

- rlk SEC RVG2 that is associated with SEC RVG1.
- rlk PRI RVG that is associated with SEC RVG2.

Figure 1-3 RVGPrimary three-way global clustering support

Primary Secondary 1 Attached rlink Detached rlink Secondary 2 Role change with a migration and takeover Secondary 1 (previously Primary Primary) (previously Secondary 1)

RVGPrimary three-way global clustering migration and takeover Figure 1-4

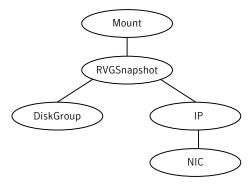
RVGSnapshot

Creates and destroys a transactionally consistent space-optimized snapshot of all volumes in a VVR secondary replicated data set. The RVGSnapshot agent automates the taking of space-optimized snapshots on a secondary RVG; since these snapshots can be mounted and written to without affecting the actual replicated data, a space-optimized snapshot can be an effective tool for scheduling a "fire drill" to confirm that a wide-area failover is possible. By combining this agent with VCS Mount agents and VCS agents that manage the application being

Secondary 2 (now an orphan) replicated, a special fire drill service group can be created that can be brought online and taken offline at regularly scheduled intervals to confirm the robustness of a disaster recovery environment.

In addition to the agent itself, a text-based wizard /opt/VRTSvcs/bin/fdsetup that prepares the VVR and VCS infrastructure for a fire drill and a script /opt/VRTSvcs/bin/fdsched that runs the fire drill and consolidates the results are included with this package.

Complete details are in the Veritas Cluster Server Administrator's Guide.


The RVGSnapshot agent includes the following key features:

- Automates the process of creating a space-optimized snapshot on a VVR secondary that can be mounted to simulate a wide-area failover without affecting the production application.
- Includes a wizard to effectively set up and schedule fire drills that are completely managed by VCS.

Resource dependencies

The RVGSnapshot agent depends on these resources.

Figure 1-5 Sample service group for an RVGSnapshot resource

Agent functions

The RVGSnapshot agent has the following agent functions:

Online Creates a transactionally consistent snapshot of all volumes in the RDS.

Offline Destroys the snapshot.

Monitor No operation; failure of the snapshot will be indicated by the failure of the

Mount resource of any file systems mounted on it.

Clean Cleans up any failed snapshot creation or deletion.

State definitions

The RVGSnapshot agent has the following state definitions:

ONLINE Indicates that a snapshot was created.

OFFLINE Indicates that a snapshot was destroyed.

The RVGSnapshot resource faults on timeout if a snapshot creation did **FAULTED**

not succeed during an online.

Agent attributes

The required attributes for the RVGSnapshot agent Table 1-3

Attribute	Description
RvgResourceName	The name of the VCS RVG-type resource that manages the RVG that will be snapshot by this agent.
	Type and dimension: string-scalar
CacheObj	Name of the cache object that is required for a space-optimized snapshot; the fdsetup wizard will create one if it does not exist
	Type and dimension: string-scalar
Prefix	Token put before the name of the actual volume when creating the snapshotted volumes.
	Type and dimension: string-scalar

Table 1-4 The optional attributes for the RVGSnapshot agent

Attribute	Description
DestroyOnOffline	A flag to indicate whether to destroy the snapshot upon taking the resources offline. For a fire drill, the snapshot should be deleted to reduce any performance impact of leaving the snapshot for a long period of time; however, if there is interest in keeping the data, then this value should be set to 0. The default is 1 (true). Type and dimension: integer-scalar Default: 1

Table 1-4 The optional attributes for the RVGSnapshot agent (continued)

Attribute	Description
FDFile	The fire drill schedule updates this attribute with the system name and the path to a file containing the output of the last complete fire drill for the group containing an RVGSnapshot resource. Type and dimension: string-scalar

Resource type definitions

The resource type definition for the RVGSnapshot agent follows.

```
type RVGSnapshot (
    static keylist RegList = { Prefix }
    static int NumThreads = 1
    static str ArgList[] = { RvgResourceName, CacheObj, Prefix,
    DestroyOnOffline }
    str RvgResourceName
    str CacheObj
    str Prefix
    boolean DestroyOnOffline = 1
    temp str FDFile
)
```

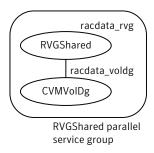
How the agents for parallel applications work

The agents for parallel applications include the following:

- RVGShared agent
- RVGLogowner agent
- RVGSharedPri agent

RVGShared agent

Monitors the RVG in a shared environment. This is a parallel resource. The RVGShared agent enables you to configure parallel applications to use an RVG in a cluster. The RVGShared agent monitors the RVG in a shared disk group environment. The RVGShared agent must be configured as a parallel group in VCS. Typically, the RVGShared resource is online or offline at the same time on all the nodes in the VCS cluster. An example configuration file for this agent that can be used as a guide when creating your configuration is located at /etc/VRTSvcs/conf/sample vvr/RVGLogowner.


Resource dependencies

The RVGShared resource represents the RVG of the RDS. The RVGShared resource is dependent on the CVMVolDg resource.

The RVGShared resource must be configured in a parallel group.

Refer to the Veritas Cluster Server Administrator's Guide for more information on dependencies.

Figure 1-6 Sample service group for an RVGShared resource

Note: Do not add any volumes that are part of the RVG in the CVMVolume attribute of the CVMVolDg resource. The volumes in the RVG are managed by the RVGShared resource.

Agent functions

The RVGShared agent has the following agent functions:

Online Verifies whether the RVG is started. If the RVG is not started, recovers and

starts the RVG.

Offline No action.

Displays the state as ONLINE if the RVG is started. Displays the state as Monitor

OFFLINE if the RVG is not started.

Clean No action. Info

Gives the information about the replication status for the Replicated Data Set (RDS).

The info entry point displays information about the replication status of an RDS. By default, the info interval is set to zero. To change the default info interval, use the following command:

hatype -modify resourcetype name InfoInterval interval

For example, to set the info interval to 60 seconds for the RVG resource type, enter:

hatype -modify RVG InfoInterval 60

The info interval indicates how frequently VCS executes the info entry point to update the replication status. In the above example, the info interval is set to 60, so VCS updates the replication status every 60 seconds. To display the output of the info entry point, use the following command:

hares -value resource name ResourceInfo

The output of the info entry point is also logged in the file /var/VRTSvcs/log/engine_A.log.

State definitions

The RVGShared agent has the following state definitions:

ONLINE Indicates that the RVG is in the ENABLED/ACTIVE state.

OFFLINE Indicates that the RVG is not in the ENABLED/ACTIVE state or that the

administrator has invoked the offline entry point.

Agent attributes

The required attributes for the RVGShared agent Table 1-5

Attribute	Description
RVG	The name of the RVG being monitored. Type and dimension: string-scalar
DiskGroup	The shared-disk group with which this RVG is associated. Type and dimension: string-scalar

Resource type definitions

The RVGShared resource type definition follows.

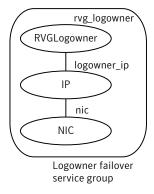
```
type RVGShared (
    static int NumThreads = 1
    static str ArgList[] = { RVG, DiskGroup }
    str RVG
    str DiskGroup
)
```

RVGLogowner agent

Assigns and unassigns a node as the logowner in the CVM cluster; this is a failover resource. The RVGLogowner agent assigns or unassigns a node as a logowner in the cluster. To replicate data, VVR requires network connectivity between the Primary and the Secondary. In a shared disk group environment, only one node, that is, the logowner, can replicate data to the Secondary.

For replication to be highly available, the logowner must be highly available. To make the logowner highly available, the RVGLogowner resource must be configured as a resource in a failover group. Also, a virtual IP must be set up on the logowner to enable replication and failover of the logowner from one node to another in a cluster. The virtual IP must be configured as an IP resource.

For more information about the logowner, see the Veritas Volume Replicator Administrator's Guide. An example configuration file for this agent that can be used as a guide when creating your configuration is located at /etc/VRTSvcs/conf/sample vvr/RVGLogowner.


Resource dependencies

The RVGLogowner resource represents the logowner for RVG in the cluster. The RVGLogowner resource is dependent on the IP resource that it uses for replication.

The RVGLogowner resource must be configured in a failover group. The RVGLogowner group is used in conjunction with the RVGSharedPri and RVGShared agents in separate groups, with the appropriate service group dependencies.

For more information on dependencies, refer to the Veritas Cluster Server Administrator's Guide

Agent functions

The RVGLogowner agent has the following agent functions:

Online Assigns the logowner on the node.

Offline Unassigns the logowner on the node.

Monitor Returns ONLINE if the node is the logowner and the RVG is in

> ENABLED/ACTIVE state. Returns OFFLINE if the node is the logowner and the state is not ENABLED/ACTIVE, or if the node is not the logowner (regardless of the state). The RVG for which the logowner is monitored

must be configured as the RVGShared resource type.

Clean Unassigns the logowner on the node.

State definitions

The RVGLogowner agent has the following state definitions:

ONLINE Indicates that the node is the logowner for the RVG in the cluster.

Indicates that the node is not the logowner for the RVG in the cluster. OFFLINE

Agent attributes

Table 1-6 The required attributes for the RVGLogowner agent

Attribute	Description	
RVG	The name of the RVG being monitored.	
	Type and dimension: string-scalar	
DiskGroup	The disk group with which this RVG is associated.	
	Type and dimension: string-scalar	

The bunker attributes for the RVGLogowner agent Table 1-7

Attribute	Description
StorageDG	The name of the bunker disk group.
	Type and dimension: string-scalar
StorageRVG	The name of the bunker RVG.
	Type and dimension: string-scalar
StorageHostIds	A space-separated list of the hostids of each node in the bunker cluster.
	Type and dimension: string-keylist

Resource type definitions

The RVGLogowner resource type definition follows.

```
type RVGLogowner (
    static int NumThreads = 1
    static str ArgList[] = { RVG, DiskGroup }
    static int OnlineRetryLimit = 5
    str RVG
    str DiskGroup
    str StorageRVG
    str StorageDG
    str StorageHostIds
```

RVGSharedPri agent

Attempts to migrate or takeover a Secondary to a Primary when a parallel service group fails over. The RVGSharedPri agent enables migration and takeover of a VVR replicated data set in parallel groups in a VCS environment. Bringing a resource of type RVGSharedPri online causes the RVG on the local host to become a primary if it is not already. The agent is useful when hosts in both the primary and secondary side are clustered using a VCS global cluster, to completely automate the availability of writable replicated disks to an application managed by VCS.

The RVGSharedPri agent includes the following key features:

- Removes manual steps of migrating a VVR primary and secondary roles when failing over applications across a wide area.
- Minimizes the need for resynchronizing replicated volumes by attempting a migration before attempting a hard takeover.
- Waits for the two sides of a replicated data set to become completely synchronized before migrating roles.
- Supports an automatic fast failback resynchronization of a downed primary if it later returns after a takeover.

Sample configuration files are located in the /etc/VRTSvcs/conf/sample rac/ directory and include CVR in the filename. These sample files are installed as part of the VRTSdbac package, and can be used as a guide when creating your configuration.

Resource dependencies

The RVGSharedPri agent is used in conjunction with the RVGShared and RVGLogowner agents in separate groups, with the appropriate service group dependencies.

The RVGSharedPri agent must be configured in a parallel service group. The application service group contains the resources managing the actual application and file systems as well as the RVGSharedPri agent.

ora_db1 Oracle ora_mnt **CFSMount** ora_vvr_shpri

Sample service group for an RVGSharedPri resource Figure 1-8

Application parallel service group

Agent functions

RVGSharedPri

The RVGSharedPri agent has the following agent functions:

Online Determines the current role of the RVG; if Secondary, attempt a migrate,

> waiting for any outstanding writes from the original Primary; if the original Primary is down attempt a takeover; if the RVG is a Primary, perform no

actions and go online

Offline Performs no actions.

Performs no actions; monitoring of the actual RVG is done by the Monitor

RVGShared agent.

Clean Performs no actions.

State definitions

The RVGSharedPri agent has the following state definitions:

FAULTED Monitoring of the actual RVG is done by the RVGShared agent; accidental

> migration of a VVR Primary outside of VCS would cause other resources to fault immediately, such as Mount, so no special monitoring by this agent

is necessary.

Agent attributes

Table 1-8 The required attributes for the RVGSharedPri agent

Attribute	Description
RvgResourceName	The name of the RVGShared resource type that this agent will promote, that is, the name RVG resource type which has been configured using the RVGShared agent. The required VVR object names, such as the name of the RVG, Disk Group, RLINKs, SRL are discovered by this agent by querying VCS directly. Type and dimension: string-scalar
AutoTakeover	A flag to indicate whether the agent should perform a takeover on online if the original Primary is down. Type and dimension: integer-scalar Default: 1
AutoResync	A flag to indicate whether the agent should attempt to automatically perform a fast-failback resynchronization of the original Primary after a takeover and after the original Primary returns. Type and dimension: integer-scalar Default: 0
VCSResLock	This attribute is reserved for internal use by VCS. Type and dimension: string-scalar

Resource type definitions

The RVGSharedPri resource type definition follows.

```
type RVGSharedPri (
   static keylist SupportedActions = { fbsync, resync }
    static int NumThreads = 1
    static int OnlineRetryLimit = 1
    static str ArgList[] = { RvgResourceName, "RvgResourceName:RVG",
    "RvgResourceName:DiskGroup", AutoTakeover, AutoResync }
    str RvqResourceName
    int AutoTakeover = 1
   int AutoResync = 0
    temp str VCSResLock
)
```

How the agents for hybrid applications work

The agents for hybrid applications include the following:

- RVG agent
- RVGPrimary agent

A hybrid configuration is for Replicated Data Clusters (RDCs) and is a combination of the failover and parallel service groups. A hybrid service group behaves like a failover group within a system zone and like a parallel group across system zones. It cannot fail over across system zones. A switch operation on a hybrid service group is allowed only between systems within the same system zone.

For more information about the RVG agent and RVGPrimary agent, see RVG agent and RVGPrimary agent. These sections give information about the entry points, state definitions, and attributes for the RVG agent and the RVGPrimary agent. In addition, the following attribute must be set for the RVG agent and the RVGPrimary agent while configuring RDCs:

Attribute for RDCs Table 1-9

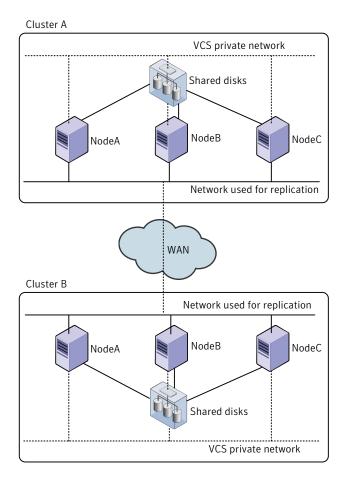
Optional attributes	Type and dimension	Definition
SystemZones	integer-association	Indicates failover zone.

An RDC uses VVR as opposed to shared storage to provide access to data at the Secondary. An RDC exists within a single VCS cluster. The application group, which is configured as a failover group, can be online only on the Primary host. In the case of the failure of the Primary site, the Secondary is promoted to a Primary and the application is brought online on the new Primary host.

An RDC configuration is appropriate in configurations lacking shared storage or SAN interconnection between the Primary site and Secondary site, but where dual dedicated LLT links are available between the Primary site and the Secondary site.

For more information about RDCs, refer to the *Veritas Cluster Server* Administrator's Guide.

Overview of how to configure VVR in a VCS environment

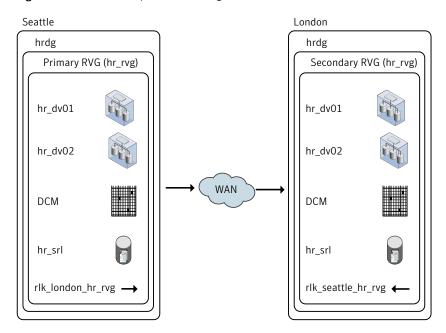

This section gives an overview of how to configure VVR in a VCS environment for high availability of the application that is involved in replication.

To configure VVR in a VCS environment, you must perform the following tasks in the order in which they are listed:

- Setting up a VVR configuration, which involves creating a Replicated Data Set (RDS).
- Creating service groups for the VVR agents and adding the resource and group dependencies appropriately.

Generic VVR setup in a VCS environment

The following illustration shows how VVR replicates in a VCS environment given a two-cluster environment.



Example VVR configuration in a VCS environment

In the following example, two clusters are located at separate sites. VVR replicates data between the sites using a WAN.

The first cluster is located in Seattle and is named Seattle. The cluster Seattle consists of two nodes: seattle1 and seattle2. The second cluster is located in London and is named London. The cluster London also consists of two nodes: london1 and london2. The nodes located in the cluster Seattle contain the Primary RVG. The nodes located in the cluster London contain the Secondary RVG. Note that the following illustration shows the names of the VVR components used by the RVG agent.

Figure 1-9 Example—VVR configuration in a VCS environment

Chapter 2

Configuring the agents for high availability

This chapter includes the following topics:

- Requirements for configuring VVR in a VCS environment
- Example configuration for a failover application
- Example configuration for a parallel application
- Example—Setting up VVR in a VCS environment
- Configuring the agents for a bunker replication configuration
- Administering the service groups

Requirements for configuring VVR in a VCS environment

The requirements for configuring VVR in a VCS environment are as follows:

- Follow the best practices for setting up replication with VVR.

 For information about setting up replication, refer to the *Veritas Volume Replicator Administrator's Guide*.
- Each node that is part of a particular VCS service group involved in replication must use the same port number for replication. You may need to change this number on some nodes before configuring VVR.
- If a node has more than one network interface card on the same physical network being used for replication, each network interface card must have a different MAC address. This is true for all the nodes at the Primary and Secondary sites.

This requirement is specific to the RVG Agent. VCS requires the noautoimport attribute of the disk group to be set.

Refer to the Veritas Cluster Server Bundled Agents Reference Guide for more information about setting the noautoimport attribute.

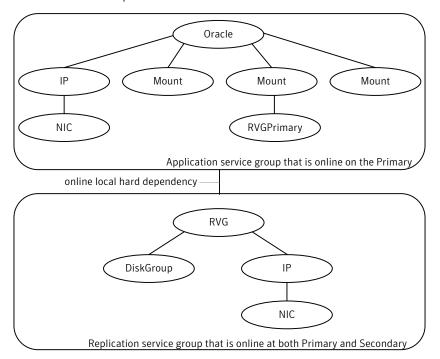
Best practices for setting up the agents

The following list gives the best practices for setting up the agents:

- Only one DiskGroup and one RVG resource must be present in a service group.
- If a disk group is configured as a DiskGroup resource, then all the RVGs in this disk group must be configured as RVG resources. If a disk group is configured as a CVMVolDG resource, then all the RVGs must be configured as RVGShared resources.
- When configuring failover applications, use the RVG, RVGPrimary, and RVGSnapshot agents.
- When configuring parallel applications, use the RVGShared, RVGSharedPri, and RVGLogowner agents. If the configuration has multiple RVGLogowner resources, we recommend that you alternate the order of hosts in the AutoStartList attributes for the service groups containing the RVGLogowner resources. VCS then brings online the RVGLogowner resources on different nodes in the cluster, which facilitates load-balancing. For example, the first service group containing an RVGLogowner resource would appear as:

```
AutoStartList = { seattle1, seattle2 }
whereas the next service group would have:
AutoStartList = { seattle2, seattle1 } and so on.
```

- Do not configure the RVGShared resource in the cvm group. Configure the RVGShared resource in a separate group which contains the RVGShared resource and the CVMVolDg resource.
- If a volume set is fully associated to an RVG, that is, if all its component volumes are associated to the RVG, you can add the volume set to the agent configuration in the same way that a volume is added. Specify the volume set in the Mount resource instead of the component volume names. See "Example—Setting up VVR in a VCS environment" on page 39.

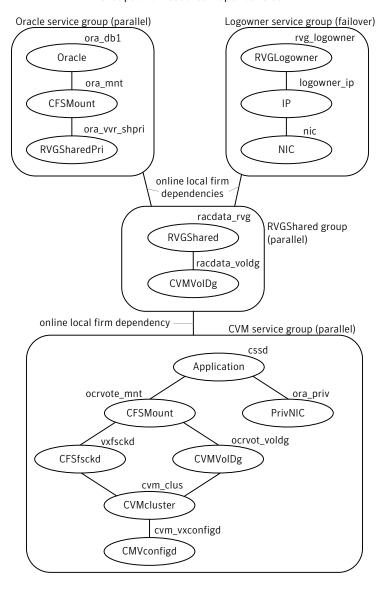

Note: The agents do not support mounting a volume set that is partially associated to an RVG, that is, if one or more of its component volumes are not associated to the RVG.

For more information about using volume sets in an RVG, refer to the Veritas Volume Replicator Administrator's Guide.

Example configuration for a failover application

In the following example, a failover application that uses an RVG is made highly available across two clusters. The application service group contains the following resources: application, Mount, NIC, IP, and RVGPrimary. The replication group contains the RVG, IP, NIC, and DiskGroup resources. The application group has an online local hard dependency on the replication group.

RVG and RVGPrimary Agents—Service Groups and Resource Figure 2-1 **Dependencies**



Example configuration for a parallel application

In the following example, a parallel application that uses an RVG is made highly available across two clusters. The Oracle service group is the application group and contains the CFSMount resource. The Logowner service group is a failover group, which manages the logowner. The service group RVGShared manages the RVG used by the application. The Oracle and CVM groups are configured as parallel groups.

The service groups Logowner and Oracle are dependent on the service group RVGShared. The RVGShared manages the RVG in a shared environment; therefore, it is dependent on the cvm service group.

Figure 2-2 RVGShared, RVGLogowner, and RVGSharedPri agents—Service Groups and Resource Dependencies

Example—Setting up VVR in a VCS environment

Configuring VVR with VCS requires the completion of several tasks, each of which must be performed in the following order:

- Setting up the VVR configuration
- Verifying the VVR replication state
- Configuring the agents for failover applications
- Configuring the agents for parallel applications

Before setting up the VVR configuration, verify whether all the nodes in the cluster that have VVR installed use the same port number for replication. To verify and change the port numbers, use the vrport command. If the port number is the same on all nodes, add the VVR agents to the VCS configuration.

For instructions on using the vrport command, see the Veritas Volume Replicator Administrator's Guide.

Setting up the VVR configuration

This section provides the steps to set up a sample VVRconfiguration. The VVR configuration that is being set up in this example applies to the RVG Agent, that is, it uses the names that are used in the sample configuration file of the RVG agent. The procedure to configure VVR is the same for all the VVR agents. Use the sample configuration files located in /etc/VRTSvcs/conf/sample vvr directory to configure the other agents.

For more information on configuring VVR, refer to the Veritas Volume Replicator Administrator's Guide

The example uses the names listed in the following table.

Name of Cluster: Seattle

Disk group hrdg Primary RVG hr rvg

Primary RLINK to london1 rlk_london_hr_rvg

Primary data volume #1 hr dv01 Primary data volume #2 hr_dv02

Primary volume set hr_vset01

(with data volumes hr dv03, hr dv04)

Primary SRL for hr_rvg hr_srl

Cluster IP 10.216.144.160

Name of Cluster: London

Disk group hrdg

Secondary RVG hr_rvg

Secondary RLINK to seattle rlk_seattle_hr_rvg

Secondary data volume #1 hr_dv01

Secondary data volume #2 hr_dv02

Secondary volume set hr vset01

(with data volumes hr_dv03, hr_dv04)

Secondary SRL for hr_rvg hr_srl

Cluster IP 10.216.144.162

This example assumes that each of the hosts seattle 1 and london 1 has a disk group named hrdg with enough free space to create the VVR objects mentioned in the example. Set up the VVR configuration on seattle1 and london1 to include the objects used in the sample configuration files, main.cf.seattle and main.cf.london, located in the /etc/VRTSvcs/conf/sample vvr/RVG directory.

See "Example VVR configuration in a VCS environment" on page 34.

To set up the VVR configuration

On london1:

Create the Secondary data volumes.

```
# vxassist -g hrdg make hr dv01 100M \
   layout=mirror logtype=dcm mirror=2
# vxassist -g hrdg make hr dv02 100M \
   layout=mirror logtype=dcm mirror=2
```

■ Create the data volumes for the volume set on the Secondary and create the volume set.

```
# vxassist -g hrdg make hr dv03 100M \
   layout=mirror logtype=dcm mirror=2
# vxassist -g hrdg make hr dv04 100M \
   layout=mirror logtype=dcm mirror=2
```

```
# vxmake -g hrdg vset hr vset01 \
    appvols=hr dv03,hr dv04
```

Create the Secondary SRL.

```
# vxassist -g hrdg make hr srl 200M mirror=2
```

2 On seattle1:

■ Create the Primary data volumes.

```
# vxassist -g hrdg make hr dv01 100M \
    layout=mirror logtype=dcm mirror=2
# vxassist -g hrdg make hr dv02 100M \
    layout=mirror logtype=dcm mirror=2
```

■ Create the data volumes for the volume set on the Primary and create the volume set.

```
# vxassist -g hrdg make hr dv03 100M \
    layout=mirror logtype=dcm mirror=2
# vxassist -g hrdg make hr dv04 100M \
    layout=mirror logtype=dcm mirror=2
# vxmake -q hrdg vset hr vset01 \
    appvols=hr_dv03,hr dv04
```

■ Create the Primary SRL.

```
# vxassist -g hrdg make hr srl 200M mirror=2
```

■ Create the Primary RVG.

```
# vradmin -g hrdg createpri hr rvg \
    hr dv01,hr dv02,hr vset01 hr srl
```

- Determine the virtual IP address to be used for replication, and then verify that the device interface for this IP is plumbed. If the device interface for this IP is not plumbed, then plumb the device. Get the IP up using the OS-specific command. This IP address that is to be used for replication must be configured as the IP resource for this RVG service group.
- Create the Secondary RVG.

```
# vradmin -g hrdg addsec hr rvg 10.216.144.160 \
   10.216.144.162 prlink=rlk london hr rvg \
   srlink=rlk seattle hr rvg
```

Note: The RLINKs must point to the virtual IP address for failovers to succeed. The virtual IP address 10.216.144.160 must be able to ping virtual IP address 10.216.144.162 and vice versa. IPv6 addresses are supported.

■ Start replication.

```
# vradmin -q hrdq -f startrep hr rvq
```

Create the following directories on seattle1 and seattle2. These directories will be used as mount points for volumes hr dv01 and hr dv02 and the volume set hr vset01 on the seattle site.

```
# mkdir /hr mount01
# mkdir /hr mount02
# mkdir /hr mount03
```

4 On seattle1, create file systems on the volumes hr dv01 and hr dv02 and on the volume set hr_vset01.

Verifying the VVR replication state

Test the replication state between seattle1 and london1 to verify that VVR is configured correctly.

To verify the replication state

Type the following command on each node:

```
# vxprint -q hrdq hr rvq
```

- **2** In the output, verify the following:
 - State of the RVG is ENABLED/ACTIVE.
 - State of the RLINK is CONNECT/ACTIVE.

Configuring the agents for failover applications

This section explains how to configure the VVR agents for failover applications.

See "Configuring the agents for parallel applications" on page 49.

You can configure the RVG agent and RVGPrimary agent when VCS is stopped or when VCS is running. Sample configuration files, main.cf.seattle and main.cf.london, are located in the /etc/VRTSvcs/conf/sample vvr/RVG and

/etc/VRTSvcs/conf/sample vvr/RVGPrimary directories respectively, and can be used for reference.

You can add the RVG resource to your existing VCS configuration using any one of the following procedures:

- Configuring the agents when VCS is running
- Configuring the agents when VCS is stopped

Configuring the agents when VCS is running

The example in this section explains how to configure the RVG and RVGPrimary agents when VCS is running.

See "Example configuration for a failover application" on page 37.

Note: Use this example as a reference when creating or changing your resources and attributes.

To add the agent resources to your existing VCS configuration when VCS is running, perform the following procedures:

- Create the replication service group
- Create the application service group

Perform the following steps on the system seattle1 in the Primary cluster Seattle, and then repeat the steps (with minor changes as noted) on the system london1 in Secondary cluster London:

To create the replication service group

- Log in as root.
- 2 Set the VCS configuration mode to read/write by issuing the following command:
 - # haconf -makerw

Add the replication service group, VVRGrp, to the cluster. This group will contain all the storage and replication resources. Modify the attributes SystemList and AutoStartList of the service group to populate SystemList and AutoStartList:

```
# hagrp -add VVRGrp
# hagrp -modify VVRGrp SystemList seattle1 0 seattle2 1
# hagrp -modify VVRGrp AutoStartList seattle1 seattle2
```

On the Secondary cluster, replace seattle1 and seattle2 with london1 and london2

Add the DiskGroup resource Hr Dg to the service group VVRGrp and modify the attributes of the resource:

```
# hares -add Hr Dg DiskGroup VVRGrp
# hares -modify Hr Dg DiskGroup hrdg
```

Add a NIC resource vvrnic to the service group VVRGrp and modify the attributes of the resource:

```
# hares -add vvrnic NIC VVRGrp
# hares -modify vvrnic Device qfe3
```

Add the IP resource vvrip to the service group vvrgrp and modify the attributes of the resource:

```
# hares -add vvrip IP VVRGrp
# hares -modify vvrip Device qfe3
# hares -modify vvrip Address 192.168.40.20
# hares -modify vvrip NetMask "255.255.248.0"
```

On the Secondary cluster, use the appropriate IP for the Address. For example:

```
# hares -modify vvrip Address 192.168.40.21
```

7 Specify resource dependencies for the resources you added in the previous steps:

```
# hares -link Hr Rvg vvrip
# hares -link Hr Rvg Hr Dg
# hares -link vvrip vvrnic
```

- **8** Enable all resources in VVRGrp
 - # hagrp -enableresources VVRGrp
- Save and close the VCS configuration
 - # haconf -dump -makero

Perform the following steps on the system seattle1 in the Primary cluster Seattle. and then repeat the steps (with minor changes as noted) on the system london1 in Secondary cluster London:

To create the application service group

- Log in as root.
- 2 Set the VCS configuration mode to read/write by issuing the following command:
 - # haconf -makerw
- Add a service group, ORAGrp, to the cluster Seattle. This group will contain all the application specific resources. Populate the attributes SystemList, AutoStartList and ClusterList of the service group

```
# hagrp -add ORAGrp
# hagrp -modify ORAGrp SystemList seattle1 0 seattle2 1
# hagrp -modify ORAGrp AutoStartList seattle1 seattle2
# hagrp -modify ORAGrp ClusterList Seattle 0 London 1
```

On the Secondary, replace seattle1 and seattle2 with london1 and london2, as follows:

```
# hagrp -add ORAGrp
# hagrp -modify ORAGrp SystemList london1 0 london2 1
# hagrp -modify ORAGrp AutoStartList london1 london2
# hagrp -modify ORAGrp ClusterList Seattle 0 London 1
```

Add a NIC resource oranic to the service group ORAGTP and modify the attributes of the resource:

```
# hares -add oranic NIC ORAGrp
# hares -modify oranic Device hme0
```

Add an IP resource oraip to the service group ORAGrp and modify the attributes of the resource:

```
# hares -add oraip IP ORAGrp
# hares -modify oraip Device hme0
# hares -modify oraip Address 192.168.40.1
# hares -modify oraip NetMask "255.255.248.0"
```

On the Secondary, modify the Address attribute for the IP resource appropriately.

6 Add the Mount resource Hr Mount 01 to mount the volume hr dv01 in the RVG resource Hr Rvg:

```
# hares -add Hr Mount01 Mount ORAGrp
# hares -modify Hr Mount01 MountPoint /hr mount01
# hares -modify Hr Mount01 BlockDevice /dev/vx/dsk/Hr Dg/hr dv01
# hares -modify Hr Mount01 FSType vxfs
# hares -modify Hr Mount01 FsckOpt %-n
# hares -modify Hr Mount01 MountOpt rw
```

7 Add the Mount resource Hr Mount 02 to mount the volume hr dv02 in the RVG resource Hr Rvg:

```
# hares -add Hr Mount02 Mount ORAGrp
# hares -modify Hr Mount02 MountPoint /hr mount02
# hares -modify Hr Mount02 BlockDevice /dev/vx/dsk/Hr Dg/hr dv02
# hares -modify Hr Mount02 FSType vxfs
# hares -modify Hr Mount02 FsckOpt %-n
# hares -modify Hr Mount02 MountOpt rw
```

Add the Mount resource Hr Mount03 to mount the volume set hr vset01 in the RVG resource Hr_Rvg:

```
# hares -add Hr Mount03 Mount ORAGrp
# hares -modify Hr Mount03 MountPoint /hr mount03
# hares -modify Hr Mount03 BlockDevice /dev/vx/dsk/ Hr Dg/hr vset01
# hares -modify Hr Mount03 FSType vxfs
# hares -modify Hr Mount03 FsckOpt %-n
# hares -modify Hr Mount03 MountOpt rw
```

Add the Oracle resource Hr Oracle

```
# hares -add Hr Oracle Oracle ORAGrp
# hares -modify Hr Oracle Sid hr1
# hares -modify Hr Oracle Owner oracle
# hares -modify Hr Oracle Home "/hr mount01/OraHome1"
# hares -modify Hr Oracle Pfile "inithr1.ora"
# hares -modify Hr Oracle User dbtest
# hares -modify Hr Oracle Pword dbtest
# hares -modify Hr Oracle Table oratest
# hares -modify Hr Oracle MonScript "./bin/Oracle/SqlTest.pl"
# hares -modify Hr Oracle StartUpOpt STARTUP
# hares -modify Hr Oracle ShutDownOpt IMMEDIATE
# hares -modify Hr Oracle AutoEndBkup 1
```

10 Add the Oracle listener resource Listener

```
# hares -add LISTENER Netlsnr ORAGrp
# hares -modify LISTENER Owner oracle
# hares -modify LISTENER Home "/hr mount01/OraHome1"
# hares -modify LISTENER Listener LISTENER
# hares -modify LISTENER EnvFile "/oracle/.profile"
# hares -modify LISTENER MonScript "./bin/Netlsnr/LsnrTest.pl"
```

11 Add the RVGPrimary resource Hr RvgPri

```
# hares -add Hr RvgPri RVGPrimary ORAGrp
# hares -modify Hr RvgPri RvgResourceName Hr Rvg
```

12 Specify resource dependencies for the resources you added in the previous steps:

```
# hares -link LISTENER Hr Oracle
# hares -link LISTENER oraip
# hares -link Hr Oracle Hr Mount01
# hares -link Hr Oracle Hr Mount02
# hares -link Hr Mount01 rvg-pri
# hares -link Hr Mount02 rvg-pri
# hares -link Hr Mount03 rvg-pri
# hares -link oraip oranic
```

13 The application service group and the replication service group must both exist before doing this step. If you have not yet created the replication service group, do so now.

See "Configuring the agents when VCS is running" on page 43.

After you have created the application service group and the replication service group, specify an online local hard group dependency between ORAGrp and VVRGrp.

```
# hagrp -link ORAGrp VVRGrp online local hard
```

14 Enable all resources in ORAGrp

```
# hagrp -enableresources ORAGrp
```

15 Save and close the VCS configuration

```
# haconf -dump -makero
```

16 Bring the service groups online, if not already online.

```
# hagrp -online VVRGrp -sys seattle1
# hagrp -online ORAGrp -sys seattle1
```

17 Verify that the service group ORAGrp is ONLINE on the system seattle1 by issuing the following command:

```
# hagrp -state ORAGrp
```

Configuring the agents when VCS is stopped

Perform the following steps to configure the RVG agent using the sample configuration file on the first node in the Primary cluster and Secondary cluster. In the example in this guide, seattle1 is the first Primary node and london1 is the first Secondary node.

To configure the agents when VCS is stopped

- Log in as root.
- Ensure that all changes to the existing configuration have been saved and that further changes are prevented while you modify main.cf:

If the VCS cluster is currently writeable, run the following command:

```
# haconf -dump -makero
```

If the VCS cluster is already read only, run the following command:

```
# haconf -dump
```

Do not edit the configuration files while VCS is started. The following command will stop the had daemon on all systems and leave resources available:

```
# hastop -all -force
```

Make a backup copy of the main.cf file:

```
# cd /etc/VRTSvcs/conf/config
# cp main.cf main.cf.orig
```

- Edit the main.cf files for the Primary and Secondary clusters. The files main.cf.seattle and main.cf.london located in the /etc/VRTSvcs/conf/sample vvr/RVGPrimary directory can be used for reference for the primary cluster and the secondary cluster respectively.
- Save and close the file.
- 7 Verify the syntax of the file /etc/VRTSvcs/conf/config/main.cf:

```
# hacf -verify /etc/VRTSvcs/conf/config
```

- Start VCS on all systems in both clusters.
- 9 Administer the service groups.

See "Administering the service groups" on page 55.

Configuring the agents for parallel applications

Use the RVGShared, RVGSharedPri, and the RVGLogowner agents to manage and monitor RVGs used by parallel applications in a shared environment.

Note: Determine the node that is performing the most writes by running the vxstat command on each node for a suitable period of time; after you set up replication, specify this node as the logowner.

The prerequisites for configuring the agents are as follows:

- You must have replication set up between the Primary and Secondary sites. For more information about replicating in a shared environment, see the Veritas Volume Replicator Administrator's Guide.
- The sites must be configured in a global cluster and the application service must be configured as a global service group. For more information about configuring global clusters, see the *Veritas Cluster* Server Administrator's Guide.

Sample configuration files are located in the /etc/VRTSvcs/conf/sample rac/ directory and include CVR in the filename. These sample files are installed as part of the VRTSdbac package, and can be used as a guide when creating your configuration. You can configure agents from the command line or from the VCS Java and Web consoles.

See the Veritas Cluster Server Administrator's Guide for more information.

To modify the VCS configuration on the Primary cluster

- Define two new service groups: A logowner group that includes the RVGLogowner resource, and an RVG group that includes the RVGShared resource replication objects.
- In the logowner group, define IP and NIC resources, used by the RLINKs for the RVG, and the RVGLogowner resource, for which the RVG and its associated disk group are defined as attributes.
- 3 In the RVG service group, set up the RVGShared agent to monitor the RVG resource. Because it is shared, the RVG must be configured to depend on the CVMVolDg resource, which defines the shared disk group and its activation mode.
 - Define the RVGShared and CVMVolDg resources within a parallel service group so that the service group may be online at the same time on all cluster nodes.
- Add the RVGSharedPri resource to the existing application service group and define the service group to be a global group.
 - See the Veritas Cluster Server Administrator's Guide for instructions on how to create global groups.

- Move the CVMVolDg resource from the existing application service group to the newly created RVGShared service group.
- Set the following service group dependencies:
 - The RVG logowner service group has an "online local firm" dependency on the service group containing the RVG.
 - The RVG service group has an "online local firm" dependency on the CVM service group.
 - The application service group has an "online local firm" dependency on the RVG service group.

To modify the VCS configuration on the Secondary cluster

- Log on to a node in the secondary cluster as root.
- 2 Ensure that all changes to the existing configuration have been saved and that further changes are prevented while you modify main.cf:

If the VCS cluster is currently writeable, run the following command:

```
# haconf -dump -makero
```

If the VCS cluster is already read only, run the following command:

```
# haconf -dump
```

Ensure VCS is not running while you edit main.cf by using the hastop command to stop the VCS engine on all systems and leave the resources available:

```
# hastop -all -force
```

4 Make a backup copy of the main.cf file:

```
# cd /etc/VRTSvcs/conf/config
# cp main.cf main.orig
```

- Use vi or another text editor to edit the main.cf file, making the following changes:
 - Edit the CVM group on the secondary cluster. Use the CVM group on the primary as your guide.
 - Add the logowner group and the RVG service groups.
 - Add an application service group. Use the application service group on the primary cluster as a pattern for the service group on the secondary cluster.

- Since the service group is a global group, assign it the same name as the group on the primary cluster.
- Define the ClusterList and ClusterFailOverPolicy cluster attributes.
- Include the RVGSharedPri resource.
- Save and close the main of file.
- Verify the syntax of the file /etc/VRTSvcs/conf/config/main.cf:
 - # hacf -verify /etc/VRTSvcs/conf/config
- Start VCS on all systems in both clusters.

The application group should be online on both systems of the primary cluster.

The application service group should not be online on the secondary cluster, but the CVM, RVG logowner, and RVG groups should be online.

Configuring the agents for a bunker replication configuration

This section describes how to set up the VCS agents for a bunker replication configuration, that is, an RDS that includes a bunker site. A bunker can be set up using the STORAGE protocol, or using IP.

Refer to one of the following sections to configure the VCS agents:

- VCS configuration for a bunker using the STORAGE protocol
- VCS configuration for a bunker using IP

VCS configuration for a bunker using the STORAGE protocol

When a bunker is set up using the STORAGE protocol, the disk group containing the bunker RVG is imported on the Primary node. If the Primary RVG is in a VCS cluster, the bunker RVG must remain online on the same node on which the Primary RVG is online.

In a shared disk group environment, the bunker RVG must be online on the logowner node.

This section describes how to configure the agents to automate the failover of the bunker RVG.

In a private disk group environment, the RVG resource handles the failover process. If the node on which the RVG resource is online fails, the RVG resource fails over to another node within the cluster. The RVG resource ensures that the bunker RVG also fails over, so that the bunker RVG continues to be on the same node with the Primary RVG.

In a shared disk group environment, the RVGLogowner agent handles the failover of the bunker RVG. If the logowner fails over, the bunker RVG must be deported from the original logowner node and imported on the new logowner node.

To set up automated failover of the bunker RVG, specify the bunker RVG, the bunker disk group, and the bunker node using the following attributes of the RVG resource in the application service group or the RVGLogowner agent:

Attributes for configuring bunker failover Table 2-1

Attribute	Description
StorageDG	The name of the bunker disk group.
StorageRVG	The name of the bunker RVG.
StorageHostIds	Hostid of the bunker node or, if the bunker is clustered, a space-separated list of the hostids of each node in the bunker cluster.

The bunker failover attributes described in this section are the only specific attributes that differ for an RDS containing a bunker. The rest of the configuration for the VCSAgent is the same as for any other RDS.

See "Example—Setting up VVR in a VCS environment" on page 39.

Sample configuration files for VCS agents in a bunker replication environment

The following examples show sample configuration files when the bunker Secondary is connected to the Primary using the STORAGE protocol.

This example uses the following names:

■ seattle: primary cluster node

london: bunker node

bdg: bunker disk group name

■ brvg: bunker RVG name

Sample configuration file (failover application)

The following sample file shows the configuration for the VCS agent on the Primary. The RVG agent includes attributes for a STORAGE bunker, to enable the bunker diskgroup to failover together with the parent RVG.

In this example, the disk group on the Primary is not a shared disk group.

If the Secondary for the RDS has a bunker associated to it, the RVG agent on the Secondary similarly would include the StorageRVG, StorageDG, and StorageHostIds attributes.

```
group AppSG (
       ClusterList = { cluster london = 0 }
       SystemList = { seattle = 0, london = 1 }
       Authority = 1
       AutoStartList = { seattle }
       ClusterFailOverPolicy = Manual
       RVG RVG-1 (
     RVG = vcsrvg
     DiskGroup = pdg
     Primary = true
     StorageRVG = brvg
     StorageDG = bdg
     StorageHostIds = "portland"
```

Sample configuration file (parallel application)

The following sample file shows the configuration for the VCS agent on the Primary. The RVGLogowner agent includes attributes for a STORAGE bunker, to enable the bunker diskgroup to failover together with the logowner. In this example, the disk group on the Primary is a shared disk group. If the Secondary for the RDS has a bunker associated to it, the RVGLogowner resource on the Secondary similarly would include the StorageRVG, StorageDG, and StorageHostIds attributes.

```
group RVGLogownerGrp (
        SystemList = { seattle = 0, london = 1 }
       AutoStartList = { seattle, london }
        IP vvr ip (
                Device = bge0
                Address = "192.168.3.13"
       NIC vvr nic (
                Device = bge0
        RVGLogowner vvr rvglogowner (
```

```
RVG = rvg
  DiskGroup = vvrdg
  StorageRVG = brvg
  StorageDG = bdg
  StorageHostIds = "portland"
requires group RVGSharedGrp online local firm
      vvr ip requires vvr nic
```

VCS configuration for a bunker using IP

The configuration for the VCS agents for a bunker over IP is the same as for any other Secondary.

To set up a bunker configuration

- The Primary and Secondary configurations are the same as for any other RDS using VCS agents.
 - See "Example—Setting up VVR in a VCS environment" on page 39.
- Add the bunker to the RDS with the vradmin addbunker command. For a detailed procedure, see the Veritas Volume Replicator Administrator's Guide.
- Configure the VCS agent on the bunker in the same way as the configuration for any other Secondary. There is no special configuration that needs to be done for a bunker over IP.

Administering the service groups

This section explains how to administer a VCS service group for cluster Seattle from the command line. Note that you can also use the VCS Java and Web consoles to administer service groups.

To administer a VCS service group

Start the VCS engine on seattle1:

```
# hastart
```

Verify that all the service groups that contain RVG resource type are brought online:

```
# hagrp -display
```

Take the service group offline and verify that all resources are stopped:

```
# hagrp -offline hr grp -sys seattle1
# hagrp -display
```

4 Bring the service group online again and verify that all resources are available:

```
# hagrp -online hr grp -sys seattle1
# hagrp -display
```

5 Start the VCS engine on seattle2:

```
# hastart
```

Switch the VVR service group to seattle2:

```
# hagrp -switch hr grp -to seattle2
```

Verify that all the service groups that contain RVG resource type are brought online on seattle2:

```
# hagrp -display
```

- Repeat step 1 through step 7 for the cluster London. 8
- 9 If required, check the following log files on any system for the status or any errors:

```
/var/VRTSvcs/log/engine A.log
/var/VRTSvcs/log/RVG A.log
```

Index

A	E
agents. See individual agents. See RVG agent best practices for setting up 36 configuring 42	examples setting up VVR in a VCS environment 39
configuring when VCS is stopped 48 list of VVR 9 RVGLogowner. See RVGLogowner agent RVGPrimary. See RVGPrimary agent RVGShared . See RVGShared agent RVGSharedPri. See RVGSharedPri agent RVGSnapshot. See RVGSnapshot agent setting up best practices 36 AutoResync attribute RVGPrimary agent 31	failover group RVGLogowner agent 26 fast failback AutoResync attribute of RVGPrimary 31 fast failback resynchronization RVGPrimary 15 RVGSharedPri 29 files sample configuration RVG agent 43
В	fire drill RVGSnaphot agent 21
best practices	KVOSHapilot agent 21
setting up VVR agents 36	G
С	generic VVR setup in a VCS environment 33
configuration	Н
setting up the VVR 39	hybrid group
configuration files	about 32
sample	40041 02
RVG agent 43	L
configuring RVG agent	<u> </u>
when VCS is started 43	list of VCS agents for VVR 9 logowner
when VCS is stopped 48 configuring VVR in VCS environment overview 32	virtual IP requirement 26
requirements 35	М
•	migrating
D	RVGPrimary 15
dependency graphs	RVGSharedPri 29
RVGLogowner agent 26	Mount resource
RVGPrimary agent 15	volume sets 36
RVGShared agent 24	
RVGSharedPri agent 29	

N	RVGShared agent (continued)	
noautoimport attribute	described 23	
RVG agent requirement 36	parallel group 23	
	RVGSharedPri agent	
0	configuring 49	
•	dependency graph 29	
overview	described 29	
configuring VVR in a VCS environment 32	migrating 29	
_	takeover 29	
P	RVGSnapshot agent	
parallel group	described 20	
RVGShared agent 23	fire drill 21	
R	Ş	
	_	
RDC	sample configuration files	
about 32	RVG agent 43	
SystemZones attribute of RVG and RVG Primary	to configure agent	
agents 32	location 39	
Replicated Data Cluster. See RDC	setting	
replication	noautoimport attribute 36	
setting up 35	setting up	
replication state	replication 35	
verifying 42	setting up the VVR configuration 39	
requirements	setting up VVR agents	
configuring VVR in VCS environment 35	best practices 36	
RVG agent	snapshots	
configuring 43	using RVGSnapshot agent for 20	
configuring when VCS is started 43	state of replication 42	
configuring when VCS is stopped 48	SystemZones attribute of RVG and RVG Primary	
described 11	agents 32	
requirement		
noautoimport 36	Т	
sample configuration file 43	takeover	
SystemZones attribute 32		
virtual IP requirement 41	RVGPrimary 15 RVGSharedPri 29	
RVGLogowner agent	RVGSHaleurii 29	
configuring 49	14	
dependency graph 26	V	
described 26	VCS	
failover group 26	configuring RVG agent with 43, 48	
RVGPrimary agent	VCS agents for VVR	
dependency graph 15	list 9	
described 14	VCS environment	
migrating 15	configuring VVR in 32	
SystemZones attribute 32	example setting up VVR 39	
takeover 15	generic VVR setup 33	
RVGShared agent	requirements for configuring VVR 35	
configuring 49	setting up VVR	
dependency graph 24	virtual IP requirement 41	
acpendency graph 27	*	

verifying VVR replication state 42 virtual IP requirement 41 RVGLogowner agent requirement 26 volume sets using agents with 36 VVR agents configuring 42 list of 9 VVR configuration setting up 39 VVR in a VCS environment configuring 32 requirements 35 set up example 39 virtual IP requirement for setting up 41

VVR setup in a VCS environment 33