
Veritas™ Volume Manager
Administrator's Guide

Solaris

5.1



Veritas™ Volume Manager Administrator's Guide
The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Product Version:5.1

Document version: 5.1.0

Legal Notice
Copyright © 2009 Symantec Corporation. All rights reserved.

Symantec, the Symantec Logo, Veritas, and Veritas Storage Foundation are trademarks or
registered trademarks of Symantec Corporation or its affiliates in the U.S. and other
countries. Other names may be trademarks of their respective owners.

This Symantec product may contain third party software for which Symantec is required
to provide attribution to the third party (“Third Party Programs”). Some of the Third Party
Programs are available under open source or free software licenses. The License Agreement
accompanying the Software does not alter any rights or obligations you may have under
those open source or free software licenses. Please see the Third Party Legal Notice Appendix
to this Documentation or TPIP ReadMe File accompanying this Symantec product for more
information on the Third Party Programs.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO
BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL
OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED
IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation", as
applicable, and any successor regulations. Any use, modification, reproduction release,
performance, display or disclosure of the Licensed Software and Documentation by the U.S.
Government shall be solely in accordance with the terms of this Agreement.



Symantec Corporation
20330 Stevens Creek Blvd.
Cupertino, CA 95014

http://www.symantec.com

http://www.symantec.com


Technical Support
Symantec Technical Support maintains support centers globally. Technical
Support’s primary role is to respond to specific queries about product features
and functionality. The Technical Support group also creates content for our online
Knowledge Base. The Technical Support group works collaboratively with the
other functional areas within Symantec to answer your questions in a timely
fashion. For example, the Technical Support group works with Product Engineering
and Symantec Security Response to provide alerting services and virus definition
updates.

Symantec’s maintenance offerings include the following:

■ A range of support options that give you the flexibility to select the right
amount of service for any size organization

■ Telephone and Web-based support that provides rapid response and
up-to-the-minute information

■ Upgrade assurance that delivers automatic software upgrade protection

■ Global support that is available 24 hours a day, 7 days a week

■ Advanced features, including Account Management Services

For information about Symantec’s Maintenance Programs, you can visit our Web
site at the following URL:

www.symantec.com/techsupp/

Contacting Technical Support
Customers with a current maintenance agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/index.jsp

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be
at the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

■ Product release level

■ Hardware information

■ Available memory, disk space, and NIC information

■ Operating system

www.symantec.com/techsupp/
www.symantec.com/business/support/index.jsp


■ Version and patch level

■ Network topology

■ Router, gateway, and IP address information

■ Problem description:

■ Error messages and log files

■ Troubleshooting that was performed before contacting Symantec

■ Recent software configuration changes and network changes

Licensing and registration
If your Symantec product requires registration or a license key, access our technical
support Web page at the following URL:

www.symantec.com/techsupp/

Customer service
Customer service information is available at the following URL:

www.symantec.com/techsupp/

Customer Service is available to assist with the following types of issues:

■ Questions regarding product licensing or serialization

■ Product registration updates, such as address or name changes

■ General product information (features, language availability, local dealers)

■ Latest information about product updates and upgrades

■ Information about upgrade assurance and maintenance contracts

■ Information about the Symantec Buying Programs

■ Advice about Symantec's technical support options

■ Nontechnical presales questions

■ Issues that are related to CD-ROMs or manuals

www.symantec.com/techsupp/
www.symantec.com/techsupp/


Maintenance agreement resources
If you want to contact Symantec regarding an existing maintenance agreement,
please contact the maintenance agreement administration team for your region
as follows:

contractsadmin@symantec.comAsia-Pacific and Japan

semea@symantec.comEurope, Middle-East, and Africa

supportsolutions@symantec.comNorth America and Latin America

Additional enterprise services
Symantec offers a comprehensive set of services that allow you to maximize your
investment in Symantec products and to develop your knowledge, expertise, and
global insight, which enable you to manage your business risks proactively.

Enterprise services that are available include the following:

These solutions provide early warning of cyber attacks, comprehensive threat
analysis, and countermeasures to prevent attacks before they occur.

Symantec Early Warning Solutions

These services remove the burden of managing and monitoring security devices
and events, ensuring rapid response to real threats.

Managed Security Services

Symantec Consulting Services provide on-site technical expertise from
Symantec and its trusted partners. Symantec Consulting Services offer a variety
of prepackaged and customizable options that include assessment, design,
implementation, monitoring, and management capabilities. Each is focused on
establishing and maintaining the integrity and availability of your IT resources.

Consulting Services

Educational Services provide a full array of technical training, security
education, security certification, and awareness communication programs.

Educational Services

To access more information about Enterprise services, please visit our Web site
at the following URL:

www.symantec.com

Select your country or language from the site index.

mailto:contractsadmin@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com
www.symantec.com


Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 1 Understanding Veritas Volume Manager . . . . . . . . . . . . . . . . . . . . . . . 21

About Veritas Volume Manager ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
VxVM and the operating system .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

How data is stored .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
How VxVM handles storage management ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Physical objects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Virtual objects ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Volume layouts in VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Non-layered volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Layered volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Layout methods .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Concatenation, spanning, and carving .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Striping (RAID-0) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Mirroring (RAID-1) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Striping plus mirroring (mirrored-stripe or RAID-0+1) ... . . . . . . . . . . . . . . . 44
Mirroring plus striping (striped-mirror, RAID-1+0 or

RAID-10) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
RAID-5 (striping with parity) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Online relayout ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
How online relayout works .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Limitations of online relayout ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Transformation characteristics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Transformations and volume length .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Volume resynchronization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Dirty flags ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Resynchronization process ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Dirty region logging .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Log subdisks and plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Sequential DRL .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
SmartSync recovery accelerator ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Volume snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Comparison of snapshot features ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

FastResync .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
FastResync enhancements ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Contents



Non-persistent FastResync .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Persistent FastResync .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
DCO volume versioning .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
FastResync limitations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Hot-relocation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Volume sets ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Configuration of volumes on SAN storage .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 2 Provisioning new usable storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Provisioning new usable storage .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Growing existing storage by adding a new LUN .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Growing existing storage by growing the LUN .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Chapter 3 Administering disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

About disk management ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Disk devices ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Disk device naming in VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Private and public disk regions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Discovering and configuring newly added disk devices ... . . . . . . . . . . . . . . . . . . . . . 87
Partial device discovery .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Discovering disks and dynamically adding disk arrays ... . . . . . . . . . . . . . . . 89
Third-party driver coexistence .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
How to administer the Device Discovery Layer ... . . . . . . . . . . . . . . . . . . . . . . . . . 92

Disks under VxVM control ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
VxVM coexistence with SVM and ZFS .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Changing the disk-naming scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Displaying the disk-naming scheme .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Regenerating persistent device names .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Changing device naming for TPD-controlled enclosures ... . . . . . . . . . . . 110
Simple or nopriv disks with enclosure-based naming .... . . . . . . . . . . . . . . 112

Discovering the association between enclosure-based disk names and
OS-based disk names .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Disk installation and formatting .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Displaying or changing default disk layout attributes ... . . . . . . . . . . . . . . . . . . . . . 115
Adding a disk to VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Disk reinitialization .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Using vxdiskadd to put a disk under VxVM control ... . . . . . . . . . . . . . . . . . . 124

RAM disk support in VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Encapsulating a disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Failure of disk encapsulation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Using nopriv disks for encapsulation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Rootability ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Contents8



Booting root volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Boot-time volume restrictions ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Mirroring an encapsulated root disk ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Booting from alternate boot disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Mirroring other file systems on the root disk ... . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Encapsulating SAN disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Administering an encapsulated boot disk ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Unencapsulating the root disk ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Displaying disk information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Displaying disk information with vxdiskadm .... . . . . . . . . . . . . . . . . . . . . . . . . . 143
Dynamic LUN expansion .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Removing disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Removing a disk with subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Removing a disk with no subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Removing a disk from VxVM control ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Removing and replacing disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Replacing a failed or removed disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Removing and replacing a disk in a Sun StorEdge A5x00 disk

array .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Enabling a disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Taking a disk offline ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Renaming a disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Reserving disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Changing host LUN configurations online .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Removing LUNs dynamically from an existing target ID .... . . . . . . . . . . 159
Adding new LUNs dynamically to a new target ID .... . . . . . . . . . . . . . . . . . . . 160
About detecting target ID reuse if the operating system device

tree is not cleaned up .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Scanning an operating system device tree after adding or

removing LUNs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Cleaning up the operating system device tree after removing

LUNs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Chapter 4 Administering Dynamic Multipathing . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

How DMP works .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
How DMP monitors I/O on paths .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Load balancing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Dynamic Reconfiguration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Booting from DMP devices ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
DMP in a clustered environment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Disabling multipathing and making devices invisible to VxVM ..... . . . . . . . 172
Enabling multipathing and making devices visible to VxVM ..... . . . . . . . . . . 173

9Contents



Enabling and disabling I/O for controllers and storage
processors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Displaying DMP database information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Displaying the paths to a disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Setting customized names for DMP nodes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
DMP coexistence with native multipathing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Administering DMP using vxdmpadm .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Retrieving information about a DMP node .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Displaying consolidated information about the DMP nodes .... . . . . . . 181
Displaying the members of a LUN group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Displaying paths controlled by a DMP node, controller, enclosure,

or array port ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Displaying information about controllers ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Displaying information about enclosures ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Displaying information about array ports ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Displaying information about TPD-controlled devices ... . . . . . . . . . . . . . . 187
Displaying extended device attributes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Suppressing or including devices for VxVM or DMP control ... . . . . . . 190
Gathering and displaying I/O statistics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Setting the attributes of the paths to an enclosure ... . . . . . . . . . . . . . . . . . . . 197
Displaying the redundancy level of a device or enclosure ... . . . . . . . . . . 198
Specifying the minimum number of active paths .... . . . . . . . . . . . . . . . . . . . . 199
Displaying the I/O policy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Specifying the I/O policy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Disabling I/O for paths, controllers or array ports ... . . . . . . . . . . . . . . . . . . . 206
Enabling I/O for paths, controllers or array ports ... . . . . . . . . . . . . . . . . . . . . 208
Upgrading disk controller firmware .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Renaming an enclosure ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Configuring the response to I/O failures ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Configuring the I/O throttling mechanism .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Displaying recovery option values ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Configuring DMP path restoration policies ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Stopping the DMP path restoration thread .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Displaying the status of the DMP path restoration thread .... . . . . . . . . 216
Displaying information about the DMP error-handling

thread .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Configuring array policy modules ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Chapter 5 Creating and administering disk groups . . . . . . . . . . . . . . . . . . . . . . 219

About disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Specification of disk groups to commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
System-wide reserved disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Contents10



Rules for determining the default disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . 222
Displaying disk group information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

Displaying free space in a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Creating a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Adding a disk to a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Removing a disk from a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Moving disks between disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Deporting a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Importing a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Handling of minor number conflicts ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Moving disk groups between systems .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Handling errors when importing disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Reserving minor numbers for disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Compatibility of disk groups between platforms .... . . . . . . . . . . . . . . . . . . . . . 238

Handling cloned disks with duplicated identifiers ... . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Writing a new UDID to a disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Importing a disk group containing cloned disks ... . . . . . . . . . . . . . . . . . . . . . . 240
Sample cases of operations on cloned disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Considerations when using EMC CLARiiON SNAPSHOT

LUNs .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Renaming a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
Handling conflicting configuration copies ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Example of a serial split brain condition in a cluster ... . . . . . . . . . . . . . . . . 250
Correcting conflicting configuration information .... . . . . . . . . . . . . . . . . . . . 254

Reorganizing the contents of disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Limitations of disk group split and join .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Listing objects potentially affected by a move .... . . . . . . . . . . . . . . . . . . . . . . . . 261
Moving objects between disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Splitting disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Joining disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Disabling a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Destroying a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Recovering a destroyed disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Upgrading a disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Managing the configuration daemon in VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Backing up and restoring disk group configuration data ... . . . . . . . . . . . . . . . . . 276
Using vxnotify to monitor configuration changes ... . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Working with ISP disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

11Contents



Chapter 6 Creating and administering subdisks and
plexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

About subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Creating subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
Displaying subdisk information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Moving subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Splitting subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Joining subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Associating subdisks with plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Associating log subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Dissociating subdisks from plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
Removing subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Changing subdisk attributes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
About plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
Creating plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Creating a striped plex .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Displaying plex information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Plex states ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Plex condition flags ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Plex kernel states ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Attaching and associating plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Taking plexes offline ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Detaching plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Reattaching plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Automatic plex reattachment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Moving plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
Copying volumes to plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Dissociating and removing plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Changing plex attributes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

Chapter 7 Creating volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

About volume creation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Types of volume layouts ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Supported volume logs and maps .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Creating a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Advanced approach .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Assisted approach .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Using vxassist ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Setting default values for vxassist ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Using the SmartMove™ feature while attaching a plex .... . . . . . . . . . . . . 311

Discovering the maximum size of a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Disk group alignment constraints on volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Contents12



Creating a volume on any disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Creating a volume on specific disks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Creating a volume on SSD devices ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Specifying ordered allocation of storage to volumes .... . . . . . . . . . . . . . . . . 316

Creating a mirrored volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
Creating a mirrored-concatenated volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Creating a concatenated-mirror volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Creating a volume with a version 0 DCO volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Creating a volume with a version 20 DCO volume .... . . . . . . . . . . . . . . . . . . . . . . . . . 324
Creating a volume with dirty region logging enabled .... . . . . . . . . . . . . . . . . . . . . . 324
Creating a striped volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Creating a mirrored-stripe volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Creating a striped-mirror volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Mirroring across targets, controllers or enclosures ... . . . . . . . . . . . . . . . . . . . . . . . . 327
Mirroring across media types (SSD and HDD) .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Creating a RAID-5 volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Creating tagged volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Creating a volume using vxmake .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Creating a volume using a vxmake description file ... . . . . . . . . . . . . . . . . . . . 333
Initializing and starting a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Initializing and starting a volume created using vxmake .... . . . . . . . . . . 335
Accessing a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Chapter 8 Administering volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

About volume administration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Displaying volume information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Volume states ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Volume kernel states ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Monitoring and controlling tasks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Specifying task tags ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Managing tasks with vxtask .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Using Thin Provisioning .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
About Thin Provisioning .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
About Thin Reclamation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Thin Reclamation of a disk, a disk group, or an enclosure ... . . . . . . . . . . 346
Triggering space relamation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Admin operations on an unmounted VxFS thin volume .... . . . . . . . . . . . . . . . . . 348
Using SmartMove with Thin Provisioning .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Stopping a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Putting a volume in maintenance mode .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Starting a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Resizing a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

13Contents



Resizing volumes with vxresize ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Resizing volumes with vxassist ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Resizing volumes with vxvol ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Adding a mirror to a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Mirroring all volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Mirroring volumes on a VM disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
Additional mirroring considerations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Removing a mirror ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Adding logs and maps to volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Preparing a volume for DRL and instant snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . 360

Specifying storage for version 20 DCO plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . 362
Using a DCO and DCO volume with a RAID-5 volume .... . . . . . . . . . . . . . . 363
Determining the DCO version number .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Determining if DRL is enabled on a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Determining if DRL logging is active on a volume .... . . . . . . . . . . . . . . . . . . . 365
Disabling and re-enabling DRL .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Removing support for DRL and instant snapshots from a

volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Adding traditional DRL logging to a mirrored volume .... . . . . . . . . . . . . . . . . . . . 366

Removing a traditional DRL log .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Upgrading existing volumes to use version 20 DCOs .... . . . . . . . . . . . . . . . . . . . . . 367
Setting tags on volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Changing the read policy for mirrored volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Removing a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
Moving volumes from a VM disk .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Enabling FastResync on a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Checking whether FastResync is enabled on a volume .... . . . . . . . . . . . . . 375
Disabling FastResync .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Performing online relayout ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Permitted relayout transformations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Specifying a non-default layout ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Specifying a plex for relayout ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Tagging a relayout operation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Viewing the status of a relayout ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Controlling the progress of a relayout ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Monitoring Thin Reclamation using the vxtask command .... . . . . . . . . . . . . . . 382
Converting between layered and non-layered volumes .... . . . . . . . . . . . . . . . . . . 383
Adding a RAID-5 log .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Adding a RAID-5 log using vxplex .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Removing a RAID-5 log .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Contents14



Chapter 9 Administering volume snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

About volume snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Traditional third-mirror break-off snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Full-sized instant snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
Space-optimized instant snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Emulation of third-mirror break-off snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Linked break-off snapshot volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Cascaded snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Creating a snapshot of a snapshot ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Creating multiple snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Restoring the original volume from a snapshot ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Creating instant snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Preparing to create instant and break-off snapshots ... . . . . . . . . . . . . . . . . 402
Creating and managing space-optimized instant snapshots ... . . . . . . . 406
Creating and managing full-sized instant snapshots ... . . . . . . . . . . . . . . . . 408
Creating and managing third-mirror break-off snapshots ... . . . . . . . . . 410
Creating and managing linked break-off snapshot volumes .... . . . . . . 413
Creating multiple instant snapshots ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
Creating instant snapshots of volume sets ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Adding snapshot mirrors to a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Removing a snapshot mirror ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Removing a linked break-off snapshot volume .... . . . . . . . . . . . . . . . . . . . . . . . 419
Adding a snapshot to a cascaded snapshot hierarchy .... . . . . . . . . . . . . . . 419
Refreshing an instant snapshot ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Reattaching an instant snapshot ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
Reattaching a linked break-off snapshot volume .... . . . . . . . . . . . . . . . . . . . . 421
Restoring a volume from an instant snapshot ... . . . . . . . . . . . . . . . . . . . . . . . . . 422
Dissociating an instant snapshot ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Removing an instant snapshot ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
Splitting an instant snapshot hierarchy .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Displaying instant snapshot information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Controlling instant snapshot synchronization .... . . . . . . . . . . . . . . . . . . . . . . . 426
Listing the snapshots created on a cache .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Tuning the autogrow attributes of a cache .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Growing and shrinking a cache .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Removing a cache .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Creating traditional third-mirror break-off snapshots ... . . . . . . . . . . . . . . . . . . . . 431
Converting a plex into a snapshot plex .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Creating multiple snapshots with the vxassist command .... . . . . . . . . . 436
Reattaching a snapshot volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Adding plexes to a snapshot volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Dissociating a snapshot volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

15Contents



Displaying snapshot information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Adding a version 0 DCO and DCO volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Specifying storage for version 0 DCO plexes ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Removing a version 0 DCO and DCO volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . 444
Reattaching a version 0 DCO and DCO volume .... . . . . . . . . . . . . . . . . . . . . . . . 444

Chapter 10 Creating and administering volume sets . . . . . . . . . . . . . . . . . . . . . . 447

About volume sets ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Creating a volume set ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Adding a volume to a volume set ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
Removing a volume from a volume set ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Listing details of volume sets ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
Stopping and starting volume sets ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
Raw device node access to component volumes .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Enabling raw device access when creating a volume set ... . . . . . . . . . . . . 452
Displaying the raw device access settings for a volume set ... . . . . . . . . 453
Controlling raw device access for an existing volume set ... . . . . . . . . . . 453

Chapter 11 Configuring off-host processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

About off-host processing solutions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Implemention of off-host processing solutions .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Implementing off-host online backup .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
Implementing decision support ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

Chapter 12 Administering hot-relocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

About hot-relocation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
How hot-relocation works .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468

Partial disk failure mail messages ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
Complete disk failure mail messages ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
How space is chosen for relocation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

How reclamation on a deleted volume works .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Configuring a system for hot-relocation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
Displaying spare disk information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Marking a disk as a hot-relocation spare ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Removing a disk from use as a hot-relocation spare ... . . . . . . . . . . . . . . . . . . . . . . . 478
Excluding a disk from hot-relocation use .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Making a disk available for hot-relocation use .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
Configuring hot-relocation to use only spare disks ... . . . . . . . . . . . . . . . . . . . . . . . . . 480
Moving relocated subdisks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480

Moving relocated subdisks using vxdiskadm .... . . . . . . . . . . . . . . . . . . . . . . . . . . 481
Moving relocated subdisks using vxassist ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

Contents16



Moving relocated subdisks using vxunreloc ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Restarting vxunreloc after errors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

Modifying the behavior of hot-relocation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Chapter 13 Administering cluster functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Overview of clustering .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Overview of cluster volume management ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
Private and shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
Activation modes of shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
Connectivity policy of shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
Effect of disk connectivity on cluster reconfiguration .... . . . . . . . . . . . . . . 500
Limitations of shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Multiple host failover configurations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Import lock .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
Failover ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Corruption of disk group configuration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

About the cluster functionality of VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
Cluster initialization and configuration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Cluster reconfiguration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Volume reconfiguration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
Node shutdown .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512
Cluster shutdown .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513

Dirty region logging in cluster environments ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
How DRL works in a cluster environment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

Administering VxVM in cluster environments ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
Requesting node status and discovering the master node .... . . . . . . . . . 515
Determining if a LUN is in a shareable disk group .... . . . . . . . . . . . . . . . . . . . 516
Listing shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
Creating a shared disk group .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Importing disk groups as shared .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
Converting a disk group from shared to private ... . . . . . . . . . . . . . . . . . . . . . . . 519
Moving objects between shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Splitting shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
Joining shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Changing the activation mode on a shared disk group .... . . . . . . . . . . . . . 520
Setting the disk detach policy on a shared disk group .... . . . . . . . . . . . . . . 520
Setting the disk group failure policy on a shared disk group .... . . . . . 521
Creating volumes with exclusive open access by a node .... . . . . . . . . . . . 521
Setting exclusive open access to a volume by a node .... . . . . . . . . . . . . . . . 521
Displaying the cluster protocol version .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Displaying the supported cluster protocol version range .... . . . . . . . . . . 522
Upgrading the cluster protocol version .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

17Contents



Recovering volumes in shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Obtaining cluster performance statistics ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

Chapter 14 Administering sites and remote mirrors . . . . . . . . . . . . . . . . . . . . . . 525

About sites and remote mirrors ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
About site-based allocation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
About site consistency .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
About site tags ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
About the site read policy ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

Making an existing disk group site consistent ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Configuring a new disk group as a Remote Mirror configuration .... . . . . . 532
Fire drill — testing the configuration .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

Simulating site failure ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Verifying the secondary site ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
Recovery from simulated site failure ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

Changing the site name .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Resetting the site name for a host ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

Administering the Remote Mirror configuration .... . . . . . . . . . . . . . . . . . . . . . . . . . . 535
Configuring site tagging for disks or enclosures ... . . . . . . . . . . . . . . . . . . . . . . 535
Configuring automatic site tagging for a disk group .... . . . . . . . . . . . . . . . . 536
Configuring site consistency on a volume .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Examples of storage allocation by specifying sites ... . . . . . . . . . . . . . . . . . . . . . . . . . 537
Displaying site information .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
Failure and recovery scenarios ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

Recovering from a loss of site connectivity ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Recovering from host failure ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Recovering from storage failure ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
Recovering from site failure ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
Automatic site reattachment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Chapter 15 Performance monitoring and tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

Performance guidelines ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Data assignment .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
Striping .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
Mirroring .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
Combining mirroring and striping .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

RAID-5 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
Volume read policies ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Performance monitoring .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
Setting performance priorities ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
Obtaining performance data ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Using performance data ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Contents18



Tuning VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
General tuning guidelines ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
Tuning guidelines for large systems .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
Changing the values of tunables ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Tunable parameters for VxVM ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556
DMP tunable parameters ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566
Disabling I/O statistics collection .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Appendix A Using Veritas Volume Manager commands . . . . . . . . . . . . . . . . . 575

About Veritas Volume Manager commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
Online manual pages ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Section 1M — administrative commands .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
Section 4 — file formats ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
Section 7 — device driver interfaces ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602

Appendix B Configuring Veritas Volume Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

Setup tasks after installation .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
Unsupported disk arrays ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Foreign devices ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
Initialization of disks and creation of disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . 604
Guidelines for configuring storage .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

Mirroring guidelines ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
Dirty region logging guidelines ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
Striping guidelines ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
RAID-5 guidelines ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
Hot-relocation guidelines ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
Accessing volume devices ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

VxVM’s view of multipathed devices ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
Cluster support ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

Configuring shared disk groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
Converting existing VxVM disk groups to shared disk

groups .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 612

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

19Contents



Contents20



Understanding Veritas
Volume Manager

This chapter includes the following topics:

■ About Veritas Volume Manager

■ VxVM and the operating system

■ How VxVM handles storage management

■ Volume layouts in VxVM

■ Online relayout

■ Volume resynchronization

■ Dirty region logging

■ Volume snapshots

■ FastResync

■ Hot-relocation

■ Volume sets

■ Configuration of volumes on SAN storage

About Veritas Volume Manager
VeritasTM Volume Manager (VxVM) by Symantec is a storage management
subsystem that allows you to manage physical disks and logical unit numbers
(LUNs) as logical devices called volumes. A VxVM volume appears to applications

1Chapter



and the operating system as a physical device on which file systems, databases
and other managed data objects can be configured.

VxVM provides easy-to-use online disk storage management for computing
environments and Storage Area Network (SAN) environments. By supporting the
Redundant Array of Independent Disks (RAID) model, VxVM can be configured
to protect against disk and hardware failure, and to increase I/O throughput.
Additionally, VxVM provides features that enhance fault tolerance and fast
recovery from disk failure or storage array failure.

VxVM overcomes restrictions imposed by hardware disk devices and by LUNs by
providing a logical volume management layer. This allows volumes to span multiple
disks and LUNs.

VxVM provides the tools to improve performance and ensure data availability
and integrity. You can also use VxVM to dynamically configure storage while the
system is active.

For more information on administering Veritas Volume Manager, see the following
documentation:

■ Veritas Storage Foundation Advanced Features Administrator's Guide
This guide provides more information on using the Cross-platform Data Sharing
(CDS) feature of Veritas Volume Manager. CDS lets you move VxVM disks and
objects between machines that run different operating systems. To use CDS,
you need a Veritas Storage Foundation license.
This guide also gives you guidelines about how to use FlashSnap software to
implement point-in-time copy solutions for backup and database replication.
To use FlashSnap, you need a separate license.
This guide also describes the Veritas Thin Provisioning and SmartMove™
features which let you take advantage of thin storage.

■ Veritas VolumeManager Troubleshooting Guide
This guide describes how to recover from hardware failure, configure and
recover disk groups, and log commands and transactions. It also documents
common error messages and suggests solutions.

VxVM and the operating system
VxVM operates as a subsystem between your operating system and your data
management systems, such as file systems and database management systems.
VxVM is tightly coupled with the operating system. Before a disk or LUN can be
brought under VxVM control, the disk must be accessible through the operating
system device interface. VxVM is layered on top of the operating system interface
services, and is dependent upon how the operating system accesses physical disks.

Understanding Veritas Volume Manager
VxVM and the operating system

22



VxVM is dependent upon the operating system for the following functionality:

■ operating system (disk) devices

■ device handles

■ VxVM dynamic multipathing (DMP) metadevice

VxVM relies on the following constantly-running daemons and kernel threads
for its operation:

The VxVM configuration daemon maintains disk and
group configurations and communicates configuration
changes to the kernel, and modifies configuration
information stored on disks.

vxconfigd

VxVM I/O kernel threads provide extended I/O operations
without blocking calling processes. By default, 16 I/O
threads are started at boot time, and at least one I/O
thread must continue to run at all times.

vxiod

The hot-relocation daemon monitors VxVM for events
that affect redundancy, and performs hot-relocation to
restore redundancy. If thin provision disks are configured
in the system, then the storage space of a deleted volume
is reclaimed by this daemon as configured by the policy.

vxrelocd

How data is stored
There are several methods used to store data on physical disks. These methods
organize data on the disk so the data can be stored and retrieved efficiently. The
basic method of disk organization is called formatting. Formatting prepares the
hard disk so that files can be written to and retrieved from the disk by using a
prearranged storage pattern.

Hard disks are formatted, and information stored, using two methods:
physical-storage layout and logical-storage layout. VxVM uses the logical-storage
layout method.

See “How VxVM handles storage management” on page 23.

How VxVM handles storage management
VxVM uses the following types of objects to handle storage management:

23Understanding Veritas Volume Manager
How VxVM handles storage management



Physical disks, LUNs (virtual disks implemented in hardware), or
other hardware with block and raw operating system device
interfaces that are used to store data.

See “Physical objects” on page 24.

Physical objects

When one or more physical disks are brought under the control
of VxVM, it creates virtual objects called volumes on those physical
disks. Each volume records and retrieves data from one or more
physical disks. Volumes are accessed by file systems, databases,
or other applications in the same way that physical disks are
accessed. Volumes are also composed of other virtual objects
(plexes and subdisks) that are used in changing the volume
configuration. Volumes and their virtual components are called
virtual objects or VxVM objects.

See “Virtual objects” on page 29.

Virtual objects

Physical objects
A physical disk is the basic storage device (media) where the data is ultimately
stored. You can access the data on a physical disk by using a device name to locate
the disk. The physical disk device name varies with the computer system you use.
Not all parameters are used on all systems.

Typical device names are of the form c#t#d#s#, where c# specifies the controller,
t# specifies the target ID, d# specifies the disk, and s# specifies the partition or
slice. For example, device name c0t0d0s2 is the entire hard disk connected to
controller number 0 in the system, with a target ID of 0, and physical disk number
0.

Figure 1-1 shows how a physical disk and device name (devname) are illustrated
in this document.

Figure 1-1 Physical disk example

devname

VxVM writes identification information on physical disks under VxVM control
(VM disks). VxVM disks can be identified even after physical disk disconnection
or system outages. VxVM can then re-form disk groups and logical objects to
provide failure detection and to speed system recovery.

Understanding Veritas Volume Manager
How VxVM handles storage management

24



Partitions
Figure 1-2 shows how a physical disk can be divided into one or more slices, also
known as partitions.

Figure 1-2 Slice example

Physical disk with several slices Slice

devnames0

devnames1

devnames2

devnames0

The slice number is added at the end of the devname, and is denoted by s#. Note
that slice s2 refers to an entire physical disk for non-EFI disks.

Disk arrays
Performing I/O to disks is a relatively slow process because disks are physical
devices that require time to move the heads to the correct position on the disk
before reading or writing. If all of the read or write operations are done to
individual disks, one at a time, the read-write time can become unmanageable.
Performing these operations on multiple disks can help to reduce this problem.

A disk array is a collection of physical disks that VxVM can represent to the
operating system as one or more virtual disks or volumes. The volumes created
by VxVM look and act to the operating system like physical disks. Applications
that interact with volumes should work in the same way as with physical disks.

Figure 1-3 shows how VxVM represents the disks in a disk array as several volumes
to the operating system.

25Understanding Veritas Volume Manager
How VxVM handles storage management



Figure 1-3 How VxVM presents the disks in a disk array as volumes to the
operating system

Veritas Volume Manager

Physical disks

Operating system

Volumes

Disk 1 Disk 2 Disk 3 Disk 4

Data can be spread across several disks within an array to distribute or balance
I/O operations across the disks. Using parallel I/O across multiple disks in this
way improves I/O performance by increasing data transfer speed and overall
throughput for the array.

Multiple paths to disk arrays
Some disk arrays provide multiple ports to access their disk devices. These ports,
coupled with the host bus adaptor (HBA) controller and any data bus or I/O
processor local to the array, make up multiple hardware paths to access the disk
devices. Such disk arrays are called multipathed disk arrays. This type of disk
array can be connected to host systems in many different configurations, (such
as multiple ports connected to different controllers on a single host, chaining of
the ports through a single controller on a host, or ports connected to different
hosts simultaneously).

See “How DMP works” on page 165.

Device discovery
Device discovery is the term used to describe the process of discovering the disks
that are attached to a host. This feature is important for DMP because it needs to
support a growing number of disk arrays from a number of vendors. In conjunction
with the ability to discover the devices attached to a host, the Device Discovery

Understanding Veritas Volume Manager
How VxVM handles storage management

26



service enables you to add support dynamically for new disk arrays. This operation,
which uses a facility called the Device Discovery Layer (DDL), is achieved without
the need for a reboot.

This means that you can dynamically add a new disk array to a host, and run a
command which scans the operating system’s device tree for all the attached disk
devices, and reconfigures DMP with the new device database.

See “How to administer the Device Discovery Layer” on page 92.

Enclosure-based naming
Enclosure-based naming provides an alternative to operating system-based device
naming. This allows disk devices to be named for enclosures rather than for the
controllers through which they are accessed. In a Storage Area Network (SAN)
that uses Fibre Channel hubs or fabric switches, information about disk location
provided by the operating system may not correctly indicate the physical location
of the disks. For example, c#t#d#s# naming assigns controller-based device names
to disks in separate enclosures that are connected to the same host controller.
Enclosure-based naming allows VxVM to access enclosures as separate physical
entities. By configuring redundant copies of your data on separate enclosures,
you can safeguard against failure of one or more enclosures.

Figure 1-4 shows a typical SAN environment where host controllers are connected
to multiple enclosures in a daisy chain or through a Fibre Channel hub or fabric
switch.

27Understanding Veritas Volume Manager
How VxVM handles storage management



Figure 1-4 Example configuration for disk enclosures connected via a fibre
channel hub or switch

enc0 enc2

Host

Fibre Channel hub
or switch

Disk enclosures

c1

enc1

In such a configuration, enclosure-based naming can be used to refer to each disk
within an enclosure. For example, the device names for the disks in enclosure
enc0 are named enc0_0, enc0_1, and so on. The main benefit of this scheme is
that it allows you to quickly determine where a disk is physically located in a large
SAN configuration.

In most disk arrays, you can use hardware-based storage management to represent
several physical disks as one LUN to the operating system. In such cases, VxVM
also sees a single logical disk device rather than its component disks. For this
reason, when reference is made to a disk within an enclosure, this disk may be
either a physical disk or a LUN.

Another important benefit of enclosure-based naming is that it enables VxVM to
avoid placing redundant copies of data in the same enclosure. This is a good thing
to avoid as each enclosure can be considered to be a separate fault domain. For
example, if a mirrored volume were configured only on the disks in enclosure
enc1, the failure of the cable between the hub and the enclosure would make the
entire volume unavailable.

If required, you can replace the default name that VxVM assigns to an enclosure
with one that is more meaningful to your configuration.

See “Renaming an enclosure” on page 209.

Understanding Veritas Volume Manager
How VxVM handles storage management

28



Figure 1-5 shows a High Availability (HA) configuration where redundant-loop
access to storage is implemented by connecting independent controllers on the
host to separate hubs with independent paths to the enclosures.

Figure 1-5 Example HA configuration using multiple hubs or switches to provide
redundant loop access

enc0 enc2

Host

Fibre Channel hubs
or switches

Disk enclosures

c1 c2

enc1

Such a configuration protects against the failure of one of the host controllers
(c1 and c2), or of the cable between the host and one of the hubs. In this example,
each disk is known by the same name to VxVM for all of the paths over which it
can be accessed. For example, the disk device enc0_0 represents a single disk for
which two different paths are known to the operating system, such as c1t99d0
and c2t99d0.

See “Disk device naming in VxVM” on page 83.

See “Changing the disk-naming scheme” on page 107.

To take account of fault domains when configuring data redundancy, you can
control how mirrored volumes are laid out across enclosures.

See “Mirroring across targets, controllers or enclosures” on page 327.

Virtual objects
VxVM uses multiple virtualization layers to provide distinct functionality and
reduce physical limitations.

29Understanding Veritas Volume Manager
How VxVM handles storage management



Virtual objects in VxVM include the following:

■ Disk groups
See “Disk groups” on page 31.

■ VM disks
See “VM disks” on page 32.

■ Subdisks
See “Subdisks” on page 33.

■ Plexes
See “Plexes” on page 34.

■ Volumes
See “Volumes” on page 35.

The connection between physical objects and VxVM objects is made when you
place a physical disk under VxVM control.

After installing VxVM on a host system, you must bring the contents of physical
disks under VxVM control by collecting the VM disks into disk groups and
allocating the disk group space to create logical volumes.

Bringing the contents of physical disks under VxVM control is accomplished only
if VxVM takes control of the physical disks and the disk is not under control of
another storage manager such as Sun Microsystems Solaris Volume Manager
software.

VxVM creates virtual objects and makes logical connections between the objects.
The virtual objects are then used by VxVM to do storage management tasks.

The vxprint command displays detailed information about the VxVM objects
that exist on a system.

See “Displaying volume information” on page 338.

See the vxprint(1M) manual page.

Combining virtual objects in VxVM
VxVM virtual objects are combined to build volumes. The virtual objects contained
in volumes are VM disks, disk groups, subdisks, and plexes. VxVM virtual objects
are organized in the following ways:

■ VM disks are grouped into disk groups

■ Subdisks (each representing a specific region of a disk) are combined to form
plexes

■ Volumes are composed of one or more plexes

Understanding Veritas Volume Manager
How VxVM handles storage management

30



Figure 1-6 shows the connections between Veritas Volume Manager virtual objects
and how they relate to physical disks.

Figure 1-6 Connection between objects in VxVM

vol01

vol01-01 vol02-01 vol02-02

vol02

Disk group

Volumes

vol01-01 vol02-01 vol02-02

disk01 disk02 disk03

Plexes

Subdisks

VM disks

Physical
disks

disk01-01 disk02-01 disk03-01

disk01-01 disk02-01 disk03-01

devname1 devname2 devname3

disk01-01 disk02-01 disk03-01

The disk group contains three VM disks which are used to create two volumes.
Volume vol01 is simple and has a single plex. Volume vol02 is a mirrored volume
with two plexes.

The various types of virtual objects (disk groups, VM disks, subdisks, plexes and
volumes) are described in the following sections. Other types of objects exist in
Veritas Volume Manager, such as data change objects (DCOs), and volume sets,
to provide extended functionality.

Disk groups
A disk group is a collection of disks that share a common configuration, and which
are managed by VxVM. A disk group configuration is a set of records with detailed

31Understanding Veritas Volume Manager
How VxVM handles storage management



information about related VxVM objects, their attributes, and their connections.
A disk group name can be up to 31 characters long.

See “VM disks” on page 32.

In releases before VxVM 4.0, the default disk group was rootdg (the root disk
group). For VxVM to function, the rootdg disk group had to exist and it had to
contain at least one disk. This requirement no longer exists, and VxVM can work
without any disk groups configured (although you must set up at least one disk
group before you can create any volumes of other VxVM objects).

See “System-wide reserved disk groups” on page 222.

You can create additional disk groups when you need them. Disk groups allow
you to group disks into logical collections. A disk group and its components can
be moved as a unit from one host machine to another.

See “Reorganizing the contents of disk groups” on page 256.

Volumes are created within a disk group. A given volume and its plexes and
subdisks must be configured from disks in the same disk group.

VM disks
When you place a physical disk under VxVM control, a VM disk is assigned to the
physical disk. A VM disk is under VxVM control and is usually in a disk group.
Each VM disk corresponds to at least one physical disk or disk partition. VxVM
allocates storage from a contiguous area of VxVM disk space.

A VM disk typically includes a public region (allocated storage) and a small private
region where VxVM internal configuration information is stored.

Each VM disk has a unique disk media name (a virtual disk name). You can either
define a disk name of up to 31 characters, or allow VxVM to assign a default name
that takes the form diskgroup##, where diskgroup is the name of the disk group
to which the disk belongs.

See “Disk groups” on page 31.

Figure 1-7 shows a VM disk with a media name of disk01 that is assigned to the
physical disk, devname.

Understanding Veritas Volume Manager
How VxVM handles storage management

32



Figure 1-7 VM disk example

disk01 VM disk

Physical disk
devname

Subdisks
A subdisk is a set of contiguous disk blocks. A block is a unit of space on the disk.
VxVM allocates disk space using subdisks. A VM disk can be divided into one or
more subdisks. Each subdisk represents a specific portion of a VM disk, which is
mapped to a specific region of a physical disk.

The default name for a VM disk is diskgroup## and the default name for a subdisk
is diskgroup##-##, where diskgroup is the name of the disk group to which the
disk belongs.

See “Disk groups” on page 31.

Figure 1-8 shows disk01-01 is the name of the first subdisk on the VM disk named
disk01.

Figure 1-8 Subdisk example

Subdisk

VM disk with one subdisk
disk01

disk01-01

disk01-01

A VM disk can contain multiple subdisks, but subdisks cannot overlap or share
the same portions of a VM disk. To ensure integrity, VxVM rejects any commands
that try to create overlapping subdisks.

Figure 1-9 shows a VM disk with three subdisks, which are assigned from one
physical disk.

33Understanding Veritas Volume Manager
How VxVM handles storage management



Figure 1-9 Example of three subdisks assigned to one VM Disk

Subdisks

VM disk with three subdisks

disk01

disk01-01

disk01-02

disk01-03

disk01-02 disk01-03disk01-01

Any VM disk space that is not part of a subdisk is free space. You can use free
space to create new subdisks.

Plexes
VxVM uses subdisks to build virtual objects called plexes. A plex consists of one
or more subdisks located on one or more physical disks.

Figure 1-10 shows an example of a plex with two subdisks.

Figure 1-10 Example of a plex with two subdisks

Plex with two subdisks

Subdisks

vol01-01

disk01-01 disk01-02

disk01-01 disk01-02

You can organize data on subdisks to form a plex by using the following methods:

■ concatenation

■ striping (RAID-0)

■ mirroring (RAID-1)

■ striping with parity (RAID-5)

Concatenation, striping (RAID-0), mirroring (RAID-1) and RAID-5 are types of
volume layout.

See “Volume layouts in VxVM” on page 36.

Understanding Veritas Volume Manager
How VxVM handles storage management

34



Volumes
A volume is a virtual disk device that appears to applications, databases, and file
systems like a physical disk device, but does not have the physical limitations of
a physical disk device. A volume consists of one or more plexes, each holding a
copy of the selected data in the volume. Due to its virtual nature, a volume is not
restricted to a particular disk or a specific area of a disk. The configuration of a
volume can be changed by using VxVM user interfaces. Configuration changes
can be accomplished without causing disruption to applications or file systems
that are using the volume. For example, a volume can be mirrored on separate
disks or moved to use different disk storage.

VxVM uses the default naming conventions of vol## for volumes and vol##-##

for plexes in a volume. For ease of administration, you can choose to select more
meaningful names for the volumes that you create.

A volume may be created under the following constraints:

■ Its name can contain up to 31 characters.

■ It can consist of up to 32 plexes, each of which contains one or more subdisks.

■ It must have at least one associated plex that has a complete copy of the data
in the volume with at least one associated subdisk.

■ All subdisks within a volume must belong to the same disk group.

Figure 1-11 shows a volume vol01 with a single plex.

Figure 1-11 Example of a volume with one plex

Volume with one plex

Plex with one subdisk

vol01

vol01-01

vol01-01

disk01-01

The volume vol01 has the following characteristics:

■ It contains one plex named vol01-01.

■ The plex contains one subdisk named disk01-01.

■ The subdisk disk01-01 is allocated from VM disk disk01.

Figure 1-12 shows a mirrored volume, vol06, with two data plexes.

35Understanding Veritas Volume Manager
How VxVM handles storage management



Figure 1-12 Example of a volume with two plexes

Volume with two plexes

Plexes

vol06-01 vol06-02

vol06

vol06-01 vol06-02

disk01-01 disk02-01

Each plex of the mirror contains a complete copy of the volume data.

The volume vol06 has the following characteristics:

■ It contains two plexes named vol06-01 and vol06-02.

■ Each plex contains one subdisk.

■ Each subdisk is allocated from a different VM disk (disk01 and disk02).

See “Mirroring (RAID-1)” on page 43.

VxVM supports the concept of layered volumes in which subdisks can contain
volumes.

See “Layered volumes” on page 51.

Volume layouts in VxVM
A VxVM virtual device is defined by a volume. A volume has a layout defined by
the association of a volume to one or more plexes, each of which map to one or
more subdisks. The volume presents a virtual device interface that is exposed to
other applications for data access. These logical building blocks re-map the volume
address space through which I/O is re-directed at run-time.

Different volume layouts provide different levels of availability and performance.
A volume layout can be configured and changed to provide the desired level of
service.

Non-layered volumes
In a non-layered volume, a subdisk maps directly to a VM disk. This allows the
subdisk to define a contiguous extent of storage space backed by the public region
of a VM disk. When active, the VM disk is directly associated with an underlying

Understanding Veritas Volume Manager
Volume layouts in VxVM

36



physical disk. The combination of a volume layout and the physical disks therefore
determines the storage service available from a given virtual device.

Layered volumes
A layered volume is constructed by mapping its subdisks to underlying volumes.
The subdisks in the underlying volumes must map to VM disks, and hence to
attached physical storage.

Layered volumes allow for more combinations of logical compositions, some of
which may be desirable for configuring a virtual device. For example, layered
volumes allow for high availability when using striping. Because permitting free
use of layered volumes throughout the command level would have resulted in
unwieldy administration, some ready-made layered volume configurations are
designed into VxVM.

See “Layered volumes” on page 51.

These ready-made configurations operate with built-in rules to automatically
match desired levels of service within specified constraints. The automatic
configuration is done on a “best-effort” basis for the current command invocation
working against the current configuration.

To achieve the desired storage service from a set of virtual devices, it may be
necessary to include an appropriate set of VM disks into a disk group, and to
execute multiple configuration commands.

To the extent that it can, VxVM handles initial configuration and on-line
re-configuration with its set of layouts and administration interface to make this
job easier and more deterministic.

Layout methods
Data in virtual objects is organized to create volumes by using the following layout
methods:

■ Concatenation, spanning, and carving
See “Concatenation, spanning, and carving” on page 38.

■ Striping (RAID-0)
See “Striping (RAID-0)” on page 40.

■ Mirroring (RAID-1)
See “Mirroring (RAID-1)” on page 43.

■ Striping plus mirroring (mirrored-stripe or RAID-0+1)
See “Striping plus mirroring (mirrored-stripe or RAID-0+1)” on page 44.

■ Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)

37Understanding Veritas Volume Manager
Volume layouts in VxVM



See “Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)”
on page 45.

■ RAID-5 (striping with parity)
See “RAID-5 (striping with parity)” on page 46.

Concatenation, spanning, and carving
Concatenation maps data in a linear manner onto one or more subdisks in a plex.
To access all of the data in a concatenated plex sequentially, data is first accessed
in the first subdisk from beginning to end. Data is then accessed in the remaining
subdisks sequentially from beginning to end, until the end of the last subdisk.

The subdisks in a concatenated plex do not have to be physically contiguous and
can belong to more than one VM disk. Concatenation using subdisks that reside
on more than one VM disk is called spanning.

Figure 1-13 shows the concatenation of two subdisks from the same VM disk.

If a single LUN or disk is split into multiple subdisks, and each subdisk belongs
to a unique volume, this is called carving.

Figure 1-13 Example of concatenation

Plex with concatenated subdisks

Data blocks

Subdisks

VM disk

Physical disk

disk01-01

Data in
disk01-01

Data in
disk01-03

disk01-03

disk01-02disk01-01 disk01-03

devname

disk01-01 disk01-03

disk01

n n+1 n+2 n+3

n n+1 n+2 n+3

Understanding Veritas Volume Manager
Volume layouts in VxVM

38



The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks on the same
physical disk.

The remaining free space in the subdisk, disk01-02, on VM disk, disk01, can be
put to other uses.

You can use concatenation with multiple subdisks when there is insufficient
contiguous space for the plex on any one disk. This form of concatenation can be
used for load balancing between disks, and for head movement optimization on
a particular disk.

Figure 1-14 shows data spread over two subdisks in a spanned plex.

Figure 1-14 Example of spanning

Plex with concatenated subdisks

Data blocks

Subdisks

VM disks

Physical disks

disk01-01

Data in
disk01-01

Data in
disk02-01

disk02-01

disk01-01 disk02-01

disk01

n n+1 n+2 n+3

devname1

n n+1 n+2

devname2

disk01-01

disk02

disk02-02disk02-01

n+3

The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks from two
distinct physical disks.

The remaining free space in the subdisk disk02-02 on VM disk disk02 can be put
to other uses.

Warning: Spanning a plex across multiple disks increases the chance that a disk
failure results in failure of the assigned volume. Use mirroring or RAID-5 to reduce
the risk that a single disk failure results in a volume failure.

39Understanding Veritas Volume Manager
Volume layouts in VxVM



Striping (RAID-0)
Striping (RAID-0) is useful if you need large amounts of data written to or read
from physical disks, and performance is important. Striping is also helpful in
balancing the I/O load from multi-user applications across multiple disks. By
using parallel data transfer to and from multiple disks, striping significantly
improves data-access performance.

Striping maps data so that the data is interleaved among two or more physical
disks. A striped plex contains two or more subdisks, spread out over two or more
physical disks. Data is allocated alternately and evenly to the subdisks of a striped
plex.

The subdisks are grouped into “columns,” with each physical disk limited to one
column. Each column contains one or more subdisks and can be derived from one
or more physical disks. The number and sizes of subdisks per column can vary.
Additional subdisks can be added to columns, as necessary.

Warning: Striping a volume, or splitting a volume across multiple disks, increases
the chance that a disk failure will result in failure of that volume.

If five volumes are striped across the same five disks, then failure of any one of
the five disks will require that all five volumes be restored from a backup. If each
volume is on a separate disk, only one volume has to be restored. (As an alternative
to or in conjunction with striping, use mirroring or RAID-5 to substantially reduce
the chance that a single disk failure results in failure of a large number of volumes.)

Data is allocated in equal-sized stripe units that are interleaved between the
columns. Each stripe unit is a set of contiguous blocks on a disk. The default stripe
unit size is 64 kilobytes.

Figure 1-15 shows an example with three columns in a striped plex, six stripe
units, and data striped over the three columns.

Understanding Veritas Volume Manager
Volume layouts in VxVM

40



Figure 1-15 Striping across three columns

Stripe 1

Plex

Column 0 Column 1

stripe unit
2

stripe unit
1

Column 2

Subdisk
1

Subdisk
2

Subdisk
3

stripe unit
3

stripe unit
5

stripe unit
4

stripe unit
6

Stripe 2

A stripe consists of the set of stripe units at the same positions across all columns.
In the figure, stripe units 1, 2, and 3 constitute a single stripe.

Viewed in sequence, the first stripe consists of:

■ stripe unit 1 in column 0

■ stripe unit 2 in column 1

■ stripe unit 3 in column 2

The second stripe consists of:

■ stripe unit 4 in column 0

■ stripe unit 5 in column 1

■ stripe unit 6 in column 2

Striping continues for the length of the columns (if all columns are the same
length), or until the end of the shortest column is reached. Any space remaining
at the end of subdisks in longer columns becomes unused space.

Figure 1-16 shows a striped plex with three equal sized, single-subdisk columns.

41Understanding Veritas Volume Manager
Volume layouts in VxVM



Figure 1-16 Example of a striped plex with one subdisk per column

Subdisks

Striped plex

Stripe units

VM disks
disk01-01 disk02-01 disk03-01

Column 0

Physical disk
devname1

su1 su2 su3 su4

su1 su4

devname2

su2 su5

devname3

su3 su6

su5 su6

disk01-01

Column 1

disk02 disk03disk01

disk02-01

Column 2

disk03-01

disk01-01 disk02-01 disk03-01

There is one column per physical disk. This example shows three subdisks that
occupy all of the space on the VM disks. It is also possible for each subdisk in a
striped plex to occupy only a portion of the VM disk, which leaves free space for
other disk management tasks.

Figure 1-17 shows a striped plex with three columns containing subdisks of
different sizes.

Understanding Veritas Volume Manager
Volume layouts in VxVM

42



Figure 1-17 Example of a striped plex with concatenated subdisks per column

Subdisks

Striped plex

Stripe units

VM disks

Column 0

Physical disks
devname1

su1 su2 su3 su4

su1 su4

devname2

su2 su5

devname3

su3 su6

su5 su6

disk01-01

Column 1

disk02 disk03disk01

disk02-01

disk02-02

Column 2

disk03-01

disk03-02

disk03-03

disk01-01
disk02-01

disk02-02

disk03-01

disk03-02

disk03-03

disk01-01
disk02-01

disk02-02

disk03-01

disk03-02

disk03-03

Each column contains a different number of subdisks. There is one column per
physical disk. Striped plexes can be created by using a single subdisk from each
of the VM disks being striped across. It is also possible to allocate space from
different regions of the same disk or from another disk (for example, if the size
of the plex is increased). Columns can also contain subdisks from different VM
disks.

See “Creating a striped volume” on page 325.

Mirroring (RAID-1)
Mirroring uses multiple mirrors (plexes) to duplicate the information contained
in a volume. In the event of a physical disk failure, the plex on the failed disk
becomes unavailable, but the system continues to operate using the unaffected
mirrors. Similarly, mirroring two LUNs from two separate controllers lets the
system operate if there is a controller failure.

43Understanding Veritas Volume Manager
Volume layouts in VxVM



Although a volume can have a single plex, at least two plexes are required to
provide redundancy of data. Each of these plexes must contain disk space from
different disks to achieve redundancy.

When striping or spanning across a large number of disks, failure of any one of
those disks can make the entire plex unusable. Because the likelihood of one out
of several disks failing is reasonably high, you should consider mirroring to
improve the reliability (and availability) of a striped or spanned volume.

See “Creating a mirrored volume” on page 319.

See “Mirroring across targets, controllers or enclosures” on page 327.

Striping plus mirroring (mirrored-stripe or RAID-0+1)
VxVM supports the combination of mirroring above striping. The combined layout
is called a mirrored-stripe layout. A mirrored-stripe layout offers the dual benefits
of striping to spread data across multiple disks, while mirroring provides
redundancy of data.

For mirroring above striping to be effective, the striped plex and its mirrors must
be allocated from separate disks.

Figure 1-18 shows an example where two plexes, each striped across three disks,
are attached as mirrors to the same volume to create a mirrored-stripe volume.

Figure 1-18 Mirrored-stripe volume laid out on six disks

Striped
plex

Mirror

column 0 column 1 column 2

column 0 column 1 column 2

Mirrored-stripe
volume

Striped
plex

See “Creating a mirrored-stripe volume” on page 326.

The layout type of the data plexes in a mirror can be concatenated or striped. Even
if only one is striped, the volume is still termed a mirrored-stripe volume. If they
are all concatenated, the volume is termed a mirrored-concatenated volume.

Understanding Veritas Volume Manager
Volume layouts in VxVM

44



Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)
VxVM supports the combination of striping above mirroring. This combined layout
is called a striped-mirror layout. Putting mirroring below striping mirrors each
column of the stripe. If there are multiple subdisks per column, each subdisk can
be mirrored individually instead of each column.

A striped-mirror volume is an example of a layered volume.

See “Layered volumes” on page 51.

As for a mirrored-stripe volume, a striped-mirror volume offers the dual benefits
of striping to spread data across multiple disks, while mirroring provides
redundancy of data. In addition, it enhances redundancy, and reduces recovery
time after disk failure.

Figure 1-19 shows an example where a striped-mirror volume is created by using
each of three existing 2-disk mirrored volumes to form a separate column within
a striped plex.

Figure 1-19 Striped-mirror volume laid out on six disks

Striped plex

Mirror

column 0 column 1

column 0 column 1

Striped-mirror
volume

Underlying mirrored volumes

column 2

column 2

See “Creating a striped-mirror volume” on page 327.

Figure 1-20 shows that the failure of a disk in a mirrored-stripe layout detaches
an entire data plex, thereby losing redundancy on the entire volume.

45Understanding Veritas Volume Manager
Volume layouts in VxVM



Figure 1-20 How the failure of a single disk affects mirrored-stripe and
striped-mirror volumes

Striped plex

Failure of disk detaches plex

Detached
striped plex

Mirror

Mirrored-stripe volume
with no

redundancy

Striped plex

Mirror

Striped-mirror volume
with partial
redundancy

Failure of disk removes redundancy from a mirror

When the disk is replaced, the entire plex must be brought up to date. Recovering
the entire plex can take a substantial amount of time. If a disk fails in a
striped-mirror layout, only the failing subdisk must be detached, and only that
portion of the volume loses redundancy. When the disk is replaced, only a portion
of the volume needs to be recovered. Additionally, a mirrored-stripe volume is
more vulnerable to being put out of use altogether should a second disk fail before
the first failed disk has been replaced, either manually or by hot-relocation.

Compared to mirrored-stripe volumes, striped-mirror volumes are more tolerant
of disk failure, and recovery time is shorter.

If the layered volume concatenates instead of striping the underlying mirrored
volumes, the volume is termed a concatenated-mirror volume.

RAID-5 (striping with parity)
Although both mirroring (RAID-1) and RAID-5 provide redundancy of data, they
use different methods. Mirroring provides data redundancy by maintaining
multiple complete copies of the data in a volume. Data being written to a mirrored

Understanding Veritas Volume Manager
Volume layouts in VxVM

46



volume is reflected in all copies. If a portion of a mirrored volume fails, the system
continues to use the other copies of the data.

RAID-5 provides data redundancy by using parity. Parity is a calculated value
used to reconstruct data after a failure. While data is being written to a RAID-5
volume, parity is calculated by doing an exclusive OR (XOR) procedure on the
data. The resulting parity is then written to the volume. The data and calculated
parity are contained in a plex that is “striped” across multiple disks. If a portion
of a RAID-5 volume fails, the data that was on that portion of the failed volume
can be recreated from the remaining data and parity information. It is also possible
to mix concatenation and striping in the layout.

Figure 1-21 shows parity locations in a RAID-5 array configuration.

Figure 1-21 Parity locations in a RAID-5 model

Data

Data

Parity

Data
Stripe 1

Parity

Data

Data

Data

Data

Parity

Data

Data
Stripe 2

Stripe 3

Stripe 4
Parity

Every stripe has a column containing a parity stripe unit and columns containing
data. The parity is spread over all of the disks in the array, reducing the write
time for large independent writes because the writes do not have to wait until a
single parity disk can accept the data.

RAID-5 volumes can additionally perform logging to minimize recovery time.
RAID-5 volumes use RAID-5 logs to keep a copy of the data and parity currently
being written. RAID-5 logging is optional and can be created along with RAID-5
volumes or added later.

See “Veritas Volume Manager RAID-5 arrays” on page 48.

Note: VxVM supports RAID-5 for private disk groups, but not for shareable disk
groups in a CVM environment. In addition, VxVM does not support the mirroring
of RAID-5 volumes that are configured using Veritas Volume Manager software.
RAID-5 LUNs hardware may be mirrored.

Traditional RAID-5 arrays
A traditional RAID-5 array is several disks organized in rows and columns. A
column is a number of disks located in the same ordinal position in the array. A

47Understanding Veritas Volume Manager
Volume layouts in VxVM



row is the minimal number of disks necessary to support the full width of a parity
stripe.

Figure 1-22 shows the row and column arrangement of a traditional RAID-5 array.

Figure 1-22 Traditional RAID-5 array

Row 0

Row 1

Column 0 Column 1 Column 2 Column 3

Stripe 1
Stripe3

Stripe 2

This traditional array structure supports growth by adding more rows per column.
Striping is accomplished by applying the first stripe across the disks in Row 0,
then the second stripe across the disks in Row 1, then the third stripe across the
Row 0 disks, and so on. This type of array requires all disks columns, and rows to
be of equal size.

Veritas Volume Manager RAID-5 arrays
The RAID-5 array structure in Veritas Volume Manager differs from the traditional
structure. Due to the virtual nature of its disks and other objects, VxVM does not
use rows.

Figure 1-23 shows how VxVM uses columns consisting of variable length subdisks,
where each subdisk represents a specific area of a disk.

Understanding Veritas Volume Manager
Volume layouts in VxVM

48



Figure 1-23 Veritas Volume Manager RAID-5 array

Stripe 1
Stripe 2

Column 0 Column 1 Column 2 Column 3

SD

SD

SD

SD

SD

SD

SD SD = subdiskSD

VxVM allows each column of a RAID-5 plex to consist of a different number of
subdisks. The subdisks in a given column can be derived from different physical
disks. Additional subdisks can be added to the columns as necessary. Striping is
implemented by applying the first stripe across each subdisk at the top of each
column, then applying another stripe below that, and so on for the length of the
columns. Equal-sized stripe units are used for each column. For RAID-5, the default
stripe unit size is 16 kilobytes.

See “Striping (RAID-0)” on page 40.

Note: Mirroring of RAID-5 volumes is not supported.

See “Creating a RAID-5 volume” on page 329.

Left-symmetric layout
There are several layouts for data and parity that can be used in the setup of a
RAID-5 array. The implementation of RAID-5 in VxVM uses a left-symmetric
layout. This provides optimal performance for both random I/O operations and
large sequential I/O operations. However, the layout selection is not as critical
for performance as are the number of columns and the stripe unit size.

Left-symmetric layout stripes both data and parity across columns, placing the
parity in a different column for every stripe of data. The first parity stripe unit is
located in the rightmost column of the first stripe. Each successive parity stripe

49Understanding Veritas Volume Manager
Volume layouts in VxVM



unit is located in the next stripe, shifted left one column from the previous parity
stripe unit location. If there are more stripes than columns, the parity stripe unit
placement begins in the rightmost column again.

Figure 1-24 shows a left-symmetric parity layout with five disks (one per column).

Figure 1-24 Left-symmetric layout

Data stripe unit

Parity stripe unit
Column

Stripe

0

5

10

15

P4

1

6

11

P3

16

2

7

P2

12

17

3

P1

8

13

18

P0

4

9

14

19

For each stripe, data is organized starting to the right of the parity stripe unit. In
the figure, data organization for the first stripe begins at P0 and continues to
stripe units 0-3. Data organization for the second stripe begins at P1, then
continues to stripe unit 4, and on to stripe units 5-7. Data organization proceeds
in this manner for the remaining stripes.

Each parity stripe unit contains the result of an exclusive OR (XOR) operation
performed on the data in the data stripe units within the same stripe. If one
column’s data is inaccessible due to hardware or software failure, the data for
each stripe can be restored by XORing the contents of the remaining columns
data stripe units against their respective parity stripe units.

For example, if a disk corresponding to the whole or part of the far left column
fails, the volume is placed in a degraded mode. While in degraded mode, the data
from the failed column can be recreated by XORing stripe units 1-3 against parity
stripe unit P0 to recreate stripe unit 0, then XORing stripe units 4, 6, and 7 against
parity stripe unit P1 to recreate stripe unit 5, and so on.

Failure of more than one column in a RAID-5 plex detaches the volume. The volume
is no longer allowed to satisfy read or write requests. Once the failed columns
have been recovered, it may be necessary to recover user data from backups.

Understanding Veritas Volume Manager
Volume layouts in VxVM

50



RAID-5 logging
Logging is used to prevent corruption of data during recovery by immediately
recording changes to data and parity to a log area on a persistent device such as
a volume on disk or in non-volatile RAM. The new data and parity are then written
to the disks.

Without logging, it is possible for data not involved in any active writes to be lost
or silently corrupted if both a disk in a RAID-5 volume and the system fail. If this
double-failure occurs, there is no way of knowing if the data being written to the
data portions of the disks or the parity being written to the parity portions have
actually been written. Therefore, the recovery of the corrupted disk may be
corrupted itself.

Figure 1-25 shows a RAID-5 volume configured across three disks (A, B and C).

Figure 1-25 Incomplete write to a RAID-5 volume

Disk A Disk CDisk B

Completed
data write

Corrupted data Incomplete
parity write

In this volume, recovery of disk B’s corrupted data depends on disk A’s data and
disk C’s parity both being complete. However, only the data write to disk A is
complete. The parity write to disk C is incomplete, which would cause the data on
disk B to be reconstructed incorrectly.

This failure can be avoided by logging all data and parity writes before committing
them to the array. In this way, the log can be replayed, causing the data and parity
updates to be completed before the reconstruction of the failed drive takes place.

Logs are associated with a RAID-5 volume by being attached as log plexes. More
than one log plex can exist for each RAID-5 volume, in which case the log areas
are mirrored.

See “Adding a RAID-5 log” on page 384.

Layered volumes
A layered volume is a virtual Veritas Volume Manager object that is built on top
of other volumes. The layered volume structure tolerates failure better and has
greater redundancy than the standard volume structure. For example, in a
striped-mirror layered volume, each mirror (plex) covers a smaller area of storage
space, so recovery is quicker than with a standard mirrored volume.

51Understanding Veritas Volume Manager
Volume layouts in VxVM



Figure 1-26 shows a typical striped-mirror layered volume where each column is
represented by a subdisk that is built from an underlying mirrored volume.

Figure 1-26 Example of a striped-mirror layered volume

Concatenated
plexes

Underlying
mirrored
volumes

Subdisks

Striped plex

Striped mirror
volume

Managed
by user

Managed
by VxVM

Subdisks on
VM disksdisk04-01 disk05-01 disk06-01 disk07-01

disk04-01 disk05-01 disk06-01 disk07-01

vop01 vop02

vop02vop01

vol01-01

Column 1Column 0

vol01

vol01-01

The volume and striped plex in the “Managed by User” area allow you to perform
normal tasks in VxVM. User tasks can be performed only on the top-level volume
of a layered volume.

Underlying volumes in the “Managed by VxVM” area are used exclusively by
VxVM and are not designed for user manipulation. You cannot detach a layered
volume or perform any other operation on the underlying volumes by manipulating
the internal structure. You can perform all necessary operations in the “Managed
by User” area that includes the top-level volume and striped plex (for example,
resizing the volume, changing the column width, or adding a column).

System administrators can manipulate the layered volume structure for
troubleshooting or other operations (for example, to place data on specific disks).
Layered volumes are used by VxVM to perform the following tasks and operations:

Understanding Veritas Volume Manager
Volume layouts in VxVM

52



See “Creating a striped-mirror volume”
on page 327.

See the vxassist(1M) manual page.

Creating striped-mirrors

See “Creating a concatenated-mirror volume”
on page 320.

See the vxassist(1M) manual page.

Creating concatenated-mirrors

See “Online relayout” on page 53.

See the vxassist(1M) manual page.

See the vxrelayout(1M) manual page.

Online Relayout

See the vxsd(1M) manual page.Moving RAID-5 subdisks

See “About volume snapshots” on page 387.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Creating Snapshots

Online relayout
Online relayout allows you to convert between storage layouts in VxVM, with
uninterrupted data access. Typically, you would do this to change the redundancy
or performance characteristics of a volume. VxVM adds redundancy to storage
either by duplicating the data (mirroring) or by adding parity (RAID-5).
Performance characteristics of storage in VxVM can be changed by changing the
striping parameters, which are the number of columns and the stripe width.

See “Performing online relayout” on page 376.

See “Converting between layered and non-layered volumes” on page 383.

How online relayout works
Online relayout allows you to change the storage layouts that you have already
created in place without disturbing data access. You can change the performance
characteristics of a particular layout to suit your changed requirements. You can
transform one layout to another by invoking a single command.

For example, if a striped layout with a 128KB stripe unit size is not providing
optimal performance, you can use relayout to change the stripe unit size.

File systems mounted on the volumes do not need to be unmounted to achieve
this transformation provided that the file system (such as Veritas File System)
supports online shrink and grow operations.

53Understanding Veritas Volume Manager
Online relayout



Online relayout reuses the existing storage space and has space allocation policies
to address the needs of the new layout. The layout transformation process converts
a given volume to the destination layout by using minimal temporary space that
is available in the disk group.

The transformation is done by moving one portion of data at a time in the source
layout to the destination layout. Data is copied from the source volume to the
temporary area, and data is removed from the source volume storage area in
portions. The source volume storage area is then transformed to the new layout,
and the data saved in the temporary area is written back to the new layout. This
operation is repeated until all the storage and data in the source volume has been
transformed to the new layout.

The default size of the temporary area used during the relayout depends on the
size of the volume and the type of relayout. For volumes larger than 50MB, the
amount of temporary space that is required is usually 10% of the size of the
volume, from a minimum of 50MB up to a maximum of 1GB. For volumes smaller
than 50MB, the temporary space required is the same as the size of the volume.

The following error message displays the number of blocks required if there is
insufficient free space available in the disk group for the temporary area:

tmpsize too small to perform this relayout (nblks minimum required)

You can override the default size used for the temporary area by using the tmpsize
attribute to vxassist.

See the vxassist(1M) manual page.

As well as the temporary area, space is required for a temporary intermediate
volume when increasing the column length of a striped volume. The amount of
space required is the difference between the column lengths of the target and
source volumes. For example, 20GB of temporary additional space is required to
relayout a 150GB striped volume with 5 columns of length 30GB as 3 columns of
length 50GB. In some cases, the amount of temporary space that is required is
relatively large. For example, a relayout of a 150GB striped volume with 5 columns
as a concatenated volume (with effectively one column) requires 120GB of space
for the intermediate volume.

Additional permanent disk space may be required for the destination volumes,
depending on the type of relayout that you are performing. This may happen, for
example, if you change the number of columns in a striped volume.

Figure 1-27 shows how decreasing the number of columns can require disks to be
added to a volume.

Understanding Veritas Volume Manager
Online relayout

54



Figure 1-27 Example of decreasing the number of columns in a volume

Three columns of length 5L/3Five columns of length L

Note that the size of the volume remains the same but an extra disk is needed to
extend one of the columns.

The following are examples of operations that you can perform using online
relayout:

■ Remove parity from a RAID-5 volume to change it to a concatenated, striped,
or layered volume.
Figure 1-28 shows an example of applying relayout a RAID-5 volume.

Figure 1-28 Example of relayout of a RAID-5 volume to a striped volume

RAID-5 volume Striped volume

Note that removing parity decreases the overall storage space that the volume
requires.

■ Add parity to a volume to change it to a RAID-5 volume.
Figure 1-29 shows an example.

Figure 1-29 Example of relayout of a concatenated volume to a RAID-5 volume

RAID-5 volume

Concatenated
volume

Note that adding parity increases the overall storage space that the volume
requires.

55Understanding Veritas Volume Manager
Online relayout



■ Change the number of columns in a volume.
Figure 1-30 shows an example of changing the number of columns.

Figure 1-30 Example of increasing the number of columns in a volume

Two columns Three columns

Note that the length of the columns is reduced to conserve the size of the volume.

■ Change the column stripe width in a volume.
Figure 1-31 shows an example of changing the column stripe width.

Figure 1-31 Example of increasing the stripe width for the columns in a volume

See “Performing online relayout” on page 376.

See “Permitted relayout transformations” on page 376.

Limitations of online relayout
Note the following limitations of online relayout:

■ Log plexes cannot be transformed.

■ Volume snapshots cannot be taken when there is an online relayout operation
running on the volume.

■ Online relayout cannot create a non-layered mirrored volume in a single step.
It always creates a layered mirrored volume even if you specify a non-layered
mirrored layout, such as mirror-stripe or mirror-concat. Use the vxassist
convert command to turn the layered mirrored volume that results from a
relayout into a non-layered volume.
See “Converting between layered and non-layered volumes” on page 383.

■ Online relayout can only be used with volumes that have been created using
the vxassist command, Storage Foundation Manager (SFM), or the Veritas
Enterprise Administrator (VEA).

Understanding Veritas Volume Manager
Online relayout

56



■ The usual restrictions apply for the minimum number of physical disks that
are required to create the destination layout. For example, mirrored volumes
require at least as many disks as mirrors, striped and RAID-5 volumes require
at least as many disks as columns, and striped-mirror volumes require at least
as many disks as columns multiplied by mirrors.

■ To be eligible for layout transformation, the plexes in a mirrored volume must
have identical stripe widths and numbers of columns. Relayout is not possible
unless you make the layouts of the individual plexes identical.

■ Online relayout cannot transform sparse plexes, nor can it make any plex
sparse. (A sparse plex is a plex that is not the same size as the volume, or that
has regions that are not mapped to any subdisk.)

■ The number of mirrors in a mirrored volume cannot be changed using relayout.
Use alternative commands instead.

■ Only one relayout may be applied to a volume at a time.

Transformation characteristics
Transformation of data from one layout to another involves rearrangement of
data in the existing layout to the new layout. During the transformation, online
relayout retains data redundancy by mirroring any temporary space used. Read
and write access to data is not interrupted during the transformation.

Data is not corrupted if the system fails during a transformation. The
transformation continues after the system is restored and both read and write
access are maintained.

You can reverse the layout transformation process at any time, but the data may
not be returned to the exact previous storage location. Before you reverse a
transformation that is in process, you must stop it.

You can determine the transformation direction by using the vxrelayout status

volume command.

These transformations are protected against I/O failures if there is sufficient
redundancy and space to move the data.

Transformations and volume length
Some layout transformations can cause the volume length to increase or decrease.
If either of these conditions occurs, online relayout uses the vxresize command
to shrink or grow a file system.

See “Resizing a volume” on page 351.

57Understanding Veritas Volume Manager
Online relayout



Volume resynchronization
When storing data redundantly and using mirrored or RAID-5 volumes, VxVM
ensures that all copies of the data match exactly. However, under certain conditions
(usually due to complete system failures), some redundant data on a volume can
become inconsistent or unsynchronized. The mirrored data is not exactly the
same as the original data. Except for normal configuration changes (such as
detaching and reattaching a plex), this can only occur when a system crashes
while data is being written to a volume.

Data is written to the mirrors of a volume in parallel, as is the data and parity in
a RAID-5 volume. If a system crash occurs before all the individual writes complete,
it is possible for some writes to complete while others do not. This can result in
the data becoming unsynchronized. For mirrored volumes, it can cause two reads
from the same region of the volume to return different results, if different mirrors
are used to satisfy the read request. In the case of RAID-5 volumes, it can lead to
parity corruption and incorrect data reconstruction.

VxVM ensures that all mirrors contain exactly the same data and that the data
and parity in RAID-5 volumes agree. This process is called volume
resynchronization. For volumes that are part of the disk group that is automatically
imported at boot time (usually aliased as the reserved system-wide disk group,
bootdg), resynchronization takes place when the system reboots.

Not all volumes require resynchronization after a system failure. Volumes that
were never written or that were quiescent (that is, had no active I/O) when the
system failure occurred could not have had outstanding writes and do not require
resynchronization.

Dirty flags
VxVM records when a volume is first written to and marks it as dirty. When a
volume is closed by all processes or stopped cleanly by the administrator, and all
writes have been completed, VxVM removes the dirty flag for the volume. Only
volumes that are marked dirty require resynchronization.

Resynchronization process
The process of resynchronization depends on the type of volume. For mirrored
volumes, resynchronization is done by placing the volume in recovery mode (also
called read-writeback recovery mode). Resynchronization of data in the volume
is done in the background. This allows the volume to be available for use while
recovery is taking place. RAID-5 volumes that contain RAID-5 logs can “replay”
those logs. If no logs are available, the volume is placed in reconstruct-recovery
mode and all parity is regenerated.

Understanding Veritas Volume Manager
Volume resynchronization

58



Resynchronization can impact system performance. The recovery process reduces
some of this impact by spreading the recoveries to avoid stressing a specific disk
or controller.

For large volumes or for a large number of volumes, the resynchronization process
can take time. These effects can be minimized by using dirty region logging (DRL)
and FastResync (fast mirror resynchronization) for mirrored volumes, or by using
RAID-5 logs for RAID-5 volumes.

See “Dirty region logging” on page 59.

See “FastResync” on page 64.

For mirrored volumes used by Oracle, you can use the SmartSync feature, which
further improves performance.

See “SmartSync recovery accelerator” on page 60.

Dirty region logging
Dirty region logging (DRL), if enabled, speeds recovery of mirrored volumes after
a system crash. DRL tracks the regions that have changed due to I/O writes to a
mirrored volume. DRL uses this information to recover only those portions of the
volume.

If DRL is not used and a system failure occurs, all mirrors of the volumes must be
restored to a consistent state. Restoration is done by copying the full contents of
the volume between its mirrors. This process can be lengthy and I/O intensive.

Note:DRL adds a small I/O overhead for most write access patterns. This overhead
is reduced by using SmartSync.

If a version 20 DCO volume is associated with a volume, a portion of the DCO
volume can be used to store the DRL log. There is no need to create a separate
DRL log for a volume which has a version 20 DCO volume.

See “DCO volume versioning” on page 67.

Log subdisks and plexes
DRL log subdisks store the dirty region log of a mirrored volume that has DRL
enabled. A volume with DRL has at least one log subdisk; multiple log subdisks
can be used to mirror the dirty region log. Each log subdisk is associated with one
plex of the volume. Only one log subdisk can exist per plex. If the plex contains
only a log subdisk and no data subdisks, that plex is referred to as a log plex.

59Understanding Veritas Volume Manager
Dirty region logging



The log subdisk can also be associated with a regular plex that contains data
subdisks. In that case, the log subdisk risks becoming unavailable if the plex must
be detached due to the failure of one of its data subdisks.

If the vxassist command is used to create a dirty region log, it creates a log plex
containing a single log subdisk by default. A dirty region log can also be set up
manually by creating a log subdisk and associating it with a plex. The plex then
contains both a log and data subdisks.

Sequential DRL
Some volumes, such as those that are used for database replay logs, are written
sequentially and do not benefit from delayed cleaning of the DRL bits. For these
volumes, sequential DRL can be used to limit the number of dirty regions. This
allows for faster recovery. However, if applied to volumes that are written to
randomly, sequential DRL can be a performance bottleneck as it limits the number
of parallel writes that can be carried out.

The maximum number of dirty regions allowed for sequential DRL is controlled
by a tunable as detailed in the description of voldrl_max_seq_dirty. .

See “DMP tunable parameters ” on page 566.

See “Adding traditional DRL logging to a mirrored volume” on page 366.

See “Preparing a volume for DRL and instant snapshots” on page 360.

SmartSync recovery accelerator
The SmartSync feature of Veritas Volume Manager increases the availability of
mirrored volumes by only resynchronizing changed data. (The process of
resynchronizing mirrored databases is also sometimes referred to as resilvering.)
SmartSync reduces the time required to restore consistency, freeing more I/O
bandwidth for business-critical applications. SmartSync uses an extended interface
between VxVM volumes, VxFS file systems, and the Oracle database to avoid
unnecessary work during mirror resynchronization and to reduce the I/O overhead
of the DRL. For example, Oracle® automatically takes advantage of SmartSync to
perform database resynchronization when it is available.

Note:To use SmartSync with volumes that contain file systems, see the discussion
of the Oracle Resilvering feature of Veritas File System (VxFS).

The following section describes how to configure VxVM raw volumes and
SmartSync. The database uses the following types of volumes:

Understanding Veritas Volume Manager
Dirty region logging

60



■ Data volumes are the volumes used by the database (control files and tablespace
files).

■ Redo log volumes contain redo logs of the database.

SmartSync works with these two types of volumes differently, so they must be
configured as described in the following sections.

To enable the use of SmartSync with database volumes in shared disk groups, set
the value of the volcvm_smartsync tunable to 1.

See “Tunable parameters for VxVM” on page 556.

Data volume configuration
The recovery takes place when the database software is started, not at system
startup. This reduces the overall impact of recovery when the system reboots.
Because the recovery is controlled by the database, the recovery time for the
volume is the resilvering time for the database (that is, the time required to replay
the redo logs).

Because the database keeps its own logs, it is not necessary for VxVM to do logging.
Data volumes should be configured as mirrored volumes without dirty region
logs. In addition to improving recovery time, this avoids any run-time I/O overhead
due to DRL, and improves normal database write access.

Redo log volume configuration
A redo log is a log of changes to the database data. Because the database does not
maintain changes to the redo logs, it cannot provide information about which
sections require resilvering. Redo logs are also written sequentially, and since
traditional dirty region logs are most useful with randomly-written data, they are
of minimal use for reducing recovery time for redo logs. However, VxVM can
reduce the number of dirty regions by modifying the behavior of its dirty region
logging feature to take advantage of sequential access patterns. Sequential DRL
decreases the amount of data needing recovery and reduces recovery time impact
on the system.

The enhanced interfaces for redo logs allow the database software to inform VxVM
when a volume is to be used as a redo log. This allows VxVM to modify the DRL
behavior of the volume to take advantage of the access patterns. Since the
improved recovery time depends on dirty region logs, redo log volumes should
be configured as mirrored volumes with sequential DRL.

See “Sequential DRL” on page 60.

61Understanding Veritas Volume Manager
Dirty region logging



Volume snapshots
Veritas Volume Manager provides the capability for taking an image of a volume
at a given point in time. Such an image is referred to as a volume snapshot. Such
snapshots should not be confused with file system snapshots, which are
point-in-time images of a Veritas File System.

Figure 1-32 shows how a snapshot volume represents a copy of an original volume
at a given point in time.

Figure 1-32 Volume snapshot as a point-in-time image of a volume

Snapshot volume is created
at time T2

Snapshot volume retains
image taken at time T2

Snapshot volume is updated
at time T4

Resynchronize snapshot volume
from the original volume

T1

T2

Original volume

Original volume Snapshot volume

Original volume Snapshot volume

Original volume Snapshot volumeT4

T3

Time

Even though the contents of the original volume can change, the snapshot volume
preserves the contents of the original volume as they existed at an earlier time.

The snapshot volume provides a stable and independent base for making backups
of the contents of the original volume, or for other applications such as decision
support. In the figure, the contents of the snapshot volume are eventually
resynchronized with the original volume at a later point in time.

Another possibility is to use the snapshot volume to restore the contents of the
original volume. This may be useful if the contents of the original volume have
become corrupted in some way.

Warning: If you write to the snapshot volume, it may no longer be suitable for use
in restoring the contents of the original volume.

Understanding Veritas Volume Manager
Volume snapshots

62



One type of volume snapshot in VxVM is the third-mirror break-off type. This
name comes from its implementation where a snapshot plex (or third mirror) is
added to a mirrored volume. The contents of the snapshot plex are then
synchronized from the original plexes of the volume. When this synchronization
is complete, the snapshot plex can be detached as a snapshot volume for use in
backup or decision support applications. At a later time, the snapshot plex can be
reattached to the original volume, requiring a full resynchronization of the
snapshot plex’s contents.

See “Traditional third-mirror break-off snapshots” on page 389.

The FastResync feature was introduced to track writes to the original volume.
This tracking means that only a partial, and therefore much faster,
resynchronization is required on reattaching the snapshot plex. In later releases,
the snapshot model was enhanced to allow snapshot volumes to contain more
than a single plex, reattachment of a subset of a snapshot volume’s plexes, and
persistence of FastResync across system reboots or cluster restarts.

See “FastResync” on page 64.

Release 4.0 of VxVM introduced full-sized instant snapshots and space-optimized
instant snapshots, which offer advantages over traditional third-mirror snapshots
such as immediate availability and easier configuration and administration. You
can also use the third-mirror break-off usage model with full-sized snapshots,
where this is necessary for write-intensive applications.

See “Full-sized instant snapshots” on page 390.

See “Space-optimized instant snapshots” on page 392.

See “Emulation of third-mirror break-off snapshots” on page 393.

See “Linked break-off snapshot volumes” on page 393.

See “Comparison of snapshot features” on page 63.

See “About volume snapshots” on page 387.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Comparison of snapshot features
Table 1-1 compares the features of the various types of snapshots that are
supported in VxVM.

63Understanding Veritas Volume Manager
Volume snapshots



Table 1-1 Comparison of snapshot features for supported snapshot types

Break-off
(vxassist or
vxsnap)

Space-optimized
instant
(vxsnap)

Full-sized
instant
(vxsnap)

Snapshot feature

NoYesYesImmediately available for use on
creation

NoYesNoRequires less storage space than
original volume

YesNoYesCan be reattached to original volume

YesYesYesCan be used to restore contents of
original volume

NoYesYesCan quickly be refreshed without being
reattached

NoNoYesSnapshot hierarchy can be split

YesNoYesCan be moved into separate disk group
from original volume

YesNoYesCan be turned into an independent
volume

YesYesYesFastResync ability persists across
system reboots or cluster restarts

NoNoYesSynchronization can be controlled

YesNoYesCan be moved off-host

Full-sized instant snapshots are easier to configure and offer more flexibility of
use than do traditional third-mirror break-off snapshots. For preference, new
volumes should be configured to use snapshots that have been created using the
vxsnap command rather than using the vxassist command. Legacy volumes can
also be reconfigured to use vxsnap snapshots, but this requires rewriting of
administration scripts that assume the vxassist snapshot model.

FastResync

Note:Only certain Storage Foundation products have a license to use this feature.

Understanding Veritas Volume Manager
FastResync

64



The FastResync feature (previously called Fast Mirror Resynchronization or FMR)
performs quick and efficient resynchronization of stale mirrors (a mirror that is
not synchronized). This increases the efficiency of the VxVM snapshot mechanism,
and improves the performance of operations such as backup and decision support
applications. Typically, these operations require that the volume is quiescent,
and that they are not impeded by updates to the volume by other activities on the
system. To achieve these goals, the snapshot mechanism in VxVM creates an exact
copy of a primary volume at an instant in time. After a snapshot is taken, it can
be accessed independently of the volume from which it was taken. In a Cluster
Volume Manager (CVM) environment with shared access to storage, it is possible
to eliminate the resource contention and performance overhead of using a snapshot
simply by accessing it from a different node.

See “Enabling FastResync on a volume” on page 374.

FastResync enhancements
FastResync provides the following enhancements to VxVM:

FastResync optimizes mirror resynchronization by keeping
track of updates to stored data that have been missed by a
mirror. (A mirror may be unavailable because it has been
detached from its volume, either automatically by VxVM as
the result of an error, or directly by an administrator using
a utility such as vxplex or vxassist. A returning mirror
is a mirror that was previously detached and is in the process
of being re-attached to its original volume as the result of
the vxrecover or vxplex att operation.) When a mirror
returns to service, only the updates that it has missed need
to be re-applied to resynchronize it. This requires much less
effort than the traditional method of copying all the stored
data to the returning mirror.

Once FastResync has been enabled on a volume, it does not
alter how you administer mirrors. The only visible effect is
that repair operations conclude more quickly.

Faster mirror
resynchronization

FastResync allows you to refresh and re-use snapshots
rather than discard them. You can quickly re-associate (snap
back) snapshot plexes with their original volumes. This
reduces the system overhead required to perform cyclical
operations such as backups that rely on the volume
snapshots.

Re-use of snapshots

65Understanding Veritas Volume Manager
FastResync



Non-persistent FastResync
Non-persistent FastResync allocates its change maps in memory. They do not
reside on disk nor in persistent store. This has the advantage that updates to the
FastResync map have little impact on I/O performance, as no disk updates needed
to be performed. However, if a system is rebooted, the information in the map is
lost, so a full resynchronization is required on snapback. This limitation can be
overcome for volumes in cluster-shareable disk groups, provided that at least one
of the nodes in the cluster remained running to preserve the FastResync map in
its memory. However, a node crash in a High Availability (HA) environment
requires the full resynchronization of a mirror when it is reattached to its parent
volume.

How non-persistent FastResync works with snapshots
The snapshot feature of VxVM takes advantage of FastResync change tracking
to record updates to the original volume after a snapshot plex is created. After a
snapshot is taken, the snapback option is used to reattach the snapshot plex.
Provided that FastResync is enabled on a volume before the snapshot is taken,
and that it is not disabled at any time before the snapshot is reattached, the
changes that FastResync records are used to resynchronize the volume during
the snapback. This considerably reduces the time needed to resynchronize the
volume.

Non-Persistent FastResync uses a map in memory to implement change tracking.
Each bit in the map represents a contiguous number of blocks in a volume’s address
space. The default size of the map is 4 blocks. The kernel tunable vol_fmr_logsz
can be used to limit the maximum size in blocks of the map

See “Tunable parameters for VxVM” on page 556.

Persistent FastResync
Unlike non-persistent FastResync, persistent FastResync keeps the FastResync
maps on disk so that they can survive system reboots, system crashes and cluster
crashes. Persistent FastResync can also track the association between volumes
and their snapshot volumes after they are moved into different disk groups. When
the disk groups are rejoined, this allows the snapshot plexes to be quickly
resynchronized. This ability is not supported by non-persistent FastResync.

See “Reorganizing the contents of disk groups” on page 256.

If persistent FastResync is enabled on a volume or on a snapshot volume, a data
change object (DCO) and a DCO volume are associated with the volume.

Understanding Veritas Volume Manager
FastResync

66



DCO volume versioning
The internal layout of the DCO volume changed in VxVM 4.0 to support new
features such as full-sized and space-optimized instant snapshots, and a unified
DRL/DCO. Because the DCO volume layout is versioned, VxVM software continues
to support the version 0 layout for legacy volumes. However, you must configure
a volume to have a version 20 DCO volume if you want to take instant snapshots
of the volume. Future releases of Veritas Volume Manager may introduce new
versions of the DCO volume layout.

See “Determining the DCO version number” on page 363.

Version 0 DCO volume layout
In earlier releases of VxVM, the DCO object only managed information about the
FastResync maps. These maps track writes to the original volume and to each of
up to 32 snapshot volumes since the last snapshot operation. Each plex of the
DCO volume on disk holds 33 maps, each of which is 4 blocks in size by default.

Persistent FastResync uses the maps in a version 0 DCO volume on disk to
implement change tracking. As for non-persistent FastResync, each bit in the
map represents a region (a contiguous number of blocks) in a volume’s address
space. The size of each map can be changed by specifying the dcolen attribute to
the vxassist command when the volume is created. The default value of dcolen
is 132 512-byte blocks (the plex contains 33 maps, each of length 4 blocks). To use
a larger map size, multiply the desired map size by 33 to calculate the value of
dcolen that you need to specify. For example, to use an 8-block map, you would
specify dcolen=264. The maximum possible map size is 64 blocks, which
corresponds to a dcolen value of 2112 blocks.

The size of a DCO plex is rounded up to the nearest integer multiple of the disk
group alignment value. The alignment value is 8KB for disk groups that support
the Cross-platform Data Sharing (CDS) feature. Otherwise, the alignment value
is 1 block.

Only traditional (third-mirror) volume snapshots that are administered using the
vxassist command are supported for the version 0 DCO volume layout. Full-sized
and space-optimized instant snapshots are not supported.

Version 20 DCO volume layout
In VxVM 4.0 and later releases, the DCO object is used not only to manage the
FastResync maps, but also to manage DRL recovery maps and special maps called
copymaps that allow instant snapshot operations to resume correctly following
a system crash.

67Understanding Veritas Volume Manager
FastResync



See “Dirty region logging” on page 59.

Each bit in a map represents a region (a contiguous number of blocks) in a volume’s
address space. A region represents the smallest portion of a volume for which
changes are recorded in a map. A write to a single byte of storage anywhere within
a region is treated in the same way as a write to the entire region.

The layout of a version 20 DCO volume includes an accumulator that stores the
DRL map and a per-region state map for the volume, plus 32 per-volume maps
(by default) including a DRL recovery map, and a map for tracking detaches that
are initiated by the kernel due to I/O error. The remaining 30 per-volume maps
(by default) are used either for tracking writes to snapshots, or as copymaps. The
size of the DCO volume is determined by the size of the regions that are tracked,
and by the number of per-volume maps. Both the region size and the number of
per-volume maps in a DCO volume may be configured when a volume is prepared
for use with snapshots. The region size must be a power of 2 and be greater than
or equal to 16KB.

As the accumulator is approximately 3 times the size of a per-volume map, the
size of each plex in the DCO volume can be estimated from this formula:

DCO_plex_size = ( 3 + number_of_per-volume_maps ) * map_size

where the size of each map in bytes is:

map_size = 512 + ( volume_size / ( region_size * 8 ))

rounded up to the nearest multiple of 8KB. Note that each map includes a 512-byte
header.

For the default number of 32 per-volume maps and region size of 64KB, a 10GB
volume requires a map size of 24KB, and so each plex in the DCO volume requires
840KB of storage.

Note: Full-sized and space-optimized instant snapshots, which are administered
using the vxsnap command, are supported for a version 20 DCO volume layout.
The use of the vxassist command to administer traditional (third-mirror
break-off) snapshots is not supported for a version 20 DCO volume layout.

How persistent FastResync works with snapshots
Persistent FastResync uses a map in a DCO volume on disk to implement change
tracking. As for non-persistent FastResync, each bit in the map represents a
contiguous number of blocks in a volume’s address space.

Figure 1-33 shows an example of a mirrored volume with two plexes on which
Persistent FastResync is enabled.

Understanding Veritas Volume Manager
FastResync

68



Figure 1-33 Mirrored volume with persistent FastResync enabled

Data plex Data plex

Mirrored volume

DCO plex DCO plex

DCO volume

Data change object

Associated with the volume are a DCO object and a DCO volume with two plexes.

To create a traditional third-mirror snapshot or an instant (copy-on-write)
snapshot, the vxassist snapstart or vxsnap make operation respectively is
performed on the volume.

Figure 1-34 shows how a snapshot plex is set up in the volume, and how a disabled
DCO plex is associated with it.

Figure 1-34 Mirrored volume after completion of a snapstart operation

Data plex Data plex Data plex

Disabled
DCO plex

Mirrored volume

DCO plex DCO plex

DCO volume

Data change object

Multiple snapshot plexes and associated DCO plexes may be created in the volume
by re-running the vxassist snapstart command for traditional snapshots, or
the vxsnap make command for space-optimized snapshots. You can create up to
a total of 32 plexes (data and log) in a volume.

Space-optimized instant snapshots do not require additional full-sized plexes to
be created. Instead, they use a storage cache that typically requires only 10% of
the storage that is required by full-sized snapshots. There is a trade-off in
functionality in using space-optimized snapshots. The storage cache is formed
within a cache volume, and this volume is associated with a cache object. For
convenience of operation, this cache can be shared by all the space-optimized
instant snapshots within a disk group.

69Understanding Veritas Volume Manager
FastResync



See “Comparison of snapshot features” on page 63.

A traditional snapshot volume is created from a snapshot plex by running the
vxassist snapshot operation on the volume. For instant snapshots, however,
the vxsnap make command makes an instant snapshot volume immediately
available for use. There is no need to run an additional command.

Figure 1-35 shows how the creation of the snapshot volume also sets up a DCO
object and a DCO volume for the snapshot volume.

Figure 1-35 Mirrored volume and snapshot volume after completion of a
snapshot operation

Data plex Data plex

Data plex

Mirrored volume

DCO
log plex

DCO volume

Data change object Snap object

DCO volume

Snapshot volume

Data change object Snap object

DCO
log plex

DCO
log plex

The DCO volume contains the single DCO plex that was associated with the
snapshot plex. If two snapshot plexes were taken to form the snapshot volume,
the DCO volume would contain two plexes. For space-optimized instant snapshots,
the DCO object and DCO volume are associated with a snapshot volume that is
created on a cache object and not on a VM disk.

Associated with both the original volume and the snapshot volume are snap
objects. The snap object for the original volume points to the snapshot volume,
and the snap object for the snapshot volume points to the original volume. This

Understanding Veritas Volume Manager
FastResync

70



allows VxVM to track the relationship between volumes and their snapshots even
if they are moved into different disk groups.

The snap objects in the original volume and snapshot volume are automatically
deleted in the following circumstances:

■ For traditional snapshots, the vxassist snapback operation is run to return
all of the plexes of the snapshot volume to the original volume.

■ For traditional snapshots, the vxassist snapclear operation is run on a
volume to break the association between the original volume and the snapshot
volume. If the volumes are in different disk groups, the command must be run
separately on each volume.

■ For full-sized instant snapshots, the vxsnap reattach operation is run to
return all of the plexes of the snapshot volume to the original volume.

■ For full-sized instant snapshots, the vxsnap dis or vxsnap split operations
are run on a volume to break the association between the original volume and
the snapshot volume. If the volumes are in different disk groups, the command
must be run separately on each volume.

Note: The vxsnap reattach, dis and split operations are not supported for
space-optimized instant snapshots.

See “Space-optimized instant snapshots” on page 392.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Effect of growing a volume on the FastResync map
It is possible to grow the replica volume, or the original volume, and still use
FastResync. According to the DCO volume layout, growing the volume has the
following different effects on the map that FastResync uses to track changes to
the original volume:

■ For a version 20 DCO volume, the size of the map is increased and the size of
the region that is tracked by each bit in the map stays the same.

■ For a version 0 DCO volume, the size of the map remains the same and the
region size is increased.

In either case, the part of the map that corresponds to the grown area of the
volume is marked as “dirty” so that this area is resynchronized. The snapback

operation fails if it attempts to create an incomplete snapshot plex. In such cases,
you must grow the replica volume, or the original volume, before invoking any of

71Understanding Veritas Volume Manager
FastResync



the commands vxsnap reattach, vxsnap restore, or vxassist snapback.
Growing the two volumes separately can lead to a snapshot that shares physical
disks with another mirror in the volume. To prevent this, grow the volume after
the snapback command is complete.

FastResync limitations
The following limitations apply to FastResync:

■ Persistent FastResync is supported for RAID-5 volumes, but this prevents the
use of the relayout or resize operations on the volume while a DCO is associated
with it.

■ Neither non-persistent nor persistent FastResync can be used to resynchronize
mirrors after a system crash. Dirty region logging (DRL), which can coexist
with FastResync, should be used for this purpose. In VxVM 4.0 and later
releases, DRL logs may be stored in a version 20 DCO volume.

■ When a subdisk is relocated, the entire plex is marked “dirty” and a full
resynchronization becomes necessary.

■ If a snapshot volume is split off into another disk group, non-persistent
FastResync cannot be used to resynchronize the snapshot plexes with the
original volume when the disk group is rejoined with the original volume’s
disk group. Persistent FastResync must be used for this purpose.

■ If you move or split an original volume (on which persistent FastResync is
enabled) into another disk group, and then move or join it to a snapshot
volume’s disk group, you cannot use vxassist snapback to resynchronize
traditional snapshot plexes with the original volume. This restriction arises
because a snapshot volume references the original volume by its record ID at
the time that the snapshot volume was created. Moving the original volume
to a different disk group changes the volume’s record ID, and so breaks the
association. However, in such a case, you can use the vxplex snapback

command with the -f (force) option to perform the snapback.

Note: This restriction only applies to traditional snapshots. It does not apply
to instant snapshots.

■ Any operation that changes the layout of a replica volume can mark the
FastResync change map for that snapshot “dirty” and require a full
resynchronization during snapback. Operations that cause this include subdisk
split, subdisk move, and online relayout of the replica. It is safe to perform
these operations after the snapshot is completed.

Understanding Veritas Volume Manager
FastResync

72



See the vxassist (1M) manual page.

See the vxplex (1M) manual page.

See the vxvol (1M) manual page.

Hot-relocation
Hot-relocation is a feature that allows a system to react automatically to I/O
failures on redundant objects (mirrored or RAID-5 volumes) in VxVM and restore
redundancy and access to those objects. VxVM detects I/O failures on objects and
relocates the affected subdisks. The subdisks are relocated to disks designated as
spare disks or to free space within the disk group. VxVM then reconstructs the
objects that existed before the failure and makes them accessible again.

When a partial disk failure occurs (that is, a failure affecting only some subdisks
on a disk), redundant data on the failed portion of the disk is relocated. Existing
volumes on the unaffected portions of the disk remain accessible.

See “How hot-relocation works” on page 468.

Volume sets
Volume sets are an enhancement to VxVM that allow several volumes to be
represented by a single logical object. All I/O from and to the underlying volumes
is directed via the I/O interfaces of the volume set. The Veritas File System (VxFS)
uses volume sets to manage multi-volume file systems and Dynamic Storage
Tiering. This feature allows VxFS to make best use of the different performance
and availability characteristics of the underlying volumes. For example, file system
metadata can be stored on volumes with higher redundancy, and user data on
volumes with better performance.

See “Creating a volume set” on page 448.

Configuration of volumes on SAN storage
Storage Area Networks (SANs) provide a networking paradigm that provides easily
reconfigurable connectivity between any subset of computers, disk storage and
interconnecting hardware such as switches, hubs and bridges. A SAN can contain
a huge number of devices connected using either arbitrated or switched fabric. A
SAN that has thousands or tens of thousands of connected devices is difficult to
administer using a simple disk group model. Veritas CommandCentral Storage
software allows you to configure storage groups and storage accounts. Using the
CommandCentral Storage software, you can allocate SAN storage more prudently
and administer your complex SAN environments more effectively.

73Understanding Veritas Volume Manager
Hot-relocation



Note: This feature of vxassist is designed to work in conjunction with SAL (SAN
Access Layer) in Veritas CommandCentral Storage. When VxVM with SAN-aware
vxassist is installed on a host where SAL is also installed, it is recommended
that you create a user named root under SAL. This allows vxassist to use the
root login to contact the SAL daemon (sald) on the primary SAL server without
needing to specify the sal_username attribute to vxassist.

Figure 1-36, shows how you might choose to set up storage groups within a SAN.

Figure 1-36 Dividing a Storage Area Network into storage groups

Storage Area Network

Location 1

Location 2

Storage groups

High
performance

storage

Low
performance
storage

In this example, the boundaries of the storage groups are based on the performance
characteristics of different makes of disk array and on geographic location.

The vxassistutility in Veritas Volume Manager understands storage groups that
you have defined using the CommandCentral Storage software. vxassist supports
a simple language that you can use to specify how disks are to be allocated from
pre-defined storage groups. This specification language defines the confinement
and separation criteria that vxassist applies to the available storage to choose
disks for creating, resizing or moving a volume.

To use the CommandCentral Storage storage groups with vxassist, perform the
following steps in the order listed:

Understanding Veritas Volume Manager
Configuration of volumes on SAN storage

74



■ Use the CommandCentral Storage software to define one or more storage
groups. Note that zoning is not an issue as it is completely independent of
storage group creation.

■ Use the CommandCentral Storage software to attach attribute-value pairs to
each storage group’s property sheet. Typically, you would assign values for
the following attributes: location, storage group, and protection.

■ Use the vxspcshow command to discover the device names of disks that have
a specified set of attributes, or to list the attributes of specified disks.

■ Use the vxdiskadm command or the VEA to configure the disks that you found
in the previous step into VxVM disk groups.

■ Usevxassist to create volumes on disks that are selected by matching specified
criteria for the values of storage group attributes. The usual restriction applies
that a volume may only be created using disks from a single disk group.

75Understanding Veritas Volume Manager
Configuration of volumes on SAN storage



Understanding Veritas Volume Manager
Configuration of volumes on SAN storage

76



Provisioning new usable
storage

This chapter includes the following topics:

■ Provisioning new usable storage

■ Growing existing storage by adding a new LUN

■ Growing existing storage by growing the LUN

Provisioning new usable storage
The following procedure describes how to provision new usable storage.

To provision new usable storage

1 Set up the LUN. See the documentation for your storage array for how to
create, mask, and bind the LUN.

2 Initialize the LUNs for use by Veritas Volume Manager (VxVM):

# vxdisksetup -i 3PARDATA0_1

# vxdisk init 3PARDATA0_1

3 Add the LUN to a diskgroup.

■ If you do not have a diskgroup for your LUN, create the diskgroup:

# vxdg init dg1 3PARDATA0_1=dev1

■ If you already have a diskgroup for your LUN, add the LUN to the
diskgroup:

# vxdg -g dg1 adddisk 3PARDATA0_1

2Chapter



4 Create the volume on the LUN:

# vxassist -b -g dg1 make vol1 100g 3PARDATA0_1

5 Create a file system on the volume:

# mkfs -F vxfs /dev/vx/rdsk/dg1/vol1

6 Create a mount point on the file system:

# mkdir mount1

7 Mount the file system:

# mount -F vxfs /dev/vx/rdsk/dg1/vol1 /mount1

Growing existing storage by adding a new LUN
The following procedure describes how to grow existing storage by adding a new
LUN.

To grow existing storage by adding a new LUN

1 Create and set up the LUN.

2 Add the LUN to the diskgroup:

# vxdg -g dg1 adddisk 3PARDATA0_2

3 Grow the volume and file system to the desired size:

# vxresize -b -F vxfs -g dg1 vol1 100g

Growing existing storage by growing the LUN
The following procedure describes how to grow existing storage by growing a
LUN.

Provisioning new usable storage
Growing existing storage by adding a new LUN

78



To grow existing storage by growing a LUN

1 Grow the existing LUN. See the documentation for your storage array for
how to create, mask, and bind the LUN.

2 Make VxVM aware of the new LUN size.

# vxdisk -g dg1 resize c0t1d0s4

See theVeritasVolumeManagerAdministrator'sGuide for information about
dynamic LUN expansion.

3 Calculate the new maximum volume size:

# vxassist -b maxgrow vol1

4 Grow the volume and file system to the desired size:

# vxresize -b -F vxfs -g dg1 vol1 150g

79Provisioning new usable storage
Growing existing storage by growing the LUN



Provisioning new usable storage
Growing existing storage by growing the LUN

80



Administering disks

This chapter includes the following topics:

■ About disk management

■ Disk devices

■ Discovering and configuring newly added disk devices

■ Disks under VxVM control

■ VxVM coexistence with SVM and ZFS

■ Changing the disk-naming scheme

■ Discovering the association between enclosure-based disk names and OS-based
disk names

■ Disk installation and formatting

■ Displaying or changing default disk layout attributes

■ Adding a disk to VxVM

■ RAM disk support in VxVM

■ Encapsulating a disk

■ Rootability

■ Unencapsulating the root disk

■ Displaying disk information

■ Dynamic LUN expansion

■ Removing disks

■ Removing a disk from VxVM control

3Chapter



■ Removing and replacing disks

■ Enabling a disk

■ Taking a disk offline

■ Renaming a disk

■ Reserving disks

■ Changing host LUN configurations online

About disk management
Veritas Volume Manager (VxVM) allows you to place disks under VxVM control,
to initialize or encapsulate disks, and to remove and replace disks.

Note: Most VxVM commands require superuser or equivalent privileges.

Disks that are controlled by the Sun Microsystems Solaris Volume Manager
software cannot be used directly as VxVM disks, but the disks can be converted
so that their volumes become VxVM volumes.

The dynamic multipathing (DMP) feature of VxVM is used to administer
multiported disk arrays.

See “How DMP works” on page 165.

Disk devices
When performing disk administration, it is important to understand the difference
between a disk name and a device name.

The disk name (also known as a disk media name) is the symbolic name assigned
to a VM disk. When you place a disk under VxVM control, a VM disk is assigned
to it. The disk name is used to refer to the VM disk for the purposes of
administration. A disk name can be up to 31 characters long. When you add a disk
to a disk group, you can assign a disk name or allow VxVM to assign a disk name.
The default disk name is diskgroup## where diskgroup is the name of the disk
group to which the disk is being added, and ## is a sequence number. Your system
may use device names that differ from those given in the examples.

The device name (sometimes referred to as devname or disk access name) defines
the name of a disk device as it is known to the operating system.

Administering disks
About disk management

82



Such devices are usually, but not always, located in the /dev/dsk and /dev/rdsk

directories. Devices that are specific to hardware from certain vendors may use
their own path name conventions.

VxVM uses the device names to create metadevices in the /dev/vx/[r]dmp

directories. The Dynamic Multipathing (DMP) feature of VxVM uses these
metadevices (or DMP nodes) to represent disks that can be accessed by one or
more physical paths, perhaps via different controllers. The number of access
paths that are available depends on whether the disk is a single disk, or is part of
a multiported disk array that is connected to a system.

You can use the vxdisk utility to display the paths that are subsumed by a DMP
metadevice, and to display the status of each path (for example, whether it is
enabled or disabled).

See “How DMP works” on page 165.

Device names may also be remapped as enclosure-based names.

See “Disk device naming in VxVM” on page 83.

Disk device naming in VxVM
Device names for disks are assigned according to the naming scheme which you
specify to VxVM. The format of the device name may vary for different categories
of disks.

See “Disk categories” on page 90.

Device names can use one of the following naming schemes:

■ Operating system-based naming

■ Enclosure-based naming

Devices with device names longer than 31 characters always use enclosure-based
names.

You can change the disk-naming scheme if required.

See “Changing the disk-naming scheme” on page 107.

Operating system-based naming
In the OS-based naming scheme, all disk devices except fabric mode disks are
named using the c#t#d#s# format.

The syntax of a device name is c#t#d#s#, where c# represents a controller on a
host bus adapter, t# is the target controller ID, d# identifies a disk on the target
controller, and s# represents a partition (or slice) on the disk.

83Administering disks
Disk devices



Note: For non-EFI disks, the slice s2 represents the entire disk. For both EFI and
non-EFI disks, the entire disk is implied if the slice is omitted from the device
name.

The boot disk (which contains the root file system and is used when booting the
system) is often identified to VxVM by the device name c0t0d0.

Fabric mode disk devices are named as follows:

■ Disks in supported disk arrays are named using the enclosure name_# format.
For example, disks in the supported disk array name FirstFloor are named
FirstFloor_0, FirstFloor_1, FirstFloor_2 and so on.

You can use the vxdmpadm command to administer enclosure names.

■ Disks in the DISKS category (JBOD disks) are named using the Disk_# format.

■ Disks in the OTHER_DISKS category (disks that are not multipathed by DMP)
are named using the fabric_# format.

OS-based names can be made persistent, so that they do not change after reboot.
By default, OS-based names are not persistent, and are regenerated if the system
configuration changes the device name as recognized by the operating system.

Enclosure-based naming
Enclosure-based naming operates as follows:

■ All fabric or non-fabric disks in supported disk arrays are named using the
enclosure_name_# format. For example, disks in the supported disk array,
enggdept are named enggdept_0, enggdept_1, enggdept_2 and so on.

You can use the vxdmpadm command to administer enclosure names.

See “Renaming an enclosure” on page 209.
See the vxdmpadm(1M) manual page.

■ Disks in the DISKS category (JBOD disks) are named using the Disk_# format.

■ Disks in the OTHER_DISKS category (disks that are not multipathed by DMP)
are named as follows:

■ Non-fabric disks are named using the c#t#d#s# format.

■ Fabric disks are named using the fabric_# format.

By default, enclosure-based names are persistent, so they do not change after
reboot.

Administering disks
Disk devices

84



If a CVM cluster is symmetric, each node in the cluster accesses the same set of
disks. Enclosure-based names provide a consistent naming system so that the
device names are the same on each node.

To display the native OS device names of a VM disk (such as mydg01), use the
following command:

# vxdisk path | grep diskname

See “Renaming an enclosure” on page 209.

See “Disk categories” on page 90.

Private and public disk regions
Most VM disks consist of the following regions:

A small area where configuration information is stored, including a
disk header label, configuration records for VxVM objects, and an
intent log for the configuration database.

The default private region size is 32 megabytes, which is large enough
to record the details of several thousand VxVM objects in a disk group.

Under most circumstances, the default private region size should be
sufficient. For administrative purposes, it is usually much simpler to
create more disk groups that contain fewer volumes, or to split large
disk groups into several smaller ones.

See “Splitting disk groups” on page 266.

If required, the value for the private region size may be overridden
when you add or replace a disk using the vxdiskadm command.

Each disk that has a private region holds an entire copy of the
configuration database for the disk group. The size of the configuration
database for a disk group is limited by the size of the smallest copy of
the configuration database on any of its member disks.

private region

An area that covers the remainder of the disk, and which is used for
the allocation of storage space to subdisks.

public region

A disk’s type identifies how VxVM accesses a disk, and how it manages the disk’s
private and public regions.

The following disk access types are used by VxVM:

When thevxconfigddaemon is started, VxVM obtains a list of known
disk device addresses from the operating system and configures disk
access records for them automatically.

auto

85Administering disks
Disk devices



There is no private region (only a public region for allocating subdisks).
This is the simplest disk type consisting only of space for allocating
subdisks. Such disks are most useful for defining special devices (such
as RAM disks, if supported) on which private region data would not
persist between reboots. They can also be used to encapsulate disks
where there is insufficient room for a private region. The disks cannot
store configuration and log copies, and they do not support the use
of the vxdisk addregion command to define reserved regions.
VxVM cannot track the movement of nopriv disks on a SCSI chain or
between controllers.

nopriv

The public and private regions are on the same disk area (with the
public area following the private area).

simple

The public and private regions are on different disk partitions.sliced

Auto-configured disks (with disk access type auto) support the following disk
formats:

The disk is formatted as a Cross-platform Data Sharing (CDS) disk
that is suitable for moving between different operating systems. This
is the default format for disks that are not used to boot the system.
Typically, most disks on a system are configured as this disk type.
However, it is not a suitable format for boot, root or swap disks, for
mirrors or hot-relocation spares of such disks, or for Extensible
Firmware Interface (EFI) disks.

cdsdisk

The disk is formatted as a simple disk that can be converted to a CDS
disk.

simple

The disk is formatted as a sliced disk. This format can be applied to
disks that are used to boot the system. The disk can be converted to
a CDS disk if it was not initialized for use as a boot disk.

sliced

The vxcdsconvert utility can be used to convert disks to the cdsdisk format.

See the vxcdsconvert(1M) manual page.

Warning:The CDS disk format is incompatible with EFI disks. If a disk is initialized
by VxVM as a CDS disk, the CDS header occupies the portion of the disk where
the VTOC would usually be located. If you subsequently use a command such as
fdisk or format to create a partition table on a CDS disk, this erases the CDS
information and could cause data corruption.

Administering disks
Disk devices

86



By default, auto-configured non-EFI disks are formatted as cdsdisk disks when
they are initialized for use with VxVM. You can change the default format by
using the vxdiskadm(1M) command to update the /etc/default/vxdisk defaults
file.

Auto-configured EFI disks are formatted as sliced disks by default.

VxVM initializes each new disk with the smallest possible number of partitions.
For non-EFI disks of type sliced, VxVM usually configures partition s3 as the
private region, s4 as the public region, and s2 as the entire physical disk. An
exception is an encapsulated root disk, on which s3 is usually configured as the
public region and s4 as the private region.

See “Displaying or changing default disk layout attributes” on page 115.

See the vxdisk(1M) manual page.

Discovering and configuring newly addeddisk devices
The vxdiskconfig utility scans and configures new disk devices attached to the
host, disk devices that become online, or fibre channel devices that are zoned to
host bus adapters connected to this host. The command calls platform specific
interfaces to configure new disk devices and brings them under control of the
operating system. It scans for disks that were added since VxVM’s configuration
daemon was last started. These disks are then dynamically configured and
recognized by VxVM.

vxdiskconfig should be used whenever disks are physically connected to the host
or when fibre channel devices are zoned to the host.

vxdiskconfig calls vxdctl enable to rebuild volume device node directories and
update the DMP internal database to reflect the new state of the system.

You can also use the vxdisk scandisks command to scan devices in the operating
system device tree, and to initiate dynamic reconfiguration of multipathed disks.

If you want VxVM to scan only for new devices that have been added to the system,
and not for devices that have been enabled or disabled, specify the -f option to
either of the commands, as shown here:

# vxdctl -f enable

# vxdisk -f scandisks

However, a complete scan is initiated if the system configuration has been modified
by changes to:

■ Installed array support libraries.

87Administering disks
Discovering and configuring newly added disk devices



■ The list of devices that are excluded from use by VxVM.

■ DISKS (JBOD), SCSI3, or foreign device definitions.

See the vxdctl(1M) manual page.

See the vxdisk(1M) manual page.

Partial device discovery
The Dynamic Multipathing (DMP) feature of VxVM supports partial device
discovery where you can include or exclude sets of disks or disks attached to
controllers from the discovery process.

The vxdisk scandisks command rescans the devices in the OS device tree and
triggers a DMP reconfiguration. You can specify parameters to vxdisk scandisks

to implement partial device discovery. For example, this command makes VxVM
discover newly added devices that were unknown to it earlier:

# vxdisk scandisks new

The next example discovers fabric devices:

# vxdisk scandisks fabric

The above command discovers devices with the characteristic DDI_NT_FABRIC
property set on them.

The following command scans for the devices c1t1d0 and c2t2d0:

# vxdisk scandisks device=c1t1d0,c2t2d0

Alternatively, you can specify a ! prefix character to indicate that you want to
scan for all devices except those that are listed.

Note:The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

# vxdisk scandisks \!device=c1t1d0,c2t2d0

You can also scan for devices that are connected (or not connected) to a list of
logical or physical controllers. For example, this command discovers and configures
all devices except those that are connected to the specified logical controllers:

# vxdisk scandisks \!ctlr=c1,c2

The next command discovers devices that are connected to the specified physical
controller:

Administering disks
Discovering and configuring newly added disk devices

88



# vxdisk scandisks pctlr=/pci@1f,4000/scsi@3/

The items in a list of physical controllers are separated by + characters.

You can use the command vxdmpadm getctlr all to obtain a list of physical
controllers.

You may specify only one selection argument to the vxdisk scandisks command.
Specifying multiple options results in an error.

See the vxdisk(1M) manual page.

Discovering disks and dynamically adding disk arrays
DMP uses array support libraries (ASLs) to provide array-specific support for
multipathing. An array support library (ASL) is a dynamically loadable shared
library (plug-in for DDL). The ASL implements hardware-specific logic to discover
device attributes during device discovery. DMP provides the device discovery
layer (DDL) to determine which ASLs should be associated to each disk array

In some cases, DMP can also provide basic multipathing and failover functionality
by treating LUNs as disks (JBODs).

How DMP claims devices
For fully optimized support of any array and for support of more complicated
array types, DMP requires the use of array-specific array support libraries (ASLs),
possibly coupled with array policy modules (APMs). ASLs and APMs effectively
are array-specific plugins that allow close tie-in of DMP with any specific array
model.

See the Hardware Compatibility List for the complete list of supported arrays.

http://entsupport.symantec.com/docs/330441

During device discovery, the DDL checks the installed ASL for each device to find
which ASL claims the device. If no ASL is found to claim the device, the DDL checks
for a corresponding JBOD definition. You can add JBOD definitions for unsupported
arrays to enable DMP to provide multipathing for the array. If a JBOD definition
is found, the DDL claims the devices in the DISKS category, which adds the LUNs
to the list of JBOD (physical disk) devices used by DMP. If the JBOD definition
includes a cabinet number, DDL uses the cabinet number to group the LUNs into
enclosures.

See “Adding unsupported disk arrays to the DISKS category” on page 100.

DMP can provide basic multipathing to ALUA-compliant arrays even if there is
no ASL or JBOD definition. DDL claims the LUNs as part of the aluadisk enclosure.

89Administering disks
Discovering and configuring newly added disk devices

http://entsupport.symantec.com/docs/330441


The array type is shown as ALUA. Adding a JBOD definition also enables you to
group the LUNs into enclosures.

Disk categories
Disk arrays that have been certified for use with Veritas Volume Manager are
supported by an array support library (ASL), and are categorized by the vendor
ID string that is returned by the disks (for example, “HITACHI”).

Disks in JBODs which are capable of being multipathed by DMP, are placed in the
DISKS category. Disks in unsupported arrays can also be placed in the DISKS

category.

See “Adding unsupported disk arrays to the DISKS category” on page 100.

Disks in JBODs that do not fall into any supported category, and which are not
capable of being multipathed by DMP are placed in the OTHER_DISKS category.

Adding support for a new disk array
You can dynamically add support for a new type of disk array which has been
developed by Symantec. The support comes in the form of Array Support Libraries
(ASLs). Symantec provides support for new disk arrays though updates to the
VRTSaslapmpackage. To determine if an updated VRTSaslapmpackage is available
for download, refer to the hardware compatibility list tech note. The hardware
compatibility list provides a link to the latest package for download and
instructions for installing the VRTSaslapm package. You can upgrade the
VRTSaslapm package while the system is online; you do not need to stop the
applications.

To access the hardware compatibility list , go to the following URL:

http://entsupport.symantec.com/docs/330441

The new disk array does not need to be already connected to the system when the
package is installed. If any of the disks in the new disk array are subsequently
connected, and ifvxconfigd is running,vxconfigd immediately invokes the Device
Discovery function and includes the new disks in the VxVM device list.

If you need to remove the latest VRTSaslapm package, you can revert to the
previously installed version. For the detailed procedure, refer to theVeritasVolume
Manager Troubleshooting Guide.

Administering disks
Discovering and configuring newly added disk devices

90

http://entsupport.symantec.com/docs/330441


Enabling discovery of new disk arrays
The vxdctl enable command scans all of the disk devices and their attributes,
updates the VxVM device list, and reconfigures DMP with the new device database.
There is no need to reboot the host.

Warning: This command ensures that dynamic multipathing is set up correctly
on the array. Otherwise, VxVM treats the independent paths to the disks as
separate devices, which can result in data corruption.

To enable discovery of a new disk array

◆ Type the following command:

# vxdctl enable

Third-party driver coexistence
The third-party driver (TPD) coexistence feature of VxVM allows I/O that is
controlled by some third-party multipathing drivers to bypass DMP while retaining
the monitoring capabilities of DMP. If a suitable ASL is available and installed,
devices that use TPDs can be discovered without requiring you to set up a
specification file, or to run a special command. In previous releases, VxVM only
supported TPD coexistence if the code of the third-party driver was intrusively
modified. The new TPD coexistence feature maintains backward compatibility
with such methods, but it also permits coexistence without require any change
in a third-party multipathing driver.

See “Changing device naming for TPD-controlled enclosures” on page 110.

See “Displaying information about TPD-controlled devices” on page 187.

Autodiscovery of EMC Symmetrix arrays
In VxVM 4.0, there were two possible ways to configure EMC Symmetrix arrays:

■ With EMC PowerPath installed, EMC Symmetrix arrays could be configured
as foreign devices.
See “Foreign devices” on page 104.

■ Without EMC PowerPath installed, DMP could be used to perform multipathing.

On upgrading a system to VxVM 4.1 or later release, existing EMC PowerPath
devices can be discovered by DDL, and configured into DMP as autoconfigured
disks with DMP nodes, even if PowerPath is being used to perform multipathing.
There is no need to configure such arrays as foreign devices.

91Administering disks
Discovering and configuring newly added disk devices



Table 3-1 shows the scenarios for using DMP with PowerPath.

The ASLs are all included in the ASL-APM package, which is installed when you
install Storage Foundation products.

Table 3-1 Scenarios for using DMP with PowerPath

Array configuration
mode

DMPPowerPath

EMC Symmetrix - Any

DGC CLARiiON -
Active/Passive (A/P),
Active/Passive in
Explicit Failover mode
(A/P-F) and ALUA
Explicit failover

ThelibvxppASL handles EMC
Symmetrix arrays and DGC
CLARiiON claiming internally.
PowerPath handles failover.

Installed.

Active/ActiveDMP handles multipathing.

The ASL name is libvxemc.

Not installed; the array is EMC
Symmetrix.

Active/Passive (A/P),
Active/Passive in
Explicit Failover mode
(A/P-F) and ALUA

DMP handles multipathing.

The ASL name is
libvxCLARiiON.

Not installed; the array is DGC
CLARiioN (CXn00).

If any EMCpower discs are configured as foreign discs, use the vxddladm

rmforeign command to remove the foreign definitions, as shown in this example:

# vxddladm rmforeign blockpath=/dev/dsk/emcpower10 \

charpath=/dev/rdsk/emcpower10

To allow DMP to receive correct inquiry data, the Common Serial Number (C-bit)
Symmetrix Director parameter must be set to enabled.

How to administer the Device Discovery Layer
The Device Discovery Layer (DDL) allows dynamic addition of disk arrays. DDL
discovers disks and their attributes that are required for VxVM and DMP
operations.

The DDL is administered using the vxddladmutility to perform the following tasks:

■ List the hierarchy of all the devices discovered by DDL including iSCSI devices.

■ List all the Host Bus Adapters including iSCSI

■ List the ports configured on a Host Bus Adapter

Administering disks
Discovering and configuring newly added disk devices

92



■ List the targets configured from a Host Bus Adapter

■ List the devices configured from a Host Bus Adapter

■ Get or set the iSCSI operational parameters

■ List the types of arrays that are supported.

■ Add support for an array to DDL.

■ Remove support for an array from DDL.

■ List information about excluded disk arrays.

■ List disks that are supported in the DISKS (JBOD) category.

■ Add disks from different vendors to the DISKS category.

■ Remove disks from the DISKS category.

■ Add disks as foreign devices.

The following sections explain these tasks in more detail.

See the vxddladm(1M) manual page.

Listing all the devices including iSCSI
You can display the hierarchy of all the devices discovered by DDL, including
iSCSI devices.

To list all the devices including iSCSI

◆ Type the following command:

# vxddladm list

The following is a sample output:

HBA c2 (20:00:00:E0:8B:19:77:BE)

Port c2_p0 (50:0A:09:80:85:84:9D:84)

Target c2_p0_t0 (50:0A:09:81:85:84:9D:84)

LUN c2t0d0s2

. . .

HBA c3 (iqn.1986-03.com.sun:01:0003ba8ed1b5.45220f80)

Port c3_p0 (10.216.130.10:3260)

Target c3_p0_t0 (iqn.1992-08.com.netapp:sn.84188548)

LUN c3t0d0s2

LUN c3t0d1s2

Target c3_t1 (iqn.1992-08.com.netapp:sn.84190939)

. . .

93Administering disks
Discovering and configuring newly added disk devices



Listing all the Host Bus Adapters including iSCSI
You can obtain information about all the devices discovered by DDL including
iSCSI devices. This includes the following information:

Driver controlling the HBA.Driver

Firmware version.Firmware

The discovery method employed for the targets.Discovery

Whether the device is Online or Offline.State

The hardware address.Address

To list all the Host Bus Adapters including iSCSI

◆ Type the following command:

# vxddladm list hbas

You can use this command to obtain all of the HBAs, including iSCSI devices,
configured on the system. The following is a sample output:

HBA-ID Driver Firmware Discovery State Address

--------------------------------------------------------------------------------------------------

c2 qlc v.3.3.20 IPX Fabric Online 20:00:00:E0:8B:19:77:BE

c3 iscsi - iSNS(10.216.130.10) Online iqn.1986-03.com.sun:01:0003ba8ed1b5.45220f80

Listing the ports configured on a Host Bus Adapter
You can obtain information about all the ports configured on an HBA. The display
includes the following information:

The parent HBA.HBA-ID

Whether the device is Online or Offline.State

The hardware address.Address

Administering disks
Discovering and configuring newly added disk devices

94



To list the ports configured on a Host Bus Adapter

◆ Type the following command:

# vxddladm list ports

You can use this command to obtain the ports configured on an HBA. The
following is a sample output:

PortID HBA-ID State Address

-------------------------------------------------------------------

c2_p0 c2 Online 50:0A:09:80:85:84:9D:84

c3_p0 c3 Online 10.216.130.10:3260

Listing the targets configured from aHost Bus Adapter or port
You can obtain information about all the targets configured from a Host Bus
Adapter. This includes the following information:

The alias name, if available.Alias

Parent HBA or port.HBA-ID

Whether the device is Online or Offline.State

The hardware address.Address

To list the targets

◆ To list all of the targets, use the following command:

# vxddladm list targets

The following is a sample output:

TgtID Alias HBA-ID State Address

-----------------------------------------------------------------

c2_p0_t0 - c2 Online 50:0A:09:80:85:84:9D:84

c3_p0_t1 - c3 Online iqn.1992-08.com.netapp:sn.84190939

95Administering disks
Discovering and configuring newly added disk devices



To list the targets configured from a Host Bus Adapter or port

◆ You can filter based on a HBA or port, using the following command:

# vxddladm list targets [hba=hba_name|port=port_name]

For example, to obtain the targets configured from the specified HBA:

# vxddladm list targets hba=c2

TgtID Alias HBA-ID State Address

-----------------------------------------------------------------

c2_p0_t0 - c2 Online 50:0A:09:80:85:84:9D:84

Listing the devices configured from a Host Bus Adapter and
target
You can obtain information about all the devices configured from a Host Bus
Adapter. This includes the following information:

The parent target.Target-ID

Whether the device is Online or Offline.State

Whether the device is claimed by DDL. If claimed, the output
also displays the ASL name.

DDL status

To list the devices configured from a Host Bus Adapter

◆ To obtain the devices configured, use the following command:

# vxddladm list devices

Device Target-ID State DDL status (ASL)

------------------------------------------------------------

c2t0d2s2 c2_p0_t0 Online CLAIMED (libvxemc.so)

c3t1d2s2 c3_p0_t1 Online SKIPPED

c4t1d2s2 c4_p0_t1 Offline ERROR

c4t1d2s2 c4_p0_t2 Online EXCLUDED

c4t5d2s2 c4_p0_t5 Offline MASKED

To list the devices configured from a Host Bus Adapter and target

◆ To obtain the devices configured from a particular HBA and target, use the
following command:

# vxddladm list devices target=target_name

Administering disks
Discovering and configuring newly added disk devices

96



Getting or setting the iSCSI operational parameters
DDL provides an interface to set and display certain parameters that affect the
performance of the iSCSI device path. However, the underlying OS framework
must support the ability to set these values. The vxddladm set command returns
an error if the OS support is not available.

Table 3-2 Parameters for iSCSI devices

Maximum
value

Minimum
value

Default
value

Parameter

yesnoyesDataPDUInOrder

yesnoyesDataSequenceInOrder

3600020DefaultTime2Retain

360002DefaultTime2Wait

200ErrorRecoveryLevel

1677721551265535FirstBurstLength

yesnoyesInitialR2T

yesnoyesImmediateData

16777215512262144MaxBurstLength

6553511MaxConnections

6553511MaxOutStandingR2T

167772155128182MaxRecvDataSegmentLength

97Administering disks
Discovering and configuring newly added disk devices



To get the iSCSI operational parameters on the initiator for a specific iSCSI target

◆ Type the following commands:

# vxddladm getiscsi target=tgt-id {all | parameter}

You can use this command to obtain all the iSCSI operational parameters.
The following is a sample output:

# vxddladm getiscsi target=c2_p2_t0

PARAMETER CURRENT DEFAULT MIN MAX

------------------------------------------------------------------------------

DataPDUInOrder yes yes no yes

DataSequenceInOrder yes yes no yes

DefaultTime2Retain 20 20 0 3600

DefaultTime2Wait 2 2 0 3600

ErrorRecoveryLevel 0 0 0 2

FirstBurstLength 65535 65535 512 16777215

InitialR2T yes yes no yes

ImmediateData yes yes no yes

MaxBurstLength 262144 262144 512 16777215

MaxConnections 1 1 1 65535

MaxOutStandingR2T 1 1 1 65535

MaxRecvDataSegmentLength 8192 8182 512 16777215

To set the iSCSI operational parameters on the initiator for a specific iSCSI target

◆ Type the following command:

# vxddladm setiscsi target=tgt-id

parameter=value

Listing all supported disk arrays
Use this procedure to obtain values for the vid and pid attributes that are used
with other forms of the vxddladm command.

To list all supported disk arrays

◆ Type the following command:

# vxddladm listsupport all

Administering disks
Discovering and configuring newly added disk devices

98



Excluding support for a disk array library
To exclude support for a disk array library

◆ Type the following command:

# vxddladm excludearray libname=libvxenc.so

This example excludes support for disk arrays that depends on the library
libvxenc.so. You can also exclude support for disk arrays from a particular
vendor, as shown in this example:

# vxddladm excludearray vid=ACME pid=X1

See the vxddladm (1M) manual page.

Re-including support for an excluded disk array library
To re-include support for an excluded disk array library

◆ If you have excluded support for all arrays that depend on a particular disk
array library, you can use the includearray keyword to remove the entry
from the exclude list, as shown in the following example:

# vxddladm includearray libname=libvxenc.so

This command adds the array library to the database so that the library can
once again be used in device discovery. If vxconfigd is running, you can use
the vxdisk scandisks command to discover the arrays and add their details
to the database.

Listing excluded disk arrays
To list all disk arrays that are currently excluded from use by VxVM

◆ Type the following command:

# vxddladm listexclude

Listing supported disks in the DISKS category
To list disks that are supported in the DISKS (JBOD) category

◆ Type the following command:

# vxddladm listjbod

99Administering disks
Discovering and configuring newly added disk devices



Displaying details about a supported array library

# vxddladm listsupport libname=library_name.so

To display details about a supported array library

◆ Type the following command:

# vxddladm listsupport libname=library_name.so

This command displays the vendor ID (VID), product IDs (PIDs) for the arrays,
array types (for example, A/A or A/P), and array names. The following is
sample output.

# vxddladm listsupport libname=libvxfujitsu.so

ATTR_NAME ATTR_VALUE

=================================================

LIBNAME libvxfujitsu.so

VID vendor

PID GR710, GR720, GR730

GR740, GR820, GR840

ARRAY_TYPE A/A, A/P

ARRAY_NAME FJ_GR710, FJ_GR720, FJ_GR730

FJ_GR740, FJ_GR820, FJ_GR840

Adding unsupported disk arrays to the DISKS category
Disk arrays should be added as JBOD devices if no ASL is available for the array.

JBODs are assumed to be Active/Active (A/A) unless otherwise specified. If a
suitable ASL is not available, an A/A-A, A/P or A/PF array must be claimed as an
Active/Passive (A/P) JBOD to prevent path delays and I/O failures. If a JBOD is
ALUA-compliant, it is added as an ALUA array.

See “How DMP works” on page 165.

Warning: This procedure ensures that Dynamic Multipathing (DMP) is set up
correctly on an array that is not supported by Veritas Volume Manager. Otherwise,
Veritas Volume Manager treats the independent paths to the disks as separate
devices, which can result in data corruption.

Administering disks
Discovering and configuring newly added disk devices

100



To add an unsupported disk array to the DISKS category

1 Use the following command to identify the vendor ID and product ID of the
disks in the array:

# /etc/vx/diag.d/vxscsiinq device_name

where device_name is the device name of one of the disks in the array. Note
the values of the vendor ID (VID) and product ID (PID) in the output from this
command. For Fujitsu disks, also note the number of characters in the serial
number that is displayed.

The following example shows the output for the example disk with the device
name /dev/rdsk/c1t20d0s2

# /etc/vx/diag.d/vxscsiinq /dev/rdsk/c1t20d0s2

Vendor id (VID) : SEAGATE

Product id (PID) : ST318404LSUN18G

Revision : 8507

Serial Number : 0025T0LA3H

In this example, the vendor ID is SEAGATE and the product ID is
ST318404LSUN18G.

2 Stop all applications, such as databases, from accessing VxVM volumes that
are configured on the array, and unmount all file systems and checkpoints
that are configured on the array.

3 If the array is of type A/A-A, A/P or A/PF, configure it in autotrespass mode.

4 Enter the following command to add a new JBOD category:

# vxddladm addjbod vid=vendorid [pid=productid] \

[serialnum=opcode/pagecode/offset/length]

[cabinetnum=opcode/pagecode/offset/length] policy={aa|ap}]

where vendorid and productid are the VID and PID values that you found
from the previous step. For example, vendorid might be FUJITSU, IBM, or
SEAGATE. For Fujitsu devices, you must also specify the number of characters
in the serial number as the argument to the length argument (for example,
10). If the array is of type A/A-A, A/P or A/PF, you must also specify the
policy=ap attribute.

Continuing the previous example, the command to define an array of disks
of this type as a JBOD would be:

# vxddladm addjbod vid=SEAGATE pid=ST318404LSUN18G

101Administering disks
Discovering and configuring newly added disk devices



5 Use the vxdctl enable command to bring the array under VxVM control.

# vxdctl enable

See “Enabling discovery of new disk arrays” on page 91.

6 To verify that the array is now supported, enter the following command:

# vxddladm listjbod

The following is sample output from this command for the example array:

VID PID SerialNum CabinetNum Policy

(Cmd/PageCode/off/len) (Cmd/PageCode/off/len)

==============================================================================

SEAGATE ALL PIDs 18/-1/36/12 18/-1/10/11 Disk

SUN SESS01 18/-1/36/12 18/-1/12/11 Disk

Administering disks
Discovering and configuring newly added disk devices

102



7 To verify that the array is recognized, use the vxdmpadm listenclosure

command as shown in the following sample output for the example array:

# vxdmpadm listenclosure

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS

======================================================

OTHER_DISKS OTHER_DISKS OTHER_DISKS CONNECTED

Disk Disk DISKS CONNECTED

The enclosure name and type for the array are both shown as being set to
Disk. You can use the vxdisk list command to display the disks in the array:

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

Disk_0 auto:none - - online invalid

Disk_1 auto:none - - online invalid

...

8 To verify that the DMP paths are recognized, use the vxdmpadm getdmpnode

command as shown in the following sample output for the example array:

# vxdmpadm getdmpnode enclosure=Disk

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

=====================================================

Disk_0 ENABLED Disk 2 2 0 Disk

Disk_1 ENABLED Disk 2 2 0 Disk

...

This shows that there are two paths to the disks in the array.

For more information, enter the command vxddladm help addjbod.

See the vxddladm(1M) manual page.

See the vxdmpadm(1M) manual page.

Removing disks from the DISKS category
To remove disks from the DISKS category

◆ Use the vxddladm command with the rmjbod keyword. The following example
illustrates the command for removing disks supplied by the vendor, Seagate:

# vxddladm rmjbod vid=SEAGATE

103Administering disks
Discovering and configuring newly added disk devices



Foreign devices
DDL may not be able to discover some devices that are controlled by third-party
drivers, such as those that provide multipathing or RAM disk capabilities. For
these devices it may be preferable to use the multipathing capability that is
provided by the third-party drivers for some arrays rather than using the Dynamic
Multipathing (DMP) feature. Such foreign devices can be made available as simple
disks to VxVM by using the vxddladm addforeign command. This also has the
effect of bypassing DMP for handling I/O. The following example shows how to
add entries for block and character devices in the specified directories:

# vxddladm addforeign blockdir=/dev/foo/dsk \

chardir=/dev/foo/rdsk

By default, this command suppresses any entries for matching devices in the
OS-maintained device tree that are found by the autodiscovery mechanism. You
can override this behavior by using the -f and -n options as described on the
vxddladm(1M) manual page.

After adding entries for the foreign devices, use either the vxdisk scandisks or
the vxdctl enable command to discover the devices as simple disks. These disks
then behave in the same way as autoconfigured disks.

The foreign device feature was introduced in VxVM 4.0 to support non-standard
devices such as RAM disks, some solid state disks, and pseudo-devices such as
EMC PowerPath.

Foreign device support has the following limitations:

■ A foreign device is always considered as a disk with a single path. Unlike an
autodiscovered disk, it does not have a DMP node.

■ It is not supported for shared disk groups in a clustered environment. Only
standalone host systems are supported.

■ It is not supported for Persistent Group Reservation (PGR) operations.

■ It is not under the control of DMP, so enabling of a failed disk cannot be
automatic, and DMP administrative commands are not applicable.

■ Enclosure information is not available to VxVM. This can reduce the availability
of any disk groups that are created using such devices.

■ The I/O Fencing and Cluster File System features are not supported for foreign
devices.

If a suitable ASL is available and installed for an array, these limitations are
removed.

See “Third-party driver coexistence” on page 91.

Administering disks
Discovering and configuring newly added disk devices

104



Disks under VxVM control
When you add a disk to a system that is running VxVM, you need to put the disk
under VxVM control so that VxVM can control the space allocation on the disk.

See “Adding a disk to VxVM” on page 115.

Unless you specify a disk group, VxVM places new disks in a default disk group
according to the rules for determining the default disk group.

See “Rules for determining the default disk group” on page 222.

The method by which you place a disk under VxVM control depends on the
following circumstances:

■ If the disk is new, it must be initialized and placed under VxVM control. You
can use the menu-based vxdiskadm utility to do this.

Warning: Initialization destroys existing data on disks.

■ If the disk is not needed immediately, it can be initialized (but not added to a
disk group) and reserved for future use. To do this, enter none when asked to
name a disk group. Do not confuse this type of “spare disk” with a
hot-relocation spare disk.

■ If the disk was previously initialized for future use by VxVM, it can be
reinitialized and placed under VxVM control.

■ If the disk was previously in use, but not under VxVM control, you may wish
to preserve existing data on the disk while still letting VxVM take control of
the disk. This can be accomplished using encapsulation.
Encapsulation preserves existing data on disks.

■ Multiple disks on one or more controllers can be placed under VxVM control
simultaneously. Depending on the circumstances, all of the disks may not be
processed the same way.

It is possible to configure the vxdiskadm utility not to list certain disks or
controllers as being available. For example, this may be useful in a SAN
environment where disk enclosures are visible to a number of separate systems.

To exclude a device from the view of VxVM, select Prevent
multipathing/Suppress devices from VxVM’s view from the vxdiskadm main
menu.

See “Disabling multipathing and making devices invisible to VxVM” on page 172.

105Administering disks
Disks under VxVM control



VxVM coexistence with SVM and ZFS
Solaris Volume Manager (SVM) is a logical volume manager software provided
by Sun. ZFS is a type of file system presenting a pooled storage model that Sun
developed. File systems can directly draw from a common storage pool (zpool).
Veritas Volume Manager (VxVM) can be used on the same system as SVM and
ZFS disks.

VxVM protects devices in use by SVM or ZFS from any VxVM operations that may
overwrite the disk. These operations include initializing the disk for use by VxVM
or encapsulating the disk. If you attempt to perform one of these VxVM operations
a device that is in use by SVM or ZFS, VxVM displays an error message.

Before you can manage an SVM disk or a ZFS disk with VxVM, you must remove
it from SVM or ZFS control. Similarly, to begin managing a VxVM disk with SVM
or ZFS, you must remove the disk from VxVM control.

To determine if a disk is in use by SVM or ZFS

◆ Use the vxdisk list command:

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

c1t0d0s2 auto:none - - online invalid

c1t1d0s2 auto:none - - online invalid

c2t5006016130603AE5d2s2 auto:ZFS - - ZFS

c2t5006016130603AE5d3s2 auto:SVM - - SVM

c2t5006016130603AE5d4s2 auto:cdsdisk - - online

c2t5006016130603AE5d5s2 auto:cdsdisk - - online

Administering disks
VxVM coexistence with SVM and ZFS

106



To reuse a VxVM disk as a ZFS disk or an SVM disk

1 If the disk is in a disk group, remove the disk from the disk group or destroy
the disk group.

To remove the disk from the disk group:

# vxdg [-g diskgroup] rmdisk diskname

To destroy the disk group:

# vxdg destroy diskgroup

2 Remove the disk from VxVM control

# /use/lib/vxvm/bin/vxdiskunsetup diskname

3 You can now initialize the disk as a SVM/ZFS device using ZFS/SVM tools.

See the Sun documentation for details.

You must perform step 1 and step 2 in order for VxVM to recognize a disk as
SVM or ZFS device.

To reuse a ZFS disk or an SVM disk as a VxVM disk

1 Remove the disk from the zpool or SVM metadevice, or destroy the zpool or
SVM metadevice.

See the Sun documentation for details.

2 Clear the signature block using the dd command:

# dd if=/dev/zero of=/dev/rdsk/c#t#d#s# oseek=16 bs=512 count=1

Where c#t#d#s# is the disk slice on which the ZFS device or the SVM device
is configured. If the whole disk is used as the ZFS device, clear the signature
block on slice 0.

3 You can now initialize the disk as a VxVM device using the vxdiskadm
command or the vxdisksetup command.

Changing the disk-naming scheme
You can either use enclosure-based naming for disks or the operating system’s
naming scheme. VxVM commands display device names according the current
naming scheme.

The default naming scheme is enclosure-based naming (EBN). When you install
or upgrade a Storage Foundation product, the naming scheme is set to

107Administering disks
Changing the disk-naming scheme



enclosure-based naming, with the following exception. If you explicitly set the
naming scheme for an existing installation to operating system-based naming,
the setting is preserved when you upgrade. That is, if you used the vxddladm set

namingscheme=osn command for the existing installation, the upgraded 5.1 product
retains the operating system-based naming.

Note: Devices with very long device names (longer than 31 characters) are
represented by enclosure-based names regardless of the naming scheme. If the
OS-based names include WWN identifiers, the device name displays with the
WWN identifier as long as the device name is less than 31 characters. If any device
name is longer than 31 characters, that device name displays with an enclosure
name.

Administering disks
Changing the disk-naming scheme

108



To change the disk-naming scheme

◆ Select Change the disk naming scheme from the vxdiskadm main menu to
change the disk-naming scheme that you want VxVM to use. When prompted,
enter y to change the naming scheme.

This restarts the vxconfigd daemon to bring the new disk naming scheme
into effect.

Alternatively, you can change the naming scheme from the command line.
Use the following command to select enclosure-based naming:

# vxddladm set namingscheme=ebn [persistence={yes|no}] \

[use_avid=yes|no] [lowercase=yes|no]

Use the following command to select operating system-based naming:

# vxddladm set namingscheme=osn [persistence={yes|no}] \

[lowercase=yes|no]

The optional persistence argument allows you to select whether the names
of disk devices that are displayed by VxVM remain unchanged after disk
hardware has been reconfigured and the system rebooted. By default,
enclosure-based naming is persistent. Operating system-based naming is not
persistent by default.

By default, the names of the enclosure are converted to lowercase, regardless
of the case of the name specified by the ASL. The enclosure-based device
names are therefore in lower case. Set the lowercase=no option to suppress
the conversion to lowercase.

For enclosure-based naming, the use_avidoption specifies whether the Array
Volume ID is used for the index number in the device name. By default,
use_avid=yes, indicating the devices are named as enclosure_avid. Ifuse_avid
is set to no, DMP devices are named as enclosure_index. The index number
is assigned after the devices are sorted by LUN serial number.

The change is immediate whichever method you use.

See “Regenerating persistent device names” on page 110.

Displaying the disk-naming scheme
VxVM disk naming can be operating-system based naming or enclosure-based
naming. This command displays whether the VxVM disk naming scheme is
currently set. It also displays the attributes for the disk naming scheme, such as
whether persistence is enabled.

109Administering disks
Changing the disk-naming scheme



To display the current disk-naming scheme and its mode of operations, use the
following command:

# vxddladm get namingscheme

See “Disk device naming in VxVM” on page 83.

Regenerating persistent device names
The persistent device naming feature makes the names of disk devices persistent
across system reboots. DDL assigns device names according to the persistent
device name database.

If operating system-based naming is selected, each disk name is usually set to the
name of one of the paths to the disk. After hardware reconfiguration and a
subsequent reboot, the operating system may generate different names for the
paths to the disks. Therefore, the persistent device names may no longer
correspond to the actual paths. This does not prevent the disks from being used,
but the association between the disk name and one of its paths is lost.

Similarly, if enclosure-based naming is selected, the device name depends on the
name of the enclosure and an index number. If a hardware configuration changes
the order of the LUNs exposed by the array, the persistent device name may not
reflect the current index.

To regenerate persistent device names

◆ To regenerate the persistent names repository, use the following command:

# vxddladm [-c] assign names

The -c option clears all user-specified names and replaces them with
autogenerated names.

If the -coption is not specified, existing user-specified names are maintained,
but OS-based and enclosure-based names are regenerated.

The disk names now correspond to the new path names.

Changing device naming for TPD-controlled enclosures
The feature to change device naming is available only if the disk-naming scheme
is set to use operating system-based naming, and the TPD-controlled enclosure
does not contain fabric disks.

To change device naming for TPD-controlled enclosures

◆ For disk enclosures that are controlled by third-party drivers (TPD) whose
coexistence is supported by an appropriate ASL, the default behavior is to

Administering disks
Changing the disk-naming scheme

110



assign device names that are based on the TPD-assigned node names. You
can use the vxdmpadm command to switch between these names and the device
names that are known to the operating system:

# vxdmpadm setattr enclosure enclosure tpdmode=native|pseudo

The argument to the tpdmode attribute selects names that are based on those
used by the operating system (native), or TPD-assigned node names (pseudo).

The use of this command to change between TPD and operating system-based
naming is illustrated in the following example for the enclosure named EMC0:

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

emcpower10s2 auto:sliced disk1 mydg online

emcpower11s2 auto:sliced disk2 mydg online

emcpower12s2 auto:sliced disk3 mydg online

emcpower13s2 auto:sliced disk4 mydg online

emcpower14s2 auto:sliced disk5 mydg online

emcpower15s2 auto:sliced disk6 mydg online

emcpower16s2 auto:sliced disk7 mydg online

emcpower17s2 auto:sliced disk8 mydg online

emcpower18s2 auto:sliced disk9 mydg online

emcpower19s2 auto:sliced disk10 mydg online

# vxdmpadm setattr enclosure EMC0 tpdmode=native

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

c6t0d10s2 auto:sliced disk1 mydg online

c6t0d11s2 auto:sliced disk2 mydg online

c6t0d12s2 auto:sliced disk3 mydg online

c6t0d13s2 auto:sliced disk4 mydg online

c6t0d14s2 auto:sliced disk5 mydg online

c6t0d15s2 auto:sliced disk6 mydg online

c6t0d16s2 auto:sliced disk7 mydg online

c6t0d17s2 auto:sliced disk8 mydg online

c6t0d18s2 auto:sliced disk9 mydg online

c6t0d19s2 auto:sliced disk10 mydg online

If tpdmode is set to native, the path with the smallest device number is
displayed.

111Administering disks
Changing the disk-naming scheme



Simple or nopriv disks with enclosure-based naming
If you change from OS-based naming to enclosure-based naming, simple or nopriv
disks may be put in the error state and cause VxVM objects on those disks to fail.

You can use the vxdarestore command to handle simple and nopriv disk failures
that arise from changing to the enclosure-based naming scheme. You do not need
to use this command if your system does not have any simple or nopriv disks, or
if the devices on which any simple or nopriv disks are present are not automatically
configured by VxVM (for example, non-standard disk devices such as ramdisks).

Note: You cannot run vxdarestore if OS-based naming is in use. Additionally,
vxdarestore does not handle failures on simple or nopriv disks that are caused
by renaming enclosures, by hardware reconfiguration that changes device names,
or by changing the naming scheme on a system that includes persistent sliced
disk records.

See “Removing the error state for simple or nopriv disks in the boot disk group”
on page 112.

See “Removing the error state for simple or nopriv disks in non-boot disk groups”
on page 113.

See the vxdarestore(1M) manual page.

Removing the error state for simple or nopriv disks in the boot
disk group
If the boot disk group (usually aliased as bootdg) is comprised of only simple
and/or nopriv disks, the vxconfigd daemon goes into the disabled state after the
naming scheme change.

To remove the error state for simple or nopriv disks in the boot disk group

1 Use vxdiskadm to change back to c#t#d#s# naming.

2 Enter the following command to restart the VxVM configuration daemon:

# vxconfigd -kr reset

3 If you want to use enclosure-based naming, use vxdiskadm to add a sliced
disk to the bootdg disk group, change back to the enclosure-based naming
scheme, and then run the following command:

# /etc/vx/bin/vxdarestore

Administering disks
Changing the disk-naming scheme

112



Removing the error state for simple or nopriv disks in non-boot
disk groups
If an imported disk group, other than bootdg, is comprised of only simple and/or
nopriv disks, the disk group is in the “online dgdisabled” state after the change
to the enclosure-based naming scheme.

To remove the error state for simple or nopriv disks in non-boot disk groups

1 Deport the disk group using the following command:

# vxdg deport diskgroup

2 Use the vxdarestore command to restore the failed disks, and to recover the
objects on those disks:

# /etc/vx/bin/vxdarestore

3 Re-import the disk group using the following command:

# vxdg import diskgroup

113Administering disks
Changing the disk-naming scheme



Discovering theassociationbetweenenclosure-based
disk names and OS-based disk names

To discover the association between enclosure-based disk names and OS-based
disk names

◆ If you enable enclosure-based naming, and use the vxprint command to
display the structure of a volume, it shows enclosure-based disk device names
(disk access names) rather than OS-based names. To discover the operating
system-based names that are associated with a given enclosure-based disk
name, use either of the following commands:

# vxdisk list enclosure-based_name

# vxdmpadm getsubpaths dmpnodename=enclosure-based_name

For example, to find the physical device that is associated with disk ENC0_21,
the appropriate commands would be:

# vxdisk list ENC0_21

# vxdmpadm getsubpaths dmpnodename=ENC0_21

To obtain the full pathname for the block and character disk device from
these commands, append the displayed device name to /dev/vx/dmp or
/dev/vx/rdmp.

Disk installation and formatting
Depending on the hardware capabilities of your disks and of your system, you
may either need to shut down and power off your system before installing the
disks, or you may be able to hot-insert the disks into the live system. Many
operating systems can detect the presence of the new disks on being rebooted. If
the disks are inserted while the system is live, you may need to enter an operating
system-specific command to notify the system.

If the disks require low or intermediate-level formatting before use, use the
operating system-specific formatting command to do this.

For Solaris SPARC systems, if a disk is not formatted, the status field in the vxdisk
list output shows as nolabel. The disk must be formatted before you add it to
VxVM control.

Note: SCSI disks are usually preformatted. Reformatting is needed only if the
existing formatting has become damaged.

Administering disks
Discovering the association between enclosure-based disk names and OS-based disk names

114



See “Displaying or changing default disk layout attributes” on page 115.

See “Adding a disk to VxVM” on page 115.

Displaying or changing default disk layout attributes
To display or change the default values for initializing the layout of disks

◆ Select Change/display the default disk layout from the vxdiskadmmain
menu. For disk initialization, you can change the default format and the
default length of the private region. The attribute settings for initializing
disks are stored in the file, /etc/default/vxdisk.

See the vxdisk(1M) manual page.

For disk encapsulation, you can additionally change the offset values for both
the private and public regions. The attribute settings for encapsulating disks
are stored in the file, /etc/default/vxencap.

See the vxencap(1M) manual page.

Adding a disk to VxVM
Formatted disks being placed under VxVM control may be new or previously used
outside VxVM. The set of disks can consist of all disks on the system, all disks on
a controller, selected disks, or a combination of these.

Depending on the circumstances, all of the disks may not be processed in the same
way.

For example, some disks may be initialized, while others may be encapsulated to
preserve existing data on the disks.

When initializing multiple disks at one time, it is possible to exclude certain disks
or certain controllers.

You can also exclude certain disks or certain controllers when encapsulating
multiple disks at one time.

To exclude a device from the view of VxVM, select Prevent
multipathing/Suppress devices from VxVM’s view from the vxdiskadm main
menu.

Warning: Initialization does not preserve the existing data on the disks.

See “Disabling multipathing and making devices invisible to VxVM” on page 172.

115Administering disks
Displaying or changing default disk layout attributes



To initialize disks for VxVM use

1 Select Add or initialize one or more disks from the vxdiskadm main
menu.

2 At the following prompt, enter the disk device name of the disk to be added
to VxVM control (or enter list for a list of disks):

Select disk devices to add:

[<pattern-list>,all,list,q,?]

The pattern-list can be a single disk, or a series of disks and/or controllers
(with optional targets). If pattern-list consists of multiple items, separate
them using white space. For example, specify four disks at separate target
IDs on controller 3 as follows:

c3t0d0 c3t1d0 c3t2d0 c3t3d0

If you enter list at the prompt, the vxdiskadm program displays a list of the
disks available to the system:

DEVICE DISK GROUP STATUS

c0t0d0 mydg01 mydg online

c0t1d0 mydg02 mydg online

c0t2d0 mydg03 mydg online

c0t3d0 - - online

c1t0d0 mydg10 mydg online

c1t0d1 - - online invalid

.

.

.

c3t0d0 - - online invalid

sena0_0 mydg33 mydg online

sena0_1 mydg34 mydg online

sena0_2 mydg35 mydg online

The phrase online invalid in the STATUS line indicates that a disk has yet
to be added or initialized for VxVM control. Disks that are listed as online
with a disk name and disk group are already under VxVM control.

Enter the device name or pattern of the disks that you want to initialize at
the prompt and press Return.

Administering disks
Adding a disk to VxVM

116



3 To continue with the operation, enter y (or press Return) at the following
prompt:

Here are the disks selected. Output format: [Device]

list of device names

Continue operation? [y,n,q,?] (default: y) y

4 At the following prompt, specify the disk group to which the disk should be
added, or none to reserve the disks for future use:

You can choose to add these disks to an existing disk group,

a new disk group, or you can leave these disks available for use

by future add or replacement operations. To create a new disk

group, select a disk group name that does not yet exist. To

leave the disks available for future use, specify a disk group

name of none.

Which disk group [<group>,none,list,q,?]

5 If you specified the name of a disk group that does not already exist,vxdiskadm
prompts for confirmation that you really want to create this new disk group:

There is no active disk group named disk group name.

Create a new group named disk group name? [y,n,q,?]

(default: y)y

You are then prompted to confirm whether the disk group should support
the Cross-platform Data Sharing (CDS) feature:

Create the disk group as a CDS disk group? [y,n,q,?]

(default: n)

If the new disk group may be moved between different operating system
platforms, enter y. Otherwise, enter n.

6 At the following prompt, either press Return to accept the default disk name
or enter n to allow you to define your own disk names:

Use default disk names for the disks? [y,n,q,?] (default: y) n

117Administering disks
Adding a disk to VxVM



7 When prompted whether the disks should become hot-relocation spares,
enter n (or press Return):

Add disks as spare disks for disk group name? [y,n,q,?]

(default: n) n

8 When prompted whether to exclude the disks from hot-relocation use, enter
n (or press Return).

Exclude disks from hot-relocation use? [y,n,q,?}

(default: n) n

9 You are next prompted to choose whether you want to add a site tag to the
disks:

Add site tag to disks? [y,n,q,?] (default: n)

A site tag is usually applied to disk arrays or enclosures, and is not required
unless you want to use the Remote Mirror feature.

If you enter y to choose to add a site tag, you are prompted to the site name
at step 11.

10 To continue with the operation, enter y (or press Return) at the following
prompt:

The selected disks will be added to the disk group

disk group name with default disk names.

list of device names

Continue with operation? [y,n,q,?] (default: y) y

11 If you chose to tag the disks with a site in step 9, you are now prompted to
enter the site name that should be applied to the disks in each enclosure:

The following disk(s):

list of device names

belong to enclosure(s):

list of enclosure names

Enter site tag for disks on enclosure enclosure name

[<name>,q,?] site_name

Administering disks
Adding a disk to VxVM

118



12 If you see the following prompt, it lists any disks that have already been
initialized for use by VxVM:

The following disk devices appear to have been initialized

already.

The disks are currently available as replacement disks.

Output format: [Device]

list of device names

Use these devices? [Y,N,S(elect),q,?] (default: Y) Y

This prompt allows you to indicate “yes” or “no” for all of these disks (Y or N)
or to select how to process each of these disks on an individual basis (S).

If you are sure that you want to reinitialize all of these disks, enter Y at the
following prompt:

VxVM NOTICE V-5-2-366 The following disks you selected for use

appear to already have been initialized for the Volume

Manager. If you are certain the disks already have been

initialized for the Volume Manager, then you do not need to

reinitialize these disk devices.

Output format: [Device]

list of device names

Reinitialize these devices? [Y,N,S(elect),q,?] (default: Y) Y

119Administering disks
Adding a disk to VxVM



13 vxdiskadm may now indicate that one or more disks is a candidate for
encapsulation. Encapsulation allows you to add an active disk to VxVM control
and preserve the data on that disk.If you want to preserve the data on the
disk, enter y. If you are sure that there is no data on the disk that you want
to preserve, enter n to avoid encapsulation.

VxVM NOTICE V-5-2-355 The following disk device has a valid

partition table, but does not appear to have been initialized

for the Volume Manager. If there is data on the disk that

should NOT be destroyed you should encapsulate the existing

disk partitions as volumes instead of adding the disk as a new

disk.

Output format: [Device]

device name

Encapsulate this device? [y,n,q,?] (default: y)

Administering disks
Adding a disk to VxVM

120



14 If you choose to encapsulate the disk vxdiskadm confirms its device name
and prompts you for permission to proceed. Enter y (or press Return) to
continue encapsulation:

VxVM NOTICE V-5-2-311 The following disk device has been

selected for encapsulation.

Output format: [Device]

device name

Continue with encapsulation? [y,n,q,?] (default: y) y

vxdiskadm now displays an encapsulation status and informs you

that you must perform a shutdown and reboot as soon as

possible:

VxVM INFO V-5-2-333 The disk device device name will be

encapsulated and added to the disk group disk group name with the

disk name disk name.

You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want
to use the default value, or enter a different value. (The maximum value that
you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

If you entered cdsdisk as the format, you are prompted for the action to be
taken if the disk cannot be converted this format:

Do you want to use sliced as the format should cdsdisk fail?

[y,n,q,?] (default: y)

If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.

121Administering disks
Adding a disk to VxVM



vxdiskadm then proceeds to encapsulate the disks. You should now reboot
your system at the earliest possible opportunity, for example by running this
command:

# shutdown -g0 -y -i6

The /etc/vfstab file is updated to include the volume devices that are used
to mount any encapsulated file systems. You may need to update any other
references in backup scripts, databases, or manually created swap devices.
The original /etc/vfstab file is saved as /etc/vfstab.prevm.

15 If you choose not to encapsulate the disk vxdiskadm asks if you want to
initialize the disk instead. Enter y to confirm this:

Instead of encapsulating, initialize? [y,n,q,?] (default: n) yvxdiskadm now
confirms those disks that are being initialized and added to VxVM control
with messages similar to the following. In addition, you may be prompted to
perform surface analysis.

VxVM INFO V-5-2-205 Initializing device device name.

16 You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

17 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want
to use the default value, or enter a different value. (The maximum value that
you can specify is 524288 blocks.)

vxdiskadm then proceeds to add the disks.

VxVM INFO V-5-2-88 Adding disk device device name to disk group

disk group name with disk name disk name.

.

.

.

Administering disks
Adding a disk to VxVM

122



18 If you choose not to use the default disk names, vxdiskadm prompts you to
enter the disk name.

19 At the following prompt, indicate whether you want to continue to initialize
more disks (y) or return to the vxdiskadm main menu (n):

Add or initialize other disks? [y,n,q,?] (default: n)

The default layout for disks can be changed.

See “Displaying or changing default disk layout attributes” on page 115.

Disk reinitialization
You can reinitialize a disk that has previously been initialized for use by VxVM
by putting it under VxVM control as you would a new disk.

See “Adding a disk to VxVM” on page 115.

Warning: Reinitialization does not preserve data on the disk. If you want to
reinitialize the disk, make sure that it does not contain data that should be
preserved.

If the disk you want to add has been used before, but not with VxVM, you can
encapsulate the disk to preserve its information. If the disk you want to add has
previously been under the control of Solaris Volume Manager, you can preserve
the data it contains on a VxVM disk by the process of conversion.

123Administering disks
Adding a disk to VxVM



Using vxdiskadd to put a disk under VxVM control
To use the vxdiskadd command to put a disk under VxVM control.

◆ Type the following command:

# vxdiskadd disk

For example, to initialize the second disk on the first controller:

# vxdiskadd c0t1d0

The vxdiskadd command examines your disk to determine whether it has
been initialized and also checks for disks that have been added to VxVM, and
for other conditions.

The vxdiskadd command also checks for disks that can be encapsulated.

See “Encapsulating a disk” on page 126.

If you are adding an uninitialized disk, warning and error messages are
displayed on the console by the vxdiskadd command. Ignore these messages.
These messages should not appear after the disk has been fully initialized;
the vxdiskadd command displays a success message when the initialization
completes.

The interactive dialog for adding a disk using vxdiskadd is similar to that for
vxdiskadm.

See “Adding a disk to VxVM” on page 115.

RAM disk support in VxVM
Some systems support the creation of RAM disks. A RAM disk is a device made
from system memory that looks like a small disk device. Often, the contents of a
RAM disk are erased when the system is rebooted. RAM disks that are erased on
reboot prevent VxVM from identifying physical disks. This is because information
stored on the physical disks (now erased on reboot) is used to identify the disk.

nopriv devices have a special feature to support RAM disks: a volatile option
which indicates to VxVM that the device contents do not survive reboots. Volatile
devices receive special treatment on system startup. If a volume is mirrored,
plexes made from volatile devices are always recovered by copying data from
nonvolatile plexes.

To use a RAM disk with VxVM, both block and character device nodes must exist
for the RAM disk.

Administering disks
RAM disk support in VxVM

124



To create a RAM disk with VxVM

1 Create the RAM disk:

# ramdiskadm -a ramdiskname size

2 Create links to the RAM disk:

# ln -s /dev/ramdisk/ramdiskname /dev/dsk/ramdiskname

# ln -s /dev/rramdisk/rramdiskname /dev/rdsk/rramdiskname

3 Add the RAM disk as a foreign device to VxVM:

# vxddladm addforeign blockpath=/dev/ramdiskname

charpath=/dev/rramdiskname

4 Define the RAM disk using the vxdisk define command:

# vxdisk scandisks

# vxdisk define ramdiskname type=nopriv volatile len=size

5 Add the RAM disk to a diskgroup:

# vxdg -g diskgroup adddisk ramdiskname

Note: An existing diskgroup must exist in order to validate configuration
copies.

6 Create VxVM volumes on the RAM disk:

# vxassist -g diskgroup make volume size ramdiskname

Normally, VxVM does not start volumes that are formed entirely from plexes with
volatile subdisks. That is because there is no plex that is guaranteed to contain
the most recent volume contents.

Some RAM disks are used in situations where all volume contents are recreated
after reboot. In these situations, you can force volumes formed from RAM disks
to be started at reboot by using the following command:

# vxvol set startopts=norecov volume

This option can be used only with volumes of type gen.

See the vxvol(1M) manual page.

125Administering disks
RAM disk support in VxVM



Encapsulating a disk

Warning:Encapsulating a disk requires that the system be rebooted several times.
Schedule performance of this procedure for a time when this does not
inconvenience users.

This section describes how to encapsulate a disk for use in VxVM. Encapsulation
preserves any existing data on the disk when the disk is placed under VxVM
control.

To prevent the encapsulation from failing, make sure that the following conditions
apply:

■ The disk has two free partitions for the public and private regions.

■ The disk has an s2 slice.

■ The disk has a small amount of free space (at least 1 megabyte at the beginning
or end of the disk) that does not belong to any partition. If the disk being
encapsulated is the root disk, and this does not have sufficient free space
available, a similar sized portion of the swap partition is used instead.

Only encapsulate a root disk if you also intend to mirror it. There is no benefit in
root-disk encapsulation for its own sake.

See “Rootability” on page 131.

Use the format or fdisk commands to obtain a printout of the root disk partition
table before you encapsulate a root disk. For more information, see the appropriate
manual pages. You may need this information should you subsequently need to
recreate the original root disk.

You cannot grow or shrink any volume (rootvol, usrvol, varvol, optvol, swapvol,
and so on) that is associated with an encapsulated root disk. This is because these
volumes map to physical partitions on the disk, and these partitions must be
contiguous..

Warning: If the root disk is encapsulated and the dump device is covered by the
swap volume, it is not safe to use the savecore -L operation because this
overwrites the swap area. Configure a dedicated dump device on a partition other
than the swap area.

Administering disks
Encapsulating a disk

126



To encapsulate a disk for use in VxVM

1 Select Encapsulate one or more disks from the vxdiskadm main menu.

Your system may use device names that differ from the examples shown here.

At the following prompt, enter the disk device name for the disks to be
encapsulated:

Select disk devices to encapsulate:

[<pattern-list>,all,list,q,?] device name

The pattern-list can be a single disk, or a series of disks and/or controllers
(with optional targets). If pattern-list consists of multiple items, those items
must be separated by white space.

If you do not know the address (device name) of the disk to be encapsulated,
enter l or list at the prompt for a complete listing of available disks.

2 To continue the operation, enter y (or press Return) at the following prompt:

Here is the disk selected. Output format: [Device]

device name

Continue operation? [y,n,q,?] (default: y) y

3 Select the disk group to which the disk is to be added at the following prompt:

You can choose to add this disk to an existing disk group or to

a new disk group. To create a new disk group, select a disk

group name that does not yet exist.

Which disk group [<group>,list,q,?]

4 At the following prompt, either press Return to accept the default disk name
or enter a disk name:

Use a default disk name for the disk? [y,n,q,?] (default: y)

127Administering disks
Encapsulating a disk



5 To continue with the operation, enter y (or press Return) at the following
prompt:

The selected disks will be encapsulated and added to the

disk group name disk group with default disk names.

device name

Continue with operation? [y,n,q,?] (default: y) y

6 To confirm that encapsulation should proceed, enter y (or press Return) at
the following prompt:

The following disk has been selected for encapsulation.

Output format: [Device]

device name

Continue with encapsulation? [y,n,q,?] (default: y) y

A message similar to the following confirms that the disk is being encapsulated
for use in VxVM and tells you that a reboot is needed:

The disk device device name will be encapsulated and added to

the disk group diskgroup with the disk name diskgroup01.

7 For non-root disks, you can now choose whether the disk is to be formatted
as a CDS disk that is portable between different operating systems, or as a
non-portable sliced disk:

Enter the desired format [cdsdisk,sliced,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk. Note that only the sliced format is suitable for use
with root, boot or swap disks.

8 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want
to use the default value, or enter a different value. (The maximum value that
you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

Administering disks
Encapsulating a disk

128



9 If you entered cdsdisk as the format in step 7, you are prompted for the
action to be taken if the disk cannot be converted this format:

Do you want to use sliced as the format should cdsdisk

fail? [y,n,q,?] (default: y)

If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.

10 vxdiskadm then proceeds to encapsulate the disks. You should now reboot
your system at the earliest possible opportunity, for example by running this
command:

# shutdown -g0 -y -i6

The /etc/vfstab file is updated to include the volume devices that are used
to mount any encapsulated file systems. You may need to update any other
references in backup scripts, databases, or manually created swap devices.
The original /etc/vfstab file is saved as /etc/vfstab.prevm.

11 At the following prompt, indicate whether you want to encapsulate more
disks (y) or return to the vxdiskadm main menu (n):

Encapsulate other disks? [y,n,q,?] (default: n) n

The default layout that is used to encapsulate disks can be changed.

See “Displaying or changing default disk layout attributes” on page 115.

Failure of disk encapsulation
Under some circumstances, encapsulation of a disk can fail because there is not
enough free space available on the disk to accommodate the private region. If
there is insufficient free space , the encapsulation process ends abruptly with an
error message similar to the following:

VxVM ERROR V-5-2-338 The encapsulation operation failed with the

following error:

It is not possible to encapsulate device, for the following

reason:

<VxVM vxslicer ERROR V-5-1-1108 Unsupported disk layout.>

One solution is to configure the disk with the nopriv format.

See “Using nopriv disks for encapsulation” on page 130.

129Administering disks
Encapsulating a disk



Using nopriv disks for encapsulation
Encapsulation converts existing partitions on a specified disk to volumes. If any
partitions contain file systems, their /etc/vfstab entries are modified so the file
systems are mounted on volumes instead.

Disk encapsulation requires that enough free space be available on the disk (by
default, 32 megabytes) for storing the private region that VxVM uses for disk
identification and configuration information. This free space cannot be included
in any other partitions.

See the vxencap(1M) manual page.

You can encapsulate a disk that does not have space available for the VxVM private
region partition by using the vxdisk utility. To do this, configure the disk as a
nopriv device that does not have a private region.

The drawback with using nopriv devices is that VxVM cannot track changes in
the address or controller of the disk. Normally, VxVM uses identifying information
stored in the private region on the physical disk to track changes in the location
of a physical disk. Because nopriv devices do not have private regions and have
no identifying information stored on the physical disk, tracking cannot occur.

One use of nopriv devices is to encapsulate a disk so that you can use VxVM to
move data off the disk. When space has been made available on the disk, remove
the nopriv device, and encapsulate the disk as a standard disk device.

A disk group cannot be formed entirely from nopriv devices. This is because
nopriv devices do not provide space for storing disk group configuration
information. Configuration information must be stored on at least one disk in the
disk group.

Creating a nopriv disk for encapsulation

Warning: Do not use nopriv disks to encapsulate a root disk. If insufficient free
space exists on the root disk for the private region, part of the swap area can be
used instead.

Administering disks
Encapsulating a disk

130



To create a nopriv disk for encapsulation

1 If it does not exist already, set up a partition on the disk for the area that you
want to access using VxVM.

2 Use the following command to map a VM disk to the partition:

# vxdisk define partition-device type=nopriv

wherepartition-device is the basename of the device in the/dev/dskdirectory.

For example, to map partition 3 of disk device c0t4d0, use the following
command:

# vxdisk define c0t4d0s3 type=nopriv

Creating volumes for other partitions on a nopriv disk
To create volumes for other partitions on a nopriv disk

1 Add the partition to a disk group.

2 Determine where the partition resides within the encapsulated partition.

3 If no data is to be preserved on the partition, use vxassist to create a volume
with the required length.

Warning: By default, vxassist re-initializes the data area of a volume that it
creates. If there is data to be preserved on the partition, do not use vxassist.
Instead, create the volume with vxmake and start the volume with the
command vxvol init active.

Rootability
VxVM can place various files from the root file system, swap device, and other file
systems on the root disk under VxVM control. This is called rootability. The root
disk (that is, the disk containing the root file system) can be put under VxVM
control through the process of encapsulation.

The root disk can be encapsulated using the vxdiskadm command.

See “Encapsulating a disk” on page 126.

Once encapsulated, the root disk can also be mirrored by using the vxdiskadm.
command.

See “Mirroring an encapsulated root disk” on page 134.

131Administering disks
Rootability



Encapsulation converts existing partitions on that disk to volumes. Once under
VxVM control, the root and swapdevices appear as volumes and provide the same
characteristics as other VxVM volumes. A volume that is configured for use as a
swap area is referred to as a swap volume, and a volume that contains the root
file system is referred to as a root volume.

Note: Only encapsulate your root disk if you also intend to mirror it. There is no
benefit in root-disk encapsulation for its own sake.

It is possible to mirror the rootvol, and swapvol volumes, as well as other parts
of the root disk that are required for a successful boot of the system (for example,
/usr). This provides complete redundancy and recovery capability in the event
of disk failure. Without mirroring, the loss of the root, swap, or usr partition
prevents the system from being booted from surviving disks.

Mirroring disk drives that are critical to booting ensures that no single disk failure
renders the system unusable. A suggested configuration is to mirror the critical
disk onto another available disk (using the vxdiskadm command). If the disk
containing root and swap partitions fails, the system can be rebooted from a disk
containing mirrors of these partitions.

Recovering a system after the failure of an encapsulated root disk requires the
application of special procedures.

See the Veritas VolumeManager Troubleshooting Guide.

Booting root volumes
When the operating system is booted, the root file system and swap area must be
available for use before the vxconfigd daemon can load the VxVM configuration
or start any volumes. During system startup, the operating system must see the
rootvol and swapvol volumes as regular partitions so that it can access them as
ordinary disk partitions.

Due to this restriction, each of the rootvol and swapvol plexes must be created
from contiguous space on a disk that is mapped to a single partition. It is not
possible to stripe, concatenate or span the plex of a rootvol or swapvol volume
that is used for booting. Any mirrors of these plexes that are potentially bootable
also cannot be striped, concatenated or spanned.

For information on how to configure your system BIOS to boot from a disk other
than the default boot disk, refer to the documentation from your hardware vendor.

Administering disks
Rootability

132



Boot-time volume restrictions
When the operating system is booted, the root file system and swap area must be
available for use before the vxconfigd daemon can load the VxVM configuration
or start any volumes. During system startup, the operating system must see the
rootvol and swapvol volumes as regular partitions so that it can access them as
ordinary disk partitions.

Due to this restriction, each of the rootvol and swapvol plexes must be created
from contiguous space on a disk that is mapped to a single partition. It is not
possible to stripe, concatenate or span the plex of a rootvol or swapvol volume
that is used for booting. Any mirrors of these plexes that are potentially bootable
also cannot be striped, concatenated or spanned.

Volumes on the root disk have the following restrictions on their configuration:

■ For the x64 platform, root encapsulation is supported for Update 1 and later
releases of the Solaris 10 OS that include the GRUB boat loader.

■ The root volume (rootvol) must exist in the disk group that is chosen to be
the boot disk group, bootdg. Although other volumes named rootvol can be
created in other disk groups, only the rootvol in bootdg can be used to boot
the system.

■ If the volumes that are required to boot the system span multiple disks, all
these disks must be in the boot disk group.

■ The rootvol and swapvol volumes always have minor device numbers 0 and
1 respectively. Other volumes on the root disk do not have specific minor
device numbers.

■ Restricted mirrors of volumes on the root disk have overlay partitions created
for them. An overlay partition is one that exactly includes the disk space
occupied by the restricted mirror. During boot, before the rootvol, varvol,
usrvol and swapvol volumes are fully configured, the default volume
configuration uses the overlay partition to access the data on the disk.

■ Although it is possible to add a striped mirror to a rootvol device for
performance reasons, you cannot stripe the primary plex or any mirrors of
rootvol that may be needed for system recovery or booting purposes if the
primary plex fails.

■ rootvol and swapvol cannot be spanned or contain a primary plex with
multiple noncontiguous subdisks. You cannot grow or shrink any volume
associated with an encapsulated boot disk (rootvol, usrvol, varvol, optvol,
swapvol, and so on) because these map to a physical underlying partition on
the disk and must be contiguous. A workaround is to unencapsulate the boot

133Administering disks
Rootability



disk, repartition the boot disk as desired (growing or shrinking partitions as
needed), and then re-encapsulating.

■ When mirroring parts of the boot disk, the disk being mirrored to must be
large enough to hold the data on the original plex, or mirroring may not work.

■ The volumes on the root disk cannot use dirty region logging (DRL).

In addition to these requirements, it is a good idea to have at least one contiguous,
(cylinder-aligned if appropriate) mirror for each of the volumes for root, usr, var,
opt and swap. This makes it easier to convert these from volumes back to regular
disk partitions (during an operating system upgrade, for example).

Mirroring an encapsulated root disk
VxVM allows you to mirror the root volume and other areas needed for booting
onto another disk. Mirroring the root volume enables you to recover from a failure
of your root disk by replacing it with one of its mirrors.

For Sun x64 systems, mirroring a root disk creates a GRUB boot menu entry for
the Primary and Alternate (mirror) Boot disk.

For Sun SPARC systems, after mirroring the root disk, you can configure the
system to boot from the alternate boot drive to recover from a primary boot drive
failure.

See the Veritas VolumeManager Troubleshooting Guide for more information
about recovering from boot drive failure.

To mirror your root disk onto another disk

1 Choose a disk that is at least as large as the existing root disk.

2 If the selected disk is not already under VxVM control, use the vxdiskadd or
vxdiskadm command, or the Veritas Enterprise Administrator (VEA) to add
it to the bootdg disk group. Ensure that you specify the sliced format for
the disk.

Administering disks
Rootability

134



3 Select MirrorVolumesonaDisk from the vxdiskadm main menu, or use the
VEA to create a mirror of the root disk. Doing so automatically invokes the
vxmirror command if the mirroring operation is performed on the root disk.

Alternatively, to mirror only those file systems on the root disk that are
required to boot the system, run the following command:

# /etc/vx/bin/vxmirror altboot_disk

where altboot_disk is the disk media name of the mirror for the root disk.
vxmirror creates a mirror for rootvol (the volume for the root file system
on an alternate disk). The alternate root disk is configured to enable booting
from it if the primary root disk fails.

4 Monitor the progress of the mirroring operation with the vxtask list

command.

# vxtask list

TASKID PTID TYPE/STATE PCT PROGRESS

161 PARENT/R 0.00% 3/0(1) VXRECOVER dg01 dg

162 162 ATCOPY/R 04.77% 0/41945715/2000896 PLXATT home home-01 dg

Booting from alternate boot disks
If the root disk is encapsulated and mirrored, you can use one of its mirrors to
boot the system if the primary boot disk fails. This procedure differs between Sun
SPARC systems and Sun x64 systems.

Booting from an alternate (mirror) boot disk on Sun x64
systems
On a Sun x64 system, the alternate boot disk is added to the GRUB boot menu
when a boot disk is mirrored. If one root disk fails, the system stays up and lets
you replace the disk. No reboot is required to perform this maintenance with
internal SAS controllers and other CRU-type drives that are hot swappable. Replace
the disk, then rescan with the vxdctl enable command to discover the
replacement.

Alternatively, the bootpath can be redefined in the EEPROM without changing
the GRUB configuration.

See “The boot process on x64 systems ” on page 136.

Console access and the ability to select from the GRUB menu is required for the
following procedure. The system should not have rebooted because of plex failure,
but may have rebooted for other reasons.

135Administering disks
Rootability



To boot from an alternate boot disk on an x64 system

1 Select the "Alternate" GRUB menu entry:

title Solaris 10 11/06 s10x_u3wos_10 x64 <VxVM: Alternate Boot Disk>

root (hd0,0,a)

kernel /platform/i64pc/multiboot

module /platform/i64pc/boot_archive.alt

2 After the system has booted, see theVeritasVolumeManagerTroubleshooting
Guide for information on replacing the failed drive.

The boot process on x64 systems

From Update 1 of the Solaris 10 OS, x64 systems are configured to use the GRUB
boot loader. The devices from which a system may be booted are defined in the
GRUB configuration file, /boot/grub/menu.lst. From the GRUB menu, you can
select from the available bootable partitions that are known to the system. By
default, the system will boot from the device that is defined by the bootpath

variable in the EEPROM.

Defining root disk mirrors as bootable

After creating a root disk mirror, you can make it available for booting.

On Sun x64 systems, VxVM automatically creates a GRUB menu entry for the
alternate boot disk when the boot disk is mirrored. During the booting process,
select the alternate GRUB menu entry from the system console.

An alternate method is to change the 'default' GRUB menu setting in the
/boot/grub/menu.lst file to select this entry automatically during the booting
process.

Booting from an alternate boot disk on Sun SPARC systems
If the root disk is encapsulated and mirrored, you can use one of its mirrors to
boot the system if the primary boot disk fails.

On a Sun SPARC system, booting from an alternate boot disk requires that some
EEPROM settings are changed.

See “The boot process on SPARC systems” on page 136.

The boot process on SPARC systems

A Sun SPARC® system prompts for a boot command unless the autoboot flag has
been set in the nonvolatile storage area used by the firmware. Machines with older
PROMs have different prompts than that for the newer V2 and V3 versions. These

Administering disks
Rootability

136



newer versions of PROM are also known as OpenBoot PROMs (OBP). The boot

command syntax for the newer types of PROMs is:

ok boot [OBP names] [filename] [boot-flags]

The OBP names specify the OpenBoot PROM designations. For example, on Desktop
SPARC systems, the designation sbus/esp@0,800000/sd@3,0:a indicates a SCSI
disk (sd) at target 3, lun 0 on the SCSI bus, with the esp host bus adapter plugged
into slot 0.

You can use Veritas Volume Manager boot disk alias names instead of OBP names.
Example aliases are vx-rootdisk or vx-disk01. To list the available boot devices,
use the devalias command at the OpenBoot prompt.

The filename argument is the name of a file that contains the kernel. The default
is /kernel/unix in the root partition. If necessary, you can specify another
program (such as /stand/diag) by specifying the -a flag. (Some versions of the
firmware allow the default filename to be saved in the nonvolatile storage area
of the system.)

Warning: Do not boot a system running VxVM with rootability enabled using all
the defaults presented by the -a flag.

Boot flags are not interpreted by the boot program. The boot program passes all
boot-flags to the file identified by filename.

See the kadb (1M) manual page.

See the kernel (1) manual page.

Mirroring other file systems on the root disk
There may be other volumes on the root disk, such as volumes for /home or /tmp
file systems. If necessary, these can be mirrored separately using the vxassist

utility. For example, if you have a /home file system on a volume homevol, you can
mirror it to alternate_disk using the command:

# vxassist mirror homevol alternate_disk

If you do not have space for a copy of some of these file systems on your alternate
boot disk, you can mirror them to other disks. You can also span or stripe these
other volumes across other disks attached to your system.

To list all volumes on your primary boot disk, use the command:

# vxprint -t -v -e'aslist.aslist.sd_disk="boot_disk"'

137Administering disks
Rootability



Encapsulating SAN disks
A Solaris system may be booted from a SAN disk under the following conditions:

■ For Solaris 9, the operating system must first be installed on an internal boot
disk. The ufsdump and ufsrestore commands can then be used to create a
bootable SAN disk. For more information, refer to the Sun document
Automating the Installation of an FC-Fabric SAN-Booted System at
http://www.sun.com/bigadmin/features/articles/fc_fabric_san.html.

■ For Solaris 10, the operating system can also be installed directly onto a fabric
disk in a SAN environment.

Veritas Volume Manager can encapsulate a bootable SAN disk provided that the
disk is listed as being supported for this purpose in the Hardware Compatibility
List (HCL) on the support site at http://support.veritas.com.

For some disk arrays, special hardware configuration may be required to allow a
system to be booted from one of the LUNs in the array. Refer to the documentation
supplied by the array vendor for more information. Having configured the disk
array so that you can boot your system from it, you can proceed to encapsulate
it using VxVM.

To migrate from an internal boot disk to a SAN boot disk:

1 Verify that the HCL lists the target SAN disk as being supported for SAN
booting.

2 UseAdd or initialize one or more disks from thevxdiskadmmain menu,
or the VEA to add the target SAN disk to the boot disk group (aliased as
bootdg).

3 Use Mirror Volumes on a Disk from the vxdiskadmmain menu, or the VEA
to create a mirror of the root disk on the target disk.

4 Boot from the mirror disk to verify that the system is still bootable.

Once you have booted the system from the SAN disk, you can mirror it to
another SAN disk that has been added to the boot disk group.

If required, you can remove the plexes of the original boot disk by using the
vxplex command. For example, the following command removes the plexes
rootvol-01, swapvol-01, and home-01 that are configured on the boot disk:

# vxplex -o rm dis rootvol-01 swapvol-01 home-01

Administering disks
Rootability

138



Administering an encapsulated boot disk
The vxrootadm command lets you grow an encapsulated boot disk or male a
snapshot of it.

vxrootadm has the following format:

/etc/vx/bin/vxrootadm [-v] [-g dg] [-s srcdisk] ... keyword arg ...

The following are valid keyword and argument combinations:

■ /etc/vx/bin/vxrootadm -s srcdisk mksnap destdisk newdg

■ /etc/vx/bin/vxrootadm -s srcdisk grow destdisk volumename=newsize

...

■ /etc/vx/bin/vxrootadm grow continue

See “Growing an encapsulated boot disk” on page 140.

vxrootadm includes the following options:

These are verbose and debug message
options and are optional.

vxrootadm [-v ] [-D]

The disk group argument is optional;
however, it is only used with the mksnap
keyword or during phase 1 of a grow
operation.

vxrootadm [-g dg]

Creating a snapshot of an encapsulated boot disk
When you create a snapshot of an encapsulated boot disk, thevxrootadm command
has the following format:

vxrootadm -s srcdisk [-g dg] mksnap destdisk newdg

The target disk for the snapshot must be as large (or bigger) than the source disk
(boot disk). You must use a new disk group name to associate the target disk.

139Administering disks
Rootability



To create a snapshot of an encapsulated boot disk

◆ With an encapsulated boot disk (in this example, disk_0) associated with the
bootdg (rootdg), select a target disk (disk_1) and a new disk group name
(snapdg). Enter the following command:

/etc/vx/bin/vxrootadm -s disk_0 -g rootdg mksnap disk_1 snapdg

A snapshot boot disk (disk_1) is created and associated with the new disk
group name (snapdg).

See “Booting from alternate boot disks” on page 135.

Growing an encapsulated boot disk
When you grow an encapsulated boot disk, the format of thegrowkeyword depends
on whether the operation can be completed in one or more phases.

For single phase grow operations, that is, a grow operation for a non-booted root
disk created as a mirror, a snapshot, or using themksnapkeyword, use the following
format. Because this is not the currently booted root disk, all operations can be
completed within a single phase without a reboot.

vxrootadm -s srcdisk [-g dg] grow destdisk volumename=newsize

volumename=newsize ...

For multiple (four) phased grow operations, that is, a grow operation for the booted
root disk, do the following:

■ For phase 1, specify all the arguments, as in the single phase above.

■ For the additional phases (phases 2-4), specify vxrootadm grow continue

The target disk for the grow operation must be of equal or greater size of the
source disk (boot disk). The grow operation can be performed on the active boot
disk or a snapshot boot disk.

To grow an active encapsulated boot disk

1 To complete the grow operation on the active boot disk, will require three
reboots to complete the grow operations for the selected volume (rootvol,
usrvol, or swapvol).

2 With the encapsulated boot disk (disk_0) associated with the bootdg (rootdg),
select a target disk (disk_1), and the volume to be grown (rootvol of size
60g). Enter the following the command.

/etc/vx/bin/vxrootadm -s disk_0 -g rootdg grow disk_1

rootvol=80g

Administering disks
Rootability

140



■ The vxrootadm operation instructs the user when a reboot is required
(with specific command needed), and how to continue the grow operation
after the reboot is completed.

■ When the grow operation is completed, the target disk will be the active
boot disk, with the volume grown to the selected size, and the source boot
disk will be removed from the boot disk group (rootdg).

To grow a snapshot (not active) encapsulated boot disk

1 To complete the grow operation on the snapshot (not active) boot disk, no
reboots are required to complete the grow operations for the selected volume
(rootvol, usrvol, or swapvol).

2 With the snapshot encapsulated boot disk (disk_1) associated with the snapdg
disk group, select a target disk (disk_2), and the volume to be grown (rootvol
of size 60g). Enter the following command:

/etc/vx/bin/vxrootadm -s disk_1 -g snapdg grow disk_2

rootvol=80g

When the grow operation is completed, the target disk volume will be grown
to the indicated size, and the source disk will be removed from the disk group
(snapdg).

See “Booting from alternate boot disks” on page 135.

Unencapsulating the root disk
You can use the vxunroot utility to remove rootability support from a system.
This makes root, swap, home and other file systems on the root disk directly
accessible through disk partitions, instead of through volume devices.

The vxunrootutility also makes the necessary configuration changes to allow the
system to boot without any dependency on VxVM.

Only the volumes that were present on the root disk when it was encapsulated
can be unencapsulated using vxunroot. Before running vxunroot, evacuate all
other volumes that were created on the root disk after it was encapsulated.

Do not remove the plexes on the root disk that correspond to the original disk
partitions.

Warning: This procedure requires a reboot of the system.

141Administering disks
Unencapsulating the root disk



To remove rootability from a system

1 Use the vxplex command to remove all the plexes of the volumes rootvol,
swapvol, usr, var, opt and home on the disks other than the root disk.

For example, the following command removes the plexes rootvol-02,
swapvol-02, and home-02 that are configured on the boot disk mirror:

# vxplex -g bootdg -o rm dis rootvol-02 swapvol-02 home-02

2 Run the vxunroot utility:

# /etc/vx/bin/vxunroot

vxunroot does not perform any conversion to disk partitions if any plexes
remain on other disks.

Displaying disk information
Before you use a disk, you need to know if it has been initialized and placed under
VxVM control. You also need to know if the disk is part of a disk group, because
you cannot create volumes on a disk that is not part of a disk group. The vxdisk

list command displays device names for all recognized disks, the disk names,
the disk group names associated with each disk, and the status of each disk.

To display information on all disks that are known to VxVM

◆ Type the following command:

# vxdisk list

VxVM returns a display similar to the following:

DEVICE TYPE DISK GROUP STATUS

c0t0d0s2 auto:sliced mydg04 mydg online

c1t0d0s2 auto:sliced mydg03 mydg online

c1t1d0s2 auto:sliced - - online invalid

enc0_2 auto:sliced mydg02 mydg online

enc0_3 auto:sliced mydg05 mydg online

sena0_0 auto:sliced - - online

sena0_1 auto:sliced - - online

The phrase online invalid in the STATUS line indicates that a disk has not
yet been added to VxVM control. These disks may or may not have been
initialized by VxVM previously. Disks that are listed as online are already
under VxVM control.

Administering disks
Displaying disk information

142



To display information about an individual disk

◆ Type the following command:

# vxdisk [-v] list diskname

The -v option causes the command to additionally list all tags and tag values
that are defined for the disk. Without this option, no tags are displayed.

Displaying disk information with vxdiskadm
Displaying disk information shows you which disks are initialized, to which disk
groups they belong, and the disk status. The list command displays device names
for all recognized disks, the disk names, the disk group names associated with
each disk, and the status of each disk.

To display disk information

1 Start the vxdiskadm program, and select list (List disk information)

from the main menu.

2 At the following display, enter the address of the disk you want to see, or
enter all for a list of all disks:

List disk information

Menu: VolumeManager/Disk/ListDisk

VxVM INFO V-5-2-475 Use this menu operation to display a list of

disks. You can also choose to list detailed information about

the disk at a specific disk device address.

Enter disk device or "all" [<address>,all,q,?] (default: all)

■ If you enter all, VxVM displays the device name, disk name, group, and
status.

■ If you enter the address of the device for which you want information,
complete disk information (including the device name, the type of disk,
and information about the public and private areas of the disk) is displayed.

Once you have examined this information, press Return to return to the main
menu.

143Administering disks
Displaying disk information



Dynamic LUN expansion
Many modern disk arrays allow existing LUNs to be resized. The following form
of the vxdisk command can be used to make VxVM aware of the new size of a
LUN that has been resized:

# vxdisk [-f] [-g diskgroup] resize {accessname|medianame} \

[length=value]

The device must have a SCSI interface that is presented by a smart switch, smart
array or RAID controller. Following a resize operation to increase the length that
is defined for a device, additional disk space on the device is available for allocation.
You can optionally specify the new size by using the length attribute.

If a disk media name rather than a disk access name is specified, the disk group
must either be specified using the -g option or the default disk group will be used.
If the default disk group has not been set up, an error message will be generated.

This facility is provided to support dynamic LUN expansion by updating disk
headers and other VxVM structures to match a new LUN size. It does not resize
the LUN itself.

Any volumes on the device should only be grown after the LUN itself has first
been grown.

Resizing should only be performed on LUNs that preserve data. Consult the array
documentation to verify that data preservation is supported and has been qualified.
The operation also requires that only storage at the end of the LUN is affected.
Data at the beginning of the LUN must not be altered. No attempt is made to verify
the validity of pre-existing data on the LUN. The operation should be performed
on the host where the disk group is imported (or on the master node for a
cluster-shared disk group).

Resizing of LUNs that are not part of a disk group is not supported. It is not possible
to resize LUNs that are in the boot disk group (aliased as bootdg), in a deported
disk group, or that are offline, uninitialized, being reinitialized, or in an error
state.

Warning:Do not perform this operation when replacing a physical disk with a disk
of a different size as data is not preserved.

Before shrinking a LUN, first shrink any volumes on the LUN or more those
volumes off the LUN. Then, resize the device using vxdisk resize. Finally, resize
the LUN itself using the storage array's management utilities. By default, the
resize fails if any subdisks would be disabled as a result of their being removed
in whole or in part during a shrink operation.

Administering disks
Dynamic LUN expansion

144



If the device that is being resized has the only valid configuration copy for a disk
group, the -f option may be specified to forcibly resize the device.

Resizing a device that contains the only valid configuration copy for a disk group
can result in data loss if a system crash occurs during the resize.

Resizing a virtual disk device is a non-transactional operation outside the control
of VxVM. This means that the resize command may have to be re-issued following
a system crash. In addition, a system crash may leave the private region on the
device in an unusable state. If this occurs, the disk must be reinitialized, reattached
to the disk group, and its data resynchronized or recovered from a backup.

Removing disks
You must disable a disk group before you can remove the last disk in that group.

See “Disabling a disk group” on page 269.

As an alternative to disabling the disk group, you can destroy the disk group.

See “Destroying a disk group” on page 269.

You can remove a disk from a system and move it to another system if the disk is
failing or has failed.

To remove a disk

1 Stop all activity by applications to volumes that are configured on the disk
that is to be removed. Unmount file systems and shut down databases that
are configured on the volumes.

2 Use the following command to stop the volumes:

# vxvol [-g diskgroup] stop vol1 vol2 ...

3 Move the volumes to other disks or back up the volumes. To move a volume,
use vxdiskadm to mirror the volume on one or more disks, then remove the
original copy of the volume. If the volumes are no longer needed, they can
be removed instead of moved.

4 Check that any data on the disk has either been moved to other disks or is no
longer needed.

5 Select Remove a disk from the vxdiskadm main menu.

6 At the following prompt, enter the disk name of the disk to be removed:

Enter disk name [<disk>,list,q,?] mydg01

145Administering disks
Removing disks



7 If there are any volumes on the disk, VxVM asks you whether they should be
evacuated from the disk. If you wish to keep the volumes, answer y. Otherwise,
answer n.

8 At the following verification prompt, press Return to continue:

VxVM NOTICE V-5-2-284 Requested operation is to remove disk

mydg01 from group mydg.

Continue with operation? [y,n,q,?] (default: y)

The vxdiskadm utility removes the disk from the disk group and displays the
following success message:

VxVM INFO V-5-2-268 Removal of disk mydg01 is complete.

You can now remove the disk or leave it on your system as a replacement.

9 At the following prompt, indicate whether you want to remove other disks
(y) or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)

Removing a disk with subdisks
You can remove a disk on which some subdisks are defined. For example, you can
consolidate all the volumes onto one disk. If you use the vxdiskadm program to
remove a disk, you can choose to move volumes off that disk.

Some subdisks are not movable. A subdisk may not be movable for one of the
following reasons:

■ There is not enough space on the remaining disks in the subdisks disk group.

■ Plexes or striped subdisks cannot be allocated on different disks from existing
plexes or striped subdisks in the volume.

If the vxdiskadm program cannot move some subdisks, remove some plexes from
some disks to free more space before proceeding with the disk removal operation.

See “Removing a volume” on page 372.

See “Taking plexes offline” on page 295.

Administering disks
Removing disks

146



To remove a disk with subdisks

1 Run the vxdiskadm program and select Remove a disk from the main menu.

If the disk is used by some subdisks, the following message is displayed:

VxVM ERROR V-5-2-369 The following volumes currently use part of

disk mydg02:

home usrvol

Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

2 Choose y to move all subdisks off the disk, if possible.

Removing a disk with no subdisks
To remove a disk that contains no subdisks from its disk group

◆ Run the vxdiskadm program and select Remove a disk from the main menu,
and respond to the prompts as shown in this example to remove mydg02:

Enter disk name [<disk>,list,q,?] mydg02

VxVM NOTICE V-5-2-284 Requested operation is to remove disk mydg02 from

group mydg.

Continue with operation? [y,n,q,?] (default: y) y

VxVM INFO V-5-2-268 Removal of disk mydg02 is complete.

Clobber disk headers? [y,n,q,?] (default: n) y

Enter y to remove the disk completely from VxVM control. If you do not want
to remove the disk completely from VxVM control, enter n.

Removing a disk from VxVM control
After removing a disk from a disk group, you can permanently remove it from
Veritas Volume Manager control.

147Administering disks
Removing a disk from VxVM control



Warning: The vxdiskunsetup command removes a disk from Veritas Volume
Manager control by erasing the VxVM metadata on the disk. To prevent data loss,
any data on the disk should first be evacuated from the disk. The vxdiskunsetup
command should only be used by a system administrator who is trained and
knowledgeable about Veritas Volume Manager.

To remove a disk from VxVM control

◆ Type the following command:

# /usr/lib/vxvm/bin/vxdiskunsetup c#t#d#

Removing and replacing disks
A replacement disk should have the same disk geometry as the disk that failed.
That is, the replacement disk should have the same bytes per sector, sectors per
track, tracks per cylinder and sectors per cylinder, same number of cylinders, and
the same number of accessible cylinders.

You can use the prtvtoc command to obtain disk information.

Note: You may need to run commands that are specific to the operating system
or disk array before removing a physical disk.

The removal and replacement of a disk in a Sun StorEdgeTM A5x00 or similar
type of array, requires a different procedure.

See “Removing and replacing a disk in a Sun StorEdge A5x00 disk array”
on page 154.

If failures are starting to occur on a disk, but the disk has not yet failed completely,
you can replace the disk. This involves detaching the failed or failing disk from
its disk group, followed by replacing the failed or failing disk with a new one.
Replacing the disk can be postponed until a later date if necessary.

If removing a disk causes a volume to be disabled, you can restart the volume so
that you can restore its data from a backup.

See the Veritas VolumeManager Troubleshooting Guide.

Administering disks
Removing and replacing disks

148



To replace a disk

1 Select Remove a disk for replacement from the vxdiskadm main menu.

2 At the following prompt, enter the name of the disk to be replaced (or enter
list for a list of disks):

Enter disk name [<disk>,list,q,?] mydg02

3 When you select a disk to remove for replacement, all volumes that are
affected by the operation are displayed, for example:

VxVM NOTICE V-5-2-371 The following volumes will lose mirrors

as a result of this operation:

home src

No data on these volumes will be lost.

The following volumes are in use, and will be disabled as a

result of this operation:

mkting

Any applications using these volumes will fail future

accesses. These volumes will require restoration from backup.

Are you sure you want do this? [y,n,q,?] (default: n)

To remove the disk, causing the named volumes to be disabled and data to
be lost when the disk is replaced, enter y or press Return.

To abandon removal of the disk, and back up or move the data associated
with the volumes that would otherwise be disabled, enter n or q and press
Return.

For example, to move the volume mkting to a disk other than mydg02, use the
following command.

The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

# vxassist move mkting \!mydg02

After backing up or moving the data in the volumes, start again from step 1.

149Administering disks
Removing and replacing disks



4 At the following prompt, either select the device name of the replacement
disk (from the list provided), press Return to choose the default disk, or enter
none if you are going to replace the physical disk:

The following devices are available as replacements:

c0t1d0

You can choose one of these disks now, to replace mydg02.

Select none if you do not wish to select a replacement disk.

Choose a device, or select none

[<device>,none,q,?] (default: c0t1d0)

Do not choose the old disk drive as a replacement even though it appears in
the selection list. If necessary, you can choose to initialize a new disk.

You can enter none if you intend to replace the physical disk.

See “Replacing a failed or removed disk” on page 152.

5 If you chose to replace the disk in step 4, press Return at the following prompt
to confirm this:

VxVM NOTICE V-5-2-285 Requested operation is to remove mydg02

from group mydg. The removed disk will be replaced with disk device

c0t1d0. Continue with operation? [y,n,q,?] (default: y)

vxdiskadm displays the following messages to indicate that the original disk
is being removed:

VxVM NOTICE V-5-2-265 Removal of disk mydg02 completed

successfully.

VxVM NOTICE V-5-2-260 Proceeding to replace mydg02 with device

c0t1d0.

Administering disks
Removing and replacing disks

150



6 If the disk was previously an encapsulated root disk, vxdiskadm displays the
following message. Enter y to confirm that you want to reinitialize the disk:

The disk c1t0d0 was a previously encapsulated root disk. Due

to the disk layout that results from root disk encapsulation,

the preferred action is to reinitialize and reorganize this

disk. However, if you have any non-redundant data on this disk

you should not reorganize this disk, as the data will be lost.

Reorganize the disk? [y,n,q,?] (default: y) y

Warning: It is recommended that you do not enter n at this prompt. This
results in an invalid VTOC that makes the disk unbootable.

Entering y at the prompt destroys any data that is on the disk. Ensure that
you have at least one valid copy of the data on other disks before proceeding.

7 You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

8 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32 MB). Press Return to confirm that you want
to use the default value, or enter a different value. (The maximum value that
you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

151Administering disks
Removing and replacing disks



9 If one of more mirror plexes were moved from the disk, you are now prompted
whether FastResync should be used to resynchronize the plexes:

Use FMR for plex resync? [y,n,q,?] (default: n) y

vxdiskadm displays the following success message:

VxVM NOTICE V-5-2-158 Disk replacement completed successfully.

10 At the following prompt, indicate whether you want to remove another disk
(y) or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)

It is possible to move hot-relocate subdisks back to a replacement disk.

See “Configuring hot-relocation to use only spare disks” on page 480.

Replacing a failed or removed disk
The following procedure describes how to replace a failed or removed disk.

A different procedure is required to remove and replace a disk in a Sun StorEdge
A5x00 or similar type of array.

See “Removing and replacing a disk in a Sun StorEdge A5x00 disk array”
on page 154.

To specify a disk that has replaced a failed or removed disk

1 Select Replace a failed or removed disk from the vxdiskadmmain menu.

2 At the following prompt, enter the name of the disk to be replaced (or enter
list for a list of disks):

Select a removed or failed disk [<disk>,list,q,?] mydg02

3 Thevxdiskadmprogram displays the device names of the disk devices available
for use as replacement disks. Your system may use a device name that differs
from the examples. Enter the device name of the disk or press Return to select
the default device:

The following devices are available as replacements:

c0t1d0 c1t1d0

You can choose one of these disks to replace mydg02.

Choose "none" to initialize another disk to replace mydg02.

Choose a device, or select "none"

[<device>,none,q,?] (default: c0t1d0)

Administering disks
Removing and replacing disks

152



4 Depending on whether the replacement disk was previously initialized,
perform the appropriate step from the following:

■ If the disk has not previously been initialized, press Return at the following
prompt to replace the disk:

VxVM INFO V-5-2-378 The requested operation is to initialize

disk device c0t1d0 and to then use that device to

replace the removed or failed disk mydg02 in disk group mydg.

Continue with operation? [y,n,q,?] (default: y)

■ If the disk has already been initialized, press Return at the following
prompt to replace the disk:

VxVM INFO V-5-2-382 The requested operation is to use the

initialized device c0t1d0 to replace the removed or

failed disk mydg02 in disk group mydg.

Continue with operation? [y,n,q,?] (default: y)

■ If the disk was previously an encapsulated root disk, vxdiskadm displays
the following message. Enter y to confirm that you want to reinitialize
the disk:

VxVM INFO V-5-2-876 The disk c0t1d0 was a previously

encapsulated root disk. Due to the disk layout that results

from root disk encapsulation, the preferred action is to

reinitialize and reorganize this disk. However, if you have

any non-redundant data on this disk you should not reorganize

this disk, as the data will be lost.

Reorganize the disk? [y,n,q,?] (default: y) y

Warning: It is recommended that you do not enter n at this prompt. This can
result in an invalid VTOC that makes the disk unbootable.

Entering y at the prompt destroys any data that is on the disk. Ensure that
you have at least one valid copy of the data on other disks before proceeding.

153Administering disks
Removing and replacing disks



5 You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

6 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32 MB). Press Return to confirm that you want
to use the default value, or enter a different value. (The maximum value that
you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

7 The vxdiskadm program then proceeds to replace the disk, and returns the
following message on success:

VxVM NOTICE V-5-2-158 Disk replacement completed successfully.

At the following prompt, indicate whether you want to replace another disk
(y) or return to the vxdiskadm main menu (n):

Replace another disk? [y,n,q,?] (default: n)

Removing and replacing a disk in a Sun StorEdge A5x00 disk array

Note: The following procedure is suitable for use with any array that is
administered by using the Solaris luxadm command.

To replace a disk in a Sun StorEdge A5x00 disk array

1 Run the vxdiskadm command, and select Remove a disk for replacement

from the main men. Enter none when prompted to name a replacement disk.

2 Use the following command to remove the disk from VxVM:

# vxdisk rm daname

where daname is the disk access name of the device (for example, c1t5d0s2).

Administering disks
Removing and replacing disks

154



3 Use the Solaris luxadm command to obtain the array name and slot number
of the disk, and then use these values with luxadm to remove the disk:

# luxadm disp /dev/rdsk/daname

# luxadm remove_device array_name,slot_number

Follow the luxadm prompts, and pull out the disk when instructed.

4 Run the following luxadm command when you are ready to insert the
replacement disk:

# luxadm insert_device array_name,slot_number

Follow the luxadmprompts, and insert the replacement disk when instructed.

5 Run the following command to scan for the new disk and update the system:

# vxdiskconfig

6 Run the vxdiskadm command, select Replace a failed or removed disk

from the main menu, and follow the instructions.

See “Replacing a failed or removed disk” on page 152.

Enabling a disk
If you move a disk from one system to another during normal system operation,
VxVM does not recognize the disk automatically. The enable disk task enables
VxVM to identify the disk and to determine if this disk is part of a disk group.
Also, this task re-enables access to a disk that was disabled by either the disk
group deport task or the disk device disable (offline) task.

To enable a disk

1 Select Enable (online) a disk device from the vxdiskadm main menu.

2 At the following prompt, enter the device name of the disk to be enabled (or
enter list for a list of devices):

Select a disk device to enable [<address>,list,q,?]

c0t2d0s2

vxdiskadm enables the specified device.

3 At the following prompt, indicate whether you want to enable another device
(y) or return to the vxdiskadm main menu (n):

Enable another device? [y,n,q,?] (default: n)

155Administering disks
Enabling a disk



Taking a disk offline
There are instances when you must take a disk offline. If a disk is corrupted, you
must disable the disk before removing it. You must also disable a disk before
moving the physical disk device to another location to be connected to another
system.

Warning: Taking a disk offline is only useful on systems that support hot-swap
removal and insertion of disks. If a system does not support hot-swap removal
and insertion of disks, you must shut down the system.

To take a disk offline

1 Select Disable (offline) a disk device from the vxdiskadm main menu.

2 At the following prompt, enter the address of the disk you want to disable:

Select a disk device to disable [<address>,list,q,?]

c0t2d0s2

The vxdiskadm program disables the specified disk.

3 At the following prompt, indicate whether you want to disable another device
(y) or return to the vxdiskadm main menu (n):

Disable another device? [y,n,q,?] (default: n)

Renaming a disk
If you do not specify a VM disk name, VxVM gives the disk a default name when
you add the disk to VxVM control. The VM disk name is used by VxVM to identify
the location of the disk or the disk type.

Administering disks
Taking a disk offline

156



To rename a disk

◆ Type the following command:

# vxedit [-g diskgroup] rename old_diskname new_diskname

By default, VxVM names subdisk objects after the VM disk on which they are
located. Renaming a VM disk does not automatically rename the subdisks on
that disk.

For example, you might want to rename diskmydg03, as shown in the following
output from vxdisk list, to mydg02:

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

c0t0d0s2 auto:sliced mydg01 mydg online

c1t0d0s2 auto:sliced mydg03 mydg online

c1t1d0s2 auto:sliced - - online

You would use the following command to rename the disk.

# vxedit -g mydg rename mydg03 mydg02

To confirm that the name change took place, use the vxdisk list command
again:

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

c0t0d0s2 auto:sliced mydg01 mydg online

c1t0d0s2 auto:sliced mydg02 mydg online

c1t1d0s2 auto:sliced - - online

Reserving disks
By default, the vxassist command allocates space from any disk that has free
space. You can reserve a set of disks for special purposes, such as to avoid general
use of a particularly slow or a particularly fast disk.

157Administering disks
Reserving disks



To reserve a disk

◆ Type the following command:

# vxedit [-g diskgroup] set reserve=on diskname

After you enter this command, the vxassistprogram does not allocate space
from the selected disk unless that disk is specifically mentioned on the
vxassist command line. For example, if mydg03 is reserved, use the following
command:

# vxassist [-g diskgroup] make vol03 20m mydg03

The vxassist command overrides the reservation and creates a 20 megabyte
volume on mydg03. However, this command does not use mydg03, even if
there is no free space on any other disk:

# vxassist -g mydg make vol04 20m

To turn off reservation of a disk

◆ Type the following command:

# vxedit [-g diskgroup] set reserve=off diskname

See the vxedit(1M) manual page.

Changing host LUN configurations online
System administrators and storage administrators may need to modify the set of
LUNs provisioned to server. You can change the LUN configuration dynamically,
without performing a reconfiguration reboot on the host.

Dynamic LUN reconfigurations require array configuration commands, operating
system commands, and Veritas Volume manager commands. To complete the
operations correctly, you must issue the commands in the proper sequence on
the host.

The operations are as follows:

■ Dynamic LUN removal from an existing target ID
See “Removing LUNs dynamically from an existing target ID” on page 159.

■ Dynamic new LUN addition to a new target ID
See “Adding new LUNs dynamically to a new target ID” on page 160.

Administering disks
Changing host LUN configurations online

158



Removing LUNs dynamically from an existing target ID
In this case, a group of LUNs is unmapped from the host HBA ports and an
operating system device scan is issued. The device scan recognizes the LUNs and
adds them to DMP control. To add subsequent LUNs seamlessly, perform additional
steps to cleanup the operating system device tree.

The high-level procedure and the VxVM commands are generic. However, the
operating system commands may vary depending on the Solaris version. For
example, the following procedure uses Solaris 10 with the Leadville stack.

See “Changing host LUN configurations online” on page 158.

To remove LUNs dynamically from an existing target ID

1 Identify which LUNs to remove from the host. Do one of the following:

■ Use Storage Array Management to identify the Array Volume ID (AVID)
for the LUNs.

■ If the array does not report the AVID, use the LUN index.

2 Evacuate the data from the LUNs from the Volume Manager.

See the vxevac(1M) online manual page.

3 Remove the LUNs from the disk group. Do one of the following:

■ If the data has been evacuated, enter the following command:

# vxdg -g diskgroup rmdisk da-name

■ If the data has not been evacuated and the LUN is part of a subdisk or
diskgroup, enter the following command. If the disk is part of a shared
disk group, you must use the -k option to force the removal.

# vxdg -g diskgroup -k rmdisk da-name

4 Using the AVID or LUN index, use Storage Array Management to unmap or
unmask the LUNs you identified in step 1.

5 Remove the LUNs from the vdisk list. Enter the following command on all
nodes in a cluster:

# vxdisk rm da-name

This is a required step. If you do not perform this step, the DMP device tree
shows ghost paths.

159Administering disks
Changing host LUN configurations online



6 Clean up the Solaris SCSI device tree for the devices that you removed in step
5.

See “Cleaning up the operating system device tree after removing LUNs”
on page 162.

This is a required step. You must clean up the operating system SCSI device
tree to release the SCSI target ID for reuse if a new LUN is added to the host
later.

7 Scan the operating system device tree.

See “Scanning an operating system device tree after adding or removing
LUNs” on page 162.

8 Use Volume Manager to perform a device scan. You must perform this
operation on all nodes in a cluster. Enter one of the following commands:

■ # vxdctl enable

■ # vxdisk scandisks

9 Verify that the LUNs were removed cleanly by answering the following
questions:

■ Is the device tree clean?
Verify that the operating system metanodes are removed from the /dev

directory.

■ Were all the appropriate LUNs removed?
Use the DMP disk reporting tools such as the vxdisk list command
output to determine if the LUNs have been cleaned up successfully.

■ Is the vxdisk list output correct?

Verify that the vxdisk list output shows the correct number of paths
and does not include any ghost disks.

If the answer to any of these questions is "No," return to step 4 and perform
the required steps.

If the answer to all of the questions is "Yes," the LUN remove operation is
successful.

Adding new LUNs dynamically to a new target ID
In this case, a new group of LUNs is mapped to the host via multiple HBA ports.
An operating system device scan is issued for the LUNs to be recognized and added
to DMP control.

Administering disks
Changing host LUN configurations online

160



The high-level procedure and the VxVM commands are generic. However, the
operating system commands may vary depending on the Solaris version. For
example, the following procedure uses Solaris 10 with the Leadville stack.

To add new LUNs dynamically to a new target ID

1 Identify which LUNs to add to the host. Do one of the following:

■ Use Storage Array Management to identify the Array Volume ID (AVID)
for the LUNs.

■ If the array does not report the AVID, use the LUN index.

2 Map/mask the LUNs to the new target IDs on multiple hosts.

3 Scan the operating system device.

See “Scanning an operating system device tree after adding or removing
LUNs” on page 162.

Repeat step 1 and step 2 until you see that all the LUNs have been added.

4 Use Volume Manager to perform a device scan. You must perform this
operation on all nodes in a cluster. Enter one of the following commands:

■ # vxdctl enable

■ # vxdisk scandisks

5 Verify that the LUNs were added correctly by answering the following
questions:

■ Do the newly provisioned LUNs appear in the vxdisk list output?

■ Are there multiple paths for each LUN?

If the answer to any of these questions is "No," return to step 1 and begin the
procedure again.

If the answer to all of the questions is "Yes," the LUNs have been successfully
added. You can now add the LUNs to a disk group, create new volumes, or
grow existing volumes.

About detecting target ID reuse if the operating system device tree is
not cleaned up

If you try to reprovision a LUN or set of LUNs whose previously-valid operating
system device entries are not cleaned up, the following messages are displayed.
Also, DMP reconfiguration during the DMP device scan and DMP reconfiguration
are temporarily inhibited.

161Administering disks
Changing host LUN configurations online



See “Cleaning up the operating system device tree after removing LUNs”
on page 162.

VxVM vxdisk ERROR V-5-1-14519 Data Corruption Protection Activated

- User Corrective Action Needed

VxVM vxdisk INFO V-5-1-14521 To recover, first ensure that the OS

device tree is up to date (requires OS specific commands).

VxVM vxdisk INFO V-5-1-14520 Then, execute 'vxdisk rm' on the

following devices before reinitiating device discovery. <DA names>

The message above indicates that a new LUN is trying to reuse the target ID of
an older LUN. The device entries have not been cleaned, so the new LUN cannot
use the target ID. Until the operating system device tree is cleaned up, DMP
prevents this operation.

Scanning an operating system device tree after adding or removing
LUNs

After you add or remove LUNs, scan the operating system device tree to verify
that the operation completed successfully.

The operating system commands may vary, depending on the Solaris version. The
following procedure uses Solaris 10 with the Leadville stack.

To scan an operating system device tree after adding or removing LUNs

1 Enter the following command:

# cfgadm -c configure c2

where c2 is the controller ID 2.

2 Enter the following command:

# devfsadm -Cv

Cleaning up the operating system device tree after removing LUNs
After you remove LUNs, you must clean up the operating system device tree. The
operating system commands may vary, depending on the Solaris version. The
following procedure uses Solaris 10 with the Leadville stack. If any of these steps
do not produce the desired result, contact Sun support.

Administering disks
Changing host LUN configurations online

162



To clean up the operating system device tree after removing LUNs

1 Run the format command. In the command output, a device that has been
removed includes the text <drive not available>.

413. c3t5006048ACAFE4A7Cd252 <drive not available>

/pci@1d,700000/SUNW,qlc@1,1/fp@0,0/ssd@w5006048acafe4a7c,fc

2 Use Storage Array Management or the command line to unmap the LUNs.
After they are unmapped, Solaris indicates the devices are either unusable
or failing.

# cfgadm -al -o show_SCSI_LUN | grep -I unusable

c2::5006048acafe4a73,256 disk connected configured unusable

c3::5006048acafe4a7c,255 disk connected configured unusable

# cfgadm -al -o show_SCSI_LUN | grep -I failing

c2::5006048acafe4a73,71 disk connected configured failing

c3::5006048acafe4a7c,252 disk connected configured failing

See “Changing host LUN configurations online” on page 158.

3 If the output indicates the LUNs are failing, you must force an LIP on the
HBA.

# luxadm -e forcelip /devices/pci@1d,700000/SUNW,qlc@1,1/fp@0,0:devctl

This operation probes the targets again, so that output indicates the devices
are unstable. To remove a device from the operating system device tree, it
must be unstable.

4 Remove the device from the dfgadmdatabase. On the HBA, enter the following
commands:

# cfgadm -c unconfigure -o unusable_SCSI_LUN c2::5006048acafe4a73

# cfgadm -c unconfigure -o unusable_SCSI_LUN c3::5006048acafe4a7c

5 To verify that the LUNs have been removed, repeat step 2.

6 Clean up the device tree. The following command removes the /dev/dsk links
to /devices.

# devfsadm -Cv

163Administering disks
Changing host LUN configurations online



Administering disks
Changing host LUN configurations online

164



Administering Dynamic
Multipathing

This chapter includes the following topics:

■ How DMP works

■ Disabling multipathing and making devices invisible to VxVM

■ Enabling multipathing and making devices visible to VxVM

■ Enabling and disabling I/O for controllers and storage processors

■ Displaying DMP database information

■ Displaying the paths to a disk

■ Setting customized names for DMP nodes

■ DMP coexistence with native multipathing

■ Administering DMP using vxdmpadm

How DMP works
The Dynamic Multipathing (DMP) feature of Veritas Volume Manager (VxVM)
provides greater availability, reliability and performance by using path failover
and load balancing. This feature is available for multiported disk arrays from
various vendors.

Multiported disk arrays can be connected to host systems through multiple paths.
To detect the various paths to a disk, DMP uses a mechanism that is specific to
each supported array type. DMP can also differentiate between different enclosures
of a supported array type that are connected to the same host system.

4Chapter



See “Discovering and configuring newly added disk devices” on page 87.

The multipathing policy used by DMP depends on the characteristics of the disk
array.

DMP supports the following standard array types:

Allows several paths to be used concurrently for
I/O. Such arrays allow DMP to provide greater I/O
throughput by balancing the I/O load uniformly
across the multiple paths to the LUNs. In the
event that one path fails, DMP automatically
routes I/O over the other available paths.

Active/Active (A/A)

A/A-A or Asymmetric Active/Active arrays can
be accessed through secondary storage paths with
little performance degradation. Usually an A/A-A
array behaves like an A/P array rather than an
A/A array. However, during failover, an A/A-A
array behaves like an A/A array.

Asymmetric Active/Active (A/A-A)

Allows access to its LUNs (logical units; real disks
or virtual disks created using hardware) via the
primary (active) path on a single controller (also
known as an access port or a storage processor)
during normal operation.

In implicit failover mode (or autotrespass mode),
an A/P array automatically fails over by
scheduling I/O to the secondary (passive) path on
a separate controller if the primary path fails.
This passive port is not used for I/O until the
active port fails. In A/P arrays, path failover can
occur for a single LUN if I/O fails on the primary
path.

Active/Passive (A/P)

The appropriate command must be issued to the
array to make the LUNs fail over to the secondary
path.

Active/Passive in explicit failover mode
or non-autotrespass mode (A/P-F)

Administering Dynamic Multipathing
How DMP works

166



For Active/Passive arrays with LUN group failover
(A/PG arrays), a group of LUNs that are connected
through a controller is treated as a single failover
entity. Unlike A/P arrays, failover occurs at the
controller level, and not for individual LUNs. The
primary and secondary controller are each
connected to a separate group of LUNs. If a single
LUN in the primary controller’s LUN group fails,
all LUNs in that group fail over to the secondary
controller.

Active/Passive with LUN group failover
(A/P-G)

Variants of the A/P, AP/F and A/PG array types
that support concurrent I/O and load balancing
by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion
of a SAN hub or switch between an array and a
controller. Failover to the secondary (passive)
path occurs only if all the active primary paths
fail.

Concurrent Active/Passive (A/P-C)

Concurrent Active/Passive in explicit
failover mode or non-autotrespass
mode (A/PF-C)

Concurrent Active/Passive with LUN
group failover (A/PG-C)

An array support library (ASL) may define array types to DMP in addition to the
standard types for the arrays that it supports.

VxVM uses DMP metanodes (DMP nodes) to access disk devices connected to the
system. For each disk in a supported array, DMP maps one node to the set of paths
that are connected to the disk. Additionally, DMP associates the appropriate
multipathing policy for the disk array with the node. For disks in an unsupported
array, DMP maps a separate node to each path that is connected to a disk. The
raw and block devices for the nodes are created in the directories /dev/vx/rdmp
and /dev/vx/dmp respectively.

Figure 4-1 shows how DMP sets up a node for a disk in a supported disk array.

167Administering Dynamic Multipathing
How DMP works



Figure 4-1 How DMP represents multiple physical paths to a disk as one node

Host

Disk

Multiple paths

Multiple paths

Single DMP node

Mapped by DMP

c2c1

VxVM

DMP

VxVM implements a disk device naming scheme that allows you to recognize to
which array a disk belongs.

Figure 4-2 shows an example where two paths, c1t99d0 and c2t99d0, exist to a
single disk in the enclosure, but VxVM uses the single DMP node, enc0_0, to access
it.

Figure 4-2 Example of multipathing for a disk enclosure in a SAN environment

enc0_0Mapped
by DMP

VxVM

DMP

Host

Fibre Channel
hubs or

switches

Disk enclosure
enc0

Disk is c1t99d0 or c2t99d0
depending on the path

c2t99d0c1t99d0

c1 c2

See “Enclosure-based naming” on page 27.

See “Changing the disk-naming scheme” on page 107.

See “Discovering and configuring newly added disk devices” on page 87.

Administering Dynamic Multipathing
How DMP works

168



How DMP monitors I/O on paths
In older releases of VxVM, DMP had one kernel daemon (errord) that performed
error processing, and another (restored) that performed path restoration
activities.

From release 5.0, DMP maintains a pool of kernel threads that are used to perform
such tasks as error processing, path restoration, statistics collection, and SCSI
request callbacks. The vxdmpadm stat command can be used to provide
information about the threads. The nameserrordandrestoredhave been retained
for backward compatibility.

One kernel thread responds to I/O failures on a path by initiating a probe of the
host bus adapter (HBA) that corresponds to the path. Another thread then takes
the appropriate action according to the response from the HBA. The action taken
can be to retry the I/O request on the path, or to fail the path and reschedule the
I/O on an alternate path.

The restore kernel thread is woken periodically (typically every 5 minutes) to
check the health of the paths, and to resume I/O on paths that have been restored.
As some paths may suffer from intermittent failure, I/O is only resumed on a path
if has remained healthy for a given period of time (by default, 5 minutes). DMP
can be configured with different policies for checking the paths.

See “Configuring DMP path restoration policies” on page 214.

The statistics-gathering thread records the start and end time of each I/O request,
and the number of I/O failures and retries on each path. DMP can be configured
to use this information to prevent the SCSI driver being flooded by I/O requests.
This feature is known as I/O throttling.

If an I/O request relates to a mirrored volume, VxVM specifies the FAILFAST flag.
In such cases, DMP does not retry failed I/O requests on the path, and instead
marks the disks on that path as having failed.

See “Path failover mechanism” on page 169.

See “I/O throttling” on page 170.

Path failover mechanism
The DMP feature of VxVM enhances system reliability when used with multiported
disk arrays. In the event of the loss of a path to a disk array, DMP automatically
selects the next available path for I/O requests without intervention from the
administrator.

DMP is also informed when a connection is repaired or restored, and when you
add or remove devices after the system has been fully booted (provided that the
operating system recognizes the devices correctly).

169Administering Dynamic Multipathing
How DMP works



If required, the response of DMP to I/O failure on a path can be tuned for the paths
to individual arrays. DMP can be configured to time out an I/O request either after
a given period of time has elapsed without the request succeeding, or after a given
number of retries on a path have failed.

See “Configuring the response to I/O failures” on page 210.

I/O throttling
If I/O throttling is enabled, and the number of outstanding I/O requests builds up
on a path that has become less responsive, DMP can be configured to prevent new
I/O requests being sent on the path either when the number of outstanding I/O
requests has reached a given value, or a given time has elapsed since the last
successful I/O request on the path. While throttling is applied to a path, the
outstanding I/O requests on that path are scheduled on other available paths. The
throttling is removed from the path if the HBA reports no error on the path, or if
an outstanding I/O request on the path succeeds.

See “Configuring the I/O throttling mechanism” on page 211.

Load balancing
By default, the DMP uses the Minimum Queue policy for load balancing across
paths for Active/Active, A/P-C, A/PF-C and A/PG-C disk arrays. Load balancing
maximizes I/O throughput by using the total bandwidth of all available paths. I/O
is sent down the path which has the minimum outstanding I/Os.

For Active/Passive disk arrays, I/O is sent down the primary path. If the primary
path fails, I/O is switched over to the other available primary paths or secondary
paths. As the continuous transfer of ownership of LUNs from one controller to
another results in severe I/O slowdown, load balancing across paths is not
performed for Active/Passive disk arrays unless they support concurrent I/O.

Both paths of an Active/Passive array are not considered to be on different
controllers when mirroring across controllers (for example, when creating a
volume using vxassist make specified with the mirror=ctlr attribute).

For A/P-C, A/PF-C and A/PG-C arrays, load balancing is performed across all the
currently active paths as is done for Active/Active arrays.

You can use the vxdmpadm command to change the I/O policy for the paths to an
enclosure or disk array.

See “Specifying the I/O policy” on page 200.

Administering Dynamic Multipathing
How DMP works

170



Dynamic Reconfiguration
Dynamic Reconfiguration (DR) is a feature that is available on some high-end
enterprise systems. It allows some components (such as CPUs, memory, and other
controllers or I/O boards) to be reconfigured while the system is still running.
The reconfigured component might be handling the disks controlled by VxVM.

See “Enabling and disabling I/O for controllers and storage processors” on page 174.

Booting from DMP devices
When the root disk is placed under VxVM control, it is automatically accessed as
a DMP device with one path if it is a single disk, or with multiple paths if the disk
is part of a multiported disk array. By encapsulating and mirroring the root disk,
system reliability is enhanced against loss of one or more of the existing physical
paths to a disk.

DMP in a clustered environment

Note: You need an additional license to use the cluster feature of VxVM.

In a clustered environment where Active/Passive type disk arrays are shared by
multiple hosts, all nodes in the cluster must access the disk via the same physical
storage controller port. Accessing a disk via multiple paths simultaneously can
severely degrade I/O performance (sometimes referred to as the ping-pong effect).
Path failover on a single cluster node is also coordinated across the cluster so that
all the nodes continue to share the same physical path.

Prior to release 4.1 of VxVM, the clustering and DMP features could not handle
automatic failback in A/P arrays when a path was restored, and did not support
failback for explicit failover mode arrays. Failback could only be implemented
manually by running the vxdctl enable command on each cluster node after the
path failure had been corrected. From release 4.1, failback is now an automatic
cluster-wide operation that is coordinated by the master node. Automatic failback
in explicit failover mode arrays is also handled by issuing the appropriate low-level
command.

Note: Support for automatic failback of an A/P array requires that an appropriate
ASL (and APM, if required) is available for the array, and has been installed on
the system.

171Administering Dynamic Multipathing
How DMP works



For Active/Active type disk arrays, any disk can be simultaneously accessed
through all available physical paths to it. In a clustered environment, the nodes
do not all need to access a disk via the same physical path.

See “How to administer the Device Discovery Layer” on page 92.

See “Configuring array policy modules” on page 216.

Enabling or disabling controllers with shared disk groups
Prior to release 5.0, VxVM did not allow enabling or disabling of paths or
controllers connected to a disk that is part of a shared Veritas Volume Manager
disk group. From VxVM 5.0 onward, such operations are supported on shared
DMP nodes in a cluster.

Disabling multipathing and making devices invisible
to VxVM

Use this procedure to prevent a device from being multipathed by theVxVM DMP
driver (vxdmp), or to exclude a device from the view of VxVM.

Administering Dynamic Multipathing
Disabling multipathing and making devices invisible to VxVM

172



To disable multipathing and make devices invisible to VxVM

1 Run the vxdiskadm command, and select Prevent multipathing/Suppress

devices from VxVM’s view from the main menu. You are prompted to
confirm whether you want to continue.

2 Select the operation you want to perform from the following options:

Supresses all paths through the specified controller from the
view of VxVM.

Option 1

Supresses specified paths from the view of VxVM.Option 2

Supresses disks from the view of VxVM that match a specified
Vendor ID and Product ID combination.

Option 3

Supresses all but one path to a disk. Only one path is made visible
to VxVM.

Option 4

Prevents multipathing for all disks on a specified controller by
VxVM.

Option 5

Prevents multipathing of a disk by VxVM. The disks that
correspond to a specified path are claimed in the OTHER_DISKS
category and are not multipathed.

Option 6

Prevents multipathing for disks that match a specified Vendor
ID and Product ID combination. The disks that correspond to a
specified Vendor ID and Product ID combination are claimed in
the OTHER_DISKS category and are not multipathed.

Option 7

Lists the devices that are currently suppressed or not
multipathed.

Option 8

Enabling multipathing and making devices visible to
VxVM

Use this procedure to re-enable multipathing for a device, or to make a device
visible to VxVM again.

173Administering Dynamic Multipathing
Enabling multipathing and making devices visible to VxVM



To enable multipathing and make devices visible to VxVM

1 Run the vxdiskadm command, and select Allow multipathing/Unsuppress

devices from VxVM’s view from the main menu. You are prompted to
confirm whether you want to continue.

2 Select the operation you want to perform from the following options:

Unsupresses all paths through the specified controller from the
view of VxVM.

Option 1

Unsupresses specified paths from the view of VxVM.Option 2

Unsupresses disks from the view of VxVM that match a specified
Vendor ID and Product ID combination.

Option 3

Removes a pathgroup definition. (A pathgroup explicitly defines
alternate paths to the same disk.) Once a pathgroup has been
removed, all paths that were defined in that pathgroup become
visible again.

Option 4

Allows multipathing of all disks that have paths through the
specified controller.

Option 5

Allows multipathing of a disk by VxVM.Option 6

Allows multipathing of disks that match a specified Vendor ID
and Product ID combination.

Option 7

Lists the devices that are currently suppressed or not
multipathed.

Option 8

Enabling and disabling I/O for controllers and storage
processors

DMP allows you to turn off I/O for a controller or the array port of a storage
processor so that you can perform administrative operations. This feature can be
used for maintenance of HBA controllers on the host, or array ports that are
attached to disk arrays supported by VxVM. I/O operations to the controller or
array port can be turned back on after the maintenance task is completed. You
can accomplish these operations using the vxdmpadm command provided with
VxVM.

For Active/Active type disk arrays, after disabling the I/O through an HBA
controller or array port, the I/O continues on the remaining paths. For
Active/Passive type disk arrays, if disabling I/O through an HBA controller or

Administering Dynamic Multipathing
Enabling and disabling I/O for controllers and storage processors

174



array port resulted in all primary paths being disabled, DMP will failover to active
secondary paths and I/O will continue on them.

After the operation is over, you can use vxdmpadm to re-enable the paths through
the controllers.

See “Disabling I/O for paths, controllers or array ports” on page 206.

See “Enabling I/O for paths, controllers or array ports” on page 208.

See “Upgrading disk controller firmware” on page 208.

Note: From release 5.0 of VxVM, these operations are supported for controllers
that are used to access disk arrays on which cluster-shareable disk groups are
configured.

Displaying DMP database information
You can use thevxdmpadm command to list DMP database information and perform
other administrative tasks. This command allows you to list all controllers that
are connected to disks, and other related information that is stored in the DMP
database. You can use this information to locate system hardware, and to help
you decide which controllers need to be enabled or disabled.

The vxdmpadm command also provides useful information such as disk array serial
numbers, which DMP devices (disks) are connected to the disk array, and which
paths are connected to a particular controller, enclosure or array port.

See “Administering DMP using vxdmpadm” on page 179.

Displaying the paths to a disk
The vxdisk command is used to display the multipathing information for a
particular metadevice. The metadevice is a device representation of a particular
physical disk having multiple physical paths from one of the system’s HBA
controllers. In VxVM, all the physical disks in the system are represented as
metadevices with one or more physical paths.

175Administering Dynamic Multipathing
Displaying DMP database information



To display the multipathing information on a system

◆ Use the vxdisk path command to display the relationships between the
device paths, disk access names, disk media names and disk groups on a
system as shown here:

# vxdisk path

SUBPATH DANAME DMNAME GROUP STATE

c1t0d0s2 c1t0d0s2 mydg01 mydg ENABLED

c4t0d0s2 c1t0d0s2 mydg01 mydg ENABLED

c1t1d0s2 c1t1d0s2 mydg02 mydg ENABLED

c4t1d0s2 c1t1d0s2 mydg02 mydg ENABLED

.

.

.

This shows that two paths exist to each of the two disks, mydg01 and mydg02,
and also indicates that each disk is in the ENABLED state.

To view multipathing information for a particular metadevice

1 Use the following command:

# vxdisk list devicename

For example, to view multipathing information forc2t0d0s2, use the following
command:

# vxdisk list c2t0d0s2

Typical output from the vxdisk list command is as follows:

Device c2t0d0

devicetag c2t0d0

type sliced

hostid aparajita

disk name=mydg01 id=861086917.1052.aparajita

group name=mydg id=861086912.1025.aparajita

flags online ready autoconfig autoimport imported

pubpaths block=/dev/vx/dmp/c2t0d0s4 char=/dev/vx/rdmp/c2t0d0s4

privpaths block=/dev/vx/dmp/c2t0d0s3 char=/dev/vx/rdmp/c2t0d0s3

version 2.1

iosize min=512 (bytes) max=2048 (blocks)

public slice=4 offset=0 len=1043840

private slice=3 offset=1 len=1119

update time=861801175 seqno=0.48

Administering Dynamic Multipathing
Displaying the paths to a disk

176



headers 0 248

configs count=1 len=795

logs count=1 len=120

Defined regions

config priv 000017-000247[000231]:copy=01 offset=000000

enabled

config priv 000249-000812[000564]:copy=01 offset=000231

enabled

log priv 000813-000932[000120]:copy=01 offset=000000

enabled

Multipathing information:

numpaths: 2

c2t0d0s2 state=enabled type=primary

c1t0d0s2 state=disabled type=secondary

In the Multipathing information section of this output, the numpaths line
shows that there are 2 paths to the device, and the following two lines show
that one path is active (state=enabled) and that the other path has failed
(state=disabled).

The type field is shown for disks on Active/Passive type disk arrays such as
the EMC CLARiiON, Hitachi HDS 9200 and 9500, Sun StorEdge 6xxx, and Sun
StorEdge T3 array. This field indicates the primary and secondary paths to
the disk.

The type field is not displayed for disks on Active/Active type disk arrays
such as the EMC Symmetrix, Hitachi HDS 99xx and Sun StorEdge 99xx Series,
and IBM ESS Series. Such arrays have no concept of primary and secondary
paths.

2 Alternately, you can use the following command to view multipathing
information:

# vxdmpadm getsubpaths dmpnodename=devicename

For example, to view multipathing information for eva4k6k0_6, use the
following command:

# vxdmpadm getsubpaths dmpnodename=eva4k6k0_6

Typical output from the vxdmpadm getsubpaths command is as follows:

NAME STATE[A] PATH-TYPE[M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

======================================================================================

c0t50001FE1500A8F08d7s2 ENABLED(A) PRIMARY c0 EVA4K6K eva4k6k0 -

c0t50001FE1500A8F09d7s2 ENABLED(A) PRIMARY c0 EVA4K6K eva4k6k0 -

177Administering Dynamic Multipathing
Displaying the paths to a disk



c0t50001FE1500A8F0Cd7s2 ENABLED SECONDARY c0 EVA4K6K eva4k6k0 -

c0t50001FE1500A8F0Dd7s2 ENABLED SECONDARY c0 EVA4K6K eva4k6k0 -

Setting customized names for DMP nodes
The DMP node name is the meta device name which represents the multiple paths
to a disk. The DMP node name is generated from the device name according to
the VxVM naming scheme.

See “Disk device naming in VxVM” on page 83.

You can specify a customized name for a DMP node. User-specified names are
persistent even if names persistence is turned off.

To specify a custom name for a DMP node

◆ Use the following command:

# vxdmpadm setattr dmpnode dmpnodename name=name

You can also assign names from an input file. This enables you to customize the
DMP nodes on the system with meaningful names.

To assign DMP nodes from a file

1 Use the script vxgetdmpnames to get a sample file populated from the devices
in your configuration. The sample file shows the format required and serves
as a template to specify your customized names.

2 To assign the names, use the following command:

# vxddladm assign names file=pathname

To clear custom names

◆ To clear the names, and use the default OSN or EBN names, use the following
command:

# vxddladm -c assign names

DMP coexistence with native multipathing
Dynamic multipathing (DMP) supports using multipathing with raw devices. The
dmp_native_multipathing tunable controls the behavior. If the

Administering Dynamic Multipathing
Setting customized names for DMP nodes

178



dmp_native_multipathing tunable is set to on, DMP intercepts I/O requests,
operations such as open, close, and ioctls sent on the raw device path.

If the dmp_native_multipathing tunable is set to off, these requests are sent
directly to the raw device. In A/PF arrays, the format command on Solaris platform
does not show the extra attributes (like vendor ID, product ID and geometry
information) of the passive paths. To avoid this issue, enable the
dmp_native_multipathing tunable. DMP intercepts the request and routes it on
the primary path.

For A/P arrays, turning on the dmp_native_multipathing feature |enables the
commands to succeed without trespassing. The feature has no benefit for A/A or
A/A-A arrays.

Veritas DMP cannot be enabled if EMC PowerPath is installed, or if MPxIO is
enabled. In those cases, Veritas DMP is not required since the devices use native
multipathing.

Administering DMP using vxdmpadm
Thevxdmpadmutility is a command line administrative interface to the DMP feature
of VxVM.

You can use the vxdmpadm utility to perform the following tasks:

■ Retrieve the name of the DMP device corresponding to a particular path.

■ Display the members of a LUN group.

■ List all paths under a DMP device node, HBA controller or array port.

■ Display information about the HBA controllers on the host.

■ Display information about enclosures.

■ Display information about array ports that are connected to the storage
processors of enclosures.

■ Display information about devices that are controlled by third-party
multipathing drivers.

■ Gather I/O statistics for a DMP node, enclosure, path or controller.

■ Configure the attributes of the paths to an enclosure.

■ Set the I/O policy that is used for the paths to an enclosure.

■ Enable or disable I/O for a path, HBA controller or array port on the system.

■ Upgrade disk controller firmware.

■ Rename an enclosure.

179Administering Dynamic Multipathing
Administering DMP using vxdmpadm



■ Configure how DMP responds to I/O request failures.

■ Configure the I/O throttling mechanism.

■ Control the operation of the DMP path restoration thread.

■ Get or set the values of various tunables used by DMP.

The following sections cover these tasks in detail along with sample output.

See “Changing the values of tunables” on page 555.

See the vxdmpadm(1M) manual page.

Retrieving information about a DMP node
The following command displays the DMP node that controls a particular physical
path:

# vxdmpadm getdmpnode nodename=c0t5006016041E03B33d0s2

The physical path is specified by argument to the nodename attribute, which must
be a valid path listed in the /dev/rdsk directory.

The command displays output similar to the following:

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

==========================================================================

emc_clariion0_162 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0

Use the -v option to display the LUN serial number and the array volume ID.

# vxdmpadm -v getdmpnode nodename=c0t5006016041E03B33d0s2

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME SERIAL-NO ARRAY_VOL_ID

========================================================================================================

emc_clariion0_162 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0 600601606D121B007C778BC48EDBDB11 162

Use the enclosure attribute with getdmpnode to obtain a list of all DMP nodes for
the specified enclosure.

# vxdmpadm getdmpnode enclosure=enc0

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

===============================================================

c2t1d0s2 ENABLED T300 2 2 0 enc0

c2t1d1s2 ENABLED T300 2 2 0 enc0

c2t1d2s2 ENABLED T300 2 2 0 enc0

c2t1d3s2 ENABLED T300 2 2 0 enc0

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

180



Use the dmpnodenameattribute with getdmpnode to display the DMP information
for a given DMP node.

# vxdmpadm getdmpnode dmpnodename=emc_clariion0_158

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

======================================================================

emc_clariion0_158 ENABLED EMC_CLARiiON 1 1 0 emc_clariion0

Displaying consolidated information about the DMP nodes
The vxdmpadm list dmpnode command displays the detail information of a DMP
node. The information includes the enclosure name, LUN serial number, port id
information, device attributes, etc.

The following command displays the consolidated information for all of the DMP
nodes in the system:

# vxdmpadm list dmpnode all

Use the enclosure attribute with list dmpnode to obtain a list of all DMP nodes
for the specified enclosure.

# vxdmpadm list dmpnode enclosure=enclosure name

For example, the following command displays the consolidated information for
all of the DMP nodes in the enc0 enclosure.

#vxdmpadm list dmpnode enclosure=enc0

Use the dmpnodenameattribute with list dmpnode to display the DMP information
for a given DMP node. The DMP node can be specified by name or by specifying
a path name. The detailed information for the specified DMP node includes path
information for each subpath of the listed dmpnode.

The path state differentiates between a path that is disabled due to a failure and
a path that has been manually disabled for administrative purposes. A path that
has been manually disabled using the vxdmpadm disable command is listed as
disabled(m).

# vxdmpadm list dmpnode dmpnodename=dmpnodename

For example, the following command displays the consolidated information for
the DMP node emc_clariion0_158.

# vxdmpadm list dmpnode dmpnodename=emc_clariion0_158

181Administering Dynamic Multipathing
Administering DMP using vxdmpadm



dmpdev = emc_clariion0_158

state = enabled

enclosure = emc_clariion0

cab-sno = CK200070400359

asl = libvxCLARiiON.so

vid = DGC

pid = DISK

array-name = EMC_CLARiiON

array-type = CLR-A/PF

iopolicy = MinimumQ

avid = 158

lun-sno = 600601606D121B008FB6E0CA8EDBDB11

udid = DGC%5FDISK%5FCK200070400359%5F600601606D121B008FB6E0CA8EDBDB11

dev-attr = lun

###path = name state type transport ctlr hwpath aportID aportWWN attr

path = c0t5006016141E03B33d1s2 enabled(a) primary FC c0

/pci@1e,600000/SUNW,emlxs@3/fp@0,0 A5 50:06:01:61:41:e0:3b:33 -

path = c0t5006016041E03B33d1s2 enabled(a) primary FC c0

/pci@1e,600000/SUNW,emlxs@3/fp@0,0 A4 50:06:01:60:41:e0:3b:33 -

path = c0t5006016841E03B33d1s2 enabled secondary FC c0

/pci@1e,600000/SUNW,emlxs@3/fp@0,0 B4 50:06:01:68:41:e0:3b:33 -

path = c1t5006016141E03B33d1s2 enabled(a) primary FC c1

/pci@1e,600000/SUNW,emlxs@3,1/fp@0,0 A5 50:06:01:61:41:e0:3b:33 -

path = c1t5006016841E03B33d1s2 enabled secondary FC c1

/pci@1e,600000/SUNW,emlxs@3,1/fp@0,0 B4 50:06:01:68:41:e0:3b:33 -

path = c1t5006016041E03B33d1s2 enabled(a) primary FC c1

/pci@1e,600000/SUNW,emlxs@3,1/fp@0,0 A4 50:06:01:60:41:e0:3b:33 -

Displaying the members of a LUN group
The following command displays the DMP nodes that are in the same LUN group
as a specified DMP node:

# vxdmpadm getlungroup dmpnodename=c11t0d10s2

The above command displays output such as the following:

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

===============================================================

c11t0d8s2 ENABLED ACME 2 2 0 enc1

c11t0d9s2 ENABLED ACME 2 2 0 enc1

c11t0d10s2 ENABLED ACME 2 2 0 enc1

c11t0d11s2 ENABLED ACME 2 2 0 enc1

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

182



Displaying paths controlled by a DMP node, controller, enclosure, or
array port

The vxdmpadm getsubpaths command lists all of the paths known to DMP. The
vxdmpadm getsubpaths command also provides options to list the subpaths
through a particular DMP node, controller, enclosure, or array port. To list the
paths through an array port, specify either a combination of enclosure name and
array port id, or array port WWN.

To list all subpaths known to DMP:

# vxdmpadm getsubpaths

NAME STATE[A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

=======================================================================

c1t65d0s2 ENABLED(A) - Disk_1 Disk c1 -

c1t66d0s2 ENABLED(A) - Disk_2 Disk c1 -

c2t65d0s2 ENABLED(A) - Disk_1 Disk c2 -

c2t66d0s2 ENABLED(A) - Disk_2 Disk c2 -

c3t2d0s2 ENABLED(A) - EMC0_1 EMC0 c3 -

c3t2d1s2 ENABLED(A) - EMC0_2 EMC0 c3 -

c4t2d0s2 ENABLED(A) - EMC0_1 EMC0 c4 -

c4t2d1s2 ENABLED(A) - EMC0_2 EMC0 c4 -

The vxdmpadm getsubpaths command combined with the dmpnodename attribute
displays all the paths to a LUN that are controlled by the specified DMP node
name from the /dev/vx/rdmp directory:

# vxdmpadm getsubpaths dmpnodename=c2t66d0s2

NAME STATE[A] PATH-TYPE[M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

=======================================================================

c2t66d0s2 ENABLED(A) PRIMARY c2 ACME enc0 -

c1t66d0s2 ENABLED PRIMARY c1 ACME enc0 -

For A/A arrays, all enabled paths that are available for I/O are shown as
ENABLED(A).

For A/P arrays in which the I/O policy is set to singleactive, only one path is
shown as ENABLED(A). The other paths are enabled but not available for I/O. If
the I/O policy is not set to singleactive, DMP can use a group of paths (all primary
or all secondary) for I/O, which are shown as ENABLED(A).

See “Specifying the I/O policy” on page 200.

Paths that are in the DISABLED state are not available for I/O operations.

183Administering Dynamic Multipathing
Administering DMP using vxdmpadm



A path that was manually disabled by the system administrator displays as
DISABLED(M). A path that failed displays as DISABLED.

You can use getsubpaths to obtain information about all the paths that are
connected to a particular HBA controller:

# vxdmpadm getsubpaths ctlr=c2

NAME STATE[-] PATH-TYPE[-] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

=====================================================================

c2t1d0s2 ENABLED PRIMARY c2t1d0s2 ACME enc0 -

c2t2d0s2 ENABLED PRIMARY c2t2d0s2 ACME enc0 -

c2t3d0s2 DISABLED SECONDARY c2t3d0s2 ACME enc0 -

c2t4d0s2 ENABLED SECONDARY c2t4d0s2 ACME enc0 -

You can also use getsubpaths to obtain information about all the paths that are
connected to a port on an array. The array port can be specified by the name of
the enclosure and the array port ID, or by the worldwide name (WWN) identifier
of the array port:

# vxdmpadm getsubpaths enclosure=HDS9500V0 portid=1A

# vxdmpadm getsubpaths pwwn=20:00:00:E0:8B:06:5F:19

For example, to list subpaths through an array port:

# vxdmpadm getsubpaths enclosure=HDS9500-ALUA0 portid=1A

NAME STATE[A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

=======================================================================

c1t65d0s2 ENABLED(A) PRIMARY c1t65d0s2 HDS9500-ALUA0 c1 -

c1t66d0s2 ENABLED(A) PRIMARY c1t66d0s2 HDS9500-ALUA0 c1 -

You can use getsubpaths to obtain information about all the subpaths of an
enclosure.

# vxdmpadm getsubpaths enclosure=enclosure_name [ctlr=ctlrname]

To list all subpaths of an enclosure:

# vxdmpadm getsubpaths enclosure=Disk

NAME STATE[A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

=====================================================================

c1t65d0s2 ENABLED(A) - Disk_1 Disk c1 -

c1t66d0s2 ENABLED(A) - Disk_2 Disk c1 -

c2t65d0s2 ENABLED(A) - Disk_1 Disk c2 -

c2t66d0s2 ENABLED(A) - Disk_2 Disk c2 -

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

184



To list all subpaths of a controller on an enclosure:

# vxdmpadm getsubpaths enclosure=Disk ctlr=c1

NAME STATE[A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

=====================================================================

c1t65d0s2 ENABLED(A) - Disk_1 Disk c1 -

c1t66d0s2 ENABLED(A) - Disk_2 Disk c1 -

By default, the output of the vxdmpadm getsubpaths command is sorted by
enclosure name, DMP node name, and within that, path name. To sort the output
based on the pathname, the DMP node name, the enclosure name, or the host
controller name, use the -s option.

To sort subpaths information, use the following command:

# vxdmpadm -s {path | dmpnode | enclosure | ctlr} getsubpaths \

[all | ctlr=ctlr_name | dmpnodename=dmp_device_name | \

enclosure=enclr_name [ctlr=ctlr_name | portid=array_port_ID] | \

pwwn=port_WWN | tpdnodename=tpd_node_name]

Displaying information about controllers
The following command lists attributes of all HBA controllers on the system:

# vxdmpadm listctlr all

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME

===============================================================

c1 OTHER ENABLED other0

c2 X1 ENABLED jbod0

c3 ACME ENABLED enc0

c4 ACME ENABLED enc0

This output shows that the controller c1 is connected to disks that are not in any
recognized DMP category as the enclosure type is OTHER.

The other controllers are connected to disks that are in recognized DMP categories.

All the controllers are in the ENABLED state which indicates that they are available
for I/O operations.

The state DISABLED is used to indicate that controllers are unavailable for I/O
operations. The unavailability can be due to a hardware failure or due to I/O
operations being disabled on that controller by using the vxdmpadm disable

command.

185Administering Dynamic Multipathing
Administering DMP using vxdmpadm



The following forms of the command lists controllers belonging to a specified
enclosure or enclosure type:

# vxdmpadm listctlr enclosure=enc0

or

# vxdmpadm listctlr type=ACME

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME

===============================================================

c2 ACME ENABLED enc0

c3 ACME ENABLED enc0

The vxdmpadm getctlr command displays HBA vendor details and the Controller
ID. For iSCSI devices, the Controller ID is the IQN or IEEE-format based name.
For FC devices, the Controller ID is the WWN. Because the WWN is obtained from
ESD, this field is blank if ESD is not running. ESD is a daemon process used to
notify DDL about occurance of events. The WWN shown as ‘Controller ID’ maps
to the WWN of the HBA port associated with the host controller.

# vxdmpadm getctlr c5

LNAME PNAME HBA-VENDOR CTLR-ID

============================================================================

c5 c5 qlogic 20:07:00:a0:b8:17:e1:37

c6 c6 qlogic iqn.1986-03.com.sun:01:0003ba8ed1b5.45220f80

Displaying information about enclosures
To display the attributes of a specified enclosure, including its enclosure type,
enclosure serial number, status, array type, and number of LUNs, use the following
command:

# vxdmpadm listenclosure enc0

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS ARRAY_TYPE LUN_COUNT

=============================================================================

enc0 T3 60020f20000001a90000 CONNECTED A/P 30

The following command lists attributes for all enclosures in a system:

# vxdmpadm listenclosure all

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS ARRAY_TYPE LUN_COUNT

==============================================================================

Disk Disk DISKS CONNECTED Disk 6

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

186



SENA0 SENA 508002000001d660 CONNECTED A/A 57

enc0 T3 60020f20000001a90000 CONNECTED A/P 30

Displaying information about array ports
To display the attributes of an array port that is accessible via a path, DMP node
or HBA controller, use one of the following commands:

# vxdmpadm getportids path=path-name

# vxdmpadm getportids dmpnodename=dmpnode-name

# vxdmpadm getportids ctlr=ctlr-name

The information displayed for an array port includes the name of its enclosure,
and its ID and worldwide name (WWN) identifier.

The following form of the command displays information about all of the array
ports within the specified enclosure:

# vxdmpadm getportids enclosure=enclr-name

The following example shows information about the array port that is accessible
via DMP node c2t66d0s2:

# vxdmpadm getportids dmpnodename=c2t66d0s2

NAME ENCLR-NAME ARRAY-PORT-ID pWWN

==============================================================

c2t66d0s2 HDS9500V0 1A 20:00:00:E0:8B:06:5F:19

Displaying information about TPD-controlled devices
The third-party driver (TPD) coexistence feature allows I/O that is controlled by
third-party multipathing drivers to bypass DMP while retaining the monitoring
capabilities of DMP. The following commands allow you to display the paths that
DMP has discovered for a given TPD device, and the TPD device that corresponds
to a given TPD-controlled node discovered by DMP:

# vxdmpadm getsubpaths tpdnodename=TPD_node_name

# vxdmpadm gettpdnode nodename=TPD_path_name

See “Changing device naming for TPD-controlled enclosures” on page 110.

For example, consider the following disks in an EMC Symmetrix array controlled
by PowerPath, which are known to DMP:

# vxdisk list

187Administering Dynamic Multipathing
Administering DMP using vxdmpadm



DEVICE TYPE DISK GROUP STATUS

emcpower10s2 auto:sliced disk1 ppdg online

emcpower11s2 auto:sliced disk2 ppdg online

emcpower12s2 auto:sliced disk3 ppdg online

emcpower13s2 auto:sliced disk4 ppdg online

emcpower14s2 auto:sliced disk5 ppdg online

emcpower15s2 auto:sliced disk6 ppdg online

emcpower16s2 auto:sliced disk7 ppdg online

emcpower17s2 auto:sliced disk8 ppdg online

emcpower18s2 auto:sliced disk9 ppdg online

emcpower19s2 auto:sliced disk10 ppdg online

The following command displays the paths that DMP has discovered, and which
correspond to the PowerPath-controlled node, emcpower10s2:

# vxdmpadm getsubpaths tpdnodename=emcpower10s2

NAME TPDNODENAME PATH-TYPE[-]DMP-NODENAME ENCLR-TYPE ENCLR-NAME

===================================================================

c7t0d10s2emcpower10s2- emcpower10s2 EMC EMC0

c6t0d10s2emcpower10s2- emcpower10s2 EMC EMC0

Conversely, the next command displays information about the PowerPath node
that corresponds to the path, c7t0d10s2, discovered by DMP:

# vxdmpadm gettpdnode nodename=c7t0d10s2

NAME STATE PATHS ENCLR-TYPE ENCLR-NAME

===================================================================

emcpower10s2 ENABLED 2 EMC EMC0

Displaying extended device attributes
Device Discovery Layer (DDL) extended attributes are attributes or flags
corresponding to a VxVM LUN/Disk which are discovered by DDL. These attributes
identify a LUN to a specific hardware category.

The list of categories includes:

Displays what kind of Storage RAID
Group the LUN belongs to

Hardware RAID types

Displays the LUN’s thin/reclamation
abilities

Thin Provisioning Discovery and Reclamation

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

188



Displays the type of media –whether
SSD (solid state disk )

Device Media Type

Displays whether the LUNS is a
SNAPSHOT or a CLONE of a PRIMARY
LUN

Storage-based Snapshot/Clone

Displays if LUN is part of a replicated
group across a remote site

Storage-based replication

Displays what kind of HBA is used to
connect to this LUN ( FC , SATA , iSCSI
)

Transport

Each LUN can have one or more of these attributes discovered during device
discovery. ASLs furnish this information to DDL through the property
DDL_DEVICE_ATTR. The vxdisk -p list command displays DDL extended
attributes. For example, the following command shows attributes of “std”, “fc”,
and “RAID_5” for this LUN:

# vxdisk -p list

DISK : tagmastore-usp0_0e18

DISKID : 1253585985.692.rx2600h11

VID : HITACHI

UDID : HITACHI%5FOPEN-V%5F02742%5F0E18

REVISION : 5001

PID : OPEN-V

PHYS_CTLR_NAME : 0/4/1/1.0x50060e8005274246

LUN_SNO_ORDER : 411

LUN_SERIAL_NO : 0E18

LIBNAME : libvxhdsusp.sl

HARDWARE_MIRROR: no

DMP_DEVICE : tagmastore-usp0_0e18

DDL_THIN_DISK : thick

DDL_DEVICE_ATTR: std fc RAID_5

CAB_SERIAL_NO : 02742

ATYPE : A/A

ARRAY_VOLUME_ID: 0E18

ARRAY_PORT_PWWN: 50:06:0e:80:05:27:42:46

ANAME : TagmaStore-USP

TRANSPORT : FC

The vxdisk -x attribute -p list command displays the one-line listing for
the property list and the attributes. The following example shows two Hitachi
LUNs that support Thin Reclamation support via the attribute hdprclm:

189Administering Dynamic Multipathing
Administering DMP using vxdmpadm



# vxdisk -x DDL_DEVICE_ATTR -p list

DEVICE DDL_DEVICE_ATTR

tagmastore-usp0_0a7a std fc

RAID_5

tagmastore-usp0_065a hdprclm fc

tagmastore-usp0_065b hdprclm fc

User can specify multiple -x options in the same command to display multiple
entries. For example:

# vxdisk -x DDL_DEVICE_ATTR -x VID -p list

DEVICE VID DDL_DEVICE_ATTR

tagmastore-usp0_0a7a HITACHI std fc RAID_5

tagmastore-usp0_0a7b HITACHI std fc RAID_5

tagmastore-usp0_0a78 HITACHI std fc RAID_5

tagmastore-usp0_0a79 HITACHI std fc RAID_5

tagmastore-usp0_065a HITACHI hdprclm fc

tagmastore-usp0_065b HITACHI hdprclm fc

tagmastore-usp0_065c HITACHI hdprclm fc

tagmastore-usp0_065d HITACHI hdprclm fc

Use the vxdisk -e list command to show the DLL_DEVICE_ATTR property in
the last column named ATTR.

# vxdisk -e list

DEVICE TYPE DISK GROUP STATUS OS_NATIVE_NAME ATTR

tagmastore-usp0_0a7a auto - - online c10t0d2 std fc RAID_5

tagmastore-usp0_0a7b auto - - online c10t0d3 std fc RAID_5

tagmastore-usp0_0a78 auto - - online c10t0d0 std fc RAID_5

tagmastore-usp0_0655 auto - - online c13t2d7 hdprclm fc

tagmastore-usp0_0656 auto - - online c13t3d0 hdprclm fc

tagmastore-usp0_0657 auto - - online c13t3d1 hdprclm fc

For a list of ASLs that supports Extended Attributes, and descriptions of these
attributes, refer to the hardware compatibility list at the following URL:

http://seer.entsupport.symantec.com/docs/330441.htm

Suppressing or including devices for VxVM or DMP control
The vxdmpadm exclude command suppresses devices from VxVM based on the
criteria that you specify. The devices can be added back into VxVM control by
using the vxdmpadm include command. The devices can be included or excluded

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

190

http://seer.entsupport.symantec.com/docs/330441.htm


based on VID:PID combination, paths, controllers, or disks. You can use the bang
symbol (!) to exclude or include any paths or controllers except the one specified.

Note: The ! character is a special character in some shells. The following syntax
shows how to escape it in a bash shell.

# vxdmpadm exclude [vxvm | vxdmp] { all | product=VID:PID |

ctlr=[\!]ctlr | dmpnodename=diskname [ path=\!pathname] }

# vxdmpadm include [vxvm | vxdmp] { all | product=VID:PID |

ctlr=[\!]ctlr | dmpnodename=diskname [ path=\!pathname] }

where:

all – all devices

product=VID:PID – all devices with the specified VID:PID

ctlr=ctlr – all devices through the given controller

dmpnodename=diskname - all paths under the DMP node

dmpnodename=disknamepath=\!pathname - all paths under the DMP node except
the one specified.

Gathering and displaying I/O statistics
You can use the vxdmpadm iostat command to gather and display I/O statistics
for a specified DMP node, enclosure, path or controller.

To enable the gathering of statistics, enter this command:

# vxdmpadm iostat start [memory=size]

To reset the I/O counters to zero, use this command:

# vxdmpadm iostat reset

The memory attribute can be used to limit the maximum amount of memory that
is used to record I/O statistics for each CPU. The default limit is 32k (32 kilobytes)
per CPU.

To display the accumulated statistics at regular intervals, use the following
command:

# vxdmpadm iostat show {all | dmpnodename=dmp-node | \

enclosure=enclr-name | pathname=path-name | ctlr=ctlr-name} \

[interval=seconds [count=N]]

191Administering Dynamic Multipathing
Administering DMP using vxdmpadm



This command displays I/O statistics for all paths (all), or for a specified DMP
node, enclosure, path or controller. The statistics displayed are the CPU usage
and amount of memory per CPU used to accumulate statistics, the number of read
and write operations, the number of kilobytes read and written, and the average
time in milliseconds per kilobyte that is read or written.

The interval and count attributes may be used to specify the interval in seconds
between displaying the I/O statistics, and the number of lines to be displayed. The
actual interval may be smaller than the value specified if insufficient memory is
available to record the statistics.

To disable the gathering of statistics, enter this command:

# vxdmpadm iostat stop

Examples of using the vxdmpadm iostat command
The following is an example session using the vxdmpadm iostat command. The
first command enables the gathering of I/O statistics:

# vxdmpadm iostat start

The next command displays the current statistics including the accumulated total
numbers of read and write operations and kilobytes read and written, on all paths:

# vxdmpadm iostat show all

cpu usage = 7952us per cpu memory = 8192b

OPERATIONS KBYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c0t0d0 1088 0 557056 0 0.00 0.00

c2t118d0 87 0 44544 0 0.00 0.00

c3t118d0 0 0 0 0 0.00 0.00

c2t122d0 87 0 44544 0 0.00 0.00

c3t122d0 0 0 0 0 0.00 0.00

c2t115d0 87 0 44544 0 0.00 0.00

c3t115d0 0 0 0 0 0.00 0.00

c2t103d0 87 0 44544 0 0.00 0.00

c3t103d0 0 0 0 0 0.00 0.00

c2t102d0 87 0 44544 0 0.00 0.00

c3t102d0 0 0 0 0 0.00 0.00

c2t121d0 87 0 44544 0 0.00 0.00

c3t121d0 0 0 0 0 0.00 0.00

c2t112d0 87 0 44544 0 0.00 0.00

c3t112d0 0 0 0 0 0.00 0.00

c2t96d0 87 0 44544 0 0.00 0.00

c3t96d0 0 0 0 0 0.00 0.00

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

192



c2t106d0 87 0 44544 0 0.00 0.00

c3t106d0 0 0 0 0 0.00 0.00

c2t113d0 87 0 44544 0 0.00 0.00

c3t113d0 0 0 0 0 0.00 0.00

c2t119d0 87 0 44544 0 0.00 0.00

c3t119d0 0 0 0 0 0.00 0.00

The following command changes the amount of memory that vxdmpadm can use
to accumulate the statistics:

# vxdmpadm iostat start memory=4096

The displayed statistics can be filtered by path name, DMP node name, and
enclosure name (note that the per-CPU memory has changed following the previous
command):

# vxdmpadm iostat show pathname=c3t115d0s2

cpu usage = 8132us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c3t115d0s2 0 0 0 0 0.00 0.00

# vxdmpadm iostat show dmpnodename=c0t0d0s2

cpu usage = 8501us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c0t0d0 s2 1088 0 557056 0 0.00 0.00

# vxdmpadm iostat show enclosure=Disk

cpu usage = 8626us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c0t0d0 s2 1088 0 557056 0 0.00 0.00

You can also specify the number of times to display the statistics and the time
interval. Here the incremental statistics for a path are displayed twice with a
2-second interval:

$vxdmpadm iostat show dmpnodename=emc_clariion0_342 interval=1 count=2

cpu usage = 164687us per cpu memory = 409600b

OPERATIONS BLOCKS AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c0t5006016041E03B33d6s2 3 0 33 0 0.02 0.00

c0t5006016141E03B33d6s2 3 0 3 0 0.16 0.00

c0t5006016841E03B33d6s2 0 0 0 0 0.00 0.00

193Administering Dynamic Multipathing
Administering DMP using vxdmpadm



c1t5006016041E03B33d6s2 1 0 16 0 0.02 0.00

c1t5006016141E03B33d6s2 2 0 2 0 0.18 0.00

c1t5006016841E03B33d6s2 0 0 0 0 0.00 0.00

c0t5006016041E03B33d6s2 0 0 0 0 0.00 0.00

c0t5006016141E03B33d6s2 0 0 0 0 0.00 0.00

c0t5006016841E03B33d6s2 0 0 0 0 0.00 0.00

c1t5006016041E03B33d6s2 0 0 0 0 0.00 0.00

c1t5006016141E03B33d6s2 0 0 0 0 0.00 0.00

c1t5006016841E03B33d6s2 0 0 0 0 0.00 0.00

Displaying statistics for queued or erroneous I/Os
Use the vxdmpadm iostat show command with the -q option to display the I/Os
queued in DMP for a specified DMP node, or for a specified path or controller. For
a DMP node, the -q option displays the I/Os on the specified DMP node that were
sent to underlying layers. If a path or controller is specified, the -q option displays
I/Os that were sent to the given path or controller and not yet returned to DMP.

See the vxdmpadm(1m) manual page for more information about the vxdmpadm

iostat command.

To display queued I/O counts on a DMP node:

# vxdmpadm -q iostat show [filter]

[interval=n [count=m]]

For example:

# vxdmpadm -q iostat show dmpnodename=c5t2d1s2

QUEUED I/Os Pending I/Os

DMPNODENAME READS WRITES

c5t2d1s2 2 15 30

To display the count of I/Os that returned with errors on a DMP node, path or
controller:

# vxdmpadm -e iostat show [filter]

[interval=n [count=m]]

For example, to show the I/O counts that returned errors on a path:

# vxdmpadm -e iostat show pathname=c1t5006016041E03B33d6s2 interval=1

cpu usage = 168144us per cpu memory = 409600b

ERROR I/Os

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

194



PATHNAME READS WRITES

c1t5006016041E03B33d6s2 0 0

c1t5006016041E03B33d6s2 0 0

Displaying cumulative I/O statistics
Use the groupby clause of the vxdmpadm iostat command to display cumulative
I/O statistics listings per DMP node, controller, array port id, or host-array
controller pair and enclosure. If the groupby clause is not specified, then the
statistics are displayed per path.

To group by DMP node:

# vxdmpadm iostat show groupby=dmpnode [all | dmpnodename=dmpnodename

| enclosure=enclr-name]

For example:

# vxdmpadm iostat show groupby=dmpnode dmpnodename=c5t0d1s2

OPERATIONS BLOCKS AVG TIME(ms)

DMPNODENAME READS WRITES READS WRITES READS WRITES

c5t0d1s2 0 0 0 0 0.00 0.00

To group by controller:

# vxdmpadm iostat show groupby=ctlr [ all | ctlr=ctlr ]

For example:

# vxdmpadm iostat show groupby=ctlr ctlr=c5

OPERATIONS BLOCKS AVG TIME(ms)

CTLRNAME READS WRITES READS WRITES READS WRITES

c5 224 14 54 7 4.20 11.10

To group by arrayport:

# vxdmpadm iostat show groupby=arrayport [ all | pwwn=array port wwn

| enclosure=enclr portid=array-port-id ]

For example:

# vxdmpadm iostat show groupby=arrayport enclosure=HDS9500-ALUA0 portid=1A

OPERATIONS BLOCKS AVG TIME(ms)

PORTNAME READS WRITES READS WRITES READS WRITES

1A 224 14 54 7 4.20 11.10

195Administering Dynamic Multipathing
Administering DMP using vxdmpadm



To group by enclosure:

# vxdmpadm iostat show groupby=enclosure [ all | enclosure=enclr ]

For example:

# vxdmpadm iostat show groupby=enclosure enclosure=EMC_CLARiiON0

OPERATIONS BLOCKS AVG TIME(ms)

ENCLRNAME READS WRITES READS WRITES READS WRITES

EMC_CLARiiON 0 0 0 0 0.00 0.00

You can also filter out entities for which all data entries are zero. This option is
especially useful in a cluster environment which contains many failover devices.
You can display only the statistics for the active paths.

To filter all zero entries from the output of the iostat show command:

# vxdmpadm -z iostat show [all|ctlr=ctlr_name |

dmpnodename=dmp_device_name | enclosure=enclr_name [portid=portid] |

pathname=path_name|pwwn=port_WWN][interval=seconds [count=N]]

For example:

# vxdmpadm -z iostat show dmpnodename=c2t16d4s2

OPERATIONS BLOCKS AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c3t16d4s2 10 110 2 25 12.00 27.96

c2t17d4s2 20 126 4 29 9.50 19.41

You can now specify the units in which the statistics data is displayed. By default,
the read/write times are displayed in milliseconds up to 2 decimal places. The
throughput data is displayed in terms of ‘BLOCKS’ and the output is scaled,
meaning that the small values are displayed in small units and the larger values
are displayed in bigger units, keeping significant digits constant.The -u option
accepts the following options:

Displays throughput in kiloblocks.k

Displays throughput in megablocks.m

Displays throughput in gigablocks.g

Displays throughput in exact number of bytes.bytes

Displays average read/write time in microseconds.us

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

196



For example: To display average read/write times in microseconds.

# vxdmpadm -u us iostat show pathname=c2t17d4s2

OPERATIONS BLOCKS AVG TIME(microsec)

PATHNAME READS WRITES READS WRITES READS WRITES

c2t17d4s2 20 126 4 29 9500.00 19413.79

Setting the attributes of the paths to an enclosure
You can use the vxdmpadm setattr command to set the attributes of the paths to
an enclosure or disk array.

You can set the following attributes:

Changes a standby (failover) path to an active path. The following
example specifies an active path for an A/P-C disk array:

# vxdmpadm setattr path c2t10d0s2 pathtype=active

active

Restores the original primary or secondary attributes of a path.
This example restores the attributes for a path to an A/P disk
array:

# vxdmpadm setattr path c3t10d0s2 \
pathtype=nomanual

nomanual

Restores the normal priority of a path. The following example
restores the default priority to a path:

# vxdmpadm setattr path c1t20d0s2 \
pathtype=nopreferred

nopreferred

197Administering Dynamic Multipathing
Administering DMP using vxdmpadm



Specifies a path as preferred, and optionally assigns a priority
number to it. If specified, the priority number must be an integer
that is greater than or equal to one. Higher priority numbers
indicate that a path is able to carry a greater I/O load.

See “Specifying the I/O policy” on page 200.

This example first sets the I/O policy to priority for an
Active/Active disk array, and then specifies a preferred path with
an assigned priority of 2:

# vxdmpadm setattr enclosure enc0 \
iopolicy=priority

# vxdmpadm setattr path c1t20d0s2 \
pathtype=preferred priority=2

preferred

[priority=N]

Defines a path as being the primary path for a JBOD disk array.
The following example specifies a primary path for a JBOD disk
array:

# vxdmpadm setattr path c3t10d0s2 \
pathtype=primary

primary

Defines a path as being the secondary path for a JBOD disk array.
The following example specifies a secondary path for a JBOD disk
array:

# vxdmpadm setattr path c4t10d0s2 \
pathtype=secondary

secondary

Marks a standby (failover) path that it is not used for normal I/O
scheduling. This path is used if there are no active paths available
for I/O. The next example specifies a standby path for an A/P-C
disk array:

# vxdmpadm setattr path c2t10d0s2 \
pathtype=standby

standby

Displaying the redundancy level of a device or enclosure
Use the vxdmpadm getdmpnode command to list the devices with less than the
required redundancy level.

To list the devices on a specified enclosure with fewer than a given number of
active paths, use the following command:

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

198



# vxdmpadm getdmpnode enclosure=encl_name redundancy=value

For example, to list the devices with fewer than 3 active paths, use the following
command:

# vxdmpadm getdmpnode enclosure=EMC_CLARiiON0 redundancy=3

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

=====================================================================

emc_clariion0_162 ENABLED EMC_CLARiiON 6 5 1 emc_clariion0

emc_clariion0_182 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0

emc_clariion0_184 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0

emc_clariion0_186 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0

To display the minimum redundancy level for a particular device, use the vxdmpadm
getattr command, as follows:

# vxdmpadm getattr enclosure|arrayname|arraytype component-name redundancy

For example, to show the minimum redundancy level for the enclosure
HDS9500-ALUA0:

# vxdmpadm getattr enclosure HDS9500-ALUA0 redundancy

ENCLR_NAME DEFAULT CURRENT

=============================================

HDS9500-ALUA0 0 4

Specifying the minimum number of active paths
You can set the minimum redundancy level for a device or an enclosure. The
minimum redundancy level is the minimum number of paths that should be active
for the device or the enclosure. If the number of paths falls below the minimum
redundancy level for the enclosure, a message is sent to the system console and
also logged to the DMP log file. Also, notification is sent to vxnotify clients.

The value set for minimum redundancy level is stored in the dmppolicy.info file,
and is persistent. If no minimum redundancy level is set, the default value is 0.

You can use the vxdmpadm setattr command to set the minimum redundancy
level.

199Administering Dynamic Multipathing
Administering DMP using vxdmpadm



To specify the minimum number of active paths

◆ Use the vxdmpadm setattr command with the redundancy attribute as
follows:

# vxdmpadm setattr enclosure|arrayname|arraytype component-name

redundancy=value

where value is the number of active paths.

For example, to set the minimum redundancy level for the enclosure
HDS9500-ALUA0:

# vxdmpadm setattr enclosure HDS9500-ALUA0 redundancy=2

Displaying the I/O policy
To display the current and default settings of the I/O policy for an enclosure, array
or array type, use the vxdmpadm getattr command.

The following example displays the default and current setting of iopolicy for
JBOD disks:

# vxdmpadm getattr enclosure Disk iopolicy

ENCLR_NAME DEFAULT CURRENT

---------------------------------------

Disk MinimumQ Balanced

The next example displays the setting of partitionsize for the enclosure enc0,
on which the balanced I/O policy with a partition size of 2MB has been set:

# vxdmpadm getattr enclosure enc0 partitionsize

ENCLR_NAME DEFAULT CURRENT

---------------------------------------

enc0 512 4096

Specifying the I/O policy
You can use the vxdmpadm setattr command to change the I/O policy for
distributing I/O load across multiple paths to a disk array or enclosure. You can
set policies for an enclosure (for example, HDS01), for all enclosures of a particular
type (such as HDS), or for all enclosures of a particular array type (such as A/A for
Active/Active, or A/P for Active/Passive).

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

200



Warning: Starting with release 4.1 of VxVM, I/O policies are recorded in the file
/etc/vx/dmppolicy.info, and are persistent across reboots of the system.

Do not edit this file yourself.

The following policies may be set:

This policy attempts to maximize overall I/O throughput from/to the
disks by dynamically scheduling I/O on the paths. It is suggested for
use where I/O loads can vary over time. For example, I/O from/to a
database may exhibit both long transfers (table scans) and short
transfers (random look ups). The policy is also useful for a SAN
environment where different paths may have different number of
hops. No further configuration is possible as this policy is
automatically managed by DMP.

In this example, the adaptive I/O policy is set for the enclosure enc1:

# vxdmpadm setattr enclosure enc1 \
iopolicy=adaptive

adaptive

201Administering Dynamic Multipathing
Administering DMP using vxdmpadm



This policy is designed to optimize the use of caching in disk drives
and RAID controllers. The size of the cache typically ranges from
120KB to 500KB or more, depending on the characteristics of the
particular hardware. During normal operation, the disks (or LUNs)
are logically divided into a number of regions (or partitions), and I/O
from/to a given region is sent on only one of the active paths. Should
that path fail, the workload is automatically redistributed across the
remaining paths.

You can use the size argument to the partitionsize attribute to specify
the partition size. The partition size in blocks is adjustable in powers
of 2 from 2 up to 231. A value that is not a power of 2 is silently
rounded down to the nearest acceptable value.

Specifying a partition size of 0 is equivalent to specifying the default
partition size.

The default value for the partition size is 512 blocks (256k). Specifying
a partition size of 0 is equivalent to the default partition size of 512
blocks (256k).

The default value can be changed by adjusting the value of the
dmp_pathswitch_blks_shift tunable parameter.

See “DMP tunable parameters ” on page 566.

Note: The benefit of this policy is lost if the value is set larger than
the cache size.

For example, the suggested partition size for an Hitachi HDS 9960
A/A array is from 32,768 to 131,072 blocks (16MB to 64MB) for an I/O
activity pattern that consists mostly of sequential reads or writes.

The next example sets the balanced I/O policy with a partition size of
4096 blocks (2MB) on the enclosure enc0:

# vxdmpadm setattr enclosure enc0 \
iopolicy=balanced partitionsize=4096

balanced

[partitionsize=size]

This policy sends I/O on paths that have the minimum number of
outstanding I/O requests in the queue for a LUN. No further
configuration is possible as DMP automatically determines the path
with the shortest queue.

The following example sets the I/O policy to minimumq for a JBOD:

# vxdmpadm setattr enclosure Disk \
iopolicy=minimumq

This is the default I/O policy for all arrays.

minimumq

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

202



This policy is useful when the paths in a SAN have unequal
performance, and you want to enforce load balancing manually. You
can assign priorities to each path based on your knowledge of the
configuration and performance characteristics of the available paths,
and of other aspects of your system.

See “Setting the attributes of the paths to an enclosure” on page 197.

In this example, the I/O policy is set topriority for all SENA arrays:

# vxdmpadm setattr arrayname SENA \
iopolicy=priority

priority

This policy shares I/O equally between the paths in a round-robin
sequence. For example, if there are three paths, the first I/O request
would use one path, the second would use a different path, the third
would be sent down the remaining path, the fourth would go down
the first path, and so on. No further configuration is possible as this
policy is automatically managed by DMP.

The next example sets the I/O policy to round-robin for all
Active/Active arrays:

# vxdmpadm setattr arraytype A/A \
iopolicy=round-robin

round-robin

This policy routes I/O down the single active path. This policy can be
configured for A/P arrays with one active path per controller, where
the other paths are used in case of failover. If configured for A/A
arrays, there is no load balancing across the paths, and the alternate
paths are only used to provide high availability (HA). If the current
active path fails, I/O is switched to an alternate active path. No further
configuration is possible as the single active path is selected by DMP.

The following example sets the I/O policy tosingleactive for JBOD
disks:

# vxdmpadm setattr arrayname Disk \
iopolicy=singleactive

singleactive

Scheduling I/O on the paths of an Asymmetric Active/Active
array
You can specify the use_all_paths attribute in conjunction with the adaptive,
balanced, minimumq, priority and round-robin I/O policies to specify whether
I/O requests are to be scheduled on the secondary paths in addition to the primary
paths of an Asymmetric Active/Active (A/A-A) array. Depending on the

203Administering Dynamic Multipathing
Administering DMP using vxdmpadm



characteristics of the array, the consequent improved load balancing can increase
the total I/O throughput. However, this feature should only be enabled if
recommended by the array vendor. It has no effect for array types other than
A/A-A.

For example, the following command sets the balanced I/O policy with a partition
size of 4096 blocks (2MB) on the enclosure enc0, and allows scheduling of I/O
requests on the secondary paths:

# vxdmpadm setattr enclosure enc0 iopolicy=balanced \

partitionsize=4096 use_all_paths=yes

The default setting for this attribute is use_all_paths=no.

You can display the current setting foruse_all_paths for an enclosure, arrayname
or arraytype. To do this, specify the use_all_paths option to the vxdmpadm

gettattr command.

# vxdmpadm getattr enclosure HDS9500-ALUA0 use_all_paths

ENCLR_NAME DEFAULT CURRENT

===========================================

HDS9500-ALUA0 no yes

The use_all_paths attribute only applies to A/A-A arrays. For other arrays, the
above command displays the message:

Attribute is not applicable for this array.

Example of applying load balancing in a SAN
This example describes how to configure load balancing in a SAN environment
where there are multiple primary paths to an Active/Passive device through
several SAN switches. As can be seen in this sample output from the vxdisk list

command, the device c3t2d15s2 has eight primary paths:

# vxdisk list c3t2d15s2

Device: c3t2d15s2

.

.

.

numpaths: 8

c2t0d15s2 state=enabled type=primary

c2t1d15s2 state=enabled type=primary

c3t1d15s2 state=enabled type=primary

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

204



c3t2d15s2 state=enabled type=primary

c4t2d15s2 state=enabled type=primary

c4t3d15s2 state=enabled type=primary

c5t3d15s2 state=enabled type=primary

c5t4d15s2 state=enabled type=primary

In addition, the device is in the enclosure ENC0, belongs to the disk group mydg,
and contains a simple concatenated volume myvol1.

The first step is to enable the gathering of DMP statistics:

# vxdmpadm iostat start

Next the dd command is used to apply an input workload from the volume:

# dd if=/dev/vx/rdsk/mydg/myvol1 of=/dev/null &

By running the vxdmpadm iostat command to display the DMP statistics for the
device, it can be seen that all I/O is being directed to one path, c5t4d15s2:

# vxdmpadm iostat show dmpnodename=c3t2d15s2 interval=5 count=2

.

.

.

cpu usage = 11294us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c2t0d15s2 0 0 0 0 0.00 0.00

c2t1d15s2 0 0 0 0 0.00 0.00

c3t1d15s2 0 0 0 0 0.00 0.00

c3t2d15s2 0 0 0 0 0.00 0.00

c4t2d15s2 0 0 0 0 0.00 0.00

c4t3d15s2 0 0 0 0 0.00 0.00

c5t3d15s2 0 0 0 0 0.00 0.00

c5t4d15s2 10986 0 5493 0 0.41 0.00

The vxdmpadm command is used to display the I/O policy for the enclosure that
contains the device:

# vxdmpadm getattr enclosure ENC0 iopolicy

ENCLR_NAME DEFAULT CURRENT

============================================

ENC0 Round-Robin Single-Active

205Administering Dynamic Multipathing
Administering DMP using vxdmpadm



This shows that the policy for the enclosure is set to singleactive, which explains
why all the I/O is taking place on one path.

To balance the I/O load across the multiple primary paths, the policy is set to
round-robin as shown here:

# vxdmpadm setattr enclosure ENC0 iopolicy=round-robin

# vxdmpadm getattr enclosure ENC0 iopolicy

ENCLR_NAME DEFAULT CURRENT

============================================

ENC0 Round-Robin Round-Robin

The DMP statistics are now reset:

# vxdmpadm iostat reset

With the workload still running, the effect of changing the I/O policy to balance
the load across the primary paths can now be seen.

# vxdmpadm iostat show dmpnodename=c3t2d15s2 interval=5 count=2

.

.

.

cpu usage = 14403us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c2t0d15s2 2041 0 1021 0 0.39 0.00

c2t1d15s2 1894 0 947 0 0.39 0.00

c3t1d15s2 2008 0 1004 0 0.39 0.00

c3t2d15s2 2054 0 1027 0 0.40 0.00

c4t2d15s2 2171 0 1086 0 0.39 0.00

c4t3d15s2 2095 0 1048 0 0.39 0.00

c5t3d15s2 2073 0 1036 0 0.39 0.00

c5t4d15s2 2042 0 1021 0 0.39 0.00

The enclosure can be returned to the single active I/O policy by entering the
following command:

# vxdmpadm setattr enclosure ENC0 iopolicy=singleactive

Disabling I/O for paths, controllers or array ports
Disabling I/O through a path, HBA controller or array port prevents DMP from
issuing I/O requests through the specified path, or the paths that are connected

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

206



to the specified controller or array port. The command blocks until all pending
I/O requests issued through the paths are completed.

Note: From release 5.0 of VxVM, this operation is supported for controllers that
are used to access disk arrays on which cluster-shareable disk groups are
configured.

Before detaching a system board, stop all I/O to the HBA controllers that are
located on the board. To do this, execute the vxdmpadm disable command, and
then run the Dynamic Reconfiguration (DR) facility provided by Sun.

To disable I/O for a path, use the following command:

# vxdmpadm [-c|-f] disable path=path_name

To disable I/O for multiple paths, use the following command:

# vxdmpadm [-c|-f] disable path=path_name1,path_name2,path_nameN

To disable I/O for the paths connected to an HBA controller, use the following
command:

# vxdmpadm [-c|-f] disable ctlr=ctlr_name

To disable I/O for the paths connected to an array port, use one of the following
commands:

# vxdmpadm [-c|-f] disable enclosure=enclr_name portid=array_port_ID

# vxdmpadm [-c|-f] disable pwwn=array_port_WWN

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following are examples of using the command to disable I/O on an array port:

# vxdmpadm disable enclosure=HDS9500V0 portid=1A

# vxdmpadm disable pwwn=20:00:00:E0:8B:06:5F:19

You can use the -c option to check if there is only a single active path to the disk.
If so, the disable command fails with an error message unless you use the -f

option to forcibly disable the path.

The disable operation fails if it is issued to a controller that is connected to the
root disk through a single path, and there are no root disk mirrors configured on
alternate paths. If such mirrors exist, the command succeeds.

207Administering Dynamic Multipathing
Administering DMP using vxdmpadm



Enabling I/O for paths, controllers or array ports
Enabling a controller allows a previously disabled path, HBA controller or array
port to accept I/O again. This operation succeeds only if the path, controller or
array port is accessible to the host, and I/O can be performed on it. When
connecting Active/Passive disk arrays, the enable operation results in failback
of I/O to the primary path. The enable operation can also be used to allow I/O to
the controllers on a system board that was previously detached.

Note: From release 5.0 of VxVM, this operation is supported for controllers that
are used to access disk arrays on which cluster-shareable disk groups are
configured.

To enable I/O for a path, use the following command:

# vxdmpadm enable path=path_name

To enable I/O for multiple paths, use the following command:

# vxdmpadm enable path=path_name1,path_name2,path_nameN

To enable I/O for the paths connected to an HBA controller, use the following
command:

# vxdmpadm enable ctlr=ctlr_name

To enable I/O for the paths connected to an array port, use one of the following
commands:

# vxdmpadm enable enclosure=enclr_name portid=array_port_ID

# vxdmpadm [-f] enable pwwn=array_port_WWN

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following are examples of using the command to enable I/O on an array port:

# vxdmpadm enable enclosure=HDS9500V0 portid=1A

# vxdmpadm enable pwwn=20:00:00:E0:8B:06:5F:19

Upgrading disk controller firmware
You can upgrade disk controller firmware without performing a system reboot
or unloading the VxVM drivers.

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

208



First obtain the appropriate firmware upgrades from your disk drive vendor. You
can usually download the appropriate files and documentation from the vendor’s
support website.

To upgrade the disk controller firmware

1 Disable the plex that is associated with the disk device:

# /opt/VRTS/bin/vxplex -g diskgroup det plex

(The example is a volume mirrored across 2 controllers on one HBA.)

2 Stop I/O to all disks through one controller of the HBA:

# /opt/VRTS/bin/vxdmpadm disable ctlr=first_cntlr

For the other controller on the HBA, enter:

# /opt/VRTS/bin/vxdmpadm -f disable ctlr=second_cntlr

3 Upgrade the firmware on those disks for which the controllers have been
disabled using the procedures that you obtained from the disk drive vendor.

4 After doing the upgrade, re-enable all the controllers:

# /opt/VRTS/bin/vxdmpadm enable ctlr=first_cntlr

# /opt/VRTS/bin/vxdmpadm enable ctlr=second_cntlr

5 Re-enable the plex associated with the device:

# /opt/VRTS/bin/vxplex -g diskgroup att volume plex

This command takes some time depending upon the size of the mirror set.

Renaming an enclosure
The vxdmpadm setattr command can be used to assign a meaningful name to an
existing enclosure, for example:

# vxdmpadm setattr enclosure enc0 name=GRP1

This example changes the name of an enclosure from enc0 to GRP1.

Note: The maximum length of the enclosure name prefix is 25 characters.

The following command shows the changed name:

209Administering Dynamic Multipathing
Administering DMP using vxdmpadm



# vxdmpadm listenclosure all

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS

============================================================

other0 OTHER OTHER_DISKS CONNECTED

jbod0 X1 X1_DISKS CONNECTED

GRP1 ACME 60020f20000001a90000 CONNECTED

Configuring the response to I/O failures
You can configure how DMP responds to failed I/O requests on the paths to a
specified enclosure, disk array name, or type of array. By default, DMP is configured
to retry a failed I/O request up to 5 times for a single path.

To display the current settings for handling I/O request failures that are applied
to the paths to an enclosure, array name or array type, use the vxdmpadm getattr

command.

See “Displaying recovery option values” on page 213.

To set a limit for the number of times that DMP attempts to retry sending an I/O
request on a path, use the following command:

# vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=fixedretry retrycount=n

The value of the argument to retrycount specifies the number of retries to be
attempted before DMP reschedules the I/O request on another available path, or
fails the request altogether.

As an alternative to specifying a fixed number of retries, the following version of
the command specifies how long DMP should allow an I/O request to be retried
on a path:

# vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=timebound iotimeout=seconds

The value of the argument to iotimeout specifies the time in seconds that DMP
waits for an outstanding I/O request to succeed before it reschedules the request
on another available path, or fails the I/O request altogether. The effective number
of retries is the value of iotimeout divided by the sum of the times taken for each
retry attempt. DMP abandons retrying to send the I/O request before the specified
time limit has expired if it predicts that the next retry will take the total elapsed
time over this limit.

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

210



The default value of iotimeout is 10 seconds. For some applications, such as
Oracle, it may be desirable to set iotimeout to a larger value, such as 60 seconds.

Note: The fixedretry and timebound settings are mutually exclusive.

The following example configures time-bound recovery for the enclosure enc0,
and sets the value of iotimeout to 60 seconds:

# vxdmpadm setattr enclosure enc0 recoveryoption=timebound \

iotimeout=60

The next example sets a fixed-retry limit of 10 for the paths to all Active/Active
arrays:

# vxdmpadm setattr arraytype A/A recoveryoption=fixedretry \

retrycount=10

Specifying recoveryoption=default resets DMP to the default settings
corresponding to recoveryoption=fixedretry retrycount=5, for example:

# vxdmpadm setattr arraytype A/A recoveryoption=default

The above command also has the effect of configuring I/O throttling with the
default settings.

See “Configuring the I/O throttling mechanism” on page 211.

Note:The response to I/O failure settings is persistent across reboots of the system.

Configuring the I/O throttling mechanism
By default, DMP is configured with I/O throttling turned off for all paths. To
display the current settings for I/O throttling that are applied to the paths to an
enclosure, array name or array type, use the vxdmpadm getattr command.

See “Displaying recovery option values” on page 213.

If enabled, I/O throttling imposes a small overhead on CPU and memory usage
because of the activity of the statistics-gathering daemon. If I/O throttling is
disabled, the daemon no longer collects statistics, and remains inactive until I/O
throttling is re-enabled.

To turn off I/O throttling, use the following form of the vxdmpadm setattr

command:

211Administering Dynamic Multipathing
Administering DMP using vxdmpadm



# vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=nothrottle

The following example shows how to disable I/O throttling for the paths to the
enclosure enc0:

# vxdmpadm setattr enclosure enc0 recoveryoption=nothrottle

The vxdmpadm setattr command can be used to enable I/O throttling on the paths
to a specified enclosure, disk array name, or type of array:

# vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type}\

recoveryoption=throttle {iotimeout=seconds|queuedepth=n}

If the iotimeout attribute is specified, its argument specifies the time in seconds
that DMP waits for an outstanding I/O request to succeed before invoking I/O
throttling on the path. The default value of iotimeout is 10 seconds. Setting
iotimeout to a larger value potentially causes more I/O requests to become queued
up in the SCSI driver before I/O throttling is invoked.

If the queuedepth attribute is specified, its argument specifies the number of I/O
requests that can be outstanding on a path before DMP invokes I/O throttling.
The default value of queuedepth is 20. Setting queuedepth to a larger value allows
more I/O requests to become queued up in the SCSI driver before I/O throttling
is invoked.

Note: The iotimeout and queuedepth attributes are mutually exclusive.

The following example sets the value of iotimeout to 60 seconds for the enclosure
enc0:

# vxdmpadm setattr enclosure enc0 recoveryoption=throttle \

iotimeout=60

The next example sets the value of queuedepth to 30 for the paths to all
Active/Active arrays:

# vxdmpadm setattr arraytype A/A recoveryoption=throttle \

queuedepth=30

Specify recoveryoption=default to reset I/O throttling to the default settings,
as follows:

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

212



# vxdmpadm setattr arraytype A/A recoveryoption=default

The above command configures the default behavior, corresponding to
recoveryoption=nothrottle. The above command also configures the default
behavior for the response to I/O failures.

See “Configuring the response to I/O failures” on page 210.

Note: The I/O throttling settings are persistent across reboots of the system.

Displaying recovery option values
To display the current settings for handling I/O request failures that are applied
to the paths to an enclosure, array name or array type, use the following command:

# vxdmpadm getattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption

The following example shows the vxdmpadm getattr command being used to
display the recoveryoption option values that are set on an enclosure.

# vxdmpadm getattr enclosure HDS9500-ALUA0 recoveryoption

ENCLR-NAME RECOVERY-OPTION DEFAULT[VAL] CURRENT[VAL]

===============================================================

HDS9500-ALUA0 Throttle Nothrottle[0] Queuedepth[60]

HDS9500-ALUA0 Error-Retry Fixed-Retry[5] Timebound[20]

This shows the default and current policy options and their values.

Table 4-1 summarizes the possible recovery option settings for retrying I/O after
an error.

Table 4-1 Recovery options for retrying I/O after an error

DescriptionPossible settingsRecovery option

DMP retries a failed I/O
request for the specified
number of times if I/O fails.

Fixed-Retry (retrycount)recoveryoption=fixedretry

DMP retries a failed I/O
request for the specified time
in seconds if I/O fails.

Timebound (iotimeout)recoveryoption=timebound

Table 4-2 summarizes the possible recovery option settings for throttling I/O.

213Administering Dynamic Multipathing
Administering DMP using vxdmpadm



Table 4-2 Recovery options for I/O throttling

DescriptionPossible settingsRecovery option

I/O throttling is not used.Nonerecoveryoption=nothrottle

DMP throttles the path if the
specified number of queued
I/O requests is exceeded.

Queuedepth (queuedepth)recoveryoption=throttle

DMP throttles the path if an
I/O request does not return
within the specified time in
seconds.

Timebound (iotimeout)recoveryoption=throttle

Configuring DMP path restoration policies
DMP maintains a kernel thread that re-examines the condition of paths at a
specified interval. The type of analysis that is performed on the paths depends
on the checking policy that is configured.

Note: The DMP path restoration thread does not change the disabled state of the
path through a controller that you have disabled using vxdmpadm disable.

When configuring DMP path restoration policies, you must stop the path
restoration thread, and then restart it with new attributes.

See “Stopping the DMP path restoration thread” on page 216.

Use the vxdmpadm start restore command to configure one of the following
restore policies. The policy will remain in effect until the restore thread is stopped
or the values are changed using vxdmpadm settune command.

■ check_all

The path restoration thread analyzes all paths in the system and revives the
paths that are back online, as well as disabling the paths that are inaccessible.
The command to configure this policy is:

# vxdmpadm start restore [interval=seconds] policy=check_all

■ check_alternate

The path restoration thread checks that at least one alternate path is healthy.
It generates a notification if this condition is not met. This policy avoids inquiry
commands on all healthy paths, and is less costly than check_all in cases
where a large number of paths are available. This policy is the same as

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

214



check_all if there are only two paths per DMP node. The command to configure
this policy is:

# vxdmpadm start restore [interval=seconds] \

policy=check_alternate

■ check_disabled

This is the default path restoration policy. The path restoration thread checks
the condition of paths that were previously disabled due to hardware failures,
and revives them if they are back online. The command to configure this policy
is:

# vxdmpadm start restore [interval=seconds] \

policy=check_disabled

■ check_periodic

The path restoration thread performs check_all once in a given number of
cycles, and check_disabled in the remainder of the cycles. This policy may
lead to periodic slowing down (due to check_all) if there is a large number of
paths available. The command to configure this policy is:

# vxdmpadm start restore interval=seconds \

policy=check_periodic [period=number]

The interval attribute must be specified for this policy. The default number
of cycles between running the check_all policy is 10.

The interval attribute specifies how often the path restoration thread examines
the paths. For example, after stopping the path restoration thread, the polling
interval can be set to 400 seconds using the following command:

# vxdmpadm start restore interval=400

Starting with the 5.0MP3 release, you can also use thevxdmpadm settune command
to change the restore policy, restore interval, and restore period. This method
stores the values for these arguments as DMP tunables. The settings are
immediately applied and are persistent across reboots. Use the vxdmpadm gettune

to view the current settings.

See “DMP tunable parameters ” on page 566.

If the vxdmpadm start restore command is given without specifying a policy or
interval, the path restoration thread is started with the persistent policy and
interval settings previously set by the administrator with the vxdmpadm settune

command. If the administrator has not set a policy or interval, the system defaults

215Administering Dynamic Multipathing
Administering DMP using vxdmpadm



are used. The system default restore policy is check_disabled. The system default
interval is 300 seconds.

Warning: Decreasing the interval below the system default can adversely affect
system performance.

Stopping the DMP path restoration thread
Use the following command to stop the DMP path restoration thread:

# vxdmpadm stop restore

Warning: Automatic path failback stops if the path restoration thread is stopped.

Displaying the status of the DMP path restoration thread
Use the following command to display the status of the automatic path restoration
kernel thread, its polling interval, and the policy that it uses to check the condition
of paths:

# vxdmpadm stat restored

This produces output such as the following:

The number of daemons running : 1

The interval of daemon: 300

The policy of daemon: check_disabled

Displaying information about the DMP error-handling thread
To display information about the kernel thread that handles DMP errors, use the
following command:

# vxdmpadm stat errord

One daemon should be shown as running.

Configuring array policy modules
An array policy module (APM) is a dynamically loadable kernel module (plug-in
for DMP) for use in conjunction with an array. An APM defines array-specific
procedures and commands to:

■ Select an I/O path when multiple paths to a disk within the array are available.

Administering Dynamic Multipathing
Administering DMP using vxdmpadm

216



■ Select the path failover mechanism.

■ Select the alternate path in the case of a path failure.

■ Put a path change into effect.

■ Respond to SCSI reservation or release requests.

DMP supplies default procedures for these functions when an array is registered.
An APM may modify some or all of the existing procedures that are provided by
DMP or by another version of the APM.

You can use the following command to display all the APMs that are configured
for a system:

# vxdmpadm listapm all

The output from this command includes the file name of each module, the
supported array type, the APM name, the APM version, and whether the module
is currently loaded and in use. To see detailed information for an individual module,
specify the module name as the argument to the command:

# vxdmpadm listapm module_name

To add and configure an APM, use the following command:

# vxdmpadm -a cfgapm module_name [attr1=value1 \

[attr2=value2 ...]]

The optional configuration attributes and their values are specific to the APM for
an array. Consult the documentation that is provided by the array vendor for
details.

Note: By default, DMP uses the most recent APM that is available. Specify the -u

option instead of the -a option if you want to force DMP to use an earlier version
of the APM. The current version of an APM is replaced only if it is not in use.

Specifying the -r option allows you to remove an APM that is not currently loaded:

# vxdmpadm -r cfgapm module_name

See the vxdmpadm(1M) manual page.

217Administering Dynamic Multipathing
Administering DMP using vxdmpadm



Administering Dynamic Multipathing
Administering DMP using vxdmpadm

218



Creating and administering
disk groups

This chapter includes the following topics:

■ About disk groups

■ Displaying disk group information

■ Creating a disk group

■ Adding a disk to a disk group

■ Removing a disk from a disk group

■ Moving disks between disk groups

■ Deporting a disk group

■ Importing a disk group

■ Handling of minor number conflicts

■ Moving disk groups between systems

■ Handling cloned disks with duplicated identifiers

■ Renaming a disk group

■ Handling conflicting configuration copies

■ Reorganizing the contents of disk groups

■ Disabling a disk group

■ Destroying a disk group

5Chapter



■ Upgrading a disk group

■ Managing the configuration daemon in VxVM

■ Backing up and restoring disk group configuration data

■ Using vxnotify to monitor configuration changes

■ Working with ISP disk groups

About disk groups
Disk groups are named collections of disks that share a common configuration.
Volumes are created within a disk group and are restricted to using disks within
that disk group.

Data related to a particular set of applications or a particular group of users may
need to be made accessible on another system. These situations include the
following:

■ A system has failed and its data needs to be moved to other systems.

■ The work load must be balanced across a number of systems.

You must place disks in one or more disk groups before VxVM can use the disks
for volumes. It is important that you locate data related to particular applications
or users on an identifiable set of disks. When you need to move these disks, this
lets you move only the application or user data that should be moved. The disk
group also provides a single object to move, rather than specifying all objects
within the disk group individually.

As system administrator, you can create additional disk groups to arrange your
system’s disks for different purposes. Many systems only use one disk group,
unless they have a large number of disks. You can initialize, reserve, and add disks
to disk groups at any time. You do not have to add disks to disk groups until the
disks are needed to create VxVM objects.

Veritas Volume Manager's Cross-platform Data Sharing (CDS) feature lets you
move VxVM disks and objects between machines that are running under different
operating systems. Disk groups may be made compatible with CDS.

See the Veritas Storage Foundation Cross-PlatformData Sharing Administrator’s
Guide.

When you add a disk to a disk group, you name that disk (for example, mydg02).
This name identifies a disk for operations such as creating or mirroring a volume.
The name also relates directly to the underlying physical disk. If a physical disk
is moved to a different target address or to a different controller, the name mydg02

Creating and administering disk groups
About disk groups

220



continues to refer to it. You can replace disks by first associating a different
physical disk with the name of the disk to be replaced and then recovering any
volume data that was stored on the original disk (from mirrors or backup copies).

Having disk groups that contain many disks and VxVM objects causes the private
region to fill. If you have large disk groups that are expected to contain more than
several hundred disks and VxVM objects, you should set up disks with larger
private areas. A major portion of a private region provides space for a disk group
configuration database that contains records for each VxVM object in that disk
group. Because each configuration record is approximately 256 bytes, you can
use the configuration database copy size to estimate the number of records that
you can create in a disk group. You can obtain the copy size in blocks from the
output of the vxdg list diskgroup command. It is the value of the permlen

parameter on the line starting with the string “config:”. This value is the smallest
of the len values for all copies of the configuration database in the disk group.
The value of the free parameter indicates the amount of remaining free space in
the configuration database.

See “Displaying disk group information” on page 224.

One way to overcome the problem of running out of free space is to split the
affected disk group into two separate disk groups.

See “Reorganizing the contents of disk groups” on page 256.

See “Backing up and restoring disk group configuration data” on page 276.

Before Veritas Volume Manager (VxVM) 4.0, a system installed with VxVM was
configured with a default disk group, rootdg. This group had to contain at least
one disk. By default, operations were directed to the rootdg disk group. From
release 4.0 onward, VxVM can function without any disk group having been
configured. Only when the first disk is placed under VxVM control must a disk
group be configured. Now, you do not have to name any disk group rootdg. If you
name a disk group rootdg, it has no special properties because of this name.

See “Specification of disk groups to commands” on page 222.

Note: Most VxVM commands require superuser or equivalent privileges.

Additionally, before VxVM 4.0, some commands such as vxdisk were able to
deduce the disk group if the name of an object was uniquely defined in one disk
group among all the imported disk groups. Resolution of a disk group in this way
is no longer supported for any command.

221Creating and administering disk groups
About disk groups



Specification of disk groups to commands
Many VxVM commands let you specify a disk group using the -g option. For
example, the following command creates a volume in the disk group, mktdg:

# vxassist -g mktdg make mktvol 5g

The block special device that corresponds to this volume is
/dev/vx/dsk/mktdg/mktvol.

System-wide reserved disk groups
The following disk group names are reserved, and cannot be used to name any
disk groups that you create:

Specifies the boot disk group. This is an alias for the disk group that
contains the volumes that are used to boot the system. VxVM sets
bootdg to the appropriate disk group if it takes control of the root
disk. Otherwise, bootdg is set to nodg (no disk group).

bootdg

Specifies the default disk group. This is an alias for the disk group
name that should be assumed if the -g option is not specified to a
command, or if the VXVM_DEFAULTDG environment variable is
undefined. By default, defaultdg is set to nodg (no disk group).

defaultdg

Specifies to an operation that no disk group has been defined. For
example, if the root disk is not under VxVM control, bootdg is set to
nodg.

nodg

Warning: Do not try to change the assigned value of bootdg. If you change the
value, it may render your system unbootable.

If you have upgraded your system, you may find it convenient to continue to
configure a disk group named rootdg as the default disk group (defaultdg).
defaultdg and bootdg do not have to refer to the same disk group. Also, neither
the default disk group nor the boot disk group have to be named rootdg.

Rules for determining the default disk group
You should use the -g option to specify a disk group to VxVM commands that
accept this option. If you do not specify the disk group, VxVM applies rules in the
following order until it determines a disk group name:

Creating and administering disk groups
About disk groups

222



■ Use the default disk group name that is specified by the environment variable
VXVM_DEFAULTDG. This variable can also be set to one of the reserved
system-wide disk group names: bootdg, defaultdg, or nodg. If the variable is
undefined, the following rule is applied.

■ Use the disk group that has been assigned to the system-wide default disk
group alias, defaultdg. If this alias is undefined, the following rule is applied.

See “Displaying and specifying the system-wide default disk group” on page 223.

■ If the operation can be performed without requiring a disk group name (for
example, an edit operation on disk access records), do so.

If none of these rules succeeds, the requested operation fails.

Warning: In releases of VxVM prior to 4.0, a subset of commands tried to determine
the disk group by searching for the object name that was being operated upon by
a command. This functionality is no longer supported. Scripts that rely on
determining the disk group from an object name may fail.

Displaying the system-wide boot disk group
To display the currently defined system-wide boot disk group, use the following
command:

# vxdg bootdg

See the vxdg(1M) manual page.

Displaying and specifying the system-wide default disk group
To display the currently defined system-wide default disk group, use the following
command:

# vxdg defaultdg

If a default disk group has not been defined, nodg is displayed. You can also use
the following command to display the default disk group:

# vxprint -Gng defaultdg 2>/dev/null

In this case, if there is no default disk group, nothing is displayed.

Use the following command to specify the name of the disk group that is aliased
by defaultdg:

# vxdctl defaultdg diskgroup

223Creating and administering disk groups
About disk groups



If bootdg is specified as the argument to this command, the default disk group is
set to be the same as the currently defined system-wide boot disk group.

If nodg is specified as the argument to the vxdctl defaultdg command, the
default disk group is undefined.

The specified disk group is not required to exist on the system.

See the vxdctl(1M) manual page.

See the vxdg(1M) manual page.

Displaying disk group information
To display information on existing disk groups, enter the following command:

# vxdg list

NAME STATE ID

rootdg enabled 730344554.1025.tweety

newdg enabled 731118794.1213.tweety

To display more detailed information on a specific disk group, use the following
command:

# vxdg list diskgroup

When you apply this command to a disk group named mydg, the output is similar
to the following:

# vxdg list mydg

Group: mydg

dgid: 962910960.1025.bass

import-id: 0.1

flags:

version: 140

local-activation: read-write

alignment: 512 (bytes)

ssb: on

detach-policy: local

copies: nconfig=default nlog=default

config: seqno=0.1183 permlen=3448 free=3428 templen=12 loglen=522

config disk c0t10d0 copy 1 len=3448 state=clean online

config disk c0t11d0 copy 1 len=3448 state=clean online

log disk c0t10d0 copy 1 len=522

log disk c0t11d0 copy 1 len=522

Creating and administering disk groups
Displaying disk group information

224



To verify the disk group ID and name that is associated with a specific disk (for
example, to import the disk group), use the following command:

# vxdisk -s list devicename

This command provides output that includes the following information for the
specified disk. For example, output for disk c0t12d0 as follows:

Disk: c0t12d0

type: simple

flags: online ready private autoconfig autoimport imported

diskid: 963504891.1070.bass

dgname: newdg

dgid: 963504895.1075.bass

hostid: bass

info: privoffset=128

Displaying free space in a disk group
Before you add volumes and file systems to your system, make sure that you have
enough free disk space to meet your needs.

To display free space in the system, use the following command:

# vxdg free

The following is example output:

GROUP DISK DEVICE TAG OFFSET LENGTH FLAGS

mydg mydg01 c0t10d0 c0t10d0 0 4444228 -

mydg mydg02 c0t11d0 c0t11d0 0 4443310 -

newdg newdg01 c0t12d0 c0t12d0 0 4443310 -

newdg newdg02 c0t13d0 c0t13d0 0 4443310 -

oradg oradg01 c0t14d0 c0t14d0 0 4443310 -

To display free space for a disk group, use the following command:

# vxdg -g diskgroup free

where -g diskgroup optionally specifies a disk group.

For example, to display the free space in the disk group, mydg, use the following
command:

# vxdg -g mydg free

The following example output shows the amount of free space in sectors:

225Creating and administering disk groups
Displaying disk group information



DISK DEVICE TAG OFFSET LENGTH FLAGS

mydg01 c0t10d0 c0t10d0 0 4444228 -

mydg02 c0t11d0 c0t11d0 0 4443310 -

Creating a disk group
You must associate a disk group with at least one disk. You can create a new disk
group when you select Add or initialize one or more disks from the main
menu of the vxdiskadm command to add disks to VxVM control. The disks to be
added to a disk group must not belong to an existing disk group.

You can also use the vxdiskadd command to create a new disk group:

# vxdiskadd c1t0d0

where c1t0d0 is the device name of a disk that is not currently assigned to a disk
group. The command dialog is similar to that described for the vxdiskadm

command.

See “Adding a disk to VxVM” on page 115.

You can also create disk groups using following the vxdg init command:

# vxdg init diskgroup [cds=on|off] diskname=devicename

For example, to create a disk group named mktdg on device c1t0d0s2, enter the
following:

# vxdg init mktdg mktdg01=c1t0d0s2

The disk that is specified by the device name, c1t0d0s2, must have been previously
initialized with vxdiskadd or vxdiskadm. The disk must not currently belong to
a disk group.

You can use the cds attribute with the vxdg init command to specify whether a
new disk group is compatible with the Cross-platform Data Sharing (CDS) feature.
In Veritas Volume Manager 4.0 and later releases, newly created disk groups are
compatible with CDS by default (equivalent to specifying cds=on). If you want to
change this behavior, edit the file /etc/default/vxdg and set the attribute-value
pair cds=off in this file before creating a new disk group.

You can also use the following command to set this attribute for a disk group:

# vxdg -g diskgroup set cds=on|off

Creating and administering disk groups
Creating a disk group

226



Adding a disk to a disk group
To add a disk to an existing disk group, select Add or initialize one or more

disks from the main menu of the vxdiskadm command.

You can also use the vxdiskadd command to add a disk to a disk group. Enter the
following:

# vxdiskadd c1t1d0

where c1t1d0 is the device name of a disk that is not currently assigned to a disk
group. The command dialog is similar to that described for the vxdiskadm

command.

# vxdiskadm c1t1d0

See “Adding a disk to VxVM” on page 115.

Removing a disk from a disk group
Before you can remove the last disk from a disk group, you must disable the disk
group.

See “Disabling a disk group” on page 269.

As an alternative to disabling the disk group, you can destroy it.

See “Destroying a disk group” on page 269.

If a disk contains no subdisks, you can remove it from its disk group with the
following command:

# vxdg [-g diskgroup ] rmdisk diskname

For example, to remove mydg02 from the disk group mydg, enter the following:

# vxdg -g mydg rmdisk mydg02

If the disk has subdisks on it when you try to remove it, the following error message
is displayed:

VxVM vxdg ERROR V-5-1-552 Disk diskname is used by one or more

subdisks

Use -k to remove device assignment.

Using the -k option lets you remove the disk even if it has subdisks.

See the vxdg(1M) manual page.

227Creating and administering disk groups
Adding a disk to a disk group



Warning: Use of the -k option to vxdg can result in data loss.

After you remove the disk from its disk group, you can (optionally) remove it from
VxVM control completely. Enter the following:

# vxdiskunsetup devicename

For example, to remove the disk c1t0d0s2 from VxVM control, enter the following:

# vxdiskunsetup c1t0d0s2

You can remove a disk on which some subdisks of volumes are defined. For
example, you can consolidate all the volumes onto one disk. If you use vxdiskadm
to remove a disk, you can choose to move volumes off that disk. To do this, run
vxdiskadm and select Remove a disk from the main menu.

If the disk is used by some volumes, this message is displayed:

VxVM ERROR V-5-2-369 The following volumes currently use part of

disk mydg02:

home usrvol

Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

If you choose y, all volumes are moved off the disk, if possible. Some volumes may
not be movable. The most common reasons why a volume may not be movable
are as follows:

■ There is not enough space on the remaining disks.

■ Plexes or striped subdisks cannot be allocated on different disks from existing
plexes or striped subdisks in the volume.

If vxdiskadm cannot move some volumes, you may need to remove some plexes
from some disks to free more space before proceeding with the disk removal
operation.

Moving disks between disk groups
To move a disk between disk groups, remove the disk from one disk group and
add it to the other. For example, to move the physical disk c0t3d0 (attached with
the disk name salesdg04) from disk group salesdg and add it to disk group mktdg,
use the following commands:

Creating and administering disk groups
Moving disks between disk groups

228



# vxdg -g salesdg rmdisk salesdg04

# vxdg -g mktdg adddisk mktdg02=c0t3d0

Warning: This procedure does not save the configurations nor data on the disks.

You can also move a disk by using the vxdiskadm command. Select Remove a disk

from the main menu, and then select Add or initialize a disk.

The preferred method of moving disks between disk groups preserves VxVM
objects, such as volumes, that are configured on the disks.

See “Moving objects between disk groups” on page 263.

Deporting a disk group
Deporting a disk group disables access to a disk group that is enabled (imported)
by the system. Deport a disk group if you intend to move the disks in a disk group
to another system.

To deport a disk group

1 Stop all activity by applications to volumes that are configured in the disk
group that is to be deported. Unmount file systems and shut down databases
that are configured on the volumes.

If the disk group contains volumes that are in use (for example, by mounted
file systems or databases), deportation fails.

2 To stop the volumes in the disk group, use the following command

# vxvol -g diskgroup stopall

3 From thevxdiskadmmain menu, selectRemove access to (deport) a disk

group .

4 At prompt, enter the name of the disk group to be deported. In the following
example it is newdg):

Enter name of disk group [<group>,list,q,?] (default: list)

newdg

5 At the following prompt, enter y if you intend to remove the disks in this disk
group:

Disable (offline) the indicated disks? [y,n,q,?] (default: n) y

229Creating and administering disk groups
Deporting a disk group



6 At the following prompt, press Return to continue with the operation:

Continue with operation? [y,n,q,?] (default: y)

After the disk group is deported, the vxdiskadm utility displays the following
message:

VxVM INFO V-5-2-269 Removal of disk group newdg was

successful.

7 At the following prompt, indicate whether you want to disable another disk
group (y) or return to the vxdiskadm main menu (n):

Disable another disk group? [y,n,q,?] (default: n)

You can use the following vxdg command to deport a disk group:

# vxdg deport diskgroup

Importing a disk group
Importing a disk group enables access by the system to a disk group. To move a
disk group from one system to another, first disable (deport) the disk group on
the original system, and then move the disk between systems and enable (import)
the disk group.

To import a disk group

1 To ensure that the disks in the deported disk group are online, use the
following command:

# vxdisk -s list

2 From thevxdiskadmmain menu, selectEnable access to (import) a disk

group .

Creating and administering disk groups
Importing a disk group

230



3 At the following prompt, enter the name of the disk group to import (in this
example, newdg):

Select disk group to import [<group>,list,q,?] (default: list)

newdg

When the import finishes, the vxdiskadmutility displays the following success
message:

VxVM INFO V-5-2-374 The import of newdg was successful.

4 At the following prompt, indicate whether you want to import another disk
group (y) or return to the vxdiskadm main menu (n):

Select another disk group? [y,n,q,?] (default: n)

You can also use the following vxdg command to import a disk group:

# vxdg import diskgroup

Handling of minor number conflicts
The volume device minor numbers in a disk group to be imported may conflict
with existing volume devices. In releases of VxVM prior to 5.1, the conflicts
resulted in failures; either the disk group imported failed, or the slave node failed
to join for a shared disk group. When this happened, you had to run the vxdg

reminor command manually to resolve the minor conflicts.

From release 5.1 onward, VxVM can automatically resolve minor number conflicts.
When there exists a minor conflict when a disk group is imported, the disk group
is automatically assigned a new base minor, and the volumes in the disk group
are reminored based on the new base minor. You do not need to run the vxdg

reminor command to resolve the minor conflicts.

To avoid the conflicts between shared and private disk groups, the minor numbers
have been divided into shared and private pools. Minor numbers of shared disk
groups are allocated only from shared pools, and minor numbers of private disk
groups are allocated only from private pools. If you import a private disk group
as a shared disk group or vice versa, the device minor numbers are re-allocated
from the correct pool. The disk group is dynamically reminored.

By default, private minor numbers range from 0-32999, and shared minor numbers
start from 33000. You can change the division if required. For example, you can
set the range for shared minor numbers to start from a lower number, to provide

231Creating and administering disk groups
Handling of minor number conflicts



more minor numbers for shared disk groups and fewer minor numbers for private
disk groups.

Normally the minor numbers in private and shared pools are sufficient, so there
is no need to make changes to the division.

Note: To make the new division take effect, you must run vxdctl enable or
vxconfigd restart after the tunable is changed in the default file. The division
on all the cluster nodes must be exactly the same, to prevent node failures for
node join, volume creation, or disk group import operations.

To change the division between shared and private minor numbers

1 Add the tunable sharedminorstart to the default file /etc/default/vxsf .
For example, to change the shared minor numbers so that the range starts
from 20000, set the following line in the /etc/default/vxsf file.

sharedminorstart=20000

You cannot set the shared minor numbers to start at less than 1000. If
sharedminorstart is set to values between 0 to 999, the division of private
minor numbers and shared disk group minor numbers is set to 1000. The
value of 0 disables dynamic renumbering.

2 Run the following command:

# vxdctl enable

In certain scenarios, you may need to disable the division of between shared minor
numbers and private minor numbers. For example, to prevent the device minor
numbers from being changed when you upgrade to VxVM 5.1. In this case, disable
the dymanic reminoring before you install the new VxVM package.

To disable the division between shared and private minor numbers

1 Set the tunable sharedminorstart to the default file /etc/default/vxsf

to 0 (zero). Set the following line in the /etc/default/vxsf file.

sharedminorstart=0

2 Run the following command:

# vxdctl enable

Creating and administering disk groups
Handling of minor number conflicts

232



Moving disk groups between systems
An important feature of disk groups is that they can be moved between systems.
If all disks in a disk group are moved from one system to another, then the disk
group can be used by the second system. You do not have to re-specify the
configuration.

To move a disk group between systems

1 Confirm that all disks in the diskgroup are visible on the target system. This
may require masking and zoning changes.

2 On the source system, stop all volumes in the disk group, then deport (disable
local access to) the disk group with the following command:

# vxdg deport diskgroup

3 Move all the disks to the target system and perform the steps necessary
(system-dependent) for the target system and VxVM to recognize the new
disks.

This can require a reboot, in which case the vxconfigd daemon is restarted
and recognizes the new disks. If you do not reboot, use the command vxdctl

enable to restart the vxconfigd program so VxVM also recognizes the disks.

233Creating and administering disk groups
Moving disk groups between systems



4 Import (enable local access to) the disk group on the target system with this
command:

# vxdg import diskgroup

Warning: All disks in the disk group must be moved to the other system. If
they are not moved, the import fails.

5 After the disk group is imported, start all volumes in the disk group with this
command:

# vxrecover -g diskgroup -sb

You can also move disks from a system that has crashed. In this case, you
cannot deport the disk group from the source system. When a disk group is
created or imported on a system, that system writes a lock on all disks in the
disk group.

Warning: The purpose of the lock is to ensure that SAN-accessed disks are
not used by both systems at the same time. If two systems try to access the
same disks at the same time, this must be managed using software such as
the clustering functionality of VxVM. Otherwise, data and configuration
information stored on the disk may be corrupted, and may become unusable.

Handling errors when importing disks
When you move disks from a system that has crashed or that failed to detect the
group before the disk was moved, the locks stored on the disks remain and must
be cleared. The system returns the following error message:

VxVM vxdg ERROR V-5-1-587 disk group groupname: import failed:

Disk is in use by another host

The next message indicates that the disk group does not contains any valid disks
(not that it does not contains any disks):

VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:

No valid disk found containing disk group

The disks may be considered invalid due to a mismatch between the host ID in
their configuration copies and that stored in the /etc/vx/volboot file.

To clear locks on a specific set of devices, use the following command:

Creating and administering disk groups
Moving disk groups between systems

234



# vxdisk clearimport devicename ...

To clear the locks during import, use the following command:

# vxdg -C import diskgroup

Warning: Be careful when using the vxdisk clearimport or vxdg -C import

command on systems that see the same disks via a SAN. Clearing the locks allows
those disks to be accessed at the same time from multiple hosts and can result in
corrupted data.

A disk group can be imported successfully if all the disks are accessible that were
visible when the disk group was last imported successfully. However, sometimes
you may need to specify the -f option to forcibly import a disk group if some disks
are not available. If the import operation fails, an error message is displayed.

The following error message indicates a fatal error that requires hardware repair
or the creation of a new disk group, and recovery of the disk group configuration
and data:

VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:

Disk group has no valid configuration copies

The following error message indicates a recoverable error.

VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:

Disk for disk group not found

If some of the disks in the disk group have failed, you can force the disk group to
be imported by specifying the -f option to the vxdg import command:

# vxdg -f import diskgroup

Warning: Be careful when using the -f option. It can cause the same disk group
to be imported twice from different sets of disks. This can cause the disk group
configuration to become inconsistent.

See “Handling conflicting configuration copies” on page 250.

As using the -f option to force the import of an incomplete disk group counts as
a successful import, an incomplete disk group may be imported subsequently
without this option being specified. This may not be what you expect.

These operations can also be performed using the vxdiskadm utility. To deport a
disk group using vxdiskadm, select Remove access to (deport) a disk group

235Creating and administering disk groups
Moving disk groups between systems



from the main menu. To import a disk group, select Enable access to (import)

a disk group. The vxdiskadm import operation checks for host import locks and
prompts to see if you want to clear any that are found. It also starts volumes in
the disk group.

Reserving minor numbers for disk groups
A device minor number uniquely identifies some characteristic of a device to the
device driver that controls that device. It is often used to identify some
characteristic mode of an individual device, or to identify separate devices that
are all under the control of a single controller. VxVM assigns unique device minor
numbers to each object (volume, plex, subdisk, disk, or disk group) that it controls.

When you move a disk group between systems, it is possible for the minor numbers
that it used on its previous system to coincide with those of objects known to
VxVM on the new system. To get around this potential problem, you can allocate
separate ranges of minor numbers for each disk group. VxVM uses the specified
range of minor numbers when it creates volume objects from the disks in the disk
group. This guarantees that each volume has the same minor number across
reboots or reconfigurations. Disk groups may then be moved between machines
without causing device number collisions.

VxVM chooses minor device numbers for objects created from this disk group
starting at the base minor number base_minor. Minor numbers can range from
this value up to 131,071. Try to leave a reasonable number of unallocated minor
numbers near the top of this range to allow for temporary device number
remapping in the event that a device minor number collision may still occur.

VxVM reserves the range of minor numbers from 0 to 999 for use with volumes
in the boot disk group. For example, the rootvol volume is always assigned minor
number 0.

If you do not specify the base of the minor number range for a disk group, VxVM
chooses one at random. The number chosen is at least 1000, is a multiple of 1000,
and yields a usable range of 1000 device numbers. The chosen number also does
not overlap within a range of 1000 of any currently imported disk groups, and it
does not overlap any currently allocated volume device numbers.

Note:The default policy ensures that a small number of disk groups can be merged
successfully between a set of machines. However, where disk groups are merged
automatically using failover mechanisms, select ranges that avoid overlap.

To view the base minor number for an existing disk group, use the vxprint

command as shown in the following examples for the disk group, mydg:

Creating and administering disk groups
Moving disk groups between systems

236



# vxprint -l mydg | grep minors

minors: >=45000

# vxprint -g mydg -m | egrep base_minor

base_minor=45000

To set a base volume device minor number for a disk group that is being created,
use the following command:

# vxdg init diskgroup minor=base_minor disk_access_name ...

For example, the following command creates the disk group, newdg, that includes
the specified disks, and has a base minor number of 30000:

# vxdg init newdg minor=30000 c1d0t0s2 c1t1d0s2

If a disk group already exists, you can use the vxdg reminor command to change
its base minor number:

# vxdg -g diskgroup reminor new_base_minor

For example, the following command changes the base minor number to 30000
for the disk group, mydg:

# vxdg -g mydg reminor 30000

If a volume is open, its old device number remains in effect until the system is
rebooted or until the disk group is deported and re-imported. If you close the open
volume, you can run vxdg reminor again to allow the renumbering to take effect
without rebooting or re-importing.

An example of where it is necessary to change the base minor number is for a
cluster-shareable disk group. The volumes in a shared disk group must have the
same minor number on all the nodes. If there is a conflict between the minor
numbers when a node attempts to join the cluster, the join fails. You can use the
reminor operation on the nodes that are in the cluster to resolve the conflict. In
a cluster where more than one node is joined, use a base minor number which
does not conflict on any node.

See the vxdg(1M) manual page.

Note: The base minor value for vxdg init and vxdg reminor must be in the
correct range. For private disk groups, the value can only be in the range of private
pool (0-32999 by default). For shared disk group, the value can only be in the range
of shared pool (greater than 33000 by default).

237Creating and administering disk groups
Moving disk groups between systems



See “Handling of minor number conflicts” on page 231.

Compatibility of disk groups between platforms
For disk groups that support the Cross-platform Data Sharing (CDS) feature, the
upper limit on the minor number range is restricted on AIX, HP-UX, Linux (with
a 2.6 or later kernel) and Solaris to 65,535 to ensure portability between these
operating systems.

On a Linux platform with a pre-2.6 kernel, the number of minor numbers per
major number is limited to 256 with a base of 0. This has the effect of limiting the
number of volumes and disks that can be supported system-wide to a smaller
value than is allowed on other operating system platforms. The number of disks
that are supported by a pre-2.6 Linux kernel is typically limited to a few hundred.
With the extended major numbering scheme that was implemented in VxVM 4.0
on Linux, a maximum of 4079 volumes could be configured, provided that a
contiguous block of 15 extended major numbers was available.

VxVM 4.1 and later releases run on a 2.6 version Linux kernel, which increases
the number of minor devices that are configurable from 256 to 65,536 per major
device number. This allows a large number of volumes and disk devices to be
configured on a system. The theoretical limit on the number of DMP and volume
devices that can be configured on such a system are 65,536 and 1,048,576
respectively. However, in practice, the number of VxVM devices that can be
configured in a single disk group is limited by the size of the private region.

When a CDS-compatible disk group is imported on a Linux system with a pre-2.6
kernel, VxVM attempts to reassign the minor numbers of the volumes, and fails
if this is not possible.

To help ensure that a CDS-compatible disk group is portable between operating
systems, including Linux with a pre-2.6 kernel, use the following command to set
the maxdev attribute on the disk group:

# vxdg -g diskgroup set maxdev=4079

Note: Such a disk group may still not be importable by VxVM 4.0 on Linux with a
pre-2.6 kernel if it would increase the number of minor numbers on the system
that are assigned to volumes to more than 4079, or if the number of available
extended major numbers is smaller than 15.

You can use the following command to discover the maximum number of volumes
that are supported by VxVM on a Linux host:

Creating and administering disk groups
Moving disk groups between systems

238



# cat /proc/sys/vxvm/vxio/vol_max_volumes

4079

See the vxdg(1M) manual page.

Handling cloned disks with duplicated identifiers
A disk may be copied by creating a hardware snapshot (such as an EMC BCV™ or
Hitachi ShadowCopy™) or clone, by using dd or a similar command to replicate
the disk, or by building a new LUN from the space that was previously used by a
deleted LUN. To avoid the duplicate disk ID condition, the default action of VxVM
is to prevent such duplicated disks from being imported.

Advanced disk arrays provide hardware tools that you can use to create clones of
existing disks outside the control of VxVM. For example, these disks may have
been created as hardware snapshots or mirrors of existing disks in a disk group.
As a result, the VxVM private region is also duplicated on the cloned disk. When
the disk group containing the original disk is subsequently imported, VxVM detects
multiple disks that have the same disk identifier that is defined in the private
region. In releases prior to 5.0, if VxVM could not determine which disk was the
original, it would not import such disks into the disk group. The duplicated disks
would have to be re-initialized before they could be imported.

From release 5.0, a unique disk identifier (UDID) is added to the disk’s private
region when the disk is initialized or when the disk is imported into a disk group
(if this identifier does not already exist). Whenever a disk is brought online, the
current UDID value that is known to the Device Discovery Layer (DDL) is compared
with the UDID that is set in the disk’s private region. If the UDID values do not
match, the udid_mismatch flag is set on the disk. This flag can be viewed with the
vxdisk list command. This allows a LUN snapshot to be imported on the same
host as the original LUN. It also allows multiple snapshots of the same LUN to be
simultaneously imported on a single server, which can be useful for off-host
backup and processing.

A new set of vxdisk and vxdg operations are provided to handle such disks; either
by writing the DDL value of the UDID to a disk’s private region, or by tagging a
disk and specifying that it is a cloned disk to the vxdg import operation.

The following is sample output from the vxdisk list command showing that
disks c2t66d0s2, c2t67d0s2 and c2t68d0s2 are marked with the udid_mismatch
flag:

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

239Creating and administering disk groups
Handling cloned disks with duplicated identifiers



c0t0d0s2 auto:cdsdisk - - online

c0t1d0s2 auto:cdsdisk - - online

.

.

.

c2t64d0s2 auto:cdsdisk - - online

c2t65d0s2 auto:cdsdisk - - online

c2t66d0s2 auto:cdsdisk - - online udid_mismatch

c2t67d0s2 auto:cdsdisk - - online udid_mismatch

c2t68d0s2 auto:cdsdisk - - online udid_mismatch

Writing a new UDID to a disk
You can use the following command to update the unique disk identifier (UDID)
for one or more disks. This is useful when building a new LUN from space
previously used by a deleted LUN, for example.

# vxdisk [-f] [-g diskgroup ] updateudid disk ...

This command uses the current value of the UDID that is stored in the Device
Discovery Layer (DDL) database to correct the value in the private region. The -f
option must be specified if VxVM has not set the udid_mismatch flag for a disk.

For example, the following command updates the UDIDs for the disks c2t66d0s2
and c2t67d0s2:

# vxdisk updateudid c2t66d0s2 c2t67d0s2

Importing a disk group containing cloned disks
By default, disks on which the udid_mismatch flag or the clone_disk flag has
been set are not imported by the vxdg import command unless all disks in the
disk group have at least one of these flags set, and no two of the disks have the
same UDID. You can then import the cloned disks by specifying the -o

useclonedev=on option to the vxdg import command, as shown in this example:

# vxdg -o useclonedev=on [-o updateid] import mydg

This form of the command allows only cloned disks to be imported. All non-cloned
disks remain unimported.

If the clone_disk flag is set on a disk, this indicates the disk was previously
imported into a disk group with the udid_mismatch flag set.

The -o updateid option can be specified to write new identification attributes to
the disks, and to set the clone_disk flag on the disks. (The vxdisk set clone=on

Creating and administering disk groups
Handling cloned disks with duplicated identifiers

240



command can also be used to set the flag.) However, the import fails if multiple
copies of one or more cloned disks exist. In this case, you can use the following
command to tag all the disks in the disk group that are to be imported:

# vxdisk [-g diskgroup ] settag tagname disk ...

where tagname is a string of up to 128 characters, not including spaces or tabs.

For example, the following command sets the tag, , on several disks that are to be
imported together:

# vxdisk settag my_tagged_disks c2t66d0s2 c2t67d0s2

Alternatively, you can update the UDIDs of the cloned disks.

See “Writing a new UDID to a disk” on page 240.

To check which disks are tagged, use the vxdisk listtag command:

# vxdisk listtag

DANAME DMNAME NAME VALUE

c0t0d0s2 mydg01 - -

c0t1d0s2 mydg02 - -

.

.

.

c2t64d0s2 mydg05 my_tagged_disks -

c2t65d0s2 mydg06 my_tagged_disks -

c2t66d0s2 mydg07 my_tagged_disks -

c2t67d0s2 mydg08 my_tagged_disks -

c2t68d0s2 mydg09 - -

The configuration database in a VM disk’s private region contains persistent
configuration data (or metadata) about the objects in a disk group. This database
is consulted by VxVM when the disk group is imported. At least one of the cloned
disks that are being imported must contain a copy of the current configuration
database in its private region.

You can use the following command to ensure that a copy of the metadata is placed
on a disk, regardless of the placement policy for the disk group:

# vxdisk [-g diskgroup] set disk keepmeta=always

Alternatively, use the following command to place a copy of the configuration
database and kernel log on all disks in a disk group that share a given tag:

241Creating and administering disk groups
Handling cloned disks with duplicated identifiers



# vxdg [-g diskgroup] set tagmeta=on tag=tagname nconfig=all \

nlog=all

To check which disks in a disk group contain copies of this configuration
information, use the vxdg listmeta command:

# vxdg [-q] listmeta diskgroup

The -q option can be specified to suppress detailed configuration information
from being displayed.

The tagged disks in the disk group may be imported by specifying the tag to the
vxdg import command in addition to the -o useclonedev=on option:

# vxdg -o useclonedev=on -o tag=my_tagged_disks import mydg

If you have already imported the non-cloned disks in a disk group, you can use
the -n and -t option to specify a temporary name for the disk group containing
the cloned disks:

# vxdg -t -n clonedg -o useclonedev=on -o tag=my_tagged_disks \

import mydg

See “Renaming a disk group” on page 248.

To remove a tag from a disk, use the vxdisk rmtag command, as shown in the
following example:

# vxdisk rmtag tag=my_tagged_disks c2t67d0s2

See the vxdisk(1M) and vxdg(1M) manual pages.

Sample cases of operations on cloned disks
The following sections contain examples of operations that can be used with
cloned disks:

See “Enabling configuration database copies on tagged disks” on page 242.

See “Importing cloned disks without tags” on page 244.

See “Importing cloned disks with tags” on page 246.

Enabling configuration database copies on tagged disks
In this example, the following commands have been used to tag some of the disks
in an Hitachi TagmaStore array:

Creating and administering disk groups
Handling cloned disks with duplicated identifiers

242



# vxdisk settag TagmaStore-USP0_28 t1=v1

# vxdisk settag TagmaStore-USP0_28 t2=v2

# vxdisk settag TagmaStore-USP0_24 t2=v2

# vxdisk settag TagmaStore-USP0_25 t1=v1

These tags can be viewed by using the vxdisk listtag command:

# vxdisk listtag

DEVICE NAME VALUE

TagmaStore-USP0_24 t2 v2

TagmaStore-USP0_25 t1 v1

TagmaStore-USP0_28 t1 v1

TagmaStore-USP0_28 t2 v2

The following command ensures that configuration database copies and kernel
log copies are maintained for all disks in the disk group mydg that are tagged as
t1:

# vxdg -g mydg set tagmeta=on tag=t1 nconfig=all nlog=all

The disks for which such metadata is maintained can be seen by using this
command:

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_10 auto:cdsdisk - - online

TagmaStore-USP0_24 auto:cdsdisk mydg02 mydg online

TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online tagmeta

TagmaStore-USP0_26 auto:cdsdisk - - online

TagmaStore-USP0_27 auto:cdsdisk - - online

TagmaStore-USP0_28 auto:cdsdisk mydg01 mydg online tagmeta

Alternatively, the following command can be used to ensure that a copy of the
metadata is kept with a disk:

# vxdisk set TagmaStore-USP0_25 keepmeta=always

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_10 auto:cdsdisk - - online

TagmaStore-USP0_22 auto:cdsdisk - - online

TagmaStore-USP0_23 auto:cdsdisk - - online

TagmaStore-USP0_24 auto:cdsdisk mydg02 mydg online

243Creating and administering disk groups
Handling cloned disks with duplicated identifiers



TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online keepmeta

TagmaStore-USP0_28 auto:cdsdisk mydg01 mydg online

Importing cloned disks without tags
In the first example, cloned disks (ShadowImage™ devices) from an Hitachi
TagmaStore array will be imported. The primary (non-cloned) disks, mydg01,
mydg02 and mydg03, are already imported, and the cloned disks are not tagged.

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_23 auto:cdsdisk mydg02 mydg online

TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online

TagmaStore-USP0_30 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_31 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_32 auto:cdsdisk mydg01 mydg online

To import the cloned disks, they must be assigned a new disk group name, and
their UDIDs must be updated:

# vxdg -n snapdg -o useclonedev=on -o updateid import mydg

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk mydg03 snapdg online clone_disk

TagmaStore-USP0_23 auto:cdsdisk mydg02 mydg online

TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online

TagmaStore-USP0_30 auto:cdsdisk mydg02 snapdg online clone_disk

TagmaStore-USP0_31 auto:cdsdisk mydg01 snapdg online clone_disk

TagmaStore-USP0_32 auto:cdsdisk mydg01 mydg online

Note that the state of the imported cloned disks has changed from online

udid_mismatch to online clone_disk.

In the next example, none of the disks (neither cloned nor non-cloned) have been
imported:

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_23 auto:cdsdisk - (mydg) online

TagmaStore-USP0_25 auto:cdsdisk - (mydg) online

Creating and administering disk groups
Handling cloned disks with duplicated identifiers

244



TagmaStore-USP0_30 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_31 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_32 auto:cdsdisk - (mydg) online

To import only the cloned disks into the mydg disk group:

# vxdg -o useclonedev=on -o updateid import mydg

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk mydg03 mydg online clone_disk

TagmaStore-USP0_23 auto:cdsdisk - (mydg) online

TagmaStore-USP0_25 auto:cdsdisk - (mydg) online

TagmaStore-USP0_30 auto:cdsdisk mydg02 mydg online clone_disk

TagmaStore-USP0_31 auto:cdsdisk mydg01 mydg online clone_disk

TagmaStore-USP0_32 auto:cdsdisk - (mydg) online

In the next example, a cloned disk (BCV device) from an EMC Symmetrix DMX
array is to be imported. Before the cloned disk, EMC0_27, has been split off from
the disk group, the vxdisk list command shows that it is in the error

udid_mismatch state:

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_1 auto:cdsdisk EMC0_1 mydg online

EMC0_27 auto - - error udid_mismatch

The symmir command is used to split off the BCV device:

# /usr/symcli/bin/symmir -g mydg split DEV001

After updating VxVM’s information about the disk by running the vxdisk

scandisks command, the cloned disk is in the online udid_mismatch state:

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_1 auto:cdsdisk EMC0_1 mydg online

EMC0_27 auto:cdsdisk - - online udid_mismatch

The following command imports the cloned disk into the new disk group newdg,
and updates the disk’s UDID:

# vxdg -n bcvdg -o useclonedev=on -o updateid import mydg

The state of the cloned disk is now shown as online clone_disk:

245Creating and administering disk groups
Handling cloned disks with duplicated identifiers



# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_1 auto:cdsdisk EMC0_1 mydg online

EMC0_27 auto:cdsdisk EMC0_1 bvcdg online clone_disk

Importing cloned disks with tags
In this example, cloned disks (BCV devices) from an EMC Symmetrix DMX array
will be imported. The primary (non-cloned) disks, mydg01, mydg02 and mydg03, are
already imported, and the cloned disks with the tag t1 are to be imported.

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk mydg01 mydg online

EMC0_6 auto:cdsdisk mydg02 mydg online

EMC0_8 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk mydg03 mydg online

EMC0_24 auto:cdsdisk - (mydg) online udid_mismatch

The disks are tagged as follows:

# vxdisk listtag

DEVICE NAME VALUE

EMC0_4 t2 v2

EMC0_4 t1 v1

EMC0_6 t2 v2

EMC0_8 t1 v1

EMC0_15 t2 v2

EMC0_18 t1 v1

EMC0_24 t1 v1

EMC0_24 t2 v2

To import the cloned disks that are tagged as t1, they must be assigned a new
disk group name, and their UDIDs must be updated:

# vxdg -n bcvdg -o useclonedev=on -o tag=t1 -o updateid import mydg

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk mydg01 mydg online

EMC0_6 auto:cdsdisk mydg02 mydg online

EMC0_8 auto:cdsdisk mydg03 bcvdg online clone_disk

Creating and administering disk groups
Handling cloned disks with duplicated identifiers

246



EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk mydg03 mydg online

EMC0_24 auto:cdsdisk mydg01 bcvdg online clone_disk

As the cloned disk EMC0_15 is not tagged as t1, it is not imported. Note that the
state of the imported cloned disks has changed from online udid_mismatch to
online clone_disk.

By default, the state of imported cloned disks is shown as online clone_disk.
This can be removed by using the vxdisk set command as shown here:

# vxdisk set EMC0_8 clone=off

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk mydg01 mydg online

EMC0_6 auto:cdsdisk mydg02 mydg online

EMC0_8 auto:cdsdisk mydg03 bcvdg online

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk mydg03 mydg online

EMC0_24 auto:cdsdisk mydg01 bcvdg online clone_disk

In the next example, none of the disks (neither cloned nor non-cloned) have been
imported:

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk - (mydg) online

EMC0_6 auto:cdsdisk - (mydg) online

EMC0_8 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk - (mydg) online

EMC0_24 auto:cdsdisk - (mydg) online udid_mismatch

To import only the cloned disks that have been tagged as t1 into the mydg disk
group:

# vxdg -o useclonedev=on -o tag=t1 -o updateid import mydg

# vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk - (mydg) online

EMC0_6 auto:cdsdisk - (mydg) online

EMC0_8 auto:cdsdisk mydg03 mydg online clone_disk

247Creating and administering disk groups
Handling cloned disks with duplicated identifiers



EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk - (mydg) online

EMC0_24 auto:cdsdisk mydg01 mydg online clone_disk

As in the previous example, the cloned disk EMC0_15 is not tagged as t1, and so it
is not imported.

Considerations when using EMC CLARiiON SNAPSHOT LUNs
If you need to import the Snapshot LUN of a primary LUN to the same host as the
original LUN, be aware of the following limitation.

If you are using Enclosure-based naming (EBN) with the Array Volume id (AVID)
enabled, turn off name persistence during device discovery before importing the
snapshot LUN to the original host.

To turn off name persistence, use the following command:

# vxddladm set namingscheme=ebn persistence=no use_avid=yes

After DDL recognizes the LUN, turn on name persistence using the following
command:

# vxddladm set namingscheme=ebn persistence=yes use_avid=yes

Renaming a disk group
Only one disk group of a given name can exist per system. It is not possible to
import or deport a disk group when the target system already has a disk group of
the same name. To avoid this problem, VxVM allows you to rename a disk group
during import or deport.

To rename a disk group during import, use the following command:

# vxdg [-t] -n newdg import diskgroup

If the -t option is included, the import is temporary and does not persist across
reboots. In this case, the stored name of the disk group remains unchanged on its
original host, but the disk group is known by the name specified by newdg to the
importing host. If the -t option is not used, the name change is permanent.

For example, this command temporarily renames the disk group,mydg, asmytempdg
on import:

# vxdg -t -n mytempdg import mydg

To rename a disk group during deport, use the following command:

Creating and administering disk groups
Renaming a disk group

248



# vxdg [-h hostname] -n newdg deport diskgroup

When renaming on deport, you can specify the -h hostname option to assign a
lock to an alternate host. This ensures that the disk group is automatically
imported when the alternate host reboots.

For example, this command renames the disk group, mydg, as myexdg, and deports
it to the host, jingo:

# vxdg -h jingo -n myexdg deport mydg

You cannot use this method to rename the boot disk group because it contains
volumes that are in use by mounted file systems (such as /). To rename the boot
disk group, you must first unmirror and unencapsulate the root disk, and then
re-encapsulate and remirror the root disk in a different disk group. This disk
group becomes the new boot disk group.

To temporarily move the boot disk group, bootdg, from one host to another (for
repair work on the root volume, for example) and then move it back

1 On the original host, identify the disk group ID of the bootdg disk group to
be imported with the following command:

# vxdisk -g bootdg -s list

dgname: rootdg

dgid: 774226267.1025.tweety

In this example, the administrator has chosen to name the boot disk group
as rootdg. The ID of this disk group is 774226267.1025.tweety.

This procedure assumes that all the disks in the boot disk group are accessible
by both hosts.

2 Shut down the original host.

249Creating and administering disk groups
Renaming a disk group



3 On the importing host, import and rename the rootdg disk group with this
command:

# vxdg -tC -n newdg import diskgroup

The -t option indicates a temporary import name, and the -C option clears
import locks. The -n option specifies an alternate name for the rootdg being
imported so that it does not conflict with the existing rootdg. diskgroup is
the disk group ID of the disk group being imported (for example,
774226267.1025.tweety).

If a reboot or crash occurs at this point, the temporarily imported disk group
becomes unimported and requires a reimport.

4 After the necessary work has been done on the imported disk group, deport
it back to its original host with this command:

# vxdg -h hostname deport diskgroup

Here hostname is the name of the system whose rootdg is being returned
(the system name can be confirmed with the command uname -n).

This command removes the imported disk group from the importing host
and returns locks to its original host. The original host can then automatically
import its boot disk group at the next reboot.

Handling conflicting configuration copies
If an incomplete disk group is imported on several different systems, this can
create inconsistencies in the disk group configuration copies that you may need
to resolve manually. This section and following sections describe how such a
condition can occur, and how to correct it. (When the condition occurs in a cluster
that has been split, it is usually referred to as a serial split brain condition).

Example of a serial split brain condition in a cluster
This section presents an example of how a serial split brain condition might occur
for a shared disk group in a cluster. Conflicts between configuration copies can
also occur for private disk groups in clustered and non-clustered configurations
where the disk groups have been partially imported on different systems.

A campus cluster (also known as a stretch cluster or remote mirror configuration)
typically consists of a 2-node cluster where each component (server, switch and
storage) of the cluster exists in a separate building.

Creating and administering disk groups
Handling conflicting configuration copies

250



Figure 5-1 shows a 2-node cluster with node 0, a fibre channel switch and disk
enclosure enc0 in building A, and node 1, another switch and enclosure enc1 in
building B.

Figure 5-1 Typical arrangement of a 2-node campus cluster

Fibre Channel switches

Disk enclosures

enc1enc0

Node 0

Redundant private
network

Node 1

Building A Building B

The fibre channel connectivity is multiply redundant to implement redundant-loop
access between each node and each enclosure. As usual, the two nodes are also
linked by a redundant private network.

A serial split brain condition typically arises in a cluster when a private
(non-shared) disk group is imported on Node 0 with Node 1 configured as the
failover node.

If the network connections between the nodes are severed, both nodes think that
the other node has died. (This is the usual cause of the split brain condition in
clusters). If a disk group is spread across both enclosure enc0 and enc1, each
portion loses connectivity to the other portion of the disk group. Node 0 continues
to update to the disks in the portion of the disk group that it can access. Node 1,
operating as the failover node, imports the other portion of the disk group (with
the -f option set), and starts updating the disks that it can see.

251Creating and administering disk groups
Handling conflicting configuration copies



When the network links are restored, attempting to reattach the missing disks to
the disk group on Node 0, or to re-import the entire disk group on either node,
fails. This serial split brain condition arises because VxVM increments the serial
ID in the disk media record of each imported disk in all the disk group configuration
databases on those disks, and also in the private region of each imported disk.
The value that is stored in the configuration database represents the serial ID
that the disk group expects a disk to have. The serial ID that is stored in a disk’s
private region is considered to be its actual value.

If some disks went missing from the disk group (due to physical disconnection or
power failure) and those disks were imported by another host, the serial IDs for
the disks in their copies of the configuration database, and also in each disk’s
private region, are updated separately on that host. When the disks are
subsequently re-imported into the original shared disk group, the actual serial
IDs on the disks do not agree with the expected values from the configuration
copies on other disks in the disk group.

Depending on what happened to the different portions of the split disk group,
there are two possibilities for resolving inconsistencies between the configuration
databases:

■ If the other disks in the disk group were not imported on another host, VxVM
resolves the conflicting values of the serial IDs by using the version of the
configuration database from the disk with the greatest value for the updated
ID (shown as update_tid in the output from the vxdg list diskgroup

command).
Figure 5-2 shows an example of a serial split brain condition that can be
resolved automatically by VxVM.

Creating and administering disk groups
Handling conflicting configuration copies

252



Figure 5-2 Example of a serial split brain condition that can be resolved
automatically

Partial disk group
imported on host X

1. Disk A is imported on a separate
host. Disk B is not imported. The
actual and expected serial IDs are
updated only on Disk A.

2. The disk group is re-imported
on the cluster. The configuration
copy on Disk A is used to correct
the configuration copy on Disk B
as the actual value of the updated
ID on Disk A is the greatest.

Imported shared disk group

Disk A

Disk A = 1

Configuration
database

Expected A = 1
Expected B = 0

Disk B not imported

Disk B

Disk B = 0

Expected A = 0
Expected B = 0

Disk A

Disk A = 1

Expected A = 1
Expected B = 0

Disk B

Disk B = 0

Expected A = 1
Expected B = 0

Configuration
database

Configuration
database

Configuration
database

■ If the other disks were also imported on another host, no disk can be considered
to have a definitive copy of the configuration database.
Figure 5-3 shows an example of a true serial split brain condition that cannot
be resolved automatically by VxVM.

253Creating and administering disk groups
Handling conflicting configuration copies



Figure 5-3 Example of a true serial split brain condition that cannot be resolved
automatically

Partial disk group
imported on host X

Partial disk group
imported on host Y

1. Disks A and B are imported
independently on separate hosts.
The actual and expected serial IDs
are updated independently on each
disk.

2. The disk group cannot be re-
imported on the cluster. This is
because the databases to not agree
on the actual and expected serial
IDs. You must choose which
configuration database to use.

Shared disk group fails to import

Disk A

Disk A = 1

Configuration
database

Expected A = 1
Expected B = 0

Disk B

Disk B = 1

Expected A = 0
Expected B = 1

Disk A

Disk A = 1

Expected A = 1
Expected B = 0

Disk B

Disk B = 1

Expected A = 0
Expected B = 1

Configuration
database

Configuration
database

Configuration
database

In this case, the disk group import fails, and the vxdgutility outputs error messages
similar to the following before exiting:

VxVM vxconfigd NOTICE V-5-0-33 Split Brain. da id is 0.1, while dm id

is 0.0 for DM mydg01

VxVM vxdg ERROR V-5-1-587 Disk group newdg: import failed: Serial Split Brain

detected. Run vxsplitlines

The import does not succeed even if you specify the -f flag to vxdg.

Although it is usually possible to resolve this conflict by choosing the version of
the configuration database with the highest valued configuration ID (shown as
the value of seqno in the output from the vxdg list diskgroup| grep config

command), this may not be the correct thing to do in all circumstances.

See “Correcting conflicting configuration information” on page 254.

Correcting conflicting configuration information
To resolve conflicting configuration information, you must decide which disk
contains the correct version of the disk group configuration database. To assist

Creating and administering disk groups
Handling conflicting configuration copies

254



you in doing this, you can run the vxsplitlines command to show the actual
serial ID on each disk in the disk group and the serial ID that was expected from
the configuration database. For each disk, the command also shows the vxdg

command that you must run to select the configuration database copy on that
disk as being the definitive copy to use for importing the disk group.

Note: The disk group must have a version number of at least 110.

The following is sample output from running vxsplitlines on the disk group
newdg:

# vxsplitlines -g newdg

The following splits were found in disk group newdg

They are listed in da(dm) name pairs.

Pool 0.

c2t5d0s2 ( c2t5d0s2 ), c2t6d0s2 ( c2t6d0s2 ),

The configuration from any of the disks in this split should appear to be the same.

To see the configuration from any of the disks in this split, run:

/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c2t5d0s2

To import the dg with the configuration from this split, run:

/usr/sbin/vxdg -o selectcp=1045852127.32.olancha import newdg

To get more information about this particular configuration, run:

/usr/sbin/vxsplitlines -g newdg -c c2t5d0s2

Split 1.

c2t7d0s2 ( c2t7d0s2 ), c2t8d0s2 ( c2t8d0s2 ),

The configuration from any of the disks in this split should appear to be the same.

To see the configuration from any of the disks in this split, run:

/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c2t7d0s2

To import the dg with the configuration from this split, run:

/usr/sbin/vxdg -o selectcp=1045852127.33.olancha import newdg

To get more information about this particular configuration, run:

/usr/sbin/vxsplitlines -g newdg -c c2t7d0s2

In this example, the disk group has four disks, and is split so that two disks appear
to be on each side of the split.

You can specify the -c option to vxsplitlines to print detailed information about
each of the disk IDs from the configuration copy on a disk specified by its disk
access name:

255Creating and administering disk groups
Handling conflicting configuration copies



# vxsplitlines -g newdg -c c2t6d0s2

DANAME(DMNAME) || Actual SSB || Expected SSB

c2t5d0s2( c2t5d0s2 ) || 0.1 || 0.0 ssb ids don’t match

c2t6d0s2( c2t6d0s2 ) || 0.1 || 0.1 ssb ids match

c2t7d0s2( c2t7d0s2 ) || 0.1 || 0.1 ssb ids match

c2t8d0s2( c2t8d0s2 ) || 0.1 || 0.0 ssb ids don’t match

Please note that even though some disks ssb ids might match

that does not necessarily mean that those disks’ config copies

have all the changes. From some other configuration copies, those disks’ ssb ids might not match.

To see the configuration from this disk, run

/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c2t6d0s2

Based on your knowledge of how the serial split brain condition came about, you
must choose one disk’s configuration to be used to import the disk group. For
example, the following command imports the disk group using the configuration
copy that is on side 0 of the split:

# /usr/sbin/vxdg -o selectcp=1045852127.32.olancha import newdg

When you have selected a preferred configuration copy, and the disk group has
been imported, VxVM resets the serial IDs to 0 for the imported disks. The actual
and expected serial IDs for any disks in the disk group that are not imported at
this time remain unaltered.

Reorganizing the contents of disk groups
There are several circumstances under which you might want to reorganize the
contents of your existing disk groups:

■ To group volumes or disks differently as the needs of your organization change.
For example, you might want to split disk groups to match the boundaries of
separate departments, or to join disk groups when departments are merged.

■ To isolate volumes or disks from a disk group, and process them independently
on the same host or on a different host. This allows you to implement off-host
processing solutions for the purposes of backup or decision support.
See “About off-host processing solutions” on page 455.

■ To reduce the size of a disk group’s configuration database in the event that
its private region is nearly full. This is a much simpler solution than the
alternative of trying to grow the private region.

■ To perform online maintenance and upgrading of fault-tolerant systems that
can be split into separate hosts for this purpose, and then rejoined.

Creating and administering disk groups
Reorganizing the contents of disk groups

256



Use the vxdg command to reorganize your disk groups.

Thevxdg command provides the following operations for reorganizing disk groups:

■ movemoves a self-contained set of VxVM objects between imported disk groups.
This operation fails if it would remove all the disks from the source disk group.
Volume states are preserved across the move.
Figure 5-4 shows the move operation.

Figure 5-4 Disk group move operation

Source Disk Group

Move

After move

Target Disk Group

Source Disk Group Target Disk Group

■ split removes a self-contained set of VxVM objects from an imported disk
group, and moves them to a newly created target disk group. This operation
fails if it would remove all the disks from the source disk group, or if an
imported disk group exists with the same name as the target disk group. An
existing deported disk group is destroyed if it has the same name as the target
disk group (as is the case for the vxdg init command).

Figure 5-5 shows the split operation.

257Creating and administering disk groups
Reorganizing the contents of disk groups



Figure 5-5 Disk group split operation

Source disk group

Disks to be split into new disk group

After split
Source disk group New target disk group

■ join removes all VxVM objects from an imported disk group and moves them
to an imported target disk group. The source disk group is removed when the
join is complete.
Figure 5-6 shows the join operation.

Creating and administering disk groups
Reorganizing the contents of disk groups

258



Figure 5-6 Disk group join operation

Source disk group

Join

After join

Target disk group

Target disk group

These operations are performed on VxVM objects such as disks or top-level
volumes, and include all component objects such as sub-volumes, plexes and
subdisks. The objects to be moved must be self-contained, meaning that the disks
that are moved must not contain any other objects that are not intended for the
move.

If you specify one or more disks to be moved, all VxVM objects on the disks are
moved. You can use the -o expand option to ensure that vxdg moves all disks on
which the specified objects are configured. Take care when doing this as the result
may not always be what you expect. You can use the listmove operation with
vxdg to help you establish what is the self-contained set of objects that corresponds
to a specified set of objects.

Warning: Before moving volumes between disk groups, stop all applications that
are accessing the volumes, and unmount all file systems that are configured on
these volumes.

If the system crashes or a hardware subsystem fails, VxVM attempts to complete
or reverse an incomplete disk group reconfiguration when the system is restarted
or the hardware subsystem is repaired, depending on how far the reconfiguration
had progressed. If one of the disk groups is no longer available because it has been

259Creating and administering disk groups
Reorganizing the contents of disk groups



imported by another host or because it no longer exists, you must recover the disk
group manually.

See the Veritas VolumeManager Troubleshooting Guide.

Limitations of disk group split and join
The disk group split and join feature has the following limitations:

■ Disk groups involved in a move, split or join must be version 90 or greater.
See “Upgrading a disk group” on page 270.

■ The reconfiguration must involve an integral number of physical disks.

■ Objects to be moved must not contain open volumes.

■ Disks cannot be moved between CDS and non-CDS compatible disk groups.

■ Moved volumes are initially disabled following a disk group move, split or join.
Use the vxrecover -m and vxvol startall commands to recover and restart
the volumes.

■ Data change objects (DCOs) and snap objects that have been dissociated by
Persistent FastResync cannot be moved between disk groups.

■ Veritas Volume Replicator (VVR) objects cannot be moved between disk groups.

■ For a disk group move to succeed, the source disk group must contain at least
one disk that can store copies of the configuration database after the move.

■ For a disk group split to succeed, both the source and target disk groups must
contain at least one disk that can store copies of the configuration database
after the split.

■ For a disk group move or join to succeed, the configuration database in the
target disk group must be able to accommodate information about all the
objects in the enlarged disk group.

■ Splitting or moving a volume into a different disk group changes the volume’s
record ID.

■ The operation can only be performed on the master node of a cluster if either
the source disk group or the target disk group is shared.

■ In a cluster environment, disk groups involved in a move or join must both be
private or must both be shared.

■ If a cache object or volume set that is to be split or moved uses ISP volumes,
the storage pool that contains these volumes must also be specified.

Creating and administering disk groups
Reorganizing the contents of disk groups

260



Listing objects potentially affected by a move
To display the VxVM objects that would be moved for a specified list of objects,
use the following command:

# vxdg [-o expand] listmove sourcedg targetdg object ...

The following example lists the objects that would be affected by moving volume
vol1 from disk group mydg to newdg:

# vxdg listmove mydg newdg vol1

mydg01 c0t1d0s2 mydg05 c1t96d0s2 vol1 vol1-01 vol1-02 mydg01-01

mydg05-01

However, the following command produces an error because only a part of the
volume vol1 is configured on the disk mydg01:

# vxdg listmove mydg newdg mydg01

VxVM vxdg ERROR V-5-2-4597 vxdg listmove mydg newdg failed

VxVM vxdg ERROR V-5-2-3091 mydg05 : Disk not moving, but

subdisks on it are

Specifying the -o expand option, as shown below, ensures that the list of objects
to be moved includes the other disks (in this case, mydg05) that are configured in
vol1:

# vxdg -o expand listmove mydg newdg mydg01

mydg01 c0t1d0s2 mydg05 c1t96d0s2 vol1 vol1-01 vol1-02 mydg01-01 mydg05-01

Moving DCO volumes between disk groups
When you move the parent volume (such as a snapshot volume) to a different disk
group, its DCO volume must accompany it. If you use the vxassist addlog, vxmake
or vxdco commands to set up a DCO for a volume, you must ensure that the disks
that contain the plexes of the DCO volume accompany their parent volume during
the move. You can use the vxprint command on a volume to examine the
configuration of its associated DCO volume.

If you use the vxassist command to create both a volume and its DCO, or the
vxsnap prepare command to add a DCO to a volume, the DCO plexes are
automatically placed on different disks from the data plexes of the parent volume.
In previous releases, version 0 DCO plexes were placed on the same disks as the
data plexes for convenience when performing disk group split and move operations.
As version 20 DCOs support dirty region logging (DRL) in addition to Persistent
FastResync, it is preferable for the DCO plexes to be separated from the data

261Creating and administering disk groups
Reorganizing the contents of disk groups



plexes. This improves the performance of I/O from/to the volume, and provides
resilience for the DRL logs.

Figure 5-7 shows some instances in which it is not be possible to split a disk group
because of the location of the DCO plexes on the disks of the disk group.

See “Specifying storage for version 0 DCO plexes” on page 442.

See “Specifying storage for version 20 DCO plexes” on page 362.

See “FastResync” on page 64.

See “Volume snapshots” on page 62.

Creating and administering disk groups
Reorganizing the contents of disk groups

262



Figure 5-7 Examples of disk groups that can and cannot be split

Volume
data plexes

Snapshot
plex

Volume DCO
plexes

Snapshot
DCO plex

The disk group can be split as the DCO
plexes are on dedicated disks, and can
therefore accompany the disks that
contain the volume data

Split

Split

Volume 1
data plexes

Volume 2
data plexes

Volume 1
DCO plexes

The disk group cannot be split as the DCO
plexes cannot accompany their volumes.
One solution is to relocate the DCO plexes. In
this example, use an additional disk in the
disk group as an intermediary to swap the
misplaced DCO plexes. Alternatively, to
improve DRL performance and resilience,
allocate the DCO plexes to dedicated disks.

The disk group can be split as the DCO
plexes can accompany their volumes.
However, you may not wish the data in
the portions of the disks marked “?” to
be moved as well.

The disk group cannot be
split as this would separate
the disks containing
Volume 2’s data plexes.
Possible solutions are to
relocate the snapshot DCO
plex to the snapshot plex
disk, or to another suitable
disk that can be moved.

?

?
?

?

Snapshot
plex

Snapshot
plex

Snapshot
plex

Volume
data plexes

Volume
data plexes

Snapshot
DCO plex

Snapshot
DCO plex

Snapshot
DCO plex

Volume
DCO plexes

Volume
DCO plex

Volume
DCO plex

Moving objects between disk groups
To move a self-contained set of VxVM objects from an imported source disk group
to an imported target disk group, use the following command:

263Creating and administering disk groups
Reorganizing the contents of disk groups



# vxdg [-o expand] [-o override|verify] move sourcedg targetdg \

object ...

The -o expand option ensures that the objects that are actually moved include
all other disks containing subdisks that are associated with the specified objects
or with objects that they contain.

The default behavior of vxdg when moving licensed disks in an EMC array is to
perform an EMC disk compatibility check for each disk involved in the move. If
the compatibility checks succeed, the move takes place. vxdg then checks again
to ensure that the configuration has not changed since it performed the
compatibility check. If the configuration has changed, vxdg attempts to perform
the entire move again.

Note: You should only use the -o override and -o verify options if you are
using an EMC array with a valid timefinder license. If you specify one of these
options and do not meet the array and license requirements, a warning message
is displayed and the operation is ignored.

The-o overrideoption enables the move to take place without any EMC checking.

The -o verify option returns the access names of the disks that would be moved
but does not perform the move.

The following output from vxprint shows the contents of disk groups rootdg and
mydg.

The output includes two utility fields, TUTIL0 and PUTIL0.. VxVM creates these
fields to manage objects and communications between different commands and
Symantec products. The TUTIL0 values are temporary; they are not maintained
on reboot. The PUTIL0 values are persistent; they are maintained on reboot.

See “Changing subdisk attributes” on page 287.

# vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg02 c1t97d0s2 - 17678493 - - - -

dm rootdg03 c1t112d0s2 - 17678493 - - - -

dm rootdg04 c1t114d0s2 - 17678493 - - - -

dm rootdg06 c1t98d0s2 - 17678493 - - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

Creating and administering disk groups
Reorganizing the contents of disk groups

264



dg mydg mydg - - - - - -

dm mydg01 c0t1d0s2 - 17678493 - - - -

dm mydg05 c1t96d0s2 - 17678493 - - - -

dm mydg07 c1t99d0s2 - 17678493 - - - -

dm mydg08 c1t100d0s2 - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

The following command moves the self-contained set of objects implied by
specifying disk mydg01 from disk group mydg to rootdg:

# vxdg -o expand move mydg rootdg mydg01

The moved volumes are initially disabled following the move. Use the following
commands to recover and restart the volumes in the target disk group:

# vxrecover -g targetdg -m [volume ...]

# vxvol -g targetdg startall

The output from vxprint after the move shows that not only mydg01 but also
volume vol1 and mydg05 have moved to rootdg, leaving only mydg07 and mydg08

in disk group mydg:

# vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm mydg01 c0t1d0s2 - 17678493 - - - -

dm rootdg02 c1t97d0s2 - 17678493 - - - -

dm rootdg03 c1t112d0s2 - 17678493 - - - -

dm rootdg04 c1t114d0s2 - 17678493 - - - -

dm mydg05 c1t96d0s2 - 17678493 - - - -

dm rootdg06 c1t98d0s2 - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - - - -

265Creating and administering disk groups
Reorganizing the contents of disk groups



dm mydg07 c1t99d0s2 - 17678493 - - - -

dm mydg08 c1t100d0s2 - 17678493 - - - -

The following commands would also achieve the same result:

# vxdg move mydg rootdg mydg01 mydg05

# vxdg move mydg rootdg vol1

See “Moving objects between shared disk groups” on page 519.

Splitting disk groups
To remove a self-contained set of VxVM objects from an imported source disk
group to a new target disk group, use the following command:

# vxdg [-o expand] [-o override|verify] split sourcedg targetdg \

object ...

See “Moving objects between disk groups” on page 263.

The following output from vxprint shows the contents of disk group rootdg.

The output includes two utility fields, TUTIL0 and PUTIL0.. VxVM creates these
fields to manage objects and communications between different commands and
Symantec products. The TUTIL0 values are temporary; they are not maintained
on reboot. The PUTIL0 values are persistent; they are maintained on reboot.

See “Changing subdisk attributes” on page 287.

# vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg01 c0t1d0s2 - 17678493 - - - -

dm rootdg02 c1t97d0s2 - 17678493 - - - -

dm rootdg03 c1t112d0s2 - 17678493 - - - -

dm rootdg04 c1t114d0s2 - 17678493 - - - -

dm rootdg05 c1t96d0s2 - 17678493 - - - -

dm rootdg06 c1t98d0s2 - 17678493 - - - -

dm rootdg07 c1t99d0s2 - 17678493 - - - -

dm rootdg08 c1t100d0s2 - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg05-01 vol1-02 ENABLED 3591 0 - - -

Creating and administering disk groups
Reorganizing the contents of disk groups

266



The following command removes disks rootdg07 and rootdg08 from rootdg to
form a new disk group, mydg:

# vxdg -o expand split rootdg mydg rootdg07 rootdg08

The moved volumes are initially disabled following the split. Use the following
commands to recover and restart the volumes in the new target disk group:

# vxrecover -g targetdg -m [volume ...]

# vxvol -g targetdg startall

The output from vxprint after the split shows the new disk group, mydg:

# vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg01 c0t1d0s2 - 17678493 - - - -

dm rootdg02 c1t97d0s2 - 17678493 - - - -

dm rootdg03 c1t112d0s2- 17678493 - - - -

dm rootdg04 c1t114d0s2- 17678493 - - - -

dm rootdg05 c1t96d0s2 - 17678493 - - - -

dm rootdg06 c1t98d0s2 - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg05-01 vol1-02 ENABLED 3591 0 - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - - - -

dm rootdg07 c1t99d0s2 - 17678493 - - - -

dm rootdg08 c1t100d0s2- 17678493 - - - -

See “Splitting shared disk groups” on page 519.

Joining disk groups
To remove all VxVM objects from an imported source disk group to an imported
target disk group, use the following command:

# vxdg [-o override|verify] join sourcedg targetdg

See “Moving objects between disk groups” on page 263.

267Creating and administering disk groups
Reorganizing the contents of disk groups



Note: You cannot specify rootdg as the source disk group for a join operation.

The following output from vxprint shows the contents of the disk groups rootdg
and mydg.

The output includes two utility fields, TUTIL0 and PUTIL0.. VxVM creates these
fields to manage objects and communications between different commands and
Symantec products. The TUTIL0 values are temporary; they are not maintained
on reboot. The PUTIL0 values are persistent; they are maintained on reboot.

See “Changing subdisk attributes” on page 287.

# vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg01 c0t1d0s2 - 17678493 - - - -

dm rootdg02 c1t97d0s2 - 17678493 - - - -

dm rootdg03 c1t112d0s2 - 17678493 - - - -

dm rootdg04 c1t114d0s2 - 17678493 - - - -

dm rootdg07 c1t99d0s2 - 17678493 - - - -

dm rootdg08 c1t100d0s2 - 17678493 - - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - - - -

dm mydg05 c1t96d0s2 - 17678493 - - - -

dm mydg06 c1t98d0s2 - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

The following command joins disk group mydg to rootdg:

# vxdg join mydg rootdg

The moved volumes are initially disabled following the join. Use the following
commands to recover and restart the volumes in the target disk group:

# vxrecover -g targetdg -m [volume ...]

# vxvol -g targetdg startall

Creating and administering disk groups
Reorganizing the contents of disk groups

268



The output from vxprint after the join shows that disk group mydg has been
removed:

# vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm mydg01 c0t1d0s2 - 17678493 - - - -

dm rootdg02 c1t97d0s2 - 17678493 - - - -

dm rootdg03 c1t112d0s2 - 17678493 - - - -

dm rootdg04 c1t114d0s2 - 17678493 - - - -

dm mydg05 c1t96d0s2 - 17678493 - - - -

dm rootdg06 c1t98d0s2 - 17678493 - - - -

dm rootdg07 c1t99d0s2 - 17678493 - - - -

dm rootdg08 c1t100d0s2 - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

See “Joining shared disk groups” on page 520.

Disabling a disk group
To disable a disk group, unmount and stop any volumes in the disk group, and
then use the following command to deport it:

# vxdg deport diskgroup

Deporting a disk group does not actually remove the disk group. It disables use
of the disk group by the system. Disks in a deported disk group can be reused,
reinitialized, added to other disk groups, or imported for use on other systems.
Use the vxdg import command to re-enable access to the disk group.

Destroying a disk group
The vxdg command provides a destroy option that removes a disk group from
the system and frees the disks in that disk group for reinitialization:

# vxdg destroy diskgroup

269Creating and administering disk groups
Disabling a disk group



Warning: This command destroys all data on the disks.

When a disk group is destroyed, the disks that are released can be re-used in other
disk groups.

Recovering a destroyed disk group
If a disk group has been accidentally destroyed, you can recover it, provided that
the disks that were in the disk group have not been modified or reused elsewhere.

To recover a destroyed disk group

1 Enter the following command to find out the disk group ID (dgid) of one of
the disks that was in the disk group:

# vxdisk -s list disk_access_name

The disk must be specified by its disk access name, such as c0t12d0s2.
Examine the output from the command for a line similar to the following that
specifies the disk group ID.

dgid: 963504895.1075.bass

2 Use the disk group ID to import the disk group:

# vxdg import dgid

Upgrading a disk group
Prior to the release of Veritas Volume Manager 3.0, the disk group version was
automatically upgraded (if needed) when the disk group was imported.

Note: On some platforms, the first release of Veritas Volume Manager was 3.0 or
3.2.

From release 3.0 of Veritas Volume Manager, the two operations of importing a
disk group and upgrading its version are separate. You can import a disk group
from a previous version and use it without upgrading it.

When you want to use new features, the disk group can be upgraded. The upgrade
is an explicit operation. Once the upgrade occurs, the disk group becomes
incompatible with earlier releases of VxVM that do not support the new version.

Creating and administering disk groups
Upgrading a disk group

270



Until the disk group is upgraded, it may still be deported back to the release from
which it was imported.

Until completion of the upgrade, the disk group can be used “as is” provided there
is no attempt to use the features of the current version. There is no "downgrade"
facility. For disk groups which are shared among multiple servers for failover or
for off-host processing, verify that the VxVM release on all potential hosts that
may use the disk group supports the diskgroup version to which you are upgrading.

Attempts to use a feature of the current version that is not a feature of the version
from which the disk group was imported results in an error message similar to
this:

VxVM vxedit ERROR V-5-1-2829 Disk group version doesn't support

feature

To use any of the new features, you must run the vxdg upgrade command to
explicitly upgrade the disk group to a version that supports those features.

All disk groups have a version number associated with them. Veritas Volume
Manager releases support a specific set of disk group versions. VxVM can import
and perform operations on a disk group of that version. The operations are limited
by what features and operations the disk group version supports.

Table 5-1 summarizes the Veritas Volume Manager releases that introduce and
support specific disk group versions.

Table 5-1 Disk group version assignments

Supports disk group versionsIntroduces disk group versionVxVM release

10101.2

15151.3

20202.0

30302.2

40402.3

50502.5

20-40, 60603.0

20-70703.1

20-80803.1.1

20-90903.2, 3.5

271Creating and administering disk groups
Upgrading a disk group



Table 5-1 Disk group version assignments (continued)

Supports disk group versionsIntroduces disk group versionVxVM release

20-1101104.0

20-1201204.1

20-1401405.0

20-1501505.1

Importing the disk group of a previous version on a Veritas Volume Manager
system prevents the use of features introduced since that version was released.

Table 5-2 summarizes the features that are supported by disk group versions 20
through 150.

Table 5-2 Features supported by disk group versions

Previous version features
supported

New features supportedDisk group
version

20, 30, 40, 50, 60, 70, 80, 90, 110,
120, 130, 140

SSD device support, migration of
ISP dg

150

20, 30, 40, 50, 60, 70, 80, 90, 110,
120, 130

Data migration, Remote Mirror,
coordinator disk groups (used by
VCS), linked volumes, snapshot
LUN import.

140

20, 30, 40, 50, 60, 70, 80, 90, 110,
120

■ VVR Enhancements130

20, 30, 40, 50, 60, 70, 80, 90, 110■ Automatic Cluster-wide
Failback for A/P arrays

■ Persistent DMP Policies

■ Shared Disk Group Failure
Policy

120

Creating and administering disk groups
Upgrading a disk group

272



Table 5-2 Features supported by disk group versions (continued)

Previous version features
supported

New features supportedDisk group
version

20, 30, 40, 50, 60, 70, 80, 90■ Cross-platform Data Sharing
(CDS)

■ Device Discovery Layer (DDL)
2.0

■ Disk Group Configuration
Backup and Restore

■ Elimination of rootdg as a
Special Disk Group

■ Full-Sized and
Space-Optimized Instant
Snapshots

■ Intelligent Storage
Provisioning (ISP)

■ Serial Split Brain Detection

■ Volume Sets (Multiple Device
Support for VxFS)

110

20, 30, 40, 50, 60, 70, 80■ Cluster Support for Oracle
Resilvering

■ Disk Group Move, Split and
Join

■ Device Discovery Layer (DDL)
1.0

■ Layered Volume Support in
Clusters

■ Ordered Allocation

■ OS Independent Naming
Support

■ Persistent FastResync

90

20, 30, 40, 50, 60, 70■ VVR Enhancements80

20, 30, 40, 50, 60■ Non-Persistent FastResync

■ Sequential DRL

■ Unrelocate

■ VVR Enhancements

70

20, 30, 40■ Online Relayout

■ Safe RAID-5 Subdisk Moves

60

273Creating and administering disk groups
Upgrading a disk group



Table 5-2 Features supported by disk group versions (continued)

Previous version features
supported

New features supportedDisk group
version

20, 30, 40■ SRVM (now known as Veritas
Volume Replicator or VVR)

50

20, 30■ Hot-Relocation40

20■ VxSmartSync Recovery
Accelerator

30

■ Dirty Region Logging (DRL)

■ Disk Group Configuration Copy
Limiting

■ Mirrored Volumes Logging

■ New-Style Stripes

■ RAID-5 Volumes

■ Recovery Checkpointing

20

To list the version of a disk group, use this command:

# vxdg list dgname

You can also determine the disk group version by using the vxprint command
with the -l format option.

To upgrade a disk group to the highest version supported by the release of VxVM
that is currently running, use this command:

# vxdg upgrade dgname

By default, VxVM creates a disk group of the highest version supported by the
release. For example, Veritas Volume Manager 5.1 creates disk groups with version
150.

It may sometimes be necessary to create a disk group for an older version. The
default disk group version for a disk group created on a system running Veritas
Volume Manager 5.1 is 150. Such a disk group cannot be imported on a system
running Veritas Volume Manager 4.1, as that release only supports up to version
120. Therefore, to create a disk group on a system running Veritas Volume Manager
5.1 that can be imported by a system running Veritas Volume Manager 4.1, the
disk group must be created with a version of 120 or less.

To create a disk group with a previous version, specify the -T version option to
the vxdg init command.

Creating and administering disk groups
Upgrading a disk group

274



For example, to create a disk group with version 120 that can be imported by a
system running VxVM 4.1, use the following command:

# vxdg -T 120 init newdg newdg01=c0t3d0s2

This creates a disk group, newdg, which can be imported by Veritas Volume
Manager 4.1. Note that while this disk group can be imported on the VxVM 4.1
system, attempts to use features from Veritas Volume Manager 5.0 and later
releases will fail.

Managing the configuration daemon in VxVM
The VxVM configuration daemon (vxconfigd) provides the interface between
VxVM commands and the kernel device drivers. vxconfigdhandles configuration
change requests from VxVM utilities, communicates the change requests to the
VxVM kernel, and modifies configuration information stored on disk. vxconfigd
also initializes VxVM when the system is booted.

The vxdctl command is the command-line interface to the vxconfigd daemon.

You can use vxdctl to:

■ Control the operation of the vxconfigd daemon.

■ Change the system-wide definition of the default disk group.

In VxVM 4.0 and later releases, disk access records are no longer stored in the
/etc/vx/volboot file. Non-persistent disk access records are created by scanning
the disks at system startup. Persistent disk access records for simple and nopriv

disks are permanently stored in the /etc/vx/darecs file in the root file system.
The vxconfigd daemon reads the contents of this file to locate the disks and the
configuration databases for their disk groups.

The /etc/vx/darecs file is also used to store definitions of foreign devices that
are not autoconfigurable. Such entries may be added by using the vxddladm

addforeign command.

See the vxddladm(1M) manual page.

If your system is configured to use Dynamic Multipathing (DMP), you can also
use vxdctl to:

■ Reconfigure the DMP database to include disk devices newly attached to, or
removed from the system.

■ Create DMP device nodes in the /dev/vx/dmp and /dev/vx/rdmp directories.

275Creating and administering disk groups
Managing the configuration daemon in VxVM



■ Update the DMP database with changes in path type for active/passive disk
arrays. Use the utilities provided by the disk-array vendor to change the path
type between primary and secondary.

See the vxdctl(1M) manual page.

Backing up and restoring disk group configuration
data

The disk group configuration backup and restoration feature allows you to back
up and restore all configuration data for disk groups, and for VxVM objects such
as volumes that are configured within the disk groups. The vxconfigbackupd

daemon monitors changes to the VxVM configuration and automatically records
any configuration changes that occur. Two utilities, vxconfigbackup and
vxconfigrestore, are provided for backing up and restoring a VxVM configuration
for a disk group.

See the Veritas VolumeManager Troubleshooting Guide.

See the vxconfigbackup(1M) manual page.

See the vxconfigrestore(1M) manual page.

Using vxnotify to monitor configuration changes
You can use the vxnotify utility to display events relating to disk and
configuration changes that are managed by the vxconfigd configuration daemon.
If vxnotify is running on a system where the VxVM clustering feature is active,
it displays events that are related to changes in the cluster state of the system on
which it is running. The vxnotify utility displays the requested event types until
you kill it, until it has received a specified number of events, or until a specified
period of time has elapsed.

Examples of configuration events that can be detected include disabling and
enabling of controllers, paths and DMP nodes, RAID-5 volumes entering degraded
mode, detachment of disks, plexes and volumes, and nodes joining and leaving a
cluster.

For example, the following vxnotify command displays information about all
disk, plex, and volume detachments as they occur:

# vxnotify -f

The following command provides information about cluster configuration changes,
including the import and deport of shared disk groups:

Creating and administering disk groups
Backing up and restoring disk group configuration data

276



# vxnotify -s -I

See the vxnotify(1M) manual page.

Working with ISP disk groups
The Intelligent Storage Provisioning (ISP) feature is supported up to 5.0 MP3 and
has been deprecated from the VxVM 5.1 release. If you have any ISP disk groups,
they can be imported using the following command:

# vxdg import ISP_diskgroup

To find out whether the disk group is an ISP disk group. You must check for the
presence of storage pools using the following command:

# vxprint

Sample output:

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - ALLOC_SUP - -

dm mydg2 ams_wms0_359 - 4120320 - - - -

dm mydg3 ams_wms0_360 - 4120320 - - - -

st mypool - - - - DATA - -

dm mydg1 ams_wms0_358 - 4120320 - - - -

v myvol0 fsgen ENABLED 20480 - ACTIVE - -

pl myvol0-01 myvol0 ENABLED 20480 - ACTIVE - -

sd mydg1-01 myvol0-01 ENABLED 20480 0 - - -

v myvol1 fsgen ENABLED 20480 - ACTIVE - -

pl myvol1-01 myvol1 ENABLED 20480 - ACTIVE - -

sd mydg1-02 myvol1-01 ENABLED 20480 0 - - -

In the sample output , st mypool indicates that mydg is an ISP disk group.

The ISP volumes in the disk group are not allowed to make any configuration
changes until it has been upgraded. Attempting any operations such as grow
shrink, add mirror, disk group split join, etc, on ISP volumes would give the
following error:

277Creating and administering disk groups
Working with ISP disk groups



This disk group is a ISP disk group. Dg needs to be migrated to

non-ISP dg to allow any configuration changes. Please upgrade

the dg to perform the migration.

Note: Non-ISP or VxVM volumes in the ISP disk group are not affected.

The disk group can be upgraded using the following command:

# vxdg upgrade ISP_diskgroup

After upgrading ISP disk group, all ISP volumes are converted to non-ISP volumes
and ISP-only objects are deleted. The ISP-only objects are st pool, volume template,
capability, rules, etc. This operation does not affect non–ISP volumes.

Operations that still work on ISP disk group without upgrading:

■ Setting, removing, and replacing volume tags.
See “About volume administration” on page 338.

■ Renaming of any VxVM objects such as volume, dg, plex, etc.

■ Plex attach and detach.

■ The vxconfigbackup and vxconfigrestore command can be used at the cost
of losing any intent information

Note: By upgrading ISP disk group, all intent and storage pools information will
be lost. The disk group should be upgraded only when this condition is acceptable.

Creating and administering disk groups
Working with ISP disk groups

278



Creating and administering
subdisks and plexes

This chapter includes the following topics:

■ About subdisks

■ Creating subdisks

■ Displaying subdisk information

■ Moving subdisks

■ Splitting subdisks

■ Joining subdisks

■ Associating subdisks with plexes

■ Associating log subdisks

■ Dissociating subdisks from plexes

■ Removing subdisks

■ Changing subdisk attributes

■ About plexes

■ Creating plexes

■ Creating a striped plex

■ Displaying plex information

■ Attaching and associating plexes

6Chapter



■ Taking plexes offline

■ Detaching plexes

■ Reattaching plexes

■ Moving plexes

■ Copying volumes to plexes

■ Dissociating and removing plexes

■ Changing plex attributes

About subdisks
Subdisks are the low-level building blocks in a Veritas Volume Manager (VxVM)
configuration that are required to create plexes and volumes.

Subdisks are created automatically if you use the vxassist command.

See “Creating a volume” on page 307.

Note: Most VxVM commands require superuser or equivalent privileges.

Creating subdisks
Use the vxmake command to create VxVM objects, such as subdisks:

# vxmake [-g diskgroup] sd subdisk diskname,offset,length

where subdisk is the name of the subdisk, diskname is the disk name, offset is the
starting point (offset) of the subdisk within the disk, and length is the length of
the subdisk.

For example, to create a subdisk named mydg02-01 in the disk group, mydg, that
starts at the beginning of disk mydg02 and has a length of 8000 sectors, use the
following command:

# vxmake -g mydg sd mydg02-01 mydg02,0,8000

Note: As for all VxVM commands, the default size unit is s, representing a sector.
Add a suffix, such as k for kilobyte, m for megabyte or g for gigabyte, to change
the unit of size. For example, 500m would represent 500 megabytes.

Creating and administering subdisks and plexes
About subdisks

280



If you intend to use the new subdisk to build a volume, you must associate the
subdisk with a plex.

See “Associating subdisks with plexes” on page 283.

Subdisks for all plex layouts (concatenated, striped, RAID-5) are created the same
way.

Displaying subdisk information
The vxprint command displays information about VxVM objects. To display
general information for all subdisks, use this command:

# vxprint -st

The -s option specifies information about subdisks. The -t option prints a
single-line output record that depends on the type of object being listed.

The following is example output:

SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE

SV NAME PLEX VOLNAME NVOLLAYR LENGTH [COL/]OFF AM/NM MODE

sd mydg01-01 vol1-01 mydg01 0 102400 0 c0t10d0 ENA

sd mydg02-01 vol2-01 mydg02 0 102400 0 c0t11d0 ENA

You can display complete information about a particular subdisk by using this
command:

# vxprint [-g diskgroup] -l subdisk

For example, the following command displays all information for subdisk
mydg02-01 in the disk group, mydg:

# vxprint -g mydg -l mydg02-01

This command provides the following output:

Disk group: mydg

Subdisk: mydg02-01

info: disk=mydg02 offset=0 len=205632

assoc: vol=mvol plex=mvol-02 (offset=0)

flags: enabled

device: device=c0t11d0s2 path=/dev/vx/dmp/c0t11d0s2 diskdev=32/68

281Creating and administering subdisks and plexes
Displaying subdisk information



Moving subdisks
Moving a subdisk copies the disk space contents of a subdisk onto one or more
other subdisks. If the subdisk being moved is associated with a plex, then the data
stored on the original subdisk is copied to the new subdisks. The old subdisk is
dissociated from the plex, and the new subdisks are associated with the plex. The
association is at the same offset within the plex as the source subdisk. To move
a subdisk, use the following command:

# vxsd [-g diskgroup] mv old_subdisk new_subdisk [new_subdisk ...]

For example, if mydg03 in the disk group, mydg, is to be evacuated, and mydg12 has
enough room on two of its subdisks, use the following command:

# vxsd -g mydg mv mydg03-01 mydg12-01 mydg12-02

For the subdisk move to work correctly, the following conditions must be met:

■ The subdisks involved must be the same size.

■ The subdisk being moved must be part of an active plex on an active (ENABLED)
volume.

■ The new subdisk must not be associated with any other plex.

Subdisk can also be moved manually after hot-relocation.

See “Moving relocated subdisks” on page 480.

Splitting subdisks
Splitting a subdisk divides an existing subdisk into two separate subdisks. To split
a subdisk, use the following command:

# vxsd [-g diskgroup] -s size split subdisk newsd1 newsd2

where subdisk is the name of the original subdisk, newsd1 is the name of the first
of the two subdisks to be created and newsd2 is the name of the second subdisk
to be created.

The -s option is required to specify the size of the first of the two subdisks to be
created. The second subdisk occupies the remaining space used by the original
subdisk.

If the original subdisk is associated with a plex before the task, upon completion
of the split, both of the resulting subdisks are associated with the same plex.

To split the original subdisk into more than two subdisks, repeat the previous
command as many times as necessary on the resulting subdisks.

Creating and administering subdisks and plexes
Moving subdisks

282



For example, to split subdisk mydg03-02, with size 2000 megabytes into subdisks
mydg03-02, mydg03-03, mydg03-04 and mydg03-05, each with size 500 megabytes,
all in the disk group, mydg, use the following commands:

# vxsd -g mydg -s 1000m split mydg03-02 mydg03-02 mydg03-04

# vxsd -g mydg -s 500m split mydg03-02 mydg03-02 mydg03-03

# vxsd -g mydg -s 500m split mydg03-04 mydg03-04 mydg03-05

Joining subdisks
Joining subdisks combines two or more existing subdisks into one subdisk. To join
subdisks, the subdisks must be contiguous on the same disk. If the selected subdisks
are associated, they must be associated with the same plex, and be contiguous in
that plex. To join several subdisks, use the following command:

# vxsd [-g diskgroup] join subdisk1 subdisk2 ... new_subdisk

For example, to join the contiguous subdisks mydg03-02, mydg03-03, mydg03-04
and mydg03-05 as subdisk mydg03-02 in the disk group, mydg, use the following
command:

# vxsd -g mydg join mydg03-02 mydg03-03 mydg03-04 mydg03-05 \

mydg03-02

Associating subdisks with plexes
Associating a subdisk with a plex places the amount of disk space defined by the
subdisk at a specific offset within the plex. The entire area that the subdisk fills
must not be occupied by any portion of another subdisk. There are several ways
that subdisks can be associated with plexes, depending on the overall state of the
configuration.

If you have already created all the subdisks needed for a particular plex, to
associate subdisks at plex creation, use the following command:

# vxmake [-g diskgroup] plex plex sd=subdisk,...

For example, to create the plex home-1 and associate subdisks mydg02-01,
mydg02-00, and mydg02-02 with plex home-1, all in the disk group, mydg, use the
following command:

# vxmake -g mydg plex home-1 sd=mydg02-01,mydg02-00,mydg02-02

Subdisks are associated in order starting at offset 0. If you use this type of
command, you do not have to specify the multiple commands needed to create

283Creating and administering subdisks and plexes
Joining subdisks



the plex and then associate each of the subdisks with that plex. In this example,
the subdisks are associated to the plex in the order they are listed (after sd=). The
disk space defined as mydg02-01 is first, mydg02-00 is second, and mydg02-02 is
third. This method of associating subdisks is convenient during initial
configuration.

Subdisks can also be associated with a plex that already exists. To associate one
or more subdisks with an existing plex, use the following command:

# vxsd [-g diskgroup] assoc plex subdisk1 [subdisk2 subdisk3 ...]

For example, to associate subdisks named mydg02-01, mydg02-00, and mydg02-02

with a plex named home-1, use the following command:

# vxsd -g mydg assoc home-1 mydg02-01 mydg02-00 mydg02-01

If the plex is not empty, the new subdisks are added after any subdisks that are
already associated with the plex, unless the -l option is specified with the
command. The -l option associates subdisks at a specific offset within the plex.

The -l option is required if you previously created a sparse plex (that is, a plex
with portions of its address space that do not map to subdisks) for a particular
volume, and subsequently want to make the plex complete. To complete the plex,
create a subdisk of a size that fits the hole in the sparse plex exactly. Then,
associate the subdisk with the plex by specifying the offset of the beginning of
the hole in the plex, using the following command:

# vxsd [-g diskgroup] -l offset assoc sparse_plex exact_size_subdisk

For example, the following command would insert the subdisk, mydg15-01, in the
plex, vol10-01, starting at an offset of 4096 blocks:

# vxsd -g mydg -l 4096b assoc vol10-01 mydg15-01

Note: The subdisk must be exactly the right size. VxVM does not allow the space
defined for two subdisks to overlap within a plex.

For striped or RAID-5 plexes, use the following command to specify a column
number and column offset for the subdisk to be added:

# vxsd [-g diskgroup] -l column_#/offset assoc plex subdisk ...

If only one number is specified with the -l option for striped plexes, the number
is interpreted as a column number and the subdisk is associated at the end of the
column.

Creating and administering subdisks and plexes
Associating subdisks with plexes

284



For example, the following command would add the subdisk, mydg11-01, to the
end of column 1 of the plex, vol02-01:

# vxsd -g mydg -l 1 assoc vol02-01 mydg11-01

Alternatively, to add M subdisks at the end of each of the N columns in a striped
or RAID-5 volume, you can use the following form of the vxsd command:

# vxsd [-g diskgroup] assoc plex subdisk1:0 ... subdiskM:N-1

The following example shows how to append three subdisk to the ends of the three
columns in a striped plex, vol-01, in the disk group, mydg:

# vxsd -g mydg assoc vol01-01 mydg10-01:0 mydg11-01:1 mydg12-01:2

If a subdisk is filling a “hole” in the plex (that is, some portion of the volume logical
address space is mapped by the subdisk), the subdisk is considered stale. If the
volume is enabled, the association operation regenerates data that belongs on the
subdisk. Otherwise, it is marked as stale and is recovered when the volume is
started.

Associating log subdisks
Log subdisks are defined and added to a plex that is to become part of a volume
on which dirty region logging (DRL) is enabled. DRL is enabled for a volume when
the volume is mirrored and has at least one log subdisk.

Warning: Only one log subdisk can be associated with a plex. Because this log
subdisk is frequently written, care should be taken to position it on a disk that is
not heavily used. Placing a log subdisk on a heavily-used disk can degrade system
performance.

See “Dirty region logging” on page 59.

See “Dirty region logging in cluster environments” on page 513.

Log subdisks are ignored as far as the usual plex policies are concerned, and are
only used to hold the dirty region log.

Warning: The version 20 DCO volume layout includes space for a DRL. Do not use
procedures that are intended for manipulating log subdisks with a volume that
has a version 20 DCO volume associated with it.

See “Preparing a volume for DRL and instant snapshots” on page 360.

285Creating and administering subdisks and plexes
Associating log subdisks



To add a log subdisk to an existing plex, use the following command:

# vxsd [-g diskgroup] aslog plex subdisk

where subdisk is the name to be used for the log subdisk. The plex must be
associated with a mirrored volume before dirty region logging takes effect.

For example, to associate a subdisk named mydg02-01with a plex named vol01-02,
which is already associated with volume vol01 in the disk group, mydg, use the
following command:

# vxsd -g mydg aslog vol01-02 mydg02-01

You can also add a log subdisk to an existing volume with the following command:

# vxassist [-g diskgroup] addlog volume disk

This command automatically creates a log subdisk within a log plex on the specified
disk for the specified volume.

Dissociating subdisks from plexes
To break an established connection between a subdisk and the plex to which it
belongs, the subdisk is dissociated from the plex. A subdisk is dissociated when
the subdisk is removed or used in another plex. To dissociate a subdisk, use the
following command:

# vxsd [-g diskgroup] [-o force] dis subdisk

For example, to dissociate a subdisk named mydg02-01 from the plex with which
it is currently associated in the disk group, mydg, use the following command:

# vxsd -g mydg dis mydg02-01

You can additionally remove the dissociated subdisks from VxVM control using
the following form of the command:

# vxsd [-g diskgroup] -o rm dis subdisk

Warning: If the subdisk maps a portion of a volume’s address space, dissociating
it places the volume in DEGRADED mode. In this case, the dis operation prints a
warning and must be forced using the -o force option to succeed. Also, if
removing the subdisk makes the volume unusable, because another subdisk in
the same stripe is unusable or missing and the volume is not DISABLED and empty,
the operation is not allowed.

Creating and administering subdisks and plexes
Dissociating subdisks from plexes

286



Removing subdisks
To remove a subdisk, use the following command:

# vxedit [-g diskgroup] rm subdisk

For example, to remove a subdisk named mydg02-01 from the disk group, mydg,
use the following command:

# vxedit -g mydg rm mydg02-01

Changing subdisk attributes

Warning:To avoid possible data loss, change subdisk attributes with extreme care.

The vxedit command changes attributes of subdisks and other VxVM objects. To
change subdisk attributes, use the following command:

# vxedit [-g diskgroup] set attribute=value ... subdisk ...

The subdisk fields you can change with thevxedit command include the following:

Subdisk name.name

Persistent utility field(s) used to manage objects and communication between
different commands and Symantec products.

putiln field attributes are maintained on reboot. putiln fields are organized
as follows:

■ putil0 is set by VxVM.

■ putil1 is set by other Symantec products such as Storage Foundation
Manager (SFM), or the Veritas Enterprise Administrator (VEA) console.

■ putil2 is available for you to set for site-specific purposes.

If a command is stopped in the middle of an operation, these fields may need
to be cleaned up.

putiln

287Creating and administering subdisks and plexes
Removing subdisks



Nonpersistent (temporary) utility field(s) used to manage objects and
communication between different commands and Symantec products.

tutiln field attributes are not maintained on reboot. tutiln fields are
organized as follows:

■ tutil0 is set by VxVM.

■ tutil1 is set by other Symantec products such as Veritas Enterprise
Administrator (VEA).

■ tutil2 is available for you to set for site-specific purposes.

If a command is stopped in the middle of an operation, these fields may need
to be cleaned up.

tutiln

Subdisk length. This value is a standard Veritas Volume Manager length number.

See the vxintro(1M) manual page.

You can only change the length of a subdisk if the subdisk is disassociated. You
cannot increase the length of a subdisk to the point where it extends past the
end of the disk or it overlaps a reserved disk region on another disk.

len

Comment.comment

For example, to change the comment field of a subdisk named mydg02-01 in the
disk group, mydg, use the following command:

# vxedit -g mydg set comment="subdisk comment" mydg02-01

To prevent a particular subdisk from being associated with a plex, set the putil0
field to a non-null string, as shown in the following command:

# vxedit -g mydg set putil0="DO-NOT-USE" mydg02-01

See the vxedit(1M) manual page.

About plexes
Plexes are logical groupings of subdisks that create an area of disk space
independent of physical disk size or other restrictions. Replication (mirroring) of
disk data is set up by creating multiple data plexes for a single volume. Each data
plex in a mirrored volume contains an identical copy of the volume data. Because
each data plex must reside on different disks from the other plexes, the replication
provided by mirroring prevents data loss in the event of a single-point
disk-subsystem failure. Multiple data plexes also provide increased data integrity
and reliability.

Creating and administering subdisks and plexes
About plexes

288



Plexes are created automatically if you use the vxassist command to create
volumes.

See “About subdisks” on page 280.

See “Creating a volume” on page 307.

Note: Most VxVM commands require superuser or equivalent privileges.

Creating plexes
Use the vxmake command to create VxVM objects, such as plexes. When creating
a plex, identify the subdisks that are to be associated with it:

To create a plex from existing subdisks, use the following command:

# vxmake [-g diskgroup] plex plex sd=subdisk1[,subdisk2,...]

For example, to create a concatenated plex named vol01-02 from two existing
subdisks named mydg02-01 and mydg02-02 in the disk group, mydg, use the
following command:

# vxmake -g mydg plex vol01-02 sd=mydg02-01,mydg02-02

Creating a striped plex
To create a striped plex, you must specify additional attributes. For example, to
create a striped plex named pl-01 in the disk group, mydg, with a stripe width of
32 sectors and 2 columns, use the following command:

# vxmake -g mydg plex pl-01 layout=stripe stwidth=32 ncolumn=2 \

sd=mydg01-01,mydg02-01

To use a plex to build a volume, you must associate the plex with the volume.

See “Attaching and associating plexes” on page 294.

Displaying plex information
Listing plexes helps identify free plexes for building volumes. Use the plex (–p)
option to the vxprint command to list information about all plexes.

To display detailed information about all plexes in the system, use the following
command:

289Creating and administering subdisks and plexes
Creating plexes



# vxprint -lp

To display detailed information about a specific plex, use the following command:

# vxprint [-g diskgroup] -l plex

The -t option prints a single line of information about the plex. To list free plexes,
use the following command:

# vxprint -pt

The following section describes the meaning of the various plex states that may
be displayed in the STATE field of vxprint output.

Plex states
Plex states reflect whether or not plexes are complete and are consistent copies
(mirrors) of the volume contents. VxVM utilities automatically maintain the plex
state. However, if a volume should not be written to because there are changes to
that volume and if a plex is associated with that volume, you can modify the state
of the plex. For example, if a disk with a particular plex located on it begins to fail,
you can temporarily disable that plex.

A plex does not have to be associated with a volume. A plex can be created with
the vxmake plex command and be attached to a volume later.

VxVM utilities use plex states to:

■ indicate whether volume contents have been initialized to a known state

■ determine if a plex contains a valid copy (mirror) of the volume contents

■ track whether a plex was in active use at the time of a system failure

■ monitor operations on plexes

This section explains the individual plex states in detail.

See the Veritas VolumeManager Troubleshooting Guide.

Table 6-1shows the states that may be associated with a plex.

Creating and administering subdisks and plexes
Displaying plex information

290



Table 6-1 Plex states

DescriptionState

A plex can be in the ACTIVE state in the following ways:

■ when the volume is started and the plex fully participates in normal
volume I/O (the plex contents change as the contents of the volume
change)

■ when the volume is stopped as a result of a system crash and the
plex is ACTIVE at the moment of the crash

In the latter case, a system failure can leave plex contents in an
inconsistent state. When a volume is started, VxVM does the recovery
action to guarantee that the contents of the plexes marked as ACTIVE
are made identical.

On a system that is running well, ACTIVE should be the most common
state you see for any volume plexes.

ACTIVE

A plex is in a CLEAN state when it is known to contain a consistent
copy (mirror) of the volume contents and an operation has disabled
the volume. As a result, when all plexes of a volume are clean, no
action is required to guarantee that the plexes are identical when that
volume is started.

CLEAN

This state indicates that a data change object (DCO) plex attached to
a volume can be used by a snapshot plex to create a DCO volume during
a snapshot operation.

DCOSNP

Volume creation sets all plexes associated with the volume to the
EMPTY state to indicate that the plex is not yet initialized.

EMPTY

The IOFAIL plex state is associated with persistent state logging. When
the vxconfigd daemon detects an uncorrectable I/O failure on an
ACTIVE plex, it places the plex in the IOFAIL state to exclude it from
the recovery selection process at volume start time.

This state indicates that the plex is out-of-date with respect to the
volume, and that it requires complete recovery. It is likely that one or
more of the disks associated with the plex should be replaced.

IOFAIL

The state of a dirty region logging (DRL) or RAID-5 log plex is always
set to LOG.

LOG

291Creating and administering subdisks and plexes
Displaying plex information



Table 6-1 Plex states (continued)

DescriptionState

The vxmend off task indefinitely detaches a plex from a volume by
setting the plex state to OFFLINE. Although the detached plex
maintains its association with the volume, changes to the volume do
not update the OFFLINE plex. The plex is not updated until the plex
is put online and reattached with the vxplex att task. When this
occurs, the plex is placed in the STALE state, which causes its contents
to be recovered at the next vxvol start operation.

OFFLINE

This state indicates a snapshot plex that is being attached by the
snapstart operation. When the attach is complete, the state for the
plex is changed to SNAPDONE. If the system fails before the attach
completes, the plex and all of its subdisks are removed.

SNAPATT

This state indicates a snapshot plex that is fully attached. A plex in
this state can be turned into a snapshot volume with the vxplex
snapshot command. If the system fails before the attach completes,
the plex is dissociated from the volume.

See the vxplex(1M) manual page.

SNAPDIS

The SNAPDONE plex state indicates that a snapshot plex is ready for
a snapshot to be taken using vxassist snapshot.

SNAPDONE

The SNAPTMP plex state is used during a vxassist snapstart

operation when a snapshot is being prepared on a volume.
SNAPTMP

If there is a possibility that a plex does not have the complete and
current volume contents, that plex is placed in the STALE state. Also,
if an I/O error occurs on a plex, the kernel stops using and updating
the contents of that plex, and the plex state is set to STALE.

A vxplex att operation recovers the contents of a STALE plex from
an ACTIVE plex. Atomic copy operations copy the contents of the
volume to the STALE plexes. The system administrator can force a
plex to the STALE state with a vxplex det operation.

STALE

Setting a plex to the TEMP state eases some plex operations that
cannot occur in a truly atomic fashion. For example, attaching a plex
to an enabled volume requires copying volume contents to the plex
before it can be considered fully attached.

A utility sets the plex state to TEMP at the start of such an operation
and to an appropriate state at the end of the operation. If the system
fails for any reason, a TEMP plex state indicates that the operation is
incomplete. A later vxvol start dissociates plexes in the TEMP
state.

TEMP

Creating and administering subdisks and plexes
Displaying plex information

292



Table 6-1 Plex states (continued)

DescriptionState

A TEMPRM plex state is similar to a TEMP state except that at the
completion of the operation, the TEMPRM plex is removed. Some
subdisk operations require a temporary plex. Associating a subdisk
with a plex, for example, requires updating the subdisk with the volume
contents before actually associating the subdisk. This update requires
associating the subdisk with a temporary plex, marked TEMPRM, until
the operation completes and removes the TEMPRM plex.

If the system fails for any reason, the TEMPRM state indicates that
the operation did not complete successfully. A later operation
dissociates and removes TEMPRM plexes.

TEMPRM

The TEMPRMSD plex state is used by vxassistwhen attaching new
data plexes to a volume. If the synchronization operation does not
complete, the plex and its subdisks are removed.

TEMPRMSD

Plex condition flags
Table 6-2 shows the plex condition flags that vxprint may display in the STATE
field.

Table 6-2 Plex condition flags

DescriptionCondition flag

The plex was detached as a result of an I/O failure detected during
normal volume I/O. The plex is out-of-date with respect to the volume,
and in need of complete recovery. However, this condition also
indicates a likelihood that one of the disks in the system should be
replaced.

IOFAIL

No physical disk was found for one of the subdisks in the plex. This
implies either that the physical disk failed, making it unrecognizable,
or that the physical disk is no longer attached through a known access
path. The plex cannot be used until this condition is fixed, or the
affected subdisk is dissociated.

NODAREC

A physical device could not be found corresponding to the disk ID in
the disk media record for one of the subdisks associated with the plex.
The plex cannot be used until this condition is fixed, or the affected
subdisk is dissociated.

NODEVICE

293Creating and administering subdisks and plexes
Displaying plex information



Table 6-2 Plex condition flags (continued)

DescriptionCondition flag

A disk corresponding to one of the disk media records was replaced,
or was reattached too late to prevent the plex from becoming
out-of-date with respect to the volume. The plex required complete
recovery from another plex in the volume to synchronize its contents.

RECOVER

Set in the disk media record when one of the subdisks associated with
the plex is removed. The plex cannot be used until this condition is
fixed, or the affected subdisk is dissociated.

REMOVED

Plex kernel states
The plex kernel state indicates the accessibility of the plex to the volume driver
which monitors it.

No user intervention is required to set these states; they are maintained internally.
On a system that is operating properly, all plexes are enabled.

Table 6-3 shows the possible plex kernel states.

Table 6-3 Plex kernel states

DescriptionKernel state

Maintenance is being performed on the plex. Any write request to the
volume is not reflected in the plex. A read request from the volume is
not satisfied from the plex. Plex operations and ioctl function calls
are accepted.

DETACHED

The plex is offline and cannot be accessed.DISABLED

The plex is online. A write request to the volume is reflected in the
plex. A read request from the volume is satisfied from the plex. If a
plex is sparse, this is indicated by theSPARSEmodifier being displayed
in the output from the vxprint -t command.

ENABLED

Attaching and associating plexes
A plex becomes a participating plex for a volume by attaching it to a volume.
(Attaching a plex associates it with the volume and enables the plex for use.) To
attach a plex to an existing volume, use the following command:

# vxplex [-g diskgroup] att volume plex

Creating and administering subdisks and plexes
Attaching and associating plexes

294



For example, to attach a plex named vol01-02 to a volume named vol01 in the
disk group, mydg, use the following command:

# vxplex -g mydg att vol01 vol01-02

If the volume does not already exist, a plex (or multiple plexes) can be associated
with the volume when it is created using the following command:

# vxmake [-g diskgroup] -U usetype vol volume plex=plex1[,plex2...]

For example, to create a mirrored, fsgen-type volume named home, and to
associate two existing plexes named home-1 and home-2 with home, use the
following command:

# vxmake -g mydg -U fsgen vol home plex=home-1,home-2

You can also use the command vxassist mirror volume to add a data plex as a
mirror to an existing volume.

Taking plexes offline
Once a volume has been created and placed online (ENABLED), VxVM can
temporarily disconnect plexes from the volume. This is useful, for example, when
the hardware on which the plex resides needs repair or when a volume has been
left unstartable and a source plex for the volume revive must be chosen manually.

Resolving a disk or system failure includes taking a volume offline and attaching
and detaching its plexes. The two commands used to accomplish disk failure
resolution are vxmend and vxplex.

To take a plex OFFLINE so that repair or maintenance can be performed on the
physical disk containing subdisks of that plex, use the following command:

# vxmend [-g diskgroup] off plex

If a disk fails (for example, it has a head crash), use the vxmend command to take
offline all plexes that have associated subdisks on the affected disk. For example,
if plexes vol01-02 and vol02-02 in the disk group, mydg, had subdisks on a drive
to be repaired, use the following command to take these plexes offline:

# vxmend -g mydg off vol01-02 vol02-02

This command places vol01-02 and vol02-02 in the OFFLINE state, and they
remain in that state until it is changed. The plexes are not automatically recovered
on rebooting the system.

295Creating and administering subdisks and plexes
Taking plexes offline



Detaching plexes
To temporarily detach one data plex in a mirrored volume, use the following
command:

# vxplex [-g diskgroup] det plex

For example, to temporarily detach a plex named vol01-02 in the disk group,
mydg, and place it in maintenance mode, use the following command:

# vxplex -g mydg det vol01-02

This command temporarily detaches the plex, but maintains the association
between the plex and its volume. However, the plex is not used for I/O. A plex
detached with the preceding command is recovered at system reboot. The plex
state is set to STALE, so that if a vxvol start command is run on the appropriate
volume (for example, on system reboot), the contents of the plex is recovered and
made ACTIVE.

When the plex is ready to return as an active part of its volume, it can be reattached
to the volume.

See “Reattaching plexes” on page 296.

Reattaching plexes
This section describes how to reattach plexes manually if automatic reattachment
feature is disabled. This procedure may also be required for devices that are not
automatically reattached. For example, VxVM does not automatically reattach
plexes on site-consistent volumes.

When a disk has been repaired or replaced and is again ready for use, the plexes
must be put back online (plex state set to ACTIVE). To set the plexes to ACTIVE, use
one of the following procedures depending on the state of the volume.

■ If the volume is currently ENABLED, use the following command to reattach the
plex:

# vxplex [-g diskgroup] att volume plex ...

For example, for a plex named vol01-02 on a volume named vol01 in the disk
group, mydg, use the following command:

# vxplex -g mydg att vol01 vol01-02

Creating and administering subdisks and plexes
Detaching plexes

296



As when returning an OFFLINE plex to ACTIVE, this command starts to recover
the contents of the plex and, after the recovery is complete, sets the plex utility
state to ACTIVE.

■ If the volume is not in use (not ENABLED), use the following command to
re-enable the plex for use:

# vxmend [-g diskgroup] on plex

For example, to re-enable a plex named vol01-02 in the disk group, mydg, enter:

# vxmend -g mydg on vol01-02

In this case, the state of vol01-02 is set to STALE. When the volume is next
started, the data on the plex is revived from another plex, and incorporated
into the volume with its state set to ACTIVE.

If the vxinfo command shows that the volume is unstartable, set one of the
plexes to CLEAN using the following command:

# vxmend [-g diskgroup] fix clean plex

Start the volume using the following command:

# vxvol [-g diskgroup] start volume

See the Veritas VolumeManager Troubleshooting Guide.

Automatic plex reattachment
When a mirror plex encounters irrecoverable errors, Veritas Volume Manager
(VxVM) detaches the plex from the mirrored volume. By default, VxVM
automatically reattaches the affected mirror plexes when the underlying failed
disk or LUN becomes visible. When VxVM detects that the device is online, the
VxVM volume components on the involved LUN are automatically recovered, and
the mirrors become usable.

VxVM uses the DMP failed LUN probing to detect when the device has come online.
The timing for a reattach depends on the dmp_restore_interval, which is a
tunable parameter. The number of LUNs that have reconnected may also affect
the time required before the plex is reattached.

VxVM does not automatically reattach plexes on site-consistent volumes.

When VxVM is installed or the system reboots, VxVM starts the vxattachd

daemon. The vxattachddaemon handles automatic reattachment for both plexes
and sites. Thevxattachd daemon also initiates the resynchronization process for
a plex. After a plex is successfully reattached, vxattachd notifies root.

297Creating and administering subdisks and plexes
Reattaching plexes



To disable automatic plex attachment, removevxattachd from the start up scripts.
Disabling vxattachd disables the automatic reattachment feature for both plexes
and sites.

In a Cluster Volume Manager (CVM) the following considerations apply:

■ If the global detach policy is set, a storage failure from any node causes all
plexes on that storage to be detached globally. When the storage is connected
back to any node, the vxattachd daemon triggers reattaching the plexes on
the master node only.

■ The automatic reattachment functionality is local to a node. When enabled on
a node, all of the disk groups imported on the node are monitored. If the
automatic reattachment functionality is disabled on a master node, the feature
is disable on all shared disk groups and private disk groups imported on the
master node.

See “Automatic site reattachment” on page 542.

Moving plexes
Moving a plex copies the data content from the original plex onto a new plex. To
move a plex, use the following command:

# vxplex [-g diskgroup] mv original_plex new_plex

For a move task to be successful, the following criteria must be met:

■ The old plex must be an active part of an active (ENABLED) volume.

■ The new plex must be at least the same size or larger than the old plex.

■ The new plex must not be associated with another volume.

The size of the plex has several implications:

■ If the new plex is smaller or more sparse than the original plex, an incomplete
copy is made of the data on the original plex. If an incomplete copy is desired,
use the -o force option to vxplex.

■ If the new plex is longer or less sparse than the original plex, the data that
exists on the original plex is copied onto the new plex. Any area that is not on
the original plex, but is represented on the new plex, is filled from other
complete plexes associated with the same volume.

■ If the new plex is longer than the volume itself, then the remaining area of the
new plex above the size of the volume is not initialized and remains unused.

Creating and administering subdisks and plexes
Moving plexes

298



Copying volumes to plexes
This task copies the contents of a volume onto a specified plex. The volume to be
copied must not be enabled. The plex cannot be associated with any other volume.
To copy a plex, use the following command:

# vxplex [-g diskgroup] cp volume new_plex

After the copy task is complete, new_plex is not associated with the specified
volume volume. The plex contains a complete copy of the volume data. The plex
that is being copied should be the same size or larger than the volume. If the plex
being copied is larger than the volume, an incomplete copy of the data results.
For the same reason, new_plex should not be sparse.

Dissociating and removing plexes
When a plex is no longer needed, you can dissociate it from its volume and remove
it as an object from VxVM. You might want to remove a plex for the following
reasons:

■ to provide free disk space

■ to reduce the number of mirrors in a volume so you can increase the length
of another mirror and its associated volume. When the plexes and subdisks
are removed, the resulting space can be added to other volumes

■ to remove a temporary mirror that was created to back up a volume and is no
longer needed

■ to change the layout of a plex

To save the data on a plex to be removed, the configuration of that plex must be
known. Parameters from that configuration (stripe unit size and subdisk ordering)
are critical to the creation of a new plex to contain the same data. Before a plex
is removed, you must record its configuration.

See “Displaying plex information” on page 289.”

To dissociate a plex from the associated volume and remove it as an object from
VxVM, use the following command:

# vxplex [-g diskgroup] -o rm dis plex

For example, to dissociate and remove a plex named vol01-02 in the disk group,
mydg, use the following command:

# vxplex -g mydg -o rm dis vol01-02

299Creating and administering subdisks and plexes
Copying volumes to plexes



This command removes the plex vol01-02 and all associated subdisks.

Alternatively, you can first dissociate the plex and subdisks, and then remove
them with the following commands:

# vxplex [-g diskgroup] dis plex

# vxedit [-g diskgroup] -r rm plex

When used together, these commands produce the same result as the vxplex -o

rm dis command. The -r option to vxedit rm recursively removes all objects
from the specified object downward. In this way, a plex and its associated subdisks
can be removed by a single vxedit command.

Changing plex attributes

Warning: To avoid possible data loss, change plex attributes with extreme care.

The vxedit command changes the attributes of plexes and other Volume Manager
objects. To change plex attributes, use the following command:

# vxedit [-g diskgroup] set attribute=value ... plex

Plex fields that can be changed using the vxedit command include:

■ name

■ putiln

■ tutiln

■ comment

The putiln field attributes are maintained on reboot; tutiln fields are temporary
and are not retained on reboot. VxVM sets the putil0 and tutil0 utility fields.
Other Symantec products, such as Storage Foundation Manager (SFM), set the
putil1 and tutil1 fields. The putil2 and tutil2 are available for you to use for
site-specific purposes.

The following example command sets the comment field, and also sets tutil2 to
indicate that the subdisk is in use:

# vxedit -g mydg set comment="plex comment" tutil2="u" vol01-02

To prevent a particular plex from being associated with a volume, set the putil0
field to a non-null string, as shown in the following command:

# vxedit -g mydg set putil0="DO-NOT-USE" vol01-02

Creating and administering subdisks and plexes
Changing plex attributes

300



See the vxedit(1M) manual page.

301Creating and administering subdisks and plexes
Changing plex attributes



Creating and administering subdisks and plexes
Changing plex attributes

302



Creating volumes

This chapter includes the following topics:

■ About volume creation

■ Types of volume layouts

■ Creating a volume

■ Using vxassist

■ Discovering the maximum size of a volume

■ Disk group alignment constraints on volumes

■ Creating a volume on any disk

■ Creating a volume on specific disks

■ Creating a mirrored volume

■ Creating a volume with a version 0 DCO volume

■ Creating a volume with a version 20 DCO volume

■ Creating a volume with dirty region logging enabled

■ Creating a striped volume

■ Mirroring across targets, controllers or enclosures

■ Mirroring across media types (SSD and HDD)

■ Creating a RAID-5 volume

■ Creating tagged volumes

■ Creating a volume using vxmake

7Chapter



■ Initializing and starting a volume

■ Accessing a volume

About volume creation
Volumes are logical devices that appear as physical disk partition devices to data
management systems. Volumes enhance recovery from hardware failure, data
availability, performance, and storage configuration.

Volumes are created to take advantage of the VxVM concept of virtual disks. A
file system can be placed on the volume to organize the disk space with files and
directories. In addition, you can configure applications such as databases to
organize data on volumes.

Disks and disk groups must be initialized and defined to VxVM before volumes
can be created from them.

See “About disk management” on page 82.

See “About disk groups” on page 220.

Types of volume layouts
VxVM allows you to create volumes with the following layout types:

A volume whose subdisks are arranged both sequentially and
contiguously within a plex. Concatenation allows a volume to be
created from multiple regions of one or more disks if there is not
enough space for an entire volume on a single region of a disk. If
a single LUN or disk is split into multiple subdisks, and each
subdisk belongs to a unique volume, this is called carving.

See “Concatenation, spanning, and carving” on page 38.

Concatenated

A volume with data spread evenly across multiple disks. Stripes
are equal-sized fragments that are allocated alternately and evenly
to the subdisks of a single plex. There must be at least two subdisks
in a striped plex, each of which must exist on a different disk.
Throughput increases with the number of disks across which a
plex is striped. Striping helps to balance I/O load in cases where
high traffic areas exist on certain subdisks.

See “Striping (RAID-0)” on page 40.

Striped

Creating volumes
About volume creation

304



A volume with multiple data plexes that duplicate the information
contained in a volume. Although a volume can have a single data
plex, at least two are required for true mirroring to provide
redundancy of data. For the redundancy to be useful, each of these
data plexes should contain disk space from different disks.

See “Mirroring (RAID-1)” on page 43.

Mirrored

A volume that uses striping to spread data and parity evenly across
multiple disks in an array. Each stripe contains a parity stripe
unit and data stripe units. Parity can be used to reconstruct data
if one of the disks fails. In comparison to the performance of
striped volumes, write throughput of RAID-5 volumes decreases
since parity information needs to be updated each time data is
modified. However, in comparison to mirroring, the use of parity
to implement data redundancy reduces the amount of space
required.

See “RAID-5 (striping with parity)” on page 46.

RAID-5

A volume that is configured as a striped plex and another plex
that mirrors the striped one. This requires at least two disks for
striping and one or more other disks for mirroring (depending on
whether the plex is simple or striped). The advantages of this
layout are increased performance by spreading data across
multiple disks and redundancy of data.

See “Striping plus mirroring (mirrored-stripe or RAID-0+1)”
on page 44.

Mirrored-stripe

A volume constructed from other volumes. Non-layered volumes
are constructed by mapping their subdisks to VM disks. Layered
volumes are constructed by mapping their subdisks to underlying
volumes (known as storage volumes), and allow the creation of
more complex forms of logical layout. Examples of layered volumes
are striped-mirror and concatenated-mirror volumes.

See Layered volumes.

A striped-mirror volume is created by configuring several mirrored
volumes as the columns of a striped volume. This layout offers
the same benefits as a non-layered mirrored-stripe volume. In
addition it provides faster recovery as the failure of single disk
does not force an entire striped plex offline.

See Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10).

A concatenated-mirror volume is created by concatenating several
mirrored volumes. This provides faster recovery as the failure of
a single disk does not force the entire mirror offline.

Layered Volume

305Creating volumes
Types of volume layouts



Supported volume logs and maps
Veritas Volume Manager supports the use of the following types of logs and maps
with volumes:

■ FastResync Maps are used to perform quick and efficient resynchronization
of mirrors.
See “FastResync” on page 64.

These maps are supported either in memory (Non-Persistent FastResync), or
on disk as part of a DCO volume (Persistent FastResync). Two types of DCO
volume are supported:

■ Version 0 DCO volumes only support Persistent FastResync for the
traditional third-mirror break-off type of volume snapshot.
See “Version 0 DCO volume layout” on page 67.
See “Creating a volume with a version 0 DCO volume” on page 321.

■ Version 20 DCO volumes, introduced in VxVM 4.0, support DRL logging
(see below) and Persistent FastResync for full-sized and space-optimized
instant volume snapshots.
See “Version 20 DCO volume layout” on page 67.
See “Creating a volume with a version 20 DCO volume” on page 324.
See “Enabling FastResync on a volume” on page 374.

■ Dirty region logs allow the fast recovery of mirrored volumes after a system
crash.
See “Dirty region logging” on page 59.
These logs are supported either as DRL log plexes, or as part of a version 20
DCO volume. Refer to the following sections for information on creating a
volume on which DRL is enabled:
See “Creating a volume with dirty region logging enabled” on page 324.
See “Creating a volume with a version 20 DCO volume” on page 324.

■ RAID-5 logs are used to prevent corruption of data during recovery of RAID-5
volumes.
See “RAID-5 logging” on page 51.
These logs are configured as plexes on disks other than those that are used
for the columns of the RAID-5 volume.
See “Creating a RAID-5 volume” on page 329.

Creating volumes
Types of volume layouts

306



Creating a volume
You can create volumes using an advanced approach or an assisted approach.
Each method uses different tools. You may switch between the advanced and the
assisted approaches at will.

Note: Most VxVM commands require superuser or equivalent privileges.

Advanced approach
The advanced approach consists of a number of commands that typically require
you to specify detailed input. These commands use a “building block” approach
that requires you to have a detailed knowledge of the underlying structure and
components to manually perform the commands necessary to accomplish a certain
task. Advanced operations are performed using several different VxVM commands.

To create a volume using the advanced approach, perform the following steps in
the order specified:

■ Create subdisks using vxmake sd.

See “Creating subdisks” on page 280.

■ Create plexes using vxmake plex, and associate subdisks with them.

See “Creating plexes” on page 289.
See “Associating subdisks with plexes” on page 283.

■ Associate plexes with the volume using vxmake vol.

■ Initialize the volume using vxvol start or vxvol init zero.

See “Initializing and starting a volume created using vxmake” on page 335.

The steps to create the subdisks and plexes, and to associate the plexes with the
volumes can be combined by using a volume description file with the vxmake

command.

See “Creating a volume using a vxmake description file” on page 333.

See “Creating a volume using vxmake” on page 331.

Assisted approach
The assisted approach takes information about what you want to accomplish and
then performs the necessary underlying tasks. This approach requires only
minimal input from you, but also permits more detailed specifications.

Assisted operations are performed primarily through the vxassist command.
vxassist and Storage Foundation Manager (SFM) create the required plexes and

307Creating volumes
Creating a volume



subdisks using only the basic attributes of the desired volume as input.
Additionally, they can modify existing volumes while automatically modifying
any underlying or associated objects.

Both vxassist and SFM use default values for many volume attributes, unless
you provide specific values. They do not require you to have a thorough
understanding of low-level VxVM concepts, vxassist and SFM do not conflict
with other VxVM commands or preclude their use. Objects created by vxassist

and SFM are compatible and inter-operable with objects created by other VxVM
commands and interfaces.

Using vxassist
You can use the vxassist utility to create and modify volumes. Specify the basic
requirements for volume creation or modification, and vxassist performs the
necessary tasks.

The advantages of using vxassist rather than the advanced approach include:

■ Most actions require that you enter only one command rather than several.

■ You are required to specify only minimal information tovxassist. If necessary,
you can specify additional parameters to modify or control its actions.

■ Operations result in a set of configuration changes that either succeed or fail
as a group, rather than individually. System crashes or other interruptions do
not leave intermediate states that you have to clean up. If vxassist finds an
error or an exceptional condition, it exits after leaving the system in the same
state as it was prior to the attempted operation.

The vxassist utility helps you perform the following tasks:

■ Creating volumes.

■ Creating mirrors for existing volumes.

■ Growing or shrinking existing volumes.

■ Backing up volumes online.

■ Reconfiguring a volume’s layout online.

vxassist obtains most of the information it needs from sources other than your
input. vxassist obtains information about the existing objects and their layouts
from the objects themselves.

For tasks requiring new disk space, vxassist seeks out available disk space and
allocates it in the configuration that conforms to the layout specifications and
that offers the best use of free space.

Creating volumes
Using vxassist

308



The vxassist command takes this form:

# vxassist [options] keyword volume [attributes...]

where keyword selects the task to perform. The first argument after a vxassist

keyword, volume, is a volume name, which is followed by a set of desired volume
attributes. For example, the keyword make allows you to create a new volume:

# vxassist [options] make volume length [attributes]

The length of the volume can be specified in sectors, kilobytes, megabytes, or
gigabytes by using a suffix character of s, k, m, or g. If no suffix is specified, the
size is assumed to be in sectors.

See the vxintro(1M) manual page.

Additional attributes can be specified as appropriate, depending on the
characteristics that you wish the volume to have. Examples are stripe unit width,
number of columns in a RAID-5 or stripe volume, number of mirrors, number of
logs, and log type.

By default, the vxassist command creates volumes in a default disk group
according to a set of rules.

See “Rules for determining the default disk group” on page 222.

To use a different disk group, specify the -g diskgroup option to vxassist.

A large number of vxassist keywords and attributes are available for use.

See the vxassist(1M) manual page.

The simplest way to create a volume is to use default attributes.

Creating a volume on any disk

More complex volumes can be created with specific attributes by controlling how
vxassist uses the available storage space.

See “Creating a volume on specific disks” on page 313.

Setting default values for vxassist
The default values that the vxassist command uses may be specified in the file
/etc/default/vxassist. The defaults listed in this file take effect if you do not
override them on the command line, or in an alternate defaults file that you specify
using the -d option. A default value specified on the command line always takes
precedence. vxassist also has a set of built-in defaults that it uses if it cannot
find a value defined elsewhere.

309Creating volumes
Using vxassist



You must create the /etc/defaultdirectory and the vxassistdefault file if these
do not already exist on your system.

The format of entries in a defaults file is a list of attribute-value pairs separated
by new lines. These attribute-value pairs are the same as those specified as options
on the vxassist command line.

See the vxassist(1M) manual page.

To display the default attributes held in the file /etc/default/vxassist, use the
following form of the vxassist command:

# vxassist help showattrs

The following is a sample vxassist defaults file:

# By default:

# create unmirrored, unstriped volumes

# allow allocations to span drives

# with RAID-5 create a log, with mirroring don’t create a log

# align allocations on cylinder boundaries

layout=nomirror,nostripe,span,nocontig,raid5log,noregionlog,

diskalign

# use the fsgen usage type, except when creating RAID-5 volumes

usetype=fsgen

# allow only root access to a volume

mode=u=rw,g=,o=

user=root

group=root

# when mirroring, create two mirrors

nmirror=2

# for regular striping, by default create between 2 and 8 stripe

# columns

max_nstripe=8

min_nstripe=2

# for RAID-5, by default create between 3 and 8 stripe columns

max_nraid5stripe=8

min_nraid5stripe=3

# by default, create 1 log copy for both mirroring and RAID-5 volumes

nregionlog=1

nraid5log=1

Creating volumes
Using vxassist

310



# by default, limit mirroring log lengths to 32Kbytes

max_regionloglen=32k

# use 64K as the default stripe unit size for regular volumes

stripe_stwid=64k

# use 16K as the default stripe unit size for RAID-5 volumes

raid5_stwid=16k

Using the SmartMove™ feature while attaching a plex
The SmartMove™ feature reduces the time and I/O required to attach or reattach
a plex to an existing VxVM volume, in the specific case where a VxVM volume
has a VxFS file system mounted on it. The SmartMove feature uses the VxFS
information to detect free extents and avoid copying them.

To turn on the SmartMove feature, specify usefssmartmove=all in the file
/etc/default/vxsf. This tunable is system-wide and persistent, so it only needs
to be set once per server. The SmartMove feature is turned off by default.

The SmartMove feature takes effect when a plex is attached or reattached using
the vxplex, vxsd, or vxassist commands.

Note: The file system must be mounted to get the benefits of the SmartMove™
feature.

When the SmartMove feature is on, less I/O is sent through the host, through the
storage network and to the disks or LUNs. The SmartMove feature can be used
for faster plex creation and faster array migrations.

The SmartMove feature enables migration from a traditional LUN to a thinly
provisioned LUN, removing unused space in the process.

For more information, see the section on migrating to thin provisioning in the
Veritas Storage Foundation™ Advanced Features Administrator's Guide.

Discovering the maximum size of a volume
To find out how large a volume you can create within a disk group, use the
following form of the vxassist command:

# vxassist [-g diskgroup] maxsize layout=layout [attributes]

311Creating volumes
Discovering the maximum size of a volume



For example, to discover the maximum size RAID-5 volume with 5 columns and
2 logs that you can create within the disk group, dgrp, enter the following
command:

# vxassist -g dgrp maxsize layout=raid5 nlog=2

You can use storage attributes if you want to restrict the disks that vxassist uses
when creating volumes.

See “Creating a volume on specific disks” on page 313.

The maximum size of a VxVM volume that you can create is 256TB.

Disk group alignment constraints on volumes
Certain constraints apply to the length of volumes and to the numeric values of
size attributes that apply to volumes. If a volume is created in a disk group that
is compatible with the Cross-platform Data Sharing (CDS) feature, the volume’s
length and the values of volume attributes that define the sizes of objects such
as logs or stripe units, must be an integer multiple of the alignment value of 16
blocks (8 kilobytes). If the disk group is not compatible with the CDS feature, the
volume’s length and attribute size values must be multiples of 1 block (512 bytes).

To discover the value in blocks of the alignment that is set on a disk group, use
this command:

# vxprint -g diskgroup -G -F %align

By default, vxassist automatically rounds up the volume size and attribute size
values to a multiple of the alignment value. (This is equivalent to specifying the
attribute dgalign_checking=round as an additional argument to the vxassist

command.)

If you specify the attribute dgalign_checking=strict to vxassist, the command
fails with an error if you specify a volume length or attribute size value that is
not a multiple of the alignment value for the disk group.

Creating a volume on any disk
By default, the vxassist make command creates a concatenated volume that uses
one or more sections of disk space. On a fragmented disk, this allows you to put
together a volume larger than any individual section of free disk space available.

To change the default layout, edit the definition of the layout attribute defined
in the /etc/default/vxassist file.

Creating volumes
Disk group alignment constraints on volumes

312



If there is not enough space on a single disk, vxassist creates a spanned volume.
A spanned volume is a concatenated volume with sections of disk space spread
across more than one disk. A spanned volume can be larger than any disk on a
system, since it takes space from more than one disk.

To create a concatenated, default volume, use the following form of the vxassist
command:

# vxassist [-b] [-g diskgroup] make volume length

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

For example, to create the concatenated volume voldefault with a length of 10
gigabytes in the default disk group:

# vxassist -b make voldefault 10g

Creating a volume on specific disks
VxVM automatically selects the disks on which each volume resides, unless you
specify otherwise. If you want a volume to be created on specific disks, you must
designate those disks to VxVM. More than one disk can be specified.

To create a volume on a specific disk or disks, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \

[layout=layout] diskname ...

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

For example, to create the volume volspecwith length 5 gigabytes on disks mydg03
and mydg04, use the following command:

# vxassist -b -g mydg make volspec 5g mydg03 mydg04

The vxassist command allows you to specify storage attributes. These give you
control over the devices, including disks, controllers and targets, which vxassist

uses to configure a volume. For example, you can specifically exclude disk mydg05.

Note:The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

313Creating volumes
Creating a volume on specific disks



# vxassist -b -g mydg make volspec 5g \!mydg05

The following example excludes all disks that are on controller c2:

# vxassist -b -g mydg make volspec 5g \!ctlr:c2

This example includes only disks on controller c1 except for target t5:

# vxassist -b -g mydg make volspec 5g ctlr:c1 \!target:c1t5

If you want a volume to be created using only disks from a specific disk group,
use the -g option to vxassist, for example:

# vxassist -g bigone -b make volmega 20g bigone10 bigone11

or alternatively, use the diskgroup attribute:

# vxassist -b make volmega 20g diskgroup=bigone bigone10 \

bigone11

Any storage attributes that you specify for use must belong to the disk group.
Otherwise, vxassist will not use them to create a volume.

You can also use storage attributes to control how vxassistuses available storage,
for example, when calculating the maximum size of a volume, when growing a
volume or when removing mirrors or logs from a volume. The following example
excludes disks dgrp07 and dgrp08 when calculating the maximum size of RAID-5
volume that vxassist can create using the disks in the disk group dg:

# vxassist -b -g dgrp maxsize layout=raid5 nlog=2 \!dgrp07 \!dgrp08

It is also possible to control how volumes are laid out on the specified storage.

See “Specifying ordered allocation of storage to volumes” on page 316.

If you are using VxVM in conjunction with Veritas SANPoint Control 2.0, you can
specify how vxassist should use the available storage groups when creating
volumes.

See “Configuration of volumes on SAN storage” on page 73.

See the vxassist(1M) manual page.

Creating a volume on SSD devices
This section explains how to create a volume on Solid State Disk (SSD) device.

You must upgrade the disk group to version 150 for SSD support. To upgrade the
disk group, use the following command:

Creating volumes
Creating a volume on specific disks

314



# vxdg upgrade diskgroup

where diskgroup is the name of the disk group to which the disk belongs.

The allocation behavior of vxassist changes with presence of SSD devices in a disk
group.

Note: If the disk group version is less than 150, vxassist will not honor media
type of the device for making allocations.

The vxassist command allows you to specify Hard Disk Drive (HDD) or SSD
devices for allocation using the mediatype attribute. For example, to create a
volume myvol of size 1g on SSD disks in mydg, use the following command:

# vxassist -g mydg make myvol 1g mediatype:ssd

For example, to create a volume myvol of size 1g on HDD disks in mydg, use the
following command:

# vxassist -g mydg make myvol 1g mediatype:hdd

If neither mediatype:hdd nor mediatype:ssd is specified, then mediatype:hdd

is considered as default selection type which means only the HDD devices present
in the disk group are considered for allocation.

If a mix of SSD devices and HDD devices are specified, the allocation is done only
on HDD devices unless mediatype:ssd is explicitly specified. For example:

enclr1 : enclosure having all SSD devices

enclr2 : enclosure having all HDD devices

enclr3 : enclosure having mix of SSD and HDD devices

In the following command, volume myvol of size 1G is allocated on devices from
enclr2 array (only HDD devices):

# vxassist -g mydg make myvol 1G enclr:enclr1 enclr:enclr2

In order to create a volume on SSD devices from enclr1 enclosure, following
command should be used:

# vxassist -g mydg make myvol 1G enclr:enclr1 mediatype:ssd

If enclr3 is only specified, only hdd devices present in enclr3 are considered for
allocation.

In the following two commands, volume myvol of size 1G is allocated on HDD
devices from enclr3 array:

315Creating volumes
Creating a volume on specific disks



# vxassist -g mydg make myvol 1G enclr:enclr3 mediatype:hdd

# vxasisst -g mydg make myvol 1G enclr:enclr3

In order to allocate a volume on SSD devices from enclr3 enclosure, following
command should be used:

# vxassist -g mydg make myvol 1G enclr:enclr3 mediatype:ssd

The allocation fails, if the command is specified in one of the following two ways:

# vxassist -g mydg make myvol 1G enclr:enclr1 mediatype:hdd

In the above case, volume myvol cannot be created as there are no HDD devices
in enclr1 enclosure.

# vxassist -g mydg make myvol 1G enclr:enclr2 mediatype:ssd

In the above case, volume myvol cannot be created as there are no SSD devices
in enclr2 enclosure.

Specifying ordered allocation of storage to volumes
Ordered allocation gives you complete control of space allocation. It requires that
the number of disks that you specify to the vxassist command must match the
number of disks that are required to create a volume. The order in which you
specify the disks to vxassist is also significant.

If you specify the -o ordered option to vxassist when creating a volume, any
storage that you also specify is allocated in the following order:

■ Concatenate disks.

■ Form columns.

■ Form mirrors.

For example, the following command creates a mirrored-stripe volume with 3
columns and 2 mirrors on 6 disks in the disk group, mydg:

# vxassist -b -g mydg -o ordered make mirstrvol 10g \

layout=mirror-stripe ncol=3 mydg01 mydg02 mydg03 mydg04 mydg05 mydg06

This command places columns 1, 2 and 3 of the first mirror on disks mydg01,
mydg02 and mydg03 respectively, and columns 1, 2 and 3 of the second mirror on
disks mydg04, mydg05 and mydg06 respectively.

Figure 7-1 shows an example of using ordered allocation to create a mirrored-stripe
volume.

Creating volumes
Creating a volume on specific disks

316



Figure 7-1 Example of using ordered allocation to create a mirrored-stripe
volume

Striped
plex

Mirror

column 1

mydg01-01 mydg02-01 mydg03-01

column 2 column 3

column 1 column 2 column 3

Mirrored-stripe
volume

mydg04-01 mydg05-01 mydg06-01 Striped
plex

For layered volumes, vxassist applies the same rules to allocate storage as for
non-layered volumes. For example, the following command creates a striped-mirror
volume with 2 columns:

# vxassist -b -g mydg -o ordered make strmirvol 10g \

layout=stripe-mirror ncol=2 mydg01 mydg02 mydg03 mydg04

This command mirrors column 1 across disks mydg01 and mydg03, and column 2
across disks mydg02 and mydg04.

Figure 7-2 shows an example of using ordered allocation to create a striped-mirror
volume.

Figure 7-2 Example of using ordered allocation to create a striped-mirror
volume

Striped plex

Mirror

column 1

mydg01-01 mydg02-01

column 2

column 1 column 2

Mirrored-stripe
volume

Underlying mirrored volumes

mydg03-01 mydg04-01

Additionally, you can use the col_switch attribute to specify how to concatenate
space on the disks into columns. For example, the following command creates a
mirrored-stripe volume with 2 columns:

317Creating volumes
Creating a volume on specific disks



# vxassist -b -g mydg -o ordered make strmir2vol 10g \

layout=mirror-stripe ncol=2 col_switch=3g,2g \

mydg01 mydg02 mydg03 mydg04 mydg05 mydg06 mydg07 mydg08

This command allocates 3 gigabytes from mydg01 and 2 gigabytes from mydg02 to
column 1, and 3 gigabytes from mydg03 and 2 gigabytes from mydg04 to column
2. The mirrors of these columns are then similarly formed from disks mydg05
through mydg08.

Figure 7-3 shows an example of using concatenated disk space to create a
mirrored-stripe volume.

Figure 7-3 Example of using concatenated disk space to create a mirrored-stripe
volume

Striped
plex

Mirror

column 1

mydg01-01

Mirrored-stripe
volume

mydg02-01

column 1

mydg05-01

mydg06-01

column 2

mydg03-01

mydg04-01

column 1

mydg07-01

mydg08-01
Striped

plex

Other storage specification classes for controllers, enclosures, targets and trays
can be used with ordered allocation. For example, the following command creates
a 3-column mirrored-stripe volume between specified controllers:

# vxassist -b -g mydg -o ordered make mirstr2vol 80g \

layout=mirror-stripe ncol=3 \

ctlr:c1 ctlr:c2 ctlr:c3 ctlr:c4 ctlr:c5 ctlr:c6

This command allocates space for column 1 from disks on controllers c1, for
column 2 from disks on controller c2, and so on.

Figure 7-4 shows an example of using storage allocation to create a mirrored-stripe
volume across controllers.

Creating volumes
Creating a volume on specific disks

318



Figure 7-4 Example of storage allocation used to create a mirrored-stripe
volume across controllers

Controllers

Controllers

Striped plex

Mirror

c1 c2 c3

column 1 column 2 column 3

Striped plex

column 1 column 2 column 3

c4 c5 c6

Mirrored-stripe volume

There are other ways in which you can control how vxassist lays out mirrored
volumes across controllers.

See “Mirroring across targets, controllers or enclosures” on page 327.

Creating a mirrored volume
A mirrored volume provides data redundancy by containing more than one copy
of its data. Each copy (or mirror) is stored on different disks from the original
copy of the volume and from other mirrors. Mirroring a volume ensures that its
data is not lost if a disk in one of its component mirrors fails.

A mirrored volume requires space to be available on at least as many disks in the
disk group as the number of mirrors in the volume.

If you specify layout=mirror, vxassist determines the best layout for the
mirrored volume. Because the advantages of the layouts are related to the size of
the volume, vxassist selects the layout based on the size of the volume. For
smaller volumes,vxassistuses the simpler mirrored concatenated (mirror-concat)
layout. For larger volumes, vxassistuses the more complex concatenated mirror
(concat-mirror) layout. The attribute stripe-mirror-col-split-trigger-pt controls
the selection. Volumes that are smaller than stripe-mirror-col-split-trigger-pt are
created as mirror-concat, and volumes that are larger are created as concat-mirror.
By default, the attribute stripe-mirror-col-split-trigger-pt is set to one gigabyte.
The value can be set in /etc/default/vxassist. If there is a reason to implement

319Creating volumes
Creating a mirrored volume



a particular layout, you can specify layout=mirror-concat or layout=concat-mirror
to implement the desired layout.

To create a new mirrored volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=mirror [nmirror=number] [init=active]

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

For example, to create the mirrored volume, volmir, in the disk group, mydg, use
the following command:

# vxassist -b -g mydg make volmir 5g layout=mirror

To create a volume with 3 instead of the default of 2 mirrors, modify the command
to read:

# vxassist -b -g mydg make volmir 5g layout=mirror nmirror=3

Creating a mirrored-concatenated volume
A mirrored-concatenated volume mirrors several concatenated plexes. To create
a concatenated-mirror volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=mirror-concat [nmirror=number]

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

Alternatively, first create a concatenated volume, and then mirror it.

See “Adding a mirror to a volume ” on page 355.

Creating a concatenated-mirror volume
A concatenated-mirror volume is an example of a layered volume which
concatenates several underlying mirror volumes. To create a concatenated-mirror
volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=concat-mirror [nmirror=number]

Creating volumes
Creating a mirrored volume

320



Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

Creating a volume with a version 0 DCO volume
If a data change object (DCO) and DCO volume are associated with a volume, this
allows Persistent FastResync to be used with the volume.

See “How persistent FastResync works with snapshots” on page 68.

The version 0 data change object (DCO) and DCO volume layout was introduced
in VxVM 3.2. The version 0 layout supports traditional (third-mirror) snapshots,
but not full-sized instant snapshots, space-optimized instant snapshots nor DRL
configured within the DCO volume.

See “Determining the DCO version number” on page 363.

See “Version 0 DCO volume layout” on page 67.

See “Version 20 DCO volume layout” on page 67.

See “Creating a volume with a version 20 DCO volume” on page 324.

To perform fast resynchronization of mirrors after a system crash or reboot, you
must also enable dirty region logging (DRL) on a mirrored volume.

See “Adding a version 0 DCO and DCO volume” on page 440.

Note: You need a license to use the Persistent FastResync feature. If you do not
have a license, you can configure a DCO object and DCO volume so that snap
objects are associated with the original and snapshot volumes. However, without
a license, only full resynchronization can be performed.

See “How persistent FastResync works with snapshots” on page 68.

321Creating volumes
Creating a volume with a version 0 DCO volume



To create a volume with an attached version 0 DCO object and volume

1 Ensure that the disk group has been upgraded to at least version 90. Use the
following command to check the version of a disk group:

# vxdg list diskgroup

To upgrade a disk group to the latest version, use the following command:

# vxdg upgrade diskgroup

See “Upgrading a disk group” on page 270.

2 Use the following command to create the volume (you may need to specify
additional attributes to create a volume with the desired characteristics):

# vxassist [-g diskgroup] make volume length layout=layout \

logtype=dco [ndcomirror=number] [dcolen=size] \

[fastresync=on] [other attributes]

For non-layered volumes, the default number of plexes in the mirrored DCO
volume is equal to the lesser of the number of plexes in the data volume or
2. For layered volumes, the default number of DCO plexes is always 2. If
required, use the ndcomirror attribute to specify a different number. It is
recommended that you configure as many DCO plexes as there are data plexes
in the volume. For example, specify ndcomirror=3 when creating a 3-way
mirrored volume.

The default size of each plex is 132 blocks unless you use the dcolen attribute
to specify a different size. If specified, the size of the plex must be a multiple
of 33 blocks from 33 up to a maximum of 2112 blocks.

By default, FastResync is not enabled on newly created volumes. Specify the
fastresync=on attribute if you want to enable FastResync on the volume. If
a DCO object and DCO volume are associated with the volume, Persistent
FastResync is enabled; otherwise, Non-Persistent FastResync is enabled.

Creating volumes
Creating a volume with a version 0 DCO volume

322



3 To enable DRL or sequential DRL logging on the newly created volume, use
the following command:

# vxvol [-g diskgroup] set logtype=drl|drlseq volume

If you use ordered allocation when creating a mirrored volume on specified
storage, you can use the optional logdisk attribute to specify on which disks
dedicated log plexes should be created. Use the following form of the vxassist
command to specify the disks from which space for the logs is to be allocated:

# vxassist [-g diskgroup] -o ordered make volume length \

layout=mirror logtype=log_type logdisk=disk[,disk,...] \

storage_attributes

If you do not specify the logdisk attribute, vxassist locates the logs in the
data plexes of the volume.

See Specifying ordered allocation of storage to volumes.

See the vxassist(1M) manual page.

See the vxvol(1M) manual page.

323Creating volumes
Creating a volume with a version 0 DCO volume



Creating a volume with a version 20 DCO volume
To create a volume with an attached version 20 DCO object and volume

1 Ensure that the disk group has been upgraded to the latest version. Use the
following command to check the version of a disk group:

# vxdg list diskgroup

To upgrade a disk group to the most recent version, use the following
command:

# vxdg upgrade diskgroup

See “Upgrading a disk group” on page 270.

2 Use the following command to create the volume (you may need to specify
additional attributes to create a volume with the desired characteristics):

# vxassist [-g diskgroup] make volume length layout=layout \

logtype=dco dcoversion=20 [drl=on|sequential|off] \

[ndcomirror=number] [fastresync=on] [other attributes]

Set the value of the drl attribute to on if dirty region logging (DRL) is to be
used with the volume (this is the default setting). For a volume that will be
written to sequentially, such as a database log volume, set the value to
sequential to enable sequential DRL. The DRL logs are created in the DCO
volume. The redundancy of the logs is determined by the number of mirrors
that you specify using the ndcomirror attribute.

By default, Persistent FastResync is not enabled on newly created volumes.
Specify the fastresync=on attribute if you want to enable Persistent
FastResync on the volume.

See “Determining the DCO version number” on page 363.

See the vxassist(1M) manual page.

Creating a volume with dirty region logging enabled
Dirty region logging (DRL), if enabled, speeds recovery of mirrored volumes after
a system crash. To enable DRL on a volume that is created within a disk group
with a version number between 20 and 100, specify the logtype=drl attribute to
the vxassist make command as shown in this example usage:

# vxassist [-g diskgroup] make volume length layout=layout \

logtype=drl [nlog=n] [loglen=size] [other attributes]

Creating volumes
Creating a volume with a version 20 DCO volume

324



The nlog attribute can be used to specify the number of log plexes to add. By
default, one log plex is added. The loglen attribute specifies the size of the log,
where each bit represents one region in the volume. For example, the size of the
log would need to be 20K for a 10GB volume with a region size of 64 kilobytes.

For example, to create a mirrored 10GB volume, vol02, with two log plexes in the
disk group, mydg, use the following command:

# vxassist -g mydg make vol02 10g layout=mirror logtype=drl \

nlog=2 nmirror=2

Sequential DRL limits the number of dirty regions for volumes that are written
to sequentially, such as database replay logs. To enable sequential DRL on a volume
that is created within a disk group with a version number between 70 and 100,
specify the logtype=drlseq attribute to the vxassist make command.

# vxassist [-g diskgroup] make volume length layout=layout \

logtype=drlseq [nlog=n] [other attributes]

It is also possible to enable the use of Persistent FastResync with this volume.

See “Creating a volume with a version 0 DCO volume” on page 321.

Note: Operations on traditional DRL log plexes are usually applicable to volumes
that are created in disk groups with a version number of less than 110. If you
enable DRL or sequential DRL on a volume that is created within a disk group
with a version number of 110 or greater, the DRL logs are usually created within
the plexes of a version 20 DCO volume.

See “Creating a volume with a version 20 DCO volume” on page 324.

Creating a striped volume
A striped volume contains at least one plex that consists of two or more subdisks
located on two or more physical disks. A striped volume requires space to be
available on at least as many disks in the disk group as the number of columns in
the volume.

See “Striping (RAID-0)” on page 40.

To create a striped volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length layout=stripe

Specify the -b option if you want to make the volume immediately available for
use.

325Creating volumes
Creating a striped volume



See “Initializing and starting a volume” on page 334.

For example, to create the 10-gigabyte striped volume volzebra, in the disk group,
mydg, use the following command:

# vxassist -b -g mydg make volzebra 10g layout=stripe

This creates a striped volume with the default stripe unit size (64 kilobytes) and
the default number of stripes (2).

You can specify the disks on which the volumes are to be created by including the
disk names on the command line. For example, to create a 30-gigabyte striped
volume on three specific disks, mydg03, mydg04, and mydg05, use the following
command:

# vxassist -b -g mydg make stripevol 30g layout=stripe \

mydg03 mydg04 mydg05

To change the number of columns or the stripe width, use the ncolumn and
stripeunitmodifiers withvxassist. For example, the following command creates
a striped volume with 5 columns and a 32-kilobyte stripe size:

# vxassist -b -g mydg make stripevol 30g layout=stripe \

stripeunit=32k ncol=5

Creating a mirrored-stripe volume
A mirrored-stripe volume mirrors several striped data plexes. A mirrored-stripe
volume requires space to be available on at least as many disks in the disk group
as the number of mirrors multiplied by the number of columns in the volume.

To create a striped-mirror volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=mirror-stripe [nmirror=number_of_mirrors] \

[ncol=number_of_columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

Alternatively, first create a striped volume, and then mirror it. In this case, the
additional data plexes may be either striped or concatenated.

See “Adding a mirror to a volume ” on page 355.

Creating volumes
Creating a striped volume

326



Creating a striped-mirror volume
A striped-mirror volume is an example of a layered volume which stripes several
underlying mirror volumes. A striped-mirror volume requires space to be available
on at least as many disks in the disk group as the number of columns multiplied
by the number of stripes in the volume.

To create a striped-mirror volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=stripe-mirror [nmirror=number_of_mirrors] \

[ncol=number_of_columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

By default, VxVM attempts to create the underlying volumes by mirroring subdisks
rather than columns if the size of each column is greater than the value for the
attribute stripe-mirror-col-split-trigger-pt that is defined in the vxassist
defaults file.

If there are multiple subdisks per column, you can choose to mirror each subdisk
individually instead of each column. To mirror at the subdisk level, specify the
layout as stripe-mirror-sd rather than stripe-mirror. To mirror at the column
level, specify the layout as stripe-mirror-col rather than stripe-mirror.

Mirroring across targets, controllers or enclosures
To create a volume whose mirrored data plexes lie on different controllers (also
known as disk duplexing) or in different enclosures, use the vxassist command
as described in this section.

In the following command, the attribute mirror=target specifies that volumes
should be mirrored between targets on different controllers.

# vxassist [-b] [-g diskgroup] make volume length \

layout=layout mirror=target [attributes]

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

The attribute mirror=ctlr specifies that disks in one mirror should not be on the
same controller as disks in other mirrors within the same volume:

327Creating volumes
Mirroring across targets, controllers or enclosures



# vxassist [-b] [-g diskgroup] make volume length \

layout=layout mirror=ctlr [attributes]

Note: Both paths of an active/passive array are not considered to be on different
controllers when mirroring across controllers.

The following command creates a mirrored volume with two data plexes in the
disk group, mydg:

# vxassist -b -g mydg make volspec 10g layout=mirror nmirror=2 \

mirror=ctlr ctlr:c2 ctlr:c3

The disks in one data plex are all attached to controller c2, and the disks in the
other data plex are all attached to controller c3. This arrangement ensures
continued availability of the volume should either controller fail.

The attribute mirror=enclr specifies that disks in one mirror should not be in
the same enclosure as disks in other mirrors within the same volume.

The following command creates a mirrored volume with two data plexes:

# vxassist -b make -g mydg volspec 10g layout=mirror nmirror=2 \

mirror=enclr enclr:enc1 enclr:enc2

The disks in one data plex are all taken from enclosure enc1, and the disks in the
other data plex are all taken from enclosure enc2. This arrangement ensures
continued availability of the volume should either enclosure become unavailable.

There are other ways in which you can control how volumes are laid out on the
specified storage.

See “Specifying ordered allocation of storage to volumes” on page 316.

Mirroring across media types (SSD and HDD)
This section describes how to mirror across media types (SSD and HDD).

To create a volume with a HDD plex and a SSD plex

1 Create a volume with media type HDD:

# vxassist -g mydg make myvol 1G mediatype:hdd

2 Add a mirror to the volume with media type SSD:

# vxassist -g mydg mirror myvol mediatype:ssd

Creating volumes
Mirroring across media types (SSD and HDD)

328



Note: mirror=mediatype is not supported.

Creating a RAID-5 volume
A RAID-5 volume requires space to be available on at least as many disks in the
disk group as the number of columns in the volume. Additional disks may be
required for any RAID-5 logs that are created.

Note: VxVM supports the creation of RAID-5 volumes in private disk groups, but
not in shareable disk groups in a cluster environment.

You can create RAID-5 volumes by using either the vxassist command
(recommended) or the vxmake command. Both approaches are described below.

A RAID-5 volume contains a RAID-5 data plex that consists of three or more
subdisks located on three or more physical disks. Only one RAID-5 data plex can
exist per volume. A RAID-5 volume can also contain one or more RAID-5 log plexes,
which are used to log information about data and parity being written to the
volume.

See “RAID-5 (striping with parity)” on page 46.

Warning: Do not create a RAID-5 volume with more than 8 columns because the
volume will be unrecoverable in the event of the failure of more than one disk.

To create a RAID-5 volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length layout=raid5 \

[ncol=number_of_columns] [stripewidth=size] [nlog=number] \

[loglen=log_length]

Specify the -b option if you want to make the volume immediately available for
use.

See “Initializing and starting a volume” on page 334.

For example, to create the RAID-5 volume volraid together with 2 RAID-5 logs
in the disk group, mydg, use the following command:

# vxassist -b -g mydg make volraid 10g layout=raid5 nlog=2

This creates a RAID-5 volume with the default stripe unit size on the default
number of disks. It also creates two RAID-5 logs rather than the default of one
log.

329Creating volumes
Creating a RAID-5 volume



If you require RAID-5 logs, you must use the logdisk attribute to specify the disks
to be used for the log plexes.

RAID-5 logs can be concatenated or striped plexes, and each RAID-5 log associated
with a RAID-5 volume has a complete copy of the logging information for the
volume. To support concurrent access to the RAID-5 array, the log should be
several times the stripe size of the RAID-5 plex.

It is suggested that you configure a minimum of two RAID-5 log plexes for each
RAID-5 volume. These log plexes should be located on different disks. Having two
RAID-5 log plexes for each RAID-5 volume protects against the loss of logging
information due to the failure of a single disk.

If you use ordered allocation when creating a RAID-5 volume on specified storage,
you must use the logdisk attribute to specify on which disks the RAID-5 log plexes
should be created. Use the following form of the vxassist command to specify
the disks from which space for the logs is to be allocated:

# vxassist [-b] [-g diskgroup] -o ordered make volume length \

layout=raid5 [ncol=number_columns] [nlog=number] \

[loglen=log_length] logdisk=disk[,disk,...] \

storage_attributes

For example, the following command creates a 3-column RAID-5 volume with the
default stripe unit size on disks mydg04, mydg05 and mydg06. It also creates two
RAID-5 logs on disks mydg07 and mydg08.

# vxassist -b -g mydg -o ordered make volraid 10g layout=raid5 \

ncol=3 nlog=2 logdisk=mydg07,mydg08 mydg04 mydg05 mydg06

The number of logs must equal the number of disks that is specified to logdisk.

See “Specifying ordered allocation of storage to volumes” on page 316.

See the vxassist(1M) manual page.

It is possible to add more logs to a RAID-5 volume at a later time.

See “Adding a RAID-5 log” on page 384.

Creating tagged volumes
Volume tags are used to implement the Dynamic Storage Tiering (DST) feature
of the Storage Foundation software.

See the Veritas File System Administrator’s Guide.

Creating volumes
Creating tagged volumes

330



You can use the tag attribute with the vxassist make command to set a named
tag and optional tag value on a volume, for example:

# vxassist -b -g mydg make volmir 5g layout=mirror tag=mirvol=5g

To list the tags that are associated with a volume, use this command:

# vxassist [-g diskgroup] listtag volume

If you do not specify a volume name, the tags of all volumes and vsets in the disk
group are listed.

The following is an example of listtag output:

# vxassist -g dgl listtag vol

TY NAME DISKGROUP TAG

=================================================

v vol dg1 Symantec

To list the volumes that have a specified tag name, use this command:

# vxassist [-g diskgroup] list tag=tagname

Tag names and tag values are case-sensitive character strings of up to 256
characters. Tag names can consist of letters (A through Z and a through z),
numbers (0 through 9), dashes (-), underscores (_) or periods (.) from the ASCII
character set. A tag name must start with either a letter or an underscore. Tag
values can consist of any character from the ASCII character set with a decimal
value from 32 through 127. If a tag value includes any spaces, use the vxassist

settag command to set the tag on the newly created volume.

Dotted tag hierarchies are understood by the list operation. For example, the
listing for tag=a.b includes all volumes that have tag names that start with a.b.

The tag names site, udid and vdid are reserved and should not be used. To avoid
possible clashes with future product features, it is recommended that tag names
do not start with any of the following strings: asl, be, isp, nbu, sf, symc or vx.

See Setting tags on volumes.

Creating a volume using vxmake
As an alternative to using vxassist, you can create a volume using the vxmake

command to arrange existing subdisks into plexes, and then to form these plexes
into a volume.

See “Creating subdisks” on page 280.

331Creating volumes
Creating a volume using vxmake



The example given in this section is to create a RAID-5 volume using vxmake.

Creating a RAID-5 plex for a RAID-5 volume is similar to creating striped plexes,
except that the layout attribute is set to raid5. Subdisks can be implicitly
associated in the same way as with striped plexes. For example, to create a
four-column RAID-5 plex with a stripe unit size of 32 sectors, use the following
command:

# vxmake -g mydg plex raidplex layout=raid5 stwidth=32 \

sd=mydg00-01,mydg01-00,mydg02-00,mydg03-00

Note that because four subdisks are specified, but the number of columns is not
specified, the vxmake command assumes a four-column RAID-5 plex and places
one subdisk in each column. Striped plexes are created using the same method
except that the layout is specified as stripe. If the subdisks are to be created and
added later, use the following command to create the plex:

# vxmake -g mydg plex raidplex layout=raid5 ncolumn=4 stwidth=32

If no subdisks are specified, the ncolumn attribute must be specified. Subdisks can
be added to the plex later using the vxsd assoc command.

See “Associating subdisks with plexes” on page 283.

If each column in a RAID-5 plex is to be created from multiple subdisks which
may span several physical disks, you can specify to which column each subdisk
should be added. For example, to create a three-column RAID-5 plex using six
subdisks, use the following form of the vxmake command:

# vxmake -g mydg plex raidplex layout=raid5 stwidth=32 \

sd=mydg00-00:0,mydg01-00:1,mydg02-00:2,mydg03-00:0, \

mydg04-00:1,mydg05-00:2

This command stacks subdisks mydg00-00 and mydg03-00 consecutively in column
0, subdisks mydg01-00 and mydg04-00 consecutively in column 1, and subdisks
mydg02-00 and mydg05-00 in column 2. Offsets can also be specified to create
sparse RAID-5 plexes, as for striped plexes.

Log plexes may be created as default concatenated plexes by not specifying a
layout, for example:

# vxmake -g mydg plex raidlog1 sd=mydg06-00

# vxmake -g mydg plex raidlog2 sd=mydg07-00

The following command creates a RAID-5 volume, and associates the prepared
RAID-5 plex and RAID-5 log plexes with it:

Creating volumes
Creating a volume using vxmake

332



# vxmake -g mydg -Uraid5 vol raidvol \

plex=raidplex,raidlog1,raidlog2

Each RAID-5 volume has one RAID-5 plex where the data and parity are stored.
Any other plexes associated with the volume are used as RAID-5 log plexes to log
information about data and parity being written to the volume.

After creating a volume using vxmake, you must initialize it before it can be used.

See “Initializing and starting a volume” on page 334.

Creating a volume using a vxmake description file
You can use the vxmake command to add a new volume, plex or subdisk to the set
of objects managed by VxVM. vxmake adds a record for each new object to the
VxVM configuration database. You can create records either by specifying
parameters to vxmake on the command line, or by using a file which contains
plain-text descriptions of the objects. The file can also contain commands for
performing a list of tasks. Use the following form of the command to have vxmake
read the file from the standard input:

# vxmake [-g diskgroup] < description_file

Alternatively, you can specify the file to vxmake using the -d option:

# vxmake [-g diskgroup] -d description_file

The following sample description file defines a volume, db, with two plexes, db-01
and db-02:

#rty #name #options

sd mydg03-01 disk=mydg03 offset=0 len=10000

sd mydg03-02 disk=mydg03 offset=25000 len=10480

sd mydg04-01 disk=mydg04 offset=0 len=8000

sd mydg04-02 disk=mydg04 offset=15000 len=8000

sd mydg04-03 disk=mydg04 offset=30000 len=4480

plex db-01 layout=STRIPE ncolumn=2 stwidth=16k

sd=mydg03-01:0/0,mydg03-02:0/10000,mydg04-01:1/0,

mydg04-02:1/8000,mydg04-03:1/16000

sd ramd1-01 disk=ramd1 len=640

comment="Hot spot for dbvol"

plex db-02 sd=ramd1-01:40320

vol db usetype=gen plex=db-01,db-02

readpol=prefer prefname=db-02

comment="Uses mem1 for hot spot in last 5m"

333Creating volumes
Creating a volume using vxmake



The subdisk definition for plex, db-01, must be specified on a single line. It is
shown here split across two lines because of space constraints.

The first plex, db-01, is striped and has five subdisks on two physical disks, mydg03
and mydg04. The second plex, db-02, is the preferred plex in the mirror, and has
one subdisk, ramd1-01, on a volatile memory disk.

For detailed information about how to use vxmake, refer to the vxmake(1M) manual
page.

After creating a volume using vxmake, you must initialize it before it can be used.

See “Initializing and starting a volume created using vxmake” on page 335.

Initializing and starting a volume
If you create a volume using the vxassist command, vxassist initializes and
starts the volume automatically unless you specify the attribute init=none.

When creating a volume, you can make it immediately available for use by
specifying the -b option to the vxassist command, as shown here:

# vxassist -b [-g diskgroup] make volume length layout=mirror

The -b option makes VxVM carry out any required initialization as a background
task. It also greatly speeds up the creation of striped volumes by initializing the
columns in parallel.

As an alternative to the -b option, you can specify the init=active attribute to
make a new volume immediately available for use. In this example, init=active
is specified to prevent VxVM from synchronizing the empty data plexes of a new
mirrored volume:

# vxassist [-g diskgroup] make volume length layout=mirror \

init=active

Warning: There is a very small risk of errors occurring when the init=active

attribute is used. Although written blocks are guaranteed to be consistent, read
errors can arise in the unlikely event that fsck attempts to verify uninitialized
space in the file system, or if a file remains uninitialized following a system crash.
If in doubt, use the -b option to vxassist instead.

This command writes zeroes to the entire length of the volume and to any log
plexes. It then makes the volume active. You can also zero out a volume by
specifying the attribute init=zero to vxassist, as shown in this example:

Creating volumes
Initializing and starting a volume

334



# vxassist [-g diskgroup] make volume length layout=raid5 \

init=zero

You cannot use the -b option to make this operation a background task.

Initializing and starting a volume created using vxmake
A volume may be initialized by running the vxvol command if the volume was
created by the vxmake command and has not yet been initialized, or if the volume
has been set to an uninitialized state.

To initialize and start a volume, use the following command:

# vxvol [-g diskgroup] start volume

The following command can be used to enable a volume without initializing it:

# vxvol [-g diskgroup] init enable volume

This allows you to restore data on the volume from a backup before using the
following command to make the volume fully active:

# vxvol [-g diskgroup] init active volume

If you want to zero out the contents of an entire volume, use this command to
initialize it:

# vxvol [-g diskgroup] init zero volume

Accessing a volume
As soon as a volume has been created and initialized, it is available for use as a
virtual disk partition by the operating system for the creation of a file system, or
by application programs such as relational databases and other data management
software.

Creating a volume in a disk group sets up block and character (raw) device files
that can be used to access the volume:

block device file for volume vol in disk group dg/dev/vx/dsk/dg/vol

character device file for volume vol in disk group dg/dev/vx/rdsk/dg/vol

The pathnames include a directory named for the disk group. Use the appropriate
device node to create, mount and repair file systems, and to lay out databases that
require raw partitions.

335Creating volumes
Accessing a volume



As the rootdg disk group no longer has special significance, VxVM only creates
volume device nodes for this disk group in the /dev/vx/dsk/rootdg and
/dev/vx/rdsk/rootdg directories. VxVM does not create device nodes in the
/dev/vx/dsk or /dev/vx/rdsk directories for the rootdg disk group.

Creating volumes
Accessing a volume

336



Administering volumes

This chapter includes the following topics:

■ About volume administration

■ Displaying volume information

■ Monitoring and controlling tasks

■ Using Thin Provisioning

■ Admin operations on an unmounted VxFS thin volume

■ Using SmartMove with Thin Provisioning

■ Stopping a volume

■ Starting a volume

■ Resizing a volume

■ Adding a mirror to a volume

■ Removing a mirror

■ Adding logs and maps to volumes

■ Preparing a volume for DRL and instant snapshots

■ Adding traditional DRL logging to a mirrored volume

■ Upgrading existing volumes to use version 20 DCOs

■ Setting tags on volumes

■ Changing the read policy for mirrored volumes

■ Removing a volume

8Chapter



■ Moving volumes from a VM disk

■ Enabling FastResync on a volume

■ Performing online relayout

■ Monitoring Thin Reclamation using the vxtask command

■ Converting between layered and non-layered volumes

■ Adding a RAID-5 log

About volume administration
Veritas Volume Manager (VxVM) lets you perform common maintenance tasks
on volumes. These include the following:

■ Displaying volume information

■ Monitoring tasks

■ Resizing volumes

■ Adding and removing logs

■ Adding and removing mirrors

■ Removing volumes

■ Changing the layout of volumes without taking them offline

Note:To use most VxVM commands, you need superuser or equivalent privileges.

Displaying volume information
You can use the vxprint command to display information about how a volume is
configured.

To display the volume, plex, and subdisk record information for all volumes in
the system, use the following command:

# vxprint -hvt

You can also apply the vxprint command to a single disk group:

# vxprint -g mydg -hvt

This example produces the following output:

Administering volumes
About volume administration

338



V NAME RVG/VSET/CO KSTATE STATE LENGTH READPOL PREFPLEX UTYPE

PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE

SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE

SV NAME PLEX VOLNAME NVOLLAYR LENGTH [COL/]OFF AM/NM MODE

SC NAME PLEX CACHE DISKOFFS LENGTH [COL/]OFF DEVICE MODE

DC NAME PARENTVOL LOGVOL

SP NAME SNAPVOL DCO

v pubs - ENABLED ACTIVE 22880 SELECT - fsgen

pl pubs-01 pubs ENABLED ACTIVE 22880 CONCAT - RW

sd mydg11-01 pubs-01 mydg11 0 22880 0 c1t0d0 ENA

v voldef - ENABLED ACTIVE 20480 SELECT - fsgen

pl voldef-01 voldef ENABLED ACTIVE 20480 CONCAT - RW

sd mydg12-02 voldef-0 mydg12 0 20480 0 c1t1d0 ENA

Here v is a volume, pl is a plex, and sd is a subdisk. The first few lines indicate
the headers that match each type of output line that follows. Each volume is listed
along with its associated plexes and subdisks.

You can ignore the headings for sub-volumes (SV), storage caches (SC), data change
objects (DCO) and snappoints (SP) in the sample output. No such objects are
associated with the volumes that are shown.

To display volume-related information for a specific volume, use the following
command:

# vxprint [-g diskgroup] -t volume

For example, to display information about the volume, voldef, in the disk group,
mydg, use the following command:

# vxprint -g mydg -t voldef

This example produces the following output:

V NAME RVG/VSET/CO KSTATE STATE LENGTH READPOL PREFPLEX UTYPE

v voldef - ENABLED ACTIVE 20480 SELECT - fsgen

If you enable enclosure-based naming, vxprint shows enclosure-based names for
the disk devices rather than OS-based names.

The output from the vxprint command includes information about the volume
state.

339Administering volumes
Displaying volume information



See “Volume states” on page 340.

Volume states
Table 8-1 shows the volume states that may be displayed by VxVM commands
such as vxprint.

Table 8-1 Volume states

DescriptionVolume state

The volume has been started (the kernel state is currently ENABLED)
or was in use (the kernel state was ENABLED) when the machine was
rebooted.

If the volume is ENABLED, the state of its plexes at any moment is
not certain (because the volume is in use). If the volume is DISABLED,
the plexes cannot be guaranteed to be consistent, but are made
consistent when the volume is started.

For a RAID-5 volume, if the volume is DISABLED, parity cannot be
guaranteed to be synchronized.

ACTIVE

The volume is not started (the kernel state is DISABLED) and its plexes
are synchronized. For a RAID-5 volume, its plex stripes are consistent
and its parity is good.

CLEAN

The volume contents are not initialized. When the volume is EMPTY,
the kernel state is always DISABLED.

EMPTY

The contents of an instant snapshot volume no longer represent a
true point-in-time image of the original volume.

INVALID

You must resynchronize the volume the next time it is started. A
RAID-5 volume requires a parity resynchronization.

NEEDSYNC

The volume is in a transient state as part of a log replay. A log replay
occurs when it becomes necessary to use logged parity and data. This
state is only applied to RAID-5 volumes.

REPLAY

Administering volumes
Displaying volume information

340



Table 8-1 Volume states (continued)

DescriptionVolume state

The volume is either in read-writeback recovery mode (the kernel
state is ENABLED) or was in read-writeback mode when the machine
was rebooted (the kernel state is DISABLED). With read-writeback
recovery, plex consistency is recovered by reading data from blocks
of one plex and writing the data to all other writable plexes. If the
volume is ENABLED, the plexes are being resynchronized through the
read-writeback recovery. If the volume is DISABLED, the plexes were
being resynchronized through read-writeback when the machine
rebooted and still need to be synchronized.

For a RAID-5 volume, the volume is either undergoing a parity
resynchronization (the kernel state is ENABLED) or was having its
parity resynchronized when the machine was rebooted (the kernel
state is DISABLED).

SYNC

The interpretation of these states during volume startup is modified by the
persistent state log for the volume (for example, the DIRTY/CLEAN flag). If the
clean flag is set, an ACTIVE volume was not written to by any processes or was
not even open at the time of the reboot; therefore, it can be considered CLEAN.
In any case, the clean flag is always set when the volume is marked CLEAN.

Volume kernel states
The volume kernel state indicates the accessibility of the volume. The volume
kernel state lets a volume have an offline (DISABLED), maintenance (DETACHED),
or online (ENABLED) mode of operation.

You do not set these states; they are maintained internally. On a system that is
operating properly, all volumes are ENABLED.

Table 8-2 shows the volume kernel states that can be defined.

Table 8-2 Volume kernel state

DescriptionVolume kernel state

Maintenance is being performed on the volume. The volume
cannot be read from or written to, but certain plex
operations and ioctl function calls are accepted.

DETACHED

The volume is offline and cannot be accessed.DISABLED

The volume is online and can be read from or written to.ENABLED

341Administering volumes
Displaying volume information



Monitoring and controlling tasks
The VxVM task monitor tracks the progress of system recovery by monitoring
task creation, maintenance, and completion. The task monitor lets you monitor
task progress and modify characteristics of tasks, such as pausing and recovery
rate (for example, to reduce the impact on system performance).

Note:VxVM supports this feature only for private disk groups, not for shared disk
groups in a CVM environment.

Specifying task tags
Every task is given a unique task identifier. This is a numeric identifier for the
task that can be specified to the vxtask utility to specifically identify a single task.
Several VxVM utilities also provide a -t option to specify an alphanumeric tag of
up to 16 characters in length. This allows you to group several tasks by associating
them with the same tag.

The following utilities accept the -t option:

■ vxassist

■ vxevac

■ vxmirror

■ vxplex

■ vxrecover

■ vxrelayout

■ vxresize

■ vxsd

■ vxvol

For example, to execute a vxrecover command and track the resulting tasks as a
group with the task tag myrecovery, use the following command:

# vxrecover -g mydg -t myrecovery -b mydg05

To track the resulting tasks, use the following command:

# vxtask monitor myrecovery

Any tasks started by the utilities invoked by vxrecover also inherit its task ID
and task tag, establishing a parent-child task relationship.

Administering volumes
Monitoring and controlling tasks

342



For more information about the utilities that support task tagging, see their
respective manual pages.

Managing tasks with vxtask
You can use the vxtask command to administer operations on VxVM tasks.
Operations include listing tasks, modifying the task state (pausing, resuming,
aborting) and modifying the task's progress rate.

VxVM tasks represent long-term operations in progress on the system. Every task
gives information on the time the operation started, the size and progress of the
operation, and the state and rate of progress of the operation. You can change the
state of a task, giving coarse-grained control over the progress of the operation.
For those operations that support it, you can change the rate of progress of the
task, giving more fine-grained control over the task.

New tasks take time to be set up, and so may not be immediately available for use
after a command is invoked. Any script that operates on tasks may need to poll
for the existence of a new task.

See the vxtask(1M) manual page.

vxtask operations
The vxtask command supports the following operations:

Stops the specified task. In most cases, the operations “back out” as
if an I/O error occurred, reversing what has been done so far to the
largest extent possible.

abort

343Administering volumes
Monitoring and controlling tasks



Displays a one-line summary for each task running on the system.
The -l option prints tasks in long format. The -h option prints tasks
hierarchically, with child tasks following the parent tasks. By default,
all tasks running on the system are printed. If you include a taskid
argument, the output is limited to those tasks whose taskid or task
tag match taskid. The remaining arguments filter tasks and limit
which ones are listed.

In this release, thevxtask list command supports SmartMove and
thin reclamation operation.

■ If you use SmartMove to resync or sync the volume, plex, or
subdisk, the vxtask list displays whether the operations is
using SmartMove or not.

■ In a LUN level reclamation, the vxtask list command provides
information on the amount of the reclaim performed on each LUN.

■ The init=zero on the thin volume may trigger the reclaim on
the thin volume and the progress is seen in the vxtask list

command.

list

Prints information continuously about a task or group of tasks as task
information changes. This lets you track task progress. Specifying -l
prints a long listing. By default, one-line listings are printed. In
addition to printing task information when a task state changes, output
is also generated when the task completes. When this occurs, the state
of the task is printed as EXITED.

monitor

Pauses a running task, causing it to suspend operation.pause

Causes a paused task to continue operation.resume

Changes a task's modifiable parameters. Currently, there is only one
modifiable parameter, slow[=iodelay] , which can be used to
reduce the impact that copy operations have on system performance.
If you specify slow, this introduces a delay between such operations
with a default value for iodelay of 250 milliseconds. The larger
iodelay value you specify, the slower the task progresses and the
fewer system resources that it consumes in a given time. (Thevxplex,
vxvol and vxrecover commands also accept the slow attribute.)

set

Using the vxtask command
To list all tasks running on the system, use the following command:

# vxtask list

Administering volumes
Monitoring and controlling tasks

344



To print tasks hierarchically, with child tasks following the parent tasks, specify
the -h option, as follows:

# vxtask -h list

To trace all paused tasks in the disk group mydg, as well as any tasks with the tag
sysstart, use the following command:

# vxtask -g mydg -p -I sysstart list

To list all paused tasks, use the vxtask -p list command. To continue execution
(the task may be specified by its ID or by its tag), use vxtask resume :

# vxtask -p list

# vxtask resume 167

To monitor all tasks with the tag myoperation, use the following command:

# vxtask monitor myoperation

To cause all tasks tagged with recovall to exit, use the following command:

# vxtask abort recovall

This command causes VxVM to try to reverse the progress of the operation so far.
For example, aborting an Online Relayout results in VxVM returning the volume
to its original layout.

See “Controlling the progress of a relayout” on page 381.

Using Thin Provisioning
This section describes how to use VxVM volumes with Thin Storage LUNs.

About Thin Provisioning
Thin Provisioning is a storage array feature that optimizes storage use by
automating storage provisioning. Administrators do not have to estimate how
much storage an application requires. Instead, Thin Provisioning lets
administrators provision large thin or thin reclaim capable LUNs to a host. Physical
storage capacity is allocated from a thin pool to the thin/thin reclaim capable
LUNS only after application I/O writes.

345Administering volumes
Using Thin Provisioning



About Thin Reclamation
When data deletion occurs, files are deleted, or database files are shrunk in size
VxFS or CFS file system, space reclamation is not triggered automatically on thin
or thin reclaimable storage. For example: A host that writes 200 GB of data on a
file system that is supported by large thin or thin reclaim capable LUNs triggers
allocation of at least 200 GB of physical disk space behind the large thin or thin
reclaim capable LUNs. If the storage administrator deletes files or a DBA shrinks
a database file of 200 GB of data from that same VxFS file system, the amount of
physical storage behind the large thin or thin reclaim capable LUNs does not
change. In such a case, there is at least 200 GB of physical disk space behind large
thin or thin reclaim capable LUNs, now unused.

The Storage Foundation Thin Reclamation feature leverages Veritas File System
(VxFS) knowledge of used and unused block ranges at the file system level. Thin
Reclamation lets an administrator trigger online reclamation of unused Thin
Storage in storage arrays that support Thin Reclamation. Thin Reclamation can
be triggered on a file system, a set of disks (LUNs), a disk group, or a Storage
enclosure. Thin Reclamation releases the reclaimed space to the free storage pool
in the array and makes it available for use by other thin LUNs in the storage pool.

For a list of the storage arrays that support Thin Reclamation, see the Symantec
Hardware Compatibility List (HCL):

http://entsupport.symantec.com/docs/330441

Thin Reclamation of a disk, a disk group, or an enclosure
Use the vxdisk reclaim command to trigger online Thin Reclamation on one or
more disks, disk groups, or enclosures. The following examples triggers
reclamation on LUNs disk1 and disk2, disk group oradg, and
Enclosure=EMC_Clariion0 respectively.

For disks:

# vxdisk reclaim disk1 disk2

For disk group:

# vxdisk reclaim oradg

For enclosure:

# vxdisk reclaim EMC_CLARiiON0

You can only perform Thin Reclamation on LUNS which exhibit thin_rclm
attribute/flag. VxVM automatically discovers LUNs that support Thin Reclamation

Administering volumes
Using Thin Provisioning

346

http://entsupport.symantec.com/docs/330441


from capable storage arrays. To list devices that are known to be thin or thin_rclm
on a host, use the vxdisk -o thin list command. For example:

# vxdisk -o thin list

DEVICE SIZE(mb) PHYS_ALLOC(mb) GROUP TYPE

tagmastore-usp0_065a 10000 84 - thinrclm

tagmastore-usp0_065b 10000 84 - thinrclm

tagmastore-usp0_065c 10000 84 - thinrclm

tagmastore-usp0_065d 10000 84 - thinrclm

tagmastore-usp0_065e 10000 84 - thinrclm

tagmastore-usp0_065f 10000 84 - thinrclm

tagmastore-usp0_0652 10000 84 - thinrclm

tagmastore-usp0_0653 10000 84 - thinrclm

tagmastore-usp0_0654 10000 84 - thinrclm

tagmastore-usp0_0655 10000 84 - thinrclm

tagmastore-usp0_0656 10000 84 - thinrclm

tagmastore-usp0_0657 10000 84 - thinrclm

tagmastore-usp0_0658 10000 84 - thinrclm

tagmastore-usp0_0659 10000 84 - thinrclm

tagmastore-usp0_0660 10000 672 thindiskgroup thinrclm

You can only perform Thin Reclamation if the VxVM volume is on a “mounted”
VxFS file system.

For more information on how to trigger Thin Reclamation on a VxFS file system,
see the Veritas File System Administrator's Guide.

Thin Reclamation takes considerable amount of time when you reclaim thin
storage on a large number of LUNs or an enclosure or disk group.

See “Monitoring Thin Reclamation using the vxtask command” on page 382.

Triggering space relamation
This section describes how to trigger space relamation.

347Administering volumes
Using Thin Provisioning



to trigger space reclamation

1 Ensure you mounted the VxFS file system.

See the mount(1M) manual page.

If you need to mount the VxFS file system, see the mount_vxfs(1M) manual
page.

2 Use the fsadm command to trigger space reclamation:

# /opt/VRTS/bin/fsadm -F vxfs -R /<VxFS_mount_point>

where <VxFS_mount_point> is the name of the VxFS file system mount point.

Note: If the VxFS file system is not mounted you will receive an error message.
For example: Disk 3pardata0_110 : Skipped. No VxFS file system found.

See the Veritas File System Administrator's Guide for more information on how
to trigger Thin Reclamation on a VxFS file system.

Adminoperations on anunmountedVxFS thin volume
A thin volume is a volume composed of one or more thin LUNs. If a thin volume
is not a mounted on a VxFS file system, any resynchronization, synchronization,
or refresh operation on the volume, plex, or subdisk performs a full
synchronization and allocates storage on the unused space of the volume. Only
a mounted VxFS file system can use SmartMove to assist with optimized
administrative operations on thin volumes.

By default, commands that mirror, take snapshots, or attach a plex may fail with
an error message.

Some commands use the -f option and others use the -o force option to force
the command. The command manual page contains details of the force option to
be used.

Note: The full new plex or volume allocates physical storage on thin LUNs and
will not be a thin/optimized operation.

Administering volumes
Admin operations on an unmounted VxFS thin volume

348



Using SmartMove with Thin Provisioning
This section describes how to use SmartMove with Thin Provisioning that improves
the synchronization performance and uses thin storage efficiently.

To use SmartMove with Thin Provisioning

1 Mount the volume as the VxFS file system type. For example:

# mount -F vxfs /dev/vx/dsk/oradg/oravol1 /oravol1

2 Run the following command:

# sync

3 Mirror the volume. For example:

# vxassist -g oradg add mirror oravol1

See the Veritas Storage Foundation Advanced Features Administrator's Guide for
more information on Thin Provisioning and SmartMove.

Stopping a volume
Stopping a volume renders it unavailable to the user, and changes the volume
kernel state from ENABLED or DETACHED to DISABLED. If the volume cannot
be disabled, it remains in its current state. To stop a volume, use the following
command:

# vxvol [-g diskgroup] [-f] stop volume ...

To stop all volumes in a specified disk group, use the following command:

# vxvol [-g diskgroup] [-f] stopall

Warning: If you use the -f option to forcibly disable a volume that is currently
open to an application, the volume remains open, but its contents are inaccessible.
I/O operations on the volume fail, and this may cause data loss. You cannot deport
a disk group until all its volumes are closed.

If you need to prevent a closed volume from being opened, use the vxvol maint

command, as described in the following section.

349Administering volumes
Using SmartMove with Thin Provisioning



Putting a volume in maintenance mode
If all mirrors of a volume become STALE, you can place the volume in maintenance
mode. Before you put the volume in maintenance mode, make sure the volume is
stopped or it is in the DISABLED state. Then you can view the plexes while the
volume is DETACHED and determine which plex to use for reviving the others. To
place a volume in maintenance mode, use the following command:

# vxvol [-g diskgroup] maint volume

To assist in choosing the revival source plex, use vxprint to list the stopped
volume and its plexes.

To take a plex offline, (in this example, vol01-02 in the disk group, mydg), use the
following command:

# vxmend -g mydg off vol01-02

Make sure that all the plexes are offline except for the one that you will use for
revival. The plex from which you will revive the volume should be placed in the
STALE state. The vxmend on command can change the state of an OFFLINE plex of
a DISABLED volume to STALE. For example, to put the plex vol101-02 in the STALE
state, use the following command:

# vxmend -g mydg on vol101-02

Running the vxvol start command on the volume then revives the volume with
the specified plex. Because you are starting the volume from a stale plex, you must
specify the force option ( -f).

By using the procedure above, you can enable the volume with each plex, and you
can decide which plex to use to revive the volume.

After you specify a plex for revival, and you use the procedure above to enable
the volume with the specified plex, put the volume back into the DISABLED state
and put all the other plexes into the STALE state using the vxmend on command.
Now, you can recover the volume.

See “Starting a volume” on page 350.

Starting a volume
Starting a volume makes it available for use, and changes the volume state from
DISABLED or DETACHED to ENABLED. To start a DISABLED or DETACHED
volume, use the following command:

# vxvol [-g diskgroup] start volume ...

Administering volumes
Starting a volume

350



If you cannot enable a volume, it remains in its current state.

To start all DISABLED or DETACHED volumes in a disk group, enter the following:

# vxvol -g diskgroup startall

To start a DISABLED volume, enter the following:

# vxrecover -g diskgroup -s volume ...

To start all DISABLED volumes, enter the following:

# vxrecover -s

To prevent any recovery operations from being performed on the volumes,
additionally specify the -n option to vxrecover.

Resizing a volume
Resizing a volume changes its size. For example, if a volume is too small for the
amount of data it needs to store, you can increase its length . To resize a volume,
use one of the following commands: vxresize (preferred), vxassist, or vxvol.
You can also use the graphical Veritas Enterprise Administrator (VEA) to resize
volumes.

Note: You cannot use VxVM commands, Storage Foundation Manager (SFM), or
VEA to resize a volume or any underlying file system on an encapsulated root

disk. This is because the underlying disk partitions also need to be reconfigured.
If you need to resize the volumes on the root disk, you must first unencapsulate
the root disk.

If you increase a volume's size, the vxassist command automatically locates
available disk space. The vxresize command lets you optionally specify the LUNs
or disks to use to increase the size of a volume. The vxvol command requires that
you have previously ensured that there is sufficient space available in the plexes
of the volume to increase its size. The vxassist and vxresize commands free
unused space for use by the disk group. For the vxvol command, you must do this
yourself. To determine how much you can increase a volume, use the following
command:

# vxassist [-g diskgroup] maxgrow volume

When you resize a volume, you can specify the length of a new volume in sectors,
kilobytes, megabytes, or gigabytes. The unit of measure is added as a suffix to the

351Administering volumes
Resizing a volume



length (s, m, k, or g). If you do not specify a unit, sectors are assumed. The vxassist
command also lets you specify an increment by which to change the volume’s
size.

Warning: If you use vxassist or vxvol to resize a volume, do not shrink it below
the size of the file system on it. If you do not shrink the file system first, you risk
unrecoverable data loss. If you have a VxFS file system, shrink the file system
first, and then shrink the volume. For other file systems, you may need to back
up your data so that you can later recreate the file system and restore its data.

Resizing volumes with vxresize
Use the vxresize command to resize a volume containing a file system. Although
you can use other commands to resize volumes containing file systems, vxresize
offers the advantage of automatically resizing certain types of file system as well
as the volume.

Table 8-3 shows which operations are permitted, and whether you must unmount
the file system before you resize the it.

Table 8-3 Permitted resizing operations on file systems

UFSVxFS

Grow onlyGrow and shrinkMounted file system

Grow onlyNot allowedUnmounted file system

For example, the following command resizes a volume from 1 GB to 10 GB. The
volume is homevol in the disk group mydg, and contains a VxFS file system. The
command uses spare disks mydg10 and mydg11.

# vxresize -g mydg -b -F vxfs -t homevolresize homevol 10g mydg10 mydg11

The -b option specifies that this operation runs in the background. To monitor
its progress, specify the task tag homevolresize with the vxtask command.

When you use vxresize, note the following restrictions:

■ vxresize works with VxFS and UFS file systems only.

■ In some situations, when you resize large volumes, vxresize may take a long
time to complete.

Administering volumes
Resizing a volume

352



■ If you resize a volume with a usage type other than FSGEN or RAID5, you can
lose data. If such an operation is required, use the -f option to forcibly resize
the volume.

■ You cannot resize a volume that contains plexes with different layout types.
Attempting to do so results in the following error message:

VxVM vxresize ERROR V-5-1-2536 Volume volume has different

organization in each mirror

To resize such a volume successfully, you must first reconfigure it so that each
data plex has the same layout.

For more information about thevxresize command, see thevxresize(1M) manual
page.

Resizing volumes with vxassist
The following modifiers are used with the vxassist command to resize a volume:

Increases the volume size to a specified length.growto

Increases the volume size by a specified amount.growby

Reduces the volume size to a specified length.shrinkto

Reduces the volume size by a specified amount.shrinkby

Warning: You cannot grow or shrink any volume associated with an encapsulated
root disk (rootvol, usr, var, opt, swapvol, and so on) because these map to a
physical underlying partition on the disk and must be contiguous. If you try to
grow rootvol, usrvol, varvol, or swapvol, the system could become unbootable
if you need to revert back to booting from slices. It can also prevent a successful
Solaris upgrade, and you might have to do a fresh install. Theupgrade_start
script might also fail.

Extending to a given length
To extend a volume to a specific length, use the following command:

# vxassist [-b] [-g diskgroup] growto volume length

If you specify the -b option, growing the volume is a background task.

For example, to extend volcat to 2000 sectors, use the following command:

353Administering volumes
Resizing a volume



# vxassist -g mydg growto volcat 2000

If you want the subdisks to be grown using contiguous disk space, and you
previously performed a relayout on the volume, also specify the attribute
layout=nodiskalign to the growto command.

Extending by a given length
To extend a volume by a specific length, use the following command:

# vxassist [-b] [-g diskgroup] growby volume length

If you specify -b option, growing the volume is a background task.

For example, to extend volcat by 100 sectors, use the following command:

# vxassist -g mydg growby volcat 100

If you want the subdisks to be grown using contiguous disk space, and you
previously performed a relayout on the volume, also specify the attribute
layout=nodiskalign to the growby command .

Shrinking to a given length
To shrink a volume to a specific length, use the following command:

# vxassist [-g diskgroup] shrinkto volume length

For example, to shrink volcat to 1300 sectors, use the following command:

# vxassist -g mydg shrinkto volcat 1300

Warning: Do not shrink the volume below the current size of the file system or
database using the volume. You can safely use the vxassist shrinkto command
on empty volumes.

Shrinking by a given length
To shrink a volume by a specific length, use the following command:

# vxassist [-g diskgroup] shrinkby volume length

For example, to shrink volcat by 300 sectors, use the following command:

# vxassist -g mydg shrinkby volcat 300

Administering volumes
Resizing a volume

354



Warning: Do not shrink the volume below the current size of the file system or
database using the volume. You can safely use the vxassist shrinkby command
on empty volumes.

Resizing volumes with vxvol
To change the length of a volume , use the following command:

# vxvol [-g diskgroup] set len=length volume

For example, to change the length of the volume vol01, in the disk group mydg,
to 100000 sectors, use the following command:

# vxvol -g mydg set len=100000 vol01

Note:You cannot use the vxvol set len command to increase the size of a volume
unless the needed space is available in the volume's plexes. When you reduce the
volume's size using the vxvol set len command, the freed space is not released
into the disk group’s free space pool.

If a volume is active and you reduce its length, you must force the operation using
the -o force option to vxvol. This precaution ensures that space is not removed
accidentally from applications using the volume.

You can change the length of logs using the following command:

# vxvol [-g diskgroup] set loglen=length log_volume

Warning: Sparse log plexes are not valid. They must map the entire length of the
log. If increasing the log length makes any of the logs invalid, the operation is not
allowed. Also, if the volume is not active and is dirty (for example, if it has not
been shut down cleanly), you cannot change the log length. If you are decreasing
the log length, this feature avoids losing any of the log contents. If you are
increasing the log length, it avoids introducing random data into the logs.

Adding a mirror to a volume
You can add a mirror to a volume with the vxassist command, as follows:

# vxassist [-b] [-g diskgroup] mirror volume

Specifying the -b option makes synchronizing the new mirror a background task.

355Administering volumes
Adding a mirror to a volume



For example, to create a mirror of the volume voltest in the disk group, mydg,
use the following command:

# vxassist -b -g mydg mirror voltest

You can also mirror a volume by creating a plex and then attaching it to a volume
using the following commands:

# vxmake [-g diskgroup] plex plex sd=subdisk ...

# vxplex [-g diskgroup] att volume plex

Mirroring all volumes
To mirror all volumes in a disk group to available disk space, use the following
command:

# /etc/vx/bin/vxmirror -g diskgroup -a

To configure VxVM to create mirrored volumes by default, use the following
command:

# /etc/vx/bin/vxmirror -d yes

If you make this change, you can still make unmirrored volumes by specifying
nmirror=1 as an attribute to the vxassist command. For example, to create an
unmirrored 20-gigabyte volume named nomirror in the disk group mydg, use the
following command:

# vxassist -g mydg make nomirror 20g nmirror=1

Mirroring volumes on a VM disk
Mirroring volumes creates one or more copies of your volumes on another disk.
By creating mirror copies of your volumes, you protect your volumes against loss
of data if a disk fails.

You can use this task on your root disk to make a second copy of the boot
information available on an alternate disk. This lets you boot your system even
if your root disk fails.

Note: This task only mirrors concatenated volumes. Volumes that are already
mirrored or that contain subdisks that reside on multiple disks are ignored

Administering volumes
Adding a mirror to a volume

356



To mirror volumes on a disk

1 Make sure that the target disk has an equal or greater amount of space as the
source disk.

2 From the vxdiskadm main menu, select Mirror volumes on a disk .

3 At the prompt, enter the disk name of the disk that you wish to mirror:

Enter disk name [<disk>,list,q,?] mydg02

4 At the prompt, enter the target disk name (this disk must be the same size or
larger than the originating disk):

Enter destination disk [<disk>,list,q,?] (default: any) mydg01

5 At the prompt, press Return to make the mirror:

Continue with operation? [y,n,q,?] (default: y)

The vxdiskadm program displays the status of the mirroring operation, as
follows:

VxVM vxmirror INFO V-5-2-22 Mirror volume voltest-bk00

.

.

.

VxVM INFO V-5-2-674 Mirroring of disk mydg01 is complete.

6 At the prompt, indicate whether you want to mirror volumes on another disk
(y) or return to the vxdiskadm main menu (n):

Mirror volumes on another disk? [y,n,q,?] (default: n)

Additional mirroring considerations
The larger private region size that was introduced in VxVM 3.2 (1MB) and VxVM
5.0 (32MB) may create one of the following mirroring scenarios under which
vxdiskadm fails:

■ Mirroring a full root disk to a target disk that is the same size as the source
disk. A full disk has no free cylinders.

■ Mirroring a disk created using an earlier version of Veritas Volume Manager
to a target disk that is the same size as the source disk. You only need to use
this step if mirroring using vxdiskadm fails.

357Administering volumes
Adding a mirror to a volume



■ Mirroring a full Veritas Volume Manager disk (not a root disk) that was
encapsulated in VxVM 3.5 to a target disk that is the same size as the source
disk. You only need to use this step if mirroring using vxdiskadm fails.

See the vxdiskadm(1M) manual page.

To create a mirror under any of these scenarios

1 Determine the size of the source disk’s private region, using one of the
following methods:

■ If the source disk is a root disk, obtain its private region length by running
the following command:

# vxprint -l rootdisk

The disk media name of the root disk is typically rootdisk.

In the output, find the privlen value. In this example, the value is 3071:

devinfo: publen=39846240 privlen=3071

■ If the source disk is not a root disk, obtain its private region length by
running the following command:

# vxdisk list diskname

where diskname is the disk media name of the source disk.
In the displayed output, note the len value for the private field. In this
example, the value of this field is 3071:

private: slice=4 offset=1 len=3071

2 Use the vxdisksetupprogram to initialize the target disk, Enter the following:

# /usr/lib/vxvm/bin/vxdisksetup -i c#t#d# privoffset=0 \

privlen=XXXX publen=YYYY

where XXXX is the size of the source disk’s private region, and YYYY is the
size of its public region.

If your system is configured to use enclosure-based naming instead of
OS-based naming, replace the c#t#d# name with the enclosure-based name
for the disk.

Administering volumes
Adding a mirror to a volume

358



3 Add the newly initialized target disk to the source disk group. Enter the
following:

# vxdg -g diskgroup adddisk medianame=c#t#d#

4 Use the vxdiskadm command and select Mirror volumes on a disk to create
the mirror. Specify the disk media names of the source disk (rootdisk) and
the target disk (medianame).

Removing a mirror
When you no longer need a mirror, you can remove it to free disk space.

Note: VxVM will not allow you to remove the last valid plex associated with a
volume.

To remove a mirror from a volume, use the following command:

# vxassist [-g diskgroup] remove mirror volume

You can also use storage attributes to specify the storage to be removed. For
example, to remove a mirror on disk mydg01 from volume vol01, enter the
following.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

# vxassist -g mydg remove mirror vol01 \!mydg01

See “Creating a volume on specific disks” on page 313.

Alternatively, use the following command to dissociate and remove a mirror from
a volume:

# vxplex [-g diskgroup] -o rm dis mirror

For example, to dissociate and remove a mirror named vol01-02 from the disk
group mydg, use the following command:

# vxplex -g mydg -o rm dis vol01-02

This command removes the mirror vol01-02 and all associated subdisks. This is
equivalent to entering the following commands separately:

359Administering volumes
Removing a mirror



# vxplex -g mydg dis vol01-02

# vxedit -g mydg -r rm vol01-02

Adding logs and maps to volumes
Veritas Volume Manager supports the following types of volume logs and maps:

■ FastResync Maps improve performance and reduce I/O during mirror
resynchronization. These maps can be either in memory (Non-Persistent) or
on disk (Persistent) as part of a DCO volume.
See “FastResync” on page 64.
See “Enabling FastResync on a volume” on page 374.

Two types of DCO volumes are supported:

■ Version 0 DCO volumes only support Persistent FastResync for the
traditional third-mirror break-off type of volume snapshot.
See “Version 0 DCO volume layout” on page 67.
See “Adding a version 0 DCO and DCO volume” on page 440.

■ Version 20 DCO volumes, introduced in VxVM 4.0, combine DRL logging
(see below) and Persistent FastResync for full-sized and space-optimized
instant volume snapshots.
See “Version 20 DCO volume layout” on page 67.
See “Preparing a volume for DRL and instant snapshots” on page 360.

■ Dirty Region Logs let you quickly recover mirrored volumes after a system
crash. These logs can be either DRL log plexes, or part of a version 20 DCO
volume.
See “Dirty region logging” on page 59.
See “Adding traditional DRL logging to a mirrored volume” on page 366.
See “Preparing a volume for DRL and instant snapshots” on page 360.

■ RAID-5 logs prevent corruption of data during recovery of RAID-5 volumes.
These logs are configured as plexes on disks other than those that are used
for the columns of the RAID-5 volume.
See “RAID-5 logging” on page 51.
See “Adding a RAID-5 log” on page 384.

Preparing a volume for DRL and instant snapshots
You can add a version 20 data change object (DCO) and DCO volume to an existing
volume if the disk group version number is 110 or greater. You can also

Administering volumes
Adding logs and maps to volumes

360



simultaneously create a new volume, a DCO and DCO volume, and enable DRL as
long as the disk group version is 110 or greater.

See “Determining the DCO version number” on page 363.

See “Creating a volume with a version 20 DCO volume” on page 324.

See “Upgrading existing volumes to use version 20 DCOs” on page 367.

Note: You need a license key to use the DRL and FastResync feature. If you do not
have a license key, you can configure a DCO object and DCO volume so that snap
objects are associated with the original and snapshot volumes. However, without
a license key, only full resynchronization can be performed.

See “How persistent FastResync works with snapshots” on page 68.

To add a version 20 DCO and DCO volume to a volume, use the following command
:

# vxsnap [-g diskgroup] prepare volume [ndcomirs=number] \

[regionsize=size] [drl=on|sequential|off] \

[storage_attribute ...]

The ndcomirs attribute specifies the number of DCO plexes that are created in
the DCO volume. You should configure as many DCO plexes as there are data and
snapshot plexes in the volume. The DCO plexes are used to set up a DCO volume
for any snapshot volume that you subsequently create from the snapshot plexes.
For example, specify ndcomirs=5 for a volume with 3 data plexes and 2 snapshot
plexes.

The value of the regionsize attribute specifies the size of the tracked regions in
the volume. A write to a region is tracked by setting a bit in the change map. The
default value is 64k (64KB). A smaller value requires more disk space for the change
maps, but the finer granularity provides faster resynchronization.

To enable DRL logging on the volume, specify drl=on (this is the default). For
sequential DRL, specify drl=sequential. If you do not need DRL, specify drl=off.

You can also specify vxassist-style storage attributes to define the disks that
can or cannot be used for the plexes of the DCO volume.

See “Specifying storage for version 20 DCO plexes” on page 362.

The vxsnap prepare command automatically enables Persistent FastResync on
the volume. Persistent FastResync is also set automatically on any snapshots that
are generated from a volume on which this feature is enabled.

361Administering volumes
Preparing a volume for DRL and instant snapshots



If the volume is a RAID-5 volume, it is converted to a layered volume that can be
used with instant snapshots and Persistent FastResync.

See “Using a DCO and DCO volume with a RAID-5 volume” on page 363.

By default, a version 20 DCO volume contains 32 per-volume maps. If you require
more maps, you can use the vxsnap addmap command to add them.

See the vxsnap(1M) manual page.

Specifying storage for version 20 DCO plexes
If you move the disks that contain volumes and their snapshots into different disk
groups, you must ensure that the disks that contain their DCO plexes can
accompany them. You can use storage attributes to specify which disks to use for
the DCO plexes. (If you do not want to use dirty region logging (DRL) with a volume,
you can specify the same disks as those on which the volume is configured,
assuming that space is available on the disks). For example, to add a DCO object
and mirrored DCO volume with plexes on disk05 and disk06 to the volume, myvol,
use the following command:

# vxsnap -g mydg prepare myvol ndcomirs=2 alloc=disk05,disk06

To view the details of the DCO object and DCO volume that are associated with a
volume, use thevxprint command. The following is examplevxprint -vhoutput
for the volume named vol1 (the TUTIL0 and PUTIL0 columns are omitted for
clarity):

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE ...

v vol1 fsgen ENABLED 1024 - ACTIVE

pl vol1-01 vol1 ENABLED 1024 - ACTIVE

sd disk01-01 vol1-01 ENABLED 1024 0 -

pl foo-02 vol1 ENABLED 1024 - ACTIVE

sd disk02-01 vol1-02 ENABLED 1024 0 -

dc vol1_dco vol1 - - - -

v vol1_dcl gen ENABLED 132 - ACTIVE

pl vol1_dcl-01 vol1_dcl ENABLED 132 - ACTIVE

sd disk03-01 vol1_dcl-01 ENABLED 132 0 -

pl vol1_dcl-02 vol1_dcl ENABLED 132 - ACTIVE

sd disk04-01 vol1_dcl-02 ENABLED 132 0 -

In this output, the DCO object is shown as vol1_dco, and the DCO volume as
vol1_dcl with 2 plexes, vol1_dcl-01 and vol1_dcl-02.

If you need to relocate DCO plexes to different disks, you can use the vxassist

move command. For example, the following command moves the plexes of the

Administering volumes
Preparing a volume for DRL and instant snapshots

362



DCO volume, vol1_dcl, for volume vol1 from disk03 and disk04 to disk07 and
disk08.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

# vxassist -g mydg move vol1_dcl \!disk03 \!disk04 disk07 disk08

See “Moving DCO volumes between disk groups” on page 261.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Using a DCO and DCO volume with a RAID-5 volume
You can add a DCO and DCO volume to a RAID-5 volume. This lets you use
Persistent FastResync on the volume for fast resynchronization of snapshots on
returning them to their original volume. However, this procedure has the side
effect of converting the RAID-5 volume into a special type of layered volume. You
can create space-optimized instant snapshots of such a volume, and you can add
mirrors that may be broken off as full-sized instant snapshots. You cannot relayout
or resize such a volume unless you convert it back to a pure RAID-5 volume.

To convert a volume back to a RAID-5 volume, remove any snapshot plexes from
the volume, and dissociate the DCO and DCO volume from the layered volume.
You can then perform relayout and resize operations on the resulting non-layered
RAID-5 volume.

See “Removing support for DRL and instant snapshots from a volume” on page 365.

To allow Persistent FastResync to be used with the RAID-5 volume again,
re-associate the DCO and DCO volume.

See “Preparing a volume for DRL and instant snapshots” on page 360.

Warning:Dissociating a DCO and DCO volume disables FastResync on the volume.
A full resynchronization of any remaining snapshots is required when they are
snapped back.

Determining the DCO version number
To use the instant snapshot and DRL-enabled DCO features, you must use a version
20 DCO, rather than version 0 DCO.

363Administering volumes
Preparing a volume for DRL and instant snapshots



To find out the version number of a DCO that is associated with a volume

1 Use the vxprint command on the volume to discover the name of its DCO.
Enter the following:

# DCONAME=`vxprint [-g diskgroup] -F%dco_name volume`

2 Use the vxprint command on the DCO to determine its version number. Enter
the following:

# vxprint [-g diskgroup] -F%version $DCONAME

Determining if DRL is enabled on a volume
To determine if DRL (configured using a version 20 DCO) is enabled on a volume

1 Use the vxprint command on the volume to discover the name of its DCO.
Enter the following:

# DCONAME=`vxprint [-g diskgroup] -F%dco_name volume`

2 To determine if DRL is enabled on the volume, enter the following command
with the volume’s DCO:

# vxprint [-g diskgroup] -F%drl $DCONAME

If this command displays on, DRL is enabled.

3 If DRL is enabled, enter the following command with the DCO to determine
if sequential DRL is enabled:

# vxprint [-g diskgroup] -F%sequentialdrl $DCONAME

If this command displays on, sequential DRL is enabled.

You can also use the following command with the volume:

# vxprint [-g diskgroup] -F%log_type volume

This displays the logging type as REGION for DRL, DRLSEQ for sequential DRL,
or NONE if DRL is not enabled.

If the number of active mirrors in the volume is less than 2, DRL logging is
not performed even if DRL is enabled on the volume.

See “Determining if DRL logging is active on a volume” on page 365.

Administering volumes
Preparing a volume for DRL and instant snapshots

364



Determining if DRL logging is active on a volume
To determine if DRL logging (configured using a version 20 DCO) is active on a
mirrored volume

1 Use the following vxprint commands to discover the name of the volume’s
DCO volume:

# DCONAME=`vxprint [-g diskgroup] -F%dco_name volume`

# DCOVOL=`vxprint [-g diskgroup] -F%parent_vol $DCONAME`

2 Use the vxprint command on the DCO volume to find out if DRL logging is
active:

# vxprint [-g diskgroup] -F%drllogging $DCOVOL

This command returns on if DRL logging is enabled.

Disabling and re-enabling DRL
To disable DRL (configured using a version 20 DCO) on a volume, enter the
following:

# vxvol [-g diskgroup] set drl=off volume

To re-enable DRL on a volume, enter the following:

# vxvol [-g diskgroup] set drl=on volume

To re-enable sequential DRL on a volume, enter the following:

# vxvol [-g diskgroup] set drl=sequential volume

You can use these commands to change the DRL policy on a volume by first
disabling and then re-enabling DRL as required. If a data change map (DCM, used
with Veritas Volume Replicator) is attached to a volume, DRL is automatically
disabled .

Removing support for DRL and instant snapshots from a volume
To remove support for DRL and instant snapshot operation from a volume, use
the following command to remove the DCO and DCO volume that are associated
with the volume:

# vxsnap [-g diskgroup] unprepare volume

This command also has the effect of disabling FastResync tracking on the volume.

365Administering volumes
Preparing a volume for DRL and instant snapshots



Note: If the volume is part of a snapshot hierarchy, this command fails .

Adding traditional DRL logging to a mirrored volume
A traditional DRL log is configured within a DRL plex. A version 20 DCO volume
cannot be used in conjunction with a DRL plex. The version 20 DCO volume layout
includes space for a DRL log.

See “Preparing a volume for DRL and instant snapshots” on page 360.

To put dirty region logging (DRL) into effect for a mirrored volume, you must add
a log subdisk to that volume. Only one log subdisk can exist per plex.

To add DRL logs to an existing volume, use the following command:

# vxassist [-b] [-g diskgroup] addlog volume logtype=drl \

[nlog=n] [loglen=size]

If specified, the -b option makes adding the new logs a background task.

The nlog attribute specifies the number of log plexes to add. By default, one log
plex is added. The loglen attribute specifies the size of the log, where each bit
represents one region in the volume. For example, a 10 GB volume with a 64 KB
region size needs a 20K log.

For example, to add a single log plex for the volume vol03 in the disk group mydg,
use the following command:

# vxassist -g mydg addlog vol03 logtype=drl

When you use the vxassist command to add a log subdisk to a volume, a log plex
is created by default to contain the log subdisk. If you do not want a log plex,
include the keyword nolog in the layout specification.

For a volume that will be written to sequentially, such as a database log volume,
use the following logtype=drlseq attribute to specify that sequential DRL will
be used:

# vxassist -g mydg addlog volume logtype=drlseq [nlog=n]

After you create the plex containing a log subdisk, you can treat it as a regular
plex. You can add subdisks to the log plex. If you need to, you can remove the log
plex and log subdisk.

See “Removing a traditional DRL log” on page 367.

Administering volumes
Adding traditional DRL logging to a mirrored volume

366



Removing a traditional DRL log
You can use the vxassist remove log command to remove a traditional DRL log
that is configured within a DRL plex. The command will not remove a DRL log
that is configured within a version 20 DCO.

To remove a traditional DRL log

◆ Type the following command:

# vxassist [-g diskgroup] remove log volume logtype=drl [nlog=n]

By default, thevxassist command removes one log. Use the optional attribute
nlog=n to specify the number of logs that are to remain after the operation
completes.

You can use storage attributes to specify the storage from which a log will be
removed. For example, to remove a log on disk mydg10 from volume vol01,
enter the following command.

Note: The ! character is a special character in some shells. The following
example shows how to escape it in a bash shell.

# vxassist -g mydg remove log vol01 \!mydg10 logtype=drl

Upgrading existing volumes to use version 20 DCOs
You can upgrade a volume created before VxVM 4.0 to take advantage of new
features such as instant snapshots and DRL logs that are configured within the
DCO volume. You must upgrade the version of the disk groups, remove snapshots
and version 0 DCOs that are associated with volumes in the disk groups, and
configure the volumes with version 20 DCOs.

Note: The plexes of the DCO volume require persistent storage space on disk to
be available. To make room for the DCO plexes, you may need to add extra disks
to the disk group, or reconfigure volumes to free up space in the disk group. You
can also add disk space by using the disk group move feature to bring in spare
disks from a different disk group.

See “Reorganizing the contents of disk groups” on page 256.

The vxsnap prepare command automatically enables FastResync on the volume
and on any snapshots that are generated from it.

367Administering volumes
Upgrading existing volumes to use version 20 DCOs



If the volume is a RAID-5 volume, it is converted to a layered volume that can be
used with snapshots and FastResync.

To upgrade an existing disk group and the volumes that it contains

1 Upgrade the disk group that contains the volume to the latest version before
performing the remainder of the procedure described in this section. To check
the version of a disk group, use the following command :

# vxdg list diskgroup

To upgrade a disk group to the latest version, use the following command:

# vxdg upgrade diskgroup

See “Upgrading a disk group” on page 270.

2 To discover which volumes in the disk group have version 0 DCOs associated
with them, use the following command:

# vxprint [-g diskgroup] -F "%name" -e "v_hasdcolog"

This command assumes that the volumes can only have version 0 DCOs as
the disk group has just been upgraded.

See “Determining the DCO version number” on page 363.

To upgrade each volume within the disk group, repeat the following steps as
required.

3 If the volume to be upgraded has a traditional DRL plex or subdisk (that is,
the DRL logs are not held in a version 20 DCO volume), use the following
command to remove this:

# vxassist [-g diskgroup] remove log volume [nlog=n]

To specify the number, n, of logs to be removed, use the optional attribute
nlog=n . By default, the vxassist command removes one log.

4 For a volume that has one or more associated snapshot volumes, use the
following command to reattach and resynchronize each snapshot:

# vxassist [-g diskgroup] snapback snapvol

If FastResync was enabled on the volume before the snapshot was taken, the
data in the snapshot plexes is quickly resynchronized from the original
volume. If FastResync was not enabled, a full resynchronization is performed.

5 To turn off FastResync for the volume, use the following command :

# vxvol [-g diskgroup] set fastresync=off volume

Administering volumes
Upgrading existing volumes to use version 20 DCOs

368



6 To dissociate a version 0 DCO object, DCO volume and snap objects from the
volume, use the following command:

# vxassist [-g diskgroup] remove log volume logtype=dco

7 To upgrade the volume, use the following command:

# vxsnap [-g diskgroup] prepare volume [ndcomirs=number] \

[regionsize=size] [drl=on|sequential|off] \

[storage_attribute ...]

The ndcomirs attribute specifies the number of DCO plexes that are created
in the DCO volume. You should configure as many DCO plexes as there are
data and snapshot plexes in the volume. The DCO plexes are used to set up a
DCO volume for any snapshot volume that you subsequently create from the
snapshot plexes. For example, specify ndcomirs=5 for a volume with 3 data
plexes and 2 snapshot plexes.

The regionsize attribute specifies the size of the tracked regions in the
volume. A write to a region is tracked by setting a bit in the change map. The
default value is 64k (64KB). A smaller value requires more disk space for the
change maps, but the finer granularity provides faster resynchronization.

To enable DRL logging on the volume, specify drl=on (this is the default
setting). If you need sequential DRL, specify drl=sequential. If you do not
need DRL, specify drl=off.

To define the disks that can or cannot be used for the plexes of the DCO
volume, you can also specify vxassist-style storage attributes.

Setting tags on volumes
Volume tags implement Storage Foundation's Dynamic Storage Tiering feature.
You can also apply tags to vsets using the same vxvm command syntax as shown
below.

See the Veritas File System Administrator’s Guide.

The following forms of the vxassist command let you do the following:

■ Set a named tag and optional tag value on a volume.

■ Replace a tag.

■ Remove a tag from a volume.

369Administering volumes
Setting tags on volumes



# vxassist [-g diskgroup] settag volume|vset tagname[=tagvalue]

# vxassist [-g diskgroup] replacetag volume|vset oldtag newtag

# vxassist [-g diskgroup] removetag volume|vset tagname

To list the tags that are associated with a volume, use the following command:

# vxassist [-g diskgroup] listtag [volume|vset]

If you do not specify a volume name, all the volumes and vsets in the disk group
are displayed. The acronym vt in the TY field indicates a vset.

The following is a sample listtag command:

# vxassist -g dg1 listtag vol

TY NAME DISKGROUP TAG

=================================================

v vol dg1 Oracle

To list the volumes that have a specified tag name, use the following command:

# vxassist [-g diskgroup] list tag=tagname volume

Tag names and tag values are case-sensitive character strings of up to 256
characters. Tag names can consist of the following ASCII characters:

■ Letters (A through Z and a through z)

■ Numbers (0 through 9)

■ Dashes (-)

■ Underscores (_)

■ Periods (.)

A tag name must start with either a letter or an underscore.

Tag values can consist of any ASCII character that has a decimal value from 32
through 127. If a tag value includes spaces, quote the specification to protect it
from the shell, as follows:

# vxassist -g mydg settag myvol "dbvol=table space 1"

The list operation understands dotted tag hierarchies. For example, the listing
for tag=a.b includes all volumes that have tag names starting with a.b.

The tag names site, udid, and vdid are reserved. Do not use them. To avoid
possible clashes with future product features, do not start tag names with any of
the following strings: asl, be, nbu, sf, symc, or vx.

Administering volumes
Setting tags on volumes

370



Changing the read policy for mirrored volumes
VxVM offers the choice of the following read policies on the data plexes in a
mirrored volume:

Reads each plex in turn in “round-robin” fashion for each
nonsequential I/O detected. Sequential access causes only
one plex to be accessed. This approach takes advantage of
the drive or controller read-ahead caching policies.

round

Reads first from a plex that has been named as the preferred
plex.

prefer

Chooses a default policy based on plex associations to the
volume. If the volume has an enabled striped plex, the
select option defaults to preferring that plex; otherwise,
it defaults to round-robin.

For disk group versions 150 or higher and if there is a SSD
based plex available, it will be preferred over other plexes.

select

Reads preferentially from plexes at the locally defined site.
This method is the default policy for volumes in disk groups
where site consistency has been enabled.

For disk group versions 150 or higher and if the local site
has a SSD based plex, it will be preferred.

siteread

Divides read the requests and distributes them across all
the available plexes.

split

Note: You cannot set the read policy on a RAID-5 volume.

To set the read policy to round, use the following command:

# vxvol [-g diskgroup] rdpol round volume

For example, to set the read policy for the volume vol01 in disk group mydg to
round-robin, use the following command:

# vxvol -g mydg rdpol round vol01

To set the read policy to prefer, use the following command:

# vxvol [-g diskgroup] rdpol prefer volume preferred_plex

371Administering volumes
Changing the read policy for mirrored volumes



For example, to set the policy for vol01 to read preferentially from the plex
vol01-02, use the following command:

# vxvol -g mydg rdpol prefer vol01 vol01-02

To set the read policy to select, use the following command:

# vxvol [-g diskgroup] rdpol select volume

See “Volume read policies” on page 547.

Removing a volume
If a volume is inactive or its contents have been archived, you may no longer need
it. In that case, you can remove the volume and free up the disk space for other
uses.

To remove a volume

1 Remove all references to the volume by application programs, including
shells, that are running on the system.

2 If the volume is mounted as a file system, unmount it with the following
command:

# umount /dev/vx/dsk/diskgroup/volume

3 If the volume is listed in the /etc/vfstab file, edit this file and remove its
entry. For more information about the format of this file and how you can
modify it, see your operating system documentation

4 Stop all activity by VxVM on the volume with the following command:

# vxvol [-g diskgroup] stop volume

5 Remove the volume using the vxassist command as follows:

# vxassist [-g diskgroup] remove volume volume

You can also use the vxedit command to remove the volume as follows:

# vxedit [-g diskgroup] [-r] [-f] rm volume

The -roption to vxedit indicates recursive removal. This command removes
all the plexes that are associated with the volume and all subdisks that are
associated with the plexes. The -f option to vxedit forces removal. If the
volume is still enabled, you must specify this option.

Administering volumes
Removing a volume

372



Moving volumes from a VM disk
Before you disable or remove a disk, you can move the data from that disk to other
disks on the system that have sufficient space.

To move volumes from a disk

1 From the vxdiskadm main menu, select Move volumes from a disk .

2 At the following prompt, enter the disk name of the disk whose volumes you
want to move, as follows:

Enter disk name [<disk>,list,q,?] mydg01

You can now optionally specify a list of disks to which the volume(s) should
be moved. At the prompt, do one of the following:

■ Press Enter to move the volumes onto available space in the disk group.

■ Specify the disks in the disk group that should be used, as follows:

:

Enter disks [<disk ...>,list]

VxVM NOTICE V-5-2-283 Requested operation is to move all

volumes from disk mydg01 in group mydg.

NOTE: This operation can take a long time to complete.

Continue with operation? [y,n,q,?] (default: y)

As the volumes are moved from the disk, the vxdiskadm program displays
the status of the operation:

VxVM vxevac INFO V-5-2-24 Move volume voltest ...

When the volumes have all been moved, the vxdiskadm program displays the
following success message:

VxVM INFO V-5-2-188 Evacuation of disk mydg02 is complete.

3 At the following prompt, indicate whether you want to move volumes from
another disk (y) or return to the vxdiskadm main menu (n):

Move volumes from another disk? [y,n,q,?] (default: n)

373Administering volumes
Moving volumes from a VM disk



Enabling FastResync on a volume
The recommended method for enabling FastResync on a volume with a version
20 DCO is to use the vxsnap prepare command.

See “Preparing a volume for DRL and instant snapshots” on page 360.

Note: To use this feature, you need a FastResync license.

FastResync quickly and efficiently resynchronizes stale mirrors. When you use
FastResync with operations such as backup and decision support, it also increases
the efficiency of the VxVM snapshot mechanism.

See “About volume snapshots” on page 387.

See “FastResync” on page 64.

You can enable the following versions of FastResync on a volume:

■ Persistent FastResync holds copies of the FastResync maps on disk. If a system
is rebooted, you can use these copies to quickly recover mirrored volumes. To
use this form of FastResync, you must first associate a version 0 or a version
20 data change object (DCO) and DCO volume with the volume.
See “Adding a version 0 DCO and DCO volume” on page 440.
See “Upgrading existing volumes to use version 20 DCOs” on page 367.
See “Preparing a volume for DRL and instant snapshots” on page 360.

■ Non-Persistent FastResync holds the FastResync maps in memory. These maps
do not survive on a system that is rebooted.

By default, FastResync is not enabled on newly-created volumes. If you want to
enable FastResync on a volume that you create, specify the fastresync=on

attribute to the vxassist make command.

Note:You cannot configure Persistent and Non-Persistent FastResync on a volume.
If a DCO is associated with the volume, Persistent FastResync is used. Otherwise,
Non-Persistent FastResync is used.

To turn on FastResync for an existing volume, specify fastresync=on to the vxvol
command as follows:

# vxvol [-g diskgroup] set fastresync=on volume

To use FastResync with a snapshot, you must enable FastResync before the
snapshot is taken, and it must remain enabled until after the snapback is
completed.

Administering volumes
Enabling FastResync on a volume

374



Checking whether FastResync is enabled on a volume
To check whether FastResync is enabled on a volume, use the following command:

# vxprint [-g diskgroup] -F%fastresync volume

If FastResync is enabled, the command returns on; otherwise, it returns off.

If FastResync is enabled, to check whether it is Non-Persistent or Persistent
FastResync, use the following command:

# vxprint [-g diskgroup] -F%hasdcolog volume

If Persistent FastResync is enabled, the command returns on; otherwise, it returns
off.

To list all volumes on which Non-Persistent FastResync is enabled, use the
following command.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

# vxprint [-g diskgroup] -F "%name" \

-e "v_fastresync=on && \!v_hasdcolog"

To list all volumes on which Persistent FastResync is enabled, use the following
command:

# vxprint [-g diskgroup] -F "%name" -e "v_fastresync=on \

&& v_hasdcolog"

Disabling FastResync
Use the vxvol command to turn off Persistent or Non-Persistent FastResync for
an existing volume, as follows:

# vxvol [-g diskgroup] set fastresync=off volume

Turning off FastResync releases all tracking maps for the specified volume. All
subsequent reattaches do not use the FastResync facility, but perform a full
resynchronization of the volume. The full resynchronization occurs even if you
turn on FastResync later.

375Administering volumes
Enabling FastResync on a volume



Performing online relayout
You can use the vxassist relayout command to reconfigure the layout of a
volume without taking it offline. The general form of this command is as follows:

# vxassist [-b] [-g diskgroup] relayout volume [layout=layout] \

[relayout_options]

If you specify the -b option, relayout of the volume is a background task.

The following destination layout configurations are supported.

Concatenated-mirrorconcat-mirror

Concatenatedconcat

Concatenatednomirror

Concatenatednostripe

RAID-5 (not supported for shared disk groups)raid5

Concatenatedspan

Stripedstripe

See “Permitted relayout transformations” on page 376.

For example, the following command changes the concatenated volume vol02,
in disk group mydg, to a striped volume. By default, the striped volume has 2
columns and a 64 KB striped unit size.:

# vxassist -g mydg relayout vol02 layout=stripe

Sometimes, you may need to perform a relayout on a plex rather than on a volume.

See “Specifying a plex for relayout” on page 380.

Permitted relayout transformations
Table 8-4 shows the supported relayout transformations for concatenated volumes.

Table 8-4 Supported relayout transformations for concatenated volumes

From concatRelayout to

No.concat

No. Add a mirror, and then use vxassist convert instead.concat-mirror

Administering volumes
Performing online relayout

376



Table 8-4 Supported relayout transformations for concatenated volumes
(continued)

From concatRelayout to

No. Add a mirror instead.mirror-concat

No. Use vxassist convert after relayout to the striped-mirror
volume instead.

mirror-stripe

Yes. The stripe width and number of columns may be defined.raid5

Yes. The stripe width and number of columns may be defined.stripe

Yes. The stripe width and number of columns may be defined.stripe-mirror

Table 8-5 shows the supported relayout transformations for concatenated-mirror
volumes.

Table 8-5 Supported relayout transformations for concatenated-mirror
volumes

From concat-mirrorRelayout to

No. Usevxassist convert, and then remove the unwanted mirrors
from the resulting mirrored-concatenated volume instead.

concat

No.concat-mirror

No. Use vxassist convert instead.mirror-concat

No. Use vxassist convert after relayout to the striped-mirror
volume instead.

mirror-stripe

Yes.raid5

Yes. This relayout removes a mirror and adds striping. The stripe
width and number of columns may be defined.

stripe

Yes. The stripe width and number of columns may be defined.stripe-mirror

Table 8-6 shows the supported relayout transformations for RAID-5 volumes.

Table 8-6 Supported relayout transformations for mirrored-stripe volumes

From mirror-stripeRelayout to

Yes.concat

Yes.concat-mirror

377Administering volumes
Performing online relayout



Table 8-6 Supported relayout transformations for mirrored-stripe volumes
(continued)

From mirror-stripeRelayout to

No. Usevxassist convertafter relayout to the concatenated-mirror
volume instead.

mirror-concat

No. Use vxassist convert after relayout to the striped-mirror
volume instead.

mirror-stripe

Yes. The stripe width and number of columns may be changed.raid5

Yes. The stripe width or number of columns must be changed.stripe

Yes. The stripe width or number of columns must be changed.
Otherwise, use vxassist convert.

stripe-mirror

Table 8-7 shows the supported relayout transformations for mirror-concatenated
volumes.

Table 8-7 Supported relayout transformations for mirrored-concatenated
volumes

From mirror-concatRelayout to

No. Remove the unwanted mirrors instead.concat

No. Use vxassist convert instead.concat-mirror

No.mirror-concat

No. Use vxassist convert after relayout to the striped-mirror
volume instead.

mirror-stripe

Yes. The stripe width and number of columns may be defined. Choose
a plex in the existing mirrored volume on which to perform the
relayout. The other plexes are removed at the end of the relayout
operation.

raid5

Yes.stripe

Yes.stripe-mirror

Table 8-8 shows the supported relayout transformations for mirrored-stripe
volumes.

Administering volumes
Performing online relayout

378



Table 8-8 Supported relayout transformations for mirrored-stripe volumes

From mirror-stripeRelayout to

Yes.concat

Yes.concat-mirror

No. Usevxassist convertafter relayout to the concatenated-mirror
volume instead.

mirror-concat

No. Use vxassist convert after relayout to the striped-mirror
volume instead.

mirror-stripe

Yes. The stripe width and number of columns may be changed.raid5

Yes. The stripe width or number of columns must be changed.stripe

Yes. The stripe width or number of columns must be changed.
Otherwise, use vxassist convert.

stripe-mirror

Table 8-9 shows the supported relayout transformations for unmirrored stripe
and layered striped-mirror volumes.

Table 8-9 Supported relayout transformations for unmirrored stripe and
layered striped-mirror volumes

From stripe or stripe-mirrorRelayout to

Yes.concat

Yes.concat-mirror

No. Usevxassist convertafter relayout to the concatenated-mirror
volume instead.

mirror-concat

No. Use vxassist convert after relayout to the striped-mirror
volume instead.

mirror-stripe

Yes. The stripe width and number of columns may be changed.raid5

Yes. The stripe width or number of columns must be changed.stripe

Yes. The stripe width or number of columns must be changed.stripe-mirror

Specifying a non-default layout
You can specify one or more of the following relayout options to change the default
layout configuration:

379Administering volumes
Performing online relayout



Specifies the number of columns.ncol=number

Specifies the number of columns to add.ncol=+number

Specifies the number of columns to remove.ncol=-number

Specifies the stripe width.stripeunit=size

The following examples use vxassist to change the stripe width and number of
columns for a striped volume in the disk group dbasedg:

# vxassist -g dbasedg relayout vol03 stripeunit=64k ncol=6

# vxassist -g dbasedg relayout vol03 ncol=+2

# vxassist -g dbasedg relayout vol03 stripeunit=128k

The following example changes a concatenated volume to a RAID-5 volume with
four columns:

# vxassist -g dbasedg relayout vol04 layout=raid5 ncol=4

Specifying a plex for relayout
If you have enough disks and space in the disk group, you can change any layout
to RAID-5 . To convert a mirrored volume to RAID-5, you must specify which plex
is to be converted. When the conversion finishes, all other plexes are removed,
releasing their space for other purposes. If you convert a mirrored volume to a
layout other than RAID-5, the unconverted plexes are not removed. Specify the
plex to be converted by naming it in place of a volume as follows:

# vxassist [-g diskgroup] relayout plex [layout=layout] \

[relayout_options]

Tagging a relayout operation
To control the progress of a relayout operation, for example to pause or reverse
it, use the -t option to vxassist to specify a task tag for the operation. For
example, the following relayout is performed as a background task and has the
tag myconv:

# vxassist -b -g dbasedg -t myconv relayout vol04 layout=raid5 \

ncol=4

See “Viewing the status of a relayout” on page 381.

See “Controlling the progress of a relayout” on page 381.

Administering volumes
Performing online relayout

380



Viewing the status of a relayout
Online relayout operations take time to perform. You can use the vxrelayout

command to obtain information about the status of a relayout operation. For
example, the following command:

# vxrelayout -g mydg status vol04

might display output similar to the following:

STRIPED, columns=5, stwidth=128--> STRIPED, columns=6,

stwidth=128

Relayout running, 68.58% completed.

In this example, the reconfiguration is in progress for a striped volume from 5 to
6 columns, and is over two-thirds complete.

See the vxrelayout(1M) manual page.

If you specify a task tag to vxassistwhen you start the relayout, you can use this
tag with thevxtask command to monitor the progress of the relayout. For example,
to monitor the task that is tagged as myconv, enter the following:

# vxtask monitor myconv

Controlling the progress of a relayout
You can use the vxtask command to stop (pause) the relayout temporarily, or to
cancel it (abort). If you specify a task tag to vxassistwhen you start the relayout,
you can use this tag to specify the task to vxtask. For example, to pause the
relayout operation that is tagged as myconv, enter:

# vxtask pause myconv

To resume the operation, use the vxtask command as follows:

# vxtask resume myconv

For relayout operations that have not been stopped using the vxtask pause

command (for example, the vxtask abort command was used to stop the task,
the transformation process died, or there was an I/O failure), resume the relayout
by specifying the start keyword to vxrelayout, as follows:

# vxrelayout -g mydg -o bg start vol04

If you use thevxrelayout start command to restart a relayout that you previously
suspended using the vxtask pause command, a new untagged task is created to

381Administering volumes
Performing online relayout



complete the operation. You cannot then use the original task tag to control the
relayout.

The -o bg option restarts the relayout in the background. You can also specify
the slow and iosize option modifiers to control the speed of the relayout and the
size of each region that is copied. For example, the following command inserts a
delay of 1000 milliseconds (1 second) between copying each 10 MB region:

# vxrelayout -g mydg -o bg,slow=1000,iosize=10m start vol04

The default delay and region size values are 250 milliseconds and 1 MB
respectively.

To reverse the direction of relayout operation that is stopped, specify the reverse
keyword to vxrelayout as follows:

# vxrelayout -g mydg -o bg reverse vol04

This undoes changes made to the volume so far, and returns it to its original
layout.

If you cancel a relayout using vxtask abort, the direction of the conversion is
also reversed, and the volume is returned to its original configuration.

See “Managing tasks with vxtask” on page 343.

See the vxrelayout(1M) manual page.

See the vxtask(1M) manual page.

Monitoring Thin Reclamation using the vxtask
command

This section describes how to monitor thin reclamation using thevxtask command.

Administering volumes
Monitoring Thin Reclamation using the vxtask command

382



To monitor thin reclamation

1 To initiated thin reclamation using the following command:

# vxdisk reclaim <diskgoup>

For example:

# vxdisk reclaim dg100

2 To monitor the reclamation status, run the following command in another
session:

# vxtask list

TASKID PTID TYPE/STATE PCT PROGRESS

171 RECLAIM/R 00.00% 0/41875931136/0 RECLAIM vol100 dg100

The vxdisk reclaim <diskgroup> command runs in another session while
you run the vxtask list command.

Convertingbetween layeredandnon-layered volumes
The vxassist convert command transforms volume layouts between layered
and non-layered forms. The command has the following syntax

# vxassist [-b] [-g diskgroup] convert volume [layout=layout] \

[convert_options]

If you specify the -b option, the conversion of the volume is a background task.

The following conversion layouts are supported:

Mirrored-stripe to striped-mirrorstripe-mirror

Striped-mirror to mirrored-stripemirror-stripe

Mirrored-concatenated to concatenated-mirrorconcat-mirror

Concatenated-mirror to mirrored-concatenatedmirror-concat

You can use volume conversion before or after you perform an online relayout to
achieve more transformations than would otherwise be possible. During relayout
process, a volume may also be converted into an intermediate layout. For example,
to convert a volume from a 4-column mirrored-stripe to a 5-column
mirrored-stripe, first use vxassist relayout to convert the volume to a 5-column
striped-mirror as follows:

383Administering volumes
Converting between layered and non-layered volumes



# vxassist -g mydg relayout vol1 ncol=5

When the relayout finishes, use the vxassist convert command to change the
resulting layered striped-mirror volume to a non-layered mirrored-stripe:

# vxassist -g mydg convert vol1 layout=mirror-stripe

Note: If the system crashes during relayout or conversion, the process continues
when the system is rebooted. However, if the system crashes during the first stage
of a two-stage relayout and conversion, only the first stage finishes. To complete
the operation, you must run vxassist convert manually.

Adding a RAID-5 log
You can only have one RAID-5 plex per RAID-5 volume. Additional plexes become
RAID-5 log plexes, which log information about data and parity being written to
the volume. When you create a RAID-5 volume using the vxassist command, a
log plex is created for that volume by default.

To add a RAID-5 log to an existing volume, use the following command:

# vxassist [-b] [-g diskgroup] addlog volume [loglen=length]

If you specify the -b option, adding the new log is a background task.

When you add the first log to a volume, you can specify the log length. Any logs
that you add subsequently are configured with the same length as the existing
log.

For example, to create a log for the RAID-5 volume volraid, in the disk group
mydg, use the following command:

# vxassist -g mydg addlog volraid

Adding a RAID-5 log using vxplex
You can also add a RAID-5 log using the vxplex command. For example, to attach
the RAID-5 log plex r5log, to the RAID-5 volume r5vol, in the disk group mydg,
use the following command:

# vxplex -g mydg att r5vol r5log

The attach operation can only proceed if the size of the new log is large enough
to hold all the data on the stripe. If the RAID-5 volume already contains logs, the

Administering volumes
Adding a RAID-5 log

384



new log length is the minimum of each individual log length. The reason is that
the new log is a mirror of the old logs.

If the RAID-5 volume is not enabled, the new log is marked as BADLOG and is
enabled when the volume is started. However, the contents of the log are ignored.

If the RAID-5 volume is enabled and has other enabled RAID-5 logs, the new log’s
contents are synchronized with the other logs.

If the RAID-5 volume currently has no enabled logs, the new log is zeroed before
it is enabled.

Removing a RAID-5 log
To identify the plex of the RAID-5 log, use the following command:

# vxprint [-g diskgroup] -ht volume

where volume is the name of the RAID-5 volume. For a RAID-5 log, the output
lists a plex with a STATE field entry of LOG.

To dissociate and remove a RAID-5 log and any associated subdisks from an
existing volume, use the following command:

# vxplex [-g diskgroup] -o rm dis plex

For example, to dissociate and remove the log plex volraid-02 from volraid in
the disk group mydg, use the following command:

# vxplex -g mydg -o rm dis volraid-02

You can also remove a RAID-5 log with the vxassist command, as follows:

# vxassist [-g diskgroup] remove log volume [nlog=n]

By default, the vxassist command removes one log. To specify the number of
logs that remain after the operation, use the optional attribute nlog=n.

Note:When you remove a log and it leaves less than two valid logs on the volume,
a warning is printed and the operation is stopped. You can force the operation by
specifying the -f option with vxplex or vxassist.

385Administering volumes
Adding a RAID-5 log



Administering volumes
Adding a RAID-5 log

386



Administering volume
snapshots

This chapter includes the following topics:

■ About volume snapshots

■ Traditional third-mirror break-off snapshots

■ Full-sized instant snapshots

■ Space-optimized instant snapshots

■ Emulation of third-mirror break-off snapshots

■ Linked break-off snapshot volumes

■ Cascaded snapshots

■ Creating multiple snapshots

■ Restoring the original volume from a snapshot

■ Creating instant snapshots

■ Creating traditional third-mirror break-off snapshots

■ Adding a version 0 DCO and DCO volume

About volume snapshots
VxVM can take an image of a volume at a given point in time. This image is called
a volume snapshot.

See “Volume snapshots” on page 62.

9Chapter



You can also take a snapshot of a volume set.

See “Creating instant snapshots of volume sets” on page 416.

Volume snapshots allow you to make backup copies of your volumes online with
minimal interruption to users. You can then use the backup copies to restore data
that has been lost due to disk failure, software errors or human mistakes, or to
create replica volumes for the purposes of report generation, application
development, or testing.

Volume snapshots can also be used to implement off-host online backup.

See “About off-host processing solutions” on page 455.

A volume snapshot captures the data that exists in a volume at a given point in
time. As such, VxVM does not have any knowledge of data that is cached in memory
by the overlying file system, or by applications such as databases that have files
open in the file system. Snapshots are always crash consistent, that is, the snapshot
can be put to use by letting the application perform its recovery. This is similar
to how the application recovery occurs after a server crash. If the fsgen volume
usage type is set on a volume that contains a mounted Veritas File System (VxFS),
VxVM coordinates with VxFS to flush data that is in the cache to the volume. For
other file system types, depending on the capabilities of the file system, there
may potentially be inconsistencies between data in memory and in the snapshot.

For databases, a suitable mechanism must additionally be used to ensure the
integrity of tablespace data when the volume snapshot is taken. The facility to
temporarily suspend file system I/O is provided by most modern database software.
For ordinary files in a file system, which may be open to a wide variety of different
applications, there may be no way to ensure the complete integrity of the file data
other than by shutting down the applications and temporarily unmounting the
file system. In many cases, it may only be important to ensure the integrity of file
data that is not in active use at the time that you take the snapshot.

There are two alternative methods of creating volume snapshots.

See “Creating instant snapshots” on page 400.

See “Creating traditional third-mirror break-off snapshots” on page 431.

Snapshot creation using the vxsnap command is the preferred mechanism for
implementing point-in-time copy solutions in VxVM. Support for traditional
third-mirror snapshots that are created using the vxassist command may be
removed in a future release.

To recover from the failure of instant snapshot commands, see theVeritasVolume
Manager Troubleshooting Guide.

Administering volume snapshots
About volume snapshots

388



Traditional third-mirror break-off snapshots
Figure 9-1 shows the traditional third-mirror break-off volume snapshot model
that is supported by the vxassist command.

Figure 9-1 Third-mirror snapshot creation and usage

Start

Original volume
Snapshot mirror

Original volume

vxsassist snapclear

vxsassist
snapback

vxassist
snapshot

Refresh on snapback

Backup
cycle Snapshot volume

Independent volume

Back up to disk, tape or
other media, or use to

replicate database or file

vxassist
snapshot

The vxassist snapstart command creates a mirror to be used for the snapshot,
and attaches it to the volume as a snapshot mirror. As is usual when creating a
mirror, the process of copying the volume’s contents to the new snapshot plexes
can take some time to complete. (The vxassist snapabort cancels this operation
and removes the snapshot mirror.)

See “Full-sized instant snapshots” on page 390.

See “Space-optimized instant snapshots” on page 392.

When the attachment is complete, the vxassist snapshot command is used to
create a new snapshot volume by taking one or more snapshot mirrors to use as
its data plexes. The snapshot volume contains a copy of the original volume’s data
at the time that you took the snapshot. If more than one snapshot mirror is used,
the snapshot volume is itself mirrored.

The command, vxassist snapback, can be used to return snapshot plexes to the
original volume from which they were snapped, and to resynchronize the data in
the snapshot mirrors from the data in the original volume. This enables you to
refresh the data in a snapshot after you use it to make a backup. You can use a
variation of the same command to restore the contents of the original volume
from a snapshot previously taken.

See “Restoring the original volume from a snapshot” on page 399.

389Administering volume snapshots
Traditional third-mirror break-off snapshots



The FastResync feature minimizes the time and I/O needed to resynchronize the
data in the snapshot. If FastResync is not enabled, a full resynchronization of the
data is required.

See “FastResync” on page 64.

Finally, you can use the vxassist snapclear command to break the association
between the original volume and the snapshot volume. Because the snapshot
relationship is broken, no change tracking occurs. Use this command if you do
not need to reuse the snapshot volume to create a new PIT.

The use of the vxassist command to administer traditional (third-mirror
break-off) snapshots is not supported for volumes that are prepared for instant
snapshot creation. Use the vxsnap command instead.

See “Full-sized instant snapshots” on page 390.

See “Creating instant snapshots” on page 400.

Full-sized instant snapshots
Full-sized instant snapshots are a variation on the third-mirror volume snapshot
model that make a snapshot volume available for I/O access as soon as the snapshot
plexes have been created.

Figure 9-2 shows the full-sized instant volume snapshot model.

Figure 9-2 Full-sized instant snapshot creation and usage in a backup cycle

Start

Original volume

vxsnap prepare

vxsnap make

vxsnap reattach
vxsnap dis

or
vxsnap split

vxsnap refresh

Backup
cycle

Snapshot volume

Independent volume

Back up to disk, tape or other media

The snapshot volume can also be used to create a replica
database or file system when synchronization is complete.

To create an instant snapshot, use the vxsnap make command. This command
can either be applied to a suitably prepared empty volume that is to be used as
the snapshot volume, or it can be used to break off one or more synchronized

Administering volume snapshots
Full-sized instant snapshots

390



plexes from the original volume (which is similar to the way that the vxassist

command creates its snapshots).

Unlike a third-mirror break-off snapshot created using the vxassist command,
you can make a backup of a full-sized instant snapshot, instantly refresh its
contents from the original volume, or attach its plexes to the original volume,
without completely synchronizing the snapshot plexes from the original volume.

VxVM uses a copy-on-write mechanism to ensure that the snapshot volume
preserves the contents of the original volume at the time that the snapshot is
taken. Any time that the original contents of the volume are about to be
overwritten, the original data in the volume is moved to the snapshot volume
before the write proceeds. As time goes by, and the contents of the volume are
updated, its original contents are gradually relocated to the snapshot volume.

If a read request comes to the snapshot volume, yet the data resides on the original
volume (because it has not yet been changed), VxVM automatically and
transparently reads the data from the original volume.

If desired, you can perform either a background (non-blocking) or foreground
(blocking) synchronization of the snapshot volume. This is useful if you intend
to move the snapshot volume into a separate disk group for off-host processing,
or you want to turn the snapshot volume into an independent volume.

The vxsnap refresh command allows you to update the data in a snapshot, for
example, before taking a backup.

The command vxsnap reattach attaches snapshot plexes to the original volume,
and resynchronizes the data in these plexes from the original volume.
Alternatively, you can use the vxsnap restore command to restore the contents
of the original volume from a snapshot that you took at an earlier point in time.
You can also choose whether or not to keep the snapshot volume after restoration
of the original volume is complete.

See “Restoring the original volume from a snapshot” on page 399.

By default, the FastResync feature of VxVM is used to minimize the time and I/O
needed to resynchronize the data in the snapshot mirror. FastResync must be
enabled to create instant snapshots.

See “FastResync” on page 64.

See “Creating and managing full-sized instant snapshots” on page 408.

An empty volume must be prepared for use by full-sized instant snapshots and
linked break-off snapshots.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 405.

391Administering volume snapshots
Full-sized instant snapshots



Space-optimized instant snapshots
Volume snapshots require the creation of a complete copy of the original volume,
and use as much storage space as the copy of the original volume.

In contrast, space-optimized instant snapshots do not require a complete copy of
the original volume’s storage space. They use a storage cache.

You may find it convenient to configure a single storage cache in a disk group
that can be shared by all the volumes in that disk group. If so, the size of the cache
that is declared must be the same for each volume’s space-optimized snapshot.
The cache is stored on disk and is persistent.

See “Creating a shared cache object” on page 403.

When the original volume is written to, VxVM preserves the original data contents
in the cache before the write is committed. As the storage cache typically requires
much less storage than the original volume, it is referred to as space-optimized.
If the cache approaches full, you can configure VxVM to grow the cache
automatically using any available free space in the disk group.

Figure 9-3 shows the instant space-optimized snapshot model.

Figure 9-3 Space-optimized instant snapshot creation and usage in a backup
cycle

Start

Original volume

vxsnap prepare vxsnap make
vxsnap refresh

Backup
cycle

Snapshot volume

Back up to disk, tape or
other media

Space-optimized snapshots use a copy-on-write mechanism to make them
immediately available for use when they are first created, or when their data is
refreshed. Unlike instant snapshots, you cannot enable synchronization on
space-optimized snapshots, reattach them to their original volume, or turn them
into independent volumes.

See “Creating and managing space-optimized instant snapshots” on page 406.

A cache object and cache volume must be set up for use by space-optimized instant
snapshots.

See “Creating a shared cache object” on page 403.

Administering volume snapshots
Space-optimized instant snapshots

392



Emulation of third-mirror break-off snapshots
Third-mirror break-off snapshots are suitable for write-intensive volumes (such
as for database redo logs) where the copy-on-write mechanism of space-optimized
or full-sized instant snapshots might degrade performance.

If you use the vxsnap prepare command to enable a volume for use with instant
and space-optimized snapshots, you cannot use thevxassist snapshot commands
to administer snapshots that you create for that volume. If you require snapshots
that behave as third-mirror break-off snapshots (that is, they must be fully
synchronized before they can be used), there are three ways to achieve this:

■ Use the vxsnap addmir command to create and attach one or more snapshot
mirrors to the volume. When the plexes have been synchronized and are in
the SNAPDONE state, the vxsnap make command can then be used with the
nmirror attribute to create the snapshot volume. This technique is similar to
using the vxassist snapstart and vxassist snapshot commands.

See “Traditional third-mirror break-off snapshots” on page 389.

■ Use the vxsnap make command with the plex attribute to use one or more
existing plexes of a volume as snapshot plexes. The volume must have a
sufficient number of available plexes that are in the ACTIVE state.

The volume must be a non-layered volume with a mirror or mirror-stripe
layout, or a RAID-5 volume that you have converted to a special layered volume
and then mirrored.
See “Using a DCO and DCO volume with a RAID-5 volume” on page 363.
The plexes in a volume with a stripe-mirror layout are mirrored at the
sub-volume level, and cannot be used for snapshots.

■ Use the vxsnap make command with the sync=yes and type=full attributes
specified to create the snapshot volume, and then use the vxsnap syncwait

command to wait for synchronization of the snapshot volume to complete.

See “Adding snapshot mirrors to a volume” on page 418.

See “Creating and managing third-mirror break-off snapshots” on page 410.

Linked break-off snapshot volumes
A variant of third-mirror break-off snapshots are linked break-off snapshots,
which use the vxsnap addmir command to link a specially prepared volume with
the data volume. The volume that is used for the snapshot is prepared in the same
way as for full-sized instant snapshots. However, unlike full-sized instant
snapshots, this volume can be set up in a different disk group from the data volume.
This makes linked break-off snapshots especially suitable for recurring off-host

393Administering volume snapshots
Emulation of third-mirror break-off snapshots



processing applications as it avoids the disk group split/join administrative step.
As with third-mirror break-off snapshots, you must wait for the contents of the
snapshot volume to be synchronized with the data volume before you can use the
vxsnap make command to take the snapshot.

When a link is created between a volume and the mirror that will become the
snapshot, separate link objects (similar to snap objects) are associated with the
volume and with its mirror. The link object for the original volume points to the
mirror volume, and the link object for the mirror volume points to the original
volume. All I/O is directed to both the original volume and its mirror, and a
synchronization of the mirror from the data in the original volume is started.

You can use the vxprint command to display the state of link objects, which
appear as type ln. Link objects can have the following states:

The mirror volume has been fully synchronized from the original
volume. Thevxsnap make command can be run to create a snapshot.

ACTIVE

Synchronization of the mirror volume is in progress. The vxsnap
make command cannot be used to create a snapshot until the state
changes to ACTIVE. The vxsnap snapwait command can be used
to wait for the synchronization to complete.

ATTACHING

The mirror volume has been detached from the original volume
because of an I/O error or an unsuccessful attempt to grow the mirror
volume. The vxrecover command can be used to recover the mirror
volume in the same way as for a DISABLED volume.

See “Starting a volume” on page 350.

BROKEN

If you resize (grow or shrink) a volume, all its ACTIVE linked mirror volumes are
also resized at the same time. The volume and its mirrors can be in the same disk
group or in different disk groups. If the operation is successful, the volume and
its mirrors will have the same size.

If a volume has been grown, a resynchronization of the grown regions in its linked
mirror volumes is started, and the links remain in the ATTACHING state until
resynchronization is complete. The vxsnap snapwait command can be used to
wait for the state to become ACTIVE.

When you use the vxsnap make command to create the snapshot volume, this
removes the link, and establishes a snapshot relationship between the snapshot
volume and the original volume.

The vxsnap reattach operation re-establishes the link relationship between the
two volumes, and starts a resynchronization of the mirror volume.

See “Creating and managing linked break-off snapshot volumes” on page 413.

Administering volume snapshots
Linked break-off snapshot volumes

394



An empty volume must be prepared for use by linked break-off snapshots.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 405.

Cascaded snapshots
Figure 9-4 shows a snapshot hierarchy, known as a snapshot cascade, that can
improve write performance for some applications.

Figure 9-4 Snapshot cascade

Most recent
snapshot

Oldest
snapshot

Original volume
V

Snapshot volume
Sn-1

Snapshot volume
Sn

Snapshot volume
S1

Instead of having several independent snapshots of the volume, it is more efficient
to make the older snapshots into children of the latest snapshot.

A snapshot cascade is most likely to be used for regular online backup of a volume
where space-optimized snapshots are written to disk but not to tape.

A snapshot cascade improves write performance over the alternative of several
independent snapshots, and also requires less disk space if the snapshots are
space-optimized. Only the latest snapshot needs to be updated when the original
volume is updated. If and when required, the older snapshots can obtain the
changed data from the most recent snapshot.

A snapshot may be added to a cascade by specifying the infrontof attribute to
the vxsnap make command when the second and subsequent snapshots in the
cascade are created. Changes to blocks in the original volume are only written to
the most recently created snapshot volume in the cascade. If an attempt is made
to read data from an older snapshot that does not exist in that snapshot, it is
obtained by searching recursively up the hierarchy of more recent snapshots.

The following points determine whether it is appropriate to use a snapshot cascade:

■ Deletion of a snapshot in the cascade takes time to copy the snapshot’s data
to the next snapshot in the cascade.

■ The reliability of a snapshot in the cascade depends on all the newer snapshots
in the chain. Thus the oldest snapshot in the cascade is the most vulnerable.

■ Reading from a snapshot in the cascade may require data to be fetched from
one or more other snapshots in the cascade.

395Administering volume snapshots
Cascaded snapshots



For these reasons, it is recommended that you do not attempt to use a snapshot
cascade with applications that need to remove or split snapshots from the cascade.
In such cases, it may be more appropriate to create a snapshot of a snapshot as
described in the following section.

See “Adding a snapshot to a cascaded snapshot hierarchy” on page 419.

Note: Only unsynchronized full-sized or space-optimized instant snapshots are
usually cascaded. It is of little utility to create cascaded snapshots if the infrontof
snapshot volume is fully synchronized (as, for example, with break-off type
snapshots).

Creating a snapshot of a snapshot
Figure 9-5 creation of a snapshot of an existing snapshot.

Figure 9-5 Creating a snapshot of a snapshot

vxsnap make source=V vxsnap make source=S1

Original volume
V

Snapshot volume
S1

Snapshot volume
S2

Even though the arrangement of the snapshots in this figure appears similar to
a snapshot cascade, the relationship between the snapshots is not recursive. When
reading from the snapshot S2, data is obtained directly from the original volume,
V, if it does not exist in S1 itself.

See Figure 9-4 on page 395.

Such an arrangement may be useful if the snapshot volume, S1, is critical to the
operation. For example, S1 could be used as a stable copy of the original volume,
V. The additional snapshot volume, S2, can be used to restore the original volume
if that volume becomes corrupted. For a database, you might need to replay a redo
log on S2 before you could use it to restore V.

Figure 9-6 shows the sequence of steps that would be required to restore a database.

Administering volume snapshots
Cascaded snapshots

396



Figure 9-6 Using a snapshot of a snapshot to restore a database

Original volume
V

Snapshot volume of V:
S1

Create instant snapshot S1 of volume V1

Create instant snapshot S2 of S12

Original volume
V

Snapshot volume of V:
S1

vxsnap make source=S1

Snapshot volume of S1:
S2

Restore contents of V instantly from snapshot S2 and keep S1 as a
stable copy

4

Original volume
V

Snapshot volume of V:
S1

vxsnap restore V source=S2

Snapshot volume of S1:
S2

After contents of V have gone bad, apply the database to redo logs to S23

Original volume
V

Snapshot volume of V:
S1

Apply redo logs

Snapshot volume of S1:
S2

If you have configured snapshots in this way, you may wish to make one or more
of the snapshots into independent volumes. There are twovxsnap commands that
you can use to do this:

■ vxsnap dis dissociates a snapshot and turns it into an independent volume.
The snapshot to be dissociated must have been fully synchronized from its
parent. If a snapshot volume has a child snapshot volume, the child must also
have been fully synchronized. If the command succeeds, the child snapshot
becomes a snapshot of the original volume.
Figure 9-7 shows the effect of applying the vxsnap dis command to snapshots
with and without dependent snapshots.

397Administering volume snapshots
Cascaded snapshots



Figure 9-7 Dissociating a snapshot volume

vxsnap dis is applied to snapshot S2, which has no snapshots of its own

Original volume
V

Snapshot volume of V:
S1

vxsnap dis S2

S1 remains owned by V S2 is independent

Snapshot volume of S1:
S2

Original volume
V

Snapshot volume of V:
S1

Volume
S2

vxsnap dis is applied to snapshot S1, which has one snapshot S2

Original volume
V

Snapshot volume of V:
S1

vxsnap dis S1

S1 is independent S2 is adopted by V

Snapshot volume of S1:
S2

Original volume
V

Volume
S1

Snapshot volume of V:
S2

■ vxsnap split dissociates a snapshot and its dependent snapshots from its
parent volume. The snapshot that is to be split must have been fully
synchronized from its parent volume.
Figure 9-8 shows the operation of the vxsnap split command.

Figure 9-8 Splitting snapshots

Original volume
V

Snapshot volume of V:
S1

vxsnap split S1

S1 is independent S2 continues to be a
snapshot of S1

Snapshot volume of S1:
S2

Original volume
V

Volume
S1

Snapshot volume of S1:
S2

Creating multiple snapshots
To make it easier to create snapshots of several volumes at the same time, both
thevxsnap makeandvxassist snapshot commands accept more than one volume
name as their argument.

Administering volume snapshots
Creating multiple snapshots

398



For traditional snapshots, you can create snapshots of all the volumes in a single
disk group by specifying the option -o allvols to the vxassist snapshot

command.

By default, each replica volume is named SNAPnumber-volume, where number is
a unique serial number, and volume is the name of the volume for which a snapshot
is being taken. This default can be overridden by using the option -o

name=pattern.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

You can create a snapshot of all volumes that form a logical group; for example,
all the volumes that conform to a database instance.

Restoring the original volume from a snapshot
For traditional snapshots, the snapshot plex is resynchronized from the data in
the original volume during a vxassist snapback operation.

Figure 9-9 shows an alternative where the snapshot overwrites the original volume.

Figure 9-9 Resynchronizing an original volume from a snapshot

Refresh on snapback

Original volume

Snapshot mirror

-o resyncfromreplica snapback

Snapshot volume

Specifying the option -o resyncfromreplica to vxassist resynchronizes the
original volume from the data in the snapshot.

Warning: The original volume must not be in use during a snapback operation
that specifies the option -o resyncfromreplica to resynchronize the volume
from a snapshot. Stop any application, such as a database, and unmount any file
systems that are configured to use the volume.

For instant snapshots, the vxsnap restore command may be used to restore the
contents of the original volume from an instant snapshot or from a volume derived
from an instant snapshot. The volume that is used to restore the original volume

399Administering volume snapshots
Restoring the original volume from a snapshot



can either be a true backup of the contents of the original volume at some point
in time, or it may have been modified in some way (for example, by applying a
database log replay or by running a file system checking utility such as fsck). All
synchronization of the contents of this backup must have been completed before
the original volume can be restored from it. The original volume is immediately
available for use while its contents are being restored.

See “Restoring a volume from an instant snapshot” on page 422.

Creating instant snapshots
VxVM allows you to make instant snapshots by using the vxsnap command.

You can also take instant snapshots of RAID-5 volumes that have been converted
to a special layered volume layout by the addition of a DCO and DCO volume.

See “Using a DCO and DCO volume with a RAID-5 volume” on page 363.

A plex in a full-sized instant snapshot requires as much space as the original
volume. If you instead make a space-optimized instant snapshot of a volume, this
only requires enough storage to record the original contents of the parent volume
as they are changed during the life of the snapshot.

The recommended approach to performing volume backup from the command
line, or from a script, is to use the vxsnap command. The vxsnap prepare and
make tasks allow you to back up volumes online with minimal disruption to users.

vxsnap prepare creates a DCO and DCO volume and associates this with the
original volume. It also enables Persistent FastResync.

vxsnap make creates an instant snapshot that is immediately available for making
a backup. After the snapshot has been taken, read requests for data in the original
volume are satisfied by reading either from a non-updated region of the original
volume, or from the copy of the original contents of an updated region that have
been recorded by the snapshot.

Note: Synchronization of a full-sized instant snapshot from the original volume
is enabled by default. If you specify the syncing=no attribute to vxsnap make, this
disables synchronization, and the contents of the instant snapshot are unlikely
ever to become fully synchronized with the contents of the original volume at the
point in time that the snapshot was taken. In such a case, the snapshot cannot be
used for off-host processing, nor can it become an independent volume.

Administering volume snapshots
Creating instant snapshots

400



You can immediately retake a full-sized or space-optimized instant snapshot at
any time by using the vxsnap refresh command. If a fully synchronized instant
snapshot is required, the new resynchronization must first complete.

To create instant snapshots of volume sets, use volume set names in place of
volume names in the vxsnap command.

See “Creating instant snapshots of volume sets” on page 416.

When using the vxsnap prepare or vxassist make commands to make a volume
ready for instant snapshot operations, if the specified region size exceeds half
the value of the tunable voliomem_maxpool_sz , the operation succeeds but gives
a warning such as the following (for a system where voliomem_maxpool_sz is set
to 12MB):

VxVM vxassist WARNING V-5-1-0 Specified regionsize is

larger than the limit on the system

(voliomem_maxpool_sz/2=6144k).

If this message is displayed, vxsnap make, refresh and restore operations on
such volumes fail as they might potentially hang the system. Such volumes can
be used only for break-off snapshot operations using the reattach and make

operations.

To make the volumes usable for instant snapshot operations, use vxsnap

unprepareon the volume, and then use vxsnap prepare to re-prepare the volume
with a region size that is less than half the size of voliomem_maxpool_sz (in this
example, 1MB):

# vxsnap -g mydg -f unprepare vol1

# vxsnap -g mydg prepare vol1 regionsize=1M

See “Preparing to create instant and break-off snapshots” on page 402.

See “Creating and managing space-optimized instant snapshots” on page 406.

See “Creating and managing full-sized instant snapshots” on page 408.

See “Creating and managing third-mirror break-off snapshots” on page 410.

See “Creating and managing linked break-off snapshot volumes” on page 413.

401Administering volume snapshots
Creating instant snapshots



Preparing to create instant and break-off snapshots
To prepare a volume for the creation of instant and break-off snapshots

1 Use the following commands to see if the volume has a version 20 data change
object (DCO) and DCO volume that allow instant snapshots and Persistent
FastResync to be used with the volume, and to check that FastResync is
enabled on the volume:

# vxprint -g volumedg -F%instant volume

# vxprint -g volumedg -F%fastresync volume

If both commands return a value of on, skip to step 3. Otherwise continue
with step 2.

2 To prepare a volume for instant snapshots, use the following command:

# vxsnap [-g diskgroup] prepare volume [regionsize=size] \

[ndcomirs=number] [alloc=storage_attributes]

Run the vxsnap prepare command on a volume only if it does not have a
version 20 DCO volume (for example, if you have run the vxsnap unprepare

command on the volume).

See “Creating a volume with a version 20 DCO volume” on page 324.

See “Preparing a volume for DRL and instant snapshots” on page 360.

See “Removing support for DRL and instant snapshots from a volume”
on page 365.

For example, to prepare the volume, myvol, in the disk group, mydg, use the
following command:

# vxsnap -g mydg prepare myvol regionsize=128k ndcomirs=2 \

alloc=mydg10,mydg11

This example creates a DCO object and redundant DCO volume with two
plexes located on disks mydg10 and mydg11, and associates them with myvol.
The region size is also increased to 128KB from the default size of 64KB. The
region size must be a power of 2, and be greater than or equal to 16KB. A
smaller value requires more disk space for the change maps, but the finer
granularity provides faster resynchronization.

Administering volume snapshots
Creating instant snapshots

402



3 If you need several space-optimized instant snapshots for the volumes in a
disk group, you may find it convenient to create a single shared cache object
in the disk group rather than a separate cache object for each snapshot.

See “Creating a shared cache object” on page 403.

For full-sized instant snapshots and linked break-off snapshots, you must
prepare a volume that is to be used as the snapshot volume. This volume must
be the same size as the data volume for which the snapshot is being created,
and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off
snapshot” on page 405.

Creating a shared cache object
To create a shared cache object

1 Decide on the following characteristics that you want to allocate to the cache
volume that underlies the cache object:

■ The cache volume size should be sufficient to record changes to the parent
volumes during the interval between snapshot refreshes. A suggested
value is 10% of the total size of the parent volumes for a refresh interval
of 24 hours.

■ The cache volume can be mirrored for redundancy.

■ If the cache volume is mirrored, space is required on at least as many disks
as it has mirrors. These disks should not be shared with the disks used
for the parent volumes. The disks should not be shared with disks used
by critical volumes to avoid impacting I/O performance for critical
volumes, or hindering disk group split and join operations.

2 Having decided on its characteristics, use the vxassist command to create
the cache volume. The following example creates a mirrored cache volume,
cachevol, with size 1GB in the disk group, mydg, on the disks mydg16 and
mydg17:

# vxassist -g mydg make cachevol 1g layout=mirror \

init=active mydg16 mydg17

The attribute init=active makes the cache volume immediately available
for use.

403Administering volume snapshots
Creating instant snapshots



3 Use the vxmake cache command to create a cache object on top of the cache
volume that you created in the previous step:

# vxmake [-g diskgroup] cache cache_object \

cachevolname=volume [regionsize=size] [autogrow=on] \

[highwatermark=hwmk] [autogrowby=agbvalue] \

[maxautogrow=maxagbvalue]]

If the region size, regionsize, is specified, it must be a power of 2, and be
greater than or equal to 16KB (16k). If not specified, the region size of the
cache is set to 64KB.

All space-optimized snapshots that share the cache must have a region size
that is equal to or an integer multiple of the region size set on the cache.
Snapshot creation also fails if the original volume’s region size is smaller
than the cache’s region size.

If the region size of a space-optimized snapshot differs from the region size
of the cache, this can degrade the system’s performance compared to the case
where the region sizes are the same.

To grow the cache in size as required, specify autogrow=on. By default,
autogrow=ff.

In the following example, the cache object, cobjmydg, is created over the cache
volume, cachevol, the region size of the cache is set to 32KB, and the autogrow
feature is enabled:

# vxmake -g mydg cache cobjmydg cachevolname=cachevol \

regionsize=32k autogrow=on

4 Enable the cache object using the following command:

# vxcache [-g diskgroup] start cache_object

For example to start the cache object, cobjmydg:

# vxcache -g mydg start cobjmydg

See “Removing a cache” on page 430.

Administering volume snapshots
Creating instant snapshots

404



Creating a volume for use as a full-sized instant or linked
break-off snapshot
To create an empty volume for use by a full-sized instant snapshot or a linked
break-off snapshot

1 Use the vxprint command on the original volume to find the required size
for the snapshot volume.

# LEN=`vxprint [-g diskgroup] -F%len volume`

The command as shown assumes a Bourne-type shell such as sh, ksh or bash.
You may need to modify the command for other shells such as csh or tcsh.

2 Use the vxprint command on the original volume to discover the name of
its DCO:

# DCONAME=`vxprint [-g diskgroup] -F%dco_name volume`

3 Use the vxprint command on the DCO to discover its region size (in blocks):

# RSZ=`vxprint [-g diskgroup] -F%regionsz $DCONAME`

4 Use the vxassist command to create a volume, snapvol, of the required size
and redundancy, together with a version 20 DCO volume with the correct
region size:

# vxassist [-g diskgroup] make snapvol $LEN \

[layout=mirror nmirror=number] logtype=dco drl=off \

dcoversion=20 [ndcomirror=number] regionsz=$RSZ \

init=active [storage_attributes]

Specify the same number of DCO mirrors (ndcomirror) as the number of
mirrors in the volume (nmirror). Theinit=activeattribute makes the volume
available immediately. You can use storage attributes to specify which disks
should be used for the volume.

As an alternative to creating the snapshot volume and its DCO volume in a
single step, you can first create the volume, and then prepare it for instant
snapshot operations as shown here:

# vxassist [-g diskgroup] make snapvol $LEN \

[layout=mirror nmirror=number] init=active \

[storage_attributes]

# vxsnap [-g diskgroup] prepare snapvol [ndcomirs=number] \

regionsize=$RSZ [storage_attributes]

405Administering volume snapshots
Creating instant snapshots



Creating and managing space-optimized instant snapshots
Space-optimized instant snapshots are not suitable for write-intensive volumes
(such as for database redo logs) because the copy-on-write mechanism may degrade
performance.

To split the volume and snapshot into separate disk groups (for example, to
perform off-host processing), you must use a fully synchronized full-sized instant,
third-mirror break-off or linked break-off snapshot (which do not require a cache
object). You cannot use a space-optimized instant snapshot.

Creation of space-optimized snapshots that use a shared cache fails if the region
size specified for the volume is smaller than the region size set on the cache.

If the region size of a space-optimized snapshot differs from the region size of
the cache, this can degrade the system’s performance compared to the case where
the region sizes are the same.

See “Creating a shared cache object” on page 403.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

To create and manage a space-optimized instant snapshot

1 Use the vxsnap make command to create a space-optimized instant snapshot.
This snapshot can be created by using an existing cache object in the disk
group, or a new cache object can be created.

■ To create a space-optimized instant snapshot, snapvol, that uses a named
shared cache object:

# vxsnap [-g diskgroup] make source=vol/newvol=snapvol\

/cache=cacheobject [alloc=storage_attributes]

For example, to create the space-optimized instant snapshot, snap3myvol,
of the volume, myvol, in the disk group, mydg, on the disk mydg14, and
which uses the shared cache object, cobjmydg, use the following command:

# vxsnap -g mydg make source=myvol/newvol=snap3myvol\

/cache=cobjmydg alloc=mydg14

See “Creating a shared cache object” on page 403.

■ To create a space-optimized instant snapshot, snapvol, and also create a
cache object for it to use:

Administering volume snapshots
Creating instant snapshots

406



# vxsnap [-g diskgroup] make source=vol/newvol=snapvol\

[/cachesize=size][/autogrow=yes][/ncachemirror=number]\

[alloc=storage_attributes]

The cachesize attribute determines the size of the cache relative to the
size of the volume. The autogrow attribute determines whether VxVM
will automatically enlarge the cache if it is in danger of overflowing. By
default, the cache is not grown.
If autogrow is enabled, but the cache cannot be grown, VxVM disables the
oldest and largest snapshot that is using the same cache, and releases its
cache space for use.
The ncachemirror attribute specifies the number of mirrors to create in
the cache volume. For backup purposes, the default value of 1 should be
sufficient.
For example, to create the space-optimized instant snapshot, snap4myvol,
of the volume, myvol, in the disk group, mydg, on the disk mydg15, and
which uses a newly allocated cache object that is 1GB in size, but which
can automatically grow in size, use the following command:

# vxsnap -g mydg make source=myvol/new=snap4myvol\

/cachesize=1g/autogrow=yes alloc=mydg15

If a cache is created implicitly by specifying cachesize, and ncachemirror

is specified to be greater than 1, a DCO is attached to the cache volume to
enable dirty region logging (DRL). DRL allows fast recovery of the cache
backing store after a system crash. The DCO is allocated on the same disks
as those that are occupied by the DCO of the source volume. This is done
to allow the cache and the source volume to remain in the same disk group
for disk group move, split and join operations.

2 Use fsck (or some utility appropriate for the application running on the
volume) to clean the temporary volume’s contents. For example, you can use
this command with a VxFS file system:

# fsck -F vxfs /dev/vx/rdsk/diskgroup/snapshot

The specified device must have a valid entry in the /etc/vfstab file.

3 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

4 You now have the following options:

■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization

407Administering volume snapshots
Creating instant snapshots



was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant snapshot” on page 420.

■ Restore the contents of the original volume from the snapshot volume.
The space-optimized instant snapshot remains intact at the end of the
operation.
See “Restoring a volume from an instant snapshot” on page 422.

■ Destroy the snapshot.
See “Removing an instant snapshot” on page ?.

Creating and managing full-sized instant snapshots
Full-sized instant snapshots are not suitable for write-intensive volumes (such
as for database redo logs) because the copy-on-write mechanism may degrade the
performance of the volume.

For full-sized instant snapshots, you must prepare a volume that is to be used as
the snapshot volume. This must be the same size as the volume for which the
snapshot is being created, and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 405.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

To create and manage a full-sized instant snapshot

1 To create a full-sized instant snapshot, use the following form of the vxsnap
make command:

# vxsnap [-g diskgroup] make source=volume/snapvol=snapvol\

[/snapdg=snapdiskgroup] [/syncing=off]

The command specifies the volume, snapvol, that you prepared earlier.

For example, to use the prepared volume, snap1myvol, as the snapshot for
the volume, myvol, in the disk group, mydg, use the following command:

# vxsnap -g mydg make source=myvol/snapvol=snap1myvol

For full-sized instant snapshots that are created from an empty volume,
background synchronization is enabled by default (equivalent to specifying
the syncing=on attribute). To move a snapshot into a separate disk group, or

Administering volume snapshots
Creating instant snapshots

408



to turn it into an independent volume, you must wait for its contents to be
synchronized with those of its parent volume.

You can use the vxsnap syncwait command to wait for the synchronization
of the snapshot volume to be completed, as shown here:

# vxsnap [-g diskgroup] syncwait snapvol

For example, you would use the following command to wait for
synchronization to finish on the snapshot volume, snap2myvol:

# vxsnap -g mydg syncwait snap2myvol

This command exits (with a return code of zero) when synchronization of the
snapshot volume is complete. The snapshot volume may then be moved to
another disk group or turned into an independent volume.

See “Controlling instant snapshot synchronization” on page 426.

If required, you can use the following command to test if the synchronization
of a volume is complete:

# vxprint [-g diskgroup] -F%incomplete snapvol

This command returns the valueoff if synchronization of the volume, snapvol,
is complete; otherwise, it returns the value on.

You can also use the vxsnap print command to check on the progress of
synchronization.

See “Displaying instant snapshot information” on page 424.

If you do not want to move the snapshot into a separate disk group, or to turn
it into an independent volume, specify the syncing=off attribute. This avoids
unnecessary system overhead. For example, to turn off synchronization when
creating the snapshot of the volume, myvol, you would use the following form
of the vxsnap make command:

# vxsnap -g mydg make source=myvol/snapvol=snap1myvol\

/syncing=off

2 Use fsck (or some utility appropriate for the application running on the
volume) to clean the temporary volume’s contents. For example, you can use
this command with a VxFS file system:

# fsck -F vxfs /dev/vx/rdsk/diskgroup/snapshot

The specified device must have a valid entry in the /etc/vfstab file.

409Administering volume snapshots
Creating instant snapshots



3 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

4 You now have the following options:

■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant snapshot” on page 420.

■ Reattach some or all of the plexes of the snapshot volume with the original
volume.
See “Reattaching an instant snapshot” on page 420.

■ Restore the contents of the original volume from the snapshot volume.
You can choose whether none, a subset, or all of the plexes of the snapshot
volume are returned to the original volume as a result of the operation.
See “Restoring a volume from an instant snapshot” on page 422.

■ Dissociate the snapshot volume entirely from the original volume. This
may be useful if you want to use the copy for other purposes such as testing
or report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 423.

■ If the snapshot is part of a snapshot hierarchy, you can also choose to
split this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 424.

Creating and managing third-mirror break-off snapshots
Break-off snapshots are suitable for write-intensive volumes, such as database
redo logs.

To turn one or more existing plexes in a volume into a break-off instant snapshot
volume, the volume must be a non-layered volume with amirrorormirror-stripe
layout, or a RAID-5 volume that you have converted to a special layered volume
and then mirrored. The plexes in a volume with a stripe-mirror layout are
mirrored at the subvolume level, and cannot be broken off.

See “Using a DCO and DCO volume with a RAID-5 volume” on page 363.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

Administering volume snapshots
Creating instant snapshots

410



To create and manage a third-mirror break-off snapshot

1 To create the snapshot, you can either take some of the existing ACTIVEplexes
in the volume, or you can use the following command to add new snapshot
mirrors to the volume:

# vxsnap [-b] [-g diskgroup] addmir volume [nmirror=N] \

[alloc=storage_attributes]

By default, the vxsnap addmir command adds one snapshot mirror to a
volume unless you use the nmirror attribute to specify a different number
of mirrors. The mirrors remain in the SNAPATT state until they are fully
synchronized. The -b option can be used to perform the synchronization in
the background. Once synchronized, the mirrors are placed in the SNAPDONE
state.

For example, the following command adds 2 mirrors to the volume, vol1, on
disks mydg10 and mydg11:

# vxsnap -g mydg addmir vol1 nmirror=2 alloc=mydg10,mydg11

If you specify the -b option to the vxsnap addmir command, you can use the
vxsnap snapwait command to wait for synchronization of the snapshot
plexes to complete, as shown in this example:

# vxsnap -g mydg snapwait vol1 nmirror=2

411Administering volume snapshots
Creating instant snapshots



2 To create a third-mirror break-off snapshot, use the following form of the
vxsnap make command.

# vxsnap [-g diskgroup] make source=volume[/newvol=snapvol]\

{/plex=plex1[,plex2,...]|/nmirror=number]}

Either of the following attributes may be specified to create the new snapshot
volume, snapvol, by breaking off one or more existing plexes in the original
volume:

Specifies the plexes in the existing volume that are to be broken
off.

plex

Specifies how many plexes are to be broken off. This attribute
can only be used with plexes that are in the SNAPDONE state.
(Such plexes could have been added to the volume by using the
vxsnap addmir command.)

nmirror

Snapshots that are created from one or more ACTIVE or SNAPDONE plexes in
the volume are already synchronized by definition.

For backup purposes, a snapshot volume with one plex should be sufficient.

For example, to create the instant snapshot volume, snap2myvol, of the
volume, myvol, in the disk group, mydg, from a single existing plex in the
volume, use the following command:

# vxsnap -g mydg make source=myvol/newvol=snap2myvol/nmirror=1

The next example shows how to create a mirrored snapshot from two existing
plexes in the volume:

# vxsnap -g mydg make source=myvol/newvol=snap2myvol/plex=myvol-03,myvol-04

3 Use fsck (or some utility appropriate for the application running on the
volume) to clean the temporary volume’s contents. For example, you can use
this command with a VxFS file system:

# fsck -F vxfs /dev/vx/rdsk/diskgroup/snapshot

The specified device must have a valid entry in the /etc/vfstab file.

4 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

5 You now have the following options:

Administering volume snapshots
Creating instant snapshots

412



■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant snapshot” on page 420.

■ Reattach some or all of the plexes of the snapshot volume with the original
volume.
See “Reattaching an instant snapshot” on page 420.

■ Restore the contents of the original volume from the snapshot volume.
You can choose whether none, a subset, or all of the plexes of the snapshot
volume are returned to the original volume as a result of the operation.
See “Restoring a volume from an instant snapshot” on page 422.

■ Dissociate the snapshot volume entirely from the original volume. This
may be useful if you want to use the copy for other purposes such as testing
or report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 423.

■ If the snapshot is part of a snapshot hierarchy, you can also choose to
split this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 424.

Creating and managing linked break-off snapshot volumes
Break-off snapshots are suitable for write-intensive volumes. Specifically, they
are used for off-host processing, because the snapshot could be in a different data
group to start with and could avoid data group split/join operations

For linked break-off snapshots, you must prepare a volume that is to be used as
the snapshot volume. This must be the same size as the volume for which the
snapshot is being created, and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 405.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

413Administering volume snapshots
Creating instant snapshots



To create and manage a linked break-off snapshot

1 Use the following command to link the prepared snapshot volume, snapvol,
to the data volume:

# vxsnap [-g diskgroup] [-b] addmir volume mirvol=snapvol \

[mirdg=snapdg]

The optional mirdg attribute can be used to specify the snapshot volume’s
current disk group, snapdg. The -b option can be used to perform the
synchronization in the background. If the -b option is not specified, the
command does not return until the link becomes ACTIVE.

For example, the following command links the prepared volume, prepsnap,
in the disk group, mysnapdg, to the volume, vol1, in the disk group, mydg:

# vxsnap -g mydg -b addmir vol1 mirvol=prepsnap mirdg=mysnapdg

If the -b option is specified, you can use the vxsnap snapwait command to
wait for the synchronization of the linked snapshot volume to complete, as
shown in this example:

# vxsnap -g mydg snapwait vol1 mirvol=prepsnap mirdg=mysnapvoldg

2 To create a linked break-off snapshot, use the following form of the vxsnap

make command.

# vxsnap [-g diskgroup] make source=volume/snapvol=snapvol\

[/snapdg=snapdiskgroup]

The snapdg attribute must be used to specify the snapshot volume’s disk
group if this is different from that of the data volume.

For example, to use the prepared volume, prepsnap, as the snapshot for the
volume, vol1, in the disk group, mydg, use the following command:

# vxsnap -g mydg make source=vol1/snapvol=prepsnap/snapdg=mysnapdg

3 Use fsck (or some utility appropriate for the application running on the
volume) to clean the temporary volume’s contents. For example, you can use
this command with a VxFS file system:

# fsck -F vxfs /dev/vx/rdsk/diskgroup/snapshot

The specified device must have a valid entry in the /etc/vfstab file.

Administering volume snapshots
Creating instant snapshots

414



4 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

5 You now have the following options:

■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant snapshot” on page 420.

■ Reattach the snapshot volume with the original volume. This operation
is not possible if the linked volume and snapshot are in different disk
groups.
See “Reattaching a linked break-off snapshot volume” on page 421.

■ Dissociate the snapshot volume entirely from the original volume. This
may be useful if you want to use the copy for other purposes such as testing
or report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 423.

■ If the snapshot is part of a snapshot hierarchy, you can also choose to
split this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 424.

Creating multiple instant snapshots
You can create multiple instant snapshots for all volumes that form a consistent
group. The vxsnap make command accepts multiple tuples that define the source
and snapshot volumes names as their arguments. For example, to create three
instant snapshots, each with the same redundancy, from specified storage, the
following form of the command can be used:

# vxsnap [-g diskgroup] make source=vol1/snapvol=snapvol1\

source=vol2/snapvol=snapvol2 source=vol3/snapvol=snapvol3

The snapshot volumes (snapvol1, snapvol2 and so on) must have been prepared
in advance.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 405.

The specified source volumes (vol1, vol2 and so on) may be the same volume or
they can be different volumes.

If all the snapshots are to be space-optimized and to share the same cache, the
following form of the command can be used:

415Administering volume snapshots
Creating instant snapshots



# vxsnap [-g diskgroup] make \

source=vol1/newvol=snapvol1/cache=cacheobj \

source=vol2/newvol=snapvol2/cache=cacheobj \

source=vol3/newvol=snapvol3/cache=cacheobj \

[alloc=storage_attributes]

The vxsnap make command also allows the snapshots to be of different types,
have different redundancy, and be configured from different storage, as shown
here:

# vxsnap [-g diskgroup] make source=vol1/snapvol=snapvol1 \

source=vol2[/newvol=snapvol2]/cache=cacheobj\

[/alloc=storage_attributes2][/nmirror=number2]

source=vol3[/newvol=snapvol3][/alloc=storage_attributes3]\

/nmirror=number3

In this example, snapvol1 is a full-sized snapshot that uses a prepared volume,
snapvol2 is a space-optimized snapshot that uses a prepared cache, and snapvol3
is a break-off full-sized snapshot that is formed from plexes of the original volume.

An example of where you might want to create mixed types of snapshots at the
same time is when taking snapshots of volumes containing database redo logs
and database tables:

# vxsnap -g mydg make \

source=logv1/newvol=snplogv1/drl=sequential/nmirror=1 \

source=logv2/newvol=snplogv2/drl=sequential/nmirror=1 \

source=datav1/newvol=snpdatav1/cache=mydgcobj/drl=on \

source=datav2/newvol=snpdatav2/cache=mydgcobj/drl=on

In this example, sequential DRL is enabled for the snapshots of the redo log
volumes, and normal DRL is applied to the snapshots of the volumes that contain
the database tables. The two space-optimized snapshots are configured to share
the same cache object in the disk group. Also note that break-off snapshots are
used for the redo logs as such volumes are write intensive.

Creating instant snapshots of volume sets
Volume set names can be used in place of volume names with the following vxsnap
operations on instant snapshots: addmir, dis, make, prepare, reattach, refresh,
restore, rmmir, split, syncpause, syncresume, syncstart, syncstop, syncwait,
and unprepare.

The procedure for creating an instant snapshot of a volume set is the same as that
for a standalone volume. However, there are certain restrictions if a full-sized
instant snapshot is to be created from a prepared volume set. A full-sized instant

Administering volume snapshots
Creating instant snapshots

416



snapshot of a volume set must itself be a volume set with the same number of
volumes, and the same volume sizes and index numbers as the parent. For example,
if a volume set contains three volumes with sizes 1GB, 2GB and 3GB, and indexes
0, 1 and 2 respectively, then the snapshot volume set must have three volumes
with the same sizes matched to the same set of index numbers. The corresponding
volumes in the parent and snapshot volume sets are also subject to the same
restrictions as apply between standalone volumes and their snapshots.

You can use the vxvset list command to verify that the volume sets have
identical characteristics as shown in this example:

# vxvset -g mydg list vset1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol_0 0 204800 ENABLED -

vol_1 1 409600 ENABLED -

vol_2 2 614400 ENABLED -

# vxvset -g mydg list snapvset1

VOLUME INDEX LENGTH KSTATE CONTEXT

svol_0 0 204800 ENABLED -

svol_1 1 409600 ENABLED -

svol_2 2 614400 ENABLED -

A full-sized instant snapshot of a volume set can be created using a prepared
volume set in which each volume is the same size as the corresponding volume
in the parent volume set. Alternatively, you can use the nmirrors attribute to
specify the number of plexes that are to be broken off provided that sufficient
plexes exist for each volume in the volume set.

The following example shows how to prepare a source volume set, vset1, and an
identical volume set, snapvset1, which is then used to create the snapshot:

# vxsnap -g mydg prepare vset1

# vxsnap -g mydg prepare snapvset1

# vxsnap -g mydg make source=vset1/snapvol=snapvset1

To create a full-sized third-mirror break-off snapshot, you must ensure that each
volume in the source volume set contains sufficient plexes. The following example
shows how to achieve this by using the vxsnap command to add the required
number of plexes before breaking off the snapshot:

# vxsnap -g mydg prepare vset2

# vxsnap -g mydg addmir vset2 nmirror=1

# vxsnap -g mydg make source=vset2/newvol=snapvset2/nmirror=1

417Administering volume snapshots
Creating instant snapshots



See “Adding snapshot mirrors to a volume” on page 418.

To create a space-optimized instant snapshot of a volume set, the commands are
again identical to those for a standalone volume as shown in these examples:

# vxsnap -g mydg prepare vset3

# vxsnap -g mydg make source=vset3/newvol=snapvset3/cachesize=20m

# vxsnap -g mydg prepare vset4

# vxsnap -g mydg make source=vset4/newvol=snapvset4/cache=mycobj

Here a new cache object is created for the volume set, vset3, and an existing cache
object, mycobj, is used for vset4.

See “About volume sets” on page 447.

Adding snapshot mirrors to a volume
If you are going to create a full-sized break-off snapshot volume, you can use the
following command to add new snapshot mirrors to a volume:

# vxsnap [-b] [-g diskgroup] addmir volume|volume_set \

[nmirror=N] [alloc=storage_attributes]

The volume must have been prepared using the vxsnap prepare command.

See “Preparing a volume for DRL and instant snapshots” on page 360.

If a volume set name is specified instead of a volume, the specified number of
plexes is added to each volume in the volume set.

By default, the vxsnap addmir command adds one snapshot mirror to a volume
unless you use the nmirror attribute to specify a different number of mirrors.
The mirrors remain in the SNAPATT state until they are fully synchronized. The
-b option can be used to perform the synchronization in the background. Once
synchronized, the mirrors are placed in the SNAPDONE state.

For example, the following command adds 2 mirrors to the volume, vol1, on disks
mydg10 and mydg11:

# vxsnap -g mydg addmir vol1 nmirror=2 alloc=mydg10,mydg11

This command is similar in usage to the vxassist snapstart command, and
supports the traditional third-mirror break-off snapshot model. As such, it does
not provide an instant snapshot capability.

Administering volume snapshots
Creating instant snapshots

418



Once you have added one or more snapshot mirrors to a volume, you can use the
vxsnap make command with either the nmirror attribute or the plex attribute to
create the snapshot volumes.

Removing a snapshot mirror
To remove a single snapshot mirror from a volume, use this command:

# vxsnap [-g diskgroup] rmmir volume|volume_set

For example, the following command removes a snapshot mirror from the volume,
vol1:

# vxsnap -g mydg rmmir vol1

This command is similar in usage to the vxassist snapabort command.

If a volume set name is specified instead of a volume, a mirror is removed from
each volume in the volume set.

Removing a linked break-off snapshot volume
To remove a linked break-off snapshot volume from a volume, use this command:

# vxsnap [-g diskgroup] rmmir volume|volume_set mirvol=snapvol \

[mirdg=snapdiskgroup]

The mirvol and optional mirdg attributes specify the snapshot volume, snapvol,
and its disk group, snapdiskgroup. For example, the following command removes
a linked snapshot volume, prepsnap, from the volume, vol1:

# vxsnap -g mydg rmmir vol1 mirvol=prepsnap mirdg=mysnapdg

Adding a snapshot to a cascaded snapshot hierarchy
To create a snapshot and push it onto a snapshot hierarchy between the original
volume and an existing snapshot volume, specify the name of the existing snapshot
volume as the value of the infrontof attribute to the vxsnap make command.
The following example shows how to place the space-optimized snapshot,
thurs_bu, of the volume, dbvol, in front of the earlier snapshot, wed_bu:

# vxsnap -g dbdg make source=dbvol/newvol=thurs_bu/\

infrontof=wed_bu/cache=dbdgcache

Similarly, the next snapshot that is taken, fri_bu, is placed in front of thurs_bu:

419Administering volume snapshots
Creating instant snapshots



# vxsnap -g dbdg make source=dbvol/newvol=fri_bu/\

infrontof=thurs_bu/cache=dbdgcache

See “Cascaded snapshots” on page 395.

Refreshing an instant snapshot
Refreshing an instant snapshot replaces it with another point-in-time copy of a
parent volume. To refresh one or more snapshots and make them immediately
available for use, use the following command:

# vxsnap [-g diskgroup] refresh snapvolume|snapvolume_set \

[source=volume|volume_set] [snapvol2 [source=vol2]...] \

[syncing=yes|no]

If the source volume is not specified, the immediate parent of the snapshot is
used. For full-sized instant snapshots, resynchronization is started by default. To
disable resynchronization, specify the syncing=no attribute. This attribute is not
supported for space-optimized snapshots.

Warning:The snapshot that is being refreshed must not be open to any application.
For example, any file system configured on the volume must first be unmounted.

It is possible to refresh a volume from an unrelated volume provided that their
sizes are compatible.

You can use the vxsnap syncwait command to wait for the synchronization of
the snapshot volume to be completed, as shown here:

# vxsnap [-g diskgroup] syncwait snapvol

See “Controlling instant snapshot synchronization” on page 426.

Reattaching an instant snapshot

Note: This operation is not supported for space-optimized instant snapshots.

Using the following command, some or all plexes of an instant snapshot may be
reattached to the specified original volume, or to a source volume in the snapshot
hierarchy above the snapshot volume:

# vxsnap [-g diskgroup] reattach snapvolume|snapvolume_set \

source=volume|volume_set [nmirror=number]

Administering volume snapshots
Creating instant snapshots

420



By default, all the plexes are reattached, which results in the removal of the
snapshot. If required, the number of plexes to be reattached may be specified as
the value assigned to the nmirror attribute.

Warning: The snapshot that is being reattached must not be open to any
application. For example, any file system configured on the snapshot volume must
first be unmounted.

It is possible to reattach a volume to an unrelated volume provided that their
volume sizes and region sizes are compatible.

For example the following command reattaches one plex from the snapshot
volume, snapmyvol, to the volume, myvol:

# vxsnap -g mydg reattach snapmyvol source=myvol nmirror=1

While the reattached plexes are being resynchronized from the data in the parent
volume, they remain in the SNAPTMP state. After resynchronization is complete,
the plexes are placed in the SNAPDONE state. You can use the vxsnap snapwait

command (but not vxsnap syncwait) to wait for the resynchronization of the
reattached plexes to complete, as shown here:

# vxsnap -g mydg snapwait myvol nmirror=1

If the volume and its snapshot have both been resized (to an identical smaller or
larger size) before performing the reattachment, a fast resynchronization can
still be performed. A full resynchronization is not required. Version 20 DCO
volumes are resized proportionately when the associated data volume is resized.
For version 0 DCO volumes, the FastResync maps stay the same size, but the
region size is recalculated, and the locations of the dirty bits in the existing maps
are adjusted. In both cases, new regions are marked as dirty in the maps.

Reattaching a linked break-off snapshot volume
Unlike other types of snapshot, the reattachment operation for linked break-off
snapshot volumes does not return the plexes of the snapshot volume to the parent
volume. The link relationship is re-established that makes the snapshot volume
a mirror of the parent volume, and this allows the snapshot data to be
resynchronized. However, the snapshot volume is only readopted by its parent
volume if they are both in the same disk group.

To reattach a linked break-off snapshot volume, use the following form of the
vxsnap reattach command:

421Administering volume snapshots
Creating instant snapshots



# vxsnap [-g snapdiskgroup] reattach snapvolume|snapvolume_set \

source=volume|volume_set [sourcedg=diskgroup]

The sourcedg attribute must be used to specify the data volume’s disk group if
this is different from the snapshot volume’s disk group, snapdiskgroup.

Warning: The snapshot that is being reattached must not be open to any
application. For example, any file system configured on the snapshot volume must
first be unmounted.

It is possible to reattach a volume to an unrelated volume provided that their sizes
and region sizes are compatible.

For example the following command reattaches the snapshot volume, prepsnap,
in the disk group, snapdg, to the volume, myvol, in the disk group, mydg:

# vxsnap -g snapdg reattach prepsnap source=myvol sourcedg=mydg

After resynchronization of the snapshot volume is complete, the link is placed in
the ACTIVE state. You can use the vxsnap snapwait command (but not vxsnap
syncwait) to wait for the resynchronization of the reattached volume to complete,
as shown here:

# vxsnap -g snapdg snapwait myvol mirvol=prepsnap

Restoring a volume from an instant snapshot
It may sometimes be desirable to reinstate the contents of a volume from a backup
or modified replica in a snapshot volume. The following command may be used
to restore one or more volumes from the specified snapshots:

# vxsnap [-g diskgroup] restore volume|volume_set \

source=snapvolume|snapvolume_set \

[[volume2|volume_set2 \

source=snapvolume2|snapvolume_set2]...]\

[destroy=yes|no] [syncing=yes|no] [nmirror=number]

For a full-sized instant snapshot, some or all of its plexes may be reattached to
the parent volume or to a specified source volume in the snapshot hierarchy above
the snapshot volume. If destroy=yes is specified, all the plexes of the full-sized
instant snapshot are reattached and the snapshot volume is removed.

For a space-optimized instant snapshot, the cached data is used to recreate the
contents of the specified volume. The space-optimized instant snapshot remains
unchanged by the restore operation.

Administering volume snapshots
Creating instant snapshots

422



Warning: For this operation to succeed, the volume that is being restored and the
snapshot volume must not be open to any application. For example, any file
systems that are configured on either volume must first be unmounted.

It is not possible to restore a volume from an unrelated volume.

The destroy and nmirror attributes are not supported for space-optimized instant
snapshots.

The following example demonstrates how to restore the volume, myvol, from the
space-optimized snapshot, snap3myvol.

# vxsnap -g mydg restore myvol source=snap3myvol

Dissociating an instant snapshot
The following command breaks the association between a full-sized instant
snapshot volume, snapvol, and its parent volume, so that the snapshot may be
used as an independent volume:

# vxsnap [-f] [-g diskgroup] dis snapvolume|snapvolume_set

This operation fails if the snapshot, snapvol has unsynchronized snapshots. If
this happens, the dependent snapshots must be fully synchronized from snapvol.
When no dependent snapshots remain, snapvolmay be dissociated. The snapshot
hierarchy is then adopted by the parent volume of snapvol.

See “Controlling instant snapshot synchronization” on page 426.

See “Removing an instant snapshot” on page 423.

The following command dissociates the snapshot, snap2myvol, from its parent
volume:

# vxsnap -g mydg dis snap2myvol

Warning:When applied to a volume set or to a component volume of a volume set,
this operation can result in inconsistencies in the snapshot hierarchy in the case
of a system crash or hardware failure. If the operation is applied to a volume set,
the -f (force) option must be specified.

Removing an instant snapshot
When you have dissociated a full-sized instant snapshot, you can use the vxedit
command to delete it altogether, as shown in this example:

423Administering volume snapshots
Creating instant snapshots



# vxedit -g mydg -r rm snap2myvol

You can also use this command to remove a space-optimized instant snapshot
from its cache.

See “Removing a cache” on page 430.

Splitting an instant snapshot hierarchy

Note: This operation is not supported for space-optimized instant snapshots.

The following command breaks the association between a snapshot hierarchy
that has the snapshot volume, snapvol, at its head, and its parent volume, so that
the snapshot hierarchy may be used independently of the parent volume:

# vxsnap [-f] [-g diskgroup] split snapvolume|snapvolume_set

The topmost snapshot volume in the hierarchy must have been fully synchronized
for this command to succeed. Snapshots that are lower down in the hierarchy
need not have been fully resynchronized.

See “Controlling instant snapshot synchronization” on page 426.

The following command splits the snapshot hierarchy under snap2myvol from
its parent volume:

# vxsnap -g mydg split snap2myvol

Warning:When applied to a volume set or to a component volume of a volume set,
this operation can result in inconsistencies in the snapshot hierarchy in the case
of a system crash or hardware failure. If the operation is applied to a volume set,
the -f (force) option must be specified.

Displaying instant snapshot information
The vxsnap print command may be used to display information about the
snapshots that are associated with a volume.

# vxsnap [-g diskgroup] print [vol]

This command shows the percentage progress of the synchronization of a snapshot
or volume. If no volume is specified, information about the snapshots for all the
volumes in a disk group is displayed. The following example shows a volume,

Administering volume snapshots
Creating instant snapshots

424



vol1, which has a full-sized snapshot, snapvol1 whose contents have not been
synchronized with vol1:

# vxsnap -g mydg print

NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

vol1 -- volume -- -- -- 100

snapvol1_snp1 volume -- snapvol1 1.30 --

snapvol1 vol1_snp1 volume vol1 -- 1.30 1.30

The %DIRTY value for snapvol1 shows that its contents have changed by 1.30%
when compared with the contents of vol1. As snapvol1has not been synchronized
with vol1, the %VALID value is the same as the %DIRTY value. If the snapshot were
partly synchronized, the %VALID value would lie between the %DIRTY value and
100%. If the snapshot were fully synchronized, the %VALID value would be 100%.
The snapshot could then be made independent or moved into another disk group.

Additional information about the snapshots of volumes and volume sets can be
obtained by using the -n option with the vxsnap print command:

# vxsnap [-g diskgroup] -n [-l] [-v] [-x] print [vol]

Alternatively, you can use the vxsnap list command, which is an alias for the
vxsnap -n print command:

# vxsnap [-g diskgroup] [-l] [-v] [-x] list [vol]

The following output is an example of using this command on the disk group dg1:

# vxsnap -g dg -vx list

NAME DG OBJTYPE SNAPTYPE PARENT PARENTDG SNAPDATE CHANGE_DATA SYNCED_DATA

vol dg1 vol - - - - - 10G (100%)

svol1 dg2 vol fullinst vol dg1 2006/2/1 12:29 20M (0.2%) 60M (0.6%)

svol2 dg1 vol mirbrk vol dg1 2006/2/1 12:29 120M (1.2%) 10G (100%)

svol3 dg2 vol volbrk vol dg1 2006/2/1 12:29 105M (1.1%) 10G (100%)

svol21 dg1 vol spaceopt svol2 dg1 2006/2/1 12:29 52M (0.5%) 52M (0.5%)

vol-02 dg1 plex snapmir vol dg1 - - 56M (0.6%)

mvol dg2 vol mirvol vol dg1 - - 58M (0.6%)

vset1 dg1 vset - - - - - 2G (100%)

v1 dg1 compvol - - - - - 1G (100%)

v2 dg1 compvol - - - - - 1G (100%)

svset1 dg1 vset mirbrk vset dg1 2006/2/1 12:29 1G (50%) 2G (100%)

sv1 dg1 compvol mirbrk v1 dg1 2006/2/1 12:29 512M (50%) 1G (100%)

sv2 dg1 compvol mirbrk v2 dg1 2006/2/1 12:29 512M (50%) 1G (100%)

425Administering volume snapshots
Creating instant snapshots



vol-03 dg1 plex detmir vol dg1 - 20M (0.2%) -

mvol2 dg2 vol detvol vol dg1 - 20M (0.2%) -

This shows that the volume vol has three full-sized snapshots, svol1, svol2 and
svol3, which are of types full-sized instant (fullinst), mirror break-off (mirbrk)
and linked break-off (volbrk). It also has one snapshot plex (snapmir), vol-02,
and one linked mirror volume (mirvol), mvol. The snapshot svol2 itself has a
space-optimized instant snapshot (spaceopt), svol21. There is also a volume set,
vset1, with component volumes v1 and v2. This volume set has a mirror break-off
snapshot, svset1, with component volumes sv1 and sv2. The last two entries
show a detached plex, vol-03, and a detached mirror volume, mvol2, which have
vol as their parent volume. These snapshot objects may have become detached
due to an I/O error, or, in the case of the plex, by running the vxplex det

command.

The CHANGE_DATA column shows the approximate difference between the current
contents of the snapshot and its parent volume. This corresponds to the amount
of data that would have to be resynchronized to make the contents the same again.

The SYNCED_DATA column shows the approximate progress of synchronization
since the snapshot was taken.

The -l option can be used to obtain a longer form of the output listing instead of
the tabular form.

The -x option expands the output to include the component volumes of volume
sets.

See the vxsnap(1M) manual page for more information about using the vxsnap

print and vxsnap list commands.

Controlling instant snapshot synchronization
Synchronization of the contents of a snapshot with its original volume is not
possible for space-optimized instant snapshots.

By default, synchronization is enabled for the vxsnap reattach, refresh and
restore operations on instant snapshots. Otherwise, synchronization is disabled
unless you specify the syncing=yes attribute to the vxsnap command.

Table 9-1 shows the commands that are provided for controlling the
synchronization manually.

Administering volume snapshots
Creating instant snapshots

426



Table 9-1 Commands for controlling instant snapshot synchronization

DescriptionCommand

Pause synchronization of a
volume.

vxsnap [-g diskgroup] syncpause \

vol|vol_set

Resume synchronization of a
volume.

vxsnap [-g diskgroup] syncresume \

vol|vol_set

Start synchronization of a volume.
The -b option puts the operation
in the background.

vxsnap [-b] [-g diskgroup] syncstart \

vol|vol_set

Stop synchronization of a volume.vxsnap [-g diskgroup] syncstop \

vol|vol_set

Exit when synchronization of a
volume is complete. An error is
returned if the vol or vol_set is
invalid (for example, it is a
space-optimized snapshot), or if
the vol or vol_set is not being
synchronized.

Note: You cannot use this
command to wait for
synchronization of reattached
plexes to complete.

vxsnap [-g diskgroup] syncwait \

vol|vol_set

The commands that are shown in Table 9-1 cannot be used to control the
synchronization of linked break-off snapshots.

The vxsnap snapwait command is provided to wait for the link between new
linked break-off snapshots to become ACTIVE, or for reattached snapshot plexes
to reach the SNAPDONE state following resynchronization.

See “Creating and managing linked break-off snapshot volumes” on page 413.

See “Reattaching an instant snapshot” on page 420.

See “Reattaching a linked break-off snapshot volume” on page 421.

Improving the performance of snapshot synchronization
The following optional arguments to the -o option are provided to help optimize
the performance of synchronization when using the make, refresh, restore and
syncstart operations with full-sized instant snapshots:

427Administering volume snapshots
Creating instant snapshots



Specifies the size of each I/O request that is used when
synchronizing the regions of a volume. Specifying a larger size
causes synchronization to complete sooner, but with greater
impact on the performance of other processes that are accessing
the volume. The default size of 1m (1MB) is suggested as the
minimum value for high-performance array and controller
hardware. The specified value is rounded to a multiple of the
volume’s region size.

iosize=size

Specifies the delay in milliseconds between synchronizing
successive sets of regions as specified by the value of iosize.
This can be used to change the impact of synchronization on
system performance. The default value of iodelay is 0 milliseconds
(no delay). Increasing this value slows down synchronization, and
reduces the competition for I/O bandwidth with other processes
that may be accessing the volume.

slow=iodelay

Options may be combined as shown in the following examples:

# vxsnap -g mydg -o iosize=2m,slow=100 make \

source=myvol/snapvol=snap2myvol/syncing=on

# vxsnap -g mydg -o iosize=10m,slow=250 syncstart snap2myvol

Note: The iosize and slow parameters are not supported for space-optimized
snapshots.

Listing the snapshots created on a cache
To list the space-optimized instant snapshots that have been created on a cache
object, use the following command:

# vxcache [-g diskgroup] listvol cache_object

The snapshot names are printed as a space-separated list ordered by timestamp.
If two or more snapshots have the same timestamp, these snapshots are sorted
in order of decreasing size.

Tuning the autogrow attributes of a cache
The highwatermark, autogrowby and maxautogrow attributes determine how the
VxVM cache daemon (vxcached) maintains the cache if the autogrow feature has
been enabled and vxcached is running:

Administering volume snapshots
Creating instant snapshots

428



■ When cache usage reaches the high watermark value, highwatermark (default
value is 90 percent), vxcached grows the size of the cache volume by the value
of autogrowby (default value is 20% of the size of the cache volume in blocks).
The new required cache size cannot exceed the value of maxautogrow (default
value is twice the size of the cache volume in blocks).

■ When cache usage reaches the high watermark value, and the new required
cache size would exceed the value of maxautogrow, vxcacheddeletes the oldest
snapshot in the cache. If there are several snapshots with the same age, the
largest of these is deleted.

If the autogrow feature has been disabled:

■ When cache usage reaches the high watermark value, vxcached deletes the
oldest snapshot in the cache. If there are several snapshots with the same age,
the largest of these is deleted. If there is only a single snapshot, this snapshot
is detached and marked as invalid.

Note: The vxcached daemon does not remove snapshots that are currently open,
and it does not remove the last or only snapshot in the cache.

If the cache space becomes exhausted, the snapshot is detached and marked as
invalid. If this happens, the snapshot is unrecoverable and must be removed.
Enabling the autogrow feature on the cache helps to avoid this situation occurring.
However, for very small caches (of the order of a few megabytes), it is possible for
the cache to become exhausted before the system has time to respond and grow
the cache. In such cases, you can increase the size of the cache manually.

See “Growing and shrinking a cache” on page 430.

Alternatively, you can use the vxcache set command to reduce the value of
highwatermark as shown in this example:

# vxcache -g mydg set highwatermark=60 cobjmydg

You can use the maxautogrow attribute to limit the maximum size to which a cache
can grow. To estimate this size, consider how much the contents of each source
volume are likely to change between snapshot refreshes, and allow some additional
space for contingency.

If necessary, you can use the vxcache set command to change other autogrow
attribute values for a cache.

See the vxcache(1M) manual page.

429Administering volume snapshots
Creating instant snapshots



Growing and shrinking a cache
You can use the vxcache command to increase the size of the cache volume that
is associated with a cache object:

# vxcache [-g diskgroup] growcacheto cache_object size

For example, to increase the size of the cache volume associated with the cache
object, mycache, to 2GB, you would use the following command:

# vxcache -g mydg growcacheto mycache 2g

To grow a cache by a specified amount, use the following form of the command
shown here:

# vxcache [-g diskgroup] growcacheby cache_object size

For example, the following command increases the size of mycache by 1GB:

# vxcache -g mydg growcacheby mycache 1g

You can similarly use the shrinkcacheby and shrinkcacheto operations to reduce
the size of a cache.

See the vxcache(1M) manual page.

Removing a cache
To remove a cache completely, including the cache object, its cache volume and all
space-optimized snapshots that use the cache:

1 Run the following command to find out the names of the top-level snapshot
volumes that are configured on the cache object:

# vxprint -g diskgroup -vne \

"v_plex.pl_subdisk.sd_dm_name ~ /cache_object/"

where cache_object is the name of the cache object.

2 Remove all the top-level snapshots and their dependent snapshots (this can
be done with a single command):

# vxedit -g diskgroup -r rm snapvol ...

where snapvol is the name of a top-level snapshot volume.

Administering volume snapshots
Creating instant snapshots

430



3 Stop the cache object:

# vxcache -g diskgroup stop cache_object

4 Finally, remove the cache object and its cache volume:

# vxedit -g diskgroup -r rm cache_object

Creating traditional third-mirror break-off snapshots
VxVM provides third-mirror break-off snapshot images of volume devices using
vxassist and other commands.

To enhance the efficiency and usability of volume snapshots, turn on FastResync.

See “Enabling FastResync on a volume” on page 374.

If Persistent FastResync is required, you must associate a version 0 DCO with the
volume.

See “Adding a version 0 DCO and DCO volume” on page 440.

A plex is required that is large enough to store the complete contents of the volume.
Alternatively, you can use space-optimized instant snapshots.

See “Creating and managing space-optimized instant snapshots” on page 406.

The recommended approach to performing volume backup from the command
line, or from a script, is to use the vxsnap command. The vxassist snapstart,

snapwait, and snapshot commands are supported for backward compatibility.

The vxassist snapshot procedure consists of two steps:

■ Run vxassist snapstart to create a snapshot mirror.

■ Run vxassist snapshot to create a snapshot volume.

Thevxassist snapstart step creates a write-only backup plex which gets attached
to and synchronized with the volume. When synchronized with the volume, the
backup plex is ready to be used as a snapshot mirror. The end of the update
procedure is indicated by the new snapshot mirror changing its state to
SNAPDONE. This change can be tracked by the vxassist snapwait task, which
waits until at least one of the mirrors changes its state to SNAPDONE. If the attach
process fails, the snapshot mirror is removed and its space is released.

Note: If the snapstart procedure is interrupted, the snapshot mirror is
automatically removed when the volume is started.

431Administering volume snapshots
Creating traditional third-mirror break-off snapshots



Once the snapshot mirror is synchronized, it continues being updated until it is
detached. You can then select a convenient time at which to create a snapshot

volume as an image of the existing volume. You can also ask users to refrain from
using the system during the brief time required to perform the snapshot (typically
less than a minute). The amount of time involved in creating the snapshotmirror
is long in contrast to the brief amount of time that it takes to create the snapshot
volume.

The online backup procedure is completed by running the vxassist snapshot

command on a volume with a SNAPDONE mirror. This task detaches the finished
snapshot (which becomes a normal mirror), creates a new normal volume and
attaches thesnapshotmirror to thesnapshotvolume. Thesnapshot then becomes
a normal, functioning volume and the state of the snapshot is set to ACTIVE.

Administering volume snapshots
Creating traditional third-mirror break-off snapshots

432



To back up a volume using the vxassist command

1 Create a snapshot mirror for a volume using the following command:

# vxassist [-b] [-g diskgroup] snapstart [nmirror=N] volume

For example, to create a snapshot mirror of a volume called voldef, use the
following command:

# vxassist [-g diskgroup] snapstart voldef

The vxassist snapstart task creates a write-only mirror, which is attached
to and synchronized from the volume to be backed up.

By default, VxVM attempts to avoid placing snapshot mirrors on a disk that
already holds any plexes of a data volume. However, this may be impossible
if insufficient space is available in the disk group. In this case, VxVM uses
any available space on other disks in the disk group. If the snapshot plexes
are placed on disks which are used to hold the plexes of other volumes, this
may cause problems when you subsequently attempt to move a snapshot
volume into another disk group.

See “Moving DCO volumes between disk groups” on page 261.

To override the default storage allocation policy, you can use storage attributes
to specify explicitly which disks to use for the snapshot plexes.

See “Creating a volume on specific disks” on page 313.

If you start vxassist snapstart in the background using the -b option, you
can use the vxassist snapwait command to wait for the creation of the
mirror to complete as shown here:

# vxassist [-g diskgroup] snapwait volume

If vxassist snapstart is not run in the background, it does not exit until
the mirror has been synchronized with the volume. The mirror is then ready
to be used as a plex of a snapshot volume. While attached to the original
volume, its contents continue to be updated until you take the snapshot.

Use the nmirror attribute to create as many snapshot mirrors as you need
for the snapshot volume. For a backup, you should usually only require the
default of one.

It is also possible to make a snapshot plex from an existing plex in a volume.

See “Converting a plex into a snapshot plex” on page 435.

2 Choose a suitable time to create a snapshot. If possible, plan to take the
snapshot at a time when users are accessing the volume as little as possible.

433Administering volume snapshots
Creating traditional third-mirror break-off snapshots



3 Create a snapshot volume using the following command:

# vxassist [-g diskgroup] snapshot [nmirror=N] volume snapshot

If required, use the nmirror attribute to specify the number of mirrors in the
snapshot volume.

For example, to create a snapshot of voldef, use the following command:

# vxassist -g mydg snapshot voldef snapvoldef

The vxassist snapshot task detaches the finished snapshot mirror, creates
a new volume, and attaches the snapshot mirror to it. This step should only
take a few minutes. The snapshot volume, which reflects the original volume
at the time of the snapshot, is now available for backing up, while the original
volume continues to be available for applications and users.

If required, you can make snapshot volumes for several volumes in a disk
group at the same time.

See “Creating multiple snapshots with the vxassist command” on page 436.

4 Use fsck (or some utility appropriate for the application running on the
volume) to clean the temporary volume’s contents. For example, you can use
this command with a VxFS file system:

# fsck -F vxfs /dev/vx/rdsk/diskgroup/snapshot

The specified device must have a valid entry in the /etc/vfstab file.

5 If you require a backup of the data in the snapshot, use an appropriate utility
or operating system command to copy the contents of the snapshot to tape,
or to some other backup medium.

6 When the backup is complete, you have the following choices for what to do
with the snapshot volume:

■ Reattach some or all of the plexes of the snapshot volume with the original
volume.
See “Reattaching a snapshot volume” on page 437.

■ If FastResync was enabled on the volume before the snapshot was taken,
this speeds resynchronization of the snapshot plexes before the backup
cycle starts again at step 3.

■ Dissociate the snapshot volume entirely from the original volume
See “Dissociating a snapshot volume” on page 439.

■ This may be useful if you want to use the copy for other purposes such as
testing or report generation.

Administering volume snapshots
Creating traditional third-mirror break-off snapshots

434



■ Remove the snapshot volume to save space with this command:

# vxedit [-g diskgroup] -rf rm snapshot

Dissociating or removing the snapshot volume loses the advantage of fast
resynchronization if FastResync was enabled. If there are no further snapshot
plexes available, any subsequent snapshots that you take require another
complete copy of the original volume to be made.

Converting a plex into a snapshot plex

Note: A plex cannot be converted into a snapshot plex for layered volumes or for
any volume that has an associated version 20 DCO volume.

It is recommended that the instant snapshot feature is used in preference to
converting a plex into a snapshot plex.

In some circumstances, you may find it more convenient to convert an existing
plex in a volume into a snapshot plex rather than running vxassist snapstart.
For example, you may want to do this if you are short of disk space for creating
the snapshot plex and the volume that you want to snapshot contains more than
two plexes.

The procedure can also be used to speed up the creation of a snapshot volume
when a mirrored volume is created with more than two plexes and init=active

is specified.

It is advisable to retain at least two plexes in a volume to maintain data
redundancy.

To convert an existing plex into a snapshot plex for a volume on which Persistent
FastResync is enabled, use the following command:

# vxplex [-g diskgroup] -o dcoplex=dcologplex convert \

state=SNAPDONE plex

dcologplex is the name of an existing DCO plex that is to be associated with the
new snapshot plex. You can use the vxprint command to find out the name of
the DCO volume.

See “Adding a version 0 DCO and DCO volume” on page 440.

For example, to make a snapshot plex from the plex trivol-03 in the 3-plex
volume trivol, you would use the following command:

435Administering volume snapshots
Creating traditional third-mirror break-off snapshots



# vxplex -o dcoplex=trivol_dco-03 convert state=SNAPDONE \

trivol-03

Here the DCO plextrivol_dco_03 is specified as the DCO plex for the new snapshot
plex.

To convert an existing plex into a snapshot plex in the SNAPDONE state for a
volume on which Non-Persistent FastResync is enabled, use the following
command:

# vxplex [-g diskgroup] convert state=SNAPDONE plex

A converted plex is in the SNAPDONE state, and can be used immediately to create
a snapshot volume.

Note: The last complete regular plex in a volume, an incomplete regular plex, or
a dirty region logging (DRL) log plex cannot be converted into a snapshot plex.

Creating multiple snapshots with the vxassist command
To make it easier to create snapshots of several volumes at the same time, the
snapshot option accepts more than one volume name as its argument, for example:

# vxassist [-g diskgroup] snapshot volume1 volume2 ...

By default, the first snapshot volume is namedSNAP-volume, and each subsequent
snapshot is namedSNAPnumber-volume, wherenumber is a unique serial number,
and volume is the name of the volume for which the snapshot is being taken. This
default pattern can be overridden by using the option -o name=pattern, as
described on the vxassist(1M) manual page. For example, the pattern SNAP%v-%d

reverses the order of the number and volume components in the name.

To snapshot all the volumes in a single disk group, specify the option -o allvols

to vxassist:

# vxassist -g diskgroup -o allvols snapshot

This operation requires that allsnapstartoperations are complete on the volumes.
It fails if any of the volumes in the disk group do not have a complete snapshot
plex in the SNAPDONE state.

Note: The vxsnap command provides similiar functionality for creating multiple
snapshots.

Administering volume snapshots
Creating traditional third-mirror break-off snapshots

436



Reattaching a snapshot volume
The snapback operation merges a snapshot copy of a volume with the original
volume. One or more snapshot plexes are detached from the snapshot volume
and re-attached to the original volume. The snapshot volume is removed if all its
snapshot plexes are snapped back. This task resynchronizes the data in the volume
so that the plexes are consistent.

The snapback operation cannot be applied to RAID-5 volumes unless they have
been converted to a special layered volume layout by the addition of a DCO and
DCO volume.

See “Adding a version 0 DCO and DCO volume” on page 440.

To enhance the efficiency of the snapback operation, enable FastResync on the
volume before taking the snapshot

See “Enabling FastResync on a volume” on page 374.

To merge one snapshot plex with the original volume, use the following command:

# vxassist [-g diskgroup] snapback snapshot

where snapshot is the snapshot copy of the volume.

To merge all snapshot plexes in the snapshot volume with the original volume,
use the following command:

# vxassist [-g diskgroup] -o allplexes snapback snapshot

To merge a specified number of plexes from the snapshot volume with the original
volume, use the following command:

# vxassist [-g diskgroup] snapback nmirror=number snapshot

Here the nmirror attribute specifies the number of mirrors in the snapshot volume
that are to be re-attached.

Once the snapshot plexes have been reattached and their data resynchronized,
they are ready to be used in another snapshot operation.

By default, the data in the original volume is used to update the snapshot plexes
that have been re-attached. To copy the data from the replica volume instead, use
the following command:

# vxassist [-g diskgroup] -o resyncfromreplica snapback snapshot

437Administering volume snapshots
Creating traditional third-mirror break-off snapshots



Warning: Always unmount the snapshot volume (if this is mounted) before
performing a snapback. In addition, you must unmount the file system
corresponding to the primary volume before using the resyncfromreplicaoption.

Adding plexes to a snapshot volume
If you want to retain the existing plexes in a snapshot volume after a snapback
operation, you can create additional snapshot plexes that are to be used for the
snapback.

To add plexes to a snapshot volume

1 Use the following vxprint commands to discover the names of the snapshot
volume’s data change object (DCO) and DCO volume:

# DCONAME=`vxprint [-g diskgroup] -F%dco_name snapshot`

# DCOVOL=`vxprint [-g diskgroup] -F%log_vol $DCONAME`

2 Use thevxassist mirror command to create mirrors of the existing snapshot
volume and its DCO volume:

# vxassist -g diskgroup mirror snapshot

# vxassist -g diskgroup mirror $DCOVOL

The new plex in the DCO volume is required for use with the new data plex
in the snapshot.

3 Use the vxprint command to find out the name of the additional snapshot
plex:

# vxprint -g diskgroup snapshot

4 Use the vxprint command to find out the record ID of the additional DCO
plex:

# vxprint -g diskgroup -F%rid $DCOVOL

5 Use the vxedit command to set the dco_plex_rid field of the new data plex
to the name of the new DCO plex:

# vxedit -g diskgroup set dco_plex_rid=dco_plex_rid new_plex

The new data plex is now ready to be used to perform a snapback operation.

Administering volume snapshots
Creating traditional third-mirror break-off snapshots

438



Dissociating a snapshot volume
The link between a snapshot and its original volume can be permanently broken
so that the snapshot volume becomes an independent volume. Use the following
command to dissociate the snapshot volume, snapshot:

# vxassist snapclear snapshot

Displaying snapshot information
The vxassist snapprintcommand displays the associations between the original
volumes and their respective replicas (snapshot copies):

# vxassist snapprint [volume]

Output from this command is shown in the following examples:

# vxassist -g mydg snapprint v1

V NAME USETYPE LENGTH

SS SNAPOBJ NAME LENGTH %DIRTY

DP NAME VOLUME LENGTH %DIRTY

v v1 fsgen 20480

ss SNAP-v1_snp SNAP-v1 20480 4

dp v1-01 v1 20480 0

dp v1-02 v1 20480 0

v SNAP-v1 fsgen 20480

ss v1_snp v1 20480 0

# vxassist -g mydg snapprint v2

V NAME USETYPE LENGTH

SS SNAPOBJ NAME LENGTH %DIRTY

DP NAME VOLUME LENGTH %DIRTY

v v2 fsgen 20480

ss -- SNAP-v2 20480 0

dp v2-01 v2 20480 0

v SNAP-v2 fsgen 20480

ss -- v2 20480 0

439Administering volume snapshots
Creating traditional third-mirror break-off snapshots



In this example, Persistent FastResync is enabled on volumev1, and Non-Persistent
FastResync on volume v2. Lines beginning with v, dp and ss indicate a volume,
detached plex and snapshot plex respectively. The %DIRTY field indicates the
percentage of a snapshot plex or detached plex that is dirty with respect to the
original volume. Notice that no snap objects are associated with volume v2 or with
its snapshot volume SNAP-v2.

See “How persistent FastResync works with snapshots” on page 68.

If a volume is specified, the snapprint command displays an error message if no
FastResync maps are enabled for that volume.

Adding a version 0 DCO and DCO volume
The version 0 DCO log volume was introduced in VxVM 3.2. The version 0 layout
supports traditional (third-mirror break-off) snapshots, but not full-sized or
space-optimized instant snapshots.

See “Version 0 DCO volume layout” on page 67.

See “Version 20 DCO volume layout” on page 67.

See “Determining the DCO version number” on page 363.

To put Persistent FastResync into effect for a volume, a Data Change Object (DCO)
and DCO volume must first be associated with that volume. When you have added
a DCO object and DCO volume to a volume, you can then enable Persistent
FastResync on the volume

See “Enabling FastResync on a volume” on page 374.

Note: You need a FastResync license key to use the FastResync feature. Even if
you do not have a license, you can configure a DCO object and DCO volume so that
snap objects are associated with the original and snapshot volumes.

See “How persistent FastResync works with snapshots” on page 68.

Administering volume snapshots
Adding a version 0 DCO and DCO volume

440



To add a DCO object and DCO volume to an existing volume

1 Ensure that the disk group containing the existing volume has been upgraded
to at least version 90. Use the following command to check the version of a
disk group:

# vxdg list diskgroup

To upgrade a disk group to the latest version, use the following command:

# vxdg upgrade diskgroup

See “Upgrading a disk group” on page 270.

441Administering volume snapshots
Adding a version 0 DCO and DCO volume



2 Use the following command to turn off Non-Persistent FastResync on the
original volume if it is currently enabled:

# vxvol [-g diskgroup] set fastresync=off volume

If you are uncertain about which volumes have Non-Persistent FastResync
enabled, use the following command to obtain a listing of such volumes.

Note: The ! character is a special character in some shells. The following
example shows how to escape it in a bash shell.

# vxprint [-g diskgroup] -F "%name" \

-e "v_fastresync=on && \!v_hasdcolog"

Use the following command to add a DCO and DCO volume to the existing
volume (which may already have dirty region logging (DRL) enabled):

# vxassist [-g diskgroup] addlog volume logtype=dco \

[ndcomirror=number] [dcolen=size] [storage_attributes]

For non-layered volumes, the default number of plexes in the mirrored DCO
volume is equal to the lesser of the number of plexes in the data volume or
2. For layered volumes, the default number of DCO plexes is always 2. If
required, use the ndcomirror attribute to specify a different number. It is
recommended that you configure as many DCO plexes as there are existing
data and snapshot plexes in the volume. For example, specify ndcomirror=3

when adding a DCO to a 3-way mirrored volume.

The default size of each plex is 132 blocks. You can use the dcolen attribute
to specify a different size. If specified, the size of the plex must be an integer
multiple of 33 blocks from 33 up to a maximum of 2112 blocks.

You can specify vxassist-style storage attributes to define the disks that can
and/or cannot be used for the plexes of the DCO volume.

See “Specifying storage for version 0 DCO plexes” on page 442.

Specifying storage for version 0 DCO plexes
If the disks that contain volumes and their snapshots are to be moved or split into
different disk groups, the disks that contain their respective DCO plexes must be
able to accompany them. By default, VxVM attempts to place version 0 DCO plexes
on the same disks as the data plexes of the parent volume. However, this may be
impossible if there is insufficient space available on those disks. In this case, VxVM
uses any available space on other disks in the disk group. If the DCO plexes are

Administering volume snapshots
Adding a version 0 DCO and DCO volume

442



placed on disks which are used to hold the plexes of other volumes, this may cause
problems when you subsequently attempt to move volumes into other disk groups.

You can use storage attributes to specify explicitly which disks to use for the DCO
plexes. If possible, specify the same disks as those on which the volume is
configured.

For example, to add a DCO object and DCO volume with plexes on mydg05 and
mydg06, and a plex size of 264 blocks to the volume, myvol, in the disk group, mydg,
use the following command:

# vxassist -g mydg addlog myvol logtype=dco dcolen=264 mydg05 mydg06

To view the details of the DCO object and DCO volume that are associated with a
volume, use the vxprint command. The following is partial vxprint output for
the volume namedvol1 (the TUTIL0 and PUTIL0 columns are omitted for clarity):

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE ...

v vol1 fsgen ENABLED 1024 - ACTIVE

pl vol1-01 vol1 ENABLED 1024 - ACTIVE

sd disk01-01 vol1-01 ENABLED 1024 0 -

pl vol1-02 vol1 ENABLED 1024 - ACTIVE

sd disk02-01 vol1-02 ENABLED 1024 0 -

dc vol1_dco vol1 - - - -

v vol1_dcl gen ENABLED 132 - ACTIVE

pl vol1_dcl-01 vol1_dcl ENABLED 132 - ACTIVE

sd disk03-01 vol1_dcl-01 ENABLED 132 0 -

pl vol1_dcl-02 vol1_dcl ENABLED 132 - ACTIVE

sd disk04-01 vol1_dcl-02 ENABLED 132 0 -

In this output, the DCO object is shown as vol1_dco, and the DCO volume as
vol1_dcl with 2 plexes, vol1_dcl-01 and vol1_dcl-02.

If required, you can use the vxassist move command to relocate DCO plexes to
different disks. For example, the following command moves the plexes of the DCO
volume, vol1_dcl, for volume vol1 from disk03 and disk04 to disk07 and disk08.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

# vxassist -g mydg move vol1_dcl \!disk03 \!disk04 disk07 disk08

See “Moving DCO volumes between disk groups” on page 261.

See the vxassist(1M) manual page.

443Administering volume snapshots
Adding a version 0 DCO and DCO volume



Removing a version 0 DCO and DCO volume
To dissociate a version 0 DCO object, DCO volume and any snap objects from a
volume, use the following command:

# vxassist [-g diskgroup] remove log volume logtype=dco

This completely removes the DCO object, DCO volume and any snap objects. It
also has the effect of disabling FastResync for the volume.

Alternatively, you can use the vxdco command to the same effect:

# vxdco [-g diskgroup] [-o rm] dis dco_obj

The default name of the DCO object, dco_obj, for a volume is usually formed by
appending the string _dco to the name of the parent volume. To find out the name
of the associated DCO object, use the vxprint command on the volume.

To dissociate, but not remove, the DCO object, DCO volume and any snap objects
from the volume, myvol, in the disk group, mydg, use the following command:

# vxdco -g mydg dis myvol_dco

This form of the command dissociates the DCO object from the volume but does
not destroy it or the DCO volume. If the -o rm option is specified, the DCO object,
DCO volume and its plexes, and any snap objects are also removed.

Warning: Dissociating a DCO and DCO volume disables Persistent FastResync on
the volume. A full resynchronization of any remaining snapshots is required when
they are snapped back.

See the vxassist(1M) manual page.

See the vxdco(1M) manual pages.

Reattaching a version 0 DCO and DCO volume
If a version 0 DCO object and DCO volume are not removed by specifying the -o

rmoption to vxdco, they can be reattached to the parent volume using the following
command:

# vxdco [-g diskgroup] att volume dco_obj

For example, to reattach the DCO object, myvol_dco, to the volume, myvol, use
the following command:

# vxdco -g mydg att myvol myvol_dco

Administering volume snapshots
Adding a version 0 DCO and DCO volume

444



See the vxdco(1M) manual page.

445Administering volume snapshots
Adding a version 0 DCO and DCO volume



Administering volume snapshots
Adding a version 0 DCO and DCO volume

446



Creating and administering
volume sets

This chapter includes the following topics:

■ About volume sets

■ Creating a volume set

■ Adding a volume to a volume set

■ Removing a volume from a volume set

■ Listing details of volume sets

■ Stopping and starting volume sets

■ Raw device node access to component volumes

About volume sets
Veritas File System (VxFS) uses volume sets to implement its Multi-Volume
Support and Dynamic Storage Tiering (DST) features. For more information on
DST, see the Veritas File System Administrator's Guide.

Veritas Volume Manager (VxVM) provides the vxvset command to create and
administer volume sets.

See the vxvset(1M) manual page.

Volume sets have the following limitations:

■ A maximum of 2048 volumes can be configured in a volume set.

■ Only a Veritas File System is supported on a volume set.

10Chapter



■ The first volume (index 0) in a volume set must be larger than the sum of the
total volume size divided by 4000, the size of the VxFS intent log, and 1MB.
Volumes 258 MB or larger should always suffice.

■ Raw I/O from and to a volume set is not supported.

■ Raw I/O from and to the component volumes of a volume set is supported
under certain conditions.
See “Raw device node access to component volumes” on page 451.

■ Volume sets can be used in place of volumes with the following vxsnap

operations on instant snapshots: addmir, dis, make, prepare, reattach,
refresh,restore,rmmir,split,syncpause,syncresume,syncstart,syncstop,
syncwait, andunprepare. The third-mirror break-off usage model for full-sized
instant snapshots is supported for volume sets provided that sufficient plexes
exist for each volume in the volume set.
See “Creating instant snapshots of volume sets” on page 416.

■ A full-sized snapshot of a volume set must itself be a volume set with the same
number of volumes and the same volume index numbers as the parent. The
corresponding volumes in the parent and snapshot volume sets are also subject
to the same restrictions as apply between standalone volumes and their
snapshots.

Creating a volume set
To create a volume set for use by Veritas File System (VxFS), use the following
command:

# vxvset [-g diskgroup] -t vxfs make volset volume

Here volset is the name of the volume set, and volume is the name of the first
volume in the volume set. The -t vxfs option creates the volume set configured
for use by VxFS. You must create the volume before running the command. vxvset
will not automatically create the volume.

For example, to create a volume set named myvset that contains the volume vol1,
in the disk group mydg, you would use the following command:

# vxvset -g mydg -t vxfs make myvset vol1

Adding a volume to a volume set
Having created a volume set containing a single volume, you can use the following
command to add further volumes to the volume set:

Creating and administering volume sets
Creating a volume set

448



# vxvset [-g diskgroup] [-f] addvol volset volume

For example, to add the volume vol2, to the volume set myvset, use the following
command:

# vxvset -g mydg addvol myvset vol2

Warning: The -f (force) option must be specified if the volume being added, or
any volume in the volume set, is either a snapshot or the parent of a snapshot.
Using this option can potentially cause inconsistencies in a snapshot hierarchy
if any of the volumes involved in the operation is already in a snapshot chain.

Removing a volume from a volume set
To remove a component volume from a volume set, use the following command:

# vxvset [-g diskgroup] [-f] rmvol volset volume

For example, the following commands remove the volumes, vol1 and vol2, from
the volume set myvset:

# vxvset -g mydg rmvol myvset vol1

# vxvset -g mydg rmvol myvset vol2

Removing the final volume deletes the volume set.

Warning: The -f (force) option must be specified if the volume being removed, or
any volume in the volume set, is either a snapshot or the parent of a snapshot.
Using this option can potentially cause inconsistencies in a snapshot hierarchy
if any of the volumes involved in the operation is already in a snapshot chain.

Listing details of volume sets
To list the details of the component volumes of a volume set, use the following
command:

# vxvset [-g diskgroup] list [volset]

If the name of a volume set is not specified, the command lists the details of all
volume sets in a disk group, as shown in the following example:

# vxvset -g mydg list

449Creating and administering volume sets
Removing a volume from a volume set



NAME GROUP NVOLS CONTEXT

set1 mydg 3 -

set2 mydg 2 -

To list the details of each volume in a volume set, specify the name of the volume
set as an argument to the command:

# vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 ENABLED -

vol2 1 12582912 ENABLED -

vol3 2 12582912 ENABLED -

The context field contains details of any string that the application has set up for
the volume or volume set to tag its purpose.

Stopping and starting volume sets
Under some circumstances, you may need to stop and restart a volume set. For
example, a volume within the set may have become detached, as shown here:

# vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 DETACHED -

vol2 1 12582912 ENABLED -

vol3 2 12582912 ENABLED -

To stop and restart one or more volume sets, use the following commands:

# vxvset [-g diskgroup] stop volset ...

# vxvset [-g diskgroup] start volset ...

For the example given previously, the effect of running these commands on the
component volumes is shown below:

# vxvset -g mydg stop set1

# vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 DISABLED -

vol2 1 12582912 DISABLED -

Creating and administering volume sets
Stopping and starting volume sets

450



vol3 2 12582912 DISABLED -

# vxvset -g mydg start set1

# vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 ENABLED -

vol2 1 12582912 ENABLED -

vol3 2 12582912 ENABLED -

Raw device node access to component volumes
To guard against accidental file system and data corruption, the device nodes of
the component volumes are configured by default not to have raw and block
entries in the /dev/vx/rdsk/diskgroup and /dev/vx/dsk/diskgroupdirectories.
As a result, applications are prevented from directly reading from or writing to
the component volumes of a volume set.

If some applications, such as the raw volume backup and restore feature of the
Symantec NetBackup™ software, need to read from or write to the component
volumes by accessing raw device nodes in the /dev/vx/rdsk/diskgroupdirectory,
this is supported by specifying additional command-line options to the vxvset

command. Access to the block device nodes of the component volumes of a volume
set is unsupported.

Warning: Writing directly to or reading from the raw device node of a component
volume of a volume set should only be performed if it is known that the volume's
data will not otherwise change during the period of access.

All of the raw device nodes for the component volumes of a volume set can be
created or removed in a single operation. Raw device nodes for any volumes added
to a volume set are created automatically as required, and inherit the access mode
of the existing device nodes.

Access to the raw device nodes for the component volumes can be configured to
be read-only or read-write. This mode is shared by all the raw device nodes for
the component volumes of a volume set. The read-only access mode implies that
any writes to the raw device will fail, however writes using the ioctl interface or
by VxFS to update metadata are not prevented. The read-write access mode allows
direct writes via the raw device. The access mode to the raw device nodes of a
volume set can be changed as required.

451Creating and administering volume sets
Raw device node access to component volumes



The presence of raw device nodes and their access mode is persistent across system
reboots.

Note the following limitations of this feature:

■ The disk group version must be 140 or greater.

■ Access to the raw device nodes of the component volumes of a volume set is
only supported for private disk groups; it is not supported for shared disk
groups in a cluster.

Enabling raw device access when creating a volume set
To enable raw device access when creating a volume set, use the following form
of the vxvset make command:

# vxvset [-g diskgroup] -o makedev=on \

[-o compvol_access={read-only|read-write}] \

[-o index] [-c "ch_addopt"] make vset vol [index]

The -o makedev=on option enables the creation of raw device nodes for the
component volumes at the same time that the volume set is created. The default
setting is off.

If the-o compvol_access=read-writeoption is specified, direct writes are allowed
to the raw device of each component volume. If the value is set to read-only, only
reads are allowed from the raw device of each component volume.

If the -o makedev=on option is specified, but -o compvol_access is not specified,
the default access mode is read-only.

If the vxvset addvol command is subsequently used to add a volume to a volume
set, a new raw device node is created in /dev/vx/rdsk/diskgroup if the value of
the makedev attribute is currently set to on. The access mode is determined by the
current setting of the compvol_access attribute.

The following example creates a volume set, myvset1, containing the volume,
myvol1, in the disk group, mydg, with raw device access enabled in read-write
mode:

# vxvset -g mydg -o makedev=on -o compvol_access=read-write \

make myvset1 myvol1

Creating and administering volume sets
Raw device node access to component volumes

452



Displaying the raw device access settings for a volume set
You can use the vxprint -m command to display the current settings for a volume
set. If the makedev attribute is set to on, one of the following strings is displayed
in the output:

Raw device nodes in read-only mode.vset_devinfo=on:read-only

Raw device nodes in read-write mode.vset_devinfo=on:read-write

A string is not displayed if makedev is set to off.

If the output from the vxprint -m command is fed to the vxmake command to
recreate a volume set, the vset_devinfo attribute must set to off. Use the vxvset
set command to re-enable raw device access with the desired access mode.

See “Controlling raw device access for an existing volume set” on page 453.

Controlling raw device access for an existing volume set
To enable or disable raw device node access for an existing volume set, use the
following command:

# vxvset [-g diskgroup] [-f] set makedev={on|off} vset

The makedev attribute can be specified to the vxvset set command to create
(makedev=on) or remove (makedev=off) the raw device nodes for the component
volumes of a volume set. If any of the component volumes are open, the -f (force)
option must be specified to set the attribute to off.

Specifying makedev=off removes the existing raw device nodes from the
/dev/vx/rdsk/diskgroup directory.

If the makedev attribute is set to off, and you use the mknod command to create
the raw device nodes, you cannot read from or write to those nodes unless you
set the value of makedev to on.

The syntax for setting the compvol_access attribute on a volume set is:

# vxvset [-g diskgroup] [-f] set \

compvol_access={read-only|read-write} vset

The compvol_access attribute can be specified to the vxvset set command to
change the access mode to the component volumes of a volume set. If any of the
component volumes are open, the -f (force) option must be specified to set the
attribute to read-only.

453Creating and administering volume sets
Raw device node access to component volumes



The following example sets the makedev=on and compvol_access=read-only

attributes on a volume set, myvset2, in the disk group, mydg:

# vxvset -g mydg set makedev=on myvset2

The next example sets the compvol_access=read-write attribute on the volume
set, myvset2:

# vxvset -g mydg set compvol_access=read-write myvset2

The final example removes raw device node access for the volume set, myvset2:

# vxvset -g mydg set makedev=off myvset2

Creating and administering volume sets
Raw device node access to component volumes

454



Configuring off-host
processing

This chapter includes the following topics:

■ About off-host processing solutions

■ Implemention of off-host processing solutions

About off-host processing solutions
Off-host processing lets you implement the following activities:

As the requirement for 24 x 7 availability becomes essential for many
businesses, organizations cannot afford the downtime involved in
backing up critical data offline. By taking a snapshot of the data, and
backing up from this snapshot, business-critical applications can
continue to run without extended down time or impacted performance.

Data backup

Because snapshots hold a point-in-time copy of a production database,
you can set up a replica of the database using the snapshots.
Operations such as decision support analysis and business reporting
do not require access to up-to-the-minute information. They can use
a database copy that is running on a host other than the primary.
When required, the database copy can quickly be synchronized with
the data in the primary database.

Decision support
analysis and
reporting

Development or service groups can use snapshots as test data for new
applications. Snapshot data gives developers, system testers and QA
groups a realistic basis for testing the robustness, integrity, and
performance of new applications.

Testing and
training

11Chapter



Logic errors caused by an administrator or an application program
can compromise the integrity of a database. By restoring the database
table files from a snapshot copy, the database can be recovered more
quickly than by full restoration from tape or other backup media.

Database error
recovery

Using linked break-off snapshots makes off-host processing simpler.

See “Linked break-off snapshot volumes” on page 393.

Implemention of off-host processing solutions
Figure 11-1 shows an example implementation of off-host processing.

Figure 11-1 Example implementation of off-host processing

Disks containing
primary volumes

used to hold
production

databases or systems

Disks containing
snapshot volumes
used to implement
off-host processing

solutions

Primary host

SCSI or Fibre
Channel

connectivity

OHP host

By accessing snapshot volumes from a lightly-loaded host (shown here as the
off-host processing (OHP) host), CPU- and I/O-intensive operations for online
backup and decision support do not degrade the performance of the primary host
that is performing the main production activity (such as running a database). If
you also place the snapshot volumes on disks that are attached to different host
controllers than the disks in the primary volumes, it is possible to avoid contending
with the primary host for I/O resources.

The following sections describe how you can apply off-host processing to
implement regular online backup of a volume in a private disk group, and to set
up a replica of a production database for decision support. The following
applications are outlined:

See “Implementing off-host online backup” on page 457.

See “Implementing decision support” on page 461.

Configuring off-host processing
Implemention of off-host processing solutions

456



These applications use the Persistent FastResync feature of VxVM in conjunction
with linked break-off snapshots.

A volume snapshot represents the data that exists in a volume at a given time. As
such, VxVM does not have any knowledge of data that is cached by the overlying
file system, or by applications such as databases that have files open in the file
system. If you set the fsgen volume usage type on a volume that contains a Veritas
File System (VxFS), intent logging of the file system metadata ensures the internal
consistency of the file system that is backed up. For other file system types,
depending on the intent logging capabilities of the file system, there may be
potential be inconsistencies between in-memory data and the data in the snapshot
image.

For databases, you must also use a suitable mechanism to ensure the integrity of
tablespace data when the volume snapshot is taken. Most modern database
software provides the facility to temporarily suspend file system I/O. For ordinary
files in a file system, which may be open to a wide variety of different applications,
there may be no way to ensure the complete integrity of the file data other than
by shutting down the applications and temporarily unmounting the file system.
In many cases, it may only be important to ensure the integrity of file data that
is not in active use when you take the snapshot.

Implementing off-host online backup
This section describes a procedure for implementing off-host online backup for
a volume in a private disk group. It outlines how to set up a regular backup cycle.
It is beyond the scope of this guide to describe how to configure a database to use
this procedure, or how to perform the backup itself.

457Configuring off-host processing
Implemention of off-host processing solutions



To back up a volume in a private disk group

1 On the primary host, use the following command to see if the volume is
associated with a version 20 data change object (DCO) and DCO volume that
allow instant snapshots and Persistent FastResync to be used with the volume:

# vxprint -g volumedg -F%instant volume

If the volume can be used for instant snapshot operations, this command
returns on; otherwise, it returns off.

If the volume was created under VxVM 4.0 or a later release, and it is not
associated with a new-style DCO object and DCO volume, add a version 20
DCO and DCO volume.

See “Preparing a volume for DRL and instant snapshots” on page 360.

If the volume was created before release 4.0 of VxVM, and has any attached
snapshot plexes, or is associated with any snapshot volumes, upgrade the
volume to use a version 20 DCO.

See “Upgrading existing volumes to use version 20 DCOs” on page 367.

2 On the primary host, use the following command to check whether FastResync
is enabled on the volume:

# vxprint -g volumedg -F%fastresync volume

If FastResync is enabled, this command returns on; otherwise, it returns off.

If FastResync is disabled, enable it using the following command on the
primary host:

# vxvol -g volumedg set fastresync=on volume

3 On the primary host, create a new volume in a separate disk group for use as
the snapshot volume.

See “Creating a volume for use as a full-sized instant or linked break-off
snapshot” on page 405.

It is recommended that a snapshot disk group is dedicated to maintaining
only those disks that are used for off-host processing.

Configuring off-host processing
Implemention of off-host processing solutions

458



4 On the primary host, link the snapshot volume in the snapshot disk group to
the data volume. Enter the following:

# vxsnap -g volumedg -b addmir volume mirvol=snapvol \

mirdg=snapvoldg

You can use the vxsnap snapwait command to wait for synchronization of
the linked snapshot volume to complete. Enter the following:

# vxsnap -g volumedg snapwait volume mirvol=snapvol \

mirdg=snapvoldg

This step sets up the snapshot volumes, and starts tracking changes to the
original volumes.

When you are ready to create a backup, go to step 5.

5 On the primary host, suspend updates to the volume that contains the
database tables. A database may have a hot backup mode that lets you do this
by temporarily suspending writes to its tables.

6 On the primary host, create the snapshot volume, snapvol, by running the
following command:

# vxsnap -g volumedg make \

source=volume/snapvol=snapvol/snapdg=snapvoldg

If a database spans more than one volume, you can specify all the volumes
and their snapshot volumes using one command, as follows:

# vxsnap -g dbasedg make \

source=vol1/snapvol=snapvol1/snapdg=sdg \

source=vol2/snapvol=snapvol2/snapdg=sdg \

source=vol3/snapvol=snapvol3/snapdg=sdg

7 On the primary host, if you temporarily suspended updates to a volume in
step 5, release all the database tables from hot backup mode.

8 On the primary host, deport the snapshot volume’s disk group using the
following command:

# vxdg deport snapvoldg

9 On the OHP host where the backup is to be performed, use the following
command to import the snapshot volume’s disk group:

# vxdg import snapvoldg

459Configuring off-host processing
Implemention of off-host processing solutions



10 The snapshot volume is initially disabled following the import. On the OHP
host, use the following commands to recover and restart the snapshot volume:

# vxrecover -g snapvoldg -m snapvol

# vxvol -g snapvoldg start snapvol

11 On the OHP host, back up the snapshot volume. If you need to remount the
file system in the volume to back it up, first run fsck on the volume. The
following are sample commands for checking and mounting a file system:

# fsck -F vxfs /dev/vx/rdsk/snapvoldg/snapvol

# mount -F vxfs /dev/vx/dsk/snapvoldg/snapvol mount_point

At this point, back up the file system and use the following command to
unmount it:

# umount mount_point

12 On the OHP host, use the following command to deport the snapshot volume’s
disk group:

# vxdg deport snapvoldg

13 On the primary host, re-import the snapshot volume’s disk group using the
following command:

# vxdg import snapvoldg

Configuring off-host processing
Implemention of off-host processing solutions

460



14 The snapshot volume is initially disabled following the import. Use the
following commands on the primary host to recover and restart the snapshot
volume:

# vxrecover -g snapvoldg -m snapvol

# vxvol -g snapvoldg start snapvol

15 On the primary host, reattach the snapshot volume to its original volume
using the following command:

# vxsnap -g snapvoldg reattach snapvol source=vol \

sourcedg=volumedg

For example, to reattach the snapshot volumes svol1, svol2 and svol3:

# vxsnap -g sdg reattach svol1 \

source=vol1 sourcedg=dbasedg \

svol2 source=vol2 sourcedg=dbasedg \

svol3 source=vol3 sourcedg=dbasedg

You can use the vxsnap snapwait command to wait for synchronization of
the linked snapshot volume to complete:

# vxsnap -g volumedg snapwait volume mirvol=snapvol

Repeat steps 5 through 15 each time that you need to back up the volume.

Implementing decision support
This section describes a procedure for implementing off-host decision support
for a volume in a private disk group. The intention is to present an outline of how
to set up a replica database. It is beyond the scope of this guide to describe how
to configure a database to use this procedure.

461Configuring off-host processing
Implemention of off-host processing solutions



To set up a replica database using the table files that are configuredwithin a volume
in a private disk group

1 Use the following command on the primary host to see if the volume is
associated with a version 20 data change object (DCO) and DCO volume that
allow instant snapshots and Persistent FastResync to be used with the volume:

# vxprint -g volumedg -F%instant volume

This command returns on if the volume can be used for instant snapshot
operations; otherwise, it returns off.

If the volume was created under VxVM 4.0 or a later release, and it is not
associated with a new-style DCO object and DCO volume, it must be prepared.

See “Preparing a volume for DRL and instant snapshots” on page 360.

If the volume was created before release 4.0 of VxVM, and has any attached
snapshot plexes, or is associated with any snapshot volumes, it must be
upgraded.

See “Upgrading existing volumes to use version 20 DCOs” on page 367.

2 Use the following command on the primary host to check whether FastResync
is enabled on a volume:

# vxprint -g volumedg -F%fastresync volume

This command returns on if FastResync is enabled; otherwise, it returns off.

If FastResync is disabled, enable it using the following command on the
primary host:

# vxvol -g volumedg set fastresync=on volume

3 Prepare the OHP host to receive the snapshot volume that contains the copy
of the database tables. This may involve setting up private volumes to contain
any redo logs, and configuring any files that are used to initialize the database.

4 On the primary host, create a new volume in a separate disk group for use as
the snapshot volume.

See “Creating a volume for use as a full-sized instant or linked break-off
snapshot” on page 405.

It is recommended that a snapshot disk group is dedicated to maintaining
only those disks that are used for off-host processing.

Configuring off-host processing
Implemention of off-host processing solutions

462



5 On the primary host, link the snapshot volume in the snapshot disk group to
the data volume:

# vxsnap -g volumedg -b addmir volume mirvol=snapvol \

mirdg=snapvoldg

You can use the vxsnap snapwait command to wait for synchronization of
the linked snapshot volume to complete:

# vxsnap -g volumedg snapwait volume mirvol=snapvol \

mirdg=snapvoldg

This step sets up the snapshot volumes, and starts tracking changes to the
original volumes.

When you are ready to create a replica database, proceed to 6.

6 On the primary host, suspend updates to the volume that contains the
database tables. A database may have a hot backup mode that allows you to
do this by temporarily suspending writes to its tables.

7 Create the snapshot volume, snapvol, by running the following command on
the primary host:

# vxsnap -g volumedg make \

source=volume/snapvol=snapvol/snapdg=snapvoldg

If a database spans more than one volume, you can specify all the volumes
and their snapshot volumes using one command, as shown in this example:

# vxsnap -g dbasedg make \

source=vol1/snapvol=snapvol1/snapdg=sdg \

source=vol2/snapvol=snapvol2/snapdg=sdg \

source=vol3/snapvol=snapvol3/snapdg=sdg

This step sets up the snapshot volumes ready for the backup cycle, and starts
tracking changes to the original volumes.

8 On the primary host, if you temporarily suspended updates to a volume in
step 6, release all the database tables from hot backup mode.

9 On the primary host, deport the snapshot volume’s disk group using the
following command:

# vxdg deport snapvoldg

463Configuring off-host processing
Implemention of off-host processing solutions



10 On the OHP host where the replica database is to be set up, use the following
command to import the snapshot volume’s disk group:

# vxdg import snapvoldg

11 The snapshot volume is initially disabled following the import. Use the
following commands on the OHP host to recover and restart the snapshot
volume:

# vxrecover -g snapvoldg -m snapvol

# vxvol -g snapvoldg start snapvol

12 On the OHP host, check and mount the snapshot volume. The following are
sample commands for checking and mounting a file system:

# fsck -F vxfs /dev/vx/rdsk/snapvoldg/snapvol

# mount -F vxfs /dev/vx/dsk/snapvoldg/snapvol mount_point

13 On the OHP host, use the appropriate database commands to recover and
start the replica database for its decision support role.

At a later time, you can resynchronize the snapshot volume’ s data with the
primary database.

To refresh the snapshot plexes from the original volume

1 On the OHP host, shut down the replica database, and use the following
command to unmount the snapshot volume:

# umount mount_point

2 On the OHP host, use the following command to deport the snapshot volume’s
disk group:

# vxdg deport snapvoldg

3 On the primary host, re-import the snapshot volume’s disk group using the
following command:

# vxdg import snapvoldg

Configuring off-host processing
Implemention of off-host processing solutions

464



4 The snapshot volume is initially disabled following the import. Use the
following commands on the primary host to recover and restart the snapshot
volume:

# vxrecover -g snapvoldg -m snapvol

# vxvol -g snapvoldg start snapvol

5 On the primary host, reattach the snapshot volume to its original volume
using the following command:

# vxsnap -g snapvoldg reattach snapvol source=vol \

sourcedg=volumedg

For example, to reattach the snapshot volumes svol1, svol2 and svol3:

# vxsnap -g sdg reattach svol1 \

source=vol1 sourcedg=dbasedg \

svol2 source=vol2 sourcedg=dbasedg \

svol3 source=vol3 sourcedg=dbasedg

You can use the vxsnap snapwait command to wait for synchronization of
the linked snapshot volume to complete:

# vxsnap -g volumedg snapwait volume mirvol=snapvol

You can then proceed to create the replica database, from step 6 in the
previous procedure.

See “To set up a replica database using the table files that are configured
within a volume in a private disk group” on page 462.

465Configuring off-host processing
Implemention of off-host processing solutions



Configuring off-host processing
Implemention of off-host processing solutions

466



Administering
hot-relocation

This chapter includes the following topics:

■ About hot-relocation

■ How hot-relocation works

■ How reclamation on a deleted volume works

■ Configuring a system for hot-relocation

■ Displaying spare disk information

■ Marking a disk as a hot-relocation spare

■ Removing a disk from use as a hot-relocation spare

■ Excluding a disk from hot-relocation use

■ Making a disk available for hot-relocation use

■ Configuring hot-relocation to use only spare disks

■ Moving relocated subdisks

■ Modifying the behavior of hot-relocation

About hot-relocation
If a volume has a disk I/O failure (for example, the disk has an uncorrectable error),
Veritas Volume Manager (VxVM) can detach the plex involved in the failure. I/O
stops on that plex but continues on the remaining plexes of the volume.

12Chapter



If a disk fails completely, VxVM can detach the disk from its disk group. All plexes
on the disk are disabled. If there are any unmirrored volumes on a disk when it
is detached, those volumes are also disabled.

Apparent disk failure may not be due to a fault in the physical disk media or the
disk controller, but may instead be caused by a fault in an intermediate or ancillary
component such as a cable, host bus adapter, or power supply.

The hot-relocation feature in VxVM automatically detects disk failures, and notifies
the system administrator and other nominated users of the failures by electronic
mail. Hot-relocation also attempts to use spare disks and free disk space to restore
redundancy and to preserve access to mirrored and RAID-5 volumes.

See “How hot-relocation works” on page 468.

If hot-relocation is disabled or you miss the electronic mail, you can use the
vxprint command or the graphical user interface to examine the status of the
disks. You may also see driver error messages on the console or in the system
messages file.

Failed disks must be removed and replaced manually.

See “Removing and replacing disks” on page 148.

For more information about recovering volumes and their data after hardware
failure, see the Veritas VolumeManager Troubleshooting Guide.

How hot-relocation works
Hot-relocation allows a system to react automatically to I/O failures on redundant
(mirrored or RAID-5) VxVM objects, and to restore redundancy and access to those
objects. VxVM detects I/O failures on objects and relocates the affected subdisks
to disks designated as spare disks or to free space within the disk group. VxVM
then reconstructs the objects that existed before the failure and makes them
redundant and accessible again.

When a partial disk failure occurs (that is, a failure affecting only some subdisks
on a disk), redundant data on the failed portion of the disk is relocated. Existing
volumes on the unaffected portions of the disk remain accessible.

Hot-relocation is only performed for redundant (mirrored or RAID-5) subdisks
on a failed disk. Non-redundant subdisks on a failed disk are not relocated, but
the system administrator is notified of their failure.

Hot-relocation is enabled by default and takes effect without the intervention of
the system administrator when a failure occurs.

The hot-relocation daemon, vxrelocd, detects and reacts to VxVM events that
signify the following types of failures:

Administering hot-relocation
How hot-relocation works

468



This is normally detected as a result of an I/O failure from a VxVM
object. VxVM attempts to correct the error. If the error cannot be
corrected, VxVM tries to access configuration information in the
private region of the disk. If it cannot access the private region, it
considers the disk failed.

Disk failure

This is normally detected as a result of an uncorrectable I/O error in
the plex (which affects subdisks within the plex). For mirrored volumes,
the plex is detached.

Plex failure

This is normally detected as a result of an uncorrectable I/O error.
The subdisk is detached.

RAID-5 subdisk
failure

When vxrelocd detects such a failure, it performs the following steps:

■ vxrelocd informs the system administrator (and other nominated users) by
electronic mail of the failure and which VxVM objects are affected.
See Partial disk failure mail messages.
See Complete disk failure mail messages.
See Modifying the behavior of hot-relocation.

■ vxrelocd next determines if any subdisks can be relocated. vxrelocd looks
for suitable space on disks that have been reserved as hot-relocation spares
(marked spare) in the disk group where the failure occurred. It then relocates
the subdisks to use this space.

■ If no spare disks are available or additional space is needed, vxrelocd uses
free space on disks in the same disk group, except those disks that have been
excluded for hot-relocation use (marked nohotuse). When vxrelocd has
relocated the subdisks, it reattaches each relocated subdisk to its plex.

■ Finally, vxrelocd initiates appropriate recovery procedures. For example,
recovery includes mirror resynchronization for mirrored volumes or data
recovery for RAID-5 volumes. It also notifies the system administrator of the
hot-relocation and recovery actions that have been taken.

If relocation is not possible, vxrelocdnotifies the system administrator and takes
no further action.

Warning: Hot-relocation does not guarantee the same layout of data or the same
performance after relocation. An administrator should check whether any
configuration changes are required after hot-relocation occurs.

Relocation of failing subdisks is not possible in the following cases:

469Administering hot-relocation
How hot-relocation works



■ The failing subdisks are on non-redundant volumes (that is, volumes of types
other than mirrored or RAID-5).

■ There are insufficient spare disks or free disk space in the disk group.

■ The only available space is on a disk that already contains a mirror of the
failing plex.

■ The only available space is on a disk that already contains the RAID-5 log plex
or one of its healthy subdisks. Failing subdisks in the RAID-5 plex cannot be
relocated.

■ If a mirrored volume has a dirty region logging (DRL) log subdisk as part of its
data plex, failing subdisks belonging to that plex cannot be relocated.

■ If a RAID-5 volume log plex or a mirrored volume DRL log plex fails, a new log
plex is created elsewhere. There is no need to relocate the failed subdisks of
the log plex.

See the vxrelocd(1M) manual page.

Figure 12-1 shows the hot-relocation process in the case of the failure of a single
subdisk of a RAID-5 volume.

Administering hot-relocation
How hot-relocation works

470



Figure 12-1 Example of hot-relocation for a subdisk in a RAID-5 volume

mydg01

mydg01-01

mydg02

mydg02-01

mydg02-02

mydg03

mydg03-01

mydg03-02

mydg04

mydg04-01

mydg05

Disk group contains five disks. Two RAID-5 volumes are configured
across four of the disks. One spare disk is availavle for hot-relocation.

a

mydg01

mydg01-01

mydg02

mydg02-01

mydg02-02

mydg03

mydg03-01

mydg03-02

mydg04

mydg04-01

mydg05

Subdisk mydg02-01 in one RAID-5 volume fails. Hot-relocation replaces it with
subdisk mydg05-01 that it has created on the spare disk, and then initiates
recovery on the RAID-5 volume.

b

mydg01

mydg01-01 mydg05-01

mydg05-01

mydg02

mydg02-01

mydg02-02

mydg03

mydg03-01

mydg03-02

mydg04

mydg04-01

mydg05

Spare disk

RAID-5 recovery recreates subdisk mydg02-01's data and parity on subdisk
mygd05-01 from the data and parity information remaining on subdisks
mydg01-01 and mydg03-01.

c

Partial disk failure mail messages
If hot-relocation is enabled when a plex or disk is detached by a failure, mail
indicating the failed objects is sent to root. If a partial disk failure occurs, the
mail identifies the failed plexes. For example, if a disk containing mirrored volumes
fails, you can receive mail information as shown in the following example:

To: root

Subject: Volume Manager failures on host teal

Failures have been detected by the Veritas Volume Manager:

failed plexes:

home-02

src-02

471Administering hot-relocation
How hot-relocation works



Mail can be sent to users other than root.

See “Modifying the behavior of hot-relocation” on page 486.

You can determine which disk is causing the failures in the above example message
by using the following command:

# vxstat -g mydg -s -ff home-02 src-02

The -s option asks for information about individual subdisks, and the -ff option
displays the number of failed read and write operations. The following output
display is typical:

FAILED

TYP NAME READS WRITES

sd mydg01-04 0 0

sd mydg01-06 0 0

sd mydg02-03 1 0

sd mydg02-04 1 0

This example shows failures on reading from subdisks mydg02-03 and mydg02-04

of disk mydg02.

Hot-relocation automatically relocates the affected subdisks and initiates any
necessary recovery procedures. However, if relocation is not possible or the
hot-relocation feature is disabled, you must investigate the problem and attempt
to recover the plexes. Errors can be caused by cabling failures, so check the cables
connecting your disks to your system. If there are obvious problems, correct them
and recover the plexes using the following command:

# vxrecover -b -g mydg home src

This starts recovery of the failed plexes in the background (the command prompt
reappears before the operation completes). If an error message appears later, or
if the plexes become detached again and there are no obvious cabling failures,
replace the disk.

See “Removing and replacing disks” on page 148.

Complete disk failure mail messages
If a disk fails completely and hot-relocation is enabled, the mail message lists the
disk that failed and all plexes that use the disk. For example, you can receive mail
as shown in this example display:

To: root

Subject: Volume Manager failures on host teal

Administering hot-relocation
How hot-relocation works

472



Failures have been detected by the Veritas Volume Manager:

failed disks:

mydg02

failed plexes:

home-02

src-02

mkting-01

failing disks:

mydg02

This message shows that mydg02 was detached by a failure. When a disk is
detached, I/O cannot get to that disk. The plexes home-02, src-02, and mkting-01

were also detached (probably because of the failure of the disk).

One possible cause of the problem could be a cabling error.

See “Partial disk failure mail messages” on page 471.

If the problem is not a cabling error, replace the disk.

See “Removing and replacing disks” on page 148.

How space is chosen for relocation
A spare disk must be initialized and placed in a disk group as a spare before it can
be used for replacement purposes. If no disks have been designated as spares
when a failure occurs, VxVM automatically uses any available free space in the
disk group in which the failure occurs. If there is not enough spare disk space, a
combination of spare space and free space is used.

The free space used in hot-relocation must not have been excluded from
hot-relocation use. Disks can be excluded from hot-relocation use by using
vxdiskadm, vxedit or Storage Foundation Manager (SFM).

You can designate one or more disks as hot-relocation spares within each disk
group. Disks can be designated as spares by using vxdiskadm, vxedit, or SFM.
Disks designated as spares do not participate in the free space model and should
not have storage space allocated on them.

When selecting space for relocation, hot-relocation preserves the redundancy
characteristics of the VxVM object to which the relocated subdisk belongs. For
example, hot-relocation ensures that subdisks from a failed plex are not relocated
to a disk containing a mirror of the failed plex. If redundancy cannot be preserved

473Administering hot-relocation
How hot-relocation works



using any available spare disks and/or free space, hot-relocation does not take
place. If relocation is not possible, the system administrator is notified and no
further action is taken.

From the eligible disks, hot-relocation attempts to use the disk that is “closest”
to the failed disk. The value of “closeness” depends on the controller, target, and
disk number of the failed disk. A disk on the same controller as the failed disk is
closer than a disk on a different controller. A disk under the same target as the
failed disk is closer than one on a different target.

Hot-relocation tries to move all subdisks from a failing drive to the same
destination disk, if possible.

If the failing disk is a root disk, hot-relocation only works if it can relocate all of
the file systems to the same disk. If none are found, the system administrator is
notified through email.

When hot-relocation takes place, the failed subdisk is removed from the
configuration database, and VxVM ensures that the disk space used by the failed
subdisk is not recycled as free space.

How reclamation on a deleted volume works
Storage that is no longer in use, needs to be reclaimed by the array. The process
of reclaiming storage on an array can be intense on the array. To avoid any impact
on regular I/O's to the array, the reclaim operation is made asynchronous. When
a volume is deleted the space previously used by the volume is tracked for later
asynchronous reclamation. This asynchronous reclamation is handled byvxrelocd
(or recovery) daemon.

To perform the reclaim operation during less critical time of the system can be
controlled by the following two tunables reclaim_on_delete_wait_period
andreclaim_on_delete_start_time.

The default value for these tunables are:

reclaim_on_delete_wait_period=1

reclaim_on_delete_start_time=22:00

Administering hot-relocation
How reclamation on a deleted volume works

474



The storage space used by the deleted
volume is reclaimed after
reclaim_on_delete_wait_perioddays.
The value of the tunable can be anything
between -1 to 367. The default is set to 1,
that means the volume is deleted the next
day. The storage is reclaimed immediately
if the value is -1. The storage space is not
reclaimed automatically, if the value is
greater than 366. It can only be reclaimed
manually using vxdisk reclaim

command.

reclaim_on_delete_wait_period

This tunable specifies the time of the day,
the reclaim on the deleted volume is
performed. The default time is set to22:00.
This can be changed to any time of the day.

reclaim_on_delete_start_time

By default, the vxrelocd daemon runs everyday at 22:00 hours and reclaims
storage on the deleted volume that are a one day old.

The tunables can be changed using the vxdefault command.

Configuring a system for hot-relocation
By designating spare disks and making free space on disks available for use by
hot relocation, you can control how disk space is used for relocating subdisks in
the event of a disk failure. If the combined free space and space on spare disks is
not sufficient or does not meet the redundancy constraints, the subdisks are not
relocated.

Find out which disks are spares or are excluded from hot-relocation.

See “Displaying spare disk information” on page 476.

You can prepare for hot-relocation by designating one or more disks per disk
group as hot-relocation spares.

See “Marking a disk as a hot-relocation spare” on page 476.

If required, you can remove a disk from use as a hot-relocation spare

See “Removing a disk from use as a hot-relocation spare” on page 478.

If no spares are available at the time of a failure or if there is not enough space
on the spares, free space on disks in the same disk group as where the failure
occurred is automatically used, unless it has been excluded from hot-relocation
use.

475Administering hot-relocation
Configuring a system for hot-relocation



See “Excluding a disk from hot-relocation use” on page 478.

See “Making a disk available for hot-relocation use” on page 479.

Depending on the locations of the relocated subdisks, you can choose to move
them elsewhere after hot-relocation occurs.

See “Configuring hot-relocation to use only spare disks” on page 480.

After a successful relocation, remove and replace the failed disk.

See “Removing and replacing disks” on page 148.

Displaying spare disk information
Use the following command to display information about spare disks that are
available for relocation:

# vxdg [-g diskgroup] spare

The following is example output:

GROUP DISK DEVICE TAG OFFSET LENGTH FLAGS

mydg mydg02 c0t2d0s2 c0t2d0s2 0 658007 s

Here mydg02 is the only disk designated as a spare in the mydg disk group. The
LENGTH field indicates how much spare space is currently available on mydg02 for
relocation.

The following commands can also be used to display information about disks that
are currently designated as spares:

■ vxdisk list lists disk information and displays spare disks with a spare flag.

■ vxprint lists disk and other information and displays spare disks with a SPARE
flag.

■ The list menu item on the vxdiskadm main menu lists all disks including
spare disks.

Marking a disk as a hot-relocation spare
Hot-relocation allows the system to react automatically to I/O failure by relocating
redundant subdisks to other disks. Hot-relocation then restores the affected VxVM
objects and data. If a disk has already been designated as a spare in the disk group,
the subdisks from the failed disk are relocated to the spare disk. Otherwise, any
suitable free space in the disk group is used except for the free space on the disks
that were previously excluded from hot-relocation use.

Administering hot-relocation
Displaying spare disk information

476



To designate a disk as a hot-relocation spare, enter the following command:

# vxedit [-g diskgroup] set spare=on diskname

where diskname is the disk media name.

For example, to designate mydg01 as a spare in the disk group, mydg, enter the
following command:

# vxedit -g mydg set spare=on mydg01

You can use the vxdisk list command to confirm that this disk is now a spare;
mydg01 should be listed with a spare flag.

Any VM disk in this disk group can now use this disk as a spare in the event of a
failure. If a disk fails, hot-relocation automatically occurs (if possible). You are
notified of the failure and relocation through electronic mail. After successful
relocation, you may want to replace the failed disk.

To use vxdiskadm to designate a disk as a hot-relocation spare

1 Select Mark a disk as a spare for a disk group from the vxdiskadm

main menu.

2 At the following prompt, enter a disk media name (such as mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following notice is displayed when the disk has been marked as spare:

VxVM NOTICE V-5-2-219 Marking of mydg01 in mydg as a spare disk

is complete.

3 At the following prompt, indicate whether you want to add more disks as
spares (y) or return to the vxdiskadm main menu (n):

Mark another disk as a spare? [y,n,q,?] (default: n)

Any VM disk in this disk group can now use this disk as a spare in the event
of a failure. If a disk fails, hot-relocation should automatically occur (if
possible). You should be notified of the failure and relocation through
electronic mail. After successful relocation, you may want to replace the failed
disk.

477Administering hot-relocation
Marking a disk as a hot-relocation spare



Removing a disk from use as a hot-relocation spare
While a disk is designated as a spare, the space on that disk is not used for the
creation of VxVM objects within its disk group. If necessary, you can free a spare
disk for general use by removing it from the pool of hot-relocation disks.

To remove a spare from the hot-relocation pool, use the following command:

# vxedit [-g diskgroup] set spare=off diskname

where diskname is the disk media name.

For example, to make mydg01 available for normal use in the disk group, mydg, use
the following command:

# vxedit -g mydg set spare=off mydg01

To use vxdiskadm to remove a disk from the hot-relocation pool

1 SelectTurn off the spare flag on a disk from thevxdiskadmmain menu.

2 At the following prompt, enter the disk media name of a spare disk (such as
mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following confirmation is displayed:

VxVM NOTICE V-5-2-143 Disk mydg01 in mydg no longer marked as

a spare disk.

3 At the following prompt, indicate whether you want to disable more spare
disks (y) or return to the vxdiskadm main menu (n):

Turn off spare flag on another disk? [y,n,q,?] (default: n)

Excluding a disk from hot-relocation use
To exclude a disk from hot-relocation use, use the following command:

# vxedit [-g diskgroup] set nohotuse=on diskname

where diskname is the disk media name.

Administering hot-relocation
Removing a disk from use as a hot-relocation spare

478



To use vxdiskadm to exclude a disk from hot-relocation use

1 Select Exclude a disk from hot-relocation use from the vxdiskadm

main menu.

2 At the following prompt, enter the disk media name (such as mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following confirmation is displayed:

VxVM INFO V-5-2-925 Excluding mydg01 in mydg from hot-

relocation use is complete.

3 At the following prompt, indicate whether you want to add more disks to be
excluded from hot-relocation (y) or return to the vxdiskadm main menu (n):

Exclude another disk from hot-relocation use? [y,n,q,?]

(default: n)

Making a disk available for hot-relocation use
Free space is used automatically by hot-relocation in case spare space is not
sufficient to relocate failed subdisks. You can limit this free space usage by
hot-relocation by specifying which free disks should not be touched by
hot-relocation. If a disk was previously excluded from hot-relocation use, you can
undo the exclusion and add the disk back to the hot-relocation pool.

To make a disk available for hot-relocation use, use the following command:

# vxedit [-g diskgroup] set nohotuse=off diskname

479Administering hot-relocation
Making a disk available for hot-relocation use



To use vxdiskadm to make a disk available for hot-relocation use

1 SelectMake a disk available for hot-relocation use from thevxdiskadm
main menu.

2 At the following prompt, enter the disk media name (such as mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following confirmation is displayed:

V-5-2-932 Making mydg01 in mydg available for hot-relocation

use is complete.

3 At the following prompt, indicate whether you want to add more disks to be
excluded from hot-relocation (y) or return to the vxdiskadm main menu (n):

Make another disk available for hot-relocation use? [y,n,q,?]

(default: n)

Configuring hot-relocation to use only spare disks
If you want VxVM to use only spare disks for hot-relocation, add the following
line to the file /etc/default/vxassist:

spare=only

If not enough storage can be located on disks marked as spare, the relocation fails.
Any free space on non-spare disks is not used.

Moving relocated subdisks
When hot-relocation occurs, subdisks are relocated to spare disks and/or available
free space within the disk group. The new subdisk locations may not provide the
same performance or data layout that existed before hot-relocation took place.
You can move the relocated subdisks (after hot-relocation is complete) to improve
performance.

You can also move the relocated subdisks of the spare disks to keep the spare disk
space free for future hot-relocation needs. Another reason for moving subdisks
is to recreate the configuration that existed before hot-relocation occurred.

During hot-relocation, one of the electronic mail messages sent to root is shown
in the following example:

Administering hot-relocation
Configuring hot-relocation to use only spare disks

480



To: root

Subject: Volume Manager failures on host teal

Attempting to relocate subdisk mydg02-03 from plex home-02.

Dev_offset 0 length 1164 dm_name mydg02 da_name c0t5d0s2.

The available plex home-01 will be used to recover the data.

This message has information about the subdisk before relocation and can be
used to decide where to move the subdisk after relocation.

Here is an example message that shows the new location for the relocated subdisk:

To: root

Subject: Attempting VxVM relocation on host teal

Volume home Subdisk mydg02-03 relocated to mydg05-01,

but not yet recovered.

Before you move any relocated subdisks, fix or replace the disk that failed.

See “Removing and replacing disks” on page 148.

Once this is done, you can move a relocated subdisk back to the original disk as
described in the following sections.

Warning: During subdisk move operations, RAID-5 volumes are not redundant.

Moving relocated subdisks using vxdiskadm
When a disk has replaced following a failure, you can use the vxdiskadm command
move the hot-relocated subdisks back to the disk where they originally resided.

To move the relocated subdisks using vxdiskadm

1 Select Unrelocate subdisks back to a disk from the vxdiskadm main
menu.

2 This option prompts for the original disk media name first.

Enter the disk media name where the hot-relocated subdisks originally resided
at the following prompt:

Enter the original disk name [<disk>,list,q,?]

If there are no hot-relocated subdisks in the system, vxdiskadm displays
Currently there are no hot-relocated disks, and asks you to press
Return to continue.

481Administering hot-relocation
Moving relocated subdisks



3 You are next asked if you want to move the subdisks to a destination disk
other than the original disk.

Unrelocate to a new disk [y,n,q,?] (default: n)

4 If moving subdisks to their original offsets is not possible, you can choose to
unrelocate the subdisks forcibly to the specified disk, but not necessarily to
the same offsets.

Use -f option to unrelocate the subdisks if moving to the exact

offset fails? [y,n,q,?] (default: n)

5 If you entered y at step 4 to unrelocate the subdisks forcibly, enter y or press
Return at the following prompt to confirm the operation:

Requested operation is to move all the subdisks which were

hot-relocated from mydg10 back to mydg10 of disk group mydg.

Continue with operation? [y,n,q,?] (default: y)

A status message is displayed at the end of the operation.

VxVM INFO V-5-2-954 Unrelocate to disk mydg10 is complete.

As an alternative to this procedure, use either the vxassist command or the
vxunreloc command directly.

See “Moving relocated subdisks using vxassist” on page 482.

See “Moving relocated subdisks using vxunreloc” on page 483.

Moving relocated subdisks using vxassist
You can use thevxassist command to move and unrelocate subdisks. For example,
to move the relocated subdisks on mydg05 belonging to the volume home back to
mydg02, enter the following command.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

# vxassist -g mydg move home \!mydg05 mydg02

Here, \!mydg05 specifies the current location of the subdisks, and mydg02 specifies
where the subdisks should be relocated.

If the volume is enabled, subdisks within detached or disabled plexes, and detached
log or RAID-5 subdisks, are moved without recovery of data.

Administering hot-relocation
Moving relocated subdisks

482



If the volume is not enabled, subdisks within STALE or OFFLINE plexes, and stale
log or RAID-5 subdisks, are moved without recovery. If there are other subdisks
within a non-enabled volume that require moving, the relocation fails.

For enabled subdisks in enabled plexes within an enabled volume, data is moved
to the new location, without loss of either availability or redundancy of the volume.

Moving relocated subdisks using vxunreloc
VxVM hot-relocation allows the system to automatically react to I/O failures on
a redundant VxVM object at the subdisk level and then take necessary action to
make the object available again. This mechanism detects I/O failures in a subdisk,
relocates the subdisk, and recovers the plex associated with the subdisk. After
the disk has been replaced, vxunreloc allows you to restore the system back to
the configuration that existed before the disk failure. vxunreloc allows you to
move the hot-relocated subdisks back onto a disk that was replaced due to a failure.

When vxunreloc is invoked, you must specify the disk media name where the
hot-relocated subdisks originally resided. When vxunreloc moves the subdisks,
it moves them to the original offsets. If you try to unrelocate to a disk that is
smaller than the original disk that failed,vxunreloc does nothing except return
an error.

vxunreloc provides an option to move the subdisks to a different disk from where
they were originally relocated. It also provides an option to unrelocate subdisks
to a different offset as long as the destination disk is large enough to accommodate
all the subdisks.

If vxunreloc cannot replace the subdisks back to the same original offsets, a force
option is available that allows you to move the subdisks to a specified disk without
using the original offsets.

See the vxunreloc(1M) manual page.

The examples in the following sections demonstrate the use of vxunreloc.

Moving hot-relocated subdisks back to their original disk
Assume that mydg01 failed and all the subdisks were relocated. After mydg01 is
replaced, vxunreloc can be used to move all the hot-relocated subdisks back to
mydg01.

# vxunreloc -g mydg mydg01

483Administering hot-relocation
Moving relocated subdisks



Moving hot-relocated subdisks back to a different disk
The vxunreloc utility provides the -n option to move the subdisks to a different
disk from where they were originally relocated.

Assume that mydg01 failed, and that all of the subdisks that resided on it were
hot-relocated to other disks. vxunreloc provides an option to move the subdisks
to a different disk from where they were originally relocated. After the disk is
repaired, it is added back to the disk group using a different name, for example,
mydg05. If you want to move all the hot-relocated subdisks back to the new disk,
the following command can be used:

# vxunreloc -g mydg -n mydg05 mydg01

The destination disk should have at least as much storage capacity as was in use
on the original disk. If there is not enough space, the unrelocate operation will
fail and none of the subdisks will be moved.

Forcing hot-relocated subdisks to accept different offsets
By default, vxunreloc attempts to move hot-relocated subdisks to their original
offsets. However, vxunreloc fails if any subdisks already occupy part or all of the
area on the destination disk. In such a case, you have two choices:

■ Move the existing subdisks somewhere else, and then re-run vxunreloc.

■ Use the -f option provided by vxunreloc to move the subdisks to the
destination disk, but leave it to vxunreloc to find the space on the disk. As
long as the destination disk is large enough so that the region of the disk for
storing subdisks can accommodate all subdisks, all the hot-relocated subdisks
will be unrelocated without using the original offsets.

Assume that mydg01 failed and the subdisks were relocated and that you want to
move the hot-relocated subdisks to mydg05 where some subdisks already reside.
You can use the force option to move the hot-relocated subdisks to mydg05, but
not to the exact offsets:

# vxunreloc -g mydg -f -n mydg05 mydg01

Examining which subdisks were hot-relocated from a disk
If a subdisk was hot relocated more than once due to multiple disk failures, it can
still be unrelocated back to its original location. For instance, if mydg01 failed and
a subdisk named mydg01-01 was moved to mydg02, and then mydg02 experienced
disk failure, all of the subdisks residing on it, including the one which was
hot-relocated to it, will be moved again. When mydg02 was replaced, a vxunreloc

Administering hot-relocation
Moving relocated subdisks

484



operation for mydg02 will do nothing to the hot-relocated subdisk mydg01-01.
However, a replacement of mydg01 followed by a vxunreloc operation, moves
mydg01-01 back to mydg01 if vxunreloc is run immediately after the replacement.

After the disk that experienced the failure is fixed or replaced, vxunreloc can be
used to move all the hot-relocated subdisks back to the disk. When a subdisk is
hot-relocated, its original disk-media name and the offset into the disk are saved
in the configuration database. When a subdisk is moved back to the original disk
or to a new disk using vxunreloc, the information is erased. The original
disk-media name and the original offset are saved in the subdisk records. To print
all of the subdisks that were hot-relocated from mydg01 in the mydg disk group,
use the following command:

# vxprint -g mydg -se 'sd_orig_dmname="mydg01"'

Restarting vxunreloc after errors
vxunreloc moves subdisks in three phases:

■ vxunreloc creates as many subdisks on the specified destination disk as there
are subdisks to be unrelocated. The string UNRELOC is placed in the comment

field of each subdisk record.
Creating the subdisk is an all-or-nothing operation. If vxunreloc cannot create
all the subdisks successfully, none are created, and vxunreloc exits.

■ vxunreloc moves the data from each subdisk to the corresponding newly
created subdisk on the destination disk.

■ When all subdisk data moves have been completed successfully, vxunreloc
sets the comment field to the null string for each subdisk on the destination
disk whose comment field is currently set to UNRELOC.

The comment fields of all the subdisks on the destination disk remain marked as
UNRELOC until phase 3 completes. If its execution is interrupted, vxunreloc can
subsequently re-use subdisks that it created on the destination disk during a
previous execution, but it does not use any data that was moved to the destination
disk.

If a subdisk data move fails, vxunreloc displays an error message and exits.
Determine the problem that caused the move to fail, and fix it before re-executing
vxunreloc.

If the system goes down after the new subdisks are created on the destination
disk, but before all the data has been moved, re-execute vxunreloc when the
system has been rebooted.

485Administering hot-relocation
Moving relocated subdisks



Warning: Do not modify the string UNRELOC in the comment field of a subdisk
record.

Modifying the behavior of hot-relocation
Hot-relocation is turned on as long as the vxrelocdprocess is running. You should
normally leave hot-relocation turned on so that you can take advantage of this
feature if a failure occurs. However, if you choose to disable hot-relocation (perhaps
because you do not want the free space on your disks to be used for relocation),
you can prevent vxrelocd from starting at system startup time by editing the
startup file that invokes vxrelocd. This file is /lib/svc/method/vxvm-recover
in Solaris 10, or /etc/init.d/vxvm-recover in previous releases of the Solaris
OS.

If the hot-relocation daemon is disabled, then automatic storage reclamation on
deleted volumes is also disabled.

You can alter the behavior of vxrelocd as follows:

Administering hot-relocation
Modifying the behavior of hot-relocation

486



1 To prevent vxrelocd starting, comment out the entry that invokes it in the
startup file:

# nohup vxrelocd root &

2 By default, vxrelocd sends electronic mail to rootwhen failures are detected
and relocation actions are performed. You can instruct vxrelocd to notify
additional users by adding the appropriate user names as shown here:

nohup vxrelocd root user1 user2 &

3 To reduce the impact of recovery on system performance, you can instruct
vxrelocd to increase the delay between the recovery of each region of the
volume, as shown in the following example:

nohup vxrelocd -o slow[=IOdelay] root &

where the optional IOdelay value indicates the desired delay in milliseconds.
The default value for the delay is 250 milliseconds.

On a Solaris 10 system, after making changes to the way vxrelocd is invoked
in the startup file, run the following command to notify that the service
configuration has changed:

# svcadm refresh vxvm/vxvm-recover

For previous releases of the Solaris OS, reboot the system.

You can also stop hot-relocation at any time by killing the vxrelocd process
(this should not be done while a hot-relocation attempt is in progress).

When executing vxrelocd manually, either include /etc/vx/bin in your
PATH or specify vxrelocd’s absolute pathname, for example:

# PATH=/etc/vx/bin:$PATH

# export PATH

# nohup vxrelocd root &

Alternatively, you can use the following command:

# nohup /etc/vx/bin/vxrelocd root user1 user2 &

See the vxrelocd(1M) manual page.

487Administering hot-relocation
Modifying the behavior of hot-relocation



Administering hot-relocation
Modifying the behavior of hot-relocation

488



Administering cluster
functionality

This chapter includes the following topics:

■ Overview of clustering

■ Multiple host failover configurations

■ About the cluster functionality of VxVM

■ Cluster initialization and configuration

■ Dirty region logging in cluster environments

■ Administering VxVM in cluster environments

Overview of clustering
Tightly-coupled cluster systems are common in the realm of enterprise-scale
mission-critical data processing. The primary advantage of clusters is protection
against hardware failure. Should the primary node fail or otherwise become
unavailable, applications can continue to run by transferring their execution to
standby nodes in the cluster. This ability to provide continuous availability of
service by switching to redundant hardware is commonly termed failover.

Another major advantage of clustered systems is their ability to reduce contention
for system resources caused by activities such as backup, decision support and
report generation. Businesses can derive enhanced value from their investment
in cluster systems by performing such operations on lightly loaded nodes in the
cluster rather than on the heavily loaded nodes that answer requests for service.
This ability to perform some operations on the lightly loaded nodes is commonly
termed load balancing.

13Chapter



Overview of cluster volume management
Over the past several years, parallel applications using shared data access have
become increasingly popular. Examples of commercially available applications
include Oracle Real Application Clusters™ (RAC), Sybase Adaptive Server®, and
Informatica Enterprise Cluster Edition. In addition, the semantics of Network File
System (NFS), File Transfer Protocol (FTP), and Network News Transfer Protocol
(NNTP) allow these workloads to be served by shared data access clusters. Finally,
numerous organizations have developed internal applications that take advantage
of shared data access clusters.

The cluster functionality of VxVM (CVM) works together with the cluster monitor
daemon that is provided by VCS or by the host operating system. The cluster
monitor informs VxVM of changes in cluster membership. Each node starts up
independently and has its own cluster monitor plus its own copies of the operating
system and VxVM/CVM. When a node joins a cluster, it gains access to shared
disk groups and volumes. When a node leaves a cluster, it loses access to these
shared objects. A node joins a cluster when you issue the appropriate command
on that node.

Warning: The CVM functionality of VxVM is supported only when used in
conjunction with a cluster monitor that has been configured correctly to work
with VxVM.

Figure 13-1 shows a simple cluster arrangement consisting of four nodes with
similar or identical hardware characteristics (CPUs, RAM and host adapters), and
configured with identical software (including the operating system).

Administering cluster functionality
Overview of clustering

490



Figure 13-1 Example of a 4-node CVM cluster

Cluster-shareable disks

Cluster-shareable
disk groups

Node 0
(master)

Redundant private network

Redundant
SCSIor Fibre

Channel
connectivity

Node 3
(slave)

Node 2
(slave)

Node 1
(slave)

To the cluster monitor, all nodes are the same. VxVM objects configured within
shared disk groups can potentially be accessed by all nodes that join the cluster.
However, the CVM functionality of VxVM requires that one node act as the master
node; all other nodes in the cluster are slave nodes. Any node is capable of being
the master node, and it is responsible for coordinating certain VxVM activities.

In this example, node 0 is configured as the master node and nodes 1, 2 and 3 are
configured as CVM slave nodes. The nodes are fully connected by a private network
and they are also separately connected to shared external storage (either disk
arrays or JBODs: just a bunch of disks) via SCSI or Fibre Channel in a Storage Area
Network (SAN).

In this example, each node has two independent paths to the disks, which are
configured in one or more cluster-shareable disk groups. Multiple paths provide
resilience against failure of one of the paths, but this is not a requirement for
cluster configuration. Disks may also be connected by single paths.

The private network allows the nodes to share information about system resources
and about each other’s state. Using the private network, any node can recognize
which other nodes are currently active, which are joining or leaving the cluster,
and which have failed. The private network requires at least two communication
channels to provide redundancy against one of the channels failing. If only one
channel were used, its failure would be indistinguishable from node failure—a
condition known as network partitioning.

491Administering cluster functionality
Overview of clustering



You must run commands that configure or reconfigure VxVM objects on the
master node. Tasks that must be initiated from the master node include setting
up shared disk groups, creating and reconfiguring volumes, and performing
snapshot operations.

The first node to join a cluster performs the function of master node. If the master
node leaves a cluster, one of the slave nodes is chosen to be the new master.

Private and shared disk groups
The following types of disk groups are defined:

Belongs to only one node. A private disk group can only be imported
by one system. LUNs in a private disk group may be physically
accessible from one or more systems, but access is restricted to only
one system at a time.

The boot disk group (usually aliased by the reserved disk group name
bootdg) is always a private disk group.

Private disk group

Can be shared by all nodes. A shared (or cluster-shareable) disk group
is imported by all cluster nodes. LUNs in a shared disk group must be
physically accessible from all systems that may join the cluster.

Shared disk group

In a CVM cluster, most disk groups are shared. LUNs in a shared disk group are
accessible from all nodes in a cluster, allowing applications on multiple cluster
nodes to simultaneously access the same LUN. A volume in a shared disk group
can be simultaneously accessed by more than one node in the cluster, subject to
license key and disk group activation mode restrictions.

You can use the vxdg command to designate a disk group as cluster-shareable.

See “Importing disk groups as shared” on page 518.

When a disk group is imported as cluster-shareable for one node, each disk header
is marked with the cluster ID. As each node subsequently joins the cluster, it
recognizes the disk group as being cluster-shareable and imports it. In contrast,
a private disk group's disk headers are marked with the individual node's host
name. As system administrator, you can import or deport a shared disk group at
any time; the operation takes place in a distributed fashion on all nodes.

Each LUN is marked with a unique disk ID. When cluster functionality for VxVM
starts on the master, it imports all shared disk groups (except for any that do not
have the autoimport attribute set). When a slave tries to join a cluster, the master
sends it a list of the disk IDs that it has imported, and the slave checks to see if it
can access them all. If the slave cannot access one of the listed disks, it abandons
its attempt to join the cluster. If it can access all of the listed disks, it joins the

Administering cluster functionality
Overview of clustering

492



cluster and imports the same shared disk groups as the master. When a node
leaves the cluster gracefully, it deports all its imported shared disk groups, but
they remain imported on the surviving nodes.

Reconfiguring a shared disk group is performed with the cooperation of all nodes.
Configuration changes to the disk group are initiated by the master, and happen
simultaneously on all nodes and the changes are identical. Such changes are
atomic in nature, which means that they either occur simultaneously on all nodes
or not at all.

Whether all members of the cluster have simultaneous read and write access to
a cluster-shareable disk group depends on its activation mode setting.

See “Activation modes of shared disk groups” on page 493.

The data contained in a cluster-shareable disk group is available as long as at least
one node is active in the cluster. The failure of a cluster node does not affect access
by the remaining active nodes. Regardless of which node accesses a
cluster-shareable disk group, the configuration of the disk group looks the same.

Warning: Applications running on each node can access the data on the VM disks
simultaneously. VxVM does not protect against simultaneous writes to shared
volumes by more than one node. It is assumed that applications control consistency
(by using Veritas Cluster File System or a distributed lock manager, for example).

Activation modes of shared disk groups
A shared disk group must be activated on a node in order for the volumes in the
disk group to become accessible for application I/O from that node. The ability of
applications to read from or to write to volumes is dictated by the activation mode
of a shared disk group. Valid activation modes for a shared disk group are
exclusivewrite, readonly, sharedread, sharedwrite, and off (inactive).

The default activation mode for shared disk groups is sharedwrite.

Special uses of clusters, such as high availability (HA) applications and off-host
backup, can use disk group activation to explicitly control volume access from
different nodes in the cluster

Table 13-1 describes the activation modes.

Table 13-1 Activation modes for shared disk groups

DescriptionActivation mode

The node has exclusive write access to the disk group. No other node
can activate the disk group for write access.

exclusivewrite

(ew)

493Administering cluster functionality
Overview of clustering



Table 13-1 Activation modes for shared disk groups (continued)

DescriptionActivation mode

The node has read access to the disk group and denies write access
for all other nodes in the cluster. The node has no write access to the
disk group. Attempts to activate a disk group for either of the write
modes on other nodes fail.

readonly (ro)

The node has read access to the disk group. The node has no write
access to the disk group, however other nodes can obtain write access.

sharedread

(sr)

The node has write access to the disk group. Attempts to activate the
disk group for shared read and shared write access succeed. Attempts
to activate the disk group for exclusive write and read-only access
fail.

sharedwrite

(sw)

The node has neither read nor write access to the disk group. Query
operations on the disk group are permitted.

off

Table 13-2 summarizes the allowed and conflicting activation modes for shared
disk groups.

Table 13-2 Allowed and conflicting activation modes

Attempt to
activate disk
group on
another node
as...

Disk group
activated in
cluster as...

sharedwritesharedreadreadonlyexclusive-
write

FailsSucceedsFailsFailsexclusivewrite

FailsSucceedsSucceedsFailsreadonly

SucceedsSucceedsSucceedsSucceedssharedread

SucceedsSucceedsFailsFailssharedwrite

To place activation modes under user control, create a defaults file
/etc/default/vxdg containing the following lines:

enable_activation=true

default_actv_mode=activation-mode

Administering cluster functionality
Overview of clustering

494



The activation-mode is one of exclusivewrite, readonly, sharedread,
sharedwrite, or off.

When a shared disk group is created or imported, it is activated in the specified
mode. When a node joins the cluster, all shared disk groups accessible from the
node are activated in the specified mode.

The activation mode of a disk group controls volume I/O from different nodes in
the cluster. It is not possible to activate a disk group on a given node if it is
activated in a conflicting mode on another node in the cluster. When enabling
activation using the defaults file, it is recommended that the file be consistent on
all nodes in the cluster as in Table 13-2. Otherwise, the results of activation are
unpredictable.

If the defaults file is edited while the vxconfigd daemon is already running, run
the /sbin/vxconfigd -k -x syslog command on all nodes to restart the process.

If the default activation mode is anything other than off, an activation following
a cluster join, or a disk group creation or import can fail if another node in the
cluster has activated the disk group in a conflicting mode.

To display the activation mode for a shared disk group, use the vxdg list

diskgroup command.

See “Listing shared disk groups” on page 516.

You can also use the vxdg command to change the activation mode on a shared
disk group.

See “Changing the activation mode on a shared disk group” on page 520.

It is also possible to configure a volume so that it can only be opened by a single
node in a cluster.

See “Creating volumes with exclusive open access by a node” on page 521.

See “Setting exclusive open access to a volume by a node” on page 521.

Connectivity policy of shared disk groups
A shared disk group provides concurrent read and write access to the volumes
that it contains for all nodes in a cluster. A shared disk group can only be created
on the master node. This has the following advantages and implications:

■ All nodes in the cluster see exactly the same configuration.

■ Only the master node can change the configuration.

■ Any changes on the master node are automatically coordinated and propagated
to the slave nodes in the cluster.

495Administering cluster functionality
Overview of clustering



■ Any failures that require a configuration change must be sent to the master
node so that they can be resolved correctly.

■ As the master node resolves failures, all the slave nodes are correctly updated.
This ensures that all nodes have the same view of the configuration.

The practical implication of this design is that I/O failure on any node results in
the configuration of all nodes being changed. This is known as the global detach
policy. However, in some cases, it is not desirable to have all nodes react in this
way to I/O failure. To address this, an alternate way of responding to I/O failures,
known as the local detach policy, was introduced.

The local detach policy is intended for use with shared mirrored volumes in a
cluster. This policy prevents I/O failure on any of the nodes in the cluster from
causing a plex to be detached .This would require the plex to be resynchronized
when it is subsequently reattached. The local detach policy is available for disk
groups that have a version number of 120 or greater.

For small mirrored volumes, non-mirrored volumes, volumes that use hardware
mirrors, and volumes in private disk groups, there is no benefit in configuring
the local detach policy. In most cases, it is recommended that you use the default
global detach policy.

The choice between local and global detach polices is one of node availability
versus plex availability when an individual node loses access to disks. Select the
local detach policy for a diskgroup if you are using mirrored volumes within it,
and would prefer a single node to lose write access to a volume rather than a plex
of the volume being detached clusterwide. i.e. you consider the availability of your
data (retaining mirrors) more important than any one node in the cluster. This
will typically only apply in larger clusters, and where a parallel application is
being used that can seamlessly provide the same service from the other nodes.
For example, this option is not appropriate for fast failover configurations. Select
the global detach policy in all other cases.

In the event of the master node losing access to all the disks containing log/config
copies, the disk group failure policy is triggered. At this point no plexes can be
detached, as this requires access to the log/config copies, no configuration changes
to the disk group can be made, and any action requiring the kernel to write to the
klog (first open, last close, mark dirty etc) will fail. If this happened in releases
prior to 4.1, the master node always disabled the disk group. Release 4.1 introduces
the disk group failure policy, which allows you to change this behavior for critical
disk groups. This policy is only available for disk groups that have a version
number of 120 or greater.

See “Global detach policy” on page 497.

See “Local detach policy ” on page 497.

Administering cluster functionality
Overview of clustering

496



See “Disk group failure policy” on page 499.

See “Guidelines for failure policies” on page 499.

Global detach policy

Warning: The global detach policy must be selected when Dynamic MultiPathing
(DMP) is used to manage multipathing on Active/Passive arrays, This ensures
that all nodes correctly coordinate their use of the active path.

The global detach policy is the traditional and default policy for all nodes on the
configuration. If there is a read or write I/O failure on a slave node, the master
node performs the usual I/O recovery operations to repair the failure, and, if
required, the plex is detached cluster-wide. All nodes remain in the cluster and
continue to perform I/O, but the redundancy of the mirrors is reduced. When the
problem that caused the I/O failure has been corrected, the disks should be
re-attached and the mirrors that were detached must be recovered before the
redundancy of the data can be restored.

Local detach policy
The local detach policy is designed to support failover applications in large clusters
where the redundancy of the volume is more important than the number of nodes
that can access the volume. If there is a write failure on a any node, the usual I/O
recovery operations are performed to repair the failure, and additionally all the
nodes are contacted to see if the disk is still accessible to them. If the write failure
is local, and only seen by a single node, I/O is stopped for the node that first saw
the failure, and an error is returned to the application using the volume. The write
failure is global if more than one node sees the failure. The volume is not disabled.

If required, configure the cluster management software to move the application
to a different node, and/or remove the node that saw the failure from the cluster.
The volume continues to return write errors, as long as one mirror of the volume
has an error. The volume continues to satisfy read requests as long as one good
plex is available.

If the reason for the I/O error is corrected and the node is still a member of the
cluster, it can resume performing I/O from/to the volume without affecting the
redundancy of the data.

The vxdg command can be used to set the disk detach policy on a shared disk
group.

See “Setting the disk detach policy on a shared disk group” on page 520.

497Administering cluster functionality
Overview of clustering



Table 13-3 summarizes the effect on a cluster of I/O failure to the disks in a
mirrored volume.

Table 13-3 Cluster behavior under I/O failure to a mirrored volume for different
disk detach policies

Global (diskdetpolicy=global)Local (diskdetpolicy=local)Type of I/O
failure

The plex is detached, and I/O
from/to the volume continues. An
I/O error is generated if no plexes
remain.

Reads fail only if no plexes remain
available to the affected node.
Writes to the volume fail.

Failure of path to
one disk in a
volume for a single
node

The plex is detached, and I/O
from/to the volume continues. An
I/O error is generated if no plexes
remain.

I/O fails for the affected node.Failure of paths to
all disks in a
volume for a single
node

The plex is detached, and I/O
from/to the volume continues. An
I/O error is generated if no plexes
remain.

The plex is detached, and I/O
from/to the volume continues. An
I/O error is generated if no plexes
remain.

Failure of one or
more disks in a
volume for all
nodes.

Guidelines for choosing detach policies
In most cases it is recommended that you use the global detach policy, and
particularly if any of the following conditions apply:

■ When an array is seen by DMP as Active/Passive. The local detach policy causes
unpredictable behavior for Active/Passive arrays.

■ If only non-mirrored, small mirrored, or hardware mirrored volumes are
configured. This avoids the system overhead of the extra messaging that is
required by the local detach policy.

The local detach policy may be suitable in the following cases:

■ When large mirrored volumes are configured. Resynchronizing a reattached
plex can degrade system performance. The local detach policy can avoid the
need to detach the plex at all. (Alternatively, the dirty region logging (DRL)
feature can be used to reduce the amount of resynchronization that is required.)

■ For clusters with more than four nodes. Keeping an application running on a
particular node is less critical when there are many nodes in a cluster. It may
be possible to configure the cluster management software to move an
application to a node that has access to the volumes. In addition, load balancing
may be able to move applications to a different volume from the one that

Administering cluster functionality
Overview of clustering

498



experienced the I/O problem. This preserves data redundancy, and other nodes
may still be able to perform I/O from/to the volumes on the disk.

Disk group failure policy
The local detach policy by itself is insufficient to determine the desired behavior
if the master node loses access to all disks that contain copies of the configuration
database and logs. In this case, the disk group is disabled. As a result, any action
that would result in an update to log/config copy will also fail from the other
nodes in the cluster. In release 4.1, the disk group failure policy is introduced to
determine the behavior of the master node in such cases.

Table 13-4 shows how the behavior of the master node changes according to the
setting of the failure policy.

Table 13-4 Behavior of master node for different failure policies

Disable
(dgfailpolicy=dgdisable)

Leave (dgfailpolicy=leave)Type of I/O
failure

The master node disables the disk
group.

The master node panics with the
message “klog update failed” for
a failed kernel-initiated
transaction, or “cvm config update
failed” for a failed user-initiated
transaction.

Master node loses
access to all copies
of the logs.

The behavior of the master node under the disk group failure policy is independent
of the setting of the disk detach policy. If the disk group failure policy is set to
leave, all nodes panic in the unlikely case that none of them can access the log
copies.

The vxdg command can be used to set the failure policy on a shared disk group.

See “Setting the disk group failure policy on a shared disk group” on page 521.

Guidelines for failure policies
If you have a critical disk group that you do not want to become disabled in the
case that the master node loses access to the copies of the logs, set the disk group
failure policy to leave. This prevents I/O failure on the master node disabling the
disk group. However, critical applications running on the master node fail if they
lose access to the other shared disk groups. In such a case, it may be preferable
to set the policy to dgdisable, and to allow the disk group to be disabled.

499Administering cluster functionality
Overview of clustering



The default settings for the detach and failure policies are global and dgdisable

respectively. You can use the vxdg command to change both the detach and failure
policies on a shared disk group, as shown in this example:

# vxdg -g diskgroup set diskdetpolicy=local dgfailpolicy=leave

Effect of disk connectivity on cluster reconfiguration
The detach policy, previous I/O errors, or access to disks are not considered when
a new master node is chosen. When the master node leaves a cluster, the node
that takes over as master of the cluster may already have seen I/O failures for
one or more disks. Under the local detach policy, if a node was affected before
reconfiguration, and this node then becomes the master, the failure is treated
differently from the global detach policy case.

See “Connectivity policy of shared disk groups” on page 495.

Some failure scenarios do not result in a disk group failure policy being invoked,
but can potentially impact the cluster. For example, if the local disk detach policy
is in effect, and the new master node has a failed plex, this results in all nodes
detaching the plex because the new master is unaffected by the policy.

The detach policy does not change the requirement that a node joining a cluster
must have access to all the disks in all shared disk groups. Similarly, a node that
is removed from the cluster because of an I/O failure cannot rejoin the cluster
until this requirement is met.

Limitations of shared disk groups
Only raw device access may be performed via CVM. It does not support shared
access to file systems in shared volumes unless the appropriate software, such as
Veritas Cluster File System, is installed and configured.

Note: The boot disk group (usually aliased as bootdg) cannot be made
cluster-shareable. It must be private.

The cluster functionality of VxVM does not support RAID-5 volumes, or task
monitoring for cluster-shareable disk groups. These features can, however, be
used in private disk groups that are attached to specific nodes of a cluster.

If you have RAID-5 volumes in a private disk group that you wish to make
shareable, you must first relayout the volumes as a supported volume type such
as stripe-mirror or mirror-stripe. Online relayout of shared volumes is
supported provided that it does not involve RAID-5 volumes.

Administering cluster functionality
Overview of clustering

500



If a shared disk group contains RAID-5 volumes, deport it and then reimport the
disk group as private on one of the cluster nodes. Reorganize the volumes into
layouts that are supported for shared disk groups, and then deport and reimport
the disk group as shared.

Multiple host failover configurations
Outside the context of CVM, VxVM disk groups can be imported (made available)
on only one host at any given time. When a host imports a (private) disk group,
the volumes and configuration of that disk group become accessible to the host.
If the administrator or system software wants to privately use the same disk group
from another host, the host that already has the disk group imported (importing
host) must deport (give up access to) the disk group. Once deported, the disk group
can be imported by another host.

If two hosts are allowed to access a disk group concurrently without proper
synchronization, such as that provided by Oracle RAC, the configuration of the
disk group, and possibly the contents of volumes, can be corrupted. Similar
corruption can also occur if a file system or database on a raw disk partition is
accessed concurrently by two hosts, so this problem in not limited to Veritas
Volume Manager.

Import lock
When a host in a non-CVM environment imports a disk group, an import lock is
written on all disks in that disk group. The import lock is cleared when the host
deports the disk group. The presence of the import lock prevents other hosts from
importing the disk group until the importing host has deported the disk group.

Specifically, when a host imports a disk group, the import normally fails if any
disks within the disk group appear to be locked by another host. This allows
automatic re-importing of disk groups after a reboot (autoimporting) and prevents
imports by another host, even while the first host is shut down. If the importing
host is shut down without deporting the disk group, the disk group can only be
imported by another host by clearing the host ID lock first (discussed later).

The import lock contains a host ID (the host name) reference to identify the
importing host and enforce the lock. Problems can therefore arise if two hosts
have the same host ID.

Since Veritas Volume Manager uses the host name as the host ID (by default), it
is advisable to change the host name of one machine if another machine shares
its host name. To change the host name, use the vxdctl hostid new_hostname

command.

501Administering cluster functionality
Multiple host failover configurations



Failover
The import locking scheme works well in an environment where disk groups are
not normally shifted from one system to another. However, consider a setup where
two hosts, Node A and Node B, can access the drives of a disk group. The disk
group is initially imported by Node A, but the administrator wants to access the
disk group from Node B if Node A crashes. Such a failover scenario can be used
to provide manual high availability to data, where the failure of one node does
not prevent access to data. Failover can be combined with a “high availability”
monitor to provide automatic high availability to data: when Node B detects that
Node A has crashed or shut down, Node B imports (fails over) the disk group to
provide access to the volumes.

Veritas Volume Manager can support failover, but it relies on the administrator
or on an external high-availability monitor, such as VCS, to ensure that the first
system is shut down or unavailable before the disk group is imported to another
system.

See “Moving disk groups between systems” on page 233.

See the vxdg(1M) manual page.

Corruption of disk group configuration
If vxdg import is used with -C (clears locks) and/or -f (forces import) to import
a disk group that is still in use from another host, disk group configuration
corruption is likely to occur. Volume content corruption is also likely if a file
system or database is started on the imported volumes before the other host
crashes or shuts down.

If this kind of corruption occurs, your configuration must typically be rebuilt from
scratch and all data be restored from a backup. There are typically numerous
configuration copies for each disk group, but corruption nearly always affects all
configuration copies, so redundancy does not help in this case.

As long as the configuration backup daemon, vxconfigbackupd, is running, VxVM
will backup configurations whenever the configuration is changed. By default,
backups are stored in /etc/vx/cbr/bk. You may also manually backup the
configuration using the vxconfigbackup utility. The configuration can be rebuilt
using the vxrestore utility.

See the vxconfigbackup, vxconfigbackupd, vxconfigrestore man pages.

Disk group configuration corruption usually shows up as missing or duplicate
records in the configuration databases. This can result in a variety of vxconfigd
error messages

Administering cluster functionality
Multiple host failover configurations

502



VxVM vxconfigd ERROR

V-5-1-569 Disk group group,Disk disk:

Cannot auto-import group: reason

where the reason can describe errors such as:

Association not resolved

Association count is incorrect

Duplicate record in configuration

Configuration records are inconsistent

These errors are typically reported in association with specific disk group
configuration copies, but usually apply to all copies. The following is usually
displayed along with the error:

Disk group has no valid configuration copies

If you use the Veritas Cluster Server product, all disk group failover issues can be
managed correctly. VCS includes a high availability monitor and includes failover
scripts for VxVM, VxFS, and for several popular databases.

The -t option to vxdg prevents automatic re-imports on reboot and is necessary
when used with a host monitor (such as VCS) that controls imports itself, rather
than relying on automatic imports by Veritas Volume Manager.

See the Veritas VolumeManager Troubleshooting Guide.

About the cluster functionality of VxVM
A cluster consists of a number of hosts or nodes that share a set of disks. The
following are the main benefits of cluster configurations:

503Administering cluster functionality
About the cluster functionality of VxVM



If one node fails, the other nodes can still access the shared disks.
When configured with suitable software, mission-critical applications
can continue running by transferring their execution to a standby
node in the cluster. This ability to provide continuous uninterrupted
service by switching to redundant hardware is commonly termed
failover.

Failover is transparent to users and high-level applications for
database and file-sharing. You must configure cluster management
software, such as Veritas Cluster Server (VCS), to monitor systems
and services, and to restart applications on another node in the event
of either hardware or software failure. VCS also allows you to perform
general administration tasks such as making nodes join or leave a
cluster.

Note that a standby node need not remain idle. It could be used to
serve other applications in parallel.

Availability

Clusters can reduce contention for system resources by performing
activities such as backup, decision support and report generation on
the more lightly loaded nodes of the cluster. This allows businesses
to derive enhanced value from their investment in cluster systems.

Off-host
processing

The cluster Volume Manager (CVM) allows up to 32 nodes in a cluster to
simultaneously access and manage a set of disks or LUNs under VxVM control.
The same logical view of disk configuration and any changes to this view are
available on all the nodes. When the CVM functionality is enabled, all cluster
nodes can share VxVM objects such as shared disk groups. Private disk groups
are supported in the same way as in a non-clustered environment. This chapter
discusses the cluster functionality that is provided with VxVM.

Note: You need an additional license key to use this feature.

Products such as Veritas Storage Foundation Cluster File System (SFCFS), and
Veritas Cluster Server (VCS) are separately licensed, and are not included with
Veritas Volume Manager. See the documentation provided with those products
for more information about them.

The Dynamic Multipathing (DMP) feature of VxVM can be used in a clustered
environment.

See “DMP in a clustered environment” on page 171.

Campus cluster configurations (also known as stretch cluster or remote mirror
configurations) can also be configured and administered.

Administering cluster functionality
About the cluster functionality of VxVM

504



Cluster initialization and configuration
Before any nodes can join a new cluster for the first time, you must supply certain
configuration information during cluster monitor setup. This information is
normally stored in some form of cluster monitor configuration database. The
precise content and format of this information depends on the characteristics of
the cluster monitor. The information required by VxVM is as follows:

■ cluster ID

■ node IDs

■ network addresses of nodes

■ port addresses

When a node joins the cluster, this information is automatically loaded into VxVM
on that node at node startup time.

Note: To make effective use of the CVM functionality of VxVM requires that you
configure a cluster monitor, such as provided by Sun Java™ System Cluster
software or VCS. Common Product Installer (CPI) sets up all the information
required for configuring the cluster monitor.

The cluster monitor startup procedure effects node initialization, and brings up
the various cluster components (such as VxVM with cluster support, the cluster
monitor, and a distributed lock manager) on the node. Once this is complete,
applications may be started. The cluster monitor startup procedure must be
invoked on each node to be joined to the cluster.

For VxVM in a cluster environment, initialization consists of loading the cluster
configuration information and joining the nodes in the cluster. The first node to
join becomes the master node, and later nodes (slaves) join to the master. If two
nodes join simultaneously, VxVM chooses the master. After a given node joins,
that node has access to the shared disk groups and volumes.

Cluster reconfiguration
Cluster reconfiguration occurs if a node leaves or joins a cluster. Each node’s
cluster monitor continuously watches the other cluster nodes. When the
membership of the cluster changes, the cluster monitor informs VxVM for it to
take appropriate action.

During cluster reconfiguration, VxVM suspends I/O to shared disks. I/O resumes
when the reconfiguration completes. Applications may appear to freeze for a
short time during reconfiguration.

505Administering cluster functionality
Cluster initialization and configuration



If other operations, such as VxVM operations or recoveries, are in progress, cluster
reconfiguration can be delayed until those operations complete. Volume
reconfigurations do not take place at the same time as cluster reconfigurations.
Depending on the circumstances, an operation may be held up and restarted later.
In most cases, cluster reconfiguration takes precedence. However, if the volume
reconfiguration is in the commit stage, it completes first.

See “Volume reconfiguration” on page 508.

See “vxclustadm utility” on page 507.

See “vxclust utility” on page 506.

vxclust utility
vxclust is used when Sun Java System Cluster software acts as the cluster monitor.

Every time there is a cluster reconfiguration, every node currently in the cluster
runs the vxclust utility at each of several well-orchestrated steps. The cluster
monitor facilities ensure that the same step is executed on all nodes at the same
time. A given step only starts when the previous one has completed on all nodes.
At each step in the reconfiguration, the vxclust utility determines what the CVM
functionality of VxVM should do next. After informing VxVM of its next action,
the vxclust utility waits for the outcome (success, failure, or retry) and
communicates that to the cluster monitor.

If a node does not respond to a the vxclustutility request within a specific timeout
period, that node aborts. The vxclust utility then decides whether to restart the
reconfiguration or give up, depending on the circumstances. If the cause of the
reconfiguration is a local, uncorrectable error, vxclust gives up. If a node cannot
complete an operation because another node has left, the surviving node times
out. In this case, thevxclustutility requests a reconfiguration with the expectation
that another node will leave. If no other node leaves, the vxclust utility causes
the local node to leave.

If a reconfiguration step fails, the vxclust utility returns an error to the cluster
monitor. The cluster monitor may decide to abort the node, causing its immediate
departure from the cluster. Any I/O in progress to the shared disk fails and access
to the shared disks is stopped.

vxclust decides what actions to take when it is informed of changes in the cluster.
If a new master node is required (due to failure of the previous master), vxclust
determines which node becomes the new master.

Administering cluster functionality
Cluster initialization and configuration

506



vxclustadm utility
Thevxclustadm command provides an interface to the CVM functionality of VxVM
when VCS is used as the cluster monitor. It is also called during cluster startup
and shutdown. In the absence of a cluster monitor, vxclustadm can also be used
to activate or deactivate the CVM functionality of VxVM on any node in a cluster.

The startnode keyword to vxclustadm starts CVM functionality on a cluster node
by passing cluster configuration information to the VxVM kernel. In response to
this command, the kernel and the VxVM configuration daemon, vxconfigd,
perform initialization.

The stopnode keyword stops CVM functionality on a node. It waits for all
outstanding I/O to complete and for all applications to close shared volumes.

The reinitkeyword allows nodes to be added to or removed from a cluster without
stopping the cluster. Before running this command, the cluster configuration file
must have been updated with information about the supported nodes in the cluster.

The nidmap keyword prints a table showing the mapping between CVM node IDs
in VxVM’s cluster-support subsystem and node IDs in the cluster monitor. It also
prints the state of the nodes in the cluster.

The nodestate keyword reports the state of a cluster node and also the reason
for the last abort of the node as shown in this example:

# /etc/vx/bin/vxclustadm nodestate

state: out of cluster

reason: user initiated stop

Table 13-5 lists the various reasons that may be given for a node abort.

Table 13-5 Node abort messages

DescriptionReason

Missing disk or bad disk on the slave node.cannot find disk on slave node

The node cannot read the configuration data due
to an error such as disk failure.

cannot obtain configuration

data

Open of a cluster device failed.cluster device open failed

Clustering license does not match that on the
master node.

clustering license mismatch

with master node

Clustering license cannot be found.clustering license not

available

507Administering cluster functionality
Cluster initialization and configuration



Table 13-5 Node abort messages (continued)

DescriptionReason

Join of a node refused by the master node.connection refused by master

A disk belongs to a cluster other than the one that
a node is joining.

disk in use by another cluster

Join of a node has timed out due to
reconfiguration taking place in the cluster.

join timed out during

reconfiguration

Cannot update kernel log copies during the join
of a node.

klog update failed

Master node aborted while another node was
joining the cluster.

master aborted during join

Cluster protocol version mismatch or unsupported
version.

protocol version out of range

Volumes that were opened by the node are still
recovering.

recovery in progress

Changing the role of a node to be the master
failed.

transition to role failed

Node is out of cluster due to an abort initiated by
the user or by the cluster monitor.

user initiated abort

Node is out of cluster due to a stop initiated by
the user or by the cluster monitor.

user initiated stop

The VxVM configuration daemon is not enabled.vxconfigd is not enabled

See the vxclustadm(1M) manual page.

Volume reconfiguration
Volume reconfiguration is the process of creating, changing, and removing VxVM
objects such as disk groups, volumes and plexes. In a cluster, all nodes co-operate
to perform such operations. The vxconfigddaemons play an active role in volume
reconfiguration. For reconfiguration to succeed, a vxconfigd daemon must be
running on each of the nodes.

See “vxconfigd daemon” on page 509.

A volume reconfiguration transaction is initiated by running a VxVM utility on
the master node. The utility contacts the local vxconfigd daemon on the master

Administering cluster functionality
Cluster initialization and configuration

508



node, which validates the requested change. For example, vxconfigd rejects an
attempt to create a new disk group with the same name as an existing disk group.
The vxconfigd daemon on the master node then sends details of the changes to
the vxconfigd daemons on the slave nodes. The vxconfigd daemons on the slave
nodes then perform their own checking. For example, each slave node checks that
it does not have a private disk group with the same name as the one being created;
if the operation involves a new disk, each node checks that it can access that disk.
When the vxconfigd daemons on all the nodes agree that the proposed change
is reasonable, each notifies its kernel. The kernels then co-operate to either commit
or to abandon the transaction. Before the transaction can be committed, all of the
kernels ensure that no I/O is underway, and block any I/O issued by applications
until the reconfiguration is complete. The master node is responsible both for
initiating the reconfiguration, and for coordinating the commitment of the
transaction. The resulting configuration changes appear to occur simultaneously
on all nodes.

If a vxconfigd daemon on any node goes away during reconfiguration, all nodes
are notified and the operation fails. If any node leaves the cluster, the operation
fails unless the master has already committed it. If the master node leaves the
cluster, the new master node, which was previously a slave node, completes or
fails the operation depending on whether or not it received notification of
successful completion from the previous master node. This notification is
performed in such a way that if the new master does not receive it, neither does
any other slave.

If a node attempts to join a cluster while a volume reconfiguration is being
performed, the result of the reconfiguration depends on how far it has progressed.
If the kernel has not yet been invoked, the volume reconfiguration is suspended
until the node has joined the cluster. If the kernel has been invoked, the node
waits until the reconfiguration is complete before joining the cluster.

When an error occurs, such as when a check on a slave fails or a node leaves the
cluster, the error is returned to the utility and a message is sent to the console on
the master node to identify on which node the error occurred.

vxconfigd daemon
The VxVM configuration daemon, vxconfigd, maintains the configuration of
VxVM objects. It receives cluster-related instructions from the vxclust utility
under Sun Java System Cluster software, or from the kernel when running VCS.
A separate copy of vxconfigd runs on each node, and these copies communicate
with each other over a network. When invoked, a VxVM utility communicates
with the vxconfigd daemon running on the same node; it does not attempt to
connect with vxconfigd daemons on other nodes. During cluster startup,

509Administering cluster functionality
Cluster initialization and configuration



SunCluster or VCS prompts vxconfigd to begin cluster operation and indicates
whether it is a master node or a slave node.

When a node is initialized for cluster operation, the vxconfigddaemon is notified
that the node is about to join the cluster and is provided with the following
information from the cluster monitor configuration database:

■ cluster ID

■ node IDs

■ master node ID

■ role of the node

■ network address of the node

On the master node, the vxconfigd daemon sets up the shared configuration by
importing shared disk groups, and informs the vxclust utility (for SunCluster)
or the kernel (for VCS) when it is ready for the slave nodes to join the cluster.

On slave nodes, the vxconfigd daemon is notified when the slave node can join
the cluster. When the slave node joins the cluster, the vxconfigd daemon and the
VxVM kernel communicate with their counterparts on the master node to set up
the shared configuration.

When a node leaves the cluster, the kernel notifies the vxconfigd daemon on all
the other nodes. The master node then performs any necessary cleanup. If the
master node leaves the cluster, the kernels select a new master node and the
vxconfigd daemons on all nodes are notified of the choice.

The vxconfigd daemon also participates in volume reconfiguration.

See “Volume reconfiguration” on page 508.

vxconfigd daemon recovery
In a cluster, the vxconfigd daemons on the slave nodes are always connected to
the vxconfigd daemon on the master node. If the vxconfigd daemon is stopped,
volume reconfiguration cannot take place. Other nodes can join the cluster if the
vxconfigd daemon is not running on the slave nodes.

If the vxconfigd daemon stops, different actions are taken depending on which
node this occurred:

■ If the vxconfigd daemon is stopped on the master node, the vxconfigd

daemons on the slave nodes periodically attempt to rejoin to the master node.
Such attempts do not succeed until the vxconfigd daemon is restarted on the
master. In this case, the vxconfigd daemons on the slave nodes have not lost

Administering cluster functionality
Cluster initialization and configuration

510



information about the shared configuration, so that any displayed configuration
information is correct.

■ If the vxconfigd daemon is stopped on a slave node, the master node takes no
action. When the vxconfigd daemon is restarted on the slave, the slave
vxconfigd daemon attempts to reconnect to the master daemon and to
re-acquire the information about the shared configuration. (Neither the kernel
view of the shared configuration nor access to shared disks is affected.) Until
the vxconfigd daemon on the slave node has successfully reconnected to the
vxconfigd daemon on the master node, it has very little information about
the shared configuration and any attempts to display or modify the shared
configuration can fail. For example, shared disk groups listed using the vxdg

list command are marked asdisabled; when the rejoin completes successfully,
they are marked as enabled.

■ If the vxconfigd daemon is stopped on both the master and slave nodes, the
slave nodes do not display accurate configuration information until vxconfigd
is restarted on the master and slave nodes, and the daemons have reconnected.

If the vxclust utility (for SunCluster) or the CVM agent (for VCS) determines that
the vxconfigd daemon has stopped on a node, vxconfigd is restarted
automatically.

Warning: The -r reset option to vxconfigd restarts the vxconfigd daemon and
recreates all states from scratch. This option cannot be used to restart vxconfigd
while a node is joined to a cluster because it causes cluster information to be
discarded.

It may sometimes be necessary to restart vxconfigdmanually in a VCS controlled
cluster to resolve a VxVM issue.

511Administering cluster functionality
Cluster initialization and configuration



To restart vxconfigd manually

1 Use the following command to disable failover on any service groups that
contain VxVM objects:

# hagrp -freeze groupname

2 Enter the following command to stop and restart the VxVM configuration
daemon on the affected node:

# vxconfigd -k

3 Use the following command to re-enable failover for the service groups that
you froze in step 1:

# hagrp -unfreeze groupname

Node shutdown
Although it is possible to shut down the cluster on a node by invoking the shutdown
procedure of the node’s cluster monitor, this procedure is intended for terminating
cluster components after stopping any applications on the node that have access
to shared storage. VxVM supports clean node shutdown, which allows a node to
leave the cluster gracefully when all access to shared volumes has ceased. The
host is still operational, but cluster applications cannot be run on it.

The CVM functionality of VxVM maintains global state information for each
volume. This enables VxVM to determine which volumes need to be recovered
when a node crashes. When a node leaves the cluster due to a crash or by some
other means that is not clean, VxVM determines which volumes may have writes
that have not completed and the master node resynchronizes these volumes. It
can use dirty region logging (DRL) or FastResync if these are active for any of the
volumes.

Clean node shutdown must be used after, or in conjunction with, a procedure to
halt all cluster applications. Depending on the characteristics of the clustered
application and its shutdown procedure, a successful shutdown can require a lot
of time (minutes to hours). For instance, many applications have the concept of
draining, where they accept no new work, but complete any work in progress
before exiting. This process can take a long time if, for example, a long-running
transaction is active.

When the VxVM shutdown procedure is invoked, it checks all volumes in all shared
disk groups on the node that is being shut down. The procedure then either
continues with the shutdown, or fails for one of the following reasons:

Administering cluster functionality
Cluster initialization and configuration

512



■ If all volumes in shared disk groups are closed, VxVM makes them unavailable
to applications. Because all nodes are informed that these volumes are closed
on the leaving node, no resynchronization is performed.

■ If any volume in a shared disk group is open, the shutdown procedure fails.
The shutdown procedure can be repeatedly retried until it succeeds. There is
no timeout checking in this operation—it is intended as a service that verifies
that the clustered applications are no longer active.

Once shutdown succeeds, the node has left the cluster. It is not possible to access
the shared volumes until the node joins the cluster again.

Since shutdown can be a lengthy process, other reconfiguration can take place
while shutdown is in progress. Normally, the shutdown attempt is suspended
until the other reconfiguration completes. However, if it is already too far
advanced, the shutdown may complete first.

Cluster shutdown
If all nodes leave a cluster, shared volumes must be recovered when the cluster
is next started if the last node did not leave cleanly, or if resynchronization from
previous nodes leaving uncleanly is incomplete. CVM automatically handles the
recovery and resynchronization tasks when a node joins the cluster.

Dirty region logging in cluster environments
Dirty region logging (DRL) is an optional property of a volume that provides speedy
recovery of mirrored volumes after a system failure. DRL is supported in
cluster-shareable disk groups. This section provides a brief overview of how DRL
behaves in a cluster environment.

In a cluster environment, the VxVM implementation of DRL differs slightly from
the normal implementation.

A dirty region log on a system without cluster support has a recovery map and a
single active map. A CVM DRL, however, has a single recovery map per cluster
and one active map per cluster node.

The dirty region log size in clusters is typically larger than in non-clustered
systems, as it must accommodate a recovery map plus active maps for each node
in the cluster. The size of each map within the dirty region log is one or more
whole blocks. The vxassist command automatically allocates a sufficiently large
dirty region log for the size of the volume and the number of nodes.

513Administering cluster functionality
Dirty region logging in cluster environments



It is possible to reimport a non-shared disk group (and its volumes) as a shared
disk group in a cluster environment. However, the dirty region logs of the imported
disk group may be considered invalid and a full recovery may result.

If a shared disk group is imported as a private disk group on a system without
cluster support, VxVM considers the logs of the shared volumes to be invalid and
conducts a full volume recovery. After the recovery completes, VxVM uses DRL.

The cluster functionality of VxVM can perform a DRL recovery on a non-shared
volume. However, if such a volume is moved to a VxVM system with cluster support
and imported as shared, the dirty region log is probably too small to accommodate
maps for all the cluster nodes. VxVM then marks the log invalid and performs a
full recovery anyway. Similarly, moving a DRL volume from a two-node cluster
to a four-node cluster can result in too small a log size, which the cluster
functionality of VxVM handles with a full volume recovery. In both cases, you
must allocate a new log of sufficient size.

See “Dirty region logging” on page 59.

How DRL works in a cluster environment
When one or more nodes in a cluster crash, DRL must handle the recovery of all
volumes that were in use by those nodes when the crashes occurred. On initial
cluster startup, all active maps are incorporated into the recovery map during
the volume start operation.

Nodes that crash (that is, leave the cluster as dirty) are not allowed to rejoin the
cluster until their DRL active maps have been incorporated into the recovery maps
on all affected volumes. The recovery utilities compare a crashed node's active
maps with the recovery map and make any necessary updates. Only then can the
node rejoin the cluster and resume I/O to the volume (which overwrites the active
map). During this time, other nodes can continue to perform I/O.

VxVM tracks which nodes have crashed. If multiple node recoveries are underway
in a cluster at a given time. VxVM tracks changes in the state of DRL recovery
and prevents I/O collisions.

The master node performs volatile tracking of DRL recovery map updates for each
volume, and prevents multiple utilities from changing the recovery map
simultaneously.

Administering VxVM in cluster environments
The following sections describe the administration of VxVM’s cluster functionality.

Administering cluster functionality
Administering VxVM in cluster environments

514



Requesting node status and discovering the master node
The vxdctl utility controls the operation of the vxconfigd volume configuration
daemon. The -c option can be used to request cluster information and to find out
which node is the master. To determine whether the vxconfigddaemon is enabled
and/or running, use the following command:

vxdctl -c mode

Table 13-6 shows the various messages that may be output according to the current
status of the cluster node.

Table 13-6 Cluster status messages

DescriptionStatus message

The node is the master.mode: enabled:
cluster active - MASTER
master: mozart

The node is a slave.mode: enabled:
cluster active - SLAVE
master: mozart

The node has not yet been assigned a role,
and is in the process of joining the cluster.

mode: enabled:
cluster active - role not set
master: mozart
state: joining
reconfig: master update

The node is configured as a slave, and is in
the process of joining the cluster.

mode: enabled:
cluster active - SLAVE
master: mozart
state: joining

The cluster is not active on this node.mode: enabled:
cluster inactive

Enable root disk encapsulation but not
transactions.

mode: booted:
master: ts4200-04

Disable transactions.mode: disabled:

515Administering cluster functionality
Administering VxVM in cluster environments



If the vxconfigd daemon is disabled, no cluster information is displayed.

See the vxdctl(1M) manual page.

Determining if a LUN is in a shareable disk group
The vxdisk utility manages VxVM disks. To use the vxdisk utility to determine
whether a LUN is part of a cluster-shareable disk group, use the following
command:

# vxdisk list accessname

where accessname is the disk access name (or device name).

For example, a portion of the output from this command (for the device c4t1d0)
is shown here:

Device: c4t1d0

devicetag: c4t1d0

type: auto

clusterid: cvm2

disk: name=shdg01 id=963616090.1034.cvm2

timeout: 30

group: name=shdg id=963616065.1032.cvm2

flags: online ready autoconfig shared imported

...

Note that the clusterid field is set to cvm2 (the name of the cluster), and the
flags field includes an entry for shared. The imported flag is only set if a node
is a part of the cluster and the disk group is imported.

Listing shared disk groups
vxdg can be used to list information about shared disk groups. To display
information for all disk groups, use the following command:

# vxdg list

Example output from this command is displayed here:

NAME STATE ID

group2 enabled,shared 774575420.1170.teal

group1 enabled,shared 774222028.1090.teal

Shared disk groups are designated with the flag shared.

To display information for shared disk groups only, use the following command:

Administering cluster functionality
Administering VxVM in cluster environments

516



# vxdg -s list

Example output from this command is as follows:

NAME STATE ID

group2 enabled,shared 774575420.1170.teal

group1 enabled,shared 774222028.1090.teal

To display information about one specific disk group, use the following command:

# vxdg list diskgroup

The following is example output for the command vxdg list tempdg on the
master:

Group: tempdg

dgid: 1245902808.74.ts4200-04

import-id: 33792.73

flags: shared cds

version: 150

alignment: 8192 (bytes)

local-activation: shared-write

cluster-actv-modes: ts4200-04=sw ts4200-06=sw ts4200-05=sw

ssb: on

autotagging: on

detach-policy: global

dg-fail-policy: dgdisable

copies: nconfig=default nlog=default

config: seqno=0.1027 permlen=0 free=0 templen=0 loglen=0

Note that the flags field is set to shared. The output for the same command when
run on a slave is slightly different. The local-activation and
cluster-actv-modes fields display the activation mode for this node and for each
node in the cluster respectively. The detach-policy and dg-fail-policy fields
indicate how the cluster behaves in the event of loss of connectivity to the disks,
and to the configuration and log copies on the disks.

Creating a shared disk group
The command to create shared disk groups can only be run from the master node.

If the cluster software has been run to set up the cluster, a shared disk group can
be created using the following command:

# vxdg -s init diskgroup [diskname=]devicenames

517Administering cluster functionality
Administering VxVM in cluster environments



where diskgroup is the disk group name, diskname is the administrative name
chosen for a VM disk, and devicename is the device name (or disk access name).

Warning: The operating system cannot tell if a disk is shared. To protect data
integrity when dealing with disks that can be accessed by multiple systems, use
the correct designation when adding a disk to a disk group. VxVM allows you to
add a disk that is not physically shared to a shared disk group if the node where
the disk is accessible is the only node in the cluster. However, this means that
other nodes cannot join the cluster. Furthermore, if you attempt to add the same
disk to different disk groups (private or shared) on two nodes at the same time,
the results are undefined. Perform all configuration on one node only, and
preferably on the master node.

Importing disk groups as shared
The command to import shared disk groups can only be run from the master node.

Disk groups can be imported as shared using the vxdg -s import command. If
the disk groups are set up before the cluster software is run, the disk groups can
be imported into the cluster arrangement using the following command:

# vxdg -s import diskgroup

where diskgroup is the disk group name or ID. On subsequent cluster restarts, the
disk group is automatically imported as shared. Note that it can be necessary to
deport the disk group (using the vxdg deport diskgroup command) before
invoking the vxdg utility.

Forcibly importing a disk group
You can use the -f option to the vxdg command to import a disk group forcibly.

Warning: The force option(-f) must be used with caution and only if you are fully
aware of the consequences such as possible data corruption.

When a cluster is restarted, VxVM can refuse to auto-import a disk group for one
of the following reasons:

■ A disk in the disk group is no longer accessible because of hardware errors on
the disk. In this case, use the following command to forcibly reimport the disk
group:

# vxdg -s -f import diskgroup

Administering cluster functionality
Administering VxVM in cluster environments

518



Note: After a forced import, the data on the volumes may not be available and
some of the volumes may be in the disabled state.

■ Some of the disks in the shared disk group are not accessible, so the disk group
cannot access all of its disks. In this case, a forced import is unsafe and must
not be attempted because it can result in inconsistent mirrors.

Converting a disk group from shared to private
The command to convert shared disk groups can only be run from the master
node.

To convert a shared disk group to a private disk group, first deport it on the master
node using this command:

# vxdg deport diskgroup

Then reimport the disk group on any cluster node using this command:

# vxdg import diskgroup

Moving objects between shared disk groups
The command to move objects between shared disk groups can only be run from
the master node. You cannot move objects between private and shared disk groups.

You can use the vxdg move command to move a self-contained set of VxVM objects
such as disks and top-level volumes between disk groups. In a cluster, you can
move such objects between private disk groups on any cluster node where those
disk groups are imported.

See “Moving objects between disk groups” on page 263.

Splitting shared disk groups
You can use the vxdg split command to remove a self-contained set of VxVM
objects from an imported disk group, and move them to a newly created disk
group.

See “Splitting disk groups” on page 266.

Splitting a private disk group creates a private disk group, and splitting a shared
disk group creates a shared disk group. You can split a private disk group on any
cluster node where that disk group is imported. The command to split a shared
disk group or create a shared target disk group can only be run from the master
node.

See “Moving objects between disk groups” on page 263.

519Administering cluster functionality
Administering VxVM in cluster environments



Joining shared disk groups
You cannot join a private disk group and a shared disk group.

You can use the vxdg join command to merge the contents of two imported disk
groups. In a cluster, you can join two private disk groups on any cluster node
where those disk groups are imported.

If the source disk group and the target disk group are both shared, you must run
the command to perform the join from the master node.

See “Joining disk groups” on page 267.

Changing the activation mode on a shared disk group
The activation mode for access by a cluster node to a shared disk group is set
directly on that node.

The activation mode of a shared disk group can be changed using the following
command:

# vxdg -g diskgroup set activation=mode

The activation mode is one of exclusivewrite or ew, readonly or ro, sharedread
or sr, sharedwrite or sw, or off.

If you use this command to change the activation mode of a shared disk group,
you must first change the activation mode to off before setting it to any other
value, as shown here:

# vxdg -g myshdg set activation=off

# vxdg -g myshdg set activation=readonly

See “Activation modes of shared disk groups” on page 493.

Setting the disk detach policy on a shared disk group
The disk detach policy for a shared disk group can only be set from the master
node.

The vxdg command may be used to set either the global or local disk detach
policy for a shared disk group:

# vxdg -g diskgroup set diskdetpolicy=global|local

The default disk detach policy is global.

See “Connectivity policy of shared disk groups” on page 495.

Administering cluster functionality
Administering VxVM in cluster environments

520



Setting the disk group failure policy on a shared disk group
The disk group failure policy for a shared disk group can only be set from the
master node.

The vxdg command may be used to set either the dgdisable or leave failure policy
for a shared disk group:

# vxdg -g diskgroup set dgfailpolicy=dgdisable|leave

The default failure policy is dgdisable.

See “Disk group failure policy” on page 499.

Creating volumes with exclusive open access by a node
All shared volumes, including those with exclusive open access, can only be created
from the master node.

When using the vxassist command to create a volume, you can use the
exclusive=on attribute to specify that the volume may only be opened by one
node in the cluster at a time. For example, to create the mirrored volume volmir
in the disk group dskgrp, and configure it for exclusive open, use the following
command:

# vxassist -g dskgrp make volmir 5g layout=mirror exclusive=on

Multiple opens by the same node are also supported. Any attempts by other nodes
to open the volume fail until the final close of the volume by the node that opened
it.

Specifying exclusive=off instead means that more than one node in a cluster
can open a volume simultaneously. This is the default behavior.

Setting exclusive open access to a volume by a node
Exclusive open access on a volume can only be set from the master node. Ensure
that none of the nodes in the cluster have the volume open when setting this
attribute.

You can set the exclusive=on attribute with the vxvol command to specify that
an existing volume may only be opened by one node in the cluster at a time.

For example, to set exclusive open on the volume volmir in the disk group dskgrp,
use the following command:

# vxvol -g dskgrp set exclusive=on volmir

521Administering cluster functionality
Administering VxVM in cluster environments



Multiple opens by the same node are also supported. Any attempts by other nodes
to open the volume fail until the final close of the volume by the node that opened
it.

Specifying exclusive=off instead means that more than one node in a cluster
can open a volume simultaneously. This is the default behavior.

Displaying the cluster protocol version
The following command displays the cluster protocol version running on a node:

# vxdctl list

This command produces output similar to the following:

Volboot file

version: 3/1

seqno: 0.19

cluster protocol version: 90

hostid: giga

entries:

You can also check the existing cluster protocol version using the following
command:

# vxdctl protocolversion

This produces output similar to the following:

Cluster running at protocol 90

Displaying the supported cluster protocol version range
The following command displays the maximum and minimum protocol version
supported by the node and the current protocol version:

# vxdctl support

This command produces out put similar to the following:

Support information:

vxconfigd_vrsn: 31

dg_minimum: 20

dg_maximum: 150

kernel: 31

protocol_minimum: 90

Administering cluster functionality
Administering VxVM in cluster environments

522



protocol_maximum: 90

protocol_current: 90

You can also use the following command to display the maximum and minimum
cluster protocol version supported by the current Veritas Volume Manager release:

# vxdctl protocolrange

This produces output similar to the following:

minprotoversion: 90, maxprotoversion: 90

Upgrading the cluster protocol version
The cluster protocol version can only be updated from the master node.

After all the nodes in the cluster have been updated to support the new cluster
protocol version, you can upgrade the entire cluster using the following command
on the master node:

# vxdctl upgrade

Recovering volumes in shared disk groups
The command to recover volumes can only be run from the master node.

Thevxrecoverutility is used to recover plexes and volumes after disk replacement.
When a node leaves a cluster, it can leave some mirrors in an inconsistent state.
The vxrecover utility can be used to recover such volumes. The -c option to
vxrecover causes it to recover all volumes in shared disk groups. The vxconfigd
daemon automatically calls the vxrecover utility with the -c option when
necessary.

Warning: While the vxrecover utility is active, there can be some degradation in
system performance.

Obtaining cluster performance statistics
The vxstatutility returns statistics for specified objects. In a cluster environment,
vxstat gathers statistics from all of the nodes in the cluster. The statistics give
the total usage, by all nodes, for the requested objects. If a local object is specified,
its local usage is returned.

You can optionally specify a subset of nodes using the following form of the
command:

523Administering cluster functionality
Administering VxVM in cluster environments



# vxstat -g diskgroup -n node[,node...]

where node is the CVM node ID number. You can find out the CVM node ID by
using the following command:

# vxclustadm nidmap

If a comma-separated list of nodes is supplied, the vxstat utility displays the sum
of the statistics for the nodes in the list.

For example, to obtain statistics for node 2, volume vol1,use the following
command:

# vxstat -g group1 -n 2 vol1

This command produces output similar to the following:

OPERATIONS BLOCKS AVG TIME(ms)

TYP NAME READ WRITE READ WRITE READ WRITE

vol vol1 2421 0 600000 0 99.0 0.0

To obtain and display statistics for the entire cluster, use the following command:

# vxstat -b

The statistics for all nodes are summed. For example, if node 1 performed 100 I/O
operations and node 2 performed 200 I/O operations, vxstat -b displays a total
of 300 I/O operations.

Administering cluster functionality
Administering VxVM in cluster environments

524



Administering sites and
remote mirrors

This chapter includes the following topics:

■ About sites and remote mirrors

■ Making an existing disk group site consistent

■ Configuring a new disk group as a Remote Mirror configuration

■ Fire drill — testing the configuration

■ Changing the site name

■ Administering the Remote Mirror configuration

■ Examples of storage allocation by specifying sites

■ Displaying site information

■ Failure and recovery scenarios

About sites and remote mirrors
In a Remote Mirror configuration (also known as a campus cluster or stretch
cluster) the hosts and storage of a cluster that would usually be located in one
place, are instead divided between two or more sites. These sites are typically
connected via a redundant high-capacity network that provides access to storage
and private link communication between the cluster nodes.

Figure 14-1 shows a typical two-site remote mirror configuration.

14Chapter



Figure 14-1 Example of a two-site remote mirror configuration

Cluster
nodes

Fibre Channel
hub or switch Fibre Channel

hub or switch

Disk enclosures Disk enclosures

Site A
Private network

Site B

Metropolitan or
wide area

network link
(Fibre Channel

or DWDM)

Cluster
nodes

If a disk group is configured across the storage at the sites, and inter-site
communication is disrupted, there is a possibility of a serial split brain condition
arising if each site continues to update the local disk group configuration copies.

See “Handling conflicting configuration copies” on page 250.

VxVM provides mechanisms for dealing with the serial split brain condition,
monitoring the health of a remote mirror, and testing the robustness of the cluster
against various types of failure (also known as fire drill).

For applications and services to function correctly at a site when other sites have
become inaccessible, at least one complete plex of each volume must be configured
at each site (site-based allocation), and the consistency of the data in the plexes
at each site must be ensured (site consistency).

By tagging disks with site names, storage can be allocated from the correct location
when creating, resizing or relocating a volume, and when changing a volume’s
layout.

Figure 14-2 shows an example of a site-consistent volume with two plexes
configured at each of two sites.

Administering sites and remote mirrors
About sites and remote mirrors

526



Figure 14-2 Site-consistent volume with two plexes at each of two sites

Site A Site B

Disk group

Volume V

Plex
P1

Plex P2 Plex P3
Plex
P4

The storage for plexes P1 and P2 is allocated storage that is tagged as belonging
to site A, and the storage for plexes P3 and P4 is allocated storage that is tagged
as belonging to site B.

Although not shown in this figure, DCO log volumes are also mirrored across the
sites, and disk group configuration copies are distributed across the sites.

Site consistency means that the data in the plexes for a volume must be consistent
at each site. The site consistency of a volume is ensured by detaching a site when
its last complete plex fails at that site. If a site fails, all its plexes are detached and
the site is said to be detached. If site consistency is not on, only the plex that fails
is detached. The remaining volumes and their plexes on that site are not detached.

To enhance read performance, VxVM will service reads from the plexes at the
local site where an application is running if the siteread read policy is set on a
volume. Writes are written to plexes at all sites.

Figure 14-3 shows a configuration with remote storage only that is also supported.

527Administering sites and remote mirrors
About sites and remote mirrors



Figure 14-3 Example of a two-site configuration with remote storage only

Cluster or
standalone
system

Fibre
Channel

hub or
switch Fibre Channel

hub or switch

Disk enclosures Disk enclosures

Site A

Metropolitan
or wide area
network link

(Fibre Channel
or DWDM)

Site B

About site-based allocation
Site-based allocation policies are enforced by default in a site-configured disk
group. Site-based allocation requires that each volume has at least one plex at
each site that is configured in the disk group. When a new volume is created in a
site-configured disk group, the allsites attribute set to on, by default. The
allsites attribute indicates that the volume must have at least one plex on each
configured site in the disk group. For new volumes, the read policy is set to
siteread by default.

If mirroring across sites is not required, or is not possible (as is the case for RAID-5
volumes), specify the allsites=off attribute to the vxassist command. If sites
are configured in the disk group, a plex will always be confined to a site and will
not span across sites. This enforcement cannot be overridden.

Before adding a new site to a disk group, be sure to meet the following
requirements:

■ Disks from the site being added (site tagged) are present or added to the disk
group.

■ Each existing volume with allsites set in the disk group must have at least
one plex at the site being added. If this condition is not met, the command to

Administering sites and remote mirrors
About sites and remote mirrors

528



add the site to the disk group fails. If the -f option is specified, the command
does not fail, but instead it sets the allsites attribute for the volume to off.

Note: By default, volumes created will be mirrored when sites are configured in
a disk group. Initial synchronization occurs between mirrors. Depending on the
size of the volume, synchronization may take a long time. If you do not need to
perform an initial synchronization across mirrors, use init=active with the
vxassist command.

About site consistency
Site consistency means that at any point in time, the data at each site is consistent
with the application for a given set of volumes. A site-consistent volume must
have at least one plex, or mirror, on each configured site in the disk group. The
site consistency is ensured by detaching a site when a site-consistent volume loses
its last complete plex on that site. The site detach detaches all the plexes on that
site and also disallows further configuration updates to the configuration copies
on that site. Turn on this behavior by setting the siteconsistent attribute to on

on the desired volumes.

If you set the siteconsistent attribute to off, only the plex that fails is detached.
The plexes for the remaining volumes on that site are not detached.

The siteconsistent attribute is also present at the disk group level and can be
used to turn on or off the site consistency functionality in the disk group boundary.
In addition, if you turn on the siteconsistent attribute for a disk group, each
new volume created in the disk group inherits the site consistency of the disk
group, by default. Setting the siteconsistent attribute on a disk group does not
affect siteconsistent attributes for existing volumes. You can also control the
site consistency on individual volumes.

By default, a volume inherits the value that is set on its disk group.

By default, creating a site-consistent volume also creates an associated version
20 DCO volume, and enables Persistent FastResync on the volume. This allows
faster recovery of the volume during the reattachment of a site.

Before setting site consistency on a disk group, be sure to meet the following
requirements:

■ A license enabling the Site Awareness feature must be installed on all the hosts
in the Remote Mirror configuration.

■ At least two sites must be configured in the disk group before site consistency
is turned on.

529Administering sites and remote mirrors
About sites and remote mirrors



■ All the disks in a disk group must be registered to one of the sites before you
can set the siteconsistent attribute on the disk group.

About site tags
In a Remote Mirror configuration, each storage device in the disk group must be
tagged with site information. The site tag indicates to which site the device is
associated. VxVM provides a facility to tag VxVM-initialized disks with an arbitrary
name-value pair. The tag name site is reserved by VxVM and is used to identify
the site information of tagged disks. The command vxdisk settag can be used
to tag multiple disks or all disks from an enclosure or disks from multiple
enclosures. The tagging can be restricted to disks in a disk group by specifying
the disk group with the command.

You can use automatic site tagging to assign site tags to disks when adding them
to a disk group. When automatic site tagging is on, newly added disks or LUNs
inherit the site tag from the site-enclosure mapping stored in the disk group. To
use automatic site tagging, turn on automatic site tagging for a disk group, and
then assign the site names to the enclosures in the disk group. Any disks or LUNs
in that disk group inherit the tag from the enclosure to which they belong.

About the site read policy
To enhance read performance, VxVM will service reads from the plexes at the
local site where an application is running, if the siteread read policy is set on a
volume. Writes are written to plexes at all sites. By tagging hosts with site
information, VxVM identifies which hosts belong to which site. Reads initiated
by a host from one site are then satisfied by disks which are tagged with the same
site. Tagging hosts and disks with correct site information gives you maximum
read performance when siteread read policy is used.

If a license enabling the Site Awareness feature is installed on all the hosts in the
Remote Mirror configuration, the disk group is configured for site consistency
with several sites enabled, and the allsites=on attribute is specified for a volume,
the default read policy is siteread.

If the siteread policy is not set, use the following command to set the read policy
to siteread policy on a volume:

# vxvol [-g diskgroup] rdpol siteread volume

This command has no effect if a site name has not been set for the host.

See “Changing the read policy for mirrored volumes” on page 371.

Administering sites and remote mirrors
About sites and remote mirrors

530



Making an existing disk group site consistent
The site consistency feature requires that a license enabling the site awareness
feature has been installed on all hosts at all sites that participate in the
configuration.

To make an existing disk group site consistent

1 Ensure that the disk group is updated to at least version 140, by running the
vxdg upgrade command on it:

# vxdg upgrade diskgroup

2 On each host that can access the disk group, define the site name:

# vxdctl set site=sitename

3 Tag all the disks in the disk group with the appropriate site name:

# vxdisk [-g diskgroup] settag site=sitename disk1 disk2

Or, to tag all the disks in a specified enclosure, use the following command:

# vxdisk [-g diskgroup] settag site=sitename

encl:encl_name

4 Use the vxdg move command to move any unsupported RAID-5 volumes to
another disk group. Alternatively, use the vxassist convert commands to
convert the volumes to a supported layout such as mirror or mirror-stripe.
You can use the site and mirror=site storage allocation attribute to ensure
that the plexes are created on the correct storage.

5 Use the vxevac command to ensure that the volumes have at least one plex
at each site. You can use thesite andmirror=site storage allocation attribute
to ensure that the plexes are created on the correct storage.

6 Register a site record for each site with the disk group:

# vxdg -g diskgroup addsite sitename

7 Turn on site consistency for the disk group:

# vxdg -g diskgroup set siteconsistent=on

531Administering sites and remote mirrors
Making an existing disk group site consistent



8 Turn on the allsites flag for the volume which requires data replication to
each site:

# vxvol [-g diskgroup] set allsites=on volume

9 Turn on site consistency for each existing volume in the disk group for which
siteconsistency is needed. You also need to attach DCOv20 if it is not attached
already. DCOv20 is required to ensure that site detach and reattach are
instantaneous.

See “Preparing a volume for DRL and instant snapshots” on page 360.

# vxvol [-g diskgroup] set siteconsistent=on volume ...

Configuring a new disk group as a Remote Mirror
configuration

Note: The Remote Mirror feature requires that a license enabling the Site
Awareness feature has been installed on all hosts at all sites that participate in
the configuration.

This section describes setting up a new disk group. To configure an existing disk
group as a Remote Mirror configuration, additional steps may be required.

Setting up a new disk group for a Remote Mirror configuration

1 Define the site name for each host that can access the disk group.

# vxdctl set site=sitename

The name that has been assigned to a site is stored in the /etc/vx/volboot

file.

2 Create the disk group with storage from each site.

3 Register a site record to the disk group, for each site.

# vxdg -g diskgroup [-f] addsite sitename

4 Do one of the following:

■ To tag all disks regardless of the disk group, do the following:
Assign a site name to the disks or enclosures. You can set site tags at the
disk level, or at the enclosure level. If you specify one or more enclosures,

Administering sites and remote mirrors
Configuring a new disk group as a Remote Mirror configuration

532



the site tag applies to the disks in that enclosure that are within the disk
group. Enter the following command:

# vxdisk [-g diskgroup] settag site=sitename \

disk disk1... |encl:encl_name encl:encl_name1...

where the disks can be specified either by the disk access name or the disk
media name.

■ To autotag new disks added to the disk group based on the enclosure to
which they belong, perform the following steps in the order presented.
These steps are limited to disks in a single group.

■ Set the autotagging policy to on for the disk group, if required.
Automatic tagging is the default setting, so this step is only required
if the autotagging policy was previously disabled. To turn on
autotagging, enter the following command:

# vxdg [-g diskgroup] set autotagging=on

■ Add site-enclosure mapping information to the diskgroup for each
site-enclosure combination. Enter the following command:

# vxdg [-g diskgroup] settag encl:encl_name1 site=sitename1

As a result of this command, all disks of enclosure encl_name1 in the
specified disk group are tagged with site information.

5 Turn on the site consistency requirement for a disk group:

# vxdg -g diskgroup set siteconsistent=on

Fire drill— testing the configuration

Warning: To avoid potential loss of service or data, it is recommended that you do
not use these procedures on a live system.

After validating the consistency of the volumes and disk groups at your sites, you
should validate the procedures that you will use in the event of the various possible
types of failure. A fire drill lets you test that a site can be brought up cleanly during
recovery from a disaster scenario such as site failure.

533Administering sites and remote mirrors
Fire drill— testing the configuration



Simulating site failure
To simulate the failure of a site, use the following command to detach all the
devices at a specified site:

# vxdg -g diskgroup [-f] detachsite sitename

The -f option must be specified if any plexes configured on storage at the site are
currently online.

After the site is detached, the application should run correctly on the available
site. This step verifies that the primary site is fine. Continue the fire drill by
verifying the secondary site.

Verifying the secondary site
After detaching the site from primary site, verify whether the application starts
correctly on a secondary site. The fire drill ensures that the application can run
on the secondary if disaster strikes the primary site. These procedures assume
that the application is running correctly before the fire drill operation begins.

To verify the secondary site, import the detached site on a different host using
the following command:

# vxdg -o site=sitename import dgname

Then start the application. If the application runs correctly on the secondary site,
this step verifies the integrity of the secondary site.

Recovery from simulated site failure
After verifying the data on the secondary for a simulated site failure, deport the
disk group from the secondary site. Then reattach the site back to the primary
host.

Use the following commands to reattach a site and recover the disk group:

# vxdg -g diskgroup [-o overridessb] reattachsite sitename

# vxrecover -g diskgroup

It may be necessary to specify the -o overridessb option if a serial split-brain
condition is indicated.

Administering sites and remote mirrors
Fire drill— testing the configuration

534



Changing the site name
You can change the site name, or tag, that is used to identify each site in a Remote
Mirror configuration. Renaming the site changes the site record in the disk group.
The site name is also changed for all of the disks and enclosures that are tagged
with the existing site name.

After you rename a site, you need to explicitly change the site name for each host
that belongs to that site.

To rename the site

◆ Specify the new site name as follows:

# vxdg [-g diskgroup] renamesite old_sitename new_sitename

Resetting the site name for a host
If you rename a site, you need to explicitly set each host to refer to the new site
name.

To reset a site name for a host

1 Remove the site name from a host:

# vxdctl [-F] unset site

The -F option is required if any imported disk groups are registered to the
site.

2 Set the new site name for the host.

# vxdctl set site=sitename

The name that has been assigned to a site is stored in the /etc/vx/volboot

file.

Administering the Remote Mirror configuration
After the Remote Mirror site is configured, refer to the following sections for
additional tasks to maintain the configuration.

Configuring site tagging for disks or enclosures
To set up a Remote Mirror configuration, specify to which site each storage device
in the disk group belongs. Assign a site tag to one or more disks or enclosures. If

535Administering sites and remote mirrors
Changing the site name



the disk or enclosure does not belong to a disk group, you must use this method
to assign a site tag.

To tag disks or enclosures with a site name

◆ Assign a site name to one or more disks or enclosures, using the following
command:

# vxdisk [-g diskgroup] settag site=sitename \

disk disk1...|encl:encl_name encl:encl_name1...

where the disks can be specified either by the disk access name or the disk
media name.

To display the disks or enclosures registered to a site

◆ To check which disks or enclosures are registered to a site, use the following
command:

# vxdisk [-g diskgroup] listtag

To remove the site tag from a disk or enclosure

◆ To remove the site tag from a disk or enclosure, use the following command:

# vxdisk rmtag site=sitename \

disk disk1...|encl:encl_name encl:encl_name1...

Configuring automatic site tagging for a disk group
Configure automatic site tagging if you want disks or LUNs to inherit the tag from
the enclosure. After you turn on automatic site tagging for a disk group, assign
the site names to the enclosures in the disk group. Any disks or LUNs added to
that disk group inherit the tag from the enclosure to which they belong.

To configure automatic site tagging for a disk group

1 Set the autotagging policy to on for the disk group. Automatic tagging is the
default setting, so this step is only required if the autotagging policy was
previously disabled.

To turn on autotagging, use the following command:

# vxdg [-g diskgroup] set autotagging=on

2 Assign the site name to an enclosure within the disk group, using the following
command:

# vxdg [-g diskgroup] settag encl:encl_name site=sitename

Administering sites and remote mirrors
Administering the Remote Mirror configuration

536



To list the site tags for a disk group

◆ To list the site tags for a disk group, use the following command:

# vxdg [-g diskgroup] listtag site=sitename

To remove a site tag from an enclosure or a disk group

◆ To remove a site tag from a disk group, use the following command:

# vxdg [-g diskgroup] rmtag [encl:encl_name] site=sitename

Configuring site consistency on a volume
To set the site consistency requirement when creating a volume, specify the
siteconsistent attribute to the vxassist make command, for example:

# vxassist [-g diskgroup] make volume size \

nmirror=4 siteconsistent={on|off}

By default, a volume inherits the value that is set on its disk group.

By default, creating a site-consistent volume also creates an associated version
20 DCO volume, and enables Persistent FastResync on the volume. This allows
faster recovery of the volume during the reattachment of a site.

To turn on the site consistency requirement for an existing volume, use the
following form of the vxvol command:

# vxvol [-g diskgroup] set siteconsistent=on volume

To turn off the site consistency requirement for a volume, use the following
command:

# vxvol [-g diskgroup] set siteconsistent=off volume

The siteconsistent attribute and the allsites attribute must be set to off for
RAID-5 volumes in a site-consistent disk group.

Examples of storage allocation by specifying sites
Table 14-1 shows examples of how to use sites with the vxassist command to
allocate storage. These examples assume that the disk group, ccdg, has been
enabled for site consistency with disks configured at two sites, site1 and site2.
Also, ccdg01, ccdg02, and ccdg03 are dm names of disks tagged with site site1.
ccdg09, ccdg10, and ccdg11 are dm names of disks tagged with site site2.

537Administering sites and remote mirrors
Examples of storage allocation by specifying sites



Table 14-1 Examples of storage allocation by specifying sites

DescriptionCommand

Create a volume with one mirror at
each site. The nmirror keyword is
optional. If the nmirror keyword is
specified, it must equal the number
of sites.

# vxassist -g ccdg make vol 2g \
nmirror=2

Create a mirrored-stripe volume
specifying allocation order to validate
redundancy across the sites. The
named disks must be tagged with the
appropriate site name, and there
must be sufficient disks at each site
to create the volume.

# vxassist -g ccdg -o ordered \
make vol 2g \
layout=mirror-stripe ncol=3 \
ccdg01 ccdg02 ccdg03 ccdg09 \
ccdg10 ccdg11

Create a volume with one mirror on
each of the named disks. The named
disks must be tagged with the
appropriate site name, and there
must be sufficient disks at each site
to create the volume.

# vxassist -g ccdg make vol 2g \
nmirror=2 ccdg01 ccdg09

Create a mirrored volume that is not
site consistent. Both mirrors can be
allocated from any available storage
in the disk group, but the storage for
each mirror is confined to a single
site.

# vxassist -g ccdg make vol 2g \
nmirror=2 siteconsistent=off \
allsites=off

Create a mirrored volume that is not
site consistent. Both mirrors are
allocated from any available storage
in the disk group that is tagged as
belonging to site2.

# vxassist -g ccdg make vol 2g \
nmirror=2 site:site2 \
siteconsistent=off \
allsites=off

Create a mirrored volume that is not
site consistent. Both mirrors are
allocated from any available storage
in the disk group that is tagged as not
belonging to site1.

Note: The ! character is a special
character in some shells. This
example shows how to escape it in a
bash shell.

# vxassist -g ccdg make vol 2g \
nmirror=2 \!site:site1 \
siteconsistent=off \
allsites=off

Administering sites and remote mirrors
Examples of storage allocation by specifying sites

538



Table 14-1 Examples of storage allocation by specifying sites (continued)

DescriptionCommand

Add a mirror at a specified site. The
command fails if there is insufficient
storage available at the site. This
command does not affect the
allsites or siteconsistent of a
volume.

# vxassist -g ccdg mirror vol \
site:site1

Remove a mirror from a volume at a
specified site. If the volume has the
allsites attribute set to on, the
command fails if this would remove
the last remaining plex at a site.

# vxassist -g ccdg remove \
mirror vol site:site1

Grow a volume. Each mirror of a
volume is grown using the same site
storage to which it belongs. If there
is not enough storage to grow a
mirror on each site, the command
fails.

# vxassist -g ccdg growto vol \
4g

Displaying site information
To display the site name for a host

◆ To determine to which site a host belongs, use the following command on the
host:

# vxdctl list | grep siteid

siteid: building1

To display the disks or enclosures registered to a site

◆ To check which disks or enclosures are registered to a site, use the following
command:

# vxdisk [-g diskgroup] listtag

To display the setting for automatic site tagging for a disk group

◆ To determine whether automatic site tagging is on for a disk group, use the
following command:

# vxprint -g diskgroup -F"%autotagging" diskgroup

539Administering sites and remote mirrors
Displaying site information



To verify whether site consistency has been enabled for a disk group

◆ To verify whether site consistency has been enabled for a disk group, use the
following command:

# vxdg list diskgroup | grep siteconsistent

flags: siteconsistent

To verify whether site consistency has been enabled for a volume

◆ To verify whether site consistency has been enabled for a volume, use the
following command:

# vxprint -g diskgroup -F"%siteconsistent" vol

To identify which site a plex or mirror is allocated from

◆ To identify which site a plex or mirror is allocated from, use the following
command:

# vxprint -g diskgroup -F"%site" plex

To list the site tags for a disk group

◆ To list the site tags for a disk group, use the following command:

# vxdg [-g diskgroup] listtag site=sitename

Failure and recovery scenarios
Table 14-2 lists the possible failure scenarios and recovery procedures for the
Remote Mirror feature.

Table 14-2 Failure scenarios and recovery procedures

Recovery procedureFailure scenario

See “Recovering from a loss of site connectivity” on page 541.Disruption of network link
between sites.

See “Recovering from host failure” on page 541.Failure of hosts at a site.

See “Recovering from storage failure” on page 541.Failure of storage at a site.

See “Recovering from site failure” on page 542.Failure of both hosts and
storage at a site.

Administering sites and remote mirrors
Failure and recovery scenarios

540



Recovering from a loss of site connectivity

Warning: To avoid a potential loss of data, it is recommended that you configure
Veritas Cluster Server to handle network split-brain.

If the network links between the sites are disrupted, the application environments
may continue to run in parallel, and this may lead to inconsistencies between the
disk group configuration copies at the sites. If the parallel instances of an
application issue writes to volumes, an unrecoverable data loss may occur and
manual intervention is needed. To avoid data loss, it is recommended that you
configure the VCS fencing mechanism to handle network split-brain situations.
When connectivity between the sites is restored, a serial split-brain condition will
be detected between the sites. One site must be chosen as having the preferred
version of the data and the disk group configuration copies. The data from the
chosen site is resynchronized to other the site. If new writes are issued to volumes
after the network split, they are overwritten with the data from the chosen site.
The configuration copies at the other sites are updated from the copies at the
chosen site.

At the chosen site, use the following commands to reattach a site and recover the
disk group:

# vxdg -g diskgroup -o overridessb reattachsite sitename

# vxrecover -g diskgroup

In the case that the host systems are configured at a single site with only storage
at the remote sites, the usual resynchronization mechanism of VxVM is used to
recover the remote plexes when the storage comes back on line.

See “Handling conflicting configuration copies” on page 250.

Recovering from host failure
If one or more cluster nodes fail at a site, but the storage remains online, this is
handled either by VCS failover in the case of the Storage Foundation HA product,
or by node takeover in the case that the node was the master for a shared disk
group as supported by the Storage Foundation Cluster File System software.

Recovering from storage failure
If storage fails at a site, the plexes that are configured on that storage are detached
locally if a site-consistent volume still has other mirrors available at the site. The
hot-relocation feature of VxVM will attempt to recreate the failed plexes on other
available storage in the disk group. If no plexes of a site-consistent volume remain

541Administering sites and remote mirrors
Failure and recovery scenarios



in operation at a site, and hot-relocation cannot recreate the plexes at that site,
the site is detached. Because site connectivity has not been lost, applications
running on hosts at the site can still access data at the other sites.

When the storage comes back online, the vxattachd reattaches the site
automatically.

See “Automatic site reattachment” on page 542.

If the vxattachd is not running, use the following commands to reattach a site
and recover the disk group:

# vxdg -g diskgroup reattachsite sitename

# vxrecover -g diskgroup

For more information about recovering a disk group, refer to the Veritas Volume
Manager Troubleshooting Guide.

Recovering from site failure
If all the hosts and storage fail at a site, use the following commands to reattach
the site after it comes back online, and to recover the disk group:

# vxdg -g diskgroup [-o overridessb] reattachsite sitename

# vxrecover -g diskgroup

The -o overridessb option is only required if a serial split-brain condition is
indicated. A serial split-brain condition may happen if the site was brought back
up while the private network link was inoperative. This option updates the
configuration database on the reattached site with the consistent copies at the
other sites.

See “Handling conflicting configuration copies” on page 250.

For more information about recovering a disk group, refer to the Veritas Volume
Manager Troubleshooting Guide.

Automatic site reattachment
The automatic site reattachment daemon, vxattachd, provides automatic
reattachment of sites. The vxattachd daemon uses the vxnotify mechanism to
monitor storage coming back online on a site after a previous failure, and to restore
redundancy of mirrors across sites.

If the hot-relocation daemon,vxrelocd, is running,vxattachdattempts to reattach
the site, and allows vxrelocd to try to use the available disks in the disk group to
relocate the failed subdisks. If vxrelocd succeeds in relocating the failed subdisks,

Administering sites and remote mirrors
Failure and recovery scenarios

542



it starts the recovery of the plexes at the site. When all the plexes have been
recovered, the plexes are put into the ACTIVE state, and the state of the site is set
to ACTIVE.

If vxrelocd is not running, vxattachd reattaches a site only when all the disks at
that site become accessible. After reattachment succeeds, vxattachd sets the site
state to ACTIVE, and initiates recovery of the plexes. When all the plexes have
been recovered, the plexes are put into the ACTIVE state.

Note: vxattachd does not try to reattach a site that you have explicitly detached
by using the vxdg detachsite command.

The automatic site reattachment feature is enabled by default. The vxattachd

daemon uses email to notify root of any attempts to reattach sites and to initiate
recovery of plexes at those sites.

To send mail to other users, add the user name to the line that starts vxattachd
in the/lib/svc/method/vxvm-recover startup script and run thesvcadm refresh

vxvm/vxvm-recover command (for Solaris 10 onward), or
/etc/init.d/vxvm-recover and reboot the system (for OS releases before Solaris
10).

If you do not want a site to be recovered automatically, kill the vxattachd daemon,
and prevent it from restarting. If you stop vxattachd, the automatic plex
reattachment also stops. To kill the daemon, run the following command from
the command line:

# ps -afe

Locate the process table entry for vxattachd, and kill it by specifying its process
ID:

# kill -9 PID

If there is no entry in the process table for vxattachd, the automatic site
reattachment feature is disabled.

To prevent the automatic site reattachment feature from being restarted, comment
out the line that starts vxattachd in the /lib/svc/method/vxvm-recover startup
script and run the svcadm refresh vxvm/vxvm-recover command (for Solaris
10 onward), or /etc/init.d/vxvm-recover (for OS releases before Solaris 10).

543Administering sites and remote mirrors
Failure and recovery scenarios



Administering sites and remote mirrors
Failure and recovery scenarios

544



Performance monitoring
and tuning

This chapter includes the following topics:

■ Performance guidelines

■ RAID-5

■ Performance monitoring

■ Tuning VxVM

Performance guidelines
Veritas Volume Manager (VxVM) can improve system performance by optimizing
the layout of data storage on the available hardware. VxVM lets you optimize data
storage performance using the following strategies:

■ Balance the I/O load among the available disk drives.

■ Use striping and mirroring to increase I/O bandwidth to the most frequently
accessed data.

VxVM also provides data redundancy through mirroring and RAID-5, which allows
continuous access to data in the event of disk failure.

Data assignment
When you decide where to locate file systems, you typically try to balance I/O
load among the available disk drives. The effectiveness of this approach is limited.
It is difficult to predict future usage patterns, and you cannot split file systems
across the drives. For example, if a single file system receives the most disk
accesses, moving the file system to another drive also moves the bottleneck.

15Chapter



VxVM can split volumes across multiple drives. This approach gives you a finer
level of granularity when you locate data. After you measure access patterns, you
can adjust your decisions on where to place file systems. You can reconfigure
volumes online without adversely impacting their availability.

Striping
Striping improves access performance by cutting data into slices and storing it
on multiple devices that can be accessed in parallel. Striped plexes improve access
performance for both read and write operations.

After you identify the most heavily-accessed volumes (containing file systems or
databases), you can increase access bandwidth to this data by striping it across
portions of multiple disks.

Figure 15-1 shows an example of a single volume (HotVol) that has been identified
as a data-access bottleneck.

Figure 15-1 Use of striping for optimal data access

Disk 2

HotVol
PL1 SD2

Lightly
used
volume

Disk 1

Another
volume

Coolvolume

Disk 3

HotVol
PL1 SD3

Home
directory
volume

Disk 4

HotVol
PL1 SD4

Less
important
volume

HotVol
PL1 SD1

This volume is striped across four disks. The remaining space on these disks is
free for use by less-heavily used volumes.

Mirroring
Mirroring stores multiple copies of data on a system. When you apply mirroring
properly, data is continuously available. Mirroring also protects against data loss
due to physical media failure. If the system crashes or a disk or other hardware
fails, mirroring improves the chance of data recovery.

In some cases, you can also use mirroring to improve I/O performance. Unlike
striping, the performance gain depends on the ratio of reads to writes in the disk
accesses. If the system workload is primarily write-intensive (for example, greater
than 30 percent writes), mirroring can reduce performance.

Performance monitoring and tuning
Performance guidelines

546



Combining mirroring and striping
When you have multiple I/O streams, you can use mirroring and striping together
to significantly improve performance.

Because parallel I/O streams can operate concurrently on separate devices, striping
provides better throughput. When I/O fits exactly across all stripe units in one
stripe, serial access is optimized.

Because mirroring is generally used to protect against loss of data due to disk
failures, it is often applied to write-intensive workloads. This approach degrades
throughput. In those cases, you can combine mirroring with striping to deliver
high availability and increased throughput.

You can create a mirrored-stripe volume. Stripe half of the available disks to form
one striped data plex, and stripe the remaining disks to form the other striped
data plex in the mirror. This approach is often the best way to configure a set of
disks for optimal performance with reasonable reliability. However, if a disk in
one of the plexes fails, the entire plex is unavailable.

You can also arrange equal numbers of disks into separate mirror volumes.
Afterwards, create a striped plex across these mirror volumes to form a
striped-mirror volume.

See “Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)” on page 45.

If a disk in a mirror fails, it does not take the disks in the other mirrors out of use.
For large volumes or large numbers of disks, a striped-mirror layout is preferred
over a mirrored-stripe layout.

RAID-5
RAID-5 offers many of the advantages of combined mirroring and striping, but
it requires more disk space. RAID-5 read performance is similar to that of striping,
and RAID-5 parity offers redundancy similar to mirroring. The disadvantages of
RAID-5 include relatively slow write performance.

RAID-5 is not usually seen as a way to improve throughput performance. The
exception is when the access patterns of applications show a high ratio of reads
to writes. .

Volume read policies
To help optimize performance for different types of volumes, VxVM lets you set
one of several read policies on data plexes.

See “Changing the read policy for mirrored volumes” on page 371.

547Performance monitoring and tuning
RAID-5



Figure 15-2 shows an example in which the read policy of the mirrored-stripe
volume labeled Hot Vol is set to prefer for the striped plex PL1.

Figure 15-2 Use of mirroring and striping for improved performance

Disk 2

HotVol
PL1 SD2

Lightly used
volume

HotVol
PL1 SD3

Lightly used
volume

HotVol
PL1 SD1

Lightly used
volume

Disk 1 Disk 3 Disk 4

HotVol
PL1 SD4

Lightly used
volume

The prefer policy distributes the load when reading across the otherwise
lightly-used disks in PL1, as opposed to the single disk in plex PL2. (HotVol is an
example of a mirrored-stripe volume in which one data plex is striped and the
other data plex is concatenated.)

To improve performance for read-intensive workloads, you can attach up to 32
data plexes to the same volume. However, this approach is usually an ineffective
use of disk space for the gain in read performance.

Performance monitoring
As a system administrator, you have two sets of priorities for setting priorities
for performance. One set is physical, concerned with hardware such as disks and
controllers. The other set is logical, concerned with managing software and its
operation.

Setting performance priorities
The important physical performance characteristics of disk hardware are the
relative amounts of I/O on each drive, and the concentration of the I/O within a
drive to minimize seek time. Based on monitored results, you can then move the
location of subdisks to balance I/O activity across the disks.

The logical priorities involve software operations and how they are managed.
Based on monitoring, you may choose to change the layout of certain volumes to
improve their performance. You might even choose to reduce overall throughput
to improve the performance of certain critical volumes. Only you can decide what
is important on your system and what trade-offs you need to make.

Performance monitoring and tuning
Performance monitoring

548



Best performance is usually achieved by striping and mirroring all volumes across
a reasonable number of disks and mirroring between controllers, when possible.
This procedure tends to even out the load between all disks, but it can make VxVM
more difficult to administer. For large numbers of disks (hundreds or thousands),
set up disk groups containing 10 disks, where each group is used to create a
striped-mirror volume. This technique provides good performance while easing
the task of administration.

Obtaining performance data
VxVM provides two types of performance information: I/O statistics and I/O
traces. Each of these can help in performance monitoring. You can obtain I/O
statistics using thevxstat command, and I/O traces using thevxtrace command.
A brief discussion of each of these utilities may be found in the following sections.

Tracing volume operations
Use the vxtrace command to trace operations on specified volumes, kernel I/O
object types or devices. The vxtrace command either prints kernel I/O errors or
I/O trace records to the standard output or writes the records to a file in binary
format. Binary trace records written to a file can also be read back and formatted
by vxtrace.

If you do not specify any operands, vxtrace reports either all error trace data or
all I/O trace data on all virtual disk devices. With error trace data, you can select
all accumulated error trace data, wait for new error trace data, or both of these
(this is the default action). Selection can be limited to a specific disk group, to
specific VxVM kernel I/O object types, or to particular named objects or devices.

See the vxtrace(1M) manual page.

Printing volume statistics
Use the vxstat command to access information about activity on volumes, plexes,
subdisks, and disks under VxVM control, and to print summary statistics to the
standard output. These statistics represent VxVM activity from the time the
system initially booted or from the last time the counters were reset to zero. If no
VxVM object name is specified, statistics from all volumes in the configuration
database are reported.

VxVM records the following I/O statistics:

■ count of operations

■ number of blocks transferred (one operation can involve more than one block)

549Performance monitoring and tuning
Performance monitoring



■ average operation time (which reflects the total time through the VxVM
interface and is not suitable for comparison against other statistics programs)

These statistics are recorded for logical I/O including reads, writes, atomic copies,
verified reads, verified writes, plex reads, and plex writes for each volume. As a
result, one write to a two-plex volume results in at least five operations: one for
each plex, one for each subdisk, and one for the volume. Also, one read that spans
two subdisks shows at least four reads—one read for each subdisk, one for the
plex, and one for the volume.

VxVM also maintains other statistical data. For each plex, it records read and
write failures. For volumes, it records corrected read and write failures in addition
to read and write failures.

To reset the statistics information to zero, use the -r option. This can be done for
all objects or for only those objects that are specified. Resetting just prior to an
operation makes it possible to measure the impact of that particular operation.

The following is an example of output produced using the vxstat command:

OPERATIONS BLOCKS AVG TIME(ms)

TYP NAME READ WRITE READ WRITE READ WRITE

vol blop 0 0 0 0 0.0 0.0

vol foobarvol 0 0 0 0 0.0 0.0

vol rootvol 73017 181735 718528 1114227 26.8 27.9

vol swapvol 13197 20252 105569 162009 25.8 397.0

vol testvol 0 0 0 0 0.0 0.0

Additional volume statistics are available for RAID-5 configurations.

See the vxstat(1M) manual page.

Using performance data
When you have gathered performance data, you can use it to determine how to
configure your system to use resources most effectively. The following sections
provide an overview of how you can use this data.

Using I/O statistics
Examination of the I/O statistics can suggest how to reconfigure your system.
You should examine two primary statistics: volume I/O activity and disk I/O
activity.

Before obtaining statistics, reset the counters for all existing statistics using the
vxstat -r command. This eliminates any differences between volumes or disks

Performance monitoring and tuning
Performance monitoring

550



due to volumes being created, and also removes statistics from boot time (which
are not usually of interest).

After resetting the counters, allow the system to run during typical system activity.
Run the application or workload of interest on the system to measure its effect.
When monitoring a system that is used for multiple purposes, try not to exercise
any one application more than usual. When monitoring a time-sharing system
with many users, let statistics accumulate for several hours during the normal
working day.

To display volume statistics, enter the vxstat command with no arguments. The
following is a typical display of volume statistics:

OPERATIONS BLOCKS AVG TIME(ms)

TYP NAME READ WRITE READ WRITE READ WRITE

vol archive 865 807 5722 3809 32.5 24.0

vol home 2980 5287 6504 10550 37.7 221.1

vol local 49477 49230 507892 204975 28.5 33.5

vol rootvol 102906 342664 1085520 1962946 28.1 25.6

vol src 79174 23603 425472 139302 22.4 30.9

vol swapvol 22751 32364 182001 258905 25.3 323.2

Such output helps to identify volumes with an unusually large number of
operations or excessive read or write times.

To display disk statistics, use the vxstat -d command. The following is a typical
display of disk statistics:

OPERATIONS BLOCKS AVG TIME(ms)

TYP NAME READ WRITE READ WRITE READ WRITE

dm mydg01 40473 174045 455898 951379 29.5 35.4

dm mydg02 32668 16873 470337 351351 35.2 102.9

dm mydg03 55249 60043 780779 731979 35.3 61.2

dm mydg04 11909 13745 114508 128605 25.0 30.7

If you need to move the volume namedarchiveonto another disk, use the following
command to identify on which disks it lies:

# vxprint -g mydg -tvh archive

The following is an extract from typical output:

V NAME RVG/VSET/CO KSTATE STATE LENGTH READPOL REFPLEX UTYPE

PL NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WDTH MODE

SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE

v archive - ENABLED ACTIVE 20480 SELECT - fsgen

551Performance monitoring and tuning
Performance monitoring



pl archive-01 archive ENABLED ACTIVE 20480 CONCAT - RW

sd mydg03-03 archive-01 mydg03 0 40960 0 c1t2d0 ENA

The subdisks line (beginning sd) indicates that the volume archive is on disk
mydg03. To move the volume off mydg03, use the following command.

Note: The ! character is a special character in some shells. This example shows
how to escape it in a bach shell.

# vxassist -g mydg move archive \!mydg03 dest_disk

Here dest_disk is the destination disk to which you want to move the volume. It
is not necessary to specify a destination disk. If you do not specify a destination
disk, the volume is moved to an available disk with enough space to contain the
volume.

For example, to move a volume from disk mydg03 to disk mydg04, in the disk group,
mydg, use the following command:

# vxassist -g mydg move archive \!mydg03 mydg04

This command indicates that the volume is to be reorganized so that no part of
it remains on mydg03.

Storage Foundation Manager has a graphical user interface (GUI), which provides
an easier way to move pieces of volumes between disks. You may find that approach
preferable to using the command line.

If two volumes (other than the root volume) on the same disk are busy, move them
so that each is on a different disk.

If one volume is particularly busy (especially if it has unusually large average read
or write times), stripe the volume (or split the volume into multiple pieces, with
each piece on a different disk). If done online, converting a volume to use striping
requires sufficient free space to store an extra copy of the volume. If sufficient
free space is not available, a backup copy can be made instead. To convert a volume,
create a striped plex as a mirror of the volume and then remove the old plex. For
example, the following commands stripe the volume archive across disks mydg02,
mydg03, and mydg04 in the disk group, mydg, and then remove the original plex
archive-01:

# vxassist -g mydg mirror archive layout=stripe mydg02 mydg03 \

mydg04

# vxplex -g mydg -o rm dis archive-01

Performance monitoring and tuning
Performance monitoring

552



After reorganizing any particularly busy volumes, check the disk statistics. If
some volumes have been reorganized, clear statistics first and then accumulate
statistics for a reasonable period of time.

If some disks appear to be excessively busy (or have particularly long read or write
times), you may want to reconfigure some volumes. If there are two relatively
busy volumes on a disk, move them closer together to reduce seek times on the
disk. If there are too many relatively busy volumes on one disk, move them to a
disk that is less busy.

Use I/O tracing (or subdisk statistics) to determine whether volumes have excessive
activity in particular regions of the volume. If the active regions can be identified,
split the subdisks in the volume and move those regions to a less busy disk.

Warning: Striping a volume, or splitting a volume across multiple disks, increases
the chance that a disk failure results in failure of that volume. For example, if five
volumes are striped across the same five disks, then failure of any one of the five
disks requires that all five volumes be restored from a backup. If each volume
were on a separate disk, only one volume would need to be restored. Use mirroring
or RAID-5 to reduce the chance that a single disk failure results in failure of a
large number of volumes.

Note that file systems and databases typically shift their use of allocated space
over time, so this position-specific information on a volume is often not useful.
Databases are reasonable candidates for moving to non-busy disks if the space
used by a particularly busy index or table can be identified.

Examining the ratio of reads to writes helps to identify volumes that can be
mirrored to improve their performance. If the read-to-write ratio is high, mirroring
can increase performance as well as reliability. The ratio of reads to writes where
mirroring can improve performance depends greatly on the disks, the disk
controller, whether multiple controllers can be used, and the speed of the system
bus. If a particularly busy volume has a high ratio of reads to writes, it is likely
that mirroring can significantly improve performance of that volume.

Using I/O tracing
I/O statistics provide the data for basic performance analysis; I/O traces serve for
more detailed analysis. With an I/O trace, focus is narrowed to obtain an event
trace for a specific workload. This helps to explicitly identify the location and size
of a hot spot, as well as which application is causing it.

Using data from I/O traces, real work loads on disks can be simulated and the
results traced. By using these statistics, you can anticipate system limitations and
plan for additional resources.

553Performance monitoring and tuning
Performance monitoring



See “Gathering and displaying I/O statistics” on page 191.

See “Specifying the I/O policy” on page 200.

Tuning VxVM
This section describes how to adjust the tunable parameters that control the
system resources that are used by VxVM. Depending on the system resources that
are available, adjustments may be required to the values of some tunable
parameters to optimize performance.

General tuning guidelines
VxVM is optimally tuned for most configurations ranging from small systems to
larger servers. When you can use tuning to increase performance on larger systems
at the expense of a valuable resource (such as memory), VxVM is generally tuned
to run on the smallest supported configuration. You must perform any tuning
changes with care. Changes may adversely affect overall system performance or
may even leave VxVM unusable.

Various mechanisms exist for tuning VxVM. You can tune many parameters by
editing the file /kernel/drv/vxio.conf to override the default values set by the
vxio driver. Other values can only be tuned using the command line interface to
VxVM.

See “Changing the values of tunables” on page 555.

Tuning guidelines for large systems
On smaller systems (with fewer than a hundred disk drives), tuning is unnecessary.
VxVM can adopt reasonable defaults for all configuration parameters. On larger
systems, configurations can require additional control over the tuning of these
parameters, both for capacity and performance reasons.

Generally, only a few significant decisions must be made when setting up VxVM
on a large system. One is to decide on the size of the disk groups and the number
of configuration copies to maintain for each disk group. Another is to choose the
size of the private region for all the disks in a disk group.

Larger disk groups have the advantage of providing a larger free-space pool for
the vxassist command to select from. They also allow for the creation of larger
volumes. Smaller disk groups do not require as large a configuration database
and so can exist with smaller private regions. Very large disk groups can eventually
exhaust the private region size in the disk group. The result is that no more
configuration objects can be added to that disk group. At that point, the

Performance monitoring and tuning
Tuning VxVM

554



configuration either has to be split into multiple disk groups, or the private regions
have to be enlarged. Each disk in the disk group must be re-initialized. This can
involve reconfiguring everything and restoring from backup.

Number of configuration copies for a disk group
Selection of the number of configuration copies for a disk group is based on a
trade-off between redundancy and performance. As a general rule, reducing the
number of configuration copies in a disk group speeds up initial access of the disk
group, initial startup of the vxconfigd daemon, and transactions that are
performed within the disk group. However, reducing the number of configuration
copies also increases the risk of complete loss of the configuration database, which
results in the loss of all objects in the database and of all data in the disk group.

The default policy for configuration copies in the disk group is to allocate a
configuration copy for each controller identified in the disk group, or for each
target that contains multiple addressable disks. This provides a sufficient degree
of redundancy, but can lead to a large number of configuration copies under some
circumstances. If this is the case, we recommended that you limit the number of
configuration copies to a maximum of 4. Distribute the copies across separate
controllers or targets to enhance the effectiveness of this redundancy.

To set the number of configuration copies for a new disk group, use the nconfig

operand with the vxdg init command.

See the vxdg(1M) manual page for details.

You can also change the number of copies for an existing group by using the
vxedit set command. For example, to configure five configuration copies for
the disk group, bigdg, use the following command:

# vxedit set nconfig=5 bigdg

See the vxedit(1M) manual page.

Changing the values of tunables
Tunables can be modified by editing the file /kernel/drv/vxio.conf for most
VxVM kernel tunables. The system must be shut down and rebooted for the change
to take effect.

Warning: If you modify /kernel/drv/vxio.conf, make a backup copy of the file.

For example, a single entry has been added to the end of the following
/kernel/drv/vxio.conf file to change the value of vol_tunable to 5000:

555Performance monitoring and tuning
Tuning VxVM



name="vxio" parent="pseudo" instance=0 vol_tunable=5000;

Warning: Do not edit the configuration file for the vxspec driver,
/kernel/drv/vxspec.conf.

You can use the prtconf -vP command to display the current values of the
tunables. All VxVM tunables that you specify in /kernel/drv/vxio.conf are
listed in the output under the “System properties.” heading for the vxio drivers.
All unchanged tunables are listed with their default values under the “Driver
properties” heading. The following sample output shows the new value for
vol_tunable in hexadecimal:

# prtconf -vP

.

.

.

vxio, instance #0

System properties:

name <vol_tunable> length <4>

value <0x00001388>

Driver properties:

name <voldrl_max_seq_dirty> length <4>

value <0x00000003>

.

.

.

For more information, see the prtconf(1M) and driver.conf(4) manual pages.

DMP tunables are set online (without requiring a reboot) by using the vxdmpadm

command as shown here:

# vxdmpadm settune dmp_tunable=value

The values of these tunables can be displayed by using this command:

# vxdmpadm gettune [dmp_tunable]

Tunable parameters for VxVM
Table 15-1 lists the kernel tunable parameters for VxVM.

Performance monitoring and tuning
Tuning VxVM

556



Table 15-1 Kernel tunable parameters for VxVM

DescriptionParameter

The interval at which utilities performing recoveries
or resynchronization operations load the current offset
into the kernel as a checkpoint. A system failure during
such operations does not require a full recovery, but
can continue from the last reached checkpoint.

The default value is 20480 sectors (10MB).

Increasing this size reduces the overhead of
checkpoints on recovery operations at the expense of
additional recovery following a system failure during
a recovery.

vol_checkpt_default

The count in clock ticks for which utilities pause if they
have been directed to reduce the frequency of issuing
I/O requests, but have not been given a specific delay
time. This tunable is used by utilities performing
operations such as resynchronizing mirrors or
rebuilding RAID-5 columns.

The default value is 50 ticks.

Increasing this value results in slower recovery
operations and consequently lower system impact
while recoveries are being performed.

vol_default_iodelay

557Performance monitoring and tuning
Tuning VxVM



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The maximum size in kilobytes of the bitmap that
Non-Persistent FastResync uses to track changed
blocks in a volume. The number of blocks in a volume
that are mapped to each bit in the bitmap depends on
the size of the volume, and this value changes if the
size of the volume is changed.

For example, if the volume size is 1 gigabyte and the
system block size is 512 bytes, a value for this tunable
of 4 yields a map that contains 32,768 bits, each bit
representing one region of 64 blocks.

The larger the bitmap size, the fewer the number of
blocks that are mapped to each bit. This can reduce
the amount of reading and writing required on
resynchronization, at the expense of requiring more
non-pageable kernel memory for the bitmap.
Additionally, on clustered systems, a larger bitmap
size increases the latency in I/O performance, and it
also increases the load on the private network between
the cluster members. This is because every other
member of the cluster must be informed each time a
bit in the map is marked.

Since the region size must be the same on all nodes in
a cluster for a shared volume, the value of this tunable
on the master node overrides the tunable values on
the slave nodes, if these values are different. Because
the value of a shared volume can change, the value of
this tunable is retained for the life of the volume.

In configurations which have thousands of mirrors
with attached snapshot plexes, the total memory
overhead can represent a significantly higher overhead
in memory consumption than is usual for VxVM.

The default value is 4KB. The maximum and minimum
permitted values are 1KB and 8KB.

Note: The value of this tunable does not have any
effect on Persistent FastResync.

vol_fmr_logsz

Performance monitoring and tuning
Tuning VxVM

558



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

This is an obsolete tunable parameter. Use
vol_kmsg_resend_period_usecs instead. If
specified in /kernel/drv/vxio.conf, the value is
internally converted to microseconds, and applied to
vol_kmsg_resend_period_usecs instead.

vol_kmsg_resend_period

The value in microseconds of the kernel message
(KMSG) resend period that is used by the clustering
functionality of VxVM .

The default value is 3000000 microseconds (3 seconds).

This tunable should be used instead of
vol_kmsg_resend_period from release 5.0 onward
as it allows finer granularity to be applied to
performance tuning.

vol_kmsg_resend_period_usecs

This is an obsolete tunable parameter. Use
vol_kmsg_send_period_usecs instead. If specified
in /kernel/drv/vxio.conf, the value is internally
converted to microseconds, and applied to
vol_kmsg_send_period_usecs instead.

vol_kmsg_send_period

The value in microseconds of the kernel message
(KMSG) send period that is used by the clustering
functionality of VxVM with SunCluster. The default
value is 1000000 microseconds (1 second). This tunable
should be used instead of vol_kmsg_send_period
from release 5.0 onward as it allows finer granularity
to be applied to performance tuning.

vol_kmsg_send_period_usecs

The maximum number of volumes that can be created
on the system. The minimum and maximum permitted
values are 1 and the maximum number of minor
numbers representable on the system.

The default value is 131071.

vol_max_vol

559Performance monitoring and tuning
Tuning VxVM



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The maximum size of logical I/O operations that can
be performed without breaking up the request. I/O
requests to VxVM that are larger than this value are
broken up and performed synchronously. Physical I/O
requests are broken up based on the capabilities of the
disk device and are unaffected by changes to this
maximum logical request limit.

The default value is 2048 sectors (1MB).

The value ofvoliomem_maxpool_szmust be at least
10 times greater than the value of vol_maxio.

If DRL sequential logging is configured, the value of
voldrl_min_regionsz must be set to at least half
the value of vol_maxio.

vol_maxio

The maximum size of data that can be passed into
VxVM via an ioctl call. Increasing this limit allows
larger operations to be performed. Decreasing the limit
is not generally recommended, because some utilities
depend upon performing operations of a certain size
and can fail unexpectedly if they issue oversizedioctl
requests.

The default value is 32768 bytes (32KB).

vol_maxioctl

The number of I/O operations that the vxconfigd
daemon is permitted to request from the kernel in a
single VOL_VOLDIO_READ per VOL_VOLDIO_WRITE
ioctl call.

The default value is 256. This value should not be
changed.

vol_maxparallelio

Performance monitoring and tuning
Tuning VxVM

560



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The maximum size of an I/O request that can be issued
by an ioctl call. Although the ioctl request itself
can be small, it can request a large I/O request be
performed. This tunable limits the size of these I/O
requests. If necessary, a request that exceeds this value
can be failed, or the request can be broken up and
performed synchronously.

The default value is 4096 sectors (2MB).

Raising this limit can cause difficulties if the size of
an I/O request causes the process to take more memory
or kernel virtual mapping space than exists and thus
deadlock. The maximum limit for this tunable is 20%
of the smaller of physical memory or kernel virtual
memory. It is inadvisable to go over this limit, because
deadlock is likely to occur.

If stripes are larger than the value of this tunable, full
stripe I/O requests are broken up, which prevents
full-stripe read/writes. This throttles the volume I/O
throughput for sequential I/O or larger I/O requests.

This tunable limits the size of an I/O request at a higher
level in VxVM than the level of an individual disk. For
example, for an 8 by 64KB stripe, a value of 256KB only
allows I/O requests that use half the disks in the stripe;
thus, it cuts potential throughput in half. If you have
more columns or you have used a larger interleave
factor, then your relative performance is worse.

This tunable must be set, as a minimum, to the size of
your largest stripe (RAID-0 or RAID-5).

vol_maxspecialio

The maximum number of subdisks that can be attached
to a single plex. There is no theoretical limit to this
number, but it has been limited to a default value of
4096. This default can be changed, if required.

vol_subdisk_num

If set to 0, volcvm_smartsync disables SmartSync
on shared disk groups. If set to 1, this parameter
enables the use of SmartSync with shared disk groups.

See “SmartSync recovery accelerator” on page 60.

volcvm_smartsync

561Performance monitoring and tuning
Tuning VxVM



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The maximum number of dirty regions that can exist
on the system for non-sequential DRL on volumes. A
larger value may result in improved system
performance at the expense of recovery time. This
tunable can be used to regulate the worse-case recovery
time for the system following a failure.

The default value is 2048.

voldrl_max_drtregs

The maximum number of dirty regions allowed for
sequential DRL. This is useful for volumes that are
usually written to sequentially, such as database logs.
Limiting the number of dirty regions allows for faster
recovery if a crash occurs.

The default value is 3.

voldrl_max_seq_dirty

The minimum number of sectors for a dirty region
logging (DRL) volume region. With DRL, VxVM logically
divides a volume into a set of consecutive regions.
Larger region sizes tend to cause the cache hit-ratio
for regions to improve. This improves the write
performance, but it also prolongs the recovery time.

The default value is 1024 sectors.

If DRL sequential logging is configured, the value of
voldrl_min_regionsz must be set to at least half
the value of vol_maxio.

voldrl_min_regionsz

The granularity of memory chunks used by VxVM when
allocating or releasing system memory. A larger
granularity reduces CPU overhead due to memory
allocation by allowing VxVM to retain hold of a larger
amount of memory.

The default value is 64KB.

voliomem_chunk_size

Performance monitoring and tuning
Tuning VxVM

562



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The maximum memory requested from the system by
VxVM for internal purposes. This tunable has a direct
impact on the performance of VxVM as it prevents one
I/O operation from using all the memory in the system.

VxVM allocates two pools that can grow up to this size,
one for RAID-5 and one for mirrored volumes.
Additional pools are allocated if instant (Copy On
Write) snapshots are present.

A write request to a RAID-5 volume that is greater than
one fourth of the pool size is broken up and performed
in chunks of one tenth of the pool size.

A write request to a mirrored volume that is greater
than the pool size is broken up and performed in
chunks of the pool size.

The default value is 5% of memory up to a maximum
of 128MB.

The value ofvoliomem_maxpool_szmust be greater
than the value of volraid_minpool_size.

The value ofvoliomem_maxpool_szmust be at least
10 times greater than the value of vol_maxio.

voliomem_maxpool_sz

The default size of the buffer maintained for error
tracing events. This buffer is allocated at driver load
time and is not adjustable for size while VxVM is
running.

The default value is 16384 bytes (16KB).

Increasing this buffer can provide storage for more
error events at the expense of system memory.
Decreasing the size of the buffer can result in an error
not being detected via the tracing device. Applications
that depend on error tracing to perform some
responsive action are dependent on this buffer.

voliot_errbuf_dflt

563Performance monitoring and tuning
Tuning VxVM



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The default size for the creation of a tracing buffer in
the absence of any other specification of desired kernel
buffer size as part of the trace ioctl.

The default value is 8192 bytes (8KB).

If trace data is often being lost due to this buffer size
being too small, then this value can be tuned to a more
generous amount.

voliot_iobuf_default

The upper limit to the size of memory that can be used
for storing tracing buffers in the kernel. Tracing
buffers are used by the VxVM kernel to store the
tracing event records. As trace buffers are requested
to be stored in the kernel, the memory for them is
drawn from this pool.

Increasing this size can allow additional tracing to be
performed at the expense of system memory usage.
Setting this value to a size greater than can readily be
accommodated on the system is inadvisable.

The default value is 4194304 bytes (4MB).

voliot_iobuf_limit

The maximum buffer size that can be used for a single
trace buffer. Requests of a buffer larger than this size
are silently truncated to this size. A request for a
maximal buffer size from the tracing interface results
(subject to limits of usage) in a buffer of this size.

The default size for this buffer is 1048576 bytes (1MB).

Increasing this buffer can provide for larger traces to
be taken without loss for very heavily used volumes.

Care should be taken not to increase this value above
the value for thevoliot_iobuf_limit tunable value.

voliot_iobuf_max

The maximum number of tracing channels that can be
open simultaneously. Tracing channels are clone entry
points into the tracing device driver. Each vxtrace

process running on a system consumes a single trace
channel.

The default number of channels is 32.

The allocation of each channel takes up approximately
20 bytes even when the channel is not in use.

voliot_max_open

Performance monitoring and tuning
Tuning VxVM

564



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The amount of memory, measured in kilobytes, that is
allocated for caching FastResync and cache object
metadata.

The default value is 6144KB (6MB).

The valid range for this tunable is from 0 to 50% of
physical memory.

The memory allocated for this cache is exclusively
dedicated to it. It is not available for other processes
or applications.

Setting the value below 512KB fails if cache objects or
volumes that have been prepared for instant snapshot
operations are present on the system.

If you do not use the FastResync or DRL features that
are implemented using a version 20 DCO volume, the
value can be set to 0. However, if you subsequently
decide to enable these features, you can use thevxtune
command to change the value to a more appropriate
one:

# vxtune volpagemod_max_memsz value

where the new value is specified in kilobytes. Using
the vxtune command to adjust the value of
volpagemod_max_memsz does not persist across
system reboots unless you also adjust the value that is
configured in the /kernel/drv/vxio.conf file.

volpagemod_max_memsz

The initial amount of memory that is requested from
the system by VxVM for RAID-5 operations. The
maximum size of this memory pool is limited by the
value of voliomem_maxpool_sz.

The default value is 8192 sectors (4MB).

volraid_minpool_size

565Performance monitoring and tuning
Tuning VxVM



Table 15-1 Kernel tunable parameters for VxVM (continued)

DescriptionParameter

The maximum number of transient reconstruct
operations that can be performed in parallel for
RAID-5. A transient reconstruct operation is one that
occurs on a non-degraded RAID-5 volume that has not
been predicted. Limiting the number of these
operations that can occur simultaneously removes the
possibility of flooding the system with many
reconstruct operations, and so reduces the risk of
causing memory starvation.

The default value is 1.

Increasing this size improves the initial performance
on the system when a failure first occurs and before a
detach of a failing object is performed, but can lead to
memory starvation.

volraid_rsrtransmax

DMP tunable parameters
Table 15-2 shows the DMP parameters that can be tuned by using the vxdmpadm

settune command.

Table 15-2 DMP parameters that are tunable

DescriptionParameter

If this parameter is set to on, the first open
of a device that is performed by an array
support library (ASL) is cached. This caching
enhances the performance of device
discovery by minimizing the overhead that
is caused by subsequent opens by ASLs. If
this parameter is set to off, caching is not
performed.

The default value is on.

dmp_cache_open

The number of kernel threads that are
available for servicing path error handling,
path restoration, and other DMP
administrative tasks.

The default number of threads is 10.

dmp_daemon_count

Performance monitoring and tuning
Tuning VxVM

566



Table 15-2 DMP parameters that are tunable (continued)

DescriptionParameter

How long DMP should wait before retrying
I/O after an array fails over to a standby
path. Some disk arrays are not capable of
accepting I/O requests immediately after
failover.

The default value is 15 seconds.

dmp_delayq_interval

If this parameter is set to on, it enables the
path restoration thread to be started.

See “Configuring DMP path restoration
policies” on page 214.

If this parameter is set tooff, it disables the
path restoration thread. If the path
restoration thread is currently running, use
the vxdmpadm stop restore command
to stop the process.

See “Stopping the DMP path restoration
thread” on page 216.

dmp_enable_restore

The time limit that DMP waits for a failed
I/O request to return before the device is
marked as INSANE, I/O is avoided on the
path, and any remaining failed I/O requests
are returned to the application layer without
performing any error analysis.

The default value is 57600 seconds (16
hours).

See “Configuring the response to I/O
failures” on page 210.

See “Configuring the I/O throttling
mechanism” on page 211.

dmp_failed_io_threshold

Whether DMP should try to obtain SCSI
error information directly from the HBA
interface. Setting the value to on can
potentially provide faster error recovery,
provided that the HBA interface supports
the error enquiry feature. If this parameter
is set to off, the HBA interface is not used.

The default setting is on.

dmp_fast_recovery

567Performance monitoring and tuning
Tuning VxVM



Table 15-2 DMP parameters that are tunable (continued)

DescriptionParameter

DMP detects intermittently failing paths,
and prevents I/O requests from being sent
on them. The value of dmp_health_time
represents the time in seconds for which a
path must stay healthy. If a path’s state
changes back from enabled to disabled
within this time period, DMP marks the path
as intermittently failing, and does not
re-enable the path for I/O until
dmp_path_age seconds elapse.

The default value is 60 seconds.

A value of 0 prevents DMP from detecting
intermittently failing paths.

dmp_health_time

The level of detail that is displayed for DMP
console messages. The following level values
are defined:

1 — Displays all DMP log messages that
existed in releases before 5.0.

2 — Displays level 1 messages plus messages
that relate to path or disk addition or
removal, SCSI errors, IO errors and DMP
node migration.

3 — Displays level 1 and 2 messages plus
messages that relate to path throttling,
suspect path, idle path and insane path logic.

4 — Displays level 1, 2 and 3 messages plus
messages that relate to setting or changing
attributes on a path and tunable related
changes.

The default value is 1.

dmp_log_level

Determines if the path probing by restore
daemon is optimized or not. Set it to on to
enable optimization andoff to disable. Path
probing is optimized only when restore
policy is check_disabled or during
check_disabled phase of check_periodic
policy.

The default value is on.

dmp_low_impact_probe

Performance monitoring and tuning
Tuning VxVM

568



Table 15-2 DMP parameters that are tunable (continued)

DescriptionParameter

Retry period for handling transient errors.
The value is specified in seconds.

When all paths to a disk fail, there may be
certain paths that have a temporary failure
and are likely to be restored soon. The I/Os
may be failed to the application layer even
though the failures are transient, unless the
I/Os are retried. The
dmp_lun_retry_timeout tunable provides
a mechanism to retry such transient errors.

If the tunable is set to a non-zero value, I/Os
to a disk with all failed paths are retried until
dmp_lun_retry_timeout interval or until
the I/O succeeds on one of the path,
whichever happens first.

The default value of tunable is 0, which
means that the paths are probed only once.

dmp_lun_retry_timeout

Whether the Event Source daemon (vxesd)
uses the Storage Networking Industry
Association (SNIA) HBA API. This API allows
DDL to improve the performance of failover
by collecting information about the SAN
topology and by monitoring fabric events.

If this parameter is set to on, DDL uses the
SNIA HBA API. (Note that the HBA vendor
specific HBA-API library should be available
to use this feature.)

If this parameter is set tooff, the SNIA HBA
API is not used.

The default setting isoff for releases before
5.0 that have been patched to support this
DDL feature. The default setting ison for 5.0
and later releases.

dmp_monitor_fabric

569Performance monitoring and tuning
Tuning VxVM



Table 15-2 DMP parameters that are tunable (continued)

DescriptionParameter

Determines whether DMP will intercept the
I/Os directly on the raw OS paths or not.

Set the tunable to on to have DMP do
multipathing of IOs done directly on raw
paths, otherwise set it to off.

The default value is off.

dmp_native_multipathing

The time for which an intermittently failing
path needs to be monitored as healthy before
DMP again tries to schedule I/O requests on
it.

The default value is 300 seconds.

A value of 0 prevents DMP from detecting
intermittently failing paths.

dmp_path_age

The default number of contiguous I/O blocks
that are sent along a DMP path to an array
before switching to the next available path.
The value is expressed as the integer
exponent of a power of 2; for example 9
represents 512 blocks.

The default value of this parameter is set to
9. In this case, 512 blocks (256k) of
contiguous I/O are sent over a DMP path
before switching. For intelligent disk arrays
with internal data caches, better throughput
may be obtained by increasing the value of
this tunable. For example, for the HDS 9960
A/A array, the optimal value is between 15
and 17 for an I/O activity pattern that
consists mostly of sequential reads or writes.

This parameter only affects the behavior of
the balanced I/O policy. A value of 0
disables multipathing for the policy unless
the vxdmpadm command is used to specify
a different partition size for an array.

See “Specifying the I/O policy” on page 200.

dmp_pathswitch_blks_shift

Performance monitoring and tuning
Tuning VxVM

570



Table 15-2 DMP parameters that are tunable (continued)

DescriptionParameter

If DMP statistics gathering is enabled, set
this tunable to on (default) to have the DMP
path restoration thread probe idle LUNs. Set
this tunable to off to turn off this feature.
(Idle LUNs are VM disks on which no I/O
requests are scheduled.) The value of this
tunable is only interpreted when DMP
statistics gathering is enabled. Turning off
statistics gathering also disables idle LUN
probing.

The default value is on.

dmp_probe_idle_lun

If the dmp_low_impact_probe is turned on,
dmp_probe_threshold determines the
number of paths to probe before deciding on
changing the state of other paths in the same
subpath failover group

The default value is 5.

dmp_probe_threshold

The maximum number of queued I/O
requests on a path during I/O throttling.

The default value is 20.

A value can also be set for paths to individual
arrays by using the vxdmpadm command.

See “Configuring the I/O throttling
mechanism” on page 211.

dmp_queue_depth

The interval attribute specifies how often
the path restoration thread examines the
paths. Specify the time in seconds.

The default value is 300.

The value of this tunable can also be set
using the vxdmpadm start restore

command.

See “Configuring DMP path restoration
policies” on page 214.

dmp_restore_interval

571Performance monitoring and tuning
Tuning VxVM



Table 15-2 DMP parameters that are tunable (continued)

DescriptionParameter

If the DMP restore policy is
check_periodic, the number of cycles
after which thecheck_all policy is called.

The default value is 10.

The value of this tunable can also be set
using the vxdmpadm start restore

command.

See “Configuring DMP path restoration
policies” on page 214.

dmp_restore_cycles

The DMP restore policy, which can be set to
one of the following values:

■ check_all

■ check_alternate

■ check_disabled

■ check_periodic

The default value is check_disabled

The value of this tunable can also be set
using the vxdmpadm start restore

command.

See “Configuring DMP path restoration
policies” on page 214.

dmp_restore_policy

If an inquiry succeeds on a path, but there
is an I/O error, the number of retries to
attempt on the path.

The default value is 5.

A value can also be set for paths to individual
arrays by using the vxdmpadm command.

See “Configuring the response to I/O
failures” on page 210.

dmp_retry_count

Performance monitoring and tuning
Tuning VxVM

572



Table 15-2 DMP parameters that are tunable (continued)

DescriptionParameter

Determines the timeout value to be set for
any SCSI command that is sent via DMP. If
the HBA does not receive a response for a
SCSI command that it has sent to the device
within the timeout period, the SCSI
command is returned with a failure error
code.

The default value is 30 seconds.

dmp_scsi_timeout

Determines the minimum number of paths
that should be failed in a failover group
before DMP starts suspecting other paths in
the same failover group. The value of 0
disables the failover logic based on subpath
failover groups.

The default value is 1.

dmp_sfg_threshold

The time interval between gathering DMP
statistics.

The default and minimum value are 1
second.

dmp_stat_interval

Disabling I/O statistics collection
By default, Veritas Volume Manager collects I/O statistics on all objects in the
configuration. This helps you tune different parameters that depend upon the
environment and workload.

See “Tunable parameters for VxVM” on page 556.

See “DMP tunable parameters ” on page 566.

After the tuning is done, you may choose to disable I/O statistics collection because
it improves I/O throughput.

To display whether I/O statistics are enabled

◆ Enter the following command:

# vxtune vol_stats enable

If the system displays 1, I/O statistics collection is enabled. If it displays 0,
I/O statistics collection is disabled.

573Performance monitoring and tuning
Tuning VxVM



To disable I/O statistics collection until the next system reboot

◆ Enter the following command:

# vxtune vol_stats_enable 0

If you are concerned about high I/O throughput, you may also choose to disable
DMP I/O statistics collection.

To disable DMP I/O statistics collection

◆ Enter the following command:

# vxdmpadm iostat stop

Performance monitoring and tuning
Tuning VxVM

574



Using Veritas Volume
Manager commands

This appendix includes the following topics:

■ About Veritas Volume Manager commands

■ Online manual pages

About Veritas Volume Manager commands
Most Veritas Volume Manager (VxVM) commands (excepting daemons, library
commands and supporting scripts) are linked to the /usr/sbin directory from
the /opt/VRTS/bin directory. It is recommended that you add the following
directories to your PATH environment variable:

■ If you are using the Bourne or Korn shell (sh or ksh), use the commands:

$ PATH=$PATH:/usr/sbin:/opt/VRTS/bin:/opt/VRTSvxfs/sbin:\

/opt/VRTSdbed/bin:/opt/VRTSdb2ed/bin:/opt/VRTSsybed/bin:\

/opt/VRTSob/bin

$ MANPATH=/usr/share/man:/opt/VRTS/man:$MANPATH

$ export PATH MANPATH

■ If you are using a C shell (csh or tcsh), use the commands:

% set path = ( $path /usr/sbin /opt/VRTSvxfs/sbin \

/opt/VRTSdbed/bin /opt/VRTSdb2ed/bin /opt/VRTSsybed/bin \

/opt/VRTSob/bin /opt/VRTS/bin )

% setenv MANPATH /usr/share/man:/opt/VRTS/man:$MANPATH

AAppendix



Note: If you have not installed database software, you can omit/opt/VRTSdbed/bin,
/opt/VRTSdb2ed/bin and /opt/VRTSsybed/bin. Similarly, /opt/VRTSvxfs/bin
is only required to access some VxFS commands.

VxVM library commands and supporting scripts are located under the
/usr/lib/vxvm directory hierarchy. You can include these directories in your
path if you need to use them on a regular basis.

For detailed information about an individual command, refer to the appropriate
manual page in the 1M section.

See “Online manual pages” on page 597.

Commands and scripts that are provided to support other commands and scripts,
and which are not intended for general use, are not located in /opt/VRTS/bin and
do not have manual pages.

Commonly-used commands are summarized in the following tables:

■ Table A-1 lists commands for obtaining information about objects in VxVM.

■ Table A-2 lists commands for administering disks.

■ Table A-3 lists commands for creating and administering disk groups.

■ Table A-4 lists commands for creating and administering subdisks.

■ Table A-5 lists commands for creating and administering plexes.

■ Table A-6 lists commands for creating volumes.

■ Table A-7 lists commands for administering volumes.

■ Table A-8 lists commands for monitoring and controlling tasks in VxVM.

Table A-1 Obtaining information about objects in VxVM

DescriptionCommand

List licensed features of VxVM.

The init parameter is required when a
license has been added or removed from
the host for the new license to take
effect.

vxdctl license [init]

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

576



Table A-1 Obtaining information about objects in VxVM (continued)

DescriptionCommand

Lists disks under control of VxVM.

See “Displaying disk information”
on page 142.

Example:

# vxdisk -g mydg list

vxdisk [-g diskgroup] list [diskname]

Lists information about disk groups.

See “Displaying disk group
information” on page 224.

Example:

# vxdg list mydg

vxdg list [diskgroup]

Lists information about shared disk
groups.

See “Listing shared disk groups”
on page 516.

Example:

# vxdg -s list

vxdg -s list

Lists all diskgroups on the disks. The
imparted diskgroups are shown as
standard, and additionally all other
diskgroups are listed in single quotes.

vxdisk -o alldgs list

Displays information about the
accessibility and usability of volumes.

See the Veritas VolumeManager
Troubleshooting Guide.

Example:

# vxinfo -g mydg myvol1 \
myvol2

vxinfo [-g diskgroup] [volume ...]

577Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-1 Obtaining information about objects in VxVM (continued)

DescriptionCommand

Prints single-line information about
objects in VxVM.

See “Displaying volume information”
on page 338.

Example:

# vxprint -g mydg myvol1 \
myvol2

vxprint -hrt [-g diskgroup] [object

...]

Displays information about subdisks.

See “Displaying subdisk information”
on page 281.

Example:

# vxprint -st -g mydg

vxprint -st [-g diskgroup] [subdisk

...]

Displays information about plexes.

See “Displaying plex information”
on page 289.

Example:

# vxprint -pt -g mydg

vxprint -pt [-g diskgroup] [plex ...]

Table A-2 Administering disks

DescriptionCommand

Administers disks in VxVM using a
menu-based interface.

vxdiskadm

Adds a disk specified by device name.

See “Using vxdiskadd to put a disk
under VxVM control” on page 124.

Example:

# vxdiskadd c0t1d0

vxdiskadd [devicename ...]

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

578



Table A-2 Administering disks (continued)

DescriptionCommand

Renames a disk under control of VxVM.

See “Renaming a disk” on page 156.

Example:

# vxedit -g mydg rename \
mydg03 mydg02

vxedit [-g diskgroup] rename \
olddisk newdisk

Sets aside/does not set aside a disk from
use in a disk group.

See “Reserving disks” on page 157.

Examples:

# vxedit -g mydg set \
reserve=on mydg02

# vxedit -g mydg set \
reserve=off mydg02

vxedit [-g diskgroup] set \
reserve=on|off diskname

Does not/does allow free space on a disk
to be used for hot-relocation.

See “Excluding a disk from
hot-relocation use” on page 478.

See “Making a disk available for
hot-relocation use” on page 479.

Examples:

# vxedit -g mydg set \
nohotuse=on mydg03

# vxedit -g mydg set \
nohotuse=off mydg03

vxedit [-g diskgroup] set \
nohotuse=on|off diskname

579Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-2 Administering disks (continued)

DescriptionCommand

Adds/removes a disk from the pool of
hot-relocation spares.

See “Marking a disk as a hot-relocation
spare” on page 476.

See “Removing a disk from use as a
hot-relocation spare” on page 478.

Examples:

# vxedit -g mydg set \
spare=on mydg04

# vxedit -g mydg set \
spare=off mydg04

vxedit [-g diskgroup] set \
spare=on|off diskname

Takes a disk offline.

See “Taking a disk offline” on page 156.

Example:

# vxdisk offline c0t1d0

vxdisk offline devicename

Removes a disk from its disk group.

See “Removing a disk from a disk
group” on page 227.

Example:

# vxdg -g mydg rmdisk mydg02

vxdg -g diskgroup rmdisk diskname

Removes a disk from control of VxVM.

See “Removing a disk from a disk
group” on page 227.

Example:

# vxdiskunsetup c0t3d0

vxdiskunsetup devicename

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

580



Table A-3 Creating and administering disk groups

DescriptionCommand

Creates a disk group using a
pre-initialized disk.

See “Creating a disk group” on page 226.

See “Creating a shared disk group”
on page 517.

Example:

# vxdg init mydg \
mydg01=c0t1d0

vxdg [-s] init diskgroup \
[diskname=]devicename

Reports conflicting configuration
information.

See “Handling conflicting configuration
copies” on page 250.

Example:

# vxdg -g mydg listssbinfo

vxdg -g diskgroup listssbinfo

Deports a disk group and optionally
renames it.

See “Deporting a disk group”
on page 229.

Example:

# vxdg -n newdg deport mydg

vxdg [-n newname] deport diskgroup

Imports a disk group and optionally
renames it.

See “Importing a disk group”
on page 230.

Example:

# vxdg -n newdg import mydg

vxdg [-n newname] import diskgroup

581Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-3 Creating and administering disk groups (continued)

DescriptionCommand

Imports a disk group as shared by a
cluster, and optionally renames it.

See “Importing disk groups as shared”
on page 518.

Example:

# vxdg -n newsdg -s import \
mysdg

vxdg [-n newname] -s import diskgroup

Lists the objects potentially affected by
moving a disk group.

See “Listing objects potentially affected
by a move” on page 261.

Example:

# vxdg -o expand listmove \
mydg newdg myvol1

vxdg [-o expand] listmove sourcedg \
targetdg object ...

Moves objects between disk groups.

See “Moving objects between disk
groups” on page 263.

Example:

# vxdg -o expand move mydg \
newdg myvol1

vxdg [-o expand] move sourcedg \
targetdg object ...

Splits a disk group and moves the
specified objects into the target disk
group.

See “Splitting disk groups” on page 266.

Example:

# vxdg -o expand split mydg \
newdg myvol2 myvol3

vxdg [-o expand] split sourcedg \
targetdg object ...

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

582



Table A-3 Creating and administering disk groups (continued)

DescriptionCommand

Joins two disk groups.

See “Joining disk groups” on page 267.

Example:

# vxdg join newdg mydg

vxdg join sourcedg targetdg

Sets the activation mode of a shared
disk group in a cluster.

See “Changing the activation mode on
a shared disk group” on page 520.

Example:

# vxdg -g mysdg set \
activation=sw

vxdg -g diskgroup set \
activation=ew|ro|sr|sw|off

Starts all volumes in an imported disk
group.

See “Moving disk groups between
systems” on page 233.

Example:

# vxrecover -g mydg -sb

vxrecover -g diskgroup -sb

Destroys a disk group and releases its
disks.

See “Destroying a disk group”
on page 269.

Example:

# vxdg destroy mydg

vxdg destroy diskgroup

583Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-4 Creating and administering subdisks

DescriptionCommand

Creates a subdisk.

See Creating subdisks.

Example:

# vxmake -g mydg sd \
mydg02-01 mydg02,0,8000

vxmake [-g diskgroup] sd subdisk \
diskname,offset,length

Associates subdisks with an existing
plex.

See “Associating subdisks with plexes”
on page 283.

Example:

# vxsd -g mydg assoc home-1 \
mydg02-01 mydg02-00 \
mydg02-01

vxsd [-g diskgroup] assoc plex \
subdisk...

Adds subdisks to the ends of the
columns in a striped or RAID-5 volume.

See “Associating subdisks with plexes”
on page 283.

Example:

# vxsd -g mydg assoc \
vol01-01 mydg10-01:0 \
mydg11-01:1 mydg12-01:2

vxsd [-g diskgroup] assoc plex \
subdisk1:0 ... subdiskM:N-1

Replaces a subdisk.

See “Moving subdisks” on page 282.

Example:

# vxsd -g mydg mv mydg01-01 \
mydg02-01

vxsd [-g diskgroup] mv oldsubdisk \
newsubdisk ...

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

584



Table A-4 Creating and administering subdisks (continued)

DescriptionCommand

Splits a subdisk in two.

See “Splitting subdisks” on page 282.

Example:

# vxsd -g mydg -s 1000m \
split mydg03-02 mydg03-02 \
mydg03-03

vxsd [-g diskgroup] -s size split \
subdisk sd1 sd2

Joins two or more subdisks.

See “Joining subdisks” on page 283.

Example:

# vxsd -g mydg join \
mydg03-02 mydg03-03 \
mydg03-02

vxsd [-g diskgroup] join \
sd1 sd2 ... subdisk

Relocates subdisks in a volume between
disks.

See “Moving relocated subdisks using
vxassist” on page 482.

Example:

# vxassist -g mydg move \
myvol \!mydg02 mydg05

Note: The ! character is a special
character in some shells. This example
shows how to escape it in a bash shell.

vxassist [-g diskgroup] move \
volume \!olddisk newdisk

Relocates subdisks to their original
disks.

See “Moving relocated subdisks using
vxunreloc” on page 483.

Example:

# vxunreloc -g mydg mydg01

vxunreloc [-g diskgroup] original_disk

585Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-4 Creating and administering subdisks (continued)

DescriptionCommand

Dissociates a subdisk from a plex.

See “Dissociating subdisks from plexes”
on page 286.

Example:

# vxsd -g mydg dis mydg02-01

vxsd [-g diskgroup] dis subdisk

Removes a subdisk.

See “Removing subdisks” on page 287.

Example:

# vxedit -g mydg rm mydg02-01

vxedit [-g diskgroup] rm subdisk

Dissociates and removes a subdisk from
a plex.

See “Dissociating subdisks from plexes”
on page 286.

Example:

# vxsd -g mydg -o rm dis \
mydg02-01

vxsd [-g diskgroup] -o rm dis subdisk

Table A-5 Creating and administering plexes

DescriptionCommand

Creates a concatenated plex.

See “Creating plexes” on page 289.

Example:

# vxmake -g mydg plex \
vol01-02 \
sd=mydg02-01,mydg02-02

vxmake [-g diskgroup] plex plex \
sd=subdisk1[,subdisk2,...]

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

586



Table A-5 Creating and administering plexes (continued)

DescriptionCommand

Creates a striped or RAID-5 plex.

See “Creating a striped plex”
on page 289.

Example:

# vxmake -g mydg plex pl-01 \
layout=stripe stwidth=32 \
ncolumn=2 \
sd=mydg01-01,mydg02-01

vxmake [-g diskgroup] plex plex \
layout=stripe|raid5 stwidth=W \
ncolumn=N \
sd=subdisk1[,subdisk2,...]

Attaches a plex to an existing volume.

See “Attaching and associating plexes”
on page 294.

See “Reattaching plexes” on page 296.

Example:

# vxplex -g mydg att vol01 \
vol01-02

vxplex [-g diskgroup] att volume plex

Detaches a plex.

See “Detaching plexes” on page 296.

Example:

# vxplex -g mydg det vol01-02

vxplex [-g diskgroup] det plex

Takes a plex offline for maintenance.

See “Taking plexes offline” on page 295.

Example:

# vxmend -g mydg off vol02-02

vxmend [-g diskgroup] off plex

Re-enables a plex for use.

See “Reattaching plexes” on page 296.

Example:

# vxmend -g mydg on vol02-02

vxmend [-g diskgroup] on plex

587Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-5 Creating and administering plexes (continued)

DescriptionCommand

Replaces a plex.

See “Moving plexes” on page 298.

Example:

# vxplex -g mydg mv \
vol02-02 vol02-03

vxplex [-g diskgroup] mv oldplex \
newplex

Copies a volume onto a plex.

See “Copying volumes to plexes”
on page 299.

Example:

# vxplex -g mydg cp vol02 \
vol03-01

vxplex [-g diskgroup] cp volume \
newplex

Sets the state of a plex in an unstartable
volume to CLEAN.

See “Reattaching plexes” on page 296.

Example:

# vxmend -g mydg fix clean \
vol02-02

vxmend [-g diskgroup] fix clean plex

Dissociates and removes a plex from a
volume.

See “Dissociating and removing plexes”
on page 299.

Example:

# vxplex -g mydg -o rm dis \
vol03-01

vxplex [-g diskgroup] -o rm dis plex

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

588



Table A-6 Creating volumes

DescriptionCommand

Displays the maximum size of volume
that can be created.

See “Discovering the maximum size of
a volume” on page 311.

Example:

# vxassist -g mydg maxsize \
layout=raid5 nlog=2

vxassist [-g diskgroup] maxsize \
layout=layout [attributes]

Creates a volume.

See “Creating a volume on any disk”
on page 312.

See “Creating a volume on specific
disks” on page 313.

Example:

# vxassist -b -g mydg make \
myvol 20g layout=concat \
mydg01 mydg02

vxassist -b [-g diskgroup] make \
volume length [layout=layout] \
[attributes]

Creates a mirrored volume.

See “Creating a mirrored volume”
on page 319.

Example:

# vxassist -b -g mydg make \
mymvol 20g layout=mirror \
nmirror=2

vxassist -b [-g diskgroup] make \
volume length layout=mirror \
[nmirror=N][attributes]

Creates a volume that may be opened
exclusively by a single node in a cluster.

See “Creating volumes with exclusive
open access by a node” on page 521.

Example:

# vxassist -b -g mysdg make \
mysmvol 20g layout=mirror \
exclusive=on

vxassist -b [-g diskgroup] make \
volume length layout=layout \
exclusive=on [attributes]

589Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-6 Creating volumes (continued)

DescriptionCommand

Creates a striped or RAID-5 volume.

See “Creating a striped volume”
on page 325.

See “Creating a RAID-5 volume”
on page 329.

Example:

# vxassist -b -g mydg make \
mysvol 20g layout=stripe \
stripeunit=32 ncol=4

vxassist -b [-g diskgroup] make \
volume length layout={stripe|raid5} \
[stripeunit=W] [ncol=N] \
[attributes]

Creates a volume with mirrored data
plexes on separate controllers.

See “Mirroring across targets,
controllers or enclosures” on page 327.

Example:

# vxassist -b -g mydg make \
mymcvol 20g layout=mirror \
mirror=ctlr

vxassist -b [-g diskgroup] make \
volume length layout=mirror \
mirror=ctlr [attributes]

Creates a volume from existing plexes.

See “Creating a volume using vxmake”
on page 331.

Example:

# vxmake -g mydg -Uraid5 \
vol r5vol \
plex=raidplex,raidlog1,\
raidlog2

vxmake -b [-g diskgroup] \
-Uusage_type vol volume \
[len=length] plex=plex,...

Initializes and starts a volume for use.

See “Initializing and starting a volume”
on page 334.

See “Starting a volume” on page 350.

Example:

# vxvol -g mydg start r5vol

vxvol [-g diskgroup] start volume

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

590



Table A-6 Creating volumes (continued)

DescriptionCommand

Initializes and zeros out a volume for
use.

See “Initializing and starting a volume”
on page 334.

Example:

# vxvol -g mydg init zero \
myvol

vxvol [-g
diskgroup] init zero \
volume

Table A-7 Administering volumes

DescriptionCommand

Adds a mirror to a volume.

See “Adding a mirror to a volume ”
on page 355.

Example:

# vxassist -g mydg mirror \
myvol mydg10

vxassist [-g diskgroup] mirror \
volume [attributes]

Removes a mirror from a volume.

See “Removing a mirror ” on page 359.

Example:

# vxassist -g mydg remove \
mirror myvol \!mydg11

Note: The ! character is a special
character in some shells. This example
shows how to escape it in a bash shell.

vxassist [-g diskgroup] remove \
mirror volume [attributes]

591Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-7 Administering volumes (continued)

DescriptionCommand

Grows a volume to a specified size or
by a specified amount.

See “Resizing volumes with vxassist”
on page 353.

Example:

# vxassist -g mydg growby \
myvol 10g

vxassist [-g diskgroup] \
{growto|growby} volume length

Shrinks a volume to a specified size or
by a specified amount.

See “Resizing volumes with vxassist”
on page 353.

Example:

# vxassist -g mydg shrinkto \
myvol 20g

vxassist [-g diskgroup] \
{shrinkto|shrinkby} volume length

Resizes a volume and the underlying
Veritas File System.

See “Resizing volumes with vxresize”
on page 352.

Example:

# vxresize -b -F vxfs \
-g mydg myvol 20g mydg10 \
mydg11

vxresize -b -F vxfs [-g diskgroup] \
volume length diskname ...

Prepares a volume for instant
snapshots and for DRL logging.

See “Preparing a volume for DRL and
instant snapshots” on page 360.

Example:

# vxsnap -g mydg prepare \
myvol drl=on

vxsnap [-g diskgroup] prepare volume \
[drl=on|sequential|off]

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

592



Table A-7 Administering volumes (continued)

DescriptionCommand

Takes a full-sized instant snapshot of
a volume by breaking off plexes of the
original volume.

See “Creating instant snapshots”
on page 400.

Example:

# vxsnap -g mydg make \
source=myvol/\
newvol=mysnpvol/\
nmirror=2

vxsnap [-g diskgroup] make \
source=volume\
/newvol=snapvol\
[/nmirror=number]

Takes a full-sized instant snapshot of
a volume using a prepared empty
volume. See Creating a volume for use
as a full-sized instant or linked
break-off snapshot.

See “Creating instant snapshots”
on page 400.

Example:

# vxsnap -g mydg make \
source=myvol/snapvol=snpvol

vxsnap [-g diskgroup] make \
source=volume/snapvol=snapvol

Creates a cache object for use by
space-optimized instant snapshots.

See “Creating a shared cache object”
on page 403.

A cache volume must have already been
created. After creating the cache object,
enable the cache object with the
vxcache start command.

For example:

# vxassist -g mydg make \
cvol 1g layout=mirror \
init=active mydg16 mydg17

# vxmake -g mydg cache cobj \
cachevolname=cvol

# vxcache -g mydg start cobj

vxmake [-g diskgroup] cache \
cache_object cachevolname=volume \
[regionsize=size]

593Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-7 Administering volumes (continued)

DescriptionCommand

Takes a space-optimized instant
snapshot of a volume.

See “Creating instant snapshots”
on page 400.

Example:

# vxsnap -g mydg make \
source=myvol/\
newvol=mysosvol/\
cache=cobj

vxsnap [-g diskgroup] make \
source=volume/newvol=snapvol\
/cache=cache_object

Refreshes a snapshot from its original
volume.

See “Refreshing an instant snapshot”
on page 420.

Example:

# vxsnap -g mydg refresh \
mysnpvol

vxsnap [-g diskgroup] refresh snapshot

Turns a snapshot into an independent
volume.

See “Dissociating an instant snapshot”
on page 423.

Example:

# vxsnap -g mydg dis mysnpvol

vxsnap [-g diskgroup] dis snapshot

Removes support for instant snapshots
and DRL logging from a volume.

See “Removing support for DRL and
instant snapshots from a volume”
on page 365.

Example:

# vxsnap -g mydg unprepare \
myvol

vxsnap [-g diskgroup] unprepare \
volume

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

594



Table A-7 Administering volumes (continued)

DescriptionCommand

Performs online relayout of a volume.

See “Performing online relayout”
on page 376.

Example:

# vxassist -g mydg relayout \
vol2 layout=stripe

vxassist [-g diskgroup] relayout \
volume [layout=layout] \
[relayout_options]

Relays out a volume as a RAID-5
volume with stripe width W and N
columns.

See “Performing online relayout”
on page 376.

Example:

# vxassist -g mydg relayout \
vol3 layout=raid5 \
stripeunit=16 ncol=4

vxassist [-g diskgroup] relayout \
volume layout=raid5 \
stripeunit=W \
ncol=N

Reverses the direction of a paused
volume relayout.

See “Volume sets” on page 73.

Example:

# vxrelayout -g mydg -o bg \
reverse vol3

vxrelayout [-g diskgroup] -o bg \
reverse volume

Converts between a layered volume and
a non-layered volume layout.

See “Converting between layered and
non-layered volumes” on page 383.

Example:

# vxassist -g mydg convert \
vol3 layout=stripe-mirror

vxassist [-g diskgroup] convert \
volume [layout=layout] \
[convert_options]

595Using Veritas Volume Manager commands
About Veritas Volume Manager commands



Table A-7 Administering volumes (continued)

DescriptionCommand

Removes a volume.

See “Removing a volume” on page 372.

Example:

# vxassist -g mydg remove \
myvol

vxassist [-g diskgroup] remove \
volume volume

Table A-8 Monitoring and controlling tasks

DescriptionCommand

Specifies a task tag to a VxVM
command.

See “Specifying task tags” on page 342.

Example:

# vxrecover -g mydg \
-t mytask -b mydg05

command [-g diskgroup] -t tasktag \
[options] [arguments]

Lists tasks running on a system.

See “Using the vxtask command”
on page 344.

Example:

# vxtask -h -g mydg list

vxtask [-h] [-g diskgroup] list

Monitors the progress of a task.

See “Using the vxtask command”
on page 344.

Example:

# vxtask monitor mytask

vxtask monitor task

Using Veritas Volume Manager commands
About Veritas Volume Manager commands

596



Table A-8 Monitoring and controlling tasks (continued)

DescriptionCommand

Suspends operation of a task.

See “Using the vxtask command”
on page 344.

Example:

# vxtask pause mytask

vxtask pause task

Lists all paused tasks.

See “Using the vxtask command”
on page 344.

Example:

# vxtask -p -g mydg list

vxtask -p [-g diskgroup] list

Resumes a paused task.

See “Using the vxtask command”
on page 344.

Example:

# vxtask resume mytask

vxtask resume task

Cancels a task and attempts to reverse
its effects.

See “Using the vxtask command”
on page 344.

Example:

# vxtask abort mytask

vxtask abort task

Online manual pages
Manual pages are organized into the following sections:

Administrative commands.1M

File formats.4

597Using Veritas Volume Manager commands
Online manual pages



Device driver interfaces.7

Section 1M — administrative commands
Table A-9 lists the manual pages in section 1M for commands that are used to
administer Veritas Volume Manager.

Table A-9 Section 1M manual pages

DescriptionName

Manage an area of disk for use by an
Alternate Pathing database.

vxapslice

Create, relayout, convert, mirror, backup,
grow, shrink, delete, and move volumes.

vxassist

Set up system boot information on a
Veritas Volume Manager disk.

vxbootsetup

Administer the cache object for
space-optimized snapshots.

vxcache

Resize cache volumes when required.vxcached

Make disks and disk groups portable
between systems.

vxcdsconvert

Start, stop, and reconfigure a cluster.vxclustadm

Administer command logging.vxcmdlog

Back up disk group configuration.vxconfigbackup

Disk group configuration backup daemon.vxconfigbackupd

Veritas Volume Manager configuration
daemon

vxconfigd

Restore disk group configuration.vxconfigrestore

Restore simple or nopriv disk access
records.

vxdarestore

Perform operations on version 0 DCO
objects and DCO volumes.

vxdco

Control the volume configuration daemon.vxdctl

Using Veritas Volume Manager commands
Online manual pages

598



Table A-9 Section 1M manual pages (continued)

DescriptionName

Device Discovery Layer subsystem
administration.

vxddladm

Manage the defaults set in
/etc/default/vxsf that configure
settings such as as smartmove thin
reclamation.

vxdefault

Manage Veritas Volume Manager disk
groups.

vxdg

Define and manage Veritas Volume
Manager disks.

vxdisk

Add one or more disks for use with Veritas
Volume Manager.

vxdiskadd

Menu-driven Veritas Volume Manager disk
administration.

vxdiskadm

Configure disk devices and bring them
under VxVM control.

vxdiskconfig

Configure a disk for use with Veritas
Volume Manager.

vxdisksetup

Deconfigure a disk from use with Veritas
Volume Manager.

vxdiskunsetup

DMP subsystem administration.vxdmpadm

Create, remove, and modify Veritas Volume
Manager records.

vxedit

Encapsulate partitions on a new disk.vxencap

Evacuate all volumes from a disk.vxevac

Print accessibility and usability of volumes.vxinfo

Menu-driven Veritas Volume Manager
initial configuration.

vxinstall

Introduction to the Veritas Volume
Manager utilities.

vxintro

599Using Veritas Volume Manager commands
Online manual pages



Table A-9 Section 1M manual pages (continued)

DescriptionName

Start, stop, and report on Veritas Volume
Manager kernel I/O threads.

vxiod

Finish a live upgrade of Veritas Volume
Manager.

vxlufinish

Start a live upgrade of Veritas Volume
Manager.

vxlustart

Create Veritas Volume Manager
configuration records.

vxmake

Display memory statistics for Veritas
Volume Manager.

vxmemstat

Mend simple problems in configuration
records.

vxmend

Mirror volumes on a disk or control default
mirroring.

vxmirror

Display Veritas Volume Manager
configuration events.

vxnotify

Perform Veritas Volume Manager
operations on plexes.

vxplex

Display records from the Veritas Volume
Manager configuration.

vxprint

Verify RAID-5 volume parity.vxr5check

Reattach disk drives that have become
accessible again.

vxreattach

Perform volume recovery operations.vxrecover

Convert online storage from one layout to
another.

vxrelayout

Monitor Veritas Volume Manager for
failure events and relocate failed subdisks.

vxrelocd

Change the length of a volume containing
a file system.

vxresize

Grow or take snapshots of the boot disk.vxrootadm

Using Veritas Volume Manager commands
Online manual pages

600



Table A-9 Section 1M manual pages (continued)

DescriptionName

Display SCSI inquiry data.vxscsiinq

Perform Veritas Volume Manager
operations on subdisks.

vxsd

Enable DRL on a volume, and create and
administer instant snapshots.

vxsnap

Monitor for disk failure, and replace failed
disks.

vxsparecheck

Veritas Volume Manager statistics
management utility.

vxstat

List and administer Veritas Volume
Manager tasks.

vxtask

Trace operations on volumes.vxtrace

Administer transaction logging.vxtranslog

Adjust Veritas Volume Replicator and
Veritas Volume Manager tunables.

vxtune

Move a hot-relocated subdisk back to its
original disk.

vxunreloc

Remove Veritas Volume Manager hooks
from encapsulated root volumes.

vxunroot

Perform Veritas Volume Manager
operations on volumes.

vxvol

Create and administer volume sets.vxvset

Section 4 — file formats
Table A-10 lists the manual pages in section 4 that describe the format of files
that are used by Veritas Volume Manager.

Table A-10 Section 4 manual pages

DescriptionName

Disk group search specifications.vol_pattern

601Using Veritas Volume Manager commands
Online manual pages



Table A-10 Section 4 manual pages (continued)

DescriptionName

vxmake description file.vxmake

Section 7 — device driver interfaces
Table A-11 lists the manual pages in section 7 that describe the interfaces to
Veritas Volume Manager devices.

Table A-11 Section 7 manual pages

DescriptionName

Configuration device.vxconfig

Dynamic multipathing device.vxdmp

General information device.vxinfo

Virtual disk device.vxio

I/O daemon process control device.vxiod

I/O tracing device.vxtrace

Using Veritas Volume Manager commands
Online manual pages

602



Configuring Veritas Volume
Manager

This appendix includes the following topics:

■ Setup tasks after installation

■ Unsupported disk arrays

■ Foreign devices

■ Initialization of disks and creation of disk groups

■ Guidelines for configuring storage

■ VxVM’s view of multipathed devices

■ Cluster support

Setup tasks after installation
A number of setup tasks can be performed after installing the Veritas Volume
Manager (VxVM) software.

The following tasks are to perform initial setup:

■ Create disk groups by placing disks under Veritas Volume Manager control.

■ Create volumes in the disk groups.

■ Configure file systems on the volumes.

The following setup tasks are optional:

■ Encapsulate the root disk, and mirror it to create an alternate boot disk.

■ Designate hot-relocation spare disks in each disk group.

BAppendix



■ Add mirrors to volumes.

■ Configure DRL and FastResync on volumes.

The following tasks are to perform ongoing maintenance:

■ Resize volumes and file systems.

■ Add more disks, create new disk groups, and create new volumes.

■ Create and maintain snapshots.

Unsupported disk arrays
After installation, add any disk arrays that are unsupported by Symantec to the
DISKS (JBOD) category.

See “How to administer the Device Discovery Layer” on page 92.

Foreign devices
The device discovery feature of VxVM can discover some devices that are controlled
by third-party drivers, such as for EMC PowerPath. For these devices it may be
preferable to use the multipathing capability that is provided by the third-party
drivers rather than using the Dynamic Multipathing (DMP) feature. Provided that
a suitable array support library is available, DMP can co-exist with such drivers.
Other foreign devices, for which a compatible ASL does not exist, can be made
available to Veritas Volume Manager as simple disks by using the vxddladm

addforeign command. This also has the effect of bypassing DMP.

See “How to administer the Device Discovery Layer” on page 92.

Initialization of disks and creation of disk groups
To place disks in disk groups, use the vxdiskadm program after completing the
installation.

See “Adding a disk to VxVM” on page 115.

Guidelines for configuring storage
A disk failure can cause loss of data on the failed disk and loss of access to your
system. Loss of access is due to the failure of a key disk used for system operations.
Veritas Volume Manager can protect your system from these problems.

Configuring Veritas Volume Manager
Unsupported disk arrays

604



To maintain system availability, data important to running and booting your
system must be mirrored. The data must be preserved so it can be used in case of
failure.

The following are suggestions for protecting your system and data:

■ Perform regular backups to protect your data. Backups are necessary if all
copies of a volume are lost or corrupted. Power surges can damage several (or
all) disks on your system. Also, typing a command in error can remove critical
files or damage a file system directly. Performing regular backups ensures
that lost or corrupted data is available to be retrieved.

■ Place the disk containing the root file system (the root or boot disk) under
Veritas Volume Manager control through encapsulation. Encapsulation
converts the root and swap devices to volumes (rootvol and swapvol). Mirror
the root disk so that an alternate root disk exists for booting purposes. By
mirroring disks critical to booting, you ensure that no single disk failure leaves
your system unbootable and unusable.
See “Rootability” on page 131.

■ Use mirroring to protect data against loss from a disk failure.
See “Mirroring guidelines” on page 605.

■ Use the DRL feature to speed up recovery of mirrored volumes after a system
crash.
See “Dirty region logging guidelines” on page 606.

■ Use striping to improve the I/O performance of volumes.
See “Striping guidelines” on page 607.

■ Make sure enough disks are available for a combined striped and mirrored
configuration. At least two disks are required for the striped plex, and one or
more additional disks are needed for the mirror.

■ When combining striping and mirroring, never place subdisks from one plex
on the same physical disk as subdisks from the other plex.

■ Use logging to prevent corruption of recovery data in RAID-5 volumes. Make
sure that each RAID-5 volume has at least one log plex.
See “RAID-5 guidelines” on page 608.

■ Leave the Veritas Volume Manager hot-relocation feature enabled.
See “Hot-relocation guidelines” on page 608.

Mirroring guidelines
Refer to the following guidelines when using mirroring.

605Configuring Veritas Volume Manager
Guidelines for configuring storage



■ Do not place subdisks from different plexes of a mirrored volume on the same
physical disk. This action compromises the availability benefits of mirroring
and degrades performance. Using the vxassist or vxdiskadm commands
precludes this from happening.

■ To provide optimum performance improvements through the use of mirroring,
at least 70 percent of physical I/O operations should be read operations. A
higher percentage of read operations results in even better performance.
Mirroring may not provide a performance increase or may even result in a
performance decrease in a write-intensive workload environment.

■ The operating system implements a file system cache. Read requests can
frequently be satisfied from the cache. This can cause the read/write ratio for
physical I/O operations through the file system to be biased toward writing
(when compared to the read/write ratio at the application level).

■ Where possible, use disks attached to different controllers when mirroring or
striping. Most disk controllers support overlapped seeks. This allows seeks to
begin on two disks at once. Do not configure two plexes of the same volume
on disks that are attached to a controller that does not support overlapped
seeks. This is important for older controllers or SCSI disks that do not cache
on the drive. It is less important for modern SCSI disks and controllers.
Mirroring across controllers allows the system to survive a failure of one of
the controllers. Another controller can continue to provide data from a mirror.

■ A plex exhibits superior performance when striped or concatenated across
multiple disks, or when located on a much faster device. Set the read policy to
prefer the faster plex. By default, a volume with one striped plex is configured
to prefer reading from the striped plex.

See “Mirroring (RAID-1)” on page 43.

Dirty region logging guidelines
Dirty region logging (DRL) can speed up recovery of mirrored volumes following
a system crash. When DRL is enabled, Veritas Volume Manager keeps track of the
regions within a volume that have changed as a result of writes to a plex.

Warning: Using Dirty Region Logging can adversely impact system performance
in a write-intensive environment.

See “Dirty region logging” on page 59.

Configuring Veritas Volume Manager
Guidelines for configuring storage

606



Striping guidelines
Refer to the following guidelines when using striping.

■ Do not place more than one column of a striped plex on the same physical disk.

■ Calculate stripe-unit sizes carefully. In general, a moderate stripe-unit size
(for example, 64 kilobytes, which is also the default used by vxassist) is
recommended.

■ If it is not feasible to set the stripe-unit size to the track size, and you do not
know the application I/O pattern, use the default stripe-unit size.

■ Many modern disk drives have variable geometry. This means that the track
size differs between cylinders, so that outer disk tracks have more sectors than
inner tracks. It is therefore not always appropriate to use the track size as the
stripe-unit size. For these drives, use a moderate stripe-unit size (such as 64
kilobytes), unless you know the I/O pattern of the application.

■ Volumes with small stripe-unit sizes can exhibit poor sequential I/O latency
if the disks do not have synchronized spindles. Generally, striping over disks
without synchronized spindles yields better performance when used with
larger stripe-unit sizes and multi-threaded, or largely asynchronous, random
I/O streams.

■ Typically, the greater the number of physical disks in the stripe, the greater
the improvement in I/O performance; however, this reduces the effective mean
time between failures of the volume. If this is an issue, combine striping with
mirroring to combine high-performance with improved reliability.

■ If only one plex of a mirrored volume is striped, set the policy of the volume
to prefer for the striped plex. (The default read policy, select, does this
automatically.)

■ If more than one plex of a mirrored volume is striped, configure the same
stripe-unit size for each striped plex.

■ Where possible, distribute the subdisks of a striped volume across drives
connected to different controllers and buses.

■ Avoid the use of controllers that do not support overlapped seeks. (Such
controllers are rare.)

The vxassist command automatically applies and enforces many of these rules
when it allocates space for striped plexes in a volume.

See “Striping (RAID-0)” on page 40.

607Configuring Veritas Volume Manager
Guidelines for configuring storage



RAID-5 guidelines
Refer to the following guidelines when using RAID-5.

In general, the guidelines for mirroring and striping together also apply to RAID-5.
The following guidelines should also be observed with RAID-5:

■ Only one RAID-5 plex can exist per RAID-5 volume (but there can be multiple
log plexes).

■ The RAID-5 plex must be derived from at least three subdisks on three or more
physical disks. If any log plexes exist, they must belong to disks other than
those used for the RAID-5 plex.

■ RAID-5 logs can be mirrored and striped.

■ If the volume length is not explicitly specified, it is set to the length of any
RAID-5 plex associated with the volume; otherwise, it is set to zero. If you
specify the volume length, it must be a multiple of the stripe-unit size of the
associated RAID-5 plex, if any.

■ If the log length is not explicitly specified, it is set to the length of the smallest
RAID-5 log plex that is associated, if any. If no RAID-5 log plexes are associated,
it is set to zero.

■ Sparse RAID-5 log plexes are not valid.

■ RAID-5 volumes are not supported for sharing in a cluster.

See “RAID-5 (striping with parity)” on page 46.

Hot-relocation guidelines
Hot-relocation automatically restores redundancy and access to mirrored and
RAID-5 volumes when a disk fails. This is done by relocating the affected subdisks
to disks designated as spares and/or free space in the same disk group.

The hot-relocation feature is enabled by default. The associated daemon,vxrelocd,
is automatically started during system startup.

Refer to the following guidelines when using hot-relocation.

■ The hot-relocation feature is enabled by default. Although it is possible to
disable hot-relocation, it is advisable to leave it enabled. It will notify you of
the nature of the failure, attempt to relocate any affected subdisks that are
redundant, and initiate recovery procedures.

■ Although hot-relocation does not require you to designate disks as spares,
designate at least one disk as a spare within each disk group. This gives you
some control over which disks are used for relocation. If no spares exist, Veritas
Volume Manager uses any available free space within the disk group. When

Configuring Veritas Volume Manager
Guidelines for configuring storage

608



free space is used for relocation purposes, it is possible to have performance
degradation after the relocation.

■ After hot-relocation occurs, designate one or more additional disks as spares
to augment the spare space. Some of the original spare space may be occupied
by relocated subdisks.

■ If a given disk group spans multiple controllers and has more than one spare
disk, set up the spare disks on different controllers (in case one of the
controllers fails).

■ For a mirrored volume, configure the disk group so that there is at least one
disk that does not already contain a mirror of the volume. This disk should
either be a spare disk with some available space or a regular disk with some
free space and the disk is not excluded from hot-relocation use.

■ For a mirrored and striped volume, configure the disk group so that at least
one disk does not already contain one of the mirrors of the volume or another
subdisk in the striped plex. This disk should either be a spare disk with some
available space or a regular disk with some free space and the disk is not
excluded from hot-relocation use.

■ For a RAID-5 volume, configure the disk group so that at least one disk does
not already contain the RAID-5 plex (or one of its log plexes) of the volume.
This disk should either be a spare disk with some available space or a regular
disk with some free space and the disk is not excluded from hot-relocation
use.

■ If a mirrored volume has a DRL log subdisk as part of its data plex, you cannot
relocate the data plex. Instead, place log subdisks in log plexes that contain
no data.

■ Hot-relocation does not guarantee to preserve the original performance
characteristics or data layout. Examine the locations of newly-relocated
subdisks to determine whether they should be relocated to more suitable disks
to regain the original performance benefits.

■ Although it is possible to build Veritas Volume Manager objects on spare disks,
it is recommended that you use spare disks for hot-relocation only.

See “How hot-relocation works” on page 468.

Accessing volume devices
As soon as a volume has been created and initialized, it is available for use as a
virtual disk partition by the operating system for the creation of a file system, or
by application programs such as relational databases and other data management
software.

609Configuring Veritas Volume Manager
Guidelines for configuring storage



Creating a volume in a disk group sets up block and character (raw) device files
that can be used to access the volume:

block device file for volume vol in disk group
dg

/dev/vx/dsk/dg/vol

character device file for volume vol in disk
group dg

/dev/vx/rdsk/dg/vol

The pathnames include a directory named for the disk group. Use the appropriate
device node to create, mount and repair file systems, and to lay out databases that
require raw partitions.

VxVM’s view of multipathed devices
You can use the vxdiskadm command to control how a device is treated by the
Dynamic Multipathing (DMP) feature of VxVM.

See “Disabling multipathing and making devices invisible to VxVM” on page 172.

Cluster support
The Veritas Volume Manager software includes a licensable feature that enables
it to be used in a cluster environment. The cluster functionality in Veritas Volume
Manager allows multiple hosts to simultaneously access and manage a set of disks
under Veritas Volume Manager control. A cluster is a set of hosts sharing a set of
disks; each host is referred to as a node in the cluster.

See the Veritas Storage Foundation Getting Started Guide.

Configuring shared disk groups
If you are installing Veritas Volume Manager for the first time or adding disks to
an existing cluster, you need to configure new shared disks.

Note: RAID-5 volumes are not supported for sharing in a cluster.

If you are setting up Veritas Volume Manager for the first time, configure the
shared disks using the following steps in the specified order:

■ Start the cluster on one node only to prevent access by other nodes.

Configuring Veritas Volume Manager
VxVM’s view of multipathed devices

610



■ On one node, run the vxdiskadmprogram and choose option 1 to initialize new
disks. When asked to add these disks to a disk group, choose none to leave the
disks for future use.

■ On other nodes in the cluster, run vxdctl enable to see the newly initialized
disks.

■ From the master node, create disk groups on the shared disks. To determine
if a node is a master or slave, run the command vxdctl -c mode.

■ Use the vxdg command or VEA to create disk groups. If you use the vxdg

command, specify the -s option to create shared disk groups.

■ From the master node only, use vxassist or VEA to create volumes in the disk
groups.

■ If the cluster is only running with one node, bring up the other cluster nodes.
Enter the vxdg list command on each node to display the shared disk groups.

611Configuring Veritas Volume Manager
Cluster support



Converting existing VxVM disk groups to shared disk groups
To convert existing disk groups to shared disk groups

1 Start the cluster on one node only to prevent access by other nodes.

2 Configure the disk groups using the following procedure.

To list all disk groups, use the following command:

# vxdg list

To deport the disk groups that are to be shared, use the following command:

# vxdg deport diskgroup

To import disk groups to be shared, use the following command:

# vxdg -s import diskgroup

This procedure marks the disks in the shared disk groups as shared and
stamps them with the ID of the cluster, enabling other nodes to recognize
the shared disks.

If dirty region logs exist, ensure they are active. If not, replace them with
larger ones.

To display the shared flag for all the shared disk groups, use the following
command:

# vxdg list

The disk groups are now ready to be shared.

3 Bring up the other cluster nodes. Enter the vxdg list command on each node
to display the shared disk groups. This command displays the same list of
shared disk groups displayed earlier.

See the Veritas Storage Foundation Cluster File System Installation Guide.

Configuring Veritas Volume Manager
Cluster support

612



Active/Active disk

arrays

This type of multipathed disk array allows you to access a disk in the disk array
through all the paths to the disk simultaneously, without any performance
degradation.

Active/Passive disk

arrays

This type of multipathed disk array allows one path to a disk to be designated as
primary and used to access the disk at any time. Using a path other than the
designated active path results in severe performance degradation in some disk
arrays.

associate The process of establishing a relationship between VxVM objects; for example, a
subdisk that has been created and defined as having a starting point within a plex
is referred to as being associated with that plex.

associated plex A plex associated with a volume.

associated subdisk A subdisk associated with a plex.

atomic operation An operation that either succeeds completely or fails and leaves everything as it
was before the operation was started. If the operation succeeds, all aspects of the
operation take effect at once and the intermediate states of change are invisible.
If any aspect of the operation fails, then the operation aborts without leaving
partial changes.

In a cluster, an atomic operation takes place either on all nodes or not at all.

attached A state in which a VxVM object is both associated with another object and enabled
for use.

block The minimum unit of data transfer to or from a disk or array.

boot disk A disk that is used for the purpose of booting a system.

boot disk group A private disk group that contains the disks from which the system may be booted.

bootdg A reserved disk group name that is an alias for the name of the boot disk group.

clean node shutdown The ability of a node to leave a cluster gracefully when all access to shared volumes
has ceased.

cluster A set of hosts (each termed a node) that share a set of disks.

cluster manager An externally-provided daemon that runs on each node in a cluster. The cluster
managers on each node communicate with each other and inform VxVM of changes
in cluster membership.

Glossary



cluster-shareable disk

group

A disk group in which access to the disks is shared by multiple hosts (also referred
to as a shared disk group).

column A set of one or more subdisks within a striped plex. Striping is achieved by
allocating data alternately and evenly across the columns within a plex.

concatenation A layout style characterized by subdisks that are arranged sequentially and
contiguously.

configuration copy A single copy of a configuration database.

configuration database A set of records containing detailed information on existing VxVM objects (such
as disk and volume attributes).

DCO (data change

object)

A VxVM object that is used to manage information about the FastResync maps in
the DCO volume. Both a DCO object and a DCO volume must be associated with a
volume to implement Persistent FastResync on that volume.

data stripe This represents the usable data portion of a stripe and is equal to the stripe minus
the parity region.

DCO volume A special volume that is used to hold Persistent FastResync change maps and
dirty region logs. See also see dirty region logging.

detached A state in which a VxVM object is associated with another object, but not enabled
for use.

device name The device name or address used to access a physical disk, such as c0t0d0s2. The
c#t#d#s# syntax identifies the controller, target address, disk, and slice (or
partition).

In a SAN environment, it is more convenient to use enclosure-based naming,
which forms the device name by concatenating the name of the enclosure (such
as enc0) with the disk’s number within the enclosure, separated by an underscore
(for example, enc0_2). The term disk access name can also be used to refer to a
device name.

dirty region logging The method by which the VxVM monitors and logs modifications to a plex as a
bitmap of changed regions. For a volumes with a new-style DCO volume, the dirty
region log (DRL) is maintained in the DCO volume. Otherwise, the DRL is allocated
to an associated subdisk called a log subdisk.

disabled path A path to a disk that is not available for I/O. A path can be disabled due to real
hardware failures or if the user has used the vxdmpadm disable command on that
controller.

disk A collection of read/write data blocks that are indexed and can be accessed fairly
quickly. Each disk has a universally unique identifier.

disk access name An alternative term for a device name.

Glossary614



disk access records Configuration records used to specify the access path to particular disks. Each
disk access record contains a name, a type, and possibly some type-specific
information, which is used by VxVM in deciding how to access and manipulate
the disk that is defined by the disk access record.

disk array A collection of disks logically arranged into an object. Arrays tend to provide
benefits such as redundancy or improved performance.

disk array serial number This is the serial number of the disk array. It is usually printed on the disk array
cabinet or can be obtained by issuing a vendor- specific SCSI command to the
disks on the disk array. This number is used by the DMP subsystem to uniquely
identify a disk array.

disk controller In the multipathing subsystem of VxVM, the controller (host bus adapter or HBA)
or disk array connected to the host, which the operating system represents as the
parent node of a disk.

For example, if a disk is represented by the device name
/dev/sbus@1f,0/QLGC,isp@2,10000/sd@8,0:c then the path component
QLGC,isp@2,10000 represents the disk controller that is connected to the host
for disk sd@8,0:c.

disk enclosure An intelligent disk array that usually has a backplane with a built-in Fibre Channel
loop, and which permits hot-swapping of disks.

disk group A collection of disks that share a common configuration. A disk group
configuration is a set of records containing detailed information on existing VxVM
objects (such as disk and volume attributes) and their relationships. Each disk
group has an administrator-assigned name and an internally defined unique ID.
The disk group names bootdg (an alias for the boot disk group), defaultdg (an
alias for the default disk group) and nodg (represents no disk group) are reserved.

disk group ID A unique identifier used to identify a disk group.

disk ID A universally unique identifier that is given to each disk and can be used to identify
the disk, even if it is moved.

disk media name An alternative term for a disk name.

disk media record A configuration record that identifies a particular disk, by disk ID, and gives that
disk a logical (or administrative) name.

disk name A logical or administrative name chosen for a disk that is under the control of
VxVM, such as disk03. The term disk media name is also used to refer to a disk
name.

dissociate The process by which any link that exists between two VxVM objects is removed.
For example, dissociating a subdisk from a plex removes the subdisk from the
plex and adds the subdisk to the free space pool.

615Glossary



dissociated plex A plex dissociated from a volume.

dissociated subdisk A subdisk dissociated from a plex.

distributed lock

manager

A lock manager that runs on different systems in a cluster, and ensures consistent
access to distributed resources.

enabled path A path to a disk that is available for I/O.

encapsulation A process that converts existing partitions on a specified disk to volumes. If any
partitions contain file systems, /etc/vfstab entries are modified so that the file
systems are mounted on volumes instead.

enclosure See disk enclosure.

enclosure-basednaming See device name.

fabric mode disk A disk device that is accessible on a Storage Area Network (SAN) via a Fibre
Channel switch.

FastResync A fast resynchronization feature that is used to perform quick and efficient
resynchronization of stale mirrors, and to increase the efficiency of the snapshot
mechanism.

Fibre Channel A collective name for the fiber optic technology that is commonly used to set up
a Storage Area Network (SAN).

file system A collection of files organized together into a structure. The UNIX file system is
a hierarchical structure consisting of directories and files.

free space An area of a disk under VxVM control that is not allocated to any subdisk or
reserved for use by any other VxVM object.

free subdisk A subdisk that is not associated with any plex and has an empty putil[0] field.

hostid A string that identifies a host to VxVM. The host ID for a host is stored in its
volboot file, and is used in defining ownership of disks and disk groups.

hot-relocation A technique of automatically restoring redundancy and access to mirrored and
RAID-5 volumes when a disk fails. This is done by relocating the affected subdisks
to disks designated as spares and/or free space in the same disk group.

hot-swap Refers to devices that can be removed from, or inserted into, a system without
first turning off the power supply to the system.

initiating node The node on which the system administrator is running a utility that requests a
change to VxVM objects. This node initiates a volume reconfiguration.

JBOD (just a bunch of

disks)

The common name for an unintelligent disk array which may, or may not, support
the hot-swapping of disks.

log plex A plex used to store a RAID-5 log. The term log plex may also be used to refer to
a Dirty Region Logging plex.

Glossary616



log subdisk A subdisk that is used to store a dirty region log.

master node A node that is designated by the software to coordinate certain VxVM operations
in a cluster. Any node is capable of being the master node.

mastering node The node to which a disk is attached. This is also known as a disk owner.

mirror A duplicate copy of a volume and the data therein (in the form of an ordered
collection of subdisks). Each mirror consists of one plex of the volume with which
the mirror is associated.

mirroring A layout technique that mirrors the contents of a volume onto multiple plexes.
Each plex duplicates the data stored on the volume, but the plexes themselves
may have different layouts.

multipathing Where there are multiple physical access paths to a disk connected to a system,
the disk is called multipathed. Any software residing on the host, (for example,
the DMP driver) that hides this fact from the user is said to provide multipathing
functionality.

node One of the hosts in a cluster.

node abort A situation where a node leaves a cluster (on an emergency basis) without
attempting to stop ongoing operations.

node join The process through which a node joins a cluster and gains access to shared disks.

Non-Persistent

FastResync

A form of FastResync that cannot preserve its maps across reboots of the system
because it stores its change map in memory.

object An entity that is defined to and recognized internally by VxVM. The VxVM objects
are: volume, plex, subdisk, disk, and disk group. There are actually two types of
disk objects—one for the physical aspect of the disk and the other for the logical
aspect.

parity A calculated value that can be used to reconstruct data after a failure. While data
is being written to a RAID-5 volume, parity is also calculated by performing an
exclusive OR (XOR) procedure on data. The resulting parity is then written to the
volume. If a portion of a RAID-5 volume fails, the data that was on that portion
of the failed volume can be recreated from the remaining data and the parity.

parity stripe unit A RAID-5 volume storage region that contains parity information. The data
contained in the parity stripe unit can be used to help reconstruct regions of a
RAID-5 volume that are missing because of I/O or disk failures.

partition The standard division of a physical disk device, as supported directly by the
operating system and disk drives.

path When a disk is connected to a host, the path to the disk consists of the HBA (Host
Bus Adapter) on the host, the SCSI or fibre cable connector and the controller on
the disk or disk array. These components constitute a path to a disk. A failure on

617Glossary



any of these results in DMP trying to shift all I/O for that disk onto the remaining
(alternate) paths.

pathgroup In the case of disks which are not multipathed by vxdmp, VxVM will see each path
as a disk. In such cases, all paths to the disk can be grouped. This way only one of
the paths from the group is made visible to VxVM.

Persistent FastResync A form of FastResync that can preserve its maps across reboots of the system by
storing its change map in a DCO volume on disk).

persistent state logging A logging type that ensures that only active mirrors are used for recovery purposes
and prevents failed mirrors from being selected for recovery. This is also known
as kernel logging.

physical disk The underlying storage device, which may or may not be under VxVM control.

plex A plex is a logical grouping of subdisks that creates an area of disk space
independent of physical disk size or other restrictions. Mirroring is set up by
creating multiple data plexes for a single volume. Each data plex in a mirrored
volume contains an identical copy of the volume data. Plexes may also be created
to represent concatenated, striped and RAID-5 volume layouts, and to store volume
logs.

primary path In Active/Passive disk arrays, a disk can be bound to one particular controller on
the disk array or owned by a controller. The disk can then be accessed using the
path through this particular controller.

private disk group A disk group in which the disks are accessed by only one specific host in a cluster.

private region A region of a physical disk used to store private, structured VxVM information.
The private region contains a disk header, a table of contents, and a configuration
database. The table of contents maps the contents of the disk. The disk header
contains a disk ID. All data in the private region is duplicated for extra reliability.

public region A region of a physical disk managed by VxVM that contains available space and
is used for allocating subdisks.

RAID (redundant array

of independent disks)

A disk array set up with part of the combined storage capacity used for storing
duplicate information about the data stored in that array. This makes it possible
to regenerate the data if a disk failure occurs.

read-writeback mode A recovery mode in which each read operation recovers plex consistency for the
region covered by the read. Plex consistency is recovered by reading data from
blocks of one plex and writing the data to all other writable plexes.

root configuration The configuration database for the root disk group. This is special in that it always
contains records for other disk groups, which are used for backup purposes only.
It also contains disk records that define all disk devices on the system.

root disk The disk containing the root file system. This disk may be under VxVM control.

Glossary618



root file system The initial file system mounted as part of the UNIX kernel startup sequence.

root partition The disk region on which the root file system resides.

root volume The VxVM volume that contains the root file system, if such a volume is designated
by the system configuration.

rootability The ability to place the root file system and the swap device under VxVM control.
The resulting volumes can then be mirrored to provide redundancy and allow
recovery in the event of disk failure.

secondary path In Active/Passive disk arrays, the paths to a disk other than the primary path are
called secondary paths. A disk is supposed to be accessed only through the primary
path until it fails, after which ownership of the disk is transferred to one of the
secondary paths.

sector A unit of size, which can vary between systems. Sector size is set per device (hard
drive, CD-ROM, and so on). Although all devices within a system are usually
configured to the same sector size for interoperability, this is not always the case.

A sector is commonly 512 bytes.

shared disk group A disk group in which access to the disks is shared by multiple hosts (also referred
to as a cluster-shareable disk group).

shared volume A volume that belongs to a shared disk group and is open on more than one node
of a cluster at the same time.

shared VM disk A VM disk that belongs to a shared disk group in a cluster.

slave node A node that is not designated as the master node of a cluster.

slice The standard division of a logical disk device. The terms partition and slice are
sometimes used synonymously.

snapshot A point-in-time copy of a volume (volume snapshot) or a file system (file system
snapshot).

spanning A layout technique that permits a volume (and its file system or database) that is
too large to fit on a single disk to be configured across multiple physical disks.

sparse plex A plex that is not as long as the volume or that has holes (regions of the plex that
do not have a backing subdisk).

SAN (storage area

network)

A networking paradigm that provides easily reconfigurable connectivity between
any subset of computers, disk storage and interconnecting hardware such as
switches, hubs and bridges.

stripe A set of stripe units that occupy the same positions across a series of columns.

stripe size The sum of the stripe unit sizes comprising a single stripe across all columns
being striped.

619Glossary



stripe unit Equally-sized areas that are allocated alternately on the subdisks (within columns)
of each striped plex. In an array, this is a set of logically contiguous blocks that
exist on each disk before allocations are made from the next disk in the array. A
stripe unit may also be referred to as a stripe element.

stripe unit size The size of each stripe unit. The default stripe unit size is 64KB. The stripe unit
size is sometimes also referred to as the stripe width.

striping A layout technique that spreads data across several physical disks using stripes.
The data is allocated alternately to the stripes within the subdisks of each plex.

subdisk A consecutive set of contiguous disk blocks that form a logical disk segment.
Subdisks can be associated with plexes to form volumes.

swap area A disk region used to hold copies of memory pages swapped out by the system
pager process.

swap volume A VxVM volume that is configured for use as a swap area.

transaction A set of configuration changes that succeed or fail as a group, rather than
individually. Transactions are used internally to maintain consistent
configurations.

VM disk A disk that is both under VxVM control and assigned to a disk group. VM disks
are sometimes referred to as VxVM disks.

volboot file A small file that is used to locate copies of the boot disk group configuration. The
file may list disks that contain configuration copies in standard locations, and
can also contain direct pointers to configuration copy locations. The volboot file
is stored in a system-dependent location.

volume A virtual disk, representing an addressable range of disk blocks used by
applications such as file systems or databases. A volume is a collection of from
one to 32 plexes.

volume configuration

device

The volume configuration device (/dev/vx/config) is the interface through which
all configuration changes to the volume device driver are performed.

volume device driver The driver that forms the virtual disk drive between the application and the
physical device driver level. The volume device driver is accessed through a virtual
disk device node whose character device nodes appear in/dev/vx/rdsk, and whose
block device nodes appear in /dev/vx/dsk.

volume event log The device interface (/dev/vx/event) through which volume driver events are
reported to utilities.

vxconfigd The VxVM configuration daemon, which is responsible for making changes to the
VxVM configuration. This daemon must be running before VxVM operations can
be performed.

Glossary620



Symbols
/dev/vx/dmp directory 167
/dev/vx/rdmp directory 167
/etc/default/vxassist file 309, 480
/etc/default/vxdg file 226, 494
/etc/default/vxdisk file 87, 115
/etc/default/vxencap file 115
/etc/init.d/vxvm-recover file 486
/etc/vfstab file 372
/etc/volboot file 275
/etc/vx/darecs file 275
/etc/vx/dmppolicy.info file 201
/etc/vx/volboot file 234
/kernel/drv/vxio.conf file 554–555
/kernel/drv/vxspec.conf file 556
/lib/svc/method/vxvm-recover file 486

A
A/A disk arrays 166
A/A-A disk arrays 166
A/P disk arrays 166
A/P-C disk arrays 167
A/PF disk arrays 166
A/PF-C disk arrays 167
A/PG disk arrays 167
A/PG-C disk arrays 167
A5x00 arrays

removing and replacing disks 154
access port 166
activation modes for shared disk groups 493–494
ACTIVE

plex state 291
volume state 340

active path attribute 197
active paths

devices 198–199
ACTIVE state 394
Active/Active disk arrays 166
Active/Passive disk arrays 166
adaptive load-balancing 201
adding disks 124

alignment constraints 312
allocation

site-based 526
APM

configuring 216
array policy module (APM)

configuring 216
array ports

disabling for DMP 207
displaying information about 187
enabling for DMP 208

array support library (ASL) 90
Array Volume ID

device naming 109
arrays

DMP support 89
ASL

array support library 89–90
Asymmetric Active/Active disk arrays 166
ATTACHING state 394
attributes

active 197
autogrow 404, 406
autogrowby 404
cache 406
cachesize 406
comment 288, 300
dcolen 67, 322, 442
default for disk initialization 115
default for encapsulation 115
dgalign_checking 312
drl 324, 369
fastresync 322, 324, 375
for specifying storage 313
hasdcolog 375
highwatermark 404
init 334
len 288
loglen 325
logtype 324
maxautogrow 404
maxdev 238

Index



attributes (continued)
mirdg 414
mirvol 414
name 287, 300
ncachemirror 406
ndcomirror 322, 324, 442
ndcomirs 361, 402
newvol 412
nmirror 412
nomanual 197
nopreferred 197
plex 300
preferred priority 198
primary 198
putil 287, 300
secondary 198
sequential DRL 324
setting for paths 197, 199
snapvol 408, 414
source 408, 414
standby 198
subdisk 287
syncing 400, 426
tutil 288, 300

auto disk type 85
autogrow

tuning 428
autogrow attribute 404, 406
autogrowby attribute 404
autotrespass mode 166

B
backups

created using snapshots 400
creating for volumes 388
creating using instant snapshots 400
creating using third-mirror snapshots 431
for multiple volumes 415, 436
implementing online 457
of disk group configuration 276

balanced path policy 202
base minor number 236
blocks on disks 33
boot command

-a flag 137
syntax 137

boot disk
encapsulating 134
listing volumes on 137

boot disk (continued)
mirroring 134
unencapsulating 141

boot disk group 222
boot disks

alternate 135
boot-time restrictions 133
bootdg 222
booting root volumes 132–133
break-off snapshots

emulation of 393
BROKEN state 394

C
c# 24, 83
c#t#d#s# 83
c#t#d#s# based naming 83
c0d0t0 84
cache attribute 406
cache objects

creating 403
enabling 404
listing snapshots in 428

caches
creating 403
deleting 430
finding out snapshots configured on 430
growing 430
listing snapshots in 428
removing 430
resizing 430
shrinking 430
stopping 431
used by space-optimized instant snapshots 392

cachesize attribute 406
Campus Cluster feature

administering 525
campus clusters

administering 525
serial split brain condition in 250

cascade instant snapshots 395
cascaded snapshot hierarchies

creating 419
categories

disks 90
CDS

alignment constraints 312
compatible disk groups 226
disk format 86

Index622



cds attribute 226
cdsdisk format 86
check_all policy 214
check_alternate policy 215
check_disabled policy 215
check_periodic policy 215
checkpoint interval 557
CLEAN

plex state 291
volume state 340

clone_disk flag 240
cloned disks 239–240
cluster functionality

enabling 610
shared disks 610

cluster protocol version
checking 523
upgrading 523

cluster-shareable disk groups in clusters 492
clusters

activating disk groups 494
activating shared disk groups 520
activation modes for shared disk groups 493
benefits 503
checking cluster protocol version 522
cluster-shareable disk groups 492
configuration 505
configuring exclusive open of volume by

node 521
connectivity policies 495
converting shared disk groups to private 519
creating shared disk groups 517
designating shareable disk groups 492
detach policies 495
determining if disks are shared 516
forcibly adding disks to disk groups 518
forcibly importing disk groups 518
importing disk groups as shared 518
initialization 505
introduced 489
limitations of shared disk groups 500
listing shared disk groups 516
maximum number of nodes in 504
moving objects between disk groups 519
node shutdown 512
nodes 490
operation of DRL in 513–514
operation of vxconfigd in 510
operation of VxVM in 490

clusters (continued)
private disk groups 492
private networks 491
protection against simultaneous writes 493
reconfiguration of 505
resolving disk status in 495
setting disk connectivity policies in 520
setting failure policies in 521
shared disk groups 492
shared objects 493
splitting disk groups in 519
upgrading cluster protocol version 523
use of DMP in 171
vol_fmr_logsz tunable 558
volume reconfiguration 508
vxclust 506
vxclustadm 507
vxdctl 515
vxrecover 523
vxstat 523

columns
changing number of 379
in striping 40
mirroring in striped-mirror volumes 327

CommandCentral Storage 73
comment

plex attribute 300
subdisk attribute 288

concatenated volumes 38, 304
concatenated-mirror volumes

converting to mirrored-concatenated 383
creating 320
defined 46
recovery 305

concatenation 38
condition flags for plexes 293
configuration backup and restoration 276
configuration changes

monitoring using vxnotify 276
configuration copies for disk group 555
configuration database

copy size 221
in private region 85
listing disks with 242
metadata 241
reducing size of 256

configuring
shared disks 610

623Index



connectivity policies 495
setting for disk groups 520

Controller ID
displaying 186

controllers
disabling for DMP 207
disabling in DMP 174
displaying information about 185
enabling for DMP 208
mirroring across 318, 327
mirroring guidelines 606
number 24
specifying to vxassist 313
upgrading firmware 208

copy-on-write
used by instant snapshots 391

copymaps 67
Cross-platform Data Sharing (CDS)

alignment constraints 312
disk format 86

customized naming
DMP nodes 178

CVM
cluster functionality of VxVM 503

D
d# 24, 83
data change object

DCO 67
data redundancy 43–44, 47
data volume configuration 61
database replay logs and sequential DRL 60
databases

resilvering 60
resynchronizing 60

DCO
adding to RAID-5 volumes 363
adding version 0 DCOs to volumes 440
adding version 20 DCOs to volumes 361
calculating plex size for version 20 68
considerations for disk layout 262
creating volumes with version 0 DCOs

attached 321
creating volumes with version 20 DCOs

attached 324
data change object 67
determining version of 363
dissociating version 0 DCOs from volumes 444
effect on disk group split and join 262

DCO (continued)
log plexes 69
log volume 67
moving log plexes 363, 443
reattaching version 0 DCOs to volumes 444
removing version 0 DCOs from volumes 444
specifying storage for version 0 plexes 443
specifying storage for version 20 plexes 362
used with DRL 59
version 0 67
version 20 67
versioning 67

dcolen attribute 67, 322, 442
DCOSNP

plex state 291
DDI_NT_FABRIC property 88
DDL 27

Device Discovery Layer 92
decision support

implementing 461
default disk group 222
defaultdg 222–223
defaults

for vxdisk 87, 115
for vxencap 115

description file with vxmake 333
detach policy

global 497
local 497

DETACHED
plex kernel state 294
volume kernel state 341

device discovery
introduced 27
partial 88

Device Discovery Layer 92
Device Discovery Layer (DDL) 27, 92
device files to access volumes 335, 609
device names 24, 82

configuring persistent 110
user-specified 178

device nodes
controlling access for volume sets 453
displaying access for volume sets 453
enabling access for volume sets 452
for volume sets 451

devices
adding foreign 104
fabric 88

Index624



devices (continued)
JBOD 89
listing all 93
metadevices 83
nopriv 130
path redundancy 198–199
pathname 83
volatile 124

dgalign_checking attribute 312
dgfailpolicy attribute 500
dirty flags set on volumes 58
dirty region logging.. See DRL
dirty regions 562
disable failure policy 499
DISABLED

plex kernel state 294
volume kernel state 341

disabled paths 177
disk access records

stored in /etc/vx/darecs 275
disk arrays

A/A 166
A/A-A 166
A/P 166
A/P-C 167
A/PF 166
A/PF-C 167
A/PG 167
A/PG-C 167
Active/Active 166
Active/Passive 166
adding disks to DISKS category 101
Asymmetric Active/Active 166
defined 25
excluding support for 99
JBOD devices 89
listing excluded 99
listing supported 98
listing supported disks in DISKS category 99
multipathed 26
re-including support for 99
removing disks from DISKS category 103
supported with DMP 98

disk drives
variable geometry 607

disk duplexing 327
disk groups

activating shared 520
activation in clusters 494

disk groups (continued)
adding disks to 227
avoiding conflicting minor numbers on

import 236
boot disk group 222
bootdg 222
clearing locks on disks 234
cluster-shareable 492
compatible with CDS 226
configuration backup and restoration 276
configuring site consistency on 533
configuring site-based allocation on 532
converting to private 519
creating 220
creating shared 517
creating with old version number 274
default disk group 222
defaultdg 222
defaults file for shared 494
defined 32
deporting 229
designating as shareable 492
destroying 269
determining the default disk group 222
disabling 269
displaying boot disk group 223
displaying default disk group 223
displaying free space in 225
displaying information about 224
displaying version of 274
effect of size on private region 221
elimination of rootdg 221
failure policy 499
features supported by version 272
forcing import of 235
free space in 473
impact of number of configuration copies on

performance 555
importing 230
importing as shared 518
importing forcibly 518
importing with cloned disks 240
ISP 277
joining 258, 267
layout of DCO plexes 262
limitations of move

split. See and join
listing objects affected by a move 261
listing shared 516

625Index



disk groups (continued)
making site consistent 531
moving between systems 233
moving disks between 228, 264
moving licensed EMC disks between 264
moving objects between 257, 263
moving objects in clusters 519
names reserved by system 222
nodg 222
private in clusters 492
recovering destroyed 270
recovery from failed reconfiguration 260
removing disks from 227
renaming 248
reorganizing 256
reserving minor numbers 236
restarting moved volumes 265, 267–268
root 32
rootdg 32, 221
serial split brain condition 250
setting connectivity policies in clusters 520
setting default disk group 223
setting failure policies in clusters 521
setting number of configuration copies 555
shared in clusters 492
specifying to commands 222
splitting 257, 266
splitting in clusters 519
upgrading version of 270, 274
version 270, 274

disk media names 32, 82
disk names 82

configuring persistent 110
disk## 33
disk##-## 33
diskdetpolicy attribute 500
diskgroup## 82
disks 90

adding 124
adding to disk groups 227
adding to disk groups forcibly 518
adding to DISKS category 101
array support library 90
auto-configured 85
c0t0d0 84
categories 90
CDS format 86
changing default layout attributes 115
changing naming scheme 107

disks (continued)
clearing locks on 234
cloned 240
complete failure messages 472
configuring persistent names 110
default encapsulation values 115
default initialization values 115
determining failed 472
determining if shared 516
Device Discovery Layer 92
disabled path 177
discovery of by VxVM 87, 89
disk access records file 275
disk arrays 25
displaying information 142–143
displaying information about 142, 225
displaying naming scheme 109
displaying spare 476
dynamic LUN expansion 144
enabled path 177
enabling 155
enabling after hot swap 155
encapsulating 105
encapsulation 126, 131
enclosures 27
excluding free space from hot-relocation use 478
failure handled by hot-relocation 469
formatting 114
handling clones 239
handling duplicated identifiers 239
hot-relocation 467
initializing 105, 115
installing 114
invoking discovery of 91
layout of DCO plexes 262
listing tags on 241
listing those supported in JBODs 99
making available for hot-relocation 476
making free space available for hot-relocation

use 479
marking as spare 476
media name 82
metadevices 83
mirroring boot disk 134
mirroring root disk 134
mirroring volumes on 356
moving between disk groups 228, 264
moving disk groups between systems 233
moving volumes from 373

Index626



disks (continued)
names 82
naming schemes 83
nopriv 86
nopriv devices 130
number 24
obtaining performance statistics 551
OTHER_DISKS category 90
partial failure messages 471
postponing replacement 148
primary path 177
putting under control of VxVM 105
reinitializing 123
releasing from disk groups 269
removing 145, 148
removing from A5x00 arrays 154
removing from disk groups 227
removing from DISKS category 103
removing from pool of hot-relocation spares 478
removing from VxVM control 147, 228
removing tags from 242
removing with subdisks 147
renaming 156
replacing 148
replacing in A5x00 arrays 154
replacing removed 152
reserving for special purposes 157
resolving status in clusters 495
root disk 131
scanning for 87
secondary path 177
setting connectivity policies in clusters 520
setting failure policies in clusters 521
setting tags on 241
simple 86
simple format 86
sliced 86
sliced format 86
spare 473
specifying to vxassist 313
stripe unit size 607
tagging with site name 536
taking offline 156
UDID flag 239
unique identifier 239
unreserving 158
upgrading contoller firmware 208
VM 32
writing a new identifier to 240

DISKS category 90
adding disks 101
listing supported disks 99
removing disks 103

displaying
DMP nodes 181
HBA information 186
redundancy levels 198
supported disk arrays 98

displaying statistics
erroneous I/Os 194
queued I/Os 194

DMP
booting from DMP devices 171
check_all restore policy 214
check_alternate restore policy 215
check_disabled restore policy 215
check_periodic restore policy 215
configuring DMP path restoration policies 214
configuring I/O throttling 211
configuring response to I/O errors 210, 213
disabling array ports 207
disabling controllers 207
disabling multipathing 172
disabling paths 207
displaying DMP database information 175
displaying DMP node for a path 180
displaying DMP node for an enclosure 180–181
displaying DMP nodes 181
displaying information about array ports 187
displaying information about controllers 185
displaying information about enclosures 186
displaying information about paths 175
displaying LUN group for a node 182
displaying paths controlled by DMP node 183
displaying paths for a controller 184
displaying paths for an array port 184
displaying recoveryoption values 213
displaying status of DMP error handling

thread 216
displaying status of DMP path restoration

thread 216
displaying TPD information 187
dynamic multipathing 165
enabling array ports 208
enabling controllers 208
enabling multipathing 174
enabling paths 208
enclosure-based naming 168

627Index



DMP (continued)
gathering I/O statistics 191
in a clustered environment 171
load balancing 170
logging levels 568
metanodes 167
nodes 167
path aging 568
path failover mechanism 169
path-switch tunable 570
renaming an enclosure 209
restore policy 214
scheduling I/O on secondary paths 204
setting the DMP restore polling interval 214
stopping the DMP restore daemon 216
vxdmpadm 179

DMP nodes
displaying consolidated information 181
setting names 178

DMP support
JBOD devices 89

dmp_cache_open tunable 566
dmp_daemon_count tunable 566
dmp_delayq_interval tunable 567
dmp_failed_io_threshold tunable 567
dmp_fast_recovery tunable 567
dmp_health_time tunable 568
dmp_log_level tunable 568
dmp_path_age tunable 570
dmp_pathswitch_blks_shift tunable 570
dmp_probe_idle_lun tunable 571
dmp_queue_depth tunable 571
dmp_retry_count tunable 572
dmp_scsi_timeout tunable 573
dmp_stat_interval tunable 573
DR

dynamic reconfiguration 171
DRL

adding log subdisks 285
adding logs to mirrored volumes 366
creating volumes with DRL enabled 324
determining if active 365
determining if enabled 364
dirty region logging 59
disabling 365
enabling on volumes 361
handling recovery in clusters 514
hot-relocation limitations 469
log subdisks 59

DRL (continued)
maximum number of dirty regions 562
minimum number of sectors 562
operation in clusters 513
re-enabling 365
recovery map in version 20 DCO 68
removing logs from mirrored volumes 367
removing support for 365
sequential 60
use of DCO with 59

drl attribute 324, 369
DRL guidelines 606
duplexing 327
dynamic LUN expansion 144
dynamic reconfiguration 171

E
EMC arrays

moving disks between disk groups 264
EMC PowerPath

coexistence with DMP 91
EMC Symmetrix

autodiscovery 91
EMPTY

plex state 291
volume state 340

ENABLED
plex kernel state 294
volume kernel state 341

enabled paths
displaying 177

encapsulating disks 126, 131
encapsulation

default attributes 115
failure of 129
of disks 105

enclosure-based naming 27, 84, 107
displayed by vxprint 114
DMP 168

enclosures 27
discovering disk access names in 114
displaying information about 186
issues with nopriv disks 112
issues with simple disks 112
mirroring across 327
path redundancy 198–199
setting attributes of paths 197, 199
tagging with site name 537, 540

Index628



erroneous I/Os
displaying statistics 194

error messages
Association count is incorrect 503
Association not resolved 503
Cannot auto-import group 502
Configuration records are inconsistent 503
Disk for disk group not found 235
Disk group has no valid configuration

copies 235, 503
Disk group version doesn't support feature 271
Disk is in use by another host 234
Disk is used by one or more subdisks 227
Disk not moving

but subdisks on it are 261
Duplicate record in configuration 503
import failed 234
It is not possible to encapsulate 129
No valid disk found containing disk group 234
The encapsulation operation failed 129
tmpsize too small to perform this relayout 54
unsupported layout 129
Volume has different organization in each

mirror 353
vxdg listmove failed 261

errord daemon 169
exclusive-write mode 494
exclusivewrite mode 493
explicit failover mode 166

F
fabric devices 88
FAILFAST flag 169
failover 489, 504
failover mode 166
failure handled by hot-relocation 469
failure in RAID-5 handled by hot-relocation 469
failure policies 499

setting for disk groups 521
FastResync

checking if enabled on volumes 375
disabling on volumes 375
effect of growing volume on 71
enabling on new volumes 322
enabling on volumes 374
limitations 72
Non-Persistent 66
Persistent 66, 68
size of bitmap 558

FastResync (continued)
snapshot enhancements 389
use with snapshots 65

fastresync attribute 322, 324, 375
file systems

growing using vxresize 352
mirroring on root disk 137
permitted resizing operations 352
shrinking using vxresize 352
unmounting 372

fire drill
defined 526
testing 533

firmware
upgrading 208

FMR.. See FastResync
foreign devices

adding 104
formatting disks 114
free space in disk groups 473
full-sized instant snapshots 390

creating 408
creating volumes for use as 405

fullinst snapshot type 426

G
global detach policy 497
guidelines

DRL 606
mirroring 605
RAID-5 608

H
hasdcolog attribute 375
HBA information

displaying 186
HBAs

listing ports 94
listing supported 94
listing targets 95

highwatermark attribute 404
host failures 541
hot-relocation

complete failure messages 472
configuration summary 475
daemon 468
defined 73
detecting disk failure 469

629Index



hot-relocation (continued)
detecting plex failure 469
detecting RAID-5 subdisk failure 469
excluding free space on disks from use by 478
limitations 469
making free space on disks available for use

by 479
marking disks as spare 476
modifying behavior of 486
notifying users other than root 487
operation of 467
partial failure messages 471
preventing from running 487
reducing performance impact of recovery 487
removing disks from spare pool 478
subdisk relocation 474
subdisk relocation messages 480
unrelocating subdisks 480
unrelocating subdisks using vxassist 482
unrelocating subdisks using vxdiskadm 481
unrelocating subdisks using vxunreloc 483
use of free space in disk groups 473
use of spare disks 473
use of spare disks and free space 474
using only spare disks for 480
vxrelocd 468

I
I/O

gathering statistics for DMP 191
kernel threads 23
scheduling on secondary paths 204
throttling 169
use of statistics in performance tuning 550
using traces for performance tuning 553

I/O operations
maximum size of 560

I/O policy
displaying 200
example 204
specifying 200

I/O throttling 211
I/O throttling options

configuring 213
identifiers for tasks 342
idle LUNs 571
implicit failover mode 166
init attribute 334

initialization
default attributes 115
of disks 105, 115

initialization of disks 105
instant snapshots

backing up multiple volumes 415
cascaded 395
creating backups 400
creating for volume sets 416
creating full-sized 408
creating space-optimized 406
creating volumes for use as full-sized 405
displaying information about 424
dissociating 423
full-sized 390
improving performance of synchronization 427
reattaching 420
refreshing 420
removing 423
removing support for 365
restoring volumes using 422
space-optimized 392
splitting hierarchies 424
synchronizing 426

intent logging 388
INVALID volume state 340
ioctl calls 560–561
IOFAIL plex condition 293
IOFAIL plex state 291
iSCSI parameters

administering with DDL 97
setting with vxddladm 97

ISP
disk groups 277

ISP disk group
Upgrading 277

J
JBOD

DMP support 89
JBODs

adding disks to DISKS category 101
listing supported disks 99
removing disks from DISKS category 103

K
kernel states

for plexes 294

Index630



kernel states (continued)
volumes 341

L
layered volumes

converting to non-layered 383
defined 51, 305
striped-mirror 45

layout attributes
changing for disks 115

layouts
changing default used by vxassist 312
left-symmetric 49
specifying default 312
types of volume 304

leave failure policy 499
left-symmetric layout 49
len subdisk attribute 288
link objects 394
linked break-off snapshots 394

creating 413
linked third-mirror snapshots

reattaching 421
listing

alternate boot disks 135
DMP nodes 181
supported disk arrays 98

load balancing 166
across nodes in a cluster 489
displaying policy for 200
specifying policy for 200

local detach policy 497
lock clearing on disks 234
LOG plex state 291
log subdisks 606

associating with plexes 285
DRL 59

logdisk 323, 330
logical units 166
loglen attribute 325
logs

adding DRL log 366
adding for RAID-5 384
adding sequential DRL logs 366
adding to volumes 360
RAID-5 51, 58
removing DRL log 367
removing for RAID-5 385
removing sequential DRL logs 367

logs (continued)
resizing using vxvol 355
specifying number for RAID-5 329
usage with volumes 306

logtype attribute 324
LUN 166
LUN expansion 144
LUN group failover 167
LUN groups

displaying details of 182
LUNs

idle 571

M
maps

adding to volumes 360
usage with volumes 306

master node
defined 491
discovering 515

maxautogrow attribute 404
maxdev attribute 238
memory

granularity of allocation by VxVM 562
maximum size of pool for VxVM 563
minimum size of pool for VxVM 565
persistence of FastResync in 66

messages
complete disk failure 472
hot-relocation of subdisks 480
partial disk failure 471

metadata 241
metadevices 83
metanodes

DMP 167
minimum queue load balancing policy 202
minimum redundancy levels

displaying for a device 198
specifying for a device 199

minor numbers 236
mirbrk snapshot type 426
mirdg attribute 414
mirrored volumes

adding DRL logs 366
adding sequential DRL logs 366
changing read policies for 371
configuring VxVM to create by default 356
creating 319
creating across controllers 318, 327

631Index



mirrored volumes (continued)
creating across enclosures 327
creating across targets 316
defined 305
dirty region logging 59
DRL 59
FastResync 59
FR 59
logging 59
performance 546
removing DRL logs 367
removing sequential DRL logs 367
snapshots 65

mirrored-concatenated volumes
converting to concatenated-mirror 383
creating 320
defined 44

mirrored-stripe volumes
benefits of 44
converting to striped-mirror 383
creating 326
defined 305
performance 547

mirroring
boot disk 134
defined 43
guidelines 605
root disk 134

mirroring controllers 606
mirroring plus striping 45
mirrors

adding to volumes 355
creating snapshot 433
defined 36
removing from volumes 359
specifying number of 320

mirvol attribute 414
mirvol snapshot type 426
monitor_fabric tunable 569
mrl

keyword 199
Multi-Volume Support 447
multipathing

disabling 172
displaying information about 175
enabling 174

N
names

changing for disk groups 248
defining for snapshot volumes 436
device 24, 82
disk 82
disk media 32, 82
plex 35
plex attribute 300
renaming disks 156
subdisk 33
subdisk attribute 287
VM disk 33
volume 35

naming
DMP nodes 178

naming scheme
changing for disks 107
changing for TPD enclosures 111
displaying for disks 109

naming schemes
for disks 83

ncachemirror attribute 406
ndcomirror attribute 322, 324, 442
ndcomirs attribute 361, 402
NEEDSYNC volume state 340
newvol attribute 412
nmirror attribute 411–412
NODAREC plex condition 293
nodes

DMP 167
in clusters 490
maximum number in a cluster 504
requesting status of 515
shutdown in clusters 512
use of vxclust 506
use of vxclustadm to control CVM

functionality 507
NODEVICE plex condition 293
nodg 222
nomanual path attribute 197
non-autotrespass mode 166
non-layered volume conversion 383
Non-Persistent FastResync 66
nopreferred path attribute 197
nopriv devices 130
nopriv disk type 86
nopriv disks

issues with enclosures 112

Index632



O
objects

physical 24
virtual 30

off-host processing 455, 504
OFFLINE plex state 292
online backups

implementing 457
online invalid status 142
online relayout

changing number of columns 379
changing region size 382
changing speed of 382
changing stripe unit size 379
combining with conversion 383
controlling progress of 381
defined 53
destination layouts 376
failure recovery 57
how it works 53
limitations 56
monitoring tasks for 381
pausing 381
performing 376
resuming 381
reversing direction of 382
specifying non-default 379
specifying plexes 380
specifying task tags for 380
temporary area 54
transformation characteristics 57
transformations and volume length 57
types of transformation 376
viewing status of 381

online status 142
OpenBoot PROMs (OPB) 137
ordered allocation 316, 323, 330
OS-based naming 83
OTHER_DISKS category 90
overlapped seeks 606

P
parity in RAID-5 47
partial device discovery 88
partition size

displaying the value of 200
specifying 202

partitions
number 24–25

partitions (continued)
s2 84, 87
s3 87
s4 87
slices 25

path aging 568
path failover in DMP 169
pathgroups

creating 173
paths

disabling for DMP 207
enabling for DMP 208
setting attributes of 197, 199

performance
analyzing data 550
benefits of using VxVM 545
changing values of tunables 555
combining mirroring and striping 547
displaying tunable values 556
effect of read policies 547
examining ratio of reads to writes 553
hot spots identified by I/O traces 553
impact of number of disk group configuration

copies 555
improving for instant snapshot

synchronization 427
load balancing in DMP 170
mirrored volumes 546
monitoring 548
moving volumes to improve 551
obtaining statistics for disks 551
obtaining statistics for volumes 549
RAID-5 volumes 547
setting priorities 548
striped volumes 546
striping to improve 552
tracing volume operations 549
tuning large systems 554
tuning VxVM 554
using I/O statistics 550

persistence
device naming option 109

persistent device name database 110
persistent device naming 110
Persistent FastResync 66–68
physical disks

adding to disk groups 227
clearing locks on 234
complete failure messages 472

633Index



physical disks (continued)
determining failed 472
displaying information 142
displaying information about 142, 225
displaying spare 476
enabling 155
enabling after hot swap 155
excluding free space from hot-relocation use 478
failure handled by hot-relocation 469
initializing 105
installing 114
making available for hot-relocation 476
making free space available for hot-relocation

use 479
marking as spare 476
moving between disk groups 228, 264
moving disk groups between systems 233
moving volumes from 373
partial failure messages 471
postponing replacement 148
releasing from disk groups 269
removing 145, 148
removing from A5x00 arrays 154
removing from disk groups 227
removing from pool of hot-relocation spares 478
removing with subdisks 147
replacing 148
replacing in A5x00 arrays 154
replacing removed 152
reserving for special purposes 157
spare 473
taking offline 156
unreserving 158

physical objects 24
ping-pong effect 171
plex attribute 412
plex conditions

IOFAIL 293
NODAREC 293
NODEVICE 293
RECOVER 294
REMOVED 294

plex kernel states
DETACHED 294
DISABLED 294
ENABLED 294

plex states
ACTIVE 291
CLEAN 291

plex states (continued)
DCOSNP 291
EMPTY 291
IOFAIL 291
LOG 291
OFFLINE 292
SNAPATT 292
SNAPDIS 292
SNAPDONE 292
SNAPTMP 292
STALE 292
TEMP 292
TEMPRM 293
TEMPRMSD 293

plexes
adding to snapshots 438
associating log subdisks with 285
associating subdisks with 283
associating with volumes 294
attaching to volumes 294
changing attributes 300
changing read policies for 371
comment attribute 300
complete failure messages 472
condition flags 293
converting to snapshot 435
copying 299
creating 289
creating striped 289
defined 34
detaching from volumes temporarily 296
disconnecting from volumes 295
displaying information about 289
dissociating from volumes 299
dissociating subdisks from 286
failure in hot-relocation 469
kernel states 294
limit on number per volume 548
maximum number of subdisks 561
maximum number per volume 35
mirrors 36
moving 298, 363, 443
name attribute 300
names 35
partial failure messages 471
putil attribute 300
putting online 296
reattaching 296

Index634



plexes (continued)
recovering after correctable hardware

failure 472
removing 299
removing from volumes 359
sparse 57, 284, 294, 298
specifying for online relayout 380
states 290
striped 40
taking offline 295, 350
tutil attribute 300
types 34

polling interval for DMP restore 214
ports

listing 94
PowerPath

coexistence with DMP 91
prefer read policy 371
preferred plex

read policy 371
preferred priority path attribute 198
primary boot disk failure 135
primary path 166, 177
primary path attribute 198
priority load balancing 203
private disk groups

converting from shared 519
in clusters 492

private network
in clusters 491

private region
configuration database 85
defined 85
effect of large disk groups on 221

PROMs
boot 137

prtconf
displaying tunables 556

public region 85
putil

plex attribute 300
subdisk attribute 287

Q
queued I/Os

displaying statistics 194

R
RAID-0 40
RAID-0+1 44
RAID-1 43
RAID-1+0 45
RAID-5

adding logs 384
adding subdisks to plexes 284
guidelines 608
hot-relocation limitations 469
logs 51, 58
parity 47
removing logs 385
specifying number of logs 329
subdisk failure handled by hot-relocation 469
volumes 47

RAID-5 volumes
adding DCOs to 363
adding logs 384
changing number of columns 379
changing stripe unit size 379
creating 329
defined 305
performance 547
removing logs 385

raw device nodes
controlling access for volume sets 453
displaying access for volume sets 453
enabling access for volume sets 452
for volume sets 451

read policies
changing 371
performance of 547
prefer 371
round 371
select 371
siteread 371, 527–528, 530
split 371

read-only mode 494
readonly mode 493
RECOVER plex condition 294
recovery

checkpoint interval 557
I/O delay 557
preventing on restarting volumes 351

recovery accelerator 60
recovery option values

configuring 213
redo log configuration 61

635Index



redundancy
of data on mirrors 305
of data on RAID-5 305

redundancy levels
displaying for a device 198
specifying for a device 199

redundant-loop access 29
region 85
regionsize attribute 361, 402, 404
reinitialization of disks 123
relayout

changing number of columns 379
changing region size 382
changing speed of 382
changing stripe unit size 379
combining with conversion 383
controlling progress of 381
limitations 56
monitoring tasks for 381
online 53
pausing 381
performing online 376
resuming 381
reversing direction of 382
specifying non-default 379
specifying plexes 380
specifying task tags for 380
storage 53
transformation characteristics 57
types of transformation 376
viewing status of 381

relocation
automatic 467
complete failure messages 472
limitations 469
partial failure messages 471

Remote Mirror feature
administering 525

remote mirrors
administering 525

REMOVED plex condition 294
removing disks 148
removing physical disks 145
replacing disks 148
replay logs and sequential DRL 60
REPLAY volume state 340
resilvering

databases 60
restoration of disk group configuration 276

restore policy
check_all 214
check_alternate 215
check_disabled 215
check_periodic 215

restored daemon 169
resyncfromoriginal snapback 399
resyncfromreplica snapback 399
resynchronization

checkpoint interval 557
I/O delay 557
of volumes 58

resynchronizing
databases 60

retry option values
configuring 213

root disk
defined 131
encapsulating 134
listing volumes on 137
mirroring 134
mirroring other file systems on 137
unencapsulating 141

root disk group 32, 221
root disks

booting alternate 135
root volume 132–133
rootability 131

removing 141
rootdg 32
round read policy 371
round-robin

load balancing 203
read policy 371

S
s# 24–25, 83
s2 partition 84, 87
s3 partition 87
s4 partition 87
SAN storage

configuring volumes on 73
scandisks

vxdisk subcommand 87
secondary path 166
secondary path attribute 198
secondary path display 177
select read policy 371

Index636



sequential DRL
defined 60
maximum number of dirty regions 562

sequential DRL attribute 324
serial split brain condition 526

correcting 255
in campus clusters 250
in disk groups 250

setting
path redundancy levels 199

shared disk groups
activating 520
activation modes 493–494
converting to private 519
creating 517
importing 518
in clusters 492
limitations of 500
listing 516

shared disks
configuring 610

shared-read mode 494
shared-write mode 494
sharedread mode 493
sharedwrite mode 493
simple disk format 86
simple disk type 86
simple disks

issues with enclosures 112
single active path policy 203
Site Awareness license 532
site consistency

configuring 533
defined 526

site failure
simulating 534

site failures
host failures 541
loss of connectivity 541
recovery from 534, 542
scenarios and recovery procedures 540
storage failures 542

site-based allocation
configuring for disk groups 532
defined 526

site-based consistency
configuring on existing disk groups 531

siteconsistent attribute 533
siteread read policy 371, 527–528, 530

sites
reattaching 534

size units 280
slave nodes

defined 491
sliced disk format 86
sliced disk type 86
slices

number 24
partitions 25
s2 84, 87
s3 87
s4 87

SmartMove feature
setting up 311

SmartSync 60
disabling on shared disk groups 561
enabling on shared disk groups 561

snap objects 71
snap volume naming 399
snapabort 389
SNAPATT plex state 292
snapback

defined 389
merging snapshot volumes 437
resyncfromoriginal 399
resyncfromreplica 399, 437

snapclear
creating independent volumes 439

SNAPDIS plex state 292
SNAPDONE plex state 292
snapmir snapshot type 426
snapshot hierarchies

creating 419
splitting 424

snapshot mirrors
adding to volumes 418
removing from volumes 419

snapshots
adding mirrors to volumes 418
adding plexes to 438
and FastResync 65
backing up multiple volumes 415, 436
backing up volumes online using 400
cascaded 395
comparison of features 63
converting plexes to 435
creating a hierarchy of 419
creating backups using third-mirror 431

637Index



snapshots (continued)
creating for volume sets 416
creating full-sized instant 408
creating independent volumes 439
creating instant 400
creating linked break-off 413
creating snapshots of 396
creating space-optimized instant 406
creating third-mirror break-off 410
creating volumes for use as full-sized

instant 405
defining names for 436
displaying information about 439
displaying information about instant 424
dissociating instant 423
emulation of third-mirror 393
finding out those configured on a cache 430
full-sized instant 64, 390
hierarchy of 395
improving performance of synchronization 427
linked break-off 394
listing for a cache 428
merging with original volumes 437
of volumes 62
on multiple volumes 399
reattaching instant 420
reattaching linked third-mirror 421
refreshing instant 420
removing 435
removing instant 423
removing linked snapshots from volumes 419
removing mirrors from volumes 419
restoring from instant 422
resynchronization on snapback 399
resynchronizing volumes from 437
space-optimized instant 392
synchronizing instant 426
third-mirror 63
use of copy-on-write mechanism 391

snapstart 389
SNAPTMP plex state 292
snapvol attribute 408, 414
snapwait 411, 414
source attribute 408, 414
space-optimized instant snapshots 392

creating 406
spaceopt snapshot type 426
spanned volumes 38
spanning 38

spare disks
displaying 476
marking disks as 476
used for hot-relocation 473

sparse plexes 57, 284, 294, 298
specifying

redundancy levels 199
split read policy 371
STALE plex state 292
standby path attribute 198
states

for plexes 290
of link objects 394
volume 340

statistics gathering 169
storage

ordered allocation of 316, 323, 330
storage accounts 73
storage attributes and volume layout 313
storage cache

used by space-optimized instant snapshots 392
storage failures 542
storage groups 73
storage processor 166
storage relayout 53
stripe columns 40
stripe unit size recommendations 607
stripe units

changing size 379
defined 40

stripe-mirror-col-split-trigger-pt 327
striped plexes

adding subdisks 284
defined 40

striped volumes
changing number of columns 379
changing stripe unit size 379
creating 325
defined 304
failure of 40
performance 546
specifying non-default number of columns 326
specifying non-default stripe unit size 326

striped-mirror volumes
benefits of 45
converting to mirrored-stripe 383
creating 327
defined 305
mirroring columns 327

Index638



striped-mirror volumes (continued)
mirroring subdisks 327
performance 547
trigger point for mirroring 327

striping 40
striping guidelines 607
striping plus mirroring 44
subdisk names 33
subdisks

associating log subdisks 285
associating with plexes 283
associating with RAID-5 plexes 284
associating with striped plexes 284
blocks 33
changing attributes 287
comment attribute 288
complete failure messages 472
copying contents of 282
creating 280
defined 33
determining failed 472
displaying information about 281
dissociating from plexes 286
dividing 282
DRL log 59
hot-relocation 73, 467, 474
hot-relocation messages 480
joining 283
len attribute 288
listing original disks after hot-relocation 485
maximum number per plex 561
mirroring in striped-mirror volumes 327
moving after hot-relocation 480
moving contents of 282
name attribute 287
partial failure messages 471
physical disk placement 605
putil attribute 287
RAID-5 failure of 469
RAID-5 plex, configuring 608
removing from VxVM 286–287
restrictions on moving 282
specifying different offsets for unrelocation 484
splitting 282
tutil attribute 288
unrelocating after hot-relocation 480
unrelocating to different disks 484
unrelocating using vxassist 482
unrelocating using vxdiskadm 481

subdisks (continued)
unrelocating using vxunreloc 483

SYNC volume state 341
synchronization

controlling for instant snapshots 426
improving performance of 427

syncing attribute 400, 426
syncpause 427
syncresume 427
syncstart 427
syncstop 427
syncwait 427

T
t# 24, 83
tags

for tasks 342
listing for disks 241
removing from disks 242
removing from volumes 369
renaming 369
setting on disks 241
setting on volumes 331, 369
specifying for online relayout tasks 380
specifying for tasks 342

target IDs
number 24
specifying to vxassist 313

target mirroring 316, 327
targets

listing 95
task monitor in VxVM 342
tasks

aborting 343
changing state of 343–344
identifiers 342
listing 344
managing 343
modifying parameters of 344
monitoring 344
monitoring online relayout 381
pausing 344
resuming 344
specifying tags 342
specifying tags on online relayout operation 380
tags 342

TEMP plex state 292
temporary area used by online relayout 54
TEMPRM plex state 293

639Index



TEMPRMSD plex state 293
third-mirror

snapshots 63
third-mirror break-off snapshots

creating 410
third-mirror snapshots 393
third-party driver (TPD) 91
throttling 169
TPD

displaying path information 187
support for coexistence 91

tpdmode attribute 111
trigger point in striped-mirror volumes 327
tunables

changing values of 555
displaying using prtconf 556
dmp_cache_open 566
dmp_daemon_count 566
dmp_delayq_interval 567
dmp_failed_io_threshold 567
dmp_fast_recovery 567
dmp_health_time 568
dmp_log_level 568
dmp_path_age 570
dmp_pathswitch_blks_shift 570
dmp_probe_idle_lun 571
dmp_queue_depth 571
dmp_retry_count 572
dmp_scsi_timeout 573
dmp_stat_interval 573
monitor_fabric 569
vol_checkpt_default 557
vol_default_iodelay 557
vol_fmr_logsz 66, 558
vol_kmsg_resend_period 559
vol_kmsg_resend_period_usecs 559
vol_kmsg_send_period 559
vol_kmsg_send_period_usecs 559
vol_max_vol 559
vol_maxio 560
vol_maxioctl 560
vol_maxparallelio 560
vol_maxspecialio 561
vol_subdisk_num 561
volcvm_smartsync 561
voldrl_max_drtregs 562
voldrl_max_seq_dirty 60, 562
voldrl_min_regionsz 562
voliomem_chunk_size 562

tunables (continued)
voliomem_maxpool_sz 563
voliot_errbuf_dflt 563
voliot_iobuf_default 564
voliot_iobuf_limit 564
voliot_iobuf_max 564
voliot_max_open 564
volpagemod_max_memsz 565
volraid_minpool_size 565
volraid_rsrtransmax 566

tutil
plex attribute 300
subdisk attribute 288

U
UDID flag 239
udid_mismatch flag 239
UFS file system resizing 352
unencapsulating the root disk 141
units of size 280
Upgrading

ISP disk group 277
use_all_paths attribute 204
use_avid

vxddladm option 109
user-specified device names 178
usesfsmartmove parameter 311

V
V-5-1-2536 353
V-5-1-2829 271
V-5-1-552 227
V-5-1-569 502
V-5-1-587 234
V-5-2-3091 261
V-5-2-369 228
V-5-2-4292 261
version 0

of DCOs 67
version 20

of DCOs 67
versioning

of DCOs 67
versions

disk group 270
displaying for disk group 274
upgrading 270

virtual objects 30

Index640



VM disks
defined 32
determining if shared 516
displaying spare 476
excluding free space from hot-relocation use 478
initializing 105
making free space available for hot-relocation

use 479
marking as spare 476
mirroring volumes on 356
moving volumes from 373
names 33
postponing replacement 148
removing from pool of hot-relocation spares 478
renaming 156

vol## 35
vol##-## 35
vol_checkpt_default tunable 557
vol_default_iodelay tunable 557
vol_fmr_logsz tunable 66, 558
vol_kmsg_resend_period tunable 559
vol_kmsg_resend_period_usecs tunable 559
vol_kmsg_send_period tunable 559
vol_kmsg_send_period_usecs tunable 559
vol_max_vol tunable 559
vol_maxio tunable 560
vol_maxioctl tunable 560
vol_maxparallelio tunable 560
vol_maxspecialio tunable 561
vol_subdisk_num tunable 561
volatile devices 124
volbrk snapshot type 426
volcvm_smartsync tunable 561
voldrl_max_drtregs tunable 562
voldrl_max_seq_dirty tunable 60, 562
voldrl_min_regionsz tunable 562
voliomem_chunk_size tunable 562
voliomem_maxpool_sz tunable 563
voliot_errbuf_dflt tunable 563
voliot_iobuf_default tunable 564
voliot_iobuf_limit tunable 564
voliot_iobuf_max tunable 564
voliot_max_open tunable 564
volpagemod_max_memsz tunable 565
volraid_minpool_size tunable 565
volraid_rsrtransmax tunable 566
volume kernel states

DETACHED 341
DISABLED 341

volume kernel states (continued)
ENABLED 341

volume length, RAID-5 guidelines 608
volume resynchronization 58
volume sets

adding volumes to 448
administering 447
controlling access to raw device nodes 453
creating 448
creating instant snapshots of 416
displaying access to raw device nodes 453
enabling access to raw device nodes 452
listing details of 449
raw device nodes 451
removing volumes from 449
starting 450
stopping 450

volume states
ACTIVE 340
CLEAN 340
EMPTY 340
INVALID 340
NEEDSYNC 340
REPLAY 340
SYNC 341

volumes
accessing device files 335, 609
adding DRL logs 366
adding logs and maps to 360
adding mirrors 355
adding RAID-5 logs 384
adding sequential DRL logs 366
adding snapshot mirrors to 418
adding subdisks to plexes of 284
adding to volume sets 448
adding version 0 DCOs to 440
adding version 20 DCOs to 361
advanced approach to creating 307
assisted approach to creating 307
associating plexes with 294
attaching plexes to 294
backing up 388
backing up online using snapshots 400
block device files 335, 609
boot-time restrictions 133
booting root 132–133
changing layout online 376
changing number of columns 379
changing read policies for mirrored 371

641Index



volumes (continued)
changing stripe unit size 379
character device files 335, 609
checking if FastResync is enabled 375
combining mirroring and striping for

performance 547
combining online relayout and conversion 383
concatenated 38, 304
concatenated-mirror 46, 305
configuring exclusive open by cluster node 521
configuring on SAN storage 73
configuring site consistency on 537
converting between layered and non-layered 383
converting concatenated-mirror to

mirrored-concatenated 383
converting mirrored-concatenated to

concatenated-mirror 383
converting mirrored-stripe to

striped-mirror 383
converting striped-mirror to

mirrored-stripe 383
creating 307
creating concatenated-mirror 320
creating for use as full-sized instant

snapshots 405
creating from snapshots 439
creating mirrored 319
creating mirrored-concatenated 320
creating mirrored-stripe 326
creating RAID-5 329
creating snapshots 434
creating striped 325
creating striped-mirror 327
creating using vxmake 331
creating using vxmake description file 333
creating with version 0 DCOs attached 321
creating with version 20 DCOs attached 324
defined 35
detaching plexes from temporarily 296
disabling FastResync 375
disconnecting plexes 295
displaying information 338
displaying information about snapshots 439
dissociating plexes from 299
dissociating version 0 DCOs from 444
DRL 606
effect of growing on FastResync maps 71
enabling FastResync on 374
enabling FastResync on new 322

volumes (continued)
excluding storage from use by vxassist 313
finding maximum size of 311
finding out maximum possible growth of 351
flagged as dirty 58
initializing contents to zero 335
initializing using vxassist 334
initializing using vxvol 335
kernel states 341
layered 45, 51, 305
limit on number of plexes 35
limitations 35
listing on boot (root) disk 137
making immediately available for use 334
maximum number of 559
maximum number of data plexes 548
merging snapshots 437
mirrored 43, 305
mirrored-concatenated 44
mirrored-stripe 44, 305
mirroring across controllers 318, 327
mirroring across targets 316, 327
mirroring all 356
mirroring on disks 356
moving from VM disks 373
moving to improve performance 551
names 35
naming snap 399
obtaining performance statistics 549
performance of mirrored 546
performance of RAID-5 547
performance of striped 546
performing online relayout 376
placing in maintenance mode 350
preparing for DRL and instant snapshot

operations 361
preventing recovery on restarting 351
RAID-0 40
RAID-0+1 44
RAID-1 43
RAID-1+0 45
RAID-10 45
RAID-5 47, 305
raw device files 335, 609
reattaching plexes 296
reattaching version 0 DCOs to 444
reconfiguration in clusters 508
recovering after correctable hardware

failure 472

Index642



volumes (continued)
removing 372
removing DRL logs 367
removing from /etc/vfstab 372
removing linked snapshots from 419
removing mirrors from 359
removing plexes from 359
removing RAID-5 logs 385
removing sequential DRL logs 367
removing snapshot mirrors from 419
removing support for DRL and instant

snapshots 365
removing version 0 DCOs from 444
resizing 351
resizing using vxassist 353
resizing using vxresize 352
resizing using vxvol 355
restarting moved 265, 267–268
restoring from instant snapshots 422
resynchronizing from snapshots 437
snapshots 62
spanned 38
specifying default layout 312
specifying non-default number of columns 326
specifying non-default relayout 379
specifying non-default stripe unit size 326
specifying storage for version 0 DCO plexes 443
specifying storage for version 20 DCO

plexes 362
specifying use of storage to vxassist 313
starting 350
starting using vxassist 334
starting using vxvol 335
states 340
stopping 349
stopping activity on 372
striped 40, 304
striped-mirror 45, 305
striping to improve performance 552
taking multiple snapshots 399
tracing operations 549
trigger point for mirroring in striped-mirror 327
types of layout 304
upgrading to use new features 367
using logs and maps with 306
zeroing out contents of 334

vxassist
adding a log subdisk 286
adding a RAID-5 log 384

vxassist (continued)
adding DCOs to volumes 442
adding DRL logs 366
adding mirrors to volumes 295, 355
adding sequential DRL logs 366
advantages of using 308
command usage 309
configuring exclusive access to a volume 521
configuring site consistency on volumes 537
converting between layered and non-layered

volumes 383
creating cache volumes 403
creating concatenated-mirror volumes 320
creating mirrored volumes 320
creating mirrored-concatenated volumes 320
creating mirrored-stripe volumes 326
creating RAID-5 volumes 329
creating snapshots 431
creating striped volumes 325
creating striped-mirror volumes 327
creating volumes 308
creating volumes for use as full-sized instant

snapshots 405
creating volumes with DRL enabled 324
creating volumes with version 0 DCOs

attached 322
creating volumes with version 20 DCOs

attached 324
defaults file 309
defining layout on specified storage 313
discovering maximum volume size 311
displaying information about snapshots 439
dissociating snapshots from volumes 439
excluding storage from use 313
finding out how much volumes can grow 351
listing tags set on volumes 331, 370
merging snapshots with volumes 437
mirroring across controllers 318, 327
mirroring across enclosures 327
mirroring across targets 316, 318
mirroring file systems on root disk 137
moving DCO log plexes 363
moving DCO plexes 443
moving subdisks after hot-relocation 482
moving volumes 552
relaying out volumes online 376
removing DCOs from volumes 369
removing DRL logs 367
removing mirrors 359

643Index



vxassist (continued)
removing plexes 359
removing RAID-5 logs 385
removing tags from volumes 369
removing version 0 DCOs from volumes 444
removing volumes 372
replacing tags set on volumes 369
reserving disks 158
resizing volumes 353
resynchronizing volumes from snapshots 437
setting default values 309
setting tags on volumes 331, 369–370
snapabort 389
snapback 389
snapshot 389
snapstart 389
specifying number of mirrors 320
specifying number of RAID-5 logs 329
specifying ordered allocation of storage 316
specifying plexes for online relayout 380
specifying storage attributes 313
specifying storage for version 0 DCO plexes 443
specifying tags for online relayout tasks 380
taking snapshots of multiple volumes 436
unrelocating subdisks after hot-relocation 482

vxcache
listing snapshots in a cache 428
resizing caches 430
starting cache objects 404
stopping a cache 431
tuning cache autogrow 429

vxcached
tuning 428

vxclust 506
vxclustadm 507
vxconfigd

managing with vxdctl 275
monitoring configuration changes 276
operation in clusters 510

vxdarestore
handling simple/nopriv disk failures 112

vxdco
dissociating version 0 DCOs from volumes 444
reattaching version 0 DCOs to volumes 444
removing version 0 DCOs from volumes 444

vxdctl
checking cluster protocol version 522
enabling disks after hot swap 155
managing vxconfigd 275

vxdctl (continued)
setting a site tag 532, 535
setting default disk group 224
upgrading cluster protocol version 523
usage in clusters 515

vxdctl enable
invoking device discovery 91

vxddladm
adding disks to DISKS category 101
adding foreign devices 104
changing naming scheme 109
displaying the disk-naming scheme 109
excluding support for disk arrays 99
listing all devices 93
listing configured devices 96
listing configured targets 95–96
listing excluded disk arrays 99, 101
listing ports on a Host Bus Adapter 95
listing supported disk arrays 98
listing supported disks in DISKS category 99
listing supported HBAs 94
re-including support for disk arrays 99
removing disks from DISKS category 92, 103–

104
setting iSCSI parameters 97

vxdg
changing activation mode on shared disk

groups 520
clearing locks on disks 235
configuring site consistency for a disk group 533
configuring site-based allocation for a disk

group 532
controlling CDS compatibility of new disk

groups 226
converting shared disk groups to private 519
correcting serial split brain condition 256
creating disk groups 226
creating disk groups with old version

number 275
creating shared disk groups 517
deporting disk groups 230
destroying disk groups 269
disabling a disk group 269
displaying boot disk group 223
displaying default disk group 223
displaying disk group version 274
displaying free space in disk groups 225
displaying information about disk groups 224
forcing import of disk groups 235

Index644



vxdg (continued)
importing a disk group containing cloned

disks 240
importing cloned disks 242
importing disk groups 231
importing shared disk groups 518
joining disk groups 267
listing disks with configuration database

copies 242
listing objects affected by move 261
listing shared disk groups 516
listing spare disks 476
moving disk groups between systems 233
moving disks between disk groups 228
moving objects between disk groups 263
obtaining copy size of configuration

database 221
placing a configuration database on cloned

disks 241
reattaching a site 534
recovering destroyed disk groups 270
removing disks from disk groups 227
renaming disk groups 248
setting a site name 537, 540
setting base minor number 237
setting disk connectivity policy in a cluster 520
setting disk group policies 500
setting failure policy in a cluster 521
setting maximum number of devices 238
simulating site failure 534
splitting disk groups 266
upgrading disk group version 274

vxdisk
clearing locks on disks 234
defaults file 87, 115
determining if disks are shared 516
discovering disk access names 114
displaying information about disks 225
displaying multipathing information 176
listing disks 142
listing spare disks 476
listing tags on disks 241
notifying dynamic LUN expansion 144
placing a configuration database on a cloned

disk 241
removing tags from disks 242
scanning disk devices 87
setting a site name 536
setting tags on disks 241

vxdisk (continued)
updating the disk identifier 240

vxdisk scandisks
rescanning devices 88
scanning devices 88

vxdiskadd
adding disks to disk groups 227
creating disk groups 226
placing disks under VxVM control 124

vxdiskadm
Add or initialize one or more disks 115, 226
adding disks 115
adding disks to disk groups 227
Change/display the default disk layout 115
changing the disk-naming scheme 107
creating disk groups 226
deporting disk groups 229
Disable (offline) a disk device 156
Enable (online) a disk device 155
Enable access to (import) a disk group 230
Encapsulate one or more disks 127
Exclude a disk from hot-relocation use 479
excluding free space on disks from

hot-relocation use 479
importing disk groups 230
initializing disks 115
List disk information 143
listing spare disks 476
Make a disk available for hot-relocation use 480
making free space on disks available for

hot-relocation use 480
Mark a disk as a spare for a disk group 477
marking disks as spare 477
Mirror volumes on a disk 357
mirroring disks 132
mirroring root disks 135
mirroring volumes 357
Move volumes from a disk 373
moving disk groups between systems 236
moving disks between disk groups 229
moving subdisks after hot-relocation 481
moving subdisks from disks 228
moving volumes from VM disks 373
Remove a disk 145, 228
Remove a disk for replacement 149
Remove access to (deport) a disk group 229
removing disks from pool of hot-relocation

spares 478
Replace a failed or removed disk 152

645Index



vxdiskadm (continued)
Turn off the spare flag on a disk 478
Unrelocate subdisks back to a disk 481
unrelocating subdisks after hot-relocation 481

vxdiskconfig
purpose of 87

vxdiskunsetup
removing disks from VxVM control 148, 228

vxdmpadm
changing TPD naming scheme 111
configuring an APM 217
configuring I/O throttling 211
configuring response to I/O errors 210, 213
disabling controllers in DMP 174
disabling I/O in DMP 207
discovering disk access names 114
displaying APM information 217
displaying DMP database information 175
displaying DMP node for a path 180, 182
displaying DMP node for an enclosure 180–181
displaying I/O error recovery settings 213
displaying I/O policy 200
displaying I/O throttling settings 213
displaying information about controllers 185
displaying information about enclosures 186
displaying partition size 200
displaying paths controlled by DMP node 183
displaying status of DMP error handling

thread 216
displaying status of DMP restoration thread 216
displaying TPD information 187
enabling I/O in DMP 208
gathering I/O statistics 191
listing information about array ports 187
removing an APM 217
renaming enclosures 209
setting I/O policy 202–203
setting path attributes 198
setting restore polling interval 214
specifying DMP path restoration policy 214
stopping DMP restore daemon 216

vxdmpadm list
displaying DMP nodes 181

vxedit
changing plex attributes 300
changing subdisk attributes 287–288
configuring number of configuration copies for

a disk group 555

vxedit (continued)
excluding free space on disks from

hot-relocation use 478
making free space on disks available for

hot-relocation use 479
marking disks as spare 477
removing a cache 431
removing disks from pool of hot-relocation

spares 478
removing instant snapshots 423
removing plexes 300
removing snapshots from a cache 430
removing subdisks from VxVM 287
removing volumes 372
renaming disks 157
reserving disks 158

vxencap
defaults file 115

VxFS file system resizing 352
vxiod I/O kernel threads 23
vxmake

associating plexes with volumes 295
associating subdisks with new plexes 283
creating cache objects 404
creating plexes 289, 356
creating striped plexes 289
creating subdisks 280
creating volumes 331
using description file with 333

vxmend
re-enabling plexes 297
taking plexes offline 295, 350

vxmirror
configuring VxVM default behavior 356
mirroring root disks 135
mirroring volumes 356

vxnotify
monitoring configuration changes 276

vxplex
adding RAID-5 logs 384
attaching plexes to volumes 294, 356
converting plexes to snapshots 435
copying plexes 299
detaching plexes temporarily 296
dissociating and removing plexes 299
dissociating plexes from volumes 300
moving plexes 298
reattaching plexes 296
removing mirrors 359

Index646



vxplex (continued)
removing mirrors of root disk volumes 142
removing plexes 359
removing RAID-5 logs 385

vxprint
checking if FastResync is enabled 375
determining if DRL is enabled 364
displaying DCO information 362, 443
displaying plex information 289
displaying snapshots configured on a cache 430
displaying subdisk information 281
displaying volume information 338
enclosure-based disk names 114
identifying RAID-5 log plexes 385
listing spare disks 476
listing volumes on boot disks 137
used with enclosure-based disk names 114
verifying if volumes are prepared for instant

snapshots 402
viewing base minor number 236

vxrecover
preventing recovery 351
recovering plexes 472
restarting moved volumes 265, 267–268
restarting volumes 351

vxrelayout
resuming online relayout 381
reversing direction of online relayout 382
viewing status of online relayout 381

vxrelocd
hot-relocation daemon 468
modifying behavior of 486
notifying users other than root 487
operation of 469
preventing from running 487
reducing performance impact of recovery 487

vxresize
growing volumes and file systems 352
limitations 352
shrinking volumes and file systems 352

vxsd
adding log subdisks 286
adding subdisks to RAID-5 plexes 284
adding subdisks to striped plexes 284
associating subdisks with existing plexes 284
dissociating subdisks 286
filling in sparse plexes 284
joining subdisks 283
moving subdisk contents 282

vxsd (continued)
removing subdisks from VxVM 286
splitting subdisks 282

vxsnap
adding snapshot mirrors to volumes 418
administering instant snapshots 391
backing up multiple volumes 415
controlling instant snapshot

synchronization 427
creating a cascaded snapshot hierarchy 419
creating full-sized instant snapshots 408, 414
creating linked break-off snapshot volumes 414
creating space-optimized instant snapshots 406
displaying information about instant

snapshots 424–425
dissociating instant snapshots 423
preparing volumes for DRL and instant

snapshots operations 361
preparing volumes for instant snapshots 402
reattaching instant snapshots 420
reattaching linked third-mirror snapshots 421
refreshing instant snapshots 420
removing a snapshot mirror from a volume 419
removing support for DRL and instant

snapshots 365
restore 391
restoring volumes 422
splitting snapshot hierarchies 424

vxspcshow
discovering device names 75

vxsplitlines
diagnosing serial split brain condition 255

vxstat
determining which disks have failed 472
obtaining disk performance statistics 551
obtaining volume performance statistics 549
usage with clusters 523
zeroing counters 551

vxtask
aborting tasks 345
listing tasks 344
monitoring online relayout 381
monitoring tasks 345
pausing online relayout 381
resuming online relayout 381
resuming tasks 345

vxtrace
tracing volume operations 549

647Index



vxtune
setting volpagemod_max_memsz 565

vxunreloc
listing original disks of hot-relocated

subdisks 485
moving subdisks after hot-relocation 483
restarting after errors 485
specifying different offsets for unrelocated

subdisks 484
unrelocating subdisks after hot-relocation 483
unrelocating subdisks to different disks 484

vxunroot
removing rootability 142
unencapsulating the root disk 142

VxVM
benefits to performance 545
cluster functionality (CVM) 503
configuration daemon 275
configuring to create mirrored volumes 356
dependency on operating system 22
disk discovery 87, 89
granularity of memory allocation by 562
limitations of shared disk groups 500
maximum number of data plexes per

volume 548
maximum number of subdisks per plex 561
maximum number of volumes 559
maximum size of memory pool 563
minimum size of memory pool 565
objects in 30
operation in clusters 490
performance tuning 554
removing disks from 228
removing disks from control of 147
rootability 131
shared objects in cluster 493
size units 280
task monitor 342
types of volume layout 304
upgrading 270
upgrading disk group version 274

VXVM_DEFAULTDG environment variable 222
vxvol

configuring exclusive access to a volume 521
configuring site consistency on volumes 537
disabling DRL 365
disabling FastResync 375
enabling FastResync 374
initializing volumes 335

vxvol (continued)
putting volumes in maintenance mode 350
re-enabling DRL 365
resizing logs 355
resizing volumes 355
restarting moved volumes 265, 267–268
setting read policy 371
starting volumes 335, 350
stopping volumes 349, 372
zeroing out volumes 335

vxvset
adding volumes to volume sets 448
controlling access to raw device nodes 453
creating volume sets 448
creating volume sets with raw device access 452
listing details of volume sets 449
removing volumes from volume sets 449
starting volume sets 450
stopping volume sets 450

W
warning messages

Specified region-size is larger than the limit on
the system 401

worldwide name identifiers 83, 108
WWN identifiers 83, 108

Z
zero

setting volume contents to 334

Index648


	Veritas™ Volume Manager Administrator's Guide
	Technical Support
	Contents
	1. Understanding Veritas Volume Manager
	About Veritas Volume Manager
	VxVM and the operating system
	How data is stored

	How VxVM handles storage management
	Physical objects
	Virtual objects

	Volume layouts in VxVM
	Non-layered volumes
	Layered volumes
	Layout methods
	Concatenation, spanning, and carving
	Striping (RAID-0)
	Mirroring (RAID-1)
	Striping plus mirroring (mirrored-stripe or RAID-0+1)
	Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)
	RAID-5 (striping with parity)

	Online relayout
	How online relayout works
	Limitations of online relayout
	Transformation characteristics
	Transformations and volume length

	Volume resynchronization
	Dirty flags
	Resynchronization process

	Dirty region logging
	Log subdisks and plexes
	Sequential DRL
	SmartSync recovery accelerator

	Volume snapshots
	Comparison of snapshot features

	FastResync
	FastResync enhancements
	Non-persistent FastResync
	Persistent FastResync
	DCO volume versioning
	FastResync limitations

	Hot-relocation
	Volume sets
	Configuration of volumes on SAN storage

	2. Provisioning new usable storage
	Provisioning new usable storage
	Growing existing storage by adding a new LUN
	Growing existing storage by growing the LUN

	3. Administering disks
	About disk management
	Disk devices
	Disk device naming in VxVM
	Private and public disk regions

	Discovering and configuring newly added disk devices
	Partial device discovery
	Discovering disks and dynamically adding disk arrays
	Third-party driver coexistence
	How to administer the Device Discovery Layer

	Disks under VxVM control
	VxVM coexistence with SVM and ZFS
	Changing the disk-naming scheme
	Displaying the disk-naming scheme
	Regenerating persistent device names
	Changing device naming for TPD-controlled enclosures
	Simple or nopriv disks with enclosure-based naming

	Discovering the association between enclosure-based disk names and OS-based disk names
	Disk installation and formatting
	Displaying or changing default disk layout attributes
	Adding a disk to VxVM
	Disk reinitialization
	Using vxdiskadd to put a disk under VxVM control

	RAM disk support in VxVM
	Encapsulating a disk
	Failure of disk encapsulation
	Using nopriv disks for encapsulation

	Rootability
	Booting root volumes
	Boot-time volume restrictions
	Mirroring an encapsulated root disk
	Booting from alternate boot disks
	Mirroring other file systems on the root disk
	Encapsulating SAN disks
	Administering an encapsulated boot disk

	Unencapsulating the root disk
	Displaying disk information
	Displaying disk information with vxdiskadm

	Dynamic LUN expansion
	Removing disks
	Removing a disk with subdisks
	Removing a disk with no subdisks

	Removing a disk from VxVM control
	Removing and replacing disks
	Replacing a failed or removed disk
	Removing and replacing a disk in a Sun StorEdge A5x00 disk array

	Enabling a disk
	Taking a disk offline
	Renaming a disk
	Reserving disks
	Changing host LUN configurations online
	Removing LUNs dynamically from an existing target ID
	Adding new LUNs dynamically to a new target ID
	About detecting target ID reuse if the operating system device tree is not cleaned up
	Scanning an operating system device tree after adding or removing LUNs
	Cleaning up the operating system device tree after removing LUNs


	4. Administering Dynamic Multipathing
	How DMP works
	How DMP monitors I/O on paths
	Load balancing
	Dynamic Reconfiguration
	Booting from DMP devices
	DMP in a clustered environment

	Disabling multipathing and making devices invisible to VxVM
	Enabling multipathing and making devices visible to VxVM
	Enabling and disabling I/O for controllers and storage processors
	Displaying DMP database information
	Displaying the paths to a disk
	Setting customized names for DMP nodes
	DMP coexistence with native multipathing
	Administering DMP using vxdmpadm
	Retrieving information about a DMP node
	Displaying consolidated information about the DMP nodes
	Displaying the members of a LUN group
	Displaying paths controlled by a DMP node, controller, enclosure, or array port
	Displaying information about controllers
	Displaying information about enclosures
	Displaying information about array ports
	Displaying information about TPD-controlled devices
	Displaying extended device attributes
	Suppressing or including devices for VxVM or DMP control
	Gathering and displaying I/O statistics
	Setting the attributes of the paths to an enclosure
	Displaying the redundancy level of a device or enclosure
	Specifying the minimum number of active paths
	Displaying the I/O policy
	Specifying the I/O policy
	Disabling I/O for paths, controllers or array ports
	Enabling I/O for paths, controllers or array ports
	Upgrading disk controller firmware
	Renaming an enclosure
	Configuring the response to I/O failures
	Configuring the I/O throttling mechanism
	Displaying recovery option values
	Configuring DMP path restoration policies
	Stopping the DMP path restoration thread
	Displaying the status of the DMP path restoration thread
	Displaying information about the DMP error-handling thread
	Configuring array policy modules


	5. Creating and administering disk groups
	About disk groups
	Specification of disk groups to commands
	System-wide reserved disk groups
	Rules for determining the default disk group

	Displaying disk group information
	Displaying free space in a disk group

	Creating a disk group
	Adding a disk to a disk group
	Removing a disk from a disk group
	Moving disks between disk groups
	Deporting a disk group
	Importing a disk group
	Handling of minor number conflicts
	Moving disk groups between systems
	Handling errors when importing disks
	Reserving minor numbers for disk groups
	Compatibility of disk groups between platforms

	Handling cloned disks with duplicated identifiers
	Writing a new UDID to a disk
	Importing a disk group containing cloned disks
	Sample cases of operations on cloned disks
	Considerations when using EMC CLARiiON SNAPSHOT LUNs

	Renaming a disk group
	Handling conflicting configuration copies
	Example of a serial split brain condition in a cluster
	Correcting conflicting configuration information

	Reorganizing the contents of disk groups
	Limitations of disk group split and join
	Listing objects potentially affected by a move
	Moving objects between disk groups
	Splitting disk groups
	Joining disk groups

	Disabling a disk group
	Destroying a disk group
	Recovering a destroyed disk group

	Upgrading a disk group
	Managing the configuration daemon in VxVM
	Backing up and restoring disk group configuration data
	Using vxnotify to monitor configuration changes
	Working with ISP disk groups

	6. Creating and administering subdisks and plexes
	About subdisks
	Creating subdisks
	Displaying subdisk information
	Moving subdisks
	Splitting subdisks
	Joining subdisks
	Associating subdisks with plexes
	Associating log subdisks
	Dissociating subdisks from plexes
	Removing subdisks
	Changing subdisk attributes
	About plexes
	Creating plexes
	Creating a striped plex
	Displaying plex information
	Plex states
	Plex condition flags
	Plex kernel states

	Attaching and associating plexes
	Taking plexes offline
	Detaching plexes
	Reattaching plexes
	Automatic plex reattachment

	Moving plexes
	Copying volumes to plexes
	Dissociating and removing plexes
	Changing plex attributes

	7. Creating volumes
	About volume creation
	Types of volume layouts
	Supported volume logs and maps

	Creating a volume
	Advanced approach
	Assisted approach

	Using vxassist
	Setting default values for vxassist
	Using the SmartMove™ feature while attaching a plex

	Discovering the maximum size of a volume
	Disk group alignment constraints on volumes
	Creating a volume on any disk
	Creating a volume on specific disks
	Creating a volume on SSD devices
	Specifying ordered allocation of storage to volumes

	Creating a mirrored volume
	Creating a mirrored-concatenated volume
	Creating a concatenated-mirror volume

	Creating a volume with a version 0 DCO volume
	Creating a volume with a version 20 DCO volume
	Creating a volume with dirty region logging enabled
	Creating a striped volume
	Creating a mirrored-stripe volume
	Creating a striped-mirror volume

	Mirroring across targets, controllers or enclosures
	Mirroring across media types (SSD and HDD)
	Creating a RAID-5 volume
	Creating tagged volumes
	Creating a volume using vxmake
	Creating a volume using a vxmake description file

	Initializing and starting a volume
	Initializing and starting a volume created using vxmake

	Accessing a volume

	8. Administering volumes
	About volume administration
	Displaying volume information
	Volume states
	Volume kernel states

	Monitoring and controlling tasks
	Specifying task tags
	Managing tasks with vxtask

	Using Thin Provisioning
	About Thin Provisioning
	About Thin Reclamation
	Thin Reclamation of a disk, a disk group, or an enclosure
	Triggering space relamation

	Admin operations on an unmounted VxFS thin volume
	Using SmartMove with Thin Provisioning
	Stopping a volume
	Putting a volume in maintenance mode

	Starting a volume
	Resizing a volume
	Resizing volumes with vxresize
	Resizing volumes with vxassist
	Resizing volumes with vxvol

	Adding a mirror to a volume
	Mirroring all volumes
	Mirroring volumes on a VM disk
	Additional mirroring considerations

	Removing a mirror
	Adding logs and maps to volumes
	Preparing a volume for DRL and instant snapshots
	Specifying storage for version 20 DCO plexes
	Using a DCO and DCO volume with a RAID-5 volume
	Determining the DCO version number
	Determining if DRL is enabled on a volume
	Determining if DRL logging is active on a volume
	Disabling and re-enabling DRL
	Removing support for DRL and instant snapshots from a volume

	Adding traditional DRL logging to a mirrored volume
	Removing a traditional DRL log

	Upgrading existing volumes to use version 20 DCOs
	Setting tags on volumes
	Changing the read policy for mirrored volumes
	Removing a volume
	Moving volumes from a VM disk
	Enabling FastResync on a volume
	Checking whether FastResync is enabled on a volume
	Disabling FastResync

	Performing online relayout
	Permitted relayout transformations
	Specifying a non-default layout
	Specifying a plex for relayout
	Tagging a relayout operation
	Viewing the status of a relayout
	Controlling the progress of a relayout

	Monitoring Thin Reclamation using the vxtask command
	Converting between layered and non-layered volumes
	Adding a RAID-5 log
	Adding a RAID-5 log using vxplex
	Removing a RAID-5 log


	9. Administering volume snapshots
	About volume snapshots
	Traditional third-mirror break-off snapshots
	Full-sized instant snapshots
	Space-optimized instant snapshots
	Emulation of third-mirror break-off snapshots
	Linked break-off snapshot volumes
	Cascaded snapshots
	Creating a snapshot of a snapshot

	Creating multiple snapshots
	Restoring the original volume from a snapshot
	Creating instant snapshots
	Preparing to create instant and break-off snapshots
	Creating and managing space-optimized instant snapshots
	Creating and managing full-sized instant snapshots
	Creating and managing third-mirror break-off snapshots
	Creating and managing linked break-off snapshot volumes
	Creating multiple instant snapshots
	Creating instant snapshots of volume sets
	Adding snapshot mirrors to a volume
	Removing a snapshot mirror
	Removing a linked break-off snapshot volume
	Adding a snapshot to a cascaded snapshot hierarchy
	Refreshing an instant snapshot
	Reattaching an instant snapshot
	Reattaching a linked break-off snapshot volume
	Restoring a volume from an instant snapshot
	Dissociating an instant snapshot
	Removing an instant snapshot
	Splitting an instant snapshot hierarchy
	Displaying instant snapshot information
	Controlling instant snapshot synchronization
	Listing the snapshots created on a cache
	Tuning the autogrow attributes of a cache
	Growing and shrinking a cache
	Removing a cache

	Creating traditional third-mirror break-off snapshots
	Converting a plex into a snapshot plex
	Creating multiple snapshots with the vxassist command
	Reattaching a snapshot volume
	Adding plexes to a snapshot volume
	Dissociating a snapshot volume
	Displaying snapshot information

	Adding a version 0 DCO and DCO volume
	Specifying storage for version 0 DCO plexes
	Removing a version 0 DCO and DCO volume
	Reattaching a version 0 DCO and DCO volume


	10. Creating and administering volume sets
	About volume sets
	Creating a volume set
	Adding a volume to a volume set
	Removing a volume from a volume set
	Listing details of volume sets
	Stopping and starting volume sets
	Raw device node access to component volumes
	Enabling raw device access when creating a volume set
	Displaying the raw device access settings for a volume set
	Controlling raw device access for an existing volume set


	11. Configuring off-host processing
	About off-host processing solutions
	Implemention of off-host processing solutions
	Implementing off-host online backup
	Implementing decision support


	12. Administering hot-relocation
	About hot-relocation
	How hot-relocation works
	Partial disk failure mail messages
	Complete disk failure mail messages
	How space is chosen for relocation

	How reclamation on a deleted volume works
	Configuring a system for hot-relocation
	Displaying spare disk information
	Marking a disk as a hot-relocation spare
	Removing a disk from use as a hot-relocation spare
	Excluding a disk from hot-relocation use
	Making a disk available for hot-relocation use
	Configuring hot-relocation to use only spare disks
	Moving relocated subdisks
	Moving relocated subdisks using vxdiskadm
	Moving relocated subdisks using vxassist
	Moving relocated subdisks using vxunreloc
	Restarting vxunreloc after errors

	Modifying the behavior of hot-relocation

	13. Administering cluster functionality
	Overview of clustering
	Overview of cluster volume management
	Private and shared disk groups
	Activation modes of shared disk groups
	Connectivity policy of shared disk groups
	Effect of disk connectivity on cluster reconfiguration
	Limitations of shared disk groups

	Multiple host failover configurations
	Import lock
	Failover
	Corruption of disk group configuration

	About the cluster functionality of VxVM
	Cluster initialization and configuration
	Cluster reconfiguration
	Volume reconfiguration
	Node shutdown
	Cluster shutdown

	Dirty region logging in cluster environments
	How DRL works in a cluster environment

	Administering VxVM in cluster environments
	Requesting node status and discovering the master node
	Determining if a LUN is in a shareable disk group
	Listing shared disk groups
	Creating a shared disk group
	Importing disk groups as shared
	Converting a disk group from shared to private
	Moving objects between shared disk groups
	Splitting shared disk groups
	Joining shared disk groups
	Changing the activation mode on a shared disk group
	Setting the disk detach policy on a shared disk group
	Setting the disk group failure policy on a shared disk group
	Creating volumes with exclusive open access by a node
	Setting exclusive open access to a volume by a node
	Displaying the cluster protocol version
	Displaying the supported cluster protocol version range
	Upgrading the cluster protocol version
	Recovering volumes in shared disk groups
	Obtaining cluster performance statistics


	14. Administering sites and remote mirrors
	About sites and remote mirrors
	About site-based allocation
	About site consistency
	About site tags
	About the site read policy

	Making an existing disk group site consistent
	Configuring a new disk group as a Remote Mirror configuration
	Fire drill — testing the configuration
	Simulating site failure
	Verifying the secondary site
	Recovery from simulated site failure

	Changing the site name
	Resetting the site name for a host

	Administering the Remote Mirror configuration
	Configuring site tagging for disks or enclosures
	Configuring automatic site tagging for a disk group
	Configuring site consistency on a volume

	Examples of storage allocation by specifying sites
	Displaying site information
	Failure and recovery scenarios
	Recovering from a loss of site connectivity
	Recovering from host failure
	Recovering from storage failure
	Recovering from site failure
	Automatic site reattachment


	15. Performance monitoring and tuning
	Performance guidelines
	Data assignment
	Striping
	Mirroring
	Combining mirroring and striping

	RAID-5
	Volume read policies

	Performance monitoring
	Setting performance priorities
	Obtaining performance data
	Using performance data

	Tuning VxVM
	General tuning guidelines
	Tuning guidelines for large systems
	Changing the values of tunables
	Tunable parameters for VxVM
	DMP tunable parameters
	Disabling I/O statistics collection


	A. Using Veritas Volume Manager commands
	About Veritas Volume Manager commands
	Online manual pages
	Section 1M — administrative commands
	Section 4 — file formats
	Section 7 — device driver interfaces


	B. Configuring Veritas Volume Manager
	Setup tasks after installation
	Unsupported disk arrays
	Foreign devices
	Initialization of disks and creation of disk groups
	Guidelines for configuring storage
	Mirroring guidelines
	Dirty region logging guidelines
	Striping guidelines
	RAID-5 guidelines
	Hot-relocation guidelines
	Accessing volume devices

	VxVM’s view of multipathed devices
	Cluster support
	Configuring shared disk groups
	Converting existing VxVM disk groups to shared disk groups


	Glossary
	Index

