
man pages section 7: Device
and Network Interfaces

Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303-4900
U.S.A.

Part No: 835-8007
December 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun
and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, Trusted Solaris, and Solaris are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.
The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer
industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who
implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
Federal Acquisitions: Commercial Software – Government Users Subject to Standard License Terms and Conditions
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et
la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques
déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se
conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface 5

Intro(7) 11

kb(7M) 14

sad(7D) 25

wscons(7D) 29

Index 37

Contents 3

4 man pages section 7: Device and Network Interfaces ♦ December 2000

Preface

Overview
A man page is provided for both the naive user and the sophisticated user who is
familiar with the Trusted Solaris operating environment and is in need of online
information. A man page is intended to answer concisely the question “What does it
do?” The man pages in general comprise a reference manual. They are not intended
to be a tutorial.

Trusted Solaris Reference Manual
In the AnswerBook2™ and online man command forms of the man pages, all man
pages are available:

Trusted Solaris man pages that are unique for the Trusted Solaris environment

SunOS 5.8 man pages that have been changed in the Trusted Solaris environment

SunOS 5.8 man pages that remain unchanged.

The printed manual, the Trusted Solaris 8 Reference Manual contains:

Man pages that have been added to the SunOS operating system by the Trusted
Solaris environment

Man pages that originated in SunOS 5.8, but have been modified in the Trusted
Solaris environment to handle security requirements.

Preface 5

Users of printed manuals need both manuals in order to have a full set of man pages,
since the SunOS 5.8 Reference Manual contains the common man pages that are not
modified in the Trusted Solaris environment.

Man Page Sections
The following contains a brief description of each section in the man pages and the
information it references:

Section 1 describes, in alphabetical order, commands available with the operating
system.

Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2
of this volume.

Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

Section 5 contains miscellaneous documentation such as character set tables.

Section 6 contains available games and demos.

Section 7 describes various special files that refer to specific hardware
peripherals, and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

Section 9 provides reference information needed to write device drivers in the
kernel operating systems environment. It describes two device driver interface
specifications: the Device Driver Interface (DDI) and the Driver/Kernel Interface
(DKI).

Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer may include in a device driver.

Section 9F describes the kernel functions available for use by device drivers.

Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there are
no bugs to report, there is no BUGS section. See the intro pages for more information
and detail about each section, and man(1) for more information about man pages in
general.

NAME

6 man pages section 7: Device and Network Interfaces ♦ December 2000

This section gives the names of the commands or functions documented, followed
by a brief description of what they do.

SYNOPSIS

This section shows the syntax of commands or functions. When a command or
file does not exist in the standard path, its full pathname is shown. Options and
arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the brackets
are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example, ‘
"filename . . ." .

| Separator. Only one of the arguments separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a unit.

PROTOCOL

This section occurs only in subsection 3R to indicate the protocol description file.

DESCRIPTION

This section defines the functionality and behavior of the service. Thus it describes
concisely what the command does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros, functions and such, are
described under USAGE.

IOCTL

This section appears on pages in Section 7 only. Only the device class which supplies
appropriate parameters to the ioctl (2) system call is called ioctl and generates its
own heading. ioctl calls for a specific device are listed alphabetically (on the man
page for that specific device). ioctl calls are used for a particular class of devices all
of which have an io ending, such as mtio (7I)

OPTIONS

This secton lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under the option, and where
appropriate, default values are supplied.

OPERANDS

This section lists the command operands and describes how they affect the actions
of the command.

7

OUTPUT

This section describes the output – standard output, standard error, or output files
– generated by the command.

RETURN VALUES

If the man page documents functions that return values, this section lists these values
and describes the conditions under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return values of each function. Functions
declared void do not return values, so they are not discussed in RETURN VALUES.

ERRORS

On failure, most functions place an error code in the global variable errno indicating
why they failed. This section lists alphabetically all error codes a function can
generate and describes the conditions that cause each error. When more than
one condition can cause the same error, each condition is described in a separate
paragraph under the error code.

USAGE

This section lists special rules, features, and commands that require in-depth
explanations. The subsections listed here are used to explain built-in functionality:

Commands

Modifiers

Variables

Expressions

Input Grammar

EXAMPLES

This section provides examples of usage or of how to use a command or function.
Wherever possible a complete example including command-line entry and machine
response is shown. Whenever an example is given, the prompt is shown as
example% , or if the user must be root, example# . Examples are followed by
explanations, variable substitution rules, or returned values. Most examples illustrate
concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES

This section lists any environment variables that the command or function affects,
followed by a brief description of the effect.

EXIT STATUS

This section lists the values the command returns to the calling program or shell and
the conditions that cause these values to be returned. Usually, zero is returned for
successful completion, and values other than zero for various error conditions.

FILES

8 man pages section 7: Device and Network Interfaces ♦ December 2000

This section lists all file names referred to by the man page, files of interest, and files
created or required by commands. Each is followed by a descriptive summary or
explanation.

ATTRIBUTES

This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. See attributes (5) for
more information.

SUMMARY OF TRUSTED SOLARIS CHANGES

This section describes changes to a Solaris item by Trusted Solaris software. It is
present in man pages that have been modified from Solaris software.

SEE ALSO

This section lists references to other man pages, in-house documentation and outside
publications. The references are divided into two sections, so that users of printed
manuals can easily locate a man page in its appropriate printed manual.

DIAGNOSTICS

This section lists diagnostic messages with a brief explanation of the condition
causing the error.

WARNINGS

This section lists warnings about special conditions which could seriously affect your
working conditions. This is not a list of diagnostics.

NOTES

This section lists additional information that does not belong anywhere else on the
page. It takes the form of an aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS

This section describes known bugs and, wherever possible, suggests workarounds.

9

CHAPTER

Device and Network Interfaces

10

Trusted Solaris Device and Network Interfaces Intro(7)

NAME Intro – Introduction to special files

DESCRIPTION This section describes various device and network interfaces available on the
system. The types of interfaces described include character and block devices,
STREAMS modules, network protocols, file systems, and ioctl requests for
driver subsystems and classes.

This section contains the following major collections:
(7D) The system provides drivers for a variety of hardware devices, such

as disk, magnetic tapes, serial communication lines, mice, and frame
buffers, as well as virtual devices such as pseudo-terminals and
windows.

This section contains man pages that are new or modified for
Trusted Solaris describing special files that refer to specific hardware
peripherals and device drivers. STREAMS device drivers are also
described. Characteristics of both the hardware device and the
corresponding device driver are discussed where applicable, along
with any changes in their behavior in the Trusted Solaris operating
environment.

An application accesses a device through that device’s special file.
This section specifies the device special file to be used to access the
device as well as application programming interface (API) information
relevant to the use of the device driver.

All device special files are located under the /devices directory.
The /devices directory hierarchy attempts to mirror the hierarchy
of system busses, controllers, and devices configured on the system.
Logical device names for special files in /devices are located under
the /dev directory. Although not every special file under /devices
will have a corresponding logical entry under /dev , whenever
possible, an application should reference a device using the logical
name for the device. Logical device names are listed in the FILES
section of the page for the device in question.

This section also describes driver configuration where applicable.
Many device drivers have a driver configuration file of the form
driver_name.conf associated with them (see driver.conf (4)). The
configuration information stored in the driver configuration file is
used to configure the driver and the device. Driver configuration
files are located in /kernel/drv and /usr/kernel/drv . Driver
configuration files for platform dependent drivers are located in
/platform/‘uname -i‘/kernel/drv where ‘uname -i‘ is the
output of the uname(1) command with the −i option.

Last modified 30 Sep 1999 Trusted Solaris 8 11

Intro(7) Trusted Solaris Device and Network Interfaces

Some driver configuration files may contain user configurable
properties. Changes in a driver’s configuration file will not take effect
until the system is rebooted or the driver has been removed and
re-added (see rem_drv (1M) and add_drv (1M)).

(7FS) This section describes the programmatic interface for several file
systems supported by SunOS.

(7I) This section describes ioctl requests which apply to a class of drivers
or subsystems. For example, ioctl requests which apply to most tape
devices are discussed in mtio (7I). Ioctl requests relevant to only a
specific device are described on the man page for that device. The
page for the device in question should still be examined for exceptions
to the ioctls listed in section 7I.

(7M) This section describes STREAMS modules. Note that STREAMS
drivers are discussed in section 7D. streamio (7I) contains a list of
ioctl requests used to manipulate STREAMS modules and interface
with the STREAMS framework. Ioctl requests specific to a STREAMS
module will be discussed on the man page for that module.

Trusted Solaris modified and new STREAMS modules are described
here. streamio (7I) contains a list of ioctl requests used to manipulate
STREAMS modules and interface with the STREAMS framework.
Ioctl requests specific to a STREAMS module will be discussed on
the man page for that module.

(7P) This section describes various network protocols available in SunOS.

SunOS supports both socket-based and STREAMS-based network
communications. The Internet protocol family, described in inet (7P),
is the primary protocol family supported by SunOS, although
the system can support a number of others. The raw interface
provides low-level services, such as packet fragmentation and
reassembly, routing, addressing, and basic transport for socket-based
implementations. Facilities for communicating using an Internet-family
protocol are generally accessed by specifying the AF_INET address
family when binding a socket; see socket (3SOCKET) for details.

Major protocols in the Internet family include:

The Internet Protocol (IP) itself, which supports the universal
datagram format, as described in ip (7P). This is the default protocol
for SOCK_RAWtype sockets within the AF_INET domain.

The Transmission Control Protocol (TCP); see tcp (7P). This is the
default protocol for SOCK_STREAMtype sockets.

12 Trusted Solaris 8 Last modified 30 Sep 1999

Trusted Solaris Device and Network Interfaces Intro(7)

The User Datagram Protocol (UDP); see udp (7P). This is the default
protocol for SOCK_DGRAMtype sockets.

The Address Resolution Protocol (ARP); see arp (7P).

The Internet Control Message Protocol (ICMP); see icmp (7P).

TRUSTED
SOLARIS

DIFFERENCES

The Trusted Solaris special files are:

SunOS5.8 files that have been modified to work within Trusted Solaris
security policy, such as sad (7D). Man pages for modified special files have
been rewritten to remove information that is not accurate for how the
special file behaves within the Trusted Solaris environment. Modified man
pages also have added descriptions for Trusted Solaris requirements..

SunOS5.8 special files that remain unchanged from the Solaris release,
such as pipemod (7M).

The printed Trusted Solaris 8 Reference Manual includes only those man pages that
have been modified or originate in the Trusted Solaris environment. Printed versions
of unchanged SunOS5.8 man pages are found in the SunOS 5.8 Reference Manual.
See man pages section 7 for the unchanged pages in AnswerBook2 format.

SEE ALSO
Trusted Solaris 8

Reference Manual
add_drv (1M), rem_drv (1M), intro (3)

SunOS 5.8 Reference
Manual

ioctl (2), socket (3SOCKET), driver.conf (4), arp (7P), icmp (7P), inet (7P),
ip (7P), mtio (7I), st (7D), streamio (7I), tcp (7P), udp (7P)

Solaris Transition Guide, TCP/IP and Data Communications Administration
Guide, STREAMS Programming Guide, Writing Device Drivers

Name Description

kb (7M) Keyboard STREAMS module

sad (7D) STREAMS Administrative Driver

wscons (7D) Workstation console

Last modified 30 Sep 1999 Trusted Solaris 8 13

kb(7M) Trusted Solaris STREAMS Modules

NAME kb – Keyboard STREAMS module

SYNOPSIS #include <sys/types.h>

#include <sys/stream.h>

#include <sys/stropts.h>

#include <sys/vuid_event.h>

#include <sys/kbio.h>

#include <sys/kbd.h>

ioctl (fd, I_PUSH, "kb");

DESCRIPTION The kb STREAMS module processes byte streams generated by a keyboard
attached to a CPU serial port. Definitions for altering keyboard translation, and
reading events from the keyboard, are in <sys/kbio.h> and <sys/kbd.h> .

kb recognizes which keys have been typed using a set of tables for each
known type of keyboard. Each translation table is an array of 128 16-bit words
(unsigned short s). If an entry in the table is less than 0x100, it is treated as
an ISO 8859/1 character. Higher values indicate special characters that invoke
more complicated actions.

Keyboard Translation
Mode

The keyboard can be in one of the following translation modes:
TR_NONE Keyboard translation is turned off and up/down

key codes are reported.

TR_ASCII ISO 8859/1 codes are reported.

TR_EVENT firm_events are reported.

TR_UNTRANS_EVENT firm_events containing unencoded keystation
codes are reported for all input events within
the window system.

Keyboard
Translation-Table

Entries

All instances of the kb module share seven translation tables used to convert
raw keystation codes to event values. The tables are:
Unshifted Used when a key is depressed and no shifts

are in effect.

Shifted Used when a key is depressed and a Shift key
is being held down.

Caps Lock Used when a key is depressed and Caps Lock
is in effect.

Alt Graph Used when a key is depressed and the Alt Graph
key is being held down.

14 Trusted Solaris 8 Last modified 30 Sep 1999

Trusted Solaris STREAMS Modules kb(7M)

Num Lock Used when a key is depressed and Num Lock
is in effect.

Controlled Used when a key is depressed and the Control
key is being held down (regardless of whether a
Shift key or the Alt Graph is being held down, or
whether Caps Lock or Num Lock is in effect).

Key Up Used when a key is released.

Each key on the keyboard has a “key station” code which is a number from 0 to
127. This number is used as an index into the translation table that is currently
in effect. If the corresponding entry in that translation table is a value from 0
to 255, this value is treated as an ISO 8859/1 character, and that character is
the result of the translation.

If the entry is a value above 255, it is a “special” entry. Special entry values are
classified according to the value of the high-order bits. The high-order value
for each class is defined as a constant, as shown in the list below. The value of
the low-order bits, when added to this constant, distinguishes between keys
within each class:
SHIFTKEYS 0x100 A shift key. The value of the particular shift key

is added to determine which shift mask to apply:

CAPSLOCK 0 “Caps Lock” key.

SHIFTLOCK 1 “Shift Lock” key.

LEFTSHIFT 2 Left-hand “Shift”
key.

RIGHTSHIFT 3 Right-hand “Shift”
key.

LEFTCTRL 4 Left-hand (or only)
“Control” key.

RIGHTCTRL 5 Right-hand
“Control” key.

ALTGRAPH 9 “Alt Graph” key.

ALT 10 “Alternate” or
“Alt” key.

NUMLOCK 11 “Num Lock” key.

BUCKYBITS 0x200 Used to toggle mode-key-up/down status
without altering the value of an accompanying

Last modified 30 Sep 1999 Trusted Solaris 8 15

kb(7M) Trusted Solaris STREAMS Modules

ISO 8859/1 character. The actual bit-position
value, minus 7, is added.

METABIT 0 The META key was
pressed along with
the key. This is the
only user-accessible
bucky bit. It is
ORed in as the 0x80
bit; since this bit is a
legitimate bit in a
character, the only
way to distinguish
between, for
example, 0xA0 as
META+0x20 and
0xA0 as an 8-bit
character is to
watch for “META
key up” and
“META key down”
events and keep
track of whether the
key was down.

SYSTEMBIT 1 The System key was
pressed. This is a
place holder to
indicate which key
is the system-abort
key.

FUNNY 0x300 Performs various functions depending on the
value of the low 4 bits:

NOP 0x300 Does nothing.

OOPS 0x301 Exists, but is
undefined.

HOLE 0x302 There is no key in
this position on the
keyboard, and
the position-code
should not be used.

16 Trusted Solaris 8 Last modified 30 Sep 1999

Trusted Solaris STREAMS Modules kb(7M)

RESET 0x306 Keyboard reset.

ERROR 0x307 The keyboard driver
detected an internal
error.

IDLE 0x308 The keyboard is idle
(no keys down).

COMPOSE 0x309 This key is the
COMPOSE key;
the next two keys
should comprise
a two-character
“COMPOSE key”
sequence.

NONL 0x30A Used only in the
Num Lock table;
indicates that this
key is not affected
by the Num Lock
state, so that the
translation table to
use to translate this
key should be the
one that would
have been used had
Num Lock not been
in effect.

0x30B — 0x30F Reserved for
non-parameterized
functions.

FA_CLASS 0x400 This key is a “floating accent” or “dead” key.
When this key is pressed, the next key generates
an event for an accented character; for example,
“floating accent grave” followed by the “a”
key generates an event with the ISO 8859/1
code for the “a with grave accent” character.
The low-order bits indicate which accent; the
codes for the individual “floating accents” are
as follows:

FA_UMLAUT 0x400 umlaut

Last modified 30 Sep 1999 Trusted Solaris 8 17

kb(7M) Trusted Solaris STREAMS Modules

FA_CFLEX 0x401 circumflex

FA_TILDE 0x402 tilde

FA_CEDILLA 0x403 cedilla

FA_ACUTE 0x404 acute accent

FA_GRAVE 0x405 grave accent

STRING 0x500 The low-order bits index a table of strings.
When a key with a STRING entry is depressed,
the characters in the null-terminated string for
that key are sent, character by character. The
maximum length is defined as:

KTAB_STRLEN 10

Individual string numbers are defined as:

HOMEARROW 0x00

UPARROW 0x01

DOWNARROW 0x02

LEFTARROW 0x03

RIGHTARROW 0x04

String numbers 0x05 — 0x0F are available for
custom entries.

FUNCKEYS 0x600 Function keys. The next-to-lowest 4 bits indicate
the group of function keys:

LEFTFUNC 0x600

RIGHTFUNC 0x610

TOPFUNC 0x620

BOTTOMFUNC 0x630

The low 4 bits indicate the function key number within the group:
LF(n) (LEFTFUNC+(n)-1)

RF(n) (RIGHTFUNC+(n)-1)

TF(n) (TOPFUNC+(n)-1)

18 Trusted Solaris 8 Last modified 30 Sep 1999

Trusted Solaris STREAMS Modules kb(7M)

BF(n) (BOTTOMFUNC+(n)-1)

There are 64 keys reserved for function keys. The actual positions may not be on
left/right/top/bottom of the keyboard, although they usually are.
PADKEYS 0x700 This key is a “numeric keypad key.” These entries should

appear only in the Num Lock translation table; when Num
Lock is in effect, these events will be generated by pressing
keys on the right-hand keypad. The low-order bits indicate
which key; the codes for the individual keys are as follows:

PADEQUAL 0x700 “=” key

PADSLASH 0x701 “/” key

PADSTAR 0x702 “*” key

PADMINUS 0x703 “-” key

PADSEP 0x704 “,” key

PAD7 0x705 “7” key

PAD8 0x706 “8” key

PAD9 0x707 “9” key

PADPLUS 0x708 “+” key

PAD4 0x709 “4” key

PAD5 0x70A “5” key

PAD6 0x70B “6” key

PAD1 0x70C “1” key

PAD2 0x70D “2” key

PAD3 0x70E “3” key

PAD0 0x70F “0” key

PADDOT 0x710 “.” key

PADENTER 0x711 “Enter” key

In TR_ASCII mode, when a function key is pressed, the following escape
sequence is sent:

ESC[0 9z

Last modified 30 Sep 1999 Trusted Solaris 8 19

kb(7M) Trusted Solaris STREAMS Modules

where ESC is a single escape character and “0 . .. 9” indicates the decimal
representation of the function-key value. For example, function key R1 sends the
sequence:

ESC[208z

because the decimal value of RF(1) is 208. In TR_EVENTmode, if there is a VUID
event code for the function key in question, an event with that event code is
generated; otherwise, individual events for the characters of the escape sequence
are generated.

Keyboard
Compatibility Mode

kb is in “compatibility mode” when it starts up. In this mode, when the
keyboard is in the TR_EVENTtranslation mode, ISO 8859/1 characters from
the “upper half” of the character set (that is, characters with the 8th bit set)
are presented as events with codes in the ISO_FIRST range (as defined in
<SYS/VUID_EVENT.H>). The event code is ISO_FIRST plus the character
value. This is for backwards compatibility with older versions of the keyboard
driver. If compatibility mode is turned off, ISO 8859/1 characters are presented
as events with codes equal to the character code.

IOCTLS The following ioctl() requests set and retrieve the current translation mode
of a keyboard:
KIOCTRANS The argument is a pointer to an int . The translation mode is

set to the value in the int pointed to by the argument.

KIOCGTRANS The argument is a pointer to an int . The current translation
mode is stored in the int pointed to by the argument.

ioctl() requests for changing and retrieving entries from the keyboard
translation table use the kiockeymap structure:

struct kiockeymap {
int kio_tablemask; /* Translation table (one of: 0, CAPSMASK,

* SHIFTMASK, CTRLMASK, UPMASK,
* ALTGRAPHMASK, NUMLOCKMASK)
*/

#define KIOCABORT1 –1 /* Special “mask”: abort1 keystation */
#define KIOCABORT2 –2 /* Special “mask”: abort2 keystation */

uchar_t kio_station; /* Physical keyboard key station (0-127) */
ushort_t kio_entry; /* Translation table station’s entry */
char kio_string[10]; /* Value for STRING entries (null terminated) */

};

KIOCSKEY The argument is a pointer to a kiockeymap structure. The
translation table entry referred to by the values in that
structure is changed.

20 Trusted Solaris 8 Last modified 30 Sep 1999

Trusted Solaris STREAMS Modules kb(7M)

kio_tablemask specifies which of the five translation
tables contains the entry to be modified:

UPMASK 0x0080 “Key Up” translation
table.

NUMLOCKMASK 0x0800 “Num Lock”
translation table.

CTRLMASK 0x0030 “Controlled”
translation table.

ALTGRAPHMASK 0x0200 “Alt Graph”
translation table.

SHIFTMASK 0x000E “Shifted” translation
table.

CAPSMASK 0x0001 “Caps Lock”
translation table.

(No shift keys pressed or locked) “Unshifted” translation
table.

kio_station specifies the keystation code for the entry
to be modified. The value of kio_entry is stored in the
entry in question. If kio_entry is between STRING and
STRING+15, the string contained in kio_string is copied
to the appropriate string table entry. This call may return
EINVAL if there are invalid arguments.

There are a couple special values of kio_tablemask that
affect the two step “break to the PROM monitor” sequence.
The usual sequence is L1-a or Stop -. If kio_tablemask is
KIOCABORT1then the value of kio_station is set to be
the first keystation in the sequence. If kio_tablemask is
KIOCABORT2then the value of kio_station is set to be
the second keystation in the sequence.

KIOCGKEY The argument is a pointer to a kiockeymap structure.
The current value of the keyboard translation table entry
specified by kio_tablemask and kio_station is stored
in the structure pointed to by the argument. This call may
return EINVAL if there are invalid arguments.

KIOCTYPE The argument is a pointer to an int . A code indicating the
type of the keyboard is stored in the int pointed to by
the argument:

Last modified 30 Sep 1999 Trusted Solaris 8 21

kb(7M) Trusted Solaris STREAMS Modules

KB_SUN3 Sun Type 3 keyboard

KB_SUN4 Sun Type 4 keyboard

KB_ASCII ASCII terminal masquerading as keyboard

KB_PC Type 101 PC keyboard

KB_DEFAULTis stored in the int pointed to by the
argument, if the keyboard type is unknown. In case of error,
-1 is stored in the int pointed to by the argument.

KIOCLAYOUT The argument is a pointer to an int . On a Sun Type 4
keyboard, the layout code specified by the keyboard’s DIP
switches is stored in the int pointed to by the argument.

KIOCCMD The argument is a pointer to an int . The command
specified by the value of the int pointed to by the argument
is sent to the keyboard. The commands that can be sent are:

Commands to the Sun Type 3 and Sun Type 4 keyboards:

KBD_CMD_RESET Reset keyboard as if power-up.

KBD_CMD_BELL Turn on the bell.

KBD_CMD_NOBELL Turn off the bell.

KBD_CMD_CLICK Turn on the click annunciator.

KBD_CMD_NOCLICK Turn off the click annunciator.

Commands to the Sun Type 4 keyboard:

KBD_CMD_SETLED Set keyboard LEDs.

KBD_CMD_GETLAYOUT Request that keyboard indicate
layout.

Inappropriate commands for particular keyboard types are
ignored. Since there is no reliable way to get the state of the
bell or click (because we cannot query the keyboard, and
also because a process could do writes to the appropriate
serial driver — thus going around this ioctl() request) we
do not provide an equivalent ioctl() to query its state.

KIOCSLED The argument is a pointer to an char . On the Sun Type 4
keyboard, the LEDs are set to the value specified in that
char . The values for the four LEDs are:

22 Trusted Solaris 8 Last modified 30 Sep 1999

Trusted Solaris STREAMS Modules kb(7M)

LED_CAPS_LOCK “Caps Lock” light.

LED_COMPOSE “Compose” light.

LED_SCROLL_LOCK “Scroll Lock” light.

LED_NUM_LOCK “Num Lock” light.

On some of the Japanese layouts, the value for the fifth
LED is:

LED_KANA “Kana” light.

KIOCGLED The argument is a pointer to a char . The current state of the
LEDs is stored in the char pointed to by the argument.

KIOCSCOMPAT The argument is a pointer to an int . “Compatibility mode”
is turned on if the int has a value of 1, and is turned off if
the int has a value of 0.

KIOCGCOMPAT The argument is a pointer to an int . The current state of
“compatibility mode” is stored in the int pointed to by
the argument.

The following ioctl() request allows the default effect of the keyboard abort
sequence to be changed.
KIOCSKABORTENThe argument is a pointer to an int . The keyboard abort

sequence (typically L1-A or Stop-A on the keyboard on
SPARC systems and BREAK on the serial console device)
effect is enabled if the int has a non-zero value; otherwise,
the keyboard abort sequence effect is disabled. When
enabled, the default effect causes the operating system to
suspend and enter the kernel debugger (if present) or the
system PROM (on most systems with OpenBoot PROMs).
The default effect is "enabled" on most systems. The
default effect may be different on server systems with key
switches when the key switch is in the "secure" position.
On these server systems, the effect is always "disabled"
when the key switch is in the "secure" position. This
ioctl() request returns EPERMif the caller does not have
the PRIV_SYS_DEVICESprivilege in its set of effective
privileges.

These ioctl() requests are supported for compatibility with the system
keyboard device /dev/kbd .
KIOCSDIRECT Has no effect.

KIOCGDIRECT Always returns 1.

Last modified 30 Sep 1999 Trusted Solaris 8 23

kb(7M) Trusted Solaris STREAMS Modules

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

SUMMARY
OF TRUSTED

SOLARIS
CHANGES

To use the KIOCSKABORTENrequest, the caller must have sys_devices in its
set of effective privileges.

SEE ALSO
Trusted Solaris 8

Reference Manual
kbd (1), Trusted Solaris Administrator’s Procedures

SunOS 5.8 Reference
Manual

loadkeys (1), kadb (1M), keytables (4), attributes (5), termio (7I)

NOTES Many of the keyboards released after Sun Type 4 keyboard also report
themselves as Sun Type 4 keyboard.

24 Trusted Solaris 8 Last modified 30 Sep 1999

Trusted Solaris Devices sad(7D)

NAME sad – STREAMS Administrative Driver

SYNOPSIS #include <sys/types.h>

#include <sys/conf.h>

#include <sys/sad.h>

#include <sys/stropts.h>

int ioctl(int fildes, int command, int arg);

DESCRIPTION The STREAMS Administrative Driver provides an interface for applications to
perform administrative operations on STREAMS modules and drivers. The
interface is provided through ioctl (2) commands. Privileged operations may
access the sad driver using /dev/sad/admin . The requesting process must
have PRIV_SYS_DEVICESprivilege in its effective set. Unprivileged operations
may access the sad driver using /dev/sad/user .

The fildes argument is an open file descriptor that refers to the sad driver. The
command argument determines the control function to be performed as described
below. The arg argument represents additional information that is needed by this
command. The type of arg depends upon the command, but it is generally an
integer or a pointer to a command-specific data structure.

COMMAND
FUNCTIONS

The autopush facility [see autopush (1M)] allows the administrator to configure
a list of modules to be automatically pushed on a stream when a driver is first
opened. Autopush is controlled by the following commands:
SAD_SAP Allows the administrator to configure the given device’s

autopush information. arg points to a strapush structure,
which contains the following members:

unit_t sap_cmd;
major_t sap_major;
minor_t sap_minor;
minor_t sap_lastminor;
unit_t sap_npush;
unit_t sap_list [MAXAPUSH] [FMNAMESZ + 1];

The sap_cmd field indicates the type of configuration being
done. It may take on one of the following values:

SAP_ONE Configure one minor device of a driver.

SAP_RANGE Configure a range of minor devices of a
driver.

SAP_ALL Configure all minor devices of a driver.

SAP_CLEAR Undo configuration information for a
driver.

Last modified 2 Feb 2000 Trusted Solaris 8 25

sad(7D) Trusted Solaris Devices

The sap_major field is the major device number of the
device to be configured. The sap_minor field is the
minor device number of the device to be configured. The
sap_lastminor field is used only with the SAP_RANGE
command, which configures a range of minor devices
between sap_minor and sap_lastminor , inclusive. The
minor fields have no meaning for the SAP_ALL command.
The sap_npush field indicates the number of modules to be
automatically pushed when the device is opened. It must
be less than or equal to MAXAPUSH, defined in <sad.h> . It
must also be less than or equal to NSTRPUSH, the maximum
number of modules that can be pushed on a stream, defined
in the kernel master file. The field sap_list is an array of
NULL-terminated module names to be pushed in the order in
which they appear in the list.

When using the SAP_CLEARcommand, the user sets
only sap_major and sap_minor . This will undo the
configuration information for any of the other commands. If
a previous entry was configured as SAP_ALL, sap_minor
should be set to zero. If a previous entry was configured as
SAP_RANGE, sap_minor should be set to the lowest minor
device number in the range configured.

On failure, errno is set to the following value:

EFAULTarg points outside the allocated address space.

EINVAL The major device number is invalid, the number
of modules is invalid, or the list of module names
is invalid.

ENOSTRThe major device number does not represent a
STREAMS driver.

EEXIST The major-minor device pair is already configured.

ERANGEThe command is SAP_RANGEand sap_lastminor
is not greater than sap_minor , or the command
is SAP_CLEARand sap_minor is not equal to the
first minor in the range.

ENODEVThe command is SAP_CLEARand the device is not
configured for autopush.

ENOSR An internal autopush data structure cannot be
allocated.

26 Trusted Solaris 8 Last modified 2 Feb 2000

Trusted Solaris Devices sad(7D)

SAD_GAP Allows any user to query the sad driver to get the autopush
configuration information for a given device. arg points to a
strapush structure as described in the previous command.

The user should set the sap_major and sap_minor fields
of the strapush structure to the major and minor device
numbers, respectively, of the device in question. On return,
the strapush structure will be filled in with the entire
information used to configure the device. Unused entries
in the module list will be zero-filled.

On failure, errno is set to one of the following values:

EFAULTarg points outside the allocated address space.

EINVAL The major device number is invalid.

ENOSTRThe major device number does not represent a
STREAMS driver.

ENODEVThe device is not configured for autopush.

SAD_VML Allows any user to validate a list of modules (that is, to see
if they are installed on the system). arg is a pointer to a
str_list structure with the following members:

int sl_nmods;
struct str_mlist *sl_modlist;

The str_mlist structure has the following member:

char l_name[FMNAMESZ+1];

sl_nmods indicates the number of entries the user has
allocated in the array and sl_modlist points to the array
of module names. The return value is 0 if the list is valid, 1
if the list contains an invalid module name, or −1 on failure.
On failure, errno is set to one of the following values:

EFAULTarg points outside the allocated address space.

EINVAL The sl_nmods field of the str_list structure is
less than or equal to zero.

SUMMARY
OF TRUSTED

SOLARIS
CHANGES

The PRIV_SYS_DEVICESprivilege is required to perform privileged operations.

SEE ALSO

Last modified 2 Feb 2000 Trusted Solaris 8 27

sad(7D) Trusted Solaris Devices

Trusted Solaris 8
Reference Manual

autopush (1M), intro (2), open (2)

STREAMS Programming Guide

SunOS 5.8 Reference
Manual

ioctl (2), attributes (5)

STREAMS Programming Guide

DIAGNOSTICS Unless otherwise specified, the return value from ioctl() is 0 upon success
and −1 upon failure with errno set as indicated.

28 Trusted Solaris 8 Last modified 2 Feb 2000

Trusted Solaris Devices wscons(7D)

NAME wscons – Workstation console

SYNOPSIS #include <sys/strredir.h>

ioctl (fd, SRIOCSREDIR, target,)
ioctl (fd, SRIOCISREDIR, target);

DESCRIPTION The “workstation console” is a device consisting of the combination of the
workstation keyboard and frame buffer, acting in concert to emulate an ASCII
terminal. It includes a redirection facility that allows I/O issued to the
workstation console to be diverted to some other STREAMS device, so that, for
example, window systems can arrange to redirect output that would otherwise
appear directly on the frame buffer, corrupting its appearance.

Redirection The redirection facility maintains a list of devices that have been named as
redirection targets, through the SRIOCSREDIRioctl described below. All entries
but the most recent are inactive; when the currently active entry is closed, the
most recent remaining entry becomes active. The active entry acts as a proxy
for the device being redirected; it handles all read (2), write (2), ioctl (2), and
poll (2) calls issued against the redirectee.

The following two ioctls control the redirection facility. In both cases, fd is
a descriptor for the device being redirected (that is, the workstation console)
and target is a descriptor for a STREAMS device.
SRIOCSREDIR Make target be the source and destination of I/O ostensibly

directed to the device denoted by fd. The requesting process
must have the PRIV_SYS_C0NSOLEprivilege in its effective
set for the operation to succeed.

SRIOCISREDIR Returns 1 if target names the device currently acting as proxy
for the device denoted by fd, and 0 if it is not.

SPARC ANSI
Standard Terminal

Emulation

On SPARC based systems, the PROM monitor emulates an ANSI X3.64 terminal.

Note: the VT100 also follows the ANSI X3.64 standard but both the Sun and
the VT100 have nonstandard extensions to the ANSI X3.64 standard. The Sun
terminal emulator and the VT100 are not compatible in any true sense.

The Sun console displays 34 lines of 80 ASCII characters per line, with scrolling,
(x, y) cursor addressability, and a number of other control functions.

While the display size is usually 34 by 80, there are instances where it may be
a different size.

If the display device is not large enough to display 34 lines of text.

On SPARC based systems, if either screen-#rows or screen-#columns is
set by the user to a value other than the default of 34 or 80 respectively.
screen-#rows and screen-#columns are fields stored in NVRAM/EEPROM,
see eeprom (1M).

Last modified 22 Apr 1998 Trusted Solaris 8 29

wscons(7D) Trusted Solaris Devices

The Sun console displays a cursor which marks the current line and character
position on the screen. ASCII characters between 0x20 (space) and 0x7E (tilde)
inclusive are printing characters — when one is written to the Sun console (and
is not part of an escape sequence), it is displayed at the current cursor position
and the cursor moves one position to the right on the current line.

On SPARC based systems, later PROM revisions have the full 8-bit ISO Latin-1
(ISO 8859-1) character set, not just ASCII. Earlier PROM revisions display
characters in the range 0xA0 − 0xFE as spaces.

If the cursor is already at the right edge of the screen, it moves to the first
character position on the next line. If the cursor is already at the right edge of
the screen on the bottom line, the Line-feed function is performed (see CTRL-J
below), which scrolls the screen up by one or more lines or wraps around, before
moving the cursor to the first character position on the next line.

SPARC Control
Sequence Syntax

The Sun console defines a number of control sequences which may occur in its
input. When such a sequence is written to the Sun console, it is not displayed on
the screen, but effects some control function as described below, for example,
moves the cursor or sets a display mode.

Some of the control sequences consist of a single character. The notation CTRL-X
for some character X, represents a control character.

Other ANSI control sequences are of the form ESC [params char

Spaces are included only for readability; these characters must occur in the given
sequence without the intervening spaces.
ESC represents the ASCII escape character (ESC, CTRL-[, 0x1B).

[The next character is a left square bracket ‘[’ (0x5B).

params A sequence of zero or more decimal numbers made up of digits
between 0 and 9, separated by semicolons.

char A function character, which is different for each control sequence.

Some examples of syntactically valid escape sequences are (again, ESCrepresent
the single ASCII character ‘Escape’):

ESC[m select graphic rendition with default parameter
ESC[7m select graphic rendition with reverse image
ESC[33;54H set cursor position
ESC[123;456;0;;3;B move cursor down

Syntactically valid ANSI escape sequences which are not currently interpreted
by the Sun console are ignored. Control characters which are not currently
interpreted by the Sun console are also ignored.

30 Trusted Solaris 8 Last modified 22 Apr 1998

Trusted Solaris Devices wscons(7D)

Each control function requires a specified number of parameters, as noted below.
If fewer parameters are supplied, the remaining parameters default to 1, except
as noted in the descriptions below.

If more than the required number of parameters is supplied, only the last n are
used, where n is the number required by that particular command character.
Also, parameters which are omitted or set to zero are reset to the default value of
1 (except as noted below).

Consider, for example, the command character M which requires one parameter.
ESC[;M and ESC[0M and ESC[M and ESC[23;15;32;1M are all equivalent to
ESC[1M and provide a parameter value of 1. Note: ESC[;5M (interpreted as
‘ESC[5M’) is not equivalent to ESC[5;M (interpreted as ‘ESC[5;1M’) which is
ultimately interpreted as ‘ESC[1M’).

In the syntax descriptions below, parameters are represented as ‘#’ or ‘#1;#2 ’.

SPARC ANSI Control
Functions

The following paragraphs specify the ANSI control functions implemented by
the Sun console. Each description gives:

the control sequence syntax

the hex equivalent of control characters where applicable

the control function name and ANSI or Sun abbreviation (if any).

description of parameters required, if any

description of the control function

for functions which set a mode, the initial setting of the mode. The initial
settings can be restored with the SUNRESETescape sequence.

SPARC Control
Character Functions

CTRL-G (0x7)Bell (BEL)

The Sun Workstation Model 100 and 100U is not equipped with an audible
bell. It ‘rings the bell’ by flashing the entire screen. The window system
flashes the window. The screen will also be flashed on current models if the
Sun keyboard is not the console input device.

CTRL-H (0x8)Backspace (BS)
The cursor moves one position to the left on the current line. If it is already
at the left edge of the screen, nothing happens.

CTRL-I (0x9)Tab (TAB)
The cursor moves right on the current line to the next tab stop. The tab
stops are fixed at every multiple of 8 columns. If the cursor is already at the
right edge of the screen, nothing happens; otherwise the cursor moves right
a minimum of one and a maximum of eight character positions.

CTRL-J (0xA)Line-feed (LF)

Last modified 22 Apr 1998 Trusted Solaris 8 31

wscons(7D) Trusted Solaris Devices

The cursor moves down one line, remaining at the same character position
on the line. If the cursor is already at the bottom line, the screen either
scrolls up or “wraps around” depending on the setting of an internal
variable S (initially 1) which can be changed by the ESC[r control sequence.
If S is greater than zero, the entire screen (including the cursor) is scrolled up
by S lines before executing the line-feed. The top S lines scroll off the screen
and are lost. S new blank lines scroll onto the bottom of the screen. After
scrolling, the line-feed is executed by moving the cursor down one line.

If S is zero, ‘wrap-around’ mode is entered. ‘ESC [1 r’ exits back to scroll
mode. If a line-feed occurs on the bottom line in wrap mode, the cursor
goes to the same character position in the top line of the screen. When
any line-feed occurs, the line that the cursor moves to is cleared. This
means that no scrolling occurs. Wrap-around mode is not implemented in
the window system.

On SPARC based systems, the screen scrolls as fast as possible depending on
how much data is backed up waiting to be printed. Whenever a scroll must
take place and the console is in normal scroll mode (‘ESC [1 r’), it scans the
rest of the data awaiting printing to see how many line-feeds occur in it.
This scan stops when any control character from the set {VT, FF, SO, SI , DLE,
DC1, DC2, DC3, DC4, NAK, SYN, ETB, CAN, EM, SUB, ESC, FS, GS, RS, US} is
found. At that point, the screen is scrolled by N lines (N ≥ 1) and processing
continues. The scanned text is still processed normally to fill in the newly
created lines. This results in much faster scrolling with scrolling as long as
no escape codes or other control characters are intermixed with the text.

See also the discussion of the ‘Set scrolling’ (ESC[r) control function below.

CTRL-K (0xB)Reverse Line-feed
The cursor moves up one line, remaining at the same character position on
the line. If the cursor is already at the top line, nothing happens.

CTRL-L (0xC)Form-feed (FF)
The cursor is positioned to the Home position (upper-left corner) and the
entire screen is cleared.

CTRL-M (0xD)Return (CR)
The cursor moves to the leftmost character position on the current line.

SPARC Escape
Sequence Functions

CTRL-[(0x1B) Escape (ESC)

This is the escape character. Escape initiates a multi-character control
sequence.

ESC[#@ Insert Character (ICH)

32 Trusted Solaris 8 Last modified 22 Apr 1998

Trusted Solaris Devices wscons(7D)

Takes one parameter, # (default 1). Inserts # spaces at the current cursor
position. The tail of the current line starting at the current cursor position
inclusive is shifted to the right by # character positions to make room for the
spaces. The rightmost # character positions shift off the line and are lost.
The position of the cursor is unchanged.

ESC[#A Cursor Up (CUU)
Takes one parameter, # (default 1). Moves the cursor up # lines. If the cursor
is fewer than # lines from the top of the screen, moves the cursor to the
topmost line on the screen. The character position of the cursor on the
line is unchanged.

ESC[#B Cursor Down (CUD)
Takes one parameter, # (default 1). Moves the cursor down # lines. If the
cursor is fewer than # lines from the bottom of the screen, move the cursor
to the last line on the screen. The character position of the cursor on the
line is unchanged.

ESC[#C Cursor Forward (CUF)
Takes one parameter, # (default 1). Moves the cursor to the right by #
character positions on the current line. If the cursor is fewer than # positions
from the right edge of the screen, moves the cursor to the rightmost position
on the current line.

ESC[#D Cursor Backward (CUB)
Takes one parameter, # (default 1). Moves the cursor to the left by #
character positions on the current line. If the cursor is fewer than # positions
from the left edge of the screen, moves the cursor to the leftmost position
on the current line.

ESC[#E Cursor Next Line (CNL)
Takes one parameter, # (default 1). Positions the cursor at the leftmost
character position on the #-th line below the current line. If the current line
is less than # lines from the bottom of the screen, positions the cursor at the
leftmost character position on the bottom line.

ESC[#1;#2f Horizontal And Vertical Position (HVP)
or

ESC[#1;#2H Cursor Position (CUP)
Takes two parameters, #1 and #2 (default 1, 1). Moves the cursor to the
#2-th character position on the #1-th line. Character positions are numbered
from 1 at the left edge of the screen; line positions are numbered from 1 at
the top of the screen. Hence, if both parameters are omitted, the default
action moves the cursor to the home position (upper left corner). If only one
parameter is supplied, the cursor moves to column 1 of the specified line.

Last modified 22 Apr 1998 Trusted Solaris 8 33

wscons(7D) Trusted Solaris Devices

ESC[J Erase in Display (ED)
Takes no parameters. Erases from the current cursor position inclusive to the
end of the screen. In other words, erases from the current cursor position
inclusive to the end of the current line and all lines below the current line.
The cursor position is unchanged.

ESC[K Erase in Line (EL)
Takes no parameters. Erases from the current cursor position inclusive to the
end of the current line. The cursor position is unchanged.

ESC[#L Insert Line (IL)
Takes one parameter, # (default 1). Makes room for # new lines starting at
the current line by scrolling down by # lines the portion of the screen from
the current line inclusive to the bottom. The # new lines at the cursor are
filled with spaces; the bottom # lines shift off the bottom of the screen and
are lost. The position of the cursor on the screen is unchanged.

ESC[#M Delete Line (DL)
Takes one parameter, # (default 1). Deletes # lines beginning with the current
line. The portion of the screen from the current line inclusive to the bottom
is scrolled upward by # lines. The # new lines scrolling onto the bottom of
the screen are filled with spaces; the # old lines beginning at the cursor line
are deleted. The position of the cursor on the screen is unchanged.

ESC[#P Delete Character (DCH)
Takes one parameter, # (default 1). Deletes # characters starting with the
current cursor position. Shifts to the left by # character positions the tail of
the current line from the current cursor position inclusive to the end of the
line. Blanks are shifted into the rightmost # character positions. The position
of the cursor on the screen is unchanged.

ESC[#m Select Graphic Rendition (SGR)
Takes one parameter, # (default 0). Note: Unlike most escape sequences,
the parameter defaults to zero if omitted. Invokes the graphic rendition
specified by the parameter. All following printing characters in the data
stream are rendered according to the parameter until the next occurrence
of this escape sequence in the data stream. Currently only two graphic
renditions are defined:

0 Normal rendition.

7 Negative (reverse) image

Negative image displays characters as white-on-black if the screen mode
is currently black-on white, and vice-versa. Any non-zero value of # is
currently equivalent to 7 and selects the negative image rendition.

34 Trusted Solaris 8 Last modified 22 Apr 1998

Trusted Solaris Devices wscons(7D)

On IA systems only, the following ISO 6429-1983 graphic rendition values
support color text:

30 black foreground

31 red foreground

32 green foreground

33 brown foreground

34 blue foreground

35 magenta foreground

36 cyan foreground

37 white foreground

40 black background

41 red background

42 green background

43 brown background

44 blue background

45 magenta background

46 cyan background

47 white background

ESC[p Black On White (SUNBOW)
Takes no parameters. Sets the screen mode to black-on-white. If the screen
mode is already black-on-white, has no effect. In this mode spaces display
as solid white, other characters as black-on-white. The cursor is a solid
black block. Characters displayed in negative image rendition (see ‘Select
Graphic Rendition’ above) is white-on-black in this mode. This is the initial
setting of the screen mode on reset.

ESC[q White On Black (SUNWOB)
Takes no parameters. Sets the screen mode to white-on-black. If the screen
mode is already white-on-black, has no effect. In this mode spaces display
as solid black, other characters as white-on-black. The cursor is a solid white
block. Characters displayed in negative image rendition (see ‘Select Graphic
Rendition’ above) is black-on-white in this mode. The initial setting of the
screen mode on reset is the alternative mode, black on white.

Last modified 22 Apr 1998 Trusted Solaris 8 35

wscons(7D) Trusted Solaris Devices

ESC[#r Set scrolling (SUNSCRL)
Takes one parameter, # (default 0). Sets to # an internal register which
determines how many lines the screen scrolls up when a line-feed function
is performed with the cursor on the bottom line. A parameter of 2 or 3
introduces a small amount of “jump” when a scroll occurs. A parameter of
34 clears the screen rather than scrolling. The initial setting is 1 on reset.

A parameter of zero initiates “wrap mode” instead of scrolling. In wrap
mode, if a linefeed occurs on the bottom line, the cursor goes to the same
character position in the top line of the screen. When any linefeed occurs,
the line that the cursor moves to is cleared. This means that no scrolling
ever occurs. ‘ESC [1 r’ exits back to scroll mode.

For more information, see the description of the Line-feed (CTRL-J) control
function above.

ESC[s Reset terminal emulator (SUNRESET)
Takes no parameters. Resets all modes to default, restores current font from
PROM. Screen and cursor position are unchanged.

RETURN VALUES When there are no errors, the redirection ioctls have return values as described
above. Otherwise, they return −1 and set errno to indicate the error.

If the target stream is in an error state, errno is set accordingly.

ERRORS EPERM An SRIOCSREDIRcommand is issued, and the requesting process
does not have the PRIV_SYS_CONSOLEprivilege in its effective set.

EBADF target does not denote an open file.

ENOSTRtarget does not denote a STREAMS device.

EINVAL (x86 only) fd does not denote /dev/console .

FILES /dev/wscons The workstation console, accessed by way of the redirection
facility

x86 Only /dev/systty

/dev/syscon
/dev/console The device that must be opened for the SRIOCSREDIRand

SRIOCISREDIR ioctls

ATTRIBUTES See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

36 Trusted Solaris 8 Last modified 22 Apr 1998

Trusted Solaris Devices wscons(7D)

SUMMARY
OF TRUSTED

SOLARIS
CHANGES

To succeed, the SRIOCSREDIRcommand requires the PRIV_SYS_CONSOLE
privilege. A new error code EPERMis added.

SEE ALSO
Trusted Solaris 8

Reference Manual
write (2), read (2)

SunOS 5.8 Reference
Manual

ioctl (2), poll (2), attributes (5), console (7D)

WARNINGS The redirection ioctls block while there is I/O outstanding on the device instance
being redirected. Thus, attempting to redirect the workstation console while
there is a read outstanding on it will hang until the read completes.

NOTES On Sun Enterprise 10000 servers the netcon facility supersedes wscons (7D).
wscons is useful for systems that do have directly attached consoles, such as
frame buffers and keyboards, but it is not useful with the Enterprise 10000
server, which does not. For more information, refer to netcon (1M) in the Sun
Enterprise 10000 SSP Reference Manual or cvcd (1M).

Last modified 22 Apr 1998 Trusted Solaris 8 37

wscons(7D) Trusted Solaris Devices

38 Trusted Solaris 8 Last modified 22 Apr 1998

Index

A
ANSI standard terminal emulation —

wscons 29

G
get compatibility mode ioctl —

KIOCGCOMPAT 23

I
ioctls for keyboards

KIOCGCOMPAT — get compatibility
mode 23

K
kb — keyboard STREAMS module

Keyboard Compatibility Mode 20

Keyboard Translation Mode 14
Keyboard Translation-Table Entries 14

kb — keyboard 14
keyboard STREAMS module — kb 14
KIOCGCOMPAT — get compatibility mode 23

S
sad — STREAMS Administrative Driver 25
STREAMS Administrative Driver — sad 25

T
terminal emulation, ANSI — wscons 29

W
workstation console — wscons 29
wscons — workstation console 29

Index-39

