
man pages section 4: File Formats

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–0883–10
May 2003

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software–Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

030523@5943

Contents

Preface 5

Introduction 11

Intro(4) 12

File Formats 15

audit_class(4) 16
audit_control(4) 18
audit_data(4) 21
audit_event(4) 22
audit.log(4) 23
audit_user(4) 31
auth_desc(4) 33
auth_name(4) 34
config.privs(4) 35
device_allocate(4) 36
device_deallocate(4) 40
device_maps(4) 42
device_policy(4) 44
exec_attr(4) 48
inetd.conf(4) 51
inittab(4) 54
label_encodings(4) 57
logindevperm(4) 64
nca.if(4) 65

3

nsswitch.conf(4) 67

policy.conf(4) 75

priv_desc(4) 77

priv_name(4) 90

proc(4) 91

prof_attr(4) 123

resolv.conf(4) 125

rmtab(4) 129

sel_config(4) 130

shadow(4) 132

sharetab(4) 134

tndlog(4) 135

tnidb(4) 136

tnrhdb(4) 139

tnrhtp(4) 142

tsolgateways(4) 153

tsolinfo(4) 156

tsolprof(4) 158

tsoluser(4) 159

user_attr(4) 160

vfstab(4) 164

vfstab_adjunct(4) 166

Index 171

4 man pages section 4: File Formats • May 2003

Preface

Overview
A man page is provided for both the naive user and the sophisticated user who is
familiar with the Trusted Solaris operating environment and is in need of online
information. A man page is intended to answer concisely the question “What does it
do?” The man pages in general comprise a reference manual. They are not intended to
be a tutorial.

Trusted Solaris Reference Manual
In the AnswerBook2™ and online man command forms of the man pages, all man
pages are available:

� Trusted Solaris man pages that are unique for the Trusted Solaris environment
� SunOS 5.8 man pages that have been changed in the Trusted Solaris environment
� SunOS 5.8 man pages that remain unchanged.

The printed manual, the Trusted Solaris 8 Reference Manual contains:

� Man pages that have been added to the SunOS operating system by the Trusted
Solaris environment

� Man pages that originated in SunOS 5.8, but have been modified in the Trusted
Solaris environment to handle security requirements.

Users of printed manuals need both manuals in order to have a full set of man pages,
since the SunOS 5.8 Reference Manual contains the common man pages that are not
modified in the Trusted Solaris environment.

5

Man Page Sections
The following contains a brief description of each section in the man pages and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2 of
this volume.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character set tables.
� Section 6 contains available games and demos.
� Section 7 describes various special files that refer to specific hardware peripherals,

and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

� Section 9 provides reference information needed to write device drivers in the
kernel operating systems environment. It describes two device driver interface
specifications: the Device Driver Interface (DDI) and the Driver⁄Kernel Interface
(DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer may include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.
� Section 9S describes the data structures used by drivers to share information

between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME
This section gives the names of the commands or functions documented, followed
by a brief description of what they do.

SYNOPSIS
This section shows the syntax of commands or functions. When a command or file
does not exist in the standard path, its full pathname is shown. Options and

6 man pages section 4: File Formats • May 2003

arguments are alphabetized, with single letter arguments first, and options with
arguments next, unless a different argument order is required.

The following special characters are used in this section:

[] The option or argument enclosed in these brackets is optional. If the
brackets are omitted, the argument must be specified.

. . . Ellipses. Several values may be provided for the previous argument, or
the previous argument can be specified multiple times, for example,
“filename . . .” .

| Separator. Only one of the arguments separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments enclosed within braces are
interdependent, such that everything enclosed must be treated as a unit.

PROTOCOL
This section occurs only in subsection 3R to indicate the protocol description file.

DESCRIPTION
This section defines the functionality and behavior of the service. Thus it describes
concisely what the command does. It does not discuss OPTIONS or cite
EXAMPLES. Interactive commands, subcommands, requests, macros, functions and
such, are described under USAGE.

IOCTL
This section appears on pages in Section 7 only. Only the device class which
supplies appropriate parameters to the ioctl (2) system call is called ioctl and
generates its own heading. ioctl calls for a specific device are listed alphabetically
(on the man page for that specific device). ioctl calls are used for a particular
class of devices all of which have an io ending, such as mtio(7I)

OPTIONS
This secton lists the command options with a concise summary of what each option
does. The options are listed literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under the option, and where
appropriate, default values are supplied.

OPERANDS
This section lists the command operands and describes how they affect the actions
of the command.

OUTPUT
This section describes the output – standard output, standard error, or output files –
generated by the command.

RETURN VALUES
If the man page documents functions that return values, this section lists these
values and describes the conditions under which they are returned. If a function
can return only constant values, such as 0 or –1, these values are listed in tagged

Preface 7

paragraphs. Otherwise, a single paragraph describes the return values of each
function. Functions declared void do not return values, so they are not discussed in
RETURN VALUES.

ERRORS
On failure, most functions place an error code in the global variable errno
indicating why they failed. This section lists alphabetically all error codes a
function can generate and describes the conditions that cause each error. When
more than one condition can cause the same error, each condition is described in a
separate paragraph under the error code.

USAGE
This section lists special rules, features, and commands that require in-depth
explanations. The subsections listed here are used to explain built-in functionality:

� Commands
� Modifiers
� Variables
� Expressions
� Input Grammar

EXAMPLES
This section provides examples of usage or of how to use a command or function.
Wherever possible a complete example including command-line entry and machine
response is shown. Whenever an example is given, the prompt is shown as
example%, or if the user must be root, example#. Examples are followed by
explanations, variable substitution rules, or returned values. Most examples
illustrate concepts from the SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES
This section lists any environment variables that the command or function affects,
followed by a brief description of the effect.

EXIT STATUS
This section lists the values the command returns to the calling program or shell
and the conditions that cause these values to be returned. Usually, zero is returned
for successful completion, and values other than zero for various error conditions.

FILES
This section lists all file names referred to by the man page, files of interest, and
files created or required by commands. Each is followed by a descriptive summary
or explanation.

ATTRIBUTES
This section lists characteristics of commands, utilities, and device drivers by
defining the attribute type and its corresponding value. See attributes(5) for
more information.

SUMMARY OF TRUSTED SOLARIS CHANGES
This section describes changes to a Solaris item by Trusted Solaris software. It is
present in man pages that have been modified from Solaris software.

8 man pages section 4: File Formats • May 2003

SEE ALSO
This section lists references to other man pages, in-house documentation and
outside publications. The references are divided into two sections, so that users of
printed manuals can easily locate a man page in its appropriate printed manual.

DIAGNOSTICS
This section lists diagnostic messages with a brief explanation of the condition
causing the error.

WARNINGS
This section lists warnings about special conditions which could seriously affect
your working conditions. This is not a list of diagnostics.

NOTES
This section lists additional information that does not belong anywhere else on the
page. It takes the form of an aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS
This section describes known bugs and, wherever possible, suggests workarounds.

Preface 9

10 man pages section 4: File Formats • May 2003

Introduction

11

Intro – introduction to file formats

This section outlines the formats of various files. The C structure declarations for the
file formats are given where applicable. Usually, the headers containing these structure
declarations can be found in the directories /usr/include or /usr/include/sys.
For inclusion in C language programs, however, the syntax #include <filename.h> or
#include <sys/filename.h> should be used.

Because the operating system now allows the existence of multiple file system types,
there are several instances of multiple manual pages with the same name. These pages
all display the name of the FSType to which they pertain, in the form name_fstype at
the top of the page. For example, fs_ufs(4).

In the Trusted Solaris environment, these configuration files can be:

� Files that are unique to and originate in the Trusted Solaris environment, such as
label_encodings(4).

� SunOS 5.8 configuration files that have been modified to work within Trusted
Solaris security policy, such as proc(4). Man pages for modified files omit
information that is not accurate for how the file is used within the Trusted Solaris
environment. Modified man pages also describe new fields or entities.

� SunOS 5.8 files that remain unchanged from the Solaris 8 release, such as
timezone(4).

Note – The printed Trusted Solaris 8 HW 12/02 Reference Manual includes only those files
that have been modified or originate in the Trusted Solaris environment. Printed
versions of unchanged SunOS 5.8 man pages are found in the SunOS 5.8 Reference
Manual. For more information on displaying manual pages, see Trusted Solaris
Manual Page Display in Intro(1).

The Trusted Solaris operating environment is a security-enhanced version of the
Solaris operating environment, a trusted desktop, the X window system, and the
Solaris Management Console™ system administration tools. To preserve security
attributes, configuration files are usually not edited using vi or another common
editor. Rather, administrative roles edit the files using administrative graphical user
interfaces. The GUIs audit all changes and preserve the required owner, group,
permissions and sensitivity labels of the files.

Follow the rules described here when entering labels in configuration files. When
entering labels in GUIs, see Rules for the Display and Entering of Labels
in Intro(1). When entering labels on the command line in a UNIX shell, follow the
rules in Rules for the Display and Entering of Labels in Intro(1M).

Make sure that a program reading a configuration file can tell where the label starts
and ends. Where the label is imbedded, as it is in the device_allocate(4) file, the
only valid character to begin the label and terminate it is a semicolon (;). Most
configuration files do not support label incrementations using plus or minus signs.

Intro(4)

NAME

DESCRIPTION

TRUSTED
SOLARIS

DIFFERENCES

RULES FOR
INCLUDING
LABELS IN A

CONFIGURATION
FILE

12 man pages section 4: File Formats • Last Revised 11 Mar 2001

Configuration files are generally maintained at a sensitivity label of ADMIN_LOW.
However, each site can choose whether to store labels in configuration files as text or
as hexadecimal numbers, depending on the site’s security policy, and the form used
affects the sensitivity label at which the file should be stored. When labels are stored in
human-readable form, the files that contain them must be protected at ADMIN_HIGH,
so only administrative roles that have the ADMIN_HIGH label in their clearance can
view the files. Also, if a file contains a collection of data written by all processes in the
system (like the system log, /dev/kmem, and /dev/mem files) that file should be
protected at the ADMIN_HIGH sensitivity label.

Note – Labels entered in text form must be quoted.

The default user and group for configuration files are root and sys and default
permissions are 00644. However, the security administrator should ensure that files
that contain sensitivity information other than labels, such as those files that specify
which activities are being audited, are not generally readable. These files should have
more restrictive permissions, owner and group IDs, and possibly a protective label.

Trusted Solaris Administrator’s Procedures, Trusted Solaris Developer’s Guide

Intro(4)

POLICY FOR
SECURITY

ATTRIBUTES ON
CONFIGURATION

FILES

SEE ALSO

Introduction 13

Intro(4)

14 man pages section 4: File Formats • Last Revised 11 Mar 2001

File Formats

15

audit_class – Audit class definitions

/etc/security/audit_class

/etc/security/audit_class is a plain text system file that stores class
definitions. Programs use the getauclassent(3BSM) routines to access this
information.

The fields for each class entry are separated by colons. Each class entry is a bitmap and
is separated from each other by a newline.

Each entry in the audit_class file has the form:

mask:name:description

The fields are defined as follows:

mask The class mask.

name The class name.

description The description of the class.

The classes are user-configurable. Each class is represented as a bit in the class mask
which is an unsigned integer. Thus, there are 32 different classes available, plus two
meta-classes, all and no.

all represents a conjunction of all allowed classes, and is provided as a shorthand
method of specifying all classes.

no is the "invalid" class, and any event mapped solely to this class will not be audited.
(Turning auditing on to the all meta class will not cause events mapped solely to the
no class to be written to the audit trail.)

EXAMPLE 1 Sample of an audit_class file

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0xffffffff:all:all classes

By default, auditing is enabled in the Trusted Solaris environment. See Trusted Solaris
Audit Administration for how to disable and enable auditing.

/etc/security/audit_class Audit class definitions.

getauclassent(3BSM), audit_event(4)

audit_class(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESFILES

Trusted Solaris 8
HW 12/02

Reference Manual
16 man pages section 4: File Formats • Last Revised 5 May 1998

It is possible to deliberately turn on the no class in the kernel, in which case the audit
trail will be flooded with records for the audit event AUE_NULL.

audit_class(4)

NOTES

File Formats 17

audit_control – control information for system audit daemon

/etc/security/audit_control

The audit_control file contains audit control information used by auditd(1M).
Each line consists of a title and a string, separated by a colon. There are no restrictions
on the order of lines in the file, although some lines must appear only once. A line
beginning with ’#’ is a comment.

Directory definition lines list the directories to be used when creating audit files, in the
order in which they are to be used. The format of a directory line is:

dir:directory-name

directory-name is where the audit files will be created. Any valid writable directory can
be specified.

Unless explicitly told to look elsewhere, the auditreduce(1M) command by default
looks for the audit trail in all directories named according to the following convention
on the server on which the command is run. Therefore, this naming convention is
recommended for directories in which audit-trail files are stored:

/etc/security/audit/server[.number]/files

server is the name of the audit server on which the audit files are stored. The optional
.number is used when an audit server exports two or more audit partitions. For
example, the audit server trustworthy exports
/etc/security/audit/trustworthy and
/etc/security/audit/trustworthy.1. For the current host to use both of these
partitions, these lines must be added to the local audit_control file:

dir:/etc/security/audit/trustworthy/files

dir:/etc/security/audit/trustworthy.1/files

Audit data may be stored in directories with other names at the discretion of the site.
Some sites may want to store each host’s audit data in a separate subdirectory. The
audit structure used will depend on each individual site. If the defined audit structure
differs from /etc/security/audit/*/files, auditreduce needs to be given the
new location of the audit trail explicitly as decribed in auditreduce(1M).

The audit threshold line specifies the percentage of free space that must be present in
the file system containing the current audit file. The format of the threshold line is:

minfree:percentage

where percentage is indicates the amount of free space required. If free space falls
below this threshold, the audit daemon auditd(1M) invokes the shell script
audit_warn(1M). If no threshold is specified, the default is 0%.

audit_control(4)

NAME

SYNOPSIS

DESCRIPTION

18 man pages section 4: File Formats • Last Revised 20 Apr 2000

The audit flags line specifies the default system audit value. This value is combined
with the user audit value read from audit_user(4) to form the process audit state.
The user audit value overrides the system audit value. The format of a flags line is:

flags:audit-flags

where audit-flags specifies which event classes are to be audited. The character string
representation of audit-flags contains a series of flag names, each one identifying a
single audit class, separated by commas. A name preceded by minus (-) means that the
class should be audited for failure only; successful attempts are not audited. A name
preceded by plus (+) means that the class should be audited for success only; failing
attempts are not audited. Without a prefix, the name indicates that the class is to be
audited for both successes and failures. The special string all indicates that all events
should be audited: –all indicates that all failed attempts are to be audited; +all, all
successful attempts. The prefixes ^, ^−, and ^+ turn off flags specified earlier in the
string (^− and ^+ for failing and successful attempts, ^ for both). They are typically
used to reset flags.

The non-attributable flags line is similar to the flags line, but this one contain the audit
flags that define what classes of events are audited when an action cannot be
attributed to a specific user. The format of a naflags line is:

naflags:audit-flags

The flags are separated by commas, with no spaces.

The following table lists the predefined audit classes:

short name long name Short description
no no_class Null value for turning off event preselection
fr Read of data, open for reading, etc.
fw Write of data, open for writing, etc.
fa Access of object attributes: stat, pathconf, etc.
fm Change of object attributes: chown, flock, etc.
fc Creation of object
fd Deletion of object
cl close(2) system call
pc Process operations
nt Network events: bind, connect, accept, etc.
ip System V IPC operations
na Non-attributable events
ad Administrative actions: mount, exportfs, etc.
lo Login and logout events
ap Application auditing
ax server
ss system state
as system-wide administration
aa administration
ao administration
ps start/stop
pm modify
io ioctl(2) system call

audit_control(4)

File Formats 19

fn fcntl(2) system call
ot Everything else
all All flags set

Note that the classes are configurable; see audit_class(4).

EXAMPLE 1 Sample /etc/security/audit_control file

Here is a sample /etc/security/audit_control file for the machine eggplant:

dir: /etc/security/jedgar/eggplant
dir: /etc/security/jedgar.aux/eggplant
#
Last-ditch audit file system when jedgar fills up.
#
dir: /etc/security/global/eggplant
minfree: 20
flags: lo,ad,-all,^-fm
naflags: lo,ad

This identifies server jedgar with two file systems normally used for audit data,
another server global used only when jedgar fills up or breaks, and specifies that
the warning script is run when the file systems are 80% filled. It also specifies that all
logins, administrative operations are to be audited (whether or not they succeed), and
that failures of all types except failures to access object attributes are to be audited.

/etc/security/audit_control
/etc/security/audit_warn
/etc/security/audit/*/*/*
/etc/security/audit_user Audit files

By default, the machine halts when audit files run out of disk space. The Trusted
Solaris environment adds programming interfaces, audit tokens, audit classes, and
audit events.

By default, auditing is enabled in the Trusted Solaris environment. See Trusted Solaris
Audit Administration for how to disable and enable auditing.

audit(1M), audit_warn(1M), auditd(1M), audit(2), getfauditflags(3BSM),
audit.log(4), audit_class(4), audit_user(4), Trusted Solaris Audit Administration

audit_control(4)

EXAMPLES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual

20 man pages section 4: File Formats • Last Revised 20 Apr 2000

audit_data – Current information on audit daemon

/etc/security/audit_data

The audit_data file contains information about the audit daemon. The file contains
the process ID of the audit daemon, and the pathname of the current audit log file. The
format of the file is:

pid:pathname

Where pid is the process ID for the audit daemon, and pathname is the full pathname
for the current audit log file.

EXAMPLE 1 A sample audit_data file.

64:/etc/security/audit/iedgar/19990506081249.19990506230945.eggplant

By default, auditing is enabled in the Trusted Solaris environment. The audit_data
file is protected at ADMIN_HIGH.

See Trusted Solaris Audit Administration for how to disable and enable auditing.

/etc/security/audit_data Current information on audit daemon.

audit(1M), auditd(1M), audit(2), audit.log(4)

Trusted Solaris Audit Administration

audit_data(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

FILES

Trusted Solaris 8
HW 12/02

Reference Manual

File Formats 21

audit_event – Audit event definition and class mapping file

/etc/security/audit_event

/etc/security/audit_event is a plain text system file that stores event
definitions and specifies the event-to-class mappings. Programs use the
getauevent(3BSM) routines to access this information.

The fields for each event entry are separated by colons. Each event is separated from
the next by a newline.

Each entry in the audit_event file has the form:

number:name:description: flags

The fields are defined as follows:

number The event number.

name The event name.

description The description of the event.

flags Flags specifying classes to which the event is mapped.

EXAMPLE 1 Some audit_event file entries

7:AUE_EXEC:exec(2):ps
79:AUE_OPEN_WTC:open(2) - write,creat,trunc:fc,fd,fw
6152:AUE_login:login - local:lo
6153:AUE_logout:logout:lo
6154:AUE_telnet:login - telnet:lo
6155:AUE_rlogin:login - rlogin:lo

/etc/security/audit_event Audit event definition and class mapping
file.

The Trusted Solaris environment adds audit events to the audit_event file, and
remaps some audit events to audit classes that do not exist in the Solaris environment.
Also, auditing is enabled by default. See Trusted Solaris Audit Administration for how to
disable and enable auditing.

getauevent(3BSM), audit_control(4)

Trusted Solaris Audit Administration

audit_event(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual

22 man pages section 4: File Formats • Last Revised 20 Apr 2000

audit.log – audit trail file

#include <bsm/audit.h>

#include <bsm/audit_record.h>

audit.log files are the depository for audit records stored locally or on an audit
server. These files are kept in directories named in the file audit_control(4). They
are named to reflect the time they are created and are, when possible, renamed to
reflect the time they are closed as well. The name takes the form

yyyymmddhhmmss.not_terminated.hostname

when open or if the auditd(1M) terminated ungracefully, and the form

yyyymmddhhmmss.yyyymmddhhmmss.hostname

when properly closed. yyyy is the year, mm the month, dd day in the month, hh hour in
the day, mm minute in the hour, and ss second in the minute. All fields are of fixed
width.

The audit.log file begins with a standalone file token and typically ends with one
also. The beginning file token records the pathname of the previous audit file, while
the ending file token records the pathname of the next audit file. If the file name is
NULL the appropriate path was unavailable.

The audit.log files contains audit records. Each audit record is made up of audit
tokens. Each record contains a header token followed by various data tokens.
Depending on the audit policy in place by auditon(2), optional other tokens such as
trailers or sequences may be included.

The tokens are defined as follows:

The file token consists of:

token ID 1 byte
seconds of time 4 bytes
milliseconds of time 4 bytes
file name length 2 bytes
file pathname N bytes + 1 terminating NULL byte

The header token consists of:

token ID 1 byte
record byte count 4 bytes
version # 1 byte [2]
event type 2 bytes
event modifier 2 bytes
seconds of time 4 bytes/8 bytes (32-bit/64-bit value)
milliseconds of time 4 bytes/8 bytes (32-bit/64-bit value)

The expanded header token consists of:

audit.log(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 23

toke ID 1 byte
record byte count 4 bytes
version # 1 byte [2]
event type 2 bytes
event modifier 2 bytes
address type/length 4 bytes
machine address 4 bytes/16 bytes (IPv4/IPv6 address)
seconds of time 4 bytes/8 bytes (32/64-bits)
milliseconds of time 4 bytes/8 bytes (32/64-bits)

The trailer token consists of:

token ID 1 byte
trailer magic number 2 bytes
record byte count 4 bytes

The arbitrary data token is defined:

token ID 1 byte
how to print 1 byte
basic unit 1 byte
unit count 1 byte
data items (depends on basic unit)

The in_addr token consists of:

token ID 1 byte
internet address 4 bytes

The expanded in_addr token consists of:

token ID 1 byte
IP address type/length 4 bytes
IP address 16 bytes

The ip token consists of:

token ID 1 byte
version and ihl 1 byte
type of service 1 byte
length 2 bytes
id 2 bytes
offset 2 bytes
ttl 1 byte
protocol 1 byte
checksum 2 bytes
source address 4 bytes
destination address 4 bytes

The expanded ip token consists of:

token ID 1 byte
version and ihl 1 byte
type of service 1 byte
length 2 bytes
id 2 bytes
offset 2 bytes
ttl 1 byte

audit.log(4)

24 man pages section 4: File Formats • Last Revised 31 Aug 2001

protocol 1 byte
checksum 2 bytes
address type/type 4 bytes
source address 4 bytes/16 bytes (IPv4/IPv6 address)
address type/length 4 bytes
destination address 4 bytes/16 bytes (IPv4/IPv6 address)

The iport token consists of:

token ID 1 byte
port IP address 2 bytes

The opaque token consists of:

token ID char
size short
data char, size chars

The path token consists of:

token ID 1 byte
path length 2 bytes
path N bytes + 1 terminating NULL byte

The process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
machine address 4 bytes

The expanded process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
address type/length 4 bytes
machine address 16 bytes

The return token consists of:

token ID 1 byte
error number 1 byte
return value 4 bytes/8 bytes (32-bit/64-bit value)

audit.log(4)

File Formats 25

The subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
machine address 4 bytes

The expanded subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
address type/length 4 bytes
machine address 16 bytes

The System V IPC token consists of:

token ID 1 byte
object ID type 1 byte
object ID 4 bytes

The text token consists of:

token ID 1 byte
text length 2 bytes
text N bytes + 1 terminating NULL byte

The attribute token consists of:

token ID 1 byte
file access mode 4 bytes
owner user ID 4 bytes
owner group ID 4 bytes
file system ID 4 bytes
node ID 8 bytes
device 4 bytes/8 bytes (32-bit/64-bit)

The groups token consists of:

token ID 1 byte
number groups 2 bytes
group list N * 4 bytes

The System V IPC permission token consists of:

audit.log(4)

26 man pages section 4: File Formats • Last Revised 31 Aug 2001

token ID 1 byte
owner user ID 4 bytes
owner group ID 4 bytes
creator user ID 4 bytes
creator group ID 4 bytes
access mode 4 bytes
slot sequence # 4 bytes
key 4 bytes

The arg token consists of:

token ID 1 byte
argument # 1 byte
argument value 4 bytes/8 bytes (32-bit/64-bit value)
text length 2 bytes
text N bytes + 1 terminating NULL byte

The exec_args token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exec_env token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exit token consists of:

token ID 1 byte
status 4 bytes
return value 4 bytes

The socket token consists of:

token ID 1 byte
socket type 2 bytes
remote port 2 bytes
remote Internet address 4 bytes

The expanded socket token consists of:

token ID 1 byte
socket type 2 bytes
local port 2 bytes
address type/length 4 bytes
local Internet address 4 bytes/16 bytes (IPv4/IPv6 address)
remote port 4 bytes
address type/length 4 bytes
remote Internet address 4 bytes/16 bytes (IPv4/IPv6 address)

The seq token consists of:

token ID 1 byte
sequence number 4 bytes

audit.log(4)

File Formats 27

The acl token consists of

token ID char
num of entries int

(following three fields repeated num times)
object type int
uid/gid int
permissions short

The clearance token consists of

token ID char
CLEARANCE
label ID char
pad character char
classification short
compartments 8 ints

The host token consists of

token ID char
local Internet address long

The liaison token consists of

token ID char
liaison ID int

The priv token consists of

token ID char
succ/fail char
priv. used int

The privilege token consists of

token ID char
type of set char
priv. set 4 ints

The slabel token consists of

token ID char
SLABEL
pad character char
classification short
compartments 8 ints

The uauth token consists of:

token ID 1 byte
text length 2 bytes
text N bytes + 1 terminating NULL byte

audit.log(4)

28 man pages section 4: File Formats • Last Revised 31 Aug 2001

The xatom token consists of

token ID char
string length short
atom string string length bytes

The xcolormap token consists of

token ID char
XID int
creator UID int

The xcursor token consists of

token ID char
XID int
creator UID int

The xfont token consists of

token ID char
XID int
creator UID int

The xgc token consists of

token ID char
XID int
creator UID int

The xpixmap token consists of

token ID char
XID int
creator UID int

The xproperty token consists of

token ID char
XID int
creator UID int
string length short
string string length bytes

The xselect token consists of

token ID char
property length short
property string property length bytes
prop. type len. short

audit.log(4)

File Formats 29

prop type prop. type len. bytes
data length short
window data data length bytes

The xwindow token consists of

XID int
creator UID int

These audit tokens have been added to the Trusted Solaris auditing module: acl,
clearance, host, liaison, priv, privilege, slabel, uauth, xatom,
xcolormap, xcursor, xfont, xgc, xpixmap, xproperty, xselect, and xwindow.
Trusted Solaris auditing also uses the auditwrite(3TSOL) function instead of
au_to_*() function calls to create audit tokens.

By default, auditing is enabled in the Trusted Solaris environment. See Trusted Solaris
Audit Administration for how to disable and enable auditing.

audit(1M), auditd(1M), audit(2), auditon(2), auditwrite(3TSOL),
audit_control(4)

au_to(3BSM)

audit.log(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual
SunOS 5.8

Reference Manual

30 man pages section 4: File Formats • Last Revised 31 Aug 2001

audit_user – per-user auditing data file

/etc/security/audit_user

audit_user is an access-restricted plain text system file that stores per-user auditing
preselection data. The audit_user file can be used with other authorization sources,
including the NIS+ audit_user table . Programs use the getauusernam(3BSM) to
access this information.

The search order for audit_user sources follows the order specified for passwd(4)
in the nsswitch.conf(4) file. No entry should be made for audit_user.

The fields for each user entry are separated by colons (:).. Each user is separated from
the next by a newline. audit_user does not have general read permission.

Each entry in the audit_user database has the form:

username:always-audit-flags:never-audit-flags

The fields are defined as follows:

username The user’s login name.

always-audit-flags Flags specifying event classes to always audit.

never-audit-flags Flags specifying event classes to never audit.

For a complete description of the audit flags and how to combine them, see the
audit_control(4) man page.

Note – The default permissions on the audit_user NIS+ table in the Trusted Solaris
operating environment are restrictive. Therefore, normal users on NIS+ clients that are
not running the Trusted Solaris operating environment and are not using the TSIX
protocol cannot read the audit_user NIS+ table.

The preferred workaround for such clients is to use the local audit_user file.
Alternatively, the NIS+ permissions on the audit_user table could be changed to be
less restrictive.

EXAMPLE 1 Sample audit_user File

other:lo,ad:io,cl
freda:lo,ex,+fc,-fr,-fa:io,cl

ethel:lo,ex,nt:io,cl

/etc/nsswitch.conf Configuration file for the name service
switch

/etc/security/audit_user Per-user auditing data file.

/etc/passwd Per-machine user password file.

audit_user(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

File Formats 31

By default, auditing is enabled in the Trusted Solaris environment. See Trusted Solaris
Audit Administration for how to disable and enable auditing.

A Trusted Solaris NIS+ audit_user table can be used by NIS+ clients that are
running the Trusted Solaris operating environment or the TSIX protocol. NIS+ clients
that are running other operating environments should use their local audit_user
file. Alternatively, the permissions on the Trusted Solaris NIS+ audit_user table can
be relaxed.

getauusernam(3BSM), audit_control(4), nsswitch.conf(4)

Trusted Solaris Audit Administration

passwd(4)

audit_user(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual

SunOS 5.8
Reference Manual

32 man pages section 4: File Formats • Last Revised 10 Jan 2003

auth_desc – Descriptions of defined authorizations

#include <tsol/auth.h> (obsolete)

This man page is obsolete. To see the definitions for authorizations, see the
Authorizations tool in the Solaris Management Console’s Rights Manager.

auth_desc(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 33

auth_name – Authorization description database

/usr/lib/tsol/locale/locale/auth_name (obsolete)

The auth_name database and <tsol/auth_name.h> header file are replaced in
Trusted Solaris 8 and later releases with the auth_attr(4) database. Programs can
use the functions described in the getauthattr(3SECDB) man page to get
information from the auth_attr database. See the Trusted Solaris Transition Guide for
correspondences between old and new authorization names.

auth_name(4)

NAME

SYNOPSIS

DESCRIPTION

34 man pages section 4: File Formats • Last Revised 16 Jun 2000

config.privs – List of window privileges that override system checks

/usr/openwin/server/tsol/config.privs

config.privs contains a list of all window privileges. config.privs lists each
privilege in plain text, one per line, separated from the next by a new line. Lines
preceded by a comment sign (#) are ignored.

Each privilege not preceded by a comment overrides system checks for that privilege.
The security administrator can comment out privileges in the list, but cannot add new
privileges.

By default, config.privs contains all the privileges that are allowed in the file:
win_colormap, win_config, win_dga, win_devices, win_fontpath.

config.privs should have a sensitivity label of ADMIN_LOW with permission bits
664, owner root, and group bin.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWxwplt

/usr/openwin/server/tsol/config.privs
List of window privileges that override system checks in the Trusted Solaris
environment.

priv_desc(4)

attributes(5)

config.privs(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

FILES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

File Formats 35

device_allocate – device allocate information file

/etc/security/device_allocate

The device_allocate file contains information about allocatable devices.
Corresponding entries in device_maps(4) list the device special files associated with
the allocatable device.

This file is normally created using the mkdevdb(1M) command, run by the init.d(4)
scripts during a system’s initial bootload or when the system is booted with the -r
(reconfigure) option. The mkdevdb command creates a set of entries for the system’s
audio and removable media devices.

The preferred method of modifying the device_allocate file is to use the Device
Administration dialog box of the Device Allocation Manager.

Each device is represented by a one-line entry of the form:

device-name;device-type;attributes;reserved;device-authorization;device-clean

where

device-name is the name used to identify the device for allocations.
The allocation name is an arbitrary text string,
containing no embedded white space or non-printable
characters. Note, however, that the init.d(4) scripts
assume that the allocation names will not be changed
for entries they created using mkdevdb(1M). If these
entries are renamed, the init.d scripts will create new
(and possibly conflicting) entries when the system is
rebooted with the -r option. Also, the
/etc/security/lib/device_clean script
depends on the names of disk devices having the
names assigned by mkdevdb.

device-type is the generic device type, used to identify and group
together devices of like type. This field is an arbitrary
text string, containing no embedded white space or
non-printable characters.

attributes is a colon-separated string of key=value pairs.

device-authorization is a comma-separated list of authorizations. A user
must have at least one of these authorizations to
allocate the device. In place of the authorization list,
this field may contain an * to indicate that the device is
not allocatable, or an @ to indicate that no explicit
authorization is needed to allocate the device.

device_allocate(4)

NAME

SYNOPSIS

DESCRIPTION

36 man pages section 4: File Formats • Last Revised 18 May 2001

An optional colon (:) plus a second list of
authorizations may be used to provide different
authorizations for allocations from the trusted path
(primarily through the Device Allocation Manager) and
for allocations that do not come from the trusted path
(primarily by command-line use of the allocate(1)
command). The syntax for this form of the
authorizations field is tp_auths:nontp_auths. If a
device allocation request comes from the trusted path,
the user must have one of the authorizations specified
in tp_auths. For requests not from the trusted path,
the user must have one of the authorizations specified
in nontp_auths. Either of these may be * or @.

device-clean is the path of a device cleaning program to be run any
time the device is allocated or deallocated. The cleaning
program ensures that all usable data is purged from the
physical drive before it is reused.

The device cleaning program may interact with the
user via prompts and responses on stdout/stdin.

An alternate version of the cleaning program for use in
a windowing environment may be supplied by using
the same path with the suffix .windowing appended.
The windowing version may use the window system to
interact with the user via dialogs.

Lines in device_allocate can end with a \ to continue an entry on the next line.

Leading and trailing blanks are allowed in any of the fields.

The recommended method of modifying the device_allocate file is through the
Add Allocatable Device action and the Device Allocation Manager. A designated
administrative role uses the Add Allocatable Device action to add a device with
default attributes. The Device Allocation Manager’s Configure dialog box is used for
modifications to a device. These tools handle the formatting of entries (including
translation of plain text sensitivity labels to hex), and audit all changes. They preserve
the correct permissions, ownership, and label of the device_allocate file.

EXAMPLE 1 Sample Device Allocate File

Allow local (trusted path) allocation of audio to any user,
Disallow all remote (non-trusted path) allocation of audio.

audio; \
audio; \
minsl=0x000000000000000000000000000000000000000\

00000000000000000000000000000: \
maxsl=0x7ffffffffffffffffffffffffffffffffffffff\

fffffffffffffffffffffffffffff; \

device_allocate(4)

EXAMPLES

File Formats 37

EXAMPLE 1 Sample Device Allocate File (Continued)

reserved; \
@:*; \
/etc/security/audio_clean_wrapper; \

Allow tape drive use by users with either the
solaris.device.allocate or com.xyzcompany.tape authorization.

mag_tape_0; \
st; \
minsl=0x000000000000000000000000000000000000000\

00000000000000000000000000000: \
maxsl=0x7ffffffffffffffffffffffffffffffffffffff\

fffffffffffffffffffffffffffff; \
reserved; \
solaris.device.allocate,com.xyzcompany.tape; \
/etc/security/lib/disk_clean; \

Allow CD use by anyone at [SECRET] or above.

cdrom_0; \
sr; \
minsl=0x00050c000000000000000000000000000000000\

0000000000000003ffffffffffff0: \
maxsl=0x7ffffffffffffffffffffffffffffffffffffff\

fffffffffffffffffffffffffffff; \
reserved; \

@; \
/etc/security/lib/disk_clean;

/etc/security/device_allocate Administrative file defining parameters for
device allocation.

Devices are labeled, and by default require authorization for allocating and
deallocating. The authorization field can optionally specify separate authorizations for
allocations made from the trusted path and allocations not made from the trusted
path. Special entries for framebuffer and printers are used by the window system and
the printing system.

allocate(1), deallocate(1), list_devices(1), mkdevdb(1M),
device_deallocate(4), device_maps(4)

auth_attr(4)

A special entry for the framebuffer device is used to specify the minimum, and
maximum labels at which users may log in to the workstation. This entry is used by
the window system rather than by the allocate(1) command.

device_allocate(4)

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual
SunOS 5.8

Reference Manual
NOTES

38 man pages section 4: File Formats • Last Revised 18 May 2001

Special entries for printers are used to specify the minimum and maximum labels at
which users may submit print requests for a printer. The device-name field contains
the name of the printer. This entry is used by the printing system rather than by the
allocate(1) command. There need not be a corresponding entry in the
device_maps file; if it exists, its contents are ignored by the printing system. Serial
line entries may be similarly specified.

device_allocate(4)

File Formats 39

device_deallocate – Device deallocate file

/etc/security/device_deallocate

The device_deallocate file can contain device deallocation information for
allocatable devices. Its entries parallel those of the device_allocate(4) file. An
entry for a device has the form:

device-name ; system-boot ; user-logout ;

A backslash (\) at the end of a line continues the next line as part of the current entry.
Leading and trailing blanks are allowed in any of the fields.

device-name The name of the device. This must match the name of the device in
the device_allocate(4) file.

system-boot Specifies what to do when the named device is found during
system boot in an allocated state. This field may be one of these
keywords:

DEALLOCATE Deallocate the device.

NO_ACTION Leave the device in the allocated
state.

user-logout Specifies what to do when a user logs out from the window
system.

The user-logout action applies to any form of logout from the
window system, whether initiated by the user, an administrator, or
the system. This includes logout due to a system shutdown. It does
not apply to other types of logouts, such as exiting from an rlogin,
telnet or ftp session, or exiting from a role.

The user-logout applies to devices that are allocated by the user
who is logging out from the window system. It applies regardless
of whether the user allocated the device from the window session
or by some other means (such as from a telnet session or a
cron_job). If the device is allocated by a different user or by a role,
it remains allocated.

This field may be one of these keywords:

DEALLOCATE Deallocate the device.

NO_ACTION Leave the device in the allocated
state.

If a device does not have an entry in the device_deallocate file, the default action
is NO_ACTION for both system-boot and user-logout. device_deallocate should be
at a sensitivity label of ADMIN_LOW with permission bits 644, owner root, and group
sys.

device_deallocate(4)

NAME

SYNOPSIS

DESCRIPTION

40 man pages section 4: File Formats • Last Revised 15 Sep 2000

The preferred method of modifying this file is by use of the Device
Administration function of the Device Allocation Manager.

EXAMPLE 1 Deallocating the st0 device upon boot

st0;DEALLOCATE;NO_ACTION;

This entry causes the st0 device to be deallocated at system boot. No action is taken
at the time of logout from the window system.

EXAMPLE 2 Deallocating the CD-ROM device only upon login session termination

cdrom_0;NO_ACTION;DEALLOCATE;

This entry causes the cdrom_0 device to be deallocated when the user who allocated
it logs out from the window system. It will also be deallocated when the system is
rebooted, since system shutdown forcibly logs out all users, so there is no functional
difference between this entry and cdrom_0;DEALLOCATE;DEALLOCATE.

/etc/security/device_allocate
Administrative file defining parameters for device allocation.

/etc/security/device_deallocate
Administrative file defining parameters for device deallocation.

allocate(1), deallocate(1), list_devices(1), remove_allocatable(1M),
device_allocate(4)

device_deallocate(4)

NOTES

EXAMPLES

FILES

Trusted Solaris 8
HW 12/02

Reference Manual

File Formats 41

device_maps – maps allocatable devices to device special files

/etc/security/device_maps

The device_maps file maps each allocatable device to the set of device special files
that are associated with the device.

This file is normally created using the mkdevdb(1M) command, run by the init.d(4)
scripts during a system’s initial bootload or when the system is booted with the -r
(reconfigure) option. The mkdevdb command creates a set of entries for the system’s
audio and removable media devices.

The preferred method of modifying the device_maps file is to use the Device
Administration dialog box of the Device Allocation Manager.

Each device is represented by a one-line entry of the form:

device-name : device-type : device-list

where

device-name is the allocation name of the physical device. This must match the
name given in the device’s device_allocate(4) entry.

device-type is the generic device type. This must match the type given for the
device in the device_allocate(4) file.

device-list is a list of device special files under /dev that are associated with
the physical drive. This field contains device special file
pathnames separated by white spaces, or a list generator enclosed
in backquotes (“).

Lines in device_maps can end with a \ to continue an entry on the next line.
Leading and trailing blanks are allowed in any of the fields.

EXAMPLE 1 Sample device_maps entries

Audio
audio:\

audio:\
‘/etc/security/lib/audio_devlist‘

CD-ROM drive
cdrom_0:\

sr:\
/dev/dsk/c0t2d0s0 /dev/dsk/c0t2d0s1 /dev/dsk/c0t2d0s2 \
/dev/dsk/c0t2d0s3 /dev/dsk/c0t2d0s4 /dev/dsk/c0t2d0s5 \
/dev/dsk/c0t2d0s6 /dev/dsk/c0t2d0s7 /dev/rdsk/c0t2d0s0 \
/dev/rdsk/c0t2d0s1 /dev/rdsk/c0t2d0s2 /dev/rdsk/c0t2d0s3 \
/dev/rdsk/c0t2d0s4 /dev/rdsk/c0t2d0s5 /dev/rdsk/c0t2d0s6 \
/dev/rdsk/c0t2d0s7

/etc/security/device_allocate
Administrative file defining parameters for device allocation.

device_maps(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

42 man pages section 4: File Formats • Last Revised 18 May 2001

/dev
Directory containing logical device name links to device special files under
/devices.

/devices
Directory containing all device special files, named to reflect their system bus
addresses.

allocate(1), deallocate(1), list_devices(1), dminfo(1M), mkdevdb(1M)

device_maps(4)

Trusted Solaris 8
HW 12/02

Reference Manual

File Formats 43

device_policy – device policy file

The security policy for device files can differ from that for regular files and is
configured through the device_policy database file. Rebooting the system in
multiuser mode is required to effect the file’s contents. Each entry in the file consists of
one or more lines and represents the device policy configuration for one or more
device files. A backslash (\) at the end of a line continues the next line as part of the
current entry. A pound sign (#) as the first character of a line indicates a comment line,
which is ignored. Each entry is of the form:

name:minor_name policy_type=value policy_type=value ...

name is the name of a device driver.

minor_name is the actual name of a minor node, or a string of shell metacharacters that
represent several minor nodes. See sh(1).

If two or more entries match a device, devpolicy(1M) uses the first matching entry.
For example, for the following device_policy entries, the policy for /dev/ptyp0
will differ from the policy for other pty devices.

#
device_policy file
#
ptc: typ0 data_mac_policy=DR_MAC_EQ,DW_MAC_EQ
#

ptc:* data_mac_policy=DR_MAC_ANY,DW_MAC_ANY

policy_type=value specifies a policy for the device nodes. There are four policy types:
data_mac_policy, attr_mac_policy, open_priv, and str_type. The policy
types and their allowed values are described below.

This policy type specifies what a process’s sensitivity label must be to have access to
the device. The specified policy is enforced by the open(2) and access(2) system
calls. The value for this type is a comma-separated pair of values: a read-MAC value
and a write-MAC value:

The read-MAC values are:

DR_MAC_ANY Process may have any SL.

DR_MAC_EQ Process SL must be equal to device SL.

DR_MAC_NEQ Process SL must not equal device SL.

DR_MAC_NEVER Device is not read accessible.

DR_MAC_SDOM Process SL must dominate device SL.

DR_MAC_ODOM Process SL must be dominated by device SL.

The write-MAC values are:

device_policy(4)

NAME

DESCRIPTION

data_mac_policy
type

44 man pages section 4: File Formats • Last Revised 5 Oct 2000

DW_MAC_ANY Process may have any SL.

DW_MAC_EQ Process SL must equal device SL.

DW_MAC_NEQ Process SL must not equal device SL.

DW_MAC_NEVER Device is not write accessible.

DW_MAC_SDOM Process SL must dominate device SL.

DW_MAC_ODOM Process SL must be dominated by device SL.

The optional read-MAC-modifier or write-MAC-modifier value is:

MOD_AUTO_ALLOC Automatically allocate the device on behalf of the
opening process.

MOD_GETDEVLABEL Get label directly from device. This is used only for
console-related pseudo-devices, such as
/dev/console or /dev/syslog.

The default policy is

data_mac_policy=DR_MAC_EQ,DW_MAC_EQ

This policy type specifies how to handle access to the device’s attributes by the
operations acl(2), chmod(2), chown(2), and stat(2). The value for this type is a
comma-separated set of values: a read-MAC value, a write-MAC value, and an
optional read-MAC modifier:

The read-MAC values are:

DR_MAC_ANY Process may have any SL.

DR_MAC_EQ Process SL must equal device SL.

DR_MAC_NEQ Process SL must not equal device SL.

DR_MAC_NEVER Device is not read accessible.

DR_MAC_SDOM Process SL must dominate device SL.

DR_MAC_ODOM Process SL must be dominated by device SL.

The write-MAC values are:

DW_MAC_ANY Process may have any SL.

DW_MAC_EQ Process SL must equal device SL.

DW_MAC_NEQ Process SL must not equal device SL.

DW_MAC_NEVER Device is not write accessible.

DW_MAC_SDOM Process SL must dominate device SL.

DW_MAC_ODOM Process SL must be dominated by device SL.

device_policy(4)

attr_mac_policy
type

File Formats 45

The optional read-MAC-modifier value is:

MOD_FABRICATE Return fabricated device attributes to the reading
process. Fabrication is designed for a process that
walks down an array of BSD-style pty’s until it
encounters an accessible pty (indicated by getting
device attributes) or the end of the array.

The default policy is:

attr_mac_policy=DR_MAC_SDOM,DW_MAC_EQ

This policy type specifies a privilege required to open the device. The specified
privilege is required in addition to the data MAC policy. Privilege names can be in
upper or lower case; or an integer ordinal can be used. For example,

open_priv=sys_devices

The default policy is:

open_priv=none

The streams type, meaningful only for streams devices, specifies how the kernel
streams head should control streams messages. The value can be one of these
keywords:

DSTR_LOOP Loop type stream. Unlabeled streams control messages
are allowed. Unlabeled data messages are not allowed.

DSTR_NET Network type Stream. Unlabeled Stream messages are
not allowed.

DSTR_DEV Device type Stream. Unlabeled Stream messages are
allowed.

An example is:

str_type=DSTR_NET

The default policy is:

str_type=STR_DEV

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

device_policy(4)

open_priv type

str_type type

ATTRIBUTES

46 man pages section 4: File Formats • Last Revised 5 Oct 2000

EXAMPLE 1 A complete policy — Sample

mm:kmem \
data_mac_policy=DR_MAC_EQ,DW_MAC_EQ \
attr_mac_policy=DR_MAC_SDOM,DW_MAC_EQ
mm:null \
data_mac_policy=DR_MAC_ANY,DW_MAC_ANY \
attr_mac_policy=DR_MAC_SDOM,DW_MAC_EQ

/etc/security/tsol/device_policy
Device policy file.

devpolicy(1M)

sh(1), attributes(5)

device_policy(4)

EXAMPLES

FILES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

File Formats 47

exec_attr – execution attributes database

/etc/security/exec_attr

/etc/security/exec_attr is a local database that specifies the execution
attributes associated with rights profiles. The exec_attr file can be used with other
sources for rights profiles, including the exec_attr NIS map and NIS+ table.
Programs use the getexecattr(3SECDB) routines to access this information.

The search order for multiple rights profile sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf(4) man page. The
search order follows the entry for prof_attr(4).

A rights profile is a logical grouping of authorizations, CDE actions, and commands
that is interpreted by a profile shell to form a secure execution environment. The shells
that interpret profiles are pfcsh, pfksh, and pfsh. See the pfexec(1) man page.
Each user’s account is assigned zero or more profiles in the user_attr(4) database
file.

Each entry in the exec_attr database consists of one line of text containing seven
fields separated by colons (:). Line continuations using the backslash (\) character are
permitted. The basic format of each entry is:

name:policy:type:res1:res2:cmdid:attr

name:policy:type:res1:res2:actid;argclass;argtype;argmode;argcount:attr

name The name of the profile. Profile names are case-sensitive.

policy The policy that is associated with the profile entry. The only valid
policies are suser and tsol.

type The type of object defined in the profile. There are two valid types:
cmd and act.

res1 Reserved for future use.

res2 Reserved for future use.

cmdid A string that uniquely identifies the command described by the
profile or an asterisk (*) used as a wildcard. cmdid is either the full
path to the command or a wildcard indicating all commands. You
can also use a wildcard with a pathname to indicate all files in a
particular directory. To specify arguments, the pathname should
point to a shell script written to execute the command with the
desired arguments.

actid A string that uniquely identifies the CDE action described by the
profile or an asterisk (*) used as a wildcard. If an individual action
is specified, there are four additional semicolon-separated fields

exec_attr(4)

NAME

SYNOPSIS

DESCRIPTION

48 man pages section 4: File Formats • Last Revised 28 Jul 2000

used to define an argument for the action. These fields can be
empty but the semicolons are required.

argclass Specifies the argument class (for example,
FILE or SESSION.) Corresponds to
ARG_CLASS for CDE actions.

argtype Specifies the data type for the argument.
Corresponds to ARG_TYPE for CDE actions.

argmode Specifies read or write mode for the argument.
Corresponds to ARG_MODE for CDE actions.

argcount Specifies the number of arguments that the
action can accept. Corresponds to
ARG_COUNT for CDE actions.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the security attributes to apply to the object upon
execution. Zero or more keys may be specified. The list of valid
keywords depends on the policy enforced. The following
keywords are valid: privs, clearance, label, euid, uid,
egid, and gid.

The privs key contains a comma-separated list of privilege
numbers that will be effective when the command or action is run.

The clearance key contains the maximum label at which the
process can run.

The label key contains the minimum label at which the process
can run.

euid and uid contain a single user name or a numeric user ID.
Commands designated with euid run with the effective UID
indicated, which is similar to setting the setuid bit on an
executable file. Commands designated with uid run with both the
real and effective UIDs. Setting uid may be more appropriate than
setting the euid on privileged shell scripts.

egid and gid contain a single group name or a numeric group ID.
Commands designated with egid run with the effective GID
indicated, which is similar to setting the setgid bit on a file.
Commands designated with gid run with both the real and
effective GIDs. Setting gid may be more appropriate than setting
guid on privileged shell scripts.

exec_attr(4)

File Formats 49

EXAMPLE 1 Using effective user and group IDs

The following example shows how the audit command in the Audit Control profile
is specified to execute with an effective user ID of root (0) and effective group ID of
bin (3):

Audit Control:suser:cmd:::/etc/init.d/audit:euid=0;egid=3

EXAMPLE 2 Applying Privileges to a CDE Action

The following example shows how the Tar action in the Media Backup profile is
specified to execute with a set of privileges. (Note that privilege names are mapped to
integer values in /usr/include/sys/tsol/priv_names.h.)

Media Backup:tsol:act:::Tar;*;TAR,MAGTAPE;*;>0:privs=1,4,5,8,10,11,12,19,71;

/etc/nsswitch.conf Configuration file for the name service
switch.

/etc/user_attr Local source of extended attributes
associated with users and roles.

/etc/security/exec_attr Local source for execution attributes
associated with rights profiles.

When deciding which authorization source to use (see DESCRIPTION), keep in mind
that NIS+ provides stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

In the Trusted Solaris environment, the exec_attr file contains actions (including
four arguments) as well as commands. In addition, both actions and commands can
have privileges, clearances, and labels as security attributes.

auths(1), profiles(1), roles(1), getauusernam(3BSM), getauthattr(3SECDB),
prof_attr(4), priv_desc(4)

makedbm(1M),getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), kva_match(3SECDB)

exec_attr(4)

EXAMPLES

FILES

CAVEATS

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual
SunOS 5.8

Reference Manual

50 man pages section 4: File Formats • Last Revised 28 Jul 2000

inetd.conf – Internet servers database

/etc/inet/inetd.conf

/etc/inetd.conf

The inetd.conf file contains the list of servers that inetd(1M) invokes when it
receives an Internet request over a socket. Each server entry is composed of a single
line of the form:

service-name endpoint-type protocol wait-status uid server-program \
server-arguments

Fields are separated by either SPACE or TAB characters. A # (number sign) indicates
the beginning of a comment; characters up to the end of the line are not interpreted by
routines that search this file.

service-name The name of a valid service listed in the services file.
For RPC services, the value of the service-name field
consists of the RPC service name or program number,
followed by a / (slash) and either a version number or
a range of version numbers (for example,
rstatd/2-4).

endpoint-type Can be one of:

stream For a stream socket

dgram For a datagram socket

raw For a raw socket

seqpacket For a sequenced packet socket

tli For all TLI endpoints

protocol Must be a recognized protocol listed in the file
/etc/inet/protocols. For RPC services, the field
consists of the string rpc followed by a / (slash) and
either a * (asterisk), one or more nettypes, one or more
netids, or a combination of nettypes and netids.
Whatever the value, it is first treated as a nettype. If it
is not a valid nettype, then it is treated as a netid. For
example, rpc/* for an RPC service using all the
transports supported by the system (the list can be
found in the /etc/netconfig file), equivalent to
saying rpc/visible rpc/ticots for an RPC service
using the Connection-Oriented Transport Service.

wait-status nowait for all but “single-threaded” datagram servers
— servers which do not release the socket until a
timeout occurs. These must have the status wait. Do
not configure udp services as nowait. This will cause a

inetd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 51

race condition where the inetd program selects on the
socket and the server program reads from the socket.
Many server programs will be forked and performance
will be severly compromised.

A new option exists for udp servers. The -poly option,
is similar to the -wait option except that -poly
allows a separate server to be started at each sensitivity
label. This option is allowed only for udp servers.

If the server program should inherit the trusted path
attribute, the wait-status field should include the
keyword trusted, separated from other keywords in
the field by a comma. If the keyword is not present, the
trusted path attribute will not be propagated to the
server.

If the server program should inherit audit
characteristics from the client, the wait-status field
should include the keyword setaudit, separated
from other keywords in the field by a comma. If the
setaudit keyword is present, the audit ID, audit
terminal ID, and audit preselection mask of the client
will be transferred to the server.

uid The user ID under which the server should run. This
allows servers to run with access privileges other than
those for root. If the server should run with the ID of
the client making the call to the server, a keyword of
CLIENT should be entered in the uid field. The CLIENT
keyword is allowed only for nowait servers. If the
CLIENT keyword is present the user ID, group ID, and
supplementary groups of the client will be transferred
to the server.

server-program Either the pathname of a server program to be invoked
by inetd to perform the requested service, or the
value internal if inetd itself provides the service.

server-arguments If a server must be invoked with command line
arguments, the entire command line (including
argument 0) must appear in this field (which consists of
all remaining words in the entry). If the server expects
inetd to pass it the address of its peer (for
compatibility with 4.2BSD executable daemons), then
the first argument to the command should be specified
as ‘%A’. No more than five arguments are allowed in
this field.

inetd.conf(4)

52 man pages section 4: File Formats • Last Revised 10 Nov 1999

The wait-status field is extended to allow a trusted keyword to specify that the
trusted path attribute should be passed to the server by inetd. If you want a server to
run with the audit characteristics of the client, the wait-status field can now contain a
keyword of setaudit.

If you want a nowait server to run with the user ID of the client, the uid field can now
contain a keyword of CLIENT.

The -poly option has been added for udp servers. The option is similar to the -wait
option except that -poly allows a separate server to be started at each sensitivity
label.

/etc/netconfig Network configuration file

/etc/inet/protocols Internet protocols

/etc/inet/services Internet network services

in.tftpd(1M), inetd(1M)

rlogin(1), rsh(1), services(4)

/etc/inet/inetd.conf is the official SVR4 name of the inetd.conf file. The
symbolic link /etc/inetd.conf exists for BSD compatibility.

inetd.conf(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

FILES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

NOTES

File Formats 53

inittab – script for init

The file /etc/inittab controls process dispatching by init. The processes most
typically dispatched by init are daemons.

The inittab file is composed of entries that are position dependent and have the
following format:

id:rstate:action:process

Each entry is delimited by a newline. However, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters for each entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sysh(1M). . There are no limits (other than maximum entry size)
imposed on the number of entries in the inittab file. The entry fields are:

id
One to four characters used to uniquely identify an entry. Do not use the characters
"r" or "t" as the first or only character in this field. These characters are reserved for
the use of rlogin(1) and telnet(1).

rstate
Define the run level in which this entry is to be processed. Run-levels effectively
correspond to a configuration of processes in the system. That is, each process
spawned by init is assigned a run level(s) in which it is allowed to exist. The run
levels are represented by a number ranging from 0 through 6. For example, if the
system is in run level 1, only those entries having a 1 in the rstate field are
processed.

When init is requested to change run levels, all processes that do not have an
entry in the rstate field for the target run level are sent the warning signal SIGTERM
and allowed a 5-second grace period before being forcibly terminated by the kill
signal SIGKILL. The rstate field can define multiple run levels for a process by
selecting more than one run level in any combination from 0 through 6. If no run
level is specified, then the process is assumed to be valid at all run levels 0 through
6.

There are three other values, a, b and c, which can appear in the rstate field, even
though they are not true run levels. Entries which have these characters in the rstate
field are processed only when an init or telinit process requests them to be run
(regardless of the current run level of the system). See init(1M). These differ from
run levels in that init can never enter run level a, b or c. Also, a request for the
execution of any of these processes does not change the current run level.
Furthermore, a process started by an a, b or c command is not killed when init
changes levels. They are killed only if their line in inittab is marked off in the
action field, their line is deleted entirely from inittab, or init goes into
single-user state.

inittab(4)

NAME

DESCRIPTION

54 man pages section 4: File Formats • Last Revised 25 Oct 2002

action
Key words in this field tell init how to treat the process specified in the process
field. The actions recognized by init are as follows:

respawn
If the process does not exist, then start the process; do not wait for its
termination (continue scanning the inittab file), and when the process dies,
restart the process. If the process currently exists, do nothing and continue
scanning the inittab file.

wait
When init enters the run level that matches the entry’s rstate, start the process
and wait for its termination. All subsequent reads of the inittab file while
init is in the same run level cause init to ignore this entry.

once
When init enters a run level that matches the entry’s rstate, start the process,
do not wait for its termination. When it dies, do not restart the process. If init
enters a new run level and the process is still running from a previous run level
change, the program is not restarted.

boot
The entry is to be processed only at init’s boot-time read of the inittab file.
init is to start the process and not wait for its termination; when it dies, it does
not restart the process. In order for this instruction to be meaningful, the rstate
should be the default or it must match init’s run level at boot time. This action
is useful for an initialization function following a hardware reboot of the system.

bootwait
The entry is to be processed the first time init goes from single-user to
multi-user state after the system is booted. (If initdefault is set to 2, the
process runs right after the boot.) init starts the process, waits for its
termination and, when it dies, does not restart the process.

powerfail
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR (see signal(3C)).

powerwait
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR, and wait until it terminates before continuing any
processing of inittab.

off
If the process associated with this entry is currently running, send the warning
signal SIGTERM and wait 5 seconds before forcibly terminating the process with
the kill signal SIGKILL. If the process is nonexistent, ignore the entry.

inittab(4)

File Formats 55

ondemand
This instruction is really a synonym for the respawn action. It is functionally
identical to respawn but is given a different keyword in order to divorce its
association with run levels. This instruction is used only with the a, b or c
values described in the rstate field.

initdefault
An entry with this action is scanned only when init is initially invoked. init
uses this entry to determine which run level to enter initially. It does this by
taking the highest run level specified in the rstate field and using that as its initial
state. If the rstate field is empty, this is interpreted as 0123456 and init will
enter run level 6. This will cause the system to loop (it will go to firmware and
reboot continuously). Additionally, if init does not find an initdefault entry
in inittab, it requests an initial run level from the user at reboot time.

sysinit
Entries of this type are executed before init tries to access the console (that is,
before the Console Login: prompt). It is expected that this entry will be used
only to initialize devices that init might try to ask the run level question. These
entries are executed and init waits for their completion before continuing.

process
Specify a command to be executed. The entire process field is prefixed with exec
and passed to a forked sh as sh −c ’exec command’. For this reason, any legal sh
syntax can appear in the process field.

The Trusted Solaris environment uses the sysh shell.

init(1M), sysh(1M), exec(2), open(2)

who(1), ttymon(1M), signal(3C)

inittab(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

HW 12/02
Reference ManualSunOS 5.8
Reference Manual

56 man pages section 4: File Formats • Last Revised 25 Oct 2002

label_encodings – label encodings file

/etc/security/tsol/label_encodings

The label_encodings file is a standard encodings file of security labels that are
used to control the conversion of human-readable labels into an internal format, the
conversion from the internal format to a human-readable canonical form, and the
construction of banner pages for printed output. In the Trusted Solaris environment,
the label_encodings file is protected at the label admin_high. The file should be
edited and checked by the security administrator using the Check Label Encodings
action in the System_Admin folder in the Application Manager.

In addition to the required sections of the label encodings file described in
Compartmented Mode Workstation Labeling: Encodings Format, the Trusted Solaris
environment accepts optional local extensions. These extensions provide various
translation options and an association between character-coded color names and
sensitivity labels.

The optional local extensions section starts with the LOCAL DEFINITIONS: keyword
and is followed by zero or more of the following unordered statements:

ADMIN LOW NAME=name
The string name is accepted as an alternate name for the ADMIN_LOW label when
translating from character-coded to binary form. The string name is the string
returned when translating the ADMIN_LOW label from binary to character-coded
form. If this option is not specified, ADMIN_LOW is used.

Note that use of this option could lead to interoperability problems with machines
which do not have the same alternate name.

ADMIN HIGH NAME=name
The string name is accepted as an alternate name for the ADMIN_HIGH label when
translating from character-coded form to binary form. The string name is the string
returned when translating the ADMIN_HIGH label from binary to character-coded
form. If this option is not specified, ADMIN_HIGH is used.

Note that use of this option could lead to interoperability problems with machines
which do not have the same alternate name.

DEFAULT LABEL VIEW IS EXTERNAL
Unless otherwise specified, when an ADMIN_HIGH or ADMIN_LOW binary label is
translated to a character-coded label, the character-coded label will be in external
form. In external form ADMIN_HIGH is demoted to the maximum label and
ADMIN_LOW is promoted to the minimum label. If this option is not specified, the
external label view applies.

DEFAULT LABEL VIEW IS INTERNAL
Unless otherwise specified, when an ADMIN_HIGH or ADMIN_LOW binary label is
translated to a character-coded label, the character-coded label will be in internal

label_encodings(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

File Formats 57

form. In internal form, ADMIN_HIGH is represented by the string ADMIN_HIGH and
ADMIN_LOW is represented by the string ADMIN_LOW. If this option is not specified,
the external label view applies.

DEFAULT FLAGS= value
This option represents a default GFI Flags= keyword value to be used if no flags
are specified as a parameter to the translation. Caution must be taken when
defining a DEFAULT FLAGS= value that the appropriate Flags= values have been
provided. A non-zero value also implies that label validation during translation
from binary to character-coded form is not done. If this option is not specified, the
default value is 0 (zero).

FORCED FLAGS= value
This option represents a GFI Flags= keyword value to be used in all translations.
Caution must be taken when defining a FORCED FLAGS= value that the
appropriate Flags= values have been provided. A non-zero value also implies that
label validation during translation from binary to character-coded form is not done.
If this option is not specified, the default value is 0 (zero).

CLASSIFICATION NAME= name
This option specifies the string to be displayed in the Label builder GUI for the title
of the Classification names section. Specifying a NULL value for name leaves the
section without a title. If this option is not specified, the default value is
CLASSIFICATION.

COMPARTMENTS NAME= name
This option specifies the string to be displayed in the label builder GUI for the title
of the Compartments Word section. Specifying a NULL value for name leaves the
section without a title. If this option is not specified, the default value is
COMPARTMENTS.

DEFAULT USER SENSITIVITY LABEL= sensitivity label
This option specifies the sensitivity label to use as the user’s minimum sensitivity
label if none is defined for the user in the administrative databases. The default
value is the MINIMUM SENSITIVITY LABEL= value from the ACCREDITATION
RANGE: section of the label encodings file.

DEFAULT USER CLEARANCE= clearance
This option specifies the clearance to use as the user’s clearance if none is defined
for the user in the administrative databases. The default value is the MINIMUM
CLEARANCE= value from the ACCREDITATION RANGE: section of the label
encodings file.

The final part of the LOCAL DEFINITIONS: section defines the character-coded color
names to be associated with various words, sensitivity labels, or classifications. This
section supports the bltocolor(3TSOL) function. It consists of the COLOR NAMES:
keyword and is followed by zero or more color-to-label assignments. Each statement
has one of the following two syntaxes:

word= word value; color= color value;

label_encodings(4)

58 man pages section 4: File Formats • Last Revised 24 May 2001

label= label value; color= color value;

where color value is a character−coded color name to be associated with the word word
value, sensitivity label label value, or classification label value.

The character−coded color name color value for a label is determined by the order of
entries in the COLOR NAMES: section that make up the label. If a label contains a word
word value that is specified in this section, the color value of the label is the one
associated with the first word value specified. If no specified word word value is
contained in the label, the color value is the one associated with an exact match of a
label value. If there is no exact match, the color value is the one associated with the first
specified label value whose classification matches the classification of the label.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsr

EXAMPLE 1 A Sample LOCAL DEFINITIONS: Section

LOCAL DEFINITIONS:
ADMIN LOW NAME= LoLo; * It is strongly advised not to use this option
ADMIN HIGH NAME= HiHi; * It is strongly advised not to use this option

DEFAULT LABEL VIEW IS INTERNAL;

DEFAULT FLAGS= 0x4;
FORCED FLAGS= 0;

CLASSIFICATION NAME=; * No Classification name title
COMPARTMENTS NAME=; * No Compartments word title

DEFAULT USER SENSITIVITY LABEL= C A;
DEFAULT USER CLEARANCE LABEL= S ABLE;

COLOR NAMES:

label= Admin_Low; color= Pale Blue;
label= unclassified; color= light grey;
word= Project A; color= bright blue;
label= c; color= sea foam green;
label= secret; color= #ff0000; * Hexadecimal RGB value
word= Hotel; color= Lavender;
word= KeLO; color= red;
label= TS; color= khaki;
label= TS Elephant; color= yellow;

label= Admin_High; color= shocking pink;

/etc/security/tsol/label_encodings
The label encodings file contains the classification names, words, constraints, and
values for the defined labels of this system. It is protected at the label admin_high.

label_encodings(4)

ATTRIBUTES

EXAMPLES

FILES

File Formats 59

The following diagnostics are in addition to those found in Appendix A of
Compartmented Mode Workstation Labeling: Encodings Format:

Admin_High color already assigned as XXX.
A color has already been defined for the ADMIN_HIGH label. Another cannot be
defined.

Admin_Low color already assigned as XXX.
A color has already been defined for the ADMIN_LOW label. Another cannot be
defined.

Can’t allocate NNN bytes for ADMIN HIGH NAME=
The system cannot dynamically allocate the memory it needs to process the
ADMIN_HIGH NAME= option.

Can’t allocate NNN bytes for ADMIN LOW NAME=
The system cannot dynamically allocate the memory it needs to process the
ADMIN_LOW NAME= option.

Can’t allocate NNN bytes for CLASSIFICATION NAME=
The system cannot dynamically allocate the memory it needs to process the
CLASSIFICATION NAME= option.

Can’t allocate NNN bytes for COMPARTMENTS NAME=
The system cannot dynamically allocate the memory it needs to process the
COMPARTMENTS NAME= option.

Can’t allocate NNN bytes for color name XXX.
The system cannot dynamically allocate the memory it needs to store color name
XXX.

Can’t allocate NNN bytes for color names table.
The system cannot dynamically allocate the memory it needs to process the COLOR
NAMES: section.

Can’t allocate NNN bytes for color table entry.
The system cannot dynamically allocate the memory it needs to process a Color
Table entry.

Can’t allocate NNN bytes for color word entry.
The system cannot dynamically allocate the memory it needs to process a Color
Word entry.

Can’t allocate NNN bytes for DEFAULT USER.
The system cannot dynamically allocate the memory it needs to process the
DEFAULT USER.

DEFAULT USER CLEARANCE= XXX is not in canonical form. Is YYY what
is intended?

This error occurs if the clearance specified, while understood, is not in canonical
form. This additional canonicalization check ensures that no errors are made in
specifying the clearance.

label_encodings(4)

DIAGNOSTICS

60 man pages section 4: File Formats • Last Revised 24 May 2001

DEFAULT USER SENSITIVITY LABEL= XXX is not in canonical form. Is
YYY what is intended?

This error occurs if a sensitivity label specified, while understood, is not in
canonical form. This additional canonicalization check ensures that no errors are
made in specifying the sensitivity label.

Duplicate ADMIN HIGH NAME= ignored.
More than one ADMIN HIGH NAME= option was encountered. All but the first are
ignored.

Duplicate ADMIN LOW NAME= ignored.
More than one ADMIN LOW NAME= option was encountered. All but the first are
ignored.

Duplicate CLASSIFICATION NAME= ignored.
More than one CLASSIFICATION NAME= option was encountered. All but the first
are ignored.

Duplicate COMPARTMENTS NAME= ignored.
More than one COMPARTMENTS NAME= option was encountered. All but the first are
ignored.

Duplicate DEFAULT USER CLEARANCE= ignored.
More than one DEFAULT USER CLEARANCE= option was encountered. All but the
first are ignored.

Duplicate DEFAULT USER SENSITIVITY LABEL= ignored.
More than one DEFAULT USER SENSITIVITY LABEL= option was encountered.
All but the first are ignored.

End of File not found where expected. Found instead: XXX.
The noted extraneous text was found when the end of label encodings file was
expected.

End of File or LOCAL DEFINITIONS: not found. Found instead: XXX.
The noted extraneous text was found when the LOCAL DEFINITIONS: section or
end of label encodings file was expected.

Found color XXX without associated label.
The color XXX was found, however it had no label or word associated with it.

Invalid color label XXX.
The label XXX cannot be parsed.

Invalid DEFAULT USER CLEARANCE XXX.
The DEFAULT USER CLEARANCE XXX cannot be parsed.

Invalid DEFAULT USER SENSITIVITY LABEL XXX.
The DEFAULT USER SENSITIVITY LABEL XXX cannot be parsed.

Label preceding XXX did not have a color specification.
A label or word was found without a matching color name.

label_encodings(4)

File Formats 61

MARKINGS NAME= ignored.
This option is obsolete and ignored.

Word XXX not found as a valid Sensitivity Label word.
The word XXX was not found as a valid word for a sensitivity label.

bcltobanner(3TSOL), blinset(3TSOL), bltocolor(3TSOL), bltos(3TSOL),
blvalid(3TSOL), labelinfo(3TSOL), labelvers(3TSOL), stobl(3TSOL),
chk_encodings(1M)

Trusted Solaris Label Administration

Defense Intelligence Agency document DDS-2600-6216-93, Compartmented Mode
Workstation Labeling: Encodings Format, September 1993.

attributes(5)

Creation of and modification to the label encodings file should only be undertaken
with a thorough understanding not only of the concepts in Compartmented Mode
Workstation Labeling: Encodings Format but also of the details of the local labeling
requirements.

The following warnings are paraphrased from Compartmented Mode Workstation
Labeling: Encodings Format.

Take extreme care when modifying a label encodings file that is already loaded and
running in a Trusted Solaris environment. Once the system runs with the label
encodings file, many objects are labeled with sensitivity labels that are well formed
with respect to the loaded label encodings file. If the label encodings file is
subsequently changed, it is possible that the existing labels will no longer be
well-formed. Changing the bit patterns associated with words causes existing objects
whose labels contain the words to have possibly invalid labels. Raising the minimum
classification or lowering the maximum classification associated with words will likely
cause existing objects whose labels contain the words to no longer be well-formed.

Changes to a current encodings file that has already been used should be limited only
to adding new classifications or words, changing the names of existing words, or
modifying the local extensions. As described in Compartmented Mode Workstation
Labeling: Encodings Format, it is important to reserve extra inverse bits when the label
encodings file is first created to allow for later expansion of the label encodings file to
incorporate new inverse words. If an inverse word is added that does not use reserved
inverse bits, all existing objects in the environment will erroneously have labels that
include the new inverse word.

Defining the label encodings file is a three-step process. First, the set of
human-readable labels to be represented must be identified and understood. The
definition of this set includes the list of classifications and other words used in the
human-readable labels, relations between and among the words, classification
restrictions associated with use of each word, and intended use of the words in
mandatory access control and labeling system output. Next, this definition is

label_encodings(4)

Trusted Solaris 8
HW 12/02

Reference Manual

SunOS 5.8
Reference Manual

WARNINGS

NOTES

62 man pages section 4: File Formats • Last Revised 24 May 2001

associated with an internal format of integers, bit patterns, and logical relationship
statements. Finally, a label encodings file is created. The Compartmented Mode
Workstation Labeling: Encodings Format document describes the second and third steps,
and assumes that the first has already been performed.

Information labels (ILs) are not supported in Trusted Solaris 7 and later releases.
Trusted Solaris software interprets any ILs on communications and files from systems
running earlier releases as ADMIN_LOW.

Even though ILs are not supported, a valid IL section is still required in the label
encodings file. A copy of the contents of the SL section may be used to create a valid IL
section.

Objects still have CMW labels, and CMW labels still include the IL component:
IL[SL]. However, the IL component is fixed at ADMIN_LOW.

As a result, Trusted Solaris 7 and later releases have the following characteristics:

� ILs do not display in window labels; SLs (Sensitivity Labels) display alone within
brackets.

� ILs do not float.

� Setting an IL on an object has no effect.

� Getting an object’s IL will always return ADMIN_LOW.

� Although certain utilities, library functions, and system calls can manipulate IL
strings, the resulting ILs are always ADMIN_LOW, and cannot be set on any objects.

label_encodings(4)

File Formats 63

logindevperm, fbtab – login-based device permissions

/etc/logindevperm

The /etc/logindevperm file contains information that is used by login(1) and
ttymon(1M) to change the owner, group, and permissions of devices upon logging
into or out of a console device. By default, this file contains lines for the keyboard,
mouse, audio, and frame buffer devices.

In the Trusted Solaris environment, logindevperm entries are not needed for the
keyboard, mouse, and frame buffer devices, because sensitivity labels on these devices
prevent access by user processes. Device allocation based on allocate(1) is the
preferred method of setting device ownership and permissions on other devices, such
as audio.

The owner of the devices listed in /etc/logindevperm is set to the owner of the
console by login(1). The group of the devices is set to the owner’s group specified in
/etc/passwd. The permissions are set as specified in /etc/logindevperm.

Fields are separated by TAB and/or SPACE characters. Blank lines and comments can
appear anywhere in the file; comments start with a hashmark, ‘ # ’, and continue to the
end of the line.

The first field specifies the name of a console device (for example, /dev/console).
The second field specifies the permissions to which the devices in the device_list field
(third field) will be set. A device_list s a colon-separated list of device names. A device
entry that is a directory name and ends with "/*" specifies all entries in the directory
(except "." and ".."). For example, "/dev/fbs/*" specifies all frame buffer devices.

Once the devices are owned by the user, their permissions and ownership can be
changed using chmod(1) and chown(1), as with any other user-owned file.

Upon logout the owner and group of these devices will be reset by ttymon(1M) to
owner root and root’s group as specified in /etc/passwd (typically other). The
permissions are set as specified in the /etc/logindevperm file.

/etc/passwd File that contains user group information.

The use of logindevperm is not supported, and the default /etc/logindevperm
file has all entries commented out.

allocate(1), chmod(1), chown(1), login(1), device_allocate(4),
device_deallocate(4)

ttymon(1M), passwd(4)

/etc/logindevperm provides a superset of the functionality provided by
/etc/fbtab in SunOS 4.x releases.

logindevperm(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
HW 12/02

Reference Manual
SunOS 5.8

Reference Manual
NOTES

64 man pages section 4: File Formats • Last Revised 16 Sep 2000

nca.if – the NCA configuration file that specifies physical interfaces

/etc/nca/nca.if

Specify the physical interfaces for which the Solaris Network Cache and Accelerator
(“NCA”) feature will be configured in the nca.if configuration file. List the physical
interfaces in the file, one per line. To configure NCA to listen on all physical interfaces
present on the system backed by a hostname.{interface_name}, then list only an
asterisk (“*”) in nca.if.

Note – The Solaris NCA is disabled in the Trusted Solaris environment.

When the ncakmod(1) initialization script is invoked during system boot, it will
attempt to configure each physical interface specified in the nca.if file by using
ncaconfd(1M). Note that there must be an accompanying
hostname.{interface_name} file and an entry in /etc/hosts for the contents of
hostname.{interface_name}.

You must reboot in order to implement changes to the nca.if file.

EXAMPLE 1 x86: nca.if on x86

The following is an example of an nca.if file that would be used on an x86 system:

iprb1
iprb6
iprb8

EXAMPLE 2 nca.if on SPARC

The following is an example of an nca.if file that would be used on a SPARC
system:

hme2
hme3
hme4

EXAMPLE 3 Configuring NCA to Listen on All Physical Interfaces

The following example shows the contents of an nca.if file that would be used to
configure either platform to listen on all physical interfaces present on the system:

*

/etc/nca/nca.if Lists the physical interfaces on which NCA will run.

/etc/hostname.{}{0-9} Lists all physical interfaces configured on the server.

/etc/hosts Lists all host names associated with the server. Entries
in this file must match with entries in
/etc/hostname.{}{0–9} for NCA to function.

nca.if(4)

NAME

SYNOPSIS

DESCRIPTION

x86

SPARC: SPARC

All Platforms

FILES

File Formats 65

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

The Network Cache and Accelerator kernel module is not supported in the Trusted
Solaris environment.

nca(1), ncakmod(1), ifconfig(1M)

ncab2clf(1), ncakmod.conf(4), ncalogd.conf(4), attributes(5)

System Administration Guide, Volume 3

nca.if(4)

ATTRIBUTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

66 man pages section 4: File Formats • Last Revised 25 Oct 2002

nsswitch.conf – configuration file for the name service switch

/etc/nsswitch.conf

The operating system uses a number of databases of information about hosts, ipnodes,
users (passwd/shadow), and groups. Data for these can come from a variety of
sources: hostnames and host addresses, for example, can be found in /etc/hosts,
NIS, NIS+, LDAP, or DNS. Zero or more sources may be used for each database. The
sources and their lookup order are specified in the /etc/nsswitch.conf file.

The following databases use the switch file:

Database Used By

aliases sendmail(1M)

auth_attr getauthnam(3SECDB)

automount automount(1M)

bootparams rpc.bootparamd(1M)

ethers ethers(3SOCKET)

group getgrnam(3C)

hosts gethostbyname(3NSL). See Interaction with netconfig.

ipnodes getipnodebyname(3SOCKET)

netgroup innetgr(3C)

netmasks ifconfig(1M)

networks getnetbyname(3SOCKET)

passwd getpwnam(3C), getspnam(3C), getauusernam(3BSM),
getusernam(3SECDB)

printers lp(1), lpstat(1), cancel(1), lpr(1B), lpq(1B), lprm(1B),
in.lpd(1M), lpadmin(1M), lpget(1M), lpset(1M)

prof_attr getprofname(3SECDB), getexecprof(3SECDB)

project getprojent(3EXACCT), getdefaultproj(3EXACCT),
inproj(3EXACCT), newtask(1), setprojent(3EXACCT)

protocols getprotobyname(3SOCKET)

publickey getpublickey(3NSL), secure_rpc(3NSL)

rpc getrpcbyname(3NSL)

sendmailvars sendmail(1M)

nsswitch.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 67

Database Used By

services getservbyname(3SOCKET). See Interaction with
netconfig.

tnrhdb tnrhdb(4)

tnrhtp tnrhtp(4)

The following sources may be used:

Source Uses

files /etc/hosts, /etc/passwd, /etc/inet/ipnodes,
/etc/shadow

nis NIS(YP)

nisplus NIS+

ldap LDAP

dns Valid only for hosts; uses the Internet Domain Name Service.

compat Valid only for passwd and group; implements "+" and "-". See
Interaction with +/- syntax.

user Valid only for printers; implements support for
${HOME}/.printers.

xfn Valid only for printers; implements support for FNS printer
contexts. Provided to allow transition away from FNS printer
contexts.

There is an entry in /etc/nsswitch.conf for each database. Typically these entries
will be simple, such as "protocols: files" or "networks: files nisplus".
However, when multiple sources are specified, it is sometimes necessary to define
precisely the circumstances under which each source will be tried. A source can return
one of the following codes:

Status Meaning

SUCCESS Requested database entry was found.

UNAVAIL Source is not configured on this system or internal failure.

NOTFOUND Source responded “no such entry”

TRYAGAIN Source is busy or not responding, might respond to retries.

For each status code, two actions are possible:

nsswitch.conf(4)

68 man pages section 4: File Formats • Last Revised 25 Oct 2002

Action Meaning

continue Try the next source in the list.

return Return now.

Additionally, for TRYAGAIN only, the following actions are possible:

Action Meaning

forever Retry the current source forever.

n Retry the current source n more times, where n is an integer between
0 and MAX_INT (that is, 2.14 billion). After n retries has been
exhausted, the action will continue to the next source.

The complete syntax of an entry is:

<entry> ::= <database> ":" [<source>
[<criteria>]]*
<criteria> ::= "[" <criterion>+ "]"
<criterion> ::= <status> "=" <action>

<status> ::= "success" | "notfound" | "unavail" | "tryagain"

For every status except TRYAGAIN, the action syntax is:

<action> ::= "return" | "continue"

For the TRYAGAIN status, the action syntax is:

<action> ::= "return" | "continue" | "forever" | <n>

<n> ::= 0...MAX_INT

Each entry occupies a single line in the file. Lines that are blank, or that start with
white space, are ignored. Everything on a line following a # character is also ignored;
the # character can begin anywhere in a line, to be used to begin comments. The
<database> and <source> names are case-sensitive, but <action> and <status> names
are case-insensitive.

The library functions contain compiled-in default entries that are used if the
appropriate entry in nsswitch.conf is absent or syntactically incorrect.

The default criteria for DNS and the NIS server in “DNS-forwarding mode” (and DNS
server not responding or busy) is [SUCCESS=return NOTFOUND=continue
UNAVAIL=continue TRYAGAIN=continue].

The default criteria for all other sources is [SUCCESS=return NOTFOUND=continue
UNAVAIL=continue TRYAGAIN=forever].

nsswitch.conf(4)

File Formats 69

The default, or explicitly specified, criteria are meaningless following the last source in
an entry; and they are ignored, since the action is always to return to the caller
irrespective of the status code the source returns.

In order to ensure that they all return consistent results, gethostbyname(3NSL),
getipnodebyname(3SOCKET), getservbyname(3SOCKET), and
netdir_getbyname(3NSL) functions are all implemented in terms of the same
internal library function. This function obtains the system-wide source lookup policy
for hosts, ipnodes, and services based on the inet family entries in
netconfig(4) and uses the switch entries only if the netconfig entries have a "-" in the
last column for nametoaddr libraries. See the NOTES section in
gethostbyname(3NSL) and getservbyname(3SOCKET) for details.

The NIS+ server can be run in "YP-compatibility mode", where it handles NIS (YP)
requests as well as NIS+ requests. In this case, the clients get much the same results
(except for getspnam(3C)) from the "nis" source as from "nisplus"; however, "nisplus"
is recommended instead of "nis".

The NIS (YP) server can be run in "DNS-forwarding mode", where it forwards lookup
requests to DNS for host-names and -addresses that do not exist in its database. In this
case, specifying "nis" as a source for "hosts" is sufficient to get DNS lookups; "dns"
need not be specified explicitly as a source.

In SunOS 5.3 (Solaris 2.3) and compatible versions, the NIS+ server in
"NIS/YP-compatibility mode" can also be run in "DNS-forwarding mode" (see
rpc.nisd(1M)). Forwarding is effective only for requests originating from its YP
clients; "hosts" policy on these clients should be configured appropriately.

When password aging is turned on, only a limited set of possible name services are
permitted for the passwd: database in the /etc/nsswitch.conf file:

passwd: files

passwd: files nis

passwd: files nisplus

passwd: files ldap

passwd: compat

passwd_compat: nisplus

passwd_compat: ldap

Any other settings will cause the passwd(1) command to fail when it attempts to
change the password after expiration and will prevent the user from logging in. These
are the only permitted settings when password aging has been turned on. Otherwise,
you can work around incorrect passwd: lines by using the -r repository
argument to the passwd(1) command and using passwd -r repository to
override the nsswitch.conf settings and specify in which name service you want to
modify your password.

nsswitch.conf(4)

Interaction with
netconfig

Interaction with
NIS+

NIS/YP-compatibility
Mode

Interaction with
server in

DNS-forwarding
Mode

Interaction with
Password Aging

70 man pages section 4: File Formats • Last Revised 25 Oct 2002

Releases prior to SunOS 5.0 did not have the name service switch but did allow the
user some policy control. In /etc/passwd one could have entries of the form +user
(include the specified user from NIS passwd.byname), -user (exclude the specified
user) and + (include everything, except excluded users, from NIS passwd.byname).
The desired behavior was often "everything in the file followed by everything in NIS",
expressed by a solitary + at the end of /etc/passwd. The switch provides an
alternative for this case ("passwd: files nis") that does not require + entries in
/etc/passwd and /etc/shadow (the latter is a new addition to SunOS 5.0, see
shadow(4)).

If this is not sufficient, the NIS/YP compatibility source provides full +/- semantics. It
reads /etc/passwd for getpwnam(3C) functions and /etc/shadow for
getspnam(3C) functions and, if it finds +/- entries, invokes an appropriate source. By
default, the source is "nis", but this may be overridden by specifying "nisplus" or
“ldap” as the source for the pseudo-database passwd_compat.

Note that for every /etc/passwd entry, there should be a corresponding entry in the
/etc/shadow file.

The NIS/YP compatibility source also provides full +/- semantics for group; the
relevant pseudo-database is group_compat.

The compiled-in default entries for all databases use NIS (YP) as the enterprise level
name service and are identical to those in the default configuration of this file:

passwd: files nis

group: files nis

hosts: nis [NOTFOUND=return] files

ipnodes: nis [NOTFOUND=return] files

networks: nis [NOTFOUND=return] files

protocols: nis [NOTFOUND=return] files

rpc: nis [NOTFOUND=return] files

ethers: nis [NOTFOUND=return] files

netmasks: nis [NOTFOUND=return] files

bootparams: nis [NOTFOUND=return] files

publickey: nis [NOTFOUND=return] files

netgroup: nis

automount: files nis

aliases: files nis

services: files nis

nsswitch.conf(4)

Interaction with
+/- syntax

Useful
Configurations

File Formats 71

sendmailvars: files

printers: user files nis nisplus xfn

auth_attr files nis

prof_attr files nis

project files nis

The policy "nis [NOTFOUND=return] files" implies "if nis is UNAVAIL, continue on to
files, and if nis returns NOTFOUND, return to the caller; in other words, treat nis
as the authoritative source of information and try files only if nis is down. This,
and other policies listed in the default configuration above, are identical to the
hard-wired policies in SunOS releases prior to 5.0.

If compatibility with the +/- syntax for passwd and group is required, simply modify
the entries for passwd and group to:

passwd: compat

group: compat

If NIS+ is the enterprise level name service, the default configuration should be
modified to use nisplus instead of nis for every database on client machines. The
file /etc/nsswitch.nisplus contains a sample configuration that can be copied to
/etc/nsswitch.conf to set this policy.

If LDAP is the enterprise level name service, the default configuration should be
modified to use ldap instead of nis for every database on client machines. The file
/etc/nsswitch.ldap contains a sample configuration that can be copied to
/etc/nsswitch.conf to set this policy.

If the use of +/- syntax is desired in conjunction with nisplus, use the following four
entries:

passwd: compat

passwd_compat: nisplus OR ldap

group: compat

group_compat: nisplus OR ldap

In order to get information from the Internet Domain Name Service for hosts that are
not listed in the enterprise level name service, NIS+ or LDAP, use the following
configuration and set up the /etc/resolv.conf file (see resolv.conf(4) for more
details):

hosts: nisplus dns [NOTFOUND=return] files

or

hosts: ldap dns [NOTFOUND=return] files

nsswitch.conf(4)

72 man pages section 4: File Formats • Last Revised 25 Oct 2002

Many of the databases have enumeration functions: passwd has getpwent(), hosts
has gethostent(), and so on. These were reasonable when the only source was
files but often make little sense for hierarchically structured sources that contain
large numbers of entries, much less for multiple sources. The interfaces are still
provided and the implementations strive to provide reasonable results, but the data
returned may be incomplete (enumeration for hosts is simply not supported by the
dns source), inconsistent (if multiple sources are used), formatted in an unexpected
fashion (for a host with a canonical name and three aliases, the nisplus source will
return four hostents, and they may not be consecutive), or very expensive
(enumerating a passwd database of 5,000 users is probably a bad idea). Furthermore,
multiple threads in the same process using the same reentrant enumeration function
(getXXXent_r() are supported beginning with SunOS 5.3) share the same
enumeration position; if they interleave calls, they will enumerate disjoint subsets of
the same database.

In general, the use of the enumeration functions is deprecated. In the case of passwd,
shadow, and group, it may sometimes be appropriate to use fgetgrent(),
fgetpwent(), and fgetspent() (see getgrnam(3C), getpwnam(3C), and
getspnam(3C), respectively), which use only the files source.

A source named SSS is implemented by a shared object named nss_SSS.so.1 that
resides in /usr/lib.

/etc/nsswitch.conf Configuration file.

/usr/lib/nss_compat.so.1 Implements "compat" source.

/usr/lib/nss_dns.so.1 Implements "dns" source.

/usr/lib/nss_files.so.1 Implements "files" source.

/usr/lib/nss_nis.so.1 Implements "nis" source.

/usr/lib/nss_nisplus.so.1 Implements "nisplus" source.

/usr/lib/nss_ldap.so.1 Implements "ldap" source.

/usr/lib/nss_user.so.1 Implements "user" source.

/usr/lib/nss_xfn.so.1 Implements "xfn" source.

/etc/netconfig Configuration file for netdir(3NSL)
functions that redirects hosts/devices policy
to the switch.

/etc/nsswitch.files Sample configuration file that uses "files"
only.

/etc/nsswitch.nis Sample configuration file that uses "files"
and "nis".

/etc/nsswitch.nisplus Sample configuration file that uses "files"
and "nisplus".

nsswitch.conf(4)

Enumeration -
getXXXent()

FILES

File Formats 73

/etc/nsswitch.ldap Sample configuration file that uses "files"
and "ldap".

/etc/nsswitch.dns Sample configuration file that uses “files”
and “dns” (but only for hosts:).

The following Trusted Solaris network files have been added: tnrhdb and tnrhtp.

In the default Trusted Solaris environment, an administrative role uses the Name
Service Switch action in the System_Admin folder in the Application Manager to edit
the nsswitch.conf file. This file should not be edited directly.

passwd(1), automount(1M), ifconfig(1M), rpc.bootparamd(1M),
rpc.nisd(1M), sendmail(1M), getauusernam(3BSM), getauthnam(3SECDB),
resolv.conf(4)

ldap(1), nis+(1), getgrnam(3C), getnetgrent(3C), getpwnam(3C), getspnam(3C),
gethostbyname(3NSL), getpublickey(3NSL), getrpcbyname(3NSL),
netdir(3NSL), secure_rpc(3NSL), getexecprof(3SECDB),
getprofnam(3SECDB), getusernam(3SECDB), ethers(3SOCKET),
getipnodebyname(3SOCKET), getnetbyname(3SOCKET),
getprotobyname(3SOCKET), getservbyname(3SOCKET), netconfig(4),
project(4), ypfiles(4)

Within each process that uses nsswitch.conf, the entire file is read only once; if the
file is later changed, the process will continue using the old configuration.

Programs that use the getXXbyYY() functions cannot be linked statically since the
implementation of these functions requires dynamic linker functionality to access the
shared objects /usr/lib/nss_SSS.so.1 at run time.

The use of both nis and nisplus as sources for the same database is strongly
discouraged since both the name services are expected to store similar information
and the lookups on the database may yield different results depending on which name
service is operational at the time of the request. The same applies for using ldap
along with nis or nisplus.

Misspelled names of sources and databases will be treated as legitimate names of
(most likely nonexistent) sources and databases.

The following functions do not use the switch: fgetgrent(3C), fgetpwent(3C),
fgetspent(3C), getpw(3C), putpwent(3C), shadow(4).

nsswitch.conf(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual

SunOS 5.8
Reference Manual

NOTES

74 man pages section 4: File Formats • Last Revised 25 Oct 2002

policy.conf – Configuration file for security policy

/etc/security/policy.conf

The policy.conf file provides the security policy configuration for user-level
attributes. Each entry consists of a key/value pair in the form:

key=value

The key/value pair must appear on a single line, and the key must start the line. Lines
starting with # are taken as comments and ignored. Option name comparisons are
case-insensitive.

The following keys are defined:

AUTHS_GRANTED
Specifies the default set of authorizations granted to all users. This entry is
interpreted by chkauthattr(3SECDB). The value is one or more comma-separated
authorizations defined in auth_attr(4).

IDLECMD=logout|lock
Specifies the action to take after the user has been idle for IDLETIME minutes. The
default value is lock.

IDLETIME=minutes
Specifies the number of minutes before the specified IDLECMD gets executed. Any
integer value between 1 and 120 is valid. The default value is 30 minutes.

LABELVIEW=hidesl|showsl
Specifies whether window labels are visible to the user (showsl), or not visible
(hidesl). The default value is showsl.

LOCK_AFTER_RETRIES=yes|no
Specifies whether or not an account is locked after the count of failed logins for a
user equals or exceeds the allowed number of retries as defined by RETRIES in
/etc/default/login. The default value for users is yes. The default value for
roles is no.

PASSWORD=auto|manual
Specifies how the user’s password is changed. If auto is specified, the user is given
a list of random passwords from which to choose. If manual is specified, the user
creates a password. The default value is manual.

PROFS_GRANTED
Specifies the default set of profiles granted to all users. This entry is interpreted by
chkauthattr(3SECDB) and getexecuser(3SECDB). The value is one or more
comma-separated profiles defined in the prof_attr(4) file.

EXAMPLE 1 Defining a key/value pair

AUTHS_GRANTED=com.sun.date

policy.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 75

EXAMPLE 1 Defining a key/value pair (Continued)

/etc/user_attr Defines extended user attributes.

/etc/security/auth_attr Defines authorizations.

/etc/security/prof_attr Defines profiles.

/etc/security/policy.conf Defines policy for the system.

The IDLECMD, IDLETIME, LABELVIEW, LOCK_AFTER_RETRIES, and PASSWORD keys
are added.

chkauthattr(3SECDB), prof_attr(4), user_attr(4)

pfexec(1), getexecuser(3SECDB), auth_attr(4)

policy.conf(4)

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

76 man pages section 4: File Formats • Last Revised 22 Sep 2000

priv_desc – descriptions of defined privileges

#include <tsol/priv.h>

Every defined privilege has a manifest constant for use in programs, a name for use in
user interfaces, and a description displayed by certain administrative tools. When a
process has a privilege in its effective set, that process has the power to bypass security
policy and perform the task allowed by that privilege.

The following section gives the manifest constant, name, and description for each
privilege defined on this system.

PRIV_FILE_AUDIT

Name file_audit

Allows a process to get or set a file’s or directory’s audit preselection
information. The audit preselection information may override the
preselection information associated with a process’ access to a file or
directory. Allows a process to get or set a file’s or directory’s public object
flag. The public object flag may override the successful read/search access
preselection information associated with a process’ access to a file or
directory. Allows a process to write to or modify a file or directory without
the file’s or directory’s audit preselection information or public object flag
being cleared.

PRIV_FILE_CHOWN

Name file_chown

Allows a process to change a file’s owner user ID. Allows a process to
change a file’s group ID to one other than the process’ effective group ID or
one of the process’ supplemental group IDs.

PRIV_FILE_DAC_EXECUTE

Name file_dac_execute

Allows a process to execute an executable file whose permission bits or
ACL do not allow the process execute permission.

PRIV_FILE_DAC_READ

Name file_dac_read

Allows a process to read a file or directory whose permission bits or ACL
do not allow the process read permission.

PRIV_FILE_DAC_SEARCH

Name file_dac_search

priv_desc(4)

NAME

SYNOPSIS

DESCRIPTION

Privilege
Descriptions

File Formats 77

Allows a process to search a directory whose permission bits or ACL do not
allow the process search permission.

PRIV_FILE_DAC_WRITE

Name file_dac_write

Allows a process to write a file or directory whose permission bits or ACL
do not allow the process write permission.

PRIV_FILE_DOWNGRADE_SL

Name file_downgrade_sl

Allows a process to set the Sensitivity Label of a file or directory to a
Sensitivity Label that does not dominate the existing Sensitivity Label.

PRIV_FILE_FILE_LOCK

Name file_lock

Allows a process to get accurate lock information for a file lock that it does
not hold.

PRIV_FILE_MAC_READ

Name file_mac_read

Allows a process to read a file or directory whose Sensitivity Label is not
dominated by the process’ Sensitivity Label. Allows a process to get
accurate file attributes of a file or directory whose Sensitivity Label is not
dominated by the process’ Sensitivity Label. Allows a process, when
upgraded directory names are hidden, to get directory entries whose
Sensitivity Label is not dominated by the process’ Sensitivity Label.

PRIV_FILE_MAC_SEARCH

Name file_mac_search

Allows a process to search a directory whose Sensitivity Label is not
dominated by the process’ Sensitivity Label.

PRIV_FILE_MAC_WRITE

Name file_mac_write

Allows a process to write a file or directory whose Sensitivity Label does
not dominate the process’ Sensitivity Label, or whose Sensitivity Label
dominates the process’ Clearance.

PRIV_FILE_OWNER

Name file_owner

priv_desc(4)

78 man pages section 4: File Formats • Last Revised 7 Sep 2001

Allows a process which is not the owner of a file to modify that file’s access
and modification times, audit preselection attributes, privileges, or
downgrade labels. Allows a process which is not the owner of a directory
to modify that directory’s access and modification times or downgrade
labels. Allows a process which is not the owner of a file or directory to
remove or rename a file or directory whose parent directory has the ‘‘save
text image after execution’’ (sticky) bit set. Allows a process which is not
the owner of a file to mount a ‘‘namefs’’ upon that file. (Does not apply to
setting access permission bits or ACLs.)

PRIV_FILE_SETDAC

Name file_setdac

Allows a process which is not the owner of a file or directory to modify
that file’s or directory’s permission bits or ACL.

PRIV_FILE_SETID

Name file_setid

Allows a process to change the ownership of a file or write to a file without
the set-user-ID and set-group-ID bits being cleared. Allows a process to set
the set-user-ID bit on a file whose owner is not the process’ effective user.
Allows a process to set the set-group-ID bit on a file whose group is not the
process’ effective group or one of the process’ supplemental groups.

PRIV_FILE_SETPRIV

Name file_setpriv

Allows a process to set the privilege sets on an executable file that the
process owns. Allows a process to write to an executable file without the
file’s allowed and forced privilege sets being emptied.

PRIV_FILE_UPGRADE_SL

Name file_upgrade_sl

Allows a process to set the Sensitivity Label of a file or directory to a
Sensitivity Label that dominates the existing Sensitivity Label.

PRIV_IPC_DAC_READ

Name ipc_dac_read

Allows a process to read a System V IPC Message Queue, Semaphore Set,
or Shared Memory Segment whose permission bits do not allow the
process read permission.

PRIV_IPC_DAC_WRITE

priv_desc(4)

File Formats 79

Name ipc_dac_write

Allows a process to write a System V IPC Message Queue, Semaphore Set,
or Shared Memory Segment whose permission bits do not allow the
process write permission.

PRIV_IPC_MAC_WRITE

Name ipc_mac_write

Allows a process to write a System V IPC Message Queue, Semaphore Set,
or Shared Memory Segment whose Sensitivity Label does not dominate the
process’ Sensitivity Label, or whose Sensitivity Label dominates the
process’ Clearance.

PRIV_IPC_OWNER

Name ipc_owner

Allows a process which is not the owner of a System V IPC Message
Queue, Semaphore Set, or Shared Memory Segment to remove, change
ownership of, or change permission bits of the Message Queue, Semaphore
Set, or Shared Memory Segment.

PRIV_NET_BROADCAST

Name net_broadcast

Allows a process to send broadcast or multicast packets. Because broadcast
packets are delivered to all machines on the local network, they are not
labeled.

PRIV_NET_DOWNGRADE_SL

Name net_downgrade_sl

Allows a process to specify a Sensitivity Label for data being written or to
set the network endpoint default Sensitivity Label to an Sensitivity Label
which does not dominate the process’ Sensitivity Label.

PRIV_NET_MAC_READ

Name net_mac_read

Allows a process to bind to or accept with a multi-level port. Binding to a
multi-level port allows the process to read all data sent to that port socket
for which there is not a bound single level port that matches the Sensitivity
Label of the data. Accepting with a multi-level port allows a process to
receive all data sent to that connected port. (There can be no single level
connected port for the accept to succeed.) Allows a process to create a
multi-level RPC port mapping.

priv_desc(4)

80 man pages section 4: File Formats • Last Revised 7 Sep 2001

PRIV_NET_PRIVADDR

Name net_privaddr

Allows a process to bind to a privileged port number. The privilege port
numbers are 1-1023 (the traditional UNIX privileged ports) and 6000-6002
(the XSun server ports). Privileged port numbers include the Internet
reserved (well known) port numbers.

PRIV_NET_RAWACCESS

Name net_rawaccess

Allows a process to have direct access to the network layer. Direct access to
the network layer bypasses network labeling. Auditing is not bypassed.

PRIV_NET_REPLY_EQUAL

Name net_reply_equal

Allows a process to reply with the Sensitivity Label of the last packet
received rather than its own Sensitivity Label. A combination of
net_mac_read and net_reply_equal allow unmodified programs to
successfully receive and reply at all Sensitivity Labels. This privilege exists
for unmodified program compatibility and is not used by modified Trusted
Solaris programs.

PRIV_NET_SETCLR

Name net_setclr

Allows a process to specify a Clearance for data being written or to set the
network endpoint default Clearance to a value different from the process’
Clearance.

PRIV_NET_SETID

Name net_setid

Allows a process to specify an effective user ID, effective group ID, or set of
supplemental groups for data being written or to set the network endpoint
default effective user ID, effective group ID, or set of supplemental groups
to values different from the process’ values. Allows a process which is not
the owner of a RPC port mapping to remove the mapping.

PRIV_NET_SETPRIV

Name net_setpriv

Allows a process to specify the effective privilege set for data being written
or to set the network endpoint default effective privilege set to privileges
contained in the process’ permitted privilege set.

priv_desc(4)

File Formats 81

PRIV_NET_UPGRADE_SL

Name net_upgrade_sl

Allows a process to specify a Sensitivity Label for data being written or to
set the network endpoint default Sensitivity Label to a Sensitivity Label
which dominates the process’ Sensitivity Label.

PRIV_PROC_AUDIT_APPL

Name proc_audit_appl

Allows a process to generate audit records with an audit event outside the
Trusted Solaris TCB event number range. Allows a process to get its own
audit preselection information.

PRIV_PROC_AUDIT_TCB

Name proc_audit_tcb

Allows a process to generate audit records with an audit event within the
Trusted Solaris TCB event number range. Allows a process to get its own
audit preselection information.

PRIV_PROC_CHROOT

Name proc_chroot

Allows a process to change its root directory.

PRIV_PROC_DEBUG_NONTRANQUIL

Name proc_debug_nontranquil

Allows a process to retain access to a process object when that process
object changes its Sensitivity Label. Mandatory Access Control is enforced
on the new Sensitivity Label.

Note – This privilege is intended to be used to debug processes that change
their Sensitivity Labels and not for other purposes.

PRIV_PROC_DUMPCORE

Name proc_dumpcore

Allows a TCB process to execute a new program which is set-user-ID,
set-group-ID, or permits the use of privilege to have a ‘‘core’’ file created
for it when taking the default action for SIGQUIT, SIGILL, SIGTRAP,
SIGABRT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, or
SIGXFSZ signals. Allows a TCB process to have a ‘‘core’’ file created for it
when taking the default action for SIGQUIT, SIGILL, SIGTRAP, SIGABRT,
SIGEMT, SIGFPE, SIGBUS, SIGSEGV, SIGSYS, SIGXCPU, or SIGXFSZ

priv_desc(4)

82 man pages section 4: File Formats • Last Revised 7 Sep 2001

signals.

PRIV_PROC_MAC_READ

Name proc_mac_read

Allows a process to read another process whose Sensitivity Label is not
dominated by the reading process’ Sensitivity Label.

PRIV_PROC_MAC_WRITE

Name proc_mac_write

Allows a process to write another process whose Sensitivity Label does not
dominate the writing process’ Sensitivity Label, or whose Sensitivity Label
dominates the writing process’ Clearance.

PRIV_PROC_NODELAY

Name proc_nodelay

Allows a process to not be delayed when doing operations that are
identified as covert channels.

PRIV_PROC_OWNER

Name proc_owner

Allows a process to read from and write to another process with a different
process owner. Allows a process to bind a process to a CPU with a different
process owner. Allows a process to open a process whose program file is
set-user-ID or set-group-ID, or has the use of privilege.

PRIV_PROC_SETCLR

Name proc_setclr

Allows a process to set its Clearance to a Clearance that is not equal to the
process’ current Clearance.

PRIV_PROC_SETID

Name proc_setid

Allows a process to set its user or group IDs to one different from its
current effective, real, or saved IDs. Allows a process to set its
supplemental group IDs. Allows a process to set the process group of a
controlling terminal to one not in the process’ process group. Allows a
process to set the window size on a terminal not in its session.

PRIV_PROC_SETSL

Name proc_setsl

priv_desc(4)

File Formats 83

Allows a process to set its Sensitivity Label to a Sensitivity Label that is not
equal to the process’ current Sensitivity Label.

PRIV_PROC_TRANQUIL

Name proc_tranquil

Allows a process to set the Sensitivity Label of an object to a Sensitivity
Label that is not equal to the current Sensitivity Label when the object is in
use by another process.

PRIV_SYS_AUDIT

Name sys_audit

Allows a process to start the (kernel) audit daemon. Allows a process to
view and set the audit state (audit user ID, audit terminal ID, audit session
ID, audit preselection mask). Allows a process to turn off and on auditing.
Allows a process to configure the audit parameters (cache and queue sizes,
event to class mappings, policy options).

PRIV_SYS_BOOT

Name sys_boot

Allows a process to halt, re-boot, or suspend a Trusted Solaris machine.

PRIV_SYS_CONFIG

Name sys_config

Allows a process to lock into memory and unlock from memory a memory
mapped file or Shared Memory Segment. Allows a process to change the
scheduling priority of a process not owned by this process, or increase this
process’ priority. Allows a process to increase its resource or process limits.
Allows a process to set the ‘‘save text image after execution’’ (sticky) bit on
executable files. Allows a process to turn on and off accounting. Allows a
process to change the machine time of day clock. Allows a process to
change the machine high resolution timer clock. Allows a process to
reconfigure scheduling classes. Allows a process to create and delete (hard)
links to directories. Allows a process to place a processor on-line or off-line.
Allows a process to modify kernel driver statistics values.

PRIV_SYS_CONSOLE

Name sys_console

Allows a process to redirect console output to another device.

PRIV_SYS_DEVICES

Name sys_devices

priv_desc(4)

84 man pages section 4: File Formats • Last Revised 7 Sep 2001

Allows a process to create device special files. Allows a process to use
mknod(2) to create directory and regular files. Allows a process to revoke
all access to a device special file. Allows a process to reassign a controlling
terminal from one process to another. Allows a process to open a terminal
already exclusively opened. Allows a process to revoke access to its
controlling terminal. Allows a process to enable or disable keyboard abort
processing. Allows a process to map frame buffer devices into its address
space. Allows a process to enable or disable a disk’s write-check capability.
Allows a process to load a kernel loadable driver. Allows a process to
control the Floating Point Accelerator. Allows a process to configure
autopush STREAMS modules. Allows a process to configure the device
driver policy table. Allows a process to successfully call a third party
loadable module that calls DDI drv_priv.

PRIV_SYS_FS_CONFIG

Name sys_fs_config

Allows a process to manipulate filesystem locks. Allows a process to
set/clear the automatic update (delayed I/O) state of a filesystem. Allows a
process to get meta disk allocation information. Allows a process to open a
specified inode in a filesystem. Allows a process to set the last access time
of a file system object.

PRIV_SYS_IPC_CONFIG

Name sys_ipc_config

Allows a process to increase the size of a System V IPC Message Queue
buffer.

PRIV_SYS_MAXPROC

Name sys_maxproc

Allows a process to create processes when the maximum number of
processes for this process’ owning user is exceeded. Allows a process to
create the last available process in the system.

PRIV_SYS_MINFREE

Name sys_minfree

Allows a process to write to a filesystem whose available storage space is
below the minimum allowed.

PRIV_SYS_MOUNT

Name sys_mount

priv_desc(4)

File Formats 85

Allows a process to mount filesystems which are restricted from being
freely mounted. Such filesystems include those of type ufs, nfs, tmpfs,
procfs, ... Allows a process to remount the root filesystem. Allows a process
to add and remove swap filesystems. Allows a process to determine the
users of a filesystem.

PRIV_SYS_NET_CONFIG

Name sys_net_config

Allows a process to configure a machine’s network interfaces and routes.
Allows a process to set a machine’s host and domain names. Allows a
process to set a machine’s kerberos realm. Allows a process to load and
unload host type, accreditation, and default information. Allows a process
direct access to network devices. Allows a process to set endpoint names.
Allows a process to use the rpcmod STREAMS module.

PRIV_SYS_NFS

Name sys_nfs

Allows a process to start a kernel NFS daemon. Allows a process to start
and stop a kernel NFS lock manager daemon. Allows a process to export
directories for use by NFS clients. Allows a process to retrieve the NFS file
handle for a path name. Allows a process to revoke NFS RPC credentials
for a client it does not own.

PRIV_SYS_SUSER_COMPAT

Name sys_suser_compat

Allows a process to successfully call a third party loadable module that
calls the kernel suser() function to check for allowed access. This privilege
exists only for third party loadable module compatibility and is not used
by Trusted Solaris.

PRIV_SYS_SYSTEM_DOOR

Name sys_system_door

Allows a process to create a door that can be opened by processes at any
Sensitivity Label.

PRIV_SYS_TRANS_LABEL

Name sys_trans_label

Allows a process to translate labels to and from ‘‘external string form’’ that
are not dominated by the process’ Sensitivity Label.

PRIV_WIN_COLORMAP

priv_desc(4)

86 man pages section 4: File Formats • Last Revised 7 Sep 2001

Name win_colormap

Allows a process to override colormap restrictions. Allows a process to
install or remove colormaps. Allows a process to retrieve colormap cell
entries allocated by other processes.

PRIV_WIN_CONFIG

Name win_config

Allows a process to configure or destroy resources that are permanently
retained by the X server. Allows a process to use SetScreenSaver to set the
screen saver timeout value. Allows a process to use ChangeHosts to modify
the display access control list. Allows a process to use GrabServer. Allows a
process to use the SetCloseDownMode request which may retain window,
pixmap, colormap, property, cursor, font, or graphic context resources.

PRIV_WIN_DAC_READ

Name win_dac_read

Allows a process to read from a window resource that it does not own (has
a different user ID.

PRIV_WIN_DAC_WRITE

Name win_dac_write

Allows a process to write to or create a window resource that it does not
own (has a different user ID). A newly created window property is created
with the window’s user ID.

PRIV_WIN_DEVICES

Name win_devices

Allows a process to perform operations on window input devices. Allows a
process to get and set keyboard and pointer controls. Allows a process to
modify pointer button and key mappings.

PRIV_WIN_DGA

Name win_dga

Allows a process to use the direct graphics access (DGA) X protocol
extensions. Direct process access to the frame buffer is still required. Thus
the process must have MAC and DAC privileges that allow access to the
frame buffer, or the frame buffer must be allocated to the process.

PRIV_WIN_DOWNGRADE_SL

Name win_downgrade_sl

priv_desc(4)

File Formats 87

Allows a process to set the Sensitivity Label of a window resource to a
Sensitivity Label that does not dominate the existing Sensitivity Label.

PRIV_WIN_FONTPATH

Name win_fontpath

Allows a process to set a font path.

PRIV_WIN_MAC_READ

Name win_mac_read

Allows a process to read from a window resource whose Sensitivity Label
is not equal to the process Sensitivity Label.

PRIV_WIN_MAC_WRITE

Name win_mac_write

Allows a process to write to create a window resource whose Sensitivity
Label is not equal to the process Sensitivity Label. A newly created window
property is created with the window’s Sensitivity Label.

PRIV_WIN_SELECTION

Name win_selection

Allows a process to request inter-window data moves without the
intervention of the selection arbitrator.

PRIV_WIN_UPGRADE_SL

Name win_upgrade_sl

Allows a process to set the Sensitivity Label of a window resource to a
Sensitivity Label that dominates the existing Sensitivity Label.

/usr/lib/tsol/locale/locale/priv_name
Privileges descriptions

</usr/include/sys/tsol/priv_names.h>
Manifest constant and ID value definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Intro(2), getfpriv(2), setfpriv(2), priv_to_str(3TSOL),
set_effective_priv(3TSOL), priv_name(4), priv_macros(5)

priv_desc(4)

FILES

ATTRIBUTES

Trusted Solaris 8
HW 12/02

Reference Manual

88 man pages section 4: File Formats • Last Revised 7 Sep 2001

Trusted Solaris administrator’s document set, Trusted Solaris Developer’s Guide

attributes(5)

priv_desc(4)

SunOS 5.8
Reference Manual

File Formats 89

priv_name – privilege description database

</usr/lib/tsol/locale/locale/priv_name>

The priv_name database specifies localized privilege names and descriptions defined
on this system. This database is used along with the <sys/tsol/priv_names.h>
file by priv_to_str(3TSOL), str_to_priv(3TSOL), and get_priv_text(3TSOL)
to translate between privilege ID, privilege name string, and description.

Each entry in the priv_name database consists of one line with fields separated by
colons (:). A line ending with a backslash (\) indicates continuation of the entry on
the next line. Lines beginning with a # character are treated as comments. Each entry
has the form:

constant:name:description

The entry fields are:

constant The constant field must match the numeric constant defined for the
privilege in the <sys/tsol/priv_names.h> file.

name The external name of the privilege. It is returned by
priv_to_str() and is used by str_to_priv(). It is also used
by commands like ppriv and pprivtest. The external name can
be customized and localized.

description The description of the privilege. It is returned by
get_priv_text(). The description can be customized and
localized.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

EXAMPLE 1 A priv_name entry

Example entry in /usr/lib/tsol/locale/C/priv_name
#
53:proc_setid: Allows a process to set its user or group ID to \

one different from its current effective, real, or saved IDs. \
Allows a process to set its supplemental group IDs. \
Allows a process to set the process group of a controlling terminal \
to one not in the process’ process group. \
Allows a process to set the window size on a terminal not in its \

session.

priv_to_str(3TSOL), priv_desc(4)

attributes(5)

priv_name(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

EXAMPLES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

90 man pages section 4: File Formats • Last Revised 10 Feb 2001

proc – /proc, the process file system

/proc is a file system that provides access to the state of each process and
light-weight process (lwp) in the system. The name of each entry in the /proc
directory is a decimal number corresponding to a process-ID. These entries are
themselves subdirectories. Access to process state is provided by additional files
contained within each subdirectory; the hierarchy is described more completely below.
In this document, ‘‘/proc file’’ refers to a non-directory file within the hierarchy
rooted at /proc. The owner of each /proc file and subdirectory is determined by the
user-ID of the process.

/proc can be mounted on any mount point, in addition to the standard /proc mount
point, and can be mounted several places at once. Such additional mounts are allowed
in order to facilitate the confinement of processes to subtrees of the file system via
chroot(1M) and yet allow such processes access to commands like ps(1).

Standard system calls are used to access /proc files: open(2), close(2), read(2), and
write(2) (including readv(2), writev(2), pread(2), and pwrite(2)). Most files
describe process state and can only be opened for reading. ctl and lwpctl (control)
files permit manipulation of process state and can only be opened for writing. as
(address space) files contain the image of the running process and can be opened for
both reading and writing. An open for writing allows process control; a read-only
open allows inspection but not control. In this document, we refer to the process as
open for reading or writing if any of its associated /proc files are open for reading or
writing.

In general, more than one process can open the same /proc file at the same time.
Exclusive open is an advisory mechanism provided to allow controlling processes to
avoid collisions with each other. A process can obtain exclusive control of a target
process, with respect to other cooperating processes, if it successfully opens any
/proc file in the target process for writing (the as or ctl files, or the lwpctl file of
any lwp) while specifying O_EXCL in the open(2). Such an open will fail if the target
process is already open for writing (that is, if an as, ctl, or lwpctl file is already
open for writing). There can be any number of concurrent read-only opens; O_EXCL is
ignored on opens for reading. It is recommended that the first open for writing by a
controlling process use the O_EXCL flag; multiple controlling processes usually result
in chaos.

If a process opens one of its own /proc files for writing, the open succeeds regardless
of O_EXCL and regardless of whether some other process has the process open for
writing. Self-opens do not count when another process attempts an exclusive open. (A
process cannot exclude a debugger by opening itself for writing and the application of
a debugger cannot prevent a process from opening itself.) All self-opens for writing
are forced to be close-on-exec (see the F_SETFD operation of fcntl(2)).

Data may be transferred from or to any locations in the address space of the traced
process by applying lseek(2) to position the as file at the virtual address of interest
followed by read(2) or write(2) for the combined operation). The address-map file
/proc/pid/map can be read to determine the accessible areas (mappings) of the

proc(4)

NAME

DESCRIPTION

File Formats 91

address space. I/O transfers may span contiguous mappings. An I/O request
extending into an unmapped area is truncated at the boundary. A write request
beginning at an unmapped virtual address fails with EIO; a read request beginning at
an unmapped virtual address returns zero (an end-of-file indication).

Information and control operations are provided through additional files.
<procfs.h> contains definitions of data structures and message formats used with
these files. Some of these definitions involve the use of sets of flags. The set types
sigset_t, fltset_t, and sysset_t correspond, respectively, to signal, fault, and
system call enumerations defined in <sys/signal.h>, <sys/fault.h>, and
<sys/syscall.h>. Each set type is large enough to hold flags for its own
enumeration. Although they are of different sizes, they have a common structure and
can be manipulated by these macros:

prfillset(&set); /* turn on all flags in set */
premptyset(&set); /* turn off all flags in set */
praddset(&set, flag); /* turn on the specified flag */
prdelset(&set, flag); /* turn off the specified flag */
r = prismember(&set, flag); /* != 0 iff flag is turned on */

One of prfillset() or premptyset() must be used to initialize set before it is
used in any other operation. flag must be a member of the enumeration
corresponding to set.

The following IOCTLs provided in the Trusted Solaris environment are used to get
information about the security attributes of a process: PIOCLABEL, PIOCCLEAR,
PIOCEPRIV, PIOCIPRIV, PIOCPPRIV, PIOCSPRIV, PIOCTRED, and PIOCATTR. See
the DESCRIPTION and NOTES sections for information about privileges and MAC
policies that apply to the use of the /proc file system in the Trusted Solaris
environment.

Every process contains at least one light-weight process, or lwp. Each lwp represents a
flow of execution that is independently scheduled by the operating system. All lwps in
a process share its address space as well as many other attributes. Through the use of
lwpctl and ctl files as described below, it is possible to affect individual lwps in a
process or to affect all of them at once, depending on the operation.

When the process has more than one lwp, a representative lwp is chosen by the
system for certain process status files and control operations. The representative lwp is
a stopped lwp only if all of the process’s lwps are stopped; is stopped on an event of
interest only if all of the lwps are so stopped (excluding PR_SUSPENDED lwps); is in a
PR_REQUESTED stop only if there are no other events of interest to be found; or,
failing everything else, is in a PR_SUSPENDED stop (implying that the process is
deadlocked). See the description of the status file for definitions of stopped states.
See the PCSTOP control operation for the definition of ‘‘event of interest’’.

The representative lwp remains fixed (it will be chosen again on the next operation) as
long as all of the lwps are stopped on events of interest or are in a PR_SUSPENDED
stop and the PCRUN control operation is not applied to any of them.

proc(4)

92 man pages section 4: File Formats • Last Revised 1 Feb 2001

When applied to the process control file, every /proc control operation that must act
on an lwp uses the same algorithm to choose which lwp to act upon. Together with
synchronous stopping (see PCSET), this enables a debugger to control a multiple-lwp
process using only the process-level status and control files if it so chooses. More
fine-grained control can be achieved using the lwp-specific files.

The system supports two process data models, the traditional 32-bit data model in
which ints, longs and pointers are all 32 bits wide (the ILP32 data model), and on
some platforms the 64-bit data model in which longs and pointers, but not ints, are 64
bits in width (the LP64 data model). In the LP64 data model some system data types,
notably size_t, off_t, time_t and dev_t, grow from 32 bits to 64 bits as well.

The /proc interfaces described here are available to both 32-bit and 64-bit controlling
processes. However, many operations attempted by a 32-bit controlling process on a
64-bit target process will fail with EOVERFLOW because the address space range of a
32-bit process cannot encompass a 64-bit process or because the data in some 64-bit
system data type cannot be compressed to fit into the corresponding 32-bit type
without loss of information. Operations that fail in this circumstance include reading
and writing the address space, reading the address-map file, and setting the target
process’s registers. There is no restriction on operations applied by a 64-bit process to
either a 32-bit or a 64-bit target processes.

The format of the contents of any /proc file depends on the data model of the
observer (the controlling process), not on the data model of the target process. A 64-bit
debugger does not have to translate the information it reads from a /proc file for a
32-bit process from 32-bit format to 64-bit format. However, it usually has to be aware
of the data model of the target process. The pr_dmodel field of the status files
indicates the target process’s data model.

To help deal with system data structures that are read from 32-bit processes, a 64-bit
controlling program can be compiled with the C preprocessor symbol _SYSCALL32
defined before system header files are included. This makes explicit 32-bit fixed-width
data structures (like cstruct stat32) visible to the 64-bit program. See
types32(3HEAD).

At the top level, the directory /proc contains entries each of which names an existing
process in the system. These entries are themselves directories. Except where
otherwise noted, the files described below can be opened for reading only. In addition,
if a process becomes a zombie (one that has exited but whose parent has not yet
performed a wait(2) upon it), most of its associated /proc files disappear from the
hierarchy; subsequent attempts to open them, or to read or write files opened before
the process exited, will elicit the error ENOENT.

Although process state and consequently the contents of /proc files can change from
instant to instant, a single read(2) of a /proc file is guaranteed to return a sane
representation of state; that is, the read will be atomic with respect to the state of the
process. No such guarantee applies to successive reads applied to a /proc file for a

proc(4)

DIRECTORY
STRUCTURE

File Formats 93

running process. In addition, atomicity is not guaranteed for I/O applied to the as
(address-space) file for a running process or for a process whose address space
contains memory shared by another running process.

A number of structure definitions are used to describe the files. These structures may
grow by the addition of elements at the end in future releases of the system and it is
not legitimate for a program to assume that they will not.

A given directory /proc/pid contains the following entries. A process can use the
invisible alias /proc/self if it wishes to open one of its own /proc files (invisible in
the sense that the name ‘‘self’’ does not appear in a directory listing of /proc obtained
from ls(1), getdents(2), or readdir(3C)).

Contains the address-space image of the process; it can be opened for both reading
and writing. lseek(2) is used to position the file at the virtual address of interest and
then the address space can be examined or changed through read(2) or write(2) (or
by using pread(2) or pwrite(2) for the combined operation).

A write-only file to which structured messages are written directing the system to
change some aspect of the process’s state or control its behavior in some way. The seek
offset is not relevant when writing to this file. Individual lwps also have associated
lwpctl files in the lwp subdirectories. A control message may be written either to the
process’s ctl file or to a specific lwpctl file with operation-specific effects. The effect
of a control message is immediately reflected in the state of the process visible through
appropriate status and information files. The types of control messages are described
in detail later. See CONTROL MESSAGES.

Contains state information about the process and the representative lwp. The file
contains a pstatus structure which contains an embedded lwpstatus structure for
the representative lwp, as follows:

typedef struct pstatus {
int pr_flags; /* flags (see below) */
int pr_nlwp; /* number of lwps in the process */
pid_tpr_pid; /* process id */
pid_tpr_ppid; /* parent process id */
pid_tpr_pgid; /* process group id */
pid_tpr_sid; /* session id */
id_t pr_aslwpid; /* lwp-id of the aslwp, if any */
id_t pr_agentid; /* lwp-id of the agent lwp, if any */
sigset_t pr_sigpend; /* set of process pending signals */
uintptr_t pr_brkbase; /* virtual address of the process heap */
size_t pr_brksize; /* size of the process heap, in bytes */
uintptr_t pr_stkbase; /* virtual address of the process stack */
size_tpr_stksize; /* size of the process stack, in bytes */
timestruc_t pr_utime; /* process user cpu time */
timestruc_t pr_stime; /* process system cpu time */
timestruc_t pr_cutime; /* sum of children’s user times */
timestruc_t r_cstime; /* sum of children’s system times */
sigset_t pr_sigtrace; /* set of traced signals */
fltset_t pr_flttrace; /* set of traced faults */
sysset_t pr_sysentry; /* set of system calls traced on entry */
sysset_t pr_sysexit; /* set of system calls traced on exit */

proc(4)

STRUCTURE OF
/proc/pid

as

ctl

status

94 man pages section 4: File Formats • Last Revised 1 Feb 2001

char pr_dmodel; /* data model of the process */
taskid_t pr_taskid; /* task id */
projid_t pr_projid; /* project id */
lwpstatus_t pr_lwp; /* status of the representative lwp */

} pstatus_t;

pr_flags is a bit-mask holding the following process flags. For convenience, it also
contains the lwp flags for the representative lwp, described later.

PR_ISSYS process is a system process (see PCSTOP).

PR_VFORKP process is the parent of a vforked child (see PCWATCH).

PR_FORK process has its inherit-on-fork mode set (see PCSET).

PR_RLC process has its run-on-last-close mode set (see PCSET).

PR_KLC process has its kill-on-last-close mode set (see PCSET).

PR_ASYNC process has its asynchronous-stop mode set (see PCSET).

PR_MSACCT process has microstate accounting enabled (see PCSET).

PR_MSFORK process microstate accounting is inherited on fork (see PCSET).

PR_BPTADJ process has its breakpoint adjustment mode set (see PCSET).

PR_PTRACE process has its ptrace-compatibility mode set (see PCSET).

pr_nlwp is the total number of lwps in the process.

pr_pid, pr_ppid, pr_pgid, and pr_sid are, respectively, the process ID, the ID of
the process’s parent, the process’s process group ID, and the process’s session ID.

pr_aslwpid is the lwp-ID for the "asynchronous signal lwp" (aslwp). It is zero if
there is no aslwp in the process. The aslwp is the lwp designated to redirect
asynchronous signals to other lwps in a multi-threaded process. See signal(3HEAD)
for a description of the aslwp.

pr_agentid is the lwp-ID for the /proc agent lwp (see the PCAGENT control
operation). It is zero if there is no agent lwp in the process.

pr_sigpend identifies asynchronous signals pending for the process.

pr_brkbase is the virtual address of the process heap and pr_brksize is its size in
bytes. The address formed by the sum of these values is the process break (see
brk(2)). pr_stkbase and pr_stksize are, respectively, the virtual address of the
process stack and its size in bytes. (Each lwp runs on a separate stack; the
distinguishing characteristic of the process stack is that the operating system will grow
it when necessary.)

pr_utime, pr_stime, pr_cutime, and pr_cstime are, respectively, the user CPU
and system CPU time consumed by the process, and the cumulative user CPU and
system CPU time consumed by the process’s children, in seconds and nanoseconds.

proc(4)

File Formats 95

pr_sigtrace and pr_flttrace contain, respectively, the set of signals and the set
of hardware faults that are being traced (see PCSTRACE and PCSFAULT).

pr_sysentry and pr_sysexit contain, respectively, the sets of system calls being
traced on entry and exit (see PCSENTRY and PCSEXIT).

pr_dmodel indicates the data model of the process. Possible values are:

PR_MODEL_ILP32 process data model is ILP32.

PR_MODEL_LP64 process data model is LP64.

PR_MODEL_NATIVE process data model is native.

The constant PR_MODEL_NATIVE reflects the data model of the controlling process,
that is, its value is PR_MODEL_ILP32 or PR_MODEL_LP64 according to whether the
controlling process has been compiled as a 32-bit program or a 64-bit program,
respectively.

pr_lwp contains the status information for the representative lwp:

typedef struct lwpstatus {
int pr_flags; /* flags (see below) */
id_t pr_lwpid; /* specific lwp identifier */
short pr_why; /* reason for lwp stop, if stopped */
short pr_what; /* more detailed reason */
short pr_cursig; /* current signal, if any */
siginfo_t pr_info; /* info associated with signal or fault */
sigset_t pr_lwppend; /* set of signals pending to the lwp */
sigset_t pr_lwphold; /* set of signals blocked by the lwp */
struct sigaction pr_action; /* signal action for current signal */
stack_t pr_altstack; /* alternate signal stack info */
uintptr_t pr_oldcontext; /* address of previous ucontext */
short pr_syscall; /* system call number (if in syscall) */
short pr_nsysarg; /* number of arguments to this syscall */
int pr_errno; /* errno for failed syscall */
long pr_sysarg[PRSYSARGS]; /* arguments to this syscall */
long pr_rval1; /* primary syscall return value */
long pr_rval2; /* second syscall return value, if any */
char pr_clname[PRCLSZ]; /* scheduling class name */
timestruc_t pr_tstamp; /* real-time time stamp of stop */
ulong_t pr_instr; /* current instruction */
prgregset_t pr_reg; /* general registers */
prfpregset_t pr_fpreg; /* floating-point registers */
} lwpstatus_t;

pr_flags is a bit-mask holding the following lwp flags. For convenience, it also
contains the process flags, described previously.

PR_STOPPED lwp is stopped.

PR_ISTOP lwp is stopped on an event of interest (see PCSTOP).

PR_DSTOP lwp has a stop directive in effect (see PCSTOP).

PR_STEP lwp has a single-step directive in effect (see PCRUN).

proc(4)

96 man pages section 4: File Formats • Last Revised 1 Feb 2001

PR_ASLEEP lwp is in an interruptible sleep within a system call.

PR_PCINVAL lwp’s current instruction (pr_instr) is undefined.

PR_ASLWP this is the asynchronous signal lwp for the process.

PR_AGENT this is the /proc agent lwp for the process.

pr_lwpid names the specific lwp.

pr_why and pr_what together describe, for a stopped lwp, the reason for the stop.
Possible values of pr_why and the associated pr_what are:

PR_REQUESTED indicates that the stop occurred in response to a stop directive,
normally because PCSTOP was applied or because another lwp
stopped on an event of interest and the asynchronous-stop flag
(see PCSET) was not set for the process. pr_what is unused in this
case.

PR_SIGNALLED indicates that the lwp stopped on receipt of a signal (see
PCSTRACE); pr_what holds the signal number that caused the
stop (for a newly-stopped lwp, the same value is in pr_cursig).

PR_FAULTED indicates that the lwp stopped on incurring a hardware fault (see
PCSFAULT); pr_what holds the fault number that caused the stop.

PR_SYSENTRY
PR_SYSEXIT indicate a stop on entry to or exit from a system call (see

PCSENTRY and PCSEXIT); pr_what holds the system call
number.

PR_JOBCONTROL indicates that the lwp stopped due to the default action of a job
control stop signal (see sigaction(2)); pr_what holds the
stopping signal number.

PR_SUSPENDED indicates that the lwp stopped due to internal synchronization of
lwps within the process. pr_what is unused in this case.

pr_cursig names the current signal, that is, the next signal to be delivered to the
lwp, if any. pr_info, when the lwp is in a PR_SIGNALLED or PR_FAULTED stop,
contains additional information pertinent to the particular signal or fault (see
<sys/siginfo.h>).

pr_lwppend identifies any synchronous or directed signals pending for the lwp.
pr_lwphold identifies those signals whose delivery is being blocked by the lwp (the
signal mask).

pr_action contains the signal action information pertaining to the current signal (see
sigaction(2)); it is undefined if pr_cursig is zero. pr_altstack contains the
alternate signal stack information for the lwp (see sigaltstack(2)).

proc(4)

File Formats 97

pr_oldcontext, if not zero, contains the address on the lwp stack of a ucontext
structure describing the previous user-level context (see ucontext(3HEAD)). It is
non-zero only if the lwp is executing in the context of a signal handler.

pr_syscall is the number of the system call, if any, being executed by the lwp; it is
non-zero if and only if the lwp is stopped on PR_SYSENTRY or PR_SYSEXIT, or is
asleep within a system call (PR_ASLEEP is set). If pr_syscall is non-zero,
pr_nsysarg is the number of arguments to the system call and pr_sysarg contains
the actual arguments.

pr_rval1, pr_rval2, and pr_errno are defined only if the lwp is stopped on
PR_SYSEXIT or if the PR_VFORKP flag is set. If pr_errno is zero, pr_rval1 and
pr_rval2 contain the return values from the system call. Otherwise, pr_errno
contains the error number for the failing system call (see <sys/errno.h>).

pr_clname contains the name of the lwp’s scheduling class.

pr_tstamp, if the lwp is stopped, contains a time stamp marking when the lwp
stopped, in real time seconds and nanoseconds since an arbitrary time in the past.

pr_instr contains the machine instruction to which the lwp’s program counter
refers. The amount of data retrieved from the process is machine-dependent. On
SPARC based machines, it is a 32-bit word. On x86 based machines, it is a single byte.
In general, the size is that of the machine’s smallest instruction. If PR_PCINVAL is set,
pr_instr is undefined; this occurs whenever the lwp is not stopped or when the
program counter refers to an invalid virtual address.

pr_reg is an array holding the contents of a stopped lwp’s general registers.

SPARC On SPARC-based machines, the predefined constants
R_G0 ... R_G7, R_O0 ... R_O7, R_L0 ... R_L7, R_I0 ...
R_I7, R_PC, R_nPC, and R_Y can be used as indices to
refer to the corresponding registers; previous register
windows can be read from their overflow locations on
the stack (however, see the gwindows file in the
/proc/pid/lwp/lwpid subdirectory).

SPARC V8 (32-bit) For SPARC V8 (32-bit) controlling processes, the
predefined constants R_PSR, R_WIM, and R_TBR can be
used as indices to refer to the corresponding special
registers. For SPARC V9 (64-bit) controlling processes,
the predefined constants R_CCR, R_ASI, and R_FPRS
can be used as indices to refer to the corresponding
special registers.

x86 On x86 based machines, the predefined constants SS,
UESP, EFL, CS, EIP, ERR, TRAPNO, EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI, DS, ES, FS, and GS can be used as
indices to refer to the corresponding registers.

proc(4)

98 man pages section 4: File Formats • Last Revised 1 Feb 2001

pr_fpreg is a structure holding the contents of the floating-point registers.

SPARC registers, both general and floating-point, as seen by a 64-bit controlling
process are the V9 versions of the registers, even if the target process is a 32-bit (V8)
process. V8 registers are a subset of the V9 registers.

If the lwp is not stopped, all register values are undefined.

Contains miscellaneous information about the process and the representative lwp
needed by the ps(1) command.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

psinfo is accessible after a process becomes a zombie. The file contains a psinfo
structure which contains an embedded lwpsinfo structure for the representative
lwp, as follows:

typedef struct psinfo {
int pr_flag; /* process flags */
int pr_nlwp; /* number of lwps in the process */
pid_t pr_pid; /* process id */
pid_t pr_ppid; /* process id of parent */
pid_t pr_pgid; /* process id of process group leader */
pid_t pr_sid; /* session id */
uid_t pr_uid; /* real user id */
uid_t pr_euid; /* effective user id */
gid_t pr_gid; /* real group id */
gid_t pr_egid; /* effective group id */
uintptr_t pr_addr; /* address of process */
size_t pr_size; /* size of process image in Kbytes */
size_t pr_rssize; /* resident set size in Kbytes */
dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */
ushort_t pr_pctcpu; /* % of recent cpu time used by all lwps */
ushort_t pr_pctmem; /* % of system memory used by process */
timestruc_t pr_start; /* process start time, from the epoch */
timestruc_t pr_time; /* cpu time for this process */
timestruc_t pr_ctime; /* cpu time for reaped children */
taskid_t pr_taskid; /* task id */
projid_t pr_projid; /* project id */
char pr_fname[PRFNSZ]; /* name of exec’ed file */
char pr_psargs[PRARGSZ]; /* initial characters of arg list */
int pr_wstat; /* if zombie, the wait() status */
int pr_argc; /* initial argument count */
uintptr_t pr_argv; /* address of initial argument vector */
uintptr_t pr_envp; /* address of initial environment vector */
char pr_dmodel; /* data model of the process */
lwpsinfo_t pr_lwp; /* information for representative lwp */

} psinfo_t;

Some of the entries in psinfo, such as pr_flag and pr_addr, refer to internal
kernel data structures and should not be expected to retain their meanings across
different versions of the operating system.

proc(4)

psinfo

File Formats 99

pr_pctcpu and pr_pctmem are 16-bit binary fractions in the range 0.0 to 1.0 with the
binary point to the right of the high-order bit (1.0 == 0x8000). pr_pctcpu is the
summation over all lwps in the process.

pr_lwp contains the ps(1) information for the representative lwp. If the process is a
zombie, pr_nlwp and pr_lwp.pr_lwpid are zero and the other fields of pr_lwp are
undefined:

typedef struct lwpsinfo {
int pr_flag; /* lwp flags */
id_t pr_lwpid; /* lwp id */
uintptr_t pr_addr; /* internal address of lwp */
uintptr_t pr_wchan; /* wait addr for sleeping lwp */
char pr_stype; /* synchronization event type */
char pr_state; /* numeric lwp state */
char pr_sname; /* printable character for pr_state */
char pr_nice; /* nice for cpu usage */
short pr_syscall; /* system call number (if in syscall) */
char pr_oldpri; /* pre-SVR4, low value is high priority */
char pr_cpu; /* pre-SVR4, cpu usage for scheduling */
int pr_pri; /* priority, high value = high priority */
ushort_t pr_pctcpu; /* % of recent cpu time used by this lwp */
timestruc_t pr_start; /* lwp start time, from the epoch */
timestruc_t pr_time; /* cpu time for this lwp */
char pr_clname[PRCLSZ]; /* scheduling class name */
char pr_name[PRFNSZ]; /* name of system lwp */
processorid_t pr_onpro; /* processor which last ran this lwp */
processorid_t pr_bindpro; /* processor to which lwp is bound */
psetid_t pr_bindpset; /* processor set to which lwp is bound */

} lwpsinfo_t;

Some of the entries in lwpsinfo, such as pr_flag, pr_addr, pr_wchan, pr_stype,
pr_state, and pr_name, refer to internal kernel data structures and should not be
expected to retain their meanings across different versions of the operating system.

pr_pctcpu is a 16-bit binary fraction, as described above. It represents the CPU time
used by the specific lwp. On a multi-processor machine, the maximum value is 1/N,
where N is the number of CPUs.

Contains a description of the credentials associated with the process:

typedef struct prcred {
uid_t pr_euid; /* effective user id */
uid_t pr_ruid; /* real user id */
uid_t pr_suid; /* saved user id (from exec) */
gid_t pr_egid; /* effective group id */
gid_t pr_rgid; /* real group id */
gid_t pr_sgid; /* saved group id (from exec) */
int pr_ngroups; /* number of supplementary groups */
gid_t pr_groups[1]; /* array of supplementary groups */

} prcred_t;

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

proc(4)

cred

100 man pages section 4: File Formats • Last Revised 1 Feb 2001

The array of associated supplementary groups in pr_groups is of variable length; the
cred file contains all of the supplementary groups. pr_ngroups indicates the
number of supplementary groups. (See also the PCSCRED control operation.)

Contains an array of sigaction structures describing the current dispositions of
all signals associated with the traced process (see sigaction(2)). Signal numbers are
displaced by 1 from array indices, so that the action for signal number n appears in
position n-1 of the array.

Mandatory read access to the file system object is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Contains the initial values of the process’s aux vector in an array of auxv_t structures
(see <sys/auxv.h>). The values are those that were passed by the operating system
as startup information to the dynamic linker.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

This file exists only on x86 based machines. It is non-empty only if the process has
established a local descriptor table (LDT). If non-empty, the file contains the array of
currently active LDT entries in an array of elements of type struct ssd, defined in
<sys/sysi86.h>, one element for each active LDT entry.

Mandatory read access to the file system object is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Contains information about the virtual address map of the process.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

The file contains an array of prmap structures, each of which describes a contiguous
virtual address region in the address space of the traced process:

typedef struct prmap {
uintptr_tpr_vaddr; /* virtual address of mapping */
size_t pr_size; /* size of mapping in bytes */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */
int pr_shmid; /* SysV shared memory identifier */

} prmap_t;

pr_vaddr is the virtual address of the mapping within the traced process and
pr_size is its size in bytes. pr_mapname, if it does not contain a null string, contains
the name of a file in the object directory (see below) that can be opened read-only to
obtain a file descriptor for the mapped file associated with the mapping. This enables

proc(4)

sigact

auxv

ldt

map

File Formats 101

a debugger to find object file symbol tables without having to know the real path
names of the executable file and shared libraries of the process. pr_offset is the
64-bit offset within the mapped file (if any) to which the virtual address is mapped.

pr_mflags is a bit-mask of protection and attribute flags:

MA_READ mapping is readable by the traced process.

MA_WRITE mapping is writable by the traced process.

MA_EXEC mapping is executable by the traced process.

MA_SHARED mapping changes are shared by the mapped object.

MA_ISM mapping is intimate shared memory (shared MMU resources).

A contiguous area of the address space having the same underlying mapped object
may appear as multiple mappings due to varying read, write, and execute attributes.
The underlying mapped object does not change over the range of a single mapping.
An I/O operation to a mapping marked MA_SHARED fails if applied at a virtual
address not corresponding to a valid page in the underlying mapped object. A write to
a MA_SHARED mapping that is not marked MA_WRITE fails. Reads and writes to
private mappings always succeed. Reads and writes to unmapped addresses fail.

pr_pagesize is the page size for the mapping, currently always the system pagesize.

pr_shmid is the shared memory identifier, if any, for the mapping. Its value is −1 if
the mapping is not System V shared memory. See shmget(2).

Contains information about the reserved address ranges of the process. The file
contains an array of prmap structures, as defined above for the map file. Each structure
describes a contiguous virtual address region in the address space of the traced
process that is reserved by the system in the sense that an mmap(2) system call that
does not specify MAP_FIXED will not use any part of it for the new mapping.
Examples of such reservations include the address ranges reserved for the process
stack and the individual thread stacks of a multi-threaded process.

A symbolic link to the process’s current working directory (see chdir(2)). A
readlink(2) of /proc/pid/cwd yields a null string. However, it can be opened,
listed, and searched as a directory and can be the target of chdir(2).

A symbolic link to the process’s root directory. /proc/pid/root can differ from the
system root directory if the process or one of its ancestors executed chroot(2) as a
privileged process. It has the same semantics as /proc/pid/cwd.

A directory containing references to the open files of the process. Each entry is a
decimal number corresponding to an open file descriptor in the process.

proc(4)

rmap

cwd

root

fd

102 man pages section 4: File Formats • Last Revised 1 Feb 2001

If an entry refers to a regular file, it can be opened with normal file system semantics
but, to ensure that the controlling process cannot gain greater access than the
controlled process, with no file access modes other than its read/write open modes in
the controlled process. If an entry refers to a directory, it appears as a symbolic link
and can be accessed with the same semantics as /proc/pid/cwd. An attempt to open
any other type of entry fails with EACCES.

A directory containing read-only files with names corresponding to the pr_mapname
entries in the map and pagedata files. Opening such a file yields a file descriptor for
the underlying mapped file associated with an address-space mapping in the process.
The file name a.out appears in the directory as an alias for the process’s executable
file.

The object directory makes it possible for a controlling process to gain access to the
object file and any shared libraries (and consequently the symbol tables) without
having to know the actual path names of the executable files.

Opening the page data file enables tracking of address space references and
modifications on a per-page basis.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

A read(2) of the page data file descriptor returns structured page data and atomically
clears the page data maintained for the file by the system. That is to say, each read
returns data collected since the last read; the first read returns data collected since the
file was opened. When the call completes, the read buffer contains the following
structure as its header and thereafter contains a number of section header structures
and associated byte arrays that must be accessed by walking linearly through the
buffer.

typedef struct prpageheader {
timestruc_t pr_tstamp; /* real time stamp, time of read() */
ulong_t pr_nmap; /* number of address space mappings */
ulong_t pr_npage; /* total number of pages */

} prpageheader_t;

The header is followed by pr_nmap prasmap structures and associated data arrays.
The prasmap structure contains at least the following elements:

typedef struct prasmap {
uintptr_t pr_vaddr; /* virtual address of mapping */
ulong_t pr_npage; /* number of pages in mapping */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */
int pr_shmid; /* SysV shared memory identifier */

} prasmap_t;

proc(4)

object

pagedata

File Formats 103

Each section header is followed by pr_npage bytes, one byte for each page in the
mapping, plus 0-7 null bytes at the end so that the next prasmap structure begins on
an eight-byte aligned boundary. Each data byte may contain these flags:

PG_REFERENCED page has been referenced.

PG_MODIFIED page has been modified.

If the read buffer is not large enough to contain all of the page data, the read fails with
E2BIG and the page data is not cleared. The required size of the read buffer can be
determined through fstat(2). Application of lseek(2) to the page data file descriptor
is ineffective; every read starts from the beginning of the file. Closing the page data file
descriptor terminates the system overhead associated with collecting the data.

More than one page data file descriptor for the same process can be opened, up to a
system-imposed limit per traced process. A read of one does not affect the data being
collected by the system for the others. An open of the page data file will fail with
ENOMEM if the system-imposed limit would be exceeded.

Contains an array of prwatch structures, one for each watched area established by
the PCWATCH control operation. See PCWATCH for details.

Contains process usage information described by a prusage structure which contains
at least the following fields:

typedef struct prusage {
id_tpr_lwpid; /* lwp id. 0: process or defunct */
int pr_count; /* number of contributing lwps */
timestruc_t pr_tstamp; /* real time stamp, time of read() */
timestruc_t pr_create; /* process/lwp creation time stamp */
timestruc_t pr_term; /* process/lwp termination time stamp */
timestruc_t pr_rtime; /* total lwp real (elapsed) time */
timestruc_t pr_utime; /* user level CPU time */
timestruc_t pr_stime; /* system call CPU time */
timestruc_t pr_ttime; /* other system trap CPU time */
timestruc_t pr_tftime; /* text page fault sleep time */
timestruc_t pr_dftime; /* data page fault sleep time */
timestruc_t pr_kftime; /* kernel page fault sleep time */
timestruc_t pr_ltime; /* user lock wait sleep time */
timestruc_t pr_slptime; /* all other sleep time */
timestruc_t pr_wtime; /* wait-cpu (latency) time */
timestruc_t pr_stoptime; /* stopped time */
ulong_t pr_minf; /* minor page faults */
ulong_t pr_majf; /* major page faults */
ulong_t pr_nswap; /* swaps */
ulong_t pr_inblk; /* input blocks */
ulong_t pr_oublk; /* output blocks */
ulong_t pr_msnd; /* messages sent */
ulong_t pr_mrcv; /* messages received */
ulong_t pr_sigs; /* signals received */
ulong_t pr_vctx; /* voluntary context switches */
ulong_t pr_ictx; /* involuntary context switches */
ulong_t pr_sysc; /* system calls */

proc(4)

watch

usage

104 man pages section 4: File Formats • Last Revised 1 Feb 2001

ulong_t pr_ioch; /* chars read and written */
} prusage_t;

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

If microstate accounting has not been enabled for the process (see the PR_MSACCT flag
for the PCSET operation, below), the usage file contains only an estimate of times
spent in the various states. The usage file is accessible after a process becomes a
zombie.

Contains a prheader structure followed by an array of lwpstatus structures, one
for each lwp in the process (see also /proc/pid/lwp/lwpid/lwpstatus, below). The
prheader structure describes the number and size of the array entries that follow.

typedef struct prheader {
long pr_nent; /* number of entries */
size_t pr_entsize; /* size of each entry, in bytes */

} prheader_t;

The lwpstatus structure may grow by the addition of elements at the end in future
releases of the system. Programs must use pr_entsize in the file header to index
through the array. These comments apply to all /proc files that include a prheader
structure (lpsinfo and lusage, below).

Contains a prheader structure followed by an array of lwpsinfo structures, one for
each lwp in the process. (See also /proc/pid/lwp/lwpid/lwpsinfo, below.)

Contains a prheader structure followed by an array of prusage structures, one for
each lwp in the process plus an additional element at the beginning that contains the
summation over all defunct lwps (lwps that once existed but no longer exist in the
process).

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Excluding the pr_lwpid, pr_tstamp, pr_create, and pr_term entries, the
entry-by-entry summation over all these structures is the definition of the process
usage information obtained from the usage file. (See also
/proc/pid/lwp/lwpid/lwpusage, below.)

A directory containing entries each of which names an lwp within the process. These
entries are themselves directories containing additional files as described below.

A given directory /proc/pid/lwp/lwpid contains the following entries:

Write-only control file. The messages written to this file affect the specific lwp rather
than the representative lwp, as is the case for the process’s ctl file.

lwp-specific state information. This file contains the lwpstatus structure for the
specific lwp as described above for the representative lwp in the process’s status file.

proc(4)

lstatus

lpsinfo

lusage

lwp

STRUCTURE OF
/proc/pid/lwp/lwpid

lwpctl

lwpstatus

File Formats 105

lwp-specific ps(1) information. This file contains the lwpsinfo structure for the
specific lwp as described above for the representative lwp in the process’s psinfo file.

This file contains the prusage structure for the specific lwp as described above for the
process’s usage file.

This file exists only on SPARC based machines. If it is non-empty, it contains a
gwindows_t structure, defined in <sys/regset.h>, with the values of those SPARC
register windows that could not be stored on the stack when the lwp stopped.
Conditions under which register windows are not stored on the stack are: the stack
pointer refers to nonexistent process memory or the stack pointer is improperly
aligned. If the lwp is not stopped or if there are no register windows that could not be
stored on the stack, the file is empty (the usual case).

Extra state registers. The extra state register set is architecture dependent; this file is
empty if the system does not support extra state registers. If the file is non-empty, it
contains an architecture dependent structure of type prxregset_t, defined in
<procfs.h>, with the values of the lwp’s extra state registers. If the lwp is not
stopped, all register values are undefined. See also the PCSXREG control operation,
below.

This file exists only for 64-bit SPARC V9 processes. It contains an asrset_t structure,
defined in <sys/regset.h>, containing the values of the lwp’s platform-dependent
ancillary state registers. If the lwp is not stopped, all register values are undefined. See
also the PCSASRS control operation, below.

Process state changes are effected through messages written to a process’s ctl file or
to an individual lwp’s lwpctl file. All control messages consist of a long that names
the specific operation followed by additional data containing the operand, if any.

Multiple control messages may be combined in a single write(2) (or writev(2)) to a
control file, but no partial writes are permitted. That is, each control message,
operation code plus operand, if any, must be presented in its entirety to the write(2)
and not in pieces over several system calls. If a control operation fails, no subsequent
operations contained in the same write(2) are attempted.

Descriptions of the allowable control messages follow. In all cases, writing a message
to a control file for a process or lwp that has terminated elicits the error ENOENT.

When applied to the process control file, PCSTOP directs all lwps to stop and waits for
them to stop, PCDSTOP directs all lwps to stop without waiting for them to stop, and
PCWSTOP simply waits for all lwps to stop. When applied to an lwp control file,
PCSTOP directs the specific lwp to stop and waits until it has stopped, PCDSTOP
directs the specific lwp to stop without waiting for it to stop, and PCWSTOP simply
waits for the specific lwp to stop. When applied to an lwp control file, PCSTOP and
PCWSTOP complete when the lwp stops on an event of interest, immediately if already
so stopped; when applied to the process control file, they complete when every lwp
has stopped either on an event of interest or on a PR_SUSPENDED stop.

proc(4)

lwpsinfo

lwpusage

gwindows

xregs

asrs

CONTROL
MESSAGES

PCSTOP
PCDSTOP
PCWSTOP

PCTWSTOP

106 man pages section 4: File Formats • Last Revised 1 Feb 2001

PCTWSTOP is identical to PCWSTOP except that it enables the operation to time out, to
avoid waiting forever for a process or lwp that may never stop on an event of interest.
PCTWSTOP takes a long operand specifying a number of milliseconds; the wait will
terminate successfully after the specified number of milliseconds even if the process or
lwp has not stopped; a timeout value of zero makes the operation identical to
PCWSTOP.

An ‘‘event of interest’’ is either a PR_REQUESTED stop or a stop that has been specified
in the process’s tracing flags (set by PCSTRACE, PCSFAULT, PCSENTRY, and
PCSEXIT). PR_JOBCONTROL and PR_SUSPENDED stops are specifically not events of
interest. (An lwp may stop twice due to a stop signal, first showing PR_SIGNALLED if
the signal is traced and again showing PR_JOBCONTROL if the lwp is set running
without clearing the signal.) If PCSTOP or PCDSTOP is applied to an lwp that is
stopped, but not on an event of interest, the stop directive takes effect when the lwp is
restarted by the competing mechanism. At that time, the lwp enters a PR_REQUESTED
stop before executing any user-level code.

A write of a control message that blocks is interruptible by a signal so that, for
example, an alarm(2) can be set to avoid waiting forever for a process or lwp that
may never stop on an event of interest. If PCSTOP is interrupted, the lwp stop
directives remain in effect even though the write(2) returns an error. (Use of
PCTWSTOP with a non-zero timeout is recommended over PCWSTOP with an
alarm(2).)

A system process (indicated by the PR_ISSYS flag) never executes at user level, has
no user-level address space visible through /proc, and cannot be stopped. Applying
one of these operations to a system process or any of its lwps elicits the error EBUSY.

Make an lwp runnable again after a stop. Mandatory write access is required to the file
system object. To override this restriction, the calling process may assert the
PRIV_FILE_MAC_WRITE privilege. This operation takes a long operand containing
zero or more of the following flags:

PRCSIG clears the current signal, if any (see PCCSIG).

PRCFAULT clears the current fault, if any (see PCCFAULT).

PRSTEP directs the lwp to execute a single machine instruction. On
completion of the instruction, a trace trap occurs. If FLTTRACE is
being traced, the lwp stops; otherwise, it is sent SIGTRAP. If
SIGTRAP is being traced and is not blocked, the lwp stops. When
the lwp stops on an event of interest, the single-step directive is
cancelled, even if the stop occurs before the instruction is executed.
This operation requires hardware and operating system support
and may not be implemented on all processors. It is implemented
on SPARC and x86 based machines.

PRSABORT is meaningful only if the lwp is in a PR_SYSENTRY stop or is
marked PR_ASLEEP; it instructs the lwp to abort execution of the
system call (see PCSENTRY and PCSEXIT).

proc(4)

PCRUN

File Formats 107

PRSTOP directs the lwp to stop again as soon as possible after resuming
execution (see PCDSTOP). In particular, if the lwp is stopped on
PR_SIGNALLED or PR_FAULTED, the next stop will show
PR_REQUESTED, no other stop will have intervened, and the lwp
will not have executed any user-level code.

When applied to an lwp control file, PCRUN clears any outstanding directed-stop
request and makes the specific lwp runnable. The operation fails with EBUSY if the
specific lwp is not stopped on an event of interest or has not been directed to stop or if
the agent lwp exists and this is not the agent lwp (see PCAGENT).

When applied to the process control file, a representative lwp is chosen for the
operation as described for /proc/pid/status. The operation fails with EBUSY if the
representative lwp is not stopped on an event of interest or has not been directed to
stop or if the agent lwp exists. If PRSTEP or PRSTOP was requested, the representative
lwp is made runnable and its outstanding directed-stop request is cleared; otherwise
all outstanding directed-stop requests are cleared and, if it was stopped on an event of
interest, the representative lwp is marked PR_REQUESTED. If, as a consequence, all
lwps are in the PR_REQUESTED or PR_SUSPENDED stop state, all lwps showing
PR_REQUESTED are made runnable.

Define a set of signals to be traced in the process. The receipt of one of these signals by
an lwp causes the lwp to stop. The set of signals is defined using an operand
sigset_t contained in the control message. Receipt of SIGKILL cannot be traced; if
specified, it is silently ignored.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

If a signal that is included in an lwp’s held signal set (the signal mask) is sent to the
lwp, the signal is not received and does not cause a stop until it is removed from the
held signal set, either by the lwp itself or by setting the held signal set with PCSHOLD.

The current signal, if any, is cleared from the specific or representative lwp.

The current signal and its associated signal information for the specific or
representative lwp are set according to the contents of the operand siginfo structure
(see <sys/siginfo.h>)

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

If the specified signal number is zero, the current signal is cleared. The semantics of
this operation are different from those of kill(2) in that the signal is delivered to the
lwp immediately after execution is resumed (even if it is being blocked) and an
additional PR_SIGNALLED stop does not intervene even if the signal is traced. Setting
the current signal to SIGKILL terminates the process immediately.

proc(4)

PCSTRACE

PCCSIG

PCSSIG

108 man pages section 4: File Formats • Last Revised 1 Feb 2001

If applied to the process control file, a signal is sent to the process with semantics
identical to those of kill(2). If applied to an lwp control file, a directed signal is sent
to the specific lwp. The signal is named in a long operand contained in the message.
Sending SIGKILL terminates the process immediately.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

A signal is deleted, that is, it is removed from the set of pending signals. If applied to
the process control file, the signal is deleted from the process’s pending signals. If
applied to an lwp control file, the signal is deleted from the lwp’s pending signals. The
current signal (if any) is unaffected. The signal is named in a long operand in the
control message. It is an error (EINVAL) to attempt to delete SIGKILL.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

Set the set of held signals for the specific or representative lwp (signals whose delivery
will be blocked if sent to the lwp). The set of signals is specified with a sigset_t
operand. SIGKILL and SIGSTOP cannot be held; if specified, they are silently ignored.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

Define a set of hardware faults to be traced in the process. On incurring one of these
faults, an lwp stops.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

The set is defined via the operand fltset_t structure. Fault names are defined in
<sys/fault.h> and include the following. Some of these may not occur on all
processors; there may be processor-specific faults in addition to these.

FLTILL illegal instruction

FLTPRIV privileged instruction

FLTBPT breakpoint trap

FLTTRACE trace trap (single-step)

FLTWATCH watchpoint trap

FLTACCESS memory access fault (bus error)

FLTBOUNDS memory bounds violation

FLTIOVF integer overflow

FLTIZDIV integer zero divide

FLTFPE floating-point exception

proc(4)

PCKILL

PCUNKILL

PCSHOLD

PCSFAULT

File Formats 109

FLTSTACK unrecoverable stack fault

FLTPAGE recoverable page fault

When not traced, a fault normally results in the posting of a signal to the lwp that
incurred the fault. If an lwp stops on a fault, the signal is posted to the lwp when
execution is resumed unless the fault is cleared by PCCFAULT or by the PRCFAULT
option of PCRUN. FLTPAGE is an exception; no signal is posted. The pr_info field in
the lwpstatus structure identifies the signal to be sent and contains machine-specific
information about the fault.

The current fault, if any, is cleared; the associated signal will not be sent to the specific
or representative lwp.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

Returns the sensitivity label of the process associated with the file descriptor.
Mandatory read access is required to the file system object. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Returns the clearance of the process associated with the file descriptor. Mandatory
read access is required to the file system object. To override this restriction, the calling
process may assert the PRIV_FILE_MAC_READ privilege.

Returns the effective privilege set of the process associated with the file descriptor.
Mandatory read access is required to the file system object. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Returns the inheritable privilege set of the process associated with the file descriptor.
Mandatory read access is required to the file system object. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Returns the permitted privilege set of the process associated with the file descriptor.
Read access is required to the file system object. To override this restriction, the calling
process may assert the PRIV_FILE_MAC_READ privilege.

Returns the saved privilege set of the process associated with the file descriptor.
Mandatory read access is required to the file system object. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Returns the Trusted Solaris process attributes of the process associated with the file
descriptor. Mandatory read access is required to the file system object. To overrdie this
restriction, the calling process may assert the PRIV_FILE_MAC_READ privilege. For
the calling process to receive the file system object’s PAF_LABEL_XLAT attribute flags,
the PAF_TRUSTED_PATH attribute flag of the calling process must be set.

proc(4)

PCCFAULT

PIOCLABEL

PIOCCLEAR

PIOCEPRIV

PIOCIPRIV

PIOCPPRIV

PIOCSPRIV

PIOCATTR

110 man pages section 4: File Formats • Last Revised 1 Feb 2001

Returns the audit attributes of the calling process. Mandatory read access to the file
system object is required. to override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege. The calling process may assert one of the following:
PRIV_PROC_AUDIT_APPL or PRIV_PROC_AUDIT_TCB or PRIV_SYS_AUDIT
privilege.

Returns the Trusted Solaris process credentials of the process associated with the file
descriptor. Mandatory read access to the file system object is required. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_READ privilege.

These control operations instruct the process’s lwps to stop on entry to or exit from
specified system calls.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

The set of system calls to be traced is defined via an operand sysset_t structure.

When entry to a system call is being traced, an lwp stops after having begun the call to
the system but before the system call arguments have been fetched from the lwp.
When exit from a system call is being traced, an lwp stops on completion of the
system call just prior to checking for signals and returning to user level. At this point,
all return values have been stored into the lwp’s registers.

If an lwp is stopped on entry to a system call (PR_SYSENTRY) or when sleeping in an
interruptible system call (PR_ASLEEP is set), it may be instructed to go directly to
system call exit by specifying the PRSABORT flag in a PCRUN control message. Unless
exit from the system call is being traced, the lwp returns to user level showing EINTR.

Set or clear a watched area in the controlled process from a prwatch structure
operand:

typedef struct prwatch {
uintptr_t pr_vaddr; /* virtual address of watched area */
size_t pr_size; /* size of watched area in bytes */
int pr_wflags; /* watch type flags */

} prwatch_t;

pr_vaddr specifies the virtual address of an area of memory to be watched in the
controlled process. pr_size specifies the size of the area, in bytes. pr_wflags
specifies the type of memory access to be monitored as a bit-mask of the following
flags:

WA_READ read access

WA_WRITE write access

WA_EXEC execution access

WA_TRAPAFTER trap after the instruction completes

proc(4)

PIOCAPSA

PIOCTCRED

PCSENTRY
PCSEXIT

PCWATCH

File Formats 111

If pr_wflags is non-empty, a watched area is established for the virtual address
range specified by pr_vaddr and pr_size. If pr_wflags is empty, any
previously-established watched area starting at the specified virtual address is cleared;
pr_size is ignored.

A watchpoint is triggered when an lwp in the traced process makes a memory
reference that covers at least one byte of a watched area and the memory reference is
as specified in pr_wflags. When an lwp triggers a watchpoint, it incurs a watchpoint
trap. If FLTWATCH is being traced, the lwp stops; otherwise, it is sent a SIGTRAP
signal; if SIGTRAP is being traced and is not blocked, the lwp stops.

The watchpoint trap occurs before the instruction completes unless WA_TRAPAFTER
was specified, in which case it occurs after the instruction completes. If it occurs before
completion, the memory is not modified. If it occurs after completion, the memory is
modified (if the access is a write access).

pr_info in the lwpstatus structure contains information pertinent to the
watchpoint trap. In particular, the si_addr field contains the virtual address of the
memory reference that triggered the watchpoint, and the si_code field contains one
of TRAP_RWATCH, TRAP_WWATCH, or TRAP_XWATCH, indicating read, write, or execute
access, respectively. The si_trapafter field is zero unless WA_TRAPAFTER is in
effect for this watched area; non-zero indicates that the current instruction is not the
instruction that incurred the watchpoint trap. The si_pc field contains the virtual
address of the instruction that incurred the trap.

A watchpoint trap may be triggered while executing a system call that makes
reference to the traced process’s memory. The lwp that is executing the system call
incurs the watchpoint trap while still in the system call. If it stops as a result, the
lwpstatus structure contains the system call number and its arguments. If the lwp
does not stop, or if it is set running again without clearing the signal or fault, the
system call fails with EFAULT. If WA_TRAPAFTER was specified, the memory reference
will have completed and the memory will have been modified (if the access was a
write access) when the watchpoint trap occurs.

If more than one of WA_READ, WA_WRITE, and WA_EXEC is specified for a watched
area, and a single instruction incurs more than one of the specified types, only one is
reported when the watchpoint trap occurs. The precedence is WA_EXEC, WA_READ,
WA_WRITE (WA_EXEC and WA_READ take precedence over WA_WRITE), unless
WA_TRAPAFTER was specified, in which case it is WA_WRITE, WA_READ, WA_EXEC (
WA_WRITE takes precedence).

PCWATCH fails with EINVAL if an attempt is made to specify overlapping watched
areas or if pr_wflags contains flags other than those specified above. It fails with
ENOMEM if an attempt is made to establish more watched areas than the system can
support (the system can support thousands).

proc(4)

112 man pages section 4: File Formats • Last Revised 1 Feb 2001

The child of a vfork(2) borrows the parent’s address space. When a vfork(2) is
executed by a traced process, all watched areas established for the parent are
suspended until the child terminates or performs an exec(2). Any watched areas
established independently in the child are cancelled when the parent resumes after the
child’s termination or exec(2). PCWATCH fails with EBUSY if applied to the parent of a
vfork(2) before the child has terminated or performed an exec(2). The PR_VFORKP
flag is set in the pstatus structure for such a parent process.

Certain accesses of the traced process’s address space by the operating system are
immune to watchpoints. The initial construction of a signal stack frame when a signal
is delivered to an lwp will not trigger a watchpoint trap even if the new frame covers
watched areas of the stack. Once the signal handler is entered, watchpoint traps occur
normally. On SPARC based machines, register window overflow and underflow will
not trigger watchpoint traps, even if the register window save areas cover watched
areas of the stack.

Watched areas are not inherited by child processes, even if the traced process’s
inherit-on-fork mode, PR_FORK, is set (see PCSET, below). All watched areas are
cancelled when the traced process performs a successful exec(2).

PCSET sets one or more modes of operation for the traced process.

Mandatory write access is required to the file system object. To override this
restriction, the calling process may assert the PRIV_FILE_MAC_WRITE privilege.

PCUNSET unsets these modes. The modes to be set or unset are specified by flags in an
operand long in the control message:

PR_FORK (inherit-on-fork): When set, the process’s tracing flags and its
inherit-on-fork mode are inherited by the child of a fork(2) or
vfork(2). When unset, child processes start with all tracing flags
cleared.

Mandatory read access to the file descriptor is required. To
override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

PR_RLC (run-on-last-close): When set and the last writable /proc file
descriptor referring to the traced process or any of its lwps is
closed, all of the process’s tracing flags and watched areas are
cleared, any outstanding stop directives are canceled, and if any
lwps are stopped on events of interest, they are set running as
though PCRUN had been applied to them. When unset, the
process’s tracing flags and watched areas are retained and lwps are
not set running on last close.

Mandatory read access to the file descriptor is required. To
override this restriction, the calling process may assert the
PRIV_FILE_MAC_READ privilege.

proc(4)

PCSET PCUNSET

File Formats 113

PR_KLC (kill-on-last-close): When set and the last writable /proc file
descriptor referring to the traced process or any of its lwps is
closed, the process is terminated with SIGKILL.

PR_ASYNC (asynchronous-stop): When set, a stop on an event of interest by
one lwp does not directly affect any other lwp in the process.
When unset and an lwp stops on an event of interest other than
PR_REQUESTED, all other lwps in the process are directed to stop.

PR_MSACCT (microstate accounting): When set, microstate accounting is
enabled for the process. This allows the usage file to contain
accurate values for the times the lwps spent in their various
processing states. When unset (the default), the overhead of
microstate accounting is avoided and the usage file can only
contain an estimate of times spent in the various states.

PR_MSFORK (inherit microstate accounting): When set, and microstate
accounting is enabled for the process, microstate accounting will
be enabled for future child processes. When unset, child processes
start with microstate accounting disabled.

PR_BPTADJ (breakpoint trap pc adjustment): On x86 based machines, a
breakpoint trap leaves the program counter (the EIP) referring to
the breakpointed instruction plus one byte. When PR_BPTADJ is
set, the system will adjust the program counter back to the location
of the breakpointed instruction when the lwp stops on a
breakpoint. This flag has no effect on SPARC based machines,
where breakpoint traps leave the program counter referring to the
breakpointed instruction.

PR_PTRACE (ptrace-compatibility): When set, a stop on an event of interest by
the traced process is reported to the parent of the traced process
via wait(2), SIGTRAP is sent to the traced process when it
executes a successful exec(2), setuid/setgid flags are not honored
for execs performed by the traced process, any exec of an object
file that the traced process cannot read fails, and the process dies
when its parent dies. This mode is deprecated; it is provided only
to allow ptrace(2) to be implemented as a library function using
/proc.

It is an error (EINVAL) to specify flags other than those described above or to apply
these operations to a system process. The current modes are reported in the pr_flags
field of /proc/pid/status and /proc/pid/lwp/lwp/lwpstatus.

Set the general registers for the specific or representative lwp according to the operand
prgregset_t structure.

On SPARC based systems, only the condition-code bits of the processor-status register
(R_PSR) of SPARC V8 (32-bit) processes can be modified by PCSREG. Other privileged
registers cannot be modified at all.

proc(4)

PCSREG

114 man pages section 4: File Formats • Last Revised 1 Feb 2001

On x86 based systems, only certain bits of the flags register (EFL) can be modified by
PCSREG: these include the condition codes, direction-bit, and overflow-bit.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

PCSREG fails with EBUSY if the lwp is not stopped on an event of interest.

Set the address at which execution will resume for the specific or representative lwp
from the operand long. On SPARC based systems, both %pc and %npc are set, with
%npc set to the instruction following the virtual address. On x86 based systems, only
%eip is set. PCSVADDR fails with EBUSY if the lwp is not stopped on an event of
interest.

Set the floating-point registers for the specific or representative lwp according to the
operand prfpregset_t structure. An error (EINVAL) is returned if the system does
not support floating-point operations (no floating-point hardware and the system does
not emulate floating-point machine instructions). PCSFPREG fails with EBUSY if the
lwp is not stopped on an event of interest.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Set the extra state registers for the specific or representative lwp according to the
architecture-dependent operand prxregset_t structure. An error (EINVAL) is
returned if the system does not support extra state registers. PCSXREG fails with
EBUSY if the lwp is not stopped on an event of interest.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

Set the ancillary state registers for the specific or representative lwp according to the
SPARC V9 platform-dependent operand asrset_t structure. An error (EINVAL) is
returned if either the target process or the controlling process is not a 64-bit SPARC V9
process. Most of the ancillary state registers are privileged registers that cannot be
modified. Only those that can be modified are set; all others are silently ignored.
PCSASRS fails with EBUSY if the lwp is not stopped on an event of interest.

Create an agent lwp in the controlled process with register values from the operand
prgregset_t structure (see PCSREG, above). The agent lwp is created in the stopped
state showing PR_REQUESTED and with its held signal set (the signal mask) having all
signals except SIGKILL and SIGSTOP blocked.

The PCAGENT operation fails with EBUSY unless the process is fully stopped via
/proc, that is, unless all of the lwps in the process are stopped either on events of
interest or on PR_SUSPENDED, or are stopped on PR_JOBCONTROL and have been
directed to stop via PCDSTOP. It fails with EBUSY if an agent lwp already exists. It
fails with ENOMEM if system resources for creating new lwps have been exhausted.

proc(4)

PCSVADDR

PCSFPREG

PCSXREG

PCSASRS

PCAGENT

File Formats 115

Any PCRUN operation applied to the process control file or to the control file of an lwp
other than the agent lwp fails with EBUSY as long as the agent lwp exists. The agent
lwp must be caused to terminate by executing the _lwp_exit(2) system call before
the process can be restarted.

Once the agent lwp is created, its lwp-ID can be found by reading the process status
file. To facilitate opening the agent lwp’s control and status files, the directory name
/propc/pid/lwp/agent is accepted for lookup operations as an invisible alias for
/proc/pid/lwp/lwpid, lwpid being the lwp-ID of the agent lwp (invisible in the sense
that the name ‘‘agent’’ does not appear in a directory listing of
/proc/pid/lwpobtained from ls(1), getdents(2), or readdir(3C)).

The purpose of the agent lwp is to perform operations in the controlled process on
behalf of the controlling process: to gather information not directly available via
/proc files, or in general to make the process change state in ways not directly
available via /proc control operations. To make use of an agent lwp, the controlling
process must be capable of making it execute system calls (specifically, the
_lwp_exit(2) system call). The register values given to the agent lwp on creation are
typically the registers of the representative lwp, so that the agent lwp can use its stack.

The agent lwp is not allowed to execute any variation of the fork(2), exec(2), or
_lwp_create(2) system calls. Attempts to do so yield ENOTSUP to the agent lwp.

Read or write the target process’s address space via a priovec structure operand:

typedef struct priovec {
void *pio_base; /* buffer in controlling process */
size_t pio_len; /* size of read/write request in bytes */
off_t pio_offset; /* virtual address in target process */

} priovec_t;

These operations have the same effect as pread(2) and pwrite(2), respectively, of the
target process’s address space file. The difference is that more than one PCREAD or
PCWRITE control operation can be written to the control file at once, and they can be
interspersed with other control operations in a single write to the control file. This is
useful, for example, when planting many breakpoint instructions in the process’s
address space, or when stepping over a breakpointed instruction. Unlike pread(2)
and pwrite(2), no provision is made for partial reads or writes; if the operation
cannot be performed completely, it fails with EIO.

The traced process’s nice(2) value is incremented by the amount in the operand
long. Only a privileged process may better a process’s priority in this way, but any
user may lower the priority. This operation is not meaningful for all scheduling
classes.

Mandatory read access to the file descriptor is required. To override this restriction,
the calling process may assert the PRIV_FILE_MAC_READ privilege.

proc(4)

PCREAD
PCWRITE

PCNICE

116 man pages section 4: File Formats • Last Revised 1 Feb 2001

Set the target process credentials to the values contained in the prcred_t structure
operand (see /proc/pid/cred). The effective, real, and saved user-IDs and group-IDs
of the target process are set. The target process’s supplementary groups are not
changed; the pr_ngroups and pr_groups members of the structure operand are
ignored. Only a privileged process may perform this operation; for all others it fails
with EPERM.

For security reasons, except for the psinfo, usage, lpsinfo, lusage, lwpsinfo,
and lwpusage files, which are world-readable, and except for a privileged process, an
open of a /proc file fails unless both the user-ID and group-ID of the caller match
those of the traced process and the process’s object file is readable by the caller. Except
for the world-readable files just mentioned, files corresponding to setuid and setgid
processes can be opened only by a privileged process.

Even if held by a privileged process, an open process or lwp file descriptor (other than
file descriptors for the world-readable files) becomes invalid if the traced process
performs an exec(2) of a setuid/setgid object file or an object file that the traced
process cannot read. Any operation performed on an invalid file descriptor, except
close(2), fails with EAGAIN. In this situation, if any tracing flags are set and the
process or any lwp file descriptor is open for writing, the process will have been
directed to stop and its run-on-last-close flag will have been set (see PCSET). This
enables a controlling process (if it has permission) to reopen the /proc files to get new
valid file descriptors, close the invalid file descriptors, unset the run-on-last-close flag
(if desired), and proceed. Just closing the invalid file descriptors causes the traced
process to resume execution with all tracing flags cleared. Any process not currently
open for writing via /proc, but that has left-over tracing flags from a previous open,
and that executes a setuid/setgid or unreadable object file, will not be stopped but will
have all its tracing flags cleared.

To wait for one or more of a set of processes or lwps to stop or terminate, /proc file
descriptors (other than those obtained by opening the cwd or root directories or by
opening files in the fd or object directories) can be used in a poll(2) system call.
When requested and returned, either of the polling events POLLPRI or POLLWRNORM
indicates that the process or lwp stopped on an event of interest. Although they
cannot be requested, the polling events POLLHUP, POLLERR, and POLLNVAL may be
returned. POLLHUP indicates that the process or lwp has terminated. POLLERR
indicates that the file descriptor has become invalid. POLLNVAL is returned
immediately if POLLPRI or POLLWRNORM is requested on a file descriptor referring to
a system process (see PCSTOP). The requested events may be empty to wait simply for
termination.

/proc
directory (list of processes)

/proc/pid
specific process directory

/proc/self
alias for a process’s own directory

proc(4)

PCSCRED

PROGRAMMING
NOTES

FILES

File Formats 117

/proc/pid/as
address space file

/proc/pid/ctl
process control file

/proc/pid/status
process status

/proc/pid/lstatus
array of lwp status structs

/proc/pid/psinfo
process ps(1) info

/proc/pid/lpsinfo
array of lwp ps(1) info structs

/proc/pid/map
address space map

/proc/pid/rmap
reserved address map

/proc/pid/cred
process credentials

/proc/pid/sigact
process signal actions

/proc/pid/auxv
process aux vector

/proc/pid/ldt
process LDT (x86 only)

/proc/pid/usage
process usage

/proc/pid/lusage
array of lwp usage structs

/proc/pid/pagedata
process page data

/proc/pid/watch
active watchpoints

/proc/pid/cwd
symlink to the current working directory

/proc/pid/root
symlink to the root directory

/proc/pid/fd
directory (list of open files)

proc(4)

118 man pages section 4: File Formats • Last Revised 1 Feb 2001

/proc/pid/fd/*
aliases for process’s open files

/proc/pid/object
directory (list of mapped files)

/proc/pid/object/a.out
alias for process’s executable file

/proc/pid/object/*
aliases for other mapped files

/proc/pid/lwp
directory (list of lwps)

/proc/pid/lwp/lwpid
specific lwp directory

/proc/pid/lwp/agent
alias for the agent lwp directory

/proc/pid/lwp/lwpid/lwpctl
lwp control file

/proc/pid/lwp/lwpid/lwpstatus
lwp status

/proc/pid/lwp/lwpid/lwpsinfo
lwp ps(1) info

/proc/pid/lwp/lwpid/lwpusage
lwp usage

/proc/pid/lwp/lwpid/gwindows
register windows (SPARC only)

/proc/pid/lwp/lwpid/xregs
extra state registers

/proc/pid/lwp/lwpid/asrs
ancillary state registers (SPARC V9 only)

Appropriate privilege is required to override mandatory access checks. Discretionary
access checks have already been performed when the object was opened.

An open(2) by a process with the PRIV_SYS_DEVICES privilege that does not specify
O_EXCL succeeds even if an exclusive write open is in effect on the file.

A traced process’s nice(2) priority is incremented by the amount contained in the int
addressed by p when the process asserts the PRIV_SYS_CONFIG privilege. This
operation is meaningful only when applied to a process in the time-sharing scheduling
class.

proc(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

File Formats 119

The following IOCTLs added in the Trusted Solaris environment are used to get
information about the security attributes of a process: PIOCLABEL, PIOCCLEAR,
PIOCEPRIV, PIOCIPRIV, PIOCPPRIV, PIOCSPRIV, PIOCATTR, PIOCAPSA, and
PIOCTCRED.

chroot(1M), chdir(2), chroot(2), creat(2), exec(2), fork(2), fork1(2), fstat(2),
getaudit(2), getdents(2), getpattr(2), kill(2), lseek(2), nice(2), open(2),
pread(2), pwrite(2), read(2), readlink(2), readv(2), shmget(2), vfork(2),
write(2), writev(2)

ps(1), _lwp_create(2), _lwp_exit(2), alarm(2), brk(2), close(2), dup(2),
fcntl(2), ioctl(2), poll(2), ptrace(2), sigaction(2), sigaltstack(2), wait(2),
readdir(3C), siginfo(3HEAD), signal(3HEAD), types32(3HEAD),
ucontext(3HEAD)

Errors that can occur in addition to the errors normally associated with file system
access:

EACCES The calling process does not have mandatory read access to the file
system object. To override this restriction, the calling process may
assert the PRIV_FILE_MAC_READ privilege.

ENOENT The traced process or lwp has terminated after being opened.

EIO A write(2) was attempted at an illegal address in the traced
process.

EBUSY PCSTOP, PCDSTOP, PCWSTOP, or PCTWSTOP was applied to a
system process; an exclusive open(2) was attempted on a /proc
file for a process already open for writing; PCRUN, PCSREG,
PCSVADDR, PCSFPREG, or PCSXREG was applied to a process or
lwp not stopped on an event of interest; an attempt was made to
mount /proc when it was already mounted; PCAGENT was
applied to a process that was not fully stopped or that already had
an agent lwp.

EPERM Someone other than the process asserting the PRIV_SYS_CONFIG
privilege attempted to better a process’s priority by issuing
PIOCNICE.

ENOSYS An attempt was made to perform an unsupported operation (such
as creat(2), link(2), or unlink(2)).

EINVAL In general, this means that some invalid argument was supplied to
a system call. A non-exhaustive list of conditions eliciting this error
includes: a control message operation code is undefined; an
out-of-range signal number was specified with PCSSIG, PCKILL,
or PCUNKILL; SIGKILL was specified with PCUNKILL; PCSFPREG
was applied on a system that does not support floating-point
operations; PCSXREG was applied on a system that does not
support extra state registers.

proc(4)

Trusted Solaris 8
HW 12/02

Reference Manual

SunOS 5.8
Reference Manual

DIAGNOSTICS

120 man pages section 4: File Formats • Last Revised 1 Feb 2001

ENOMEM The system-imposed limit on the number of page data file
descriptors was reached on an open of /proc/pid/pagedata; an
attempt was made with PCWATCH to establish more watched areas
than the system can support; the PCAGENT operation was issued
when the system was out of resources for creating lwps.

E2BIG Data to be returned in a read(2) of the page data file exceeds the
size of the read buffer provided by the caller.

EINTR A signal was received by the controlling process while waiting for
the traced process or lwp to stop via PCSTOP, PCWSTOP, or
PCTWSTOP.

EAGAIN The traced process has performed an exec(2) of a setuid/setgid
object file or of an object file that it cannot read; all further
operations on the process or lwp file descriptor (except close(2))
elicit this error.

EOVERFLOW A 32-bit controlling process attempted to read or write the as file
or attempted to read the map, rmap, or pagedata file of a 64-bit
target process. A 32-bit controlling process attempted to apply one
of the control operations PCSREG, PCSXREG, PCSVADDR, PCWATCH,
PCAGENT, PCREAD, PCWRITE to a 64-bit target process.

For security reasons, a process must have both discretionary and mandatory read and
write access to a traced process as well as discretionary and mandatory read access to
the process’s executable file. Files corresponding to setuid, setguid, and privileged
processes (those with permitted privileges) can only be opened by a process which in
addition to having discretionary and mandatory read access has asserted the
PRIV_PROC_OWNER privilege. If a traced process performs an exec(2), the open
process or lwp file descriptor will become invalid if the new object file cannot be read.
If a traced process performs an exec(2), the open process or lwp file descriptor will
become invalid if the new object file is either a setuid/setgid object file, or will have
the use or privileges upon exection. The tracing process may assert the
PRIV_PROC_OWNER privilege to override this restriction.

Descriptions of structures in this document include only interesting structure
elements, not filler and padding fields, and may show elements out of order for
descriptive clarity. The actual structure definitions are contained in <procfs.h>.

Because the old ioctl(2)-based version of /proc is currently supported for binary
compatibility with old applications, the top-level directory for a process, /proc/pid, is
not world-readable, but it is world-searchable. Thus, anyone can open
/proc/pid/psinfo even though ls(1) applied to /procpid will fail for anyone but
the owner or a privileged process. Support for the old ioctl(2)-based version of
/proc will be dropped in a future release, at which time the top-level directory for a
process will be made world-readable.

proc(4)

NOTES

BUGS

File Formats 121

On SPARC based machines, the types gregset_t and fpregset_t defined in
<sys/regset.h> are similar to but not the same as the types prgregset_t and
prfpregset_t defined in <procfs.h>.

proc(4)

122 man pages section 4: File Formats • Last Revised 1 Feb 2001

prof_attr – profile description database

/etc/security/prof_attr

/etc/security/prof_attr is a local source for rights profile names, descriptions,
and other attributes of profiles. The prof_attr file can be used with other profile
sources, including the prof_attr NIS map and NIS+ table. Programs use the
getprofattr(3SECDB) routines to gain access to this information.

The search order for multiple prof_attr sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf(4) man page.

A rights profile is a mechanism used to bundle together the commands, CDE actions,
and authorizations needed to perform a specific function. A profile can also contain
other profiles. Each entry in the prof_attr database consists of one line of text
containing five fields separated by colons (:). Line continuations using the backslash
(\) character are permitted. The format of each entry is:

profname:res1:res2:desc:attr

profname The name of the profile. Profile names are case-sensitive.

res1 Reserved for future use.

res2 Reserved for future use.

desc A long description. This field should explain the purpose of the
profile, including what type of user would be interested in using it.
The long description should be suitable for displaying in the help
text of an application.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the security attributes to apply to the object upon
execution. Zero or more keys may be specified. There are three
valid keys: help, profiles, and auths.

help is assigned the name of a file ending in .htm or .html.

auths specifies a comma-separated list of authorization names
chosen from those names defined in the auth_attr(4) database.
Authorization names may be specified using the asterisk (*)
character as a wildcard. For example, solaris.printer.*
would mean all of Sun’s authorizations for printing.

profiles specifies a comma-separated list of profile names
chosen from those names defined in the prof_attr database.

prof_attr(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 123

EXAMPLE 1 Allowing execution of all commands

The following entry allows the user to execute all commands:

All:::Execute any command as the user or role:help=RtAll.html

EXAMPLE 2 Consulting the local prof_attr file first

With the following nsswitch.conf entry, the local prof_attr file is consulted
before the NIS+ table:

prof_attr: files nisplus

/etc/nsswitch.conf

/etc/security/prof_attr

When deciding which authorization source to use (see DESCRIPTION), keep in mind
that NIS+ provides stronger authentication than NIS.

The root user is usually defined in local databases because root needs to be able to log
in and do system maintenance in single-user mode and at other times when the
network name service databases are not available. So that the profile definitions for
root can be located at such times, root’s profiles should be defined in the local
prof_attr file, and the order shown in the example nsswitch.conf(4) file entry
under EXAMPLES is highly recommended.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

Each application has its own requirements for whether the help value must be a
relative pathname ending with a filename or the name of a file. The only known
requirement is for the name of a file.

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

Rights profiles can include CDE actions and other profiles.

auths(1), profiles(1), exec_attr(4), user_attr(4)

getuserattr(3SECDB), auth_attr(4)

prof_attr(4)

EXAMPLES

FILES

NOTES

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
Trusted Solaris 8

HW 12/02
Reference ManualSunOS 5.8
Reference Manual

124 man pages section 4: File Formats • Last Revised 31 Aug 2000

resolv.conf – resolver configuration file

/etc/resolv.conf

The resolver is a set of routines that provide access to the Internet Domain Name
System. See resolver(3RESOLV). resolv.conf is a configuration file that contains
the information that is read by the resolver routines the first time they are invoked
by a process. The file is designed to be human readable and contains a list of
keywords with values that provide various types of resolver information.

The resolv.conf file contains the following configuration directives:

nameserver Specifies the Internet address in dot-notation format of
a name server that the resolver is to query. Up to
MAXNS name servers may be listed, one per keyword.
See <resolv.h>. If there are multiple servers, the
resolver library queries them in the order listed. If no
name server entries are present, the resolver library
queries the name server on the local machine. The
resolver library follows the algorithm to try a name
server until the query times out. It then tries the the
name servers that follow, until each query times out. It
repeats all the name servers until a maximum number
of retries are made.

domain Specifies the local domain name. Most queries for
names within this domain can use short names relative
to the local domain. If no domain entry is present, the
domain is determined from sysinfo(2) or from
gethostname(3C). (Everything after the first ‘.’ is
presumed to be the domain name.) If the host name
does not contain a domain part, the root domain is
assumed. You can use the LOCALDOMAIN environment
variable to override the domain name.

search The search list for host name lookup. The search list is
normally determined from the local domain name. By
default, it contains only the local domain name. You
can change the default behavior by listing the desired
domain search path following the search keyword,
with spaces or tabs separating the names. Most
resolver queries will be attempted using each
component of the search path in turn until a match is
found. This process may be slow and will generate a lot
of network traffic if the servers for the listed domains
are not local. Queries will time out if no server is
available for one of the domains.

resolv.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 125

The search list is currently limited to six domains and a
total of 256 characters.

sortlistaddresslist Allows addresses returned by the libresolv-internal
gethostbyname() to be sorted. A sortlist is
specified by IP address netmask pairs. The netmask is
optional and defaults to the natural netmask of the net.
The IP address and optional network pairs are
separated by slashes. Up to 10 pairs may be specified.
For example:

sortlist 130.155.160.0/255.255.240.0 130.155.0.0

options Allows certain internal resolver variables to be
modified. The syntax is

options option ... where option is one of the
following:

debug
Sets RES_DEBUG in the _res.options field.

ndots:n
Sets a threshold floor for the number of dots which
must appear in a name given to res_query()
before an initial absolute (as-is) query is performed.
See resolver(3RESOLV). The default value for n is
1, which means that if there are any dots in a name,
the name is tried first as an absolute name before
any search list elements are appended to it.

timeout:n
retrans:n

Sets the amount of time the resolver will wait for a
response from a remote name server before retrying
the query by means of a different name server.
Measured in seconds, the default is RES_TIMEOUT.
See <resolv.h>. The timeout and retrans
values are the starting point for an exponential back
off procedure where the timeout is doubled for
every retransmit attempt.

attempts:n
retry:n

Sets the number of times the resolver will send a
query to its name servers before giving up and
returning an error to the calling application. The
default is RES_DFLRETRY. See <resolv.h>.

resolv.conf(4)

126 man pages section 4: File Formats • Last Revised 1 Feb 2001

rotate
Sets RES_ROTATE in _res.options. The name
servers are queried round-robin from among those
listed. The query load is spread among all listed
servers, rather than having all clients try the first
listed server first every time.

no-check-names
Sets RES_NOCHECKNAME in _res.options. This
disables the modern BIND checking of incoming
host names and mail names for invalid characters
such as underscore (_), non-ASCII, or control
characters.

inet6
Sets RES_USE_INET6 in _res.options. In the
Solaris BIND port, this has no effect on
gethostbyname(3NSL). To retrieve IPv6 addresses
or IPv4 addresses in mapped form, use
getipnodebyname(3SOCKET) instead of setting
inet6.

The domain and search keywords are mutually exclusive. If more than one instance
of these keywords is present, the last instance takes precedence

You can override the search keyword of the system resolv.conf file on a
per-process basis by setting the environment variable LOCALDOMAIN to a
space-separated list of search domains.

You can amend the options keyword of the system resolv.conf file on a
per-process basis by setting the environment variable RES_OPTIONS to a
space-separated list of resolver options.

The keyword and value must appear on a single line. Start the line with the keyword,
for example, nameserver, followed by the value, separated by white space.

To protect /etc/resolv.conf from unauthorized modification, it must have a
sensitivity label of ADMIN_LOW. The DNS name servers specified in these files can
reside on either Trusted Solaris hosts or non-trusted hosts. Administrators are advised
to configure only DNS name servers on Trusted Solaris hosts in the
/etc/resolv.conf file.

The /etc/resolv.conf file must have a sensitivity label of ADMIN_LOW.

/etc/resolv.conf resolver configuration file

resolv.conf(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
FILES

File Formats 127

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard BIND 8.2.2

in.named(1M), sysinfo(2), resolver(3RESOLV)

domainname(1M), gethostbyname(3NSL), getipnodebyname(3SOCKET),
gethostname(3C), attributes(5)

Vixie, Paul;Dunlap, Keven J., Karels, Michael J., Name Server Operations Guide for
BIND(public domain), Internet Software Consortium, 1996.

resolv.conf(4)

ATTRIBUTES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

128 man pages section 4: File Formats • Last Revised 1 Feb 2001

rmtab – Remote mounted file system table

/etc/rmtab

rmtab contains a table of file systems that are remotely mounted by NFS clients. This
file is maintained by mountd(1M), the mount daemon. The data in this file should be
obtained only from mountd(1M) using the MOUNTPROC_DUMP remote procedure call.

The file contains a line of information for each remotely mounted file system. There
are a number of lines of the form:

hostname:fsname

The mount daemon adds an entry for any client that successfully executes a mount
request and deletes the appropriate entries for an unmount request.

Lines beginning with a hash (’#’) are commented out. These lines are removed from
the file by mountd(1M) when it first starts up. Stale entries may accumulate for clients
that crash without sending an unmount request.

The /etc/rmtab file must have a sensitivity label of ADMIN_LOW and be owned by
UID 0.

/etc/rmtab Remote mounted file system table.

mountd(1M), showmount(1M)

rmtab(4)

NAME

SYNOPSIS

DESCRIPTION

SUMMARY OF
TRUSTED
SOLARIS

CHANGESFILES

Trusted Solaris 8
HW 12/02

Reference Manual

File Formats 129

sel_config – selection rules for copy, cut, paste, drag and drop operations

/usr/dt/config/sel_config

The sel_config file specifies how the system behaves when a user performs
cut-and-paste, copy-and-paste, and drag-and-drop operations on data between
windows that have different sensitivity label. There are two types of entries in this file:
automatic confirmation and automatic reply.

This type of entry specifies whether a confirmation window (the selection confirmer)
displays. Each entry has the form:

relationship: confirmation

relationship identifies the result of comparing the selected data’s source and destination
windows’ SLs. There are 3 allowed values:

upgradesl The source window’s sensitivity label is less than the
destination window’s label.

downgradesl The source window’s sensitivity label is higher than the
destination window’s label.

disjointsl The source and destination windows’ sensitivity labels
are disjoint (neither dominates the other).

confirmation specifies whether to perform automatic confirmation. Allowed values are:

y Use automatic confirmation (that is, do not display the selection confirmer
window).

n Use manual confirmation (that is, display the selection confirmer window).
This is the default.

This set of entries provides a means to reduce the number of confirmations that are
required of the user, since a single user operation may involve several flows of
information between the source and destination windows.

There must be one entry of this form:

autoreply: value

If value is y (for yes), then the remaining entries of the set are used as attributes for the
selection data (rather than the actual contents) to complete the operation without
confirmation. If value is n (for no), then the remaining entries are ignored.

Defaults can be specified for any type field that appears in the Confirmer window.
Below are some examples entries for defaults.

replytype: TARGETS
replytype: Pixel Sets
replytype: LENGTH

sel_config(4)

NAME

SYNOPSIS

DESCRIPTION

Automatic
Confirmation

Automatic Reply

130 man pages section 4: File Formats • Last Revised 30 Sep 1999

replytype: Type Of Monitor

The TARGETS entry, when used, returns the list of target atoms that are supported by
the source window. The Pixel Sets and Type Of Monitor entries, are used for
animation during a drag-and-drop operation. The LENGTH entry specifies the number
of bytes in the selection.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsu

Trusted Solaris administrator’s document set

attributes(5)

sel_config(4)

ATTRIBUTES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

File Formats 131

shadow – shadow password file

/etc/shadow is an access-restricted ASCII system file that stores users’ encrypted
passwords and related information. The shadow file can be used in conjunction with
other shadow sources, including the NIS maps passwd.byname and passwd.byuid
and the NIS+ table passwd. Programs use the getspnam(3C) routines to access this
information.

The fields for each user entry are separated by colons. Each user is separated from the
next by a newline. Unlike the /etc/passwd file, /etc/shadow does not have
general read permission.

Each entry in the shadow file has the form:

username:password:lastchg: min:max:warn: inactive:expire:flagThe fields are defined as follows:

username The user’s login name (UID).

password A 13-character encrypted password for the user, a lock string to
indicate that the login is not accessible, or no string, which shows
that there is no password for the login.

lastchg The number of days between January 1, 1970, and the date that the
password was last modified.

min The minimum number of days required between password
changes.

max The maximum number of days the password is valid.

warn The number of days before password expires that the user is
warned.

inactive The number of days of inactivity allowed for that user.

expire An absolute date specifying when the login may no longer be
used.

flag Used to keep a count of the bad passwords entered by the account.
If the correct password is entered, or if a new password is assigned
to the account, the count is reset to 0. If the count exceeds the
maximum number of bad passwords allowed at the site, the
account is locked with the string *LK* entered in the status field of
the account’s passwd(4) entry. An administartor can open a locked
account by assigning a new password to the account to reset the
count to zero (0). The flag field only works for files and NIS+.

The encrypted password consists of 13 characters chosen from a 64-character alphabet
(., /, 0−9, A−Z, a−z). To update this file, use the passwd(1), and smuser(1M) or
smrole(1M) commands.

shadow(4)

NAME

DESCRIPTION

132 man pages section 4: File Formats • Last Revised 11 Aug 2000

In order to make system administration manageable, /etc/shadow entries should
appear in exactly the same order as /etc/passwd entries; this includes ‘‘+’’ and ‘‘-’’
entries if the compat source is being used (see nsswitch.conf(4)).

In Trusted Solaris 8 and later releases, the flag field is used for files and NIS+.

/etc/shadow shadow password file

/etc/passwd password file

/etc/nsswitch.conf name-service switch configuration file

/etc/user_attr extended user attributes database

login(1), passwd(1), smrole(1M), smuser(1M), nsswitch.conf(4), user_attr(4)

getspnam(3C), putspent(3C), passwd(4)

If password aging is turned on in any name service the passwd: line in the
/etc/nsswitch.conf file must have a format specified in the nsswitch.conf(4)
man page.

If the /etc/nsswitch.conf passwd policy is not in one of the supported formats,
logins will not be allowed upon password expiration because the software does not
know how to handle password updates under these conditions. See
nsswitch.conf(4) for additional information.

shadow(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES
FILES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

NOTES

File Formats 133

sharetab – shared file system table

sharetab resides in directory /etc/dfs and contains a table of local resources
shared by the share command.

Each line of the file consists of the following fields:

pathname resource fstype specific_options description

where

pathname Indicates the path name of the shared resource.

resource Indicates the symbolic name by which remote systems
can access the resource.

fstype Indicates the file system type of the shared resource.

specific_options Indicates filesystem-type-specific options that were
given to the share command when the resource was
shared.

description Describes the shared resource provided by the system
administrator when the resource was shared.

/etc/dfs/sharetab Shared file system table.

The /etc/dfs/sharetab file must have a sensitivity label of ADMIN_LOW and be
owned by UID 0.

share(1M)

sharetab(4)

NAME

DESCRIPTION

FILES

SUMMARY OF
TRUSTED
SOLARIS

CHANGESTrusted Solaris 8
HW 12/02

Reference Manual

134 man pages section 4: File Formats • Last Revised 6 Apr 1998

tndlog – log of tnd debugging information

/var/tsol/tndlog

/var/tsol/tndlog is the default log file for debugging tnd(1M). This file contains
one record for each debugging message. Each record contains the debugging message
and time.

tndlog is a text file. Each field within each entry is separated from the next by a
colon. Each entry is separated from the next by a new line.

By default, tndlog does not exist, so no logging is done. To enable logging, tnd must
be started with a debug level, or tnctl(1M) must be used to turn on debugging.

/var/tsol/tndlog
Log of tnd debugging information

tnctl(1M), tnd(1M)

tndlog(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

Trusted Solaris 8
HW 12/02

Reference Manual

File Formats 135

tnidb – trusted network interface-control database

/etc/security/tsol/tnidb

The tnidb database specifies the accreditation range and default security attributes
for each network interface. The following set of default attributes applies to any
network interface that does not have an entry in this file:

min_sl=ADMIN_LOW;max_SL=ADMIN_HIGH;def_label=ADMIN_LOW;

def_cl=ADMIN_HIGH;forced_privs=empty;

Each entry in the interface database consists of one long line, with fields of the entry
separated by semicolons (;):

interface_name:field1;field2;field3;fieldn;

A pound sign (#) as the first character of a line indicates a comment line, which is
ignored. Each entry consists of a line of this form:

interface_name:min_sl=value;max_sl=value;def_label=value;
def_cl=value;forced_privs=value;

Note – The width of this man page prevents showing the foregoing entry on a single
line. However, each entry in the database must be a single line.

The first field for each entry is the interface name. Each entry must contain valid
specifications for the accreditation range of the interface for all enforceable security
attributes. All fields are mandatory; each entry contains these fields:

min_sl, max_sl Specify the accreditation range of the interface. Only packets with
a sensitivity label within the specified accreditation range are
allowed into or out of the interface. For a configuration that allows
for traffic at all labels, the range should be admin_low (in hex) to
admin_high (in hex).

def_label Apply this default label to a packet received from an approved
remote host that does not support mandatory access control.
Under these conditions, all packets imported from the interface
that are not labeled with a sensitivity label are assigned this
default label.

def_cl Apply this default clearance to a packet received from an
approved remote host that does not support mandatory access
control.

forced_privs Define the effective privileges to be applied to the incoming packet
received from a host that does not support privileges. The format
of the privilege set is:

forced_privs=priv[,priv][...]|none|empty|all where

priv The text string (such as net_mac_read) for privilege.
(forced_privs=net_mac_read)

tnidb(4)

NAME

SYNOPSIS

DESCRIPTION

136 man pages section 4: File Formats • Last Revised 8 Aug 2001

none Apply no privileges. (forced_privs=none)

empty Apply no privileges. (forced_privs=empty)

all Apply all privileges. (forced_privs=all)

Any default label, clearance, and the forced privilege values specified in trusted
network databases apply only on incoming packets that do not have the attributes.

Any values for a remote host specified through tnrhdb(4) or tnrhtp(4) entries take
precedence over values specified in this database for the network interface through
which the remote host is accessed.

All labels are specified in their hex format.

If this database is modified while the network is up, the changes do not take effect
until tnctl(1M) updates the interface entries.

Errors in the format of this file can be detected by tnchkdb(1M), which should be run
on each database once it has been created or modified. (Refer to the tnchkdb man
page for more information.)

The /etc/security/tsol/tnidb file is protected at label admin_low with
permission bits 444, owner root, and group sys.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsr

EXAMPLE 1 Sample interface entries

For the sake of clarity on this man page, examples are shown using a continuation
character (\). In the database file, however, the backslash is not permitted because
each entry is made on a single line.

#
Sample interface entries.
#
lo0:min_sl=0x000
000000000000000000000;\
max_sl=0x7fff
ffffffff;\
def_label=0x00040c00
00000000ffffffffffffff;\
def_cl=0x0006000
0000000ffffffffffffff;\
forced_privs=none;
Note that default values are not necessary for lookback interfaces
because ALL attributes are to accompany the data, and default values
are only for unlabeled hosts.
#

tnidb(4)

ATTRIBUTES

EXAMPLES

File Formats 137

EXAMPLE 1 Sample interface entries (Continued)

#
le0:min_sl=0x000
000000000000000000000;\
max_sl=0x0006000
0000000ffffffffffffff;\
def_label=0x00040c00
00000000ffffffffffffff;\
def_cl=0x0006000
0000000ffffffffffffff;\
forced_privs=none;
le1:min_sl=0x000
000000000000000000000;\
max_sl=0x0006000
0000000ffffffffffffff;\
def_label=[0x00040c00
00000000ffffffffffffff];\
def_cl=0x0006000
0000000ffffffffffffff;\

forced_privs=none;

This sample accreditation range for interfaces le0 and le1 specifies that only packets
with a sensitivity label that dominates admin_low and is dominated by TS
NATIONALITY: CNTRY1/CNTRY2 are allowed into or out of the interface through
those interfaces.

Note that interpretations vary by definitions in the label_encodings(4) file.

/etc/security/tsol/tnidb Trusted network interface-control database

tnd(1M), tnctl(1M), tnchkdb(1M), tnrhdb(4)

attributes(5)

A physical network interface, for example hme0, can be associated with multiple
logical interfaces, for example hme0:1, hme0:2, each of which can have a database
entry.

Since the colon (:) character is a database separation character, the logical interface
names such as hme0:1 must be escaped with a backslash (\) , as in hme0\:1.

A Trusted Solaris system acting as an intermediate router always uses the default label
of the physical interface when applying a default label to a packet. This is true even if
the physical interface, for example hme0, is associated with multiple logical interfaces,
for example hme0:1 and hme0:2, each of which may have a different default label. In
all other cases, the Trusted Solaris system uses the default label of the correct logical
interface.

For proper functioning, the loopback and primary interface need the min_sl to be
admin_low (in hex) and the max_sl to be admin_high (in hex).

tnidb(4)

FILES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

NOTES

WARNINGS

138 man pages section 4: File Formats • Last Revised 8 Aug 2001

tnrhdb – trusted network remote-host database

/etc/security/tsol/tnrhdb

The tnrhdb database specifies which remote-host template to use for each host,
including the local host, in the distributed system. tnrhdb works together with the
tnrhtp(4) database in allowing the administrator to establish the security and
network accreditation attributes for each host. The trusted-network software uses a
network "longest prefix of matching bits" mechanism in looking for a tnrhdb entry
for a host. The software looks first for an entry specific to the host; if it does not find
one, the software falls back to searching for an entry with the longest prefix of a
matching bit pattern, and so on.

Using this mechanism, an IPv4 wildcard entry (IPv4 address 0.0.0.0) has a prefix
length of 0 and hence can match any IPv4 address. If a host’s IP address cannot be
matched to some entry in the tnrhdb database, communication with the host is not
permitted.

Each entry consists of a line of this form:

IP_address:template_name

IP_address This field is the IP address of the host or network that has the
security properties specified by the template_name defined in the
tnrhtp database.

An entry can either be an IPv4 or IPv6 address of a host (for
example, 10.100.100.201 or
fec0\:\:9\:20ff\:fea0\:21f7), or a wildcard IPv4 or IPv6
address of a subnet. An IPv4 wildcard address can be either in the
form of a class A, B, or C address (10.100.0.0) or a
subnet_address with a prefix length (10.100.128.0/17). An
IPv6 wildcard entry is a subnet address with a prefix length
(fec0\:\:/10).

Any colon (:) character in an IPv6 address must be escaped with a
backslash (\), as in fec0\:\:a00\:20ff\:fea0\:21f7.

template_name This value must be a valid template name in the tnrhtp database.
See man pages for tnrhtp(4) for information on the security
attributes.

More than one IP address can use the same template. If this database is modified while
the network is up, the changes do not take effect until after tnctl(1M) is used to
update the remote-host entries. Administrators are allowed to add new entries and
modify existing entries while network is up. The template_name field cannot contain
any white spaces.

tnrhdb(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 139

Errors in the format of this file can be detected by running tnchkdb, which should be
run every time the database is modified or created. Refer to the tnchkdb(1M) man
page for more information.

The /etc/security/tsol/tnrhdb file is protected at label ADMIN_LOW with
permission bits 444, owner root, and group sys.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsr

EXAMPLE 1 A Sample tnrhdb

The templates in the following example are first defined in the tnrhtp, then used in
the tnrhdb file. The example shows a host that uses template
ripso_secure_route, a host that uses template tsol, a subnet that uses template
tsol, a subnet that uses template secret; and every other host uses the
default_template template specified in the wildcard entry.

#
Assume that templates default_template, tsol, secret, and
ripso_secure_route are defined in the tnrhtp database.
#
the first two entries are addresses of the IPv4 and
IPv6 loopback interfaces

127.0.0.1:tsol
\:\:1:tsol
10.0.0.1:tsol
192.168.120.6:tsol
192.168.120.0:tsol
192.168.120.7:ripso_secure_route
192.168.121.0:secret
0.0.0.0:default_template

fec0\:\:a00\:20ff\:fea0\:21f7:tsol

/etc/security/tsol/tnrhdb Trusted network remote-host database

tnd(1M), tnchkdb(1M), tnctl(1M), tnidb(4), tnrhtp(4)

hosts(4), ipnodes(4), attributes(5)

For proper functioning, the primary host name must point to a template that has
min_sl=ADMIN_LOW (in hex) and max_sl=ADMIN_HIGH (in hex).

Changing a template while the network is up can change the security view of an
undetermined number of hosts.

The colon (:) character is a database separation character, so it must be escaped with a
backslash (\) if used as part of a data field, as in
fec0\:\:a00\:20ff\:fea0\:21f7.

tnrhdb(4)

ATTRIBUTES

EXAMPLES

FILES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

WARNINGS

NOTES

140 man pages section 4: File Formats • Last Revised 31 Aug 2001

The administrator may wish to make one tnrhdb entry for each host running the
Trusted Solaris release, and make one subnet entry that applies to all unlabeled hosts
that have the same security attributes. Then, the administrator may make a separate
entry for each host that must be assigned a different set of security attributes.

The template assigned to any of a Trusted Solaris host’s interface addresses must be a
sun_tsol type. Trusted Solaris is by default shipped with the tsol, tsol_cipso, and
tsol_ripso sun_tsol template types.

tnrhdb(4)

File Formats 141

tnrhtp – trusted network remote-host templates

/etc/security/tsol/tnrhtp

The tnrhtp database of templates is specified by the administrator for convenience
when assigning accreditation and security attributes for each host in the distributed
system, including the local host and network. tnrhtp works together with
tnrhdb(4); IP addresses in tnrhdb can be assigned only to templates defined in the
tnrhtp database. The administrator should run tnchkdb(1M) to check the syntax
after each modification to the tnrhtp database.

Each entry in the template database is formed as one long line, with fields of the entry
separated by semicolons (;):

template_name: field_name=value;[field_name=value; ...]

A pound sign (#) as the first character of a line indicates a comment line, which is
ignored.

The following host types are currently supported: unlabeled, sun_tsol, ripso,
cipso, and tsix.

All fields of a particular host_type are mandatory unless otherwise indicated even if no
value is set other than none. If this database is modified while the network is up, the
changes do not take effect immediately unless tnctl(1M) is used to update the
template entries; otherwise, the changes take effect when next polled by the trusted
network daemon, tnd(1M). Administrators are allowed to add new templates and
modify attributes of existing templates while the network is up.

The /etc/security/tsol/tnrhtp file is protected at label ADMIN_LOW with
permission bits 444, owner root, and group sys.

When specifying a name for a template, note that only the first 31 characters of the
template name are read and interpreted. You can use any printable character in a
template name except for field delimiters, newline, or the comment character.

Trusted Solaris 8 and later releases extend the use of the domain of interpretation
notion to all template types. The domain of interpretation defines the set of rules for
translating between the external or internal representation of the security attributes
and their network representation. Trusted Solaris systems that have the same domain
of interpretation share that set of rules. They also share the same interpretation for the
default attributes assigned to the unlabeled templates that have that same domain of
interpretation.

The template for the unlabeled host type has these fields:

template_name Specify a name for the template.

host_type unlabeled

tnrhtp(4)

NAME

SYNOPSIS

DESCRIPTION

Template for
unlabeled Hosts

142 man pages section 4: File Formats • Last Revised 8 June 2001

doi This is the domain of interpretation for def_label and def_cl
fields.

def_label, def_cl
Define the default attributes to be applied to incoming data from the remote hosts
that do not support these attributes. These defaults override the defaults specified
for an interface in the tnidb(4) database.

min_sl, max_sl
Specify the accreditation range for unlabeled gateways of this template. The format
is the same as that in the tnidb(4) database. All labels are specified in their hex
format.

forced_privs
Define the effective privileges to be applied to the incoming packet received from a
host that does not support privileges. The format of the privilege set is:

forced_privs=priv[,priv][...]|none|empty|all where

priv The text string (such as net_mac_read) for privilege.
(forced_privs=net_mac_read)

none Apply no privileges. (forced_privs=none) .

empty Take the default from tnidb(4). (forced_privs=empty)

all Apply all privileges. (forced_privs=all)

ip_label
(Optional) Provide for IP labeling. When present, packets coming from hosts of this
template are labeled using the IP option specified by ip_label. The format of the
label is:

[ip_label=cipso|ripso|none|empty]

Host type sun_tsol has these fields:

template_name Specify a name for the template.

host_type sun_tsol

doi This number is the domain of interpretation.

min_sl, max_sl
Specify the accreditation range for the remote hosts using this template. The format
is the same as that in the tnidb(4) database. All labels are specified in their hex
format.

allowed_privs
Limit the effective privilege set for an incoming packet. If a source host associated
with this template sends a packet to a destination host, the destination will limit the
privilege set of the incoming packet to that specified in this field. The format of the
privilege set is:

tnrhtp(4)

Template for
sun_tsol Hosts

File Formats 143

allowed_privs=priv[,priv][...]|none|empty|all

where

priv The text string (such as net_mac_read) for privilege.
(allowed_privs=net_mac_read)

none Apply no privileges. (allowed_privs=none)

empty Take the default from tnidb(4). (allowed_privs=empty)

all Apply all privileges. (allowed_privs=all)

ip_label
Provide for IP labeling. These are valid types for ip_label:

none ripso and cipso options are not used to label data sent to the host.
However, ripso and cipso security options may be sent to the host if
the host is acting as a gateway.

ripso For hosts that label their packets with the Revised IP Security Option
per RFC 1108. If ripso is selected for a host, the ripso_label and
ripso_error fields are required.

cipso For hosts that label their packets according to the Common IP Security
Options (Tag Type 1 only) as detailed by the Trusted Systems
Interoperability Group (TSIG). If ip_label is set to cipso, then
packets for which the host is the final destination will be labeled with a
CIPSO label containing the specified doi. If the host is configured as a
gateway, then the host will be able to route CIPSO-labeled packets
containing the specified doi.

ripso_label
If ip_label is set to ripso, then packets for which the host is the final destination
will be labeled with the specified RIPSO label. If the host is configured as a
gateway, then the host will be able to route packets with the specified RIPSO label.

If ip_label is set to none and ripso_label is set, then the host will be able to
forward packets labeled with the specified RIPSO label even though packets
addressed to the host will not contain a RIPSO label.

Set this field explicitly to empty if no value is to be assigned.

A ripso_label is made up of a classification level followed by a protection
authority flag. The supported classification levels are: TOP_SECRET, SECRET,
CONFIDENTIAL, UNCLASSIFIED or a hexadecimal representation, The supported
protection authority flags are: GENSER, SIOP-ESI, SCI, NSA, DOE, or a
hexadecimal representation.

ripso_error
These are the protection authority flags that are used to label ICMP messages
generated in response to incoming RIPSO-labeled packets: GENSER, SIOP-ESI,

tnrhtp(4)

144 man pages section 4: File Formats • Last Revised 8 June 2001

SCI, NSA, DOE, or a hexadecimal representation. The classification level is taken
from the ripso_label field. The sender’s template is always used when labeling
ICMP error messages with RIPSO labels.

This field can take multiple values; these must be separated by commas.

Set this field explicitly to empty if no value is to be assigned.

The template for ripso host type is for non-sun_tsol hosts that label packets with
the RIPSO basic security option. This template has these fields:

template_name Specify a name for the template.

host_type ripso

doi (Optional) This number is the domain of interpretation. It applies
to the def_label and def_cl fields.

ripso_label
A ripso_label is made up of a classification level followed by a protection
authority flag. The supported classification levels are: TOP_SECRET, SECRET,
CONFIDENTIAL, UNCLASSIFIED or a hexadecimal representation, The supported
protection authority flags are: GENSER, SIOP-ESI, SCI, NSA, DOE, or a
hexadecimal representation.

ripso_error
These are the protection authority flags that are used to label ICMP messages
generated in response to incoming RIPSO-labeled packets.

This field can take multiple values; these must be separated by commas.

def_label, def_cl
Define the default attributes to be applied to incoming data from the remote hosts
that do not support these attributes. These defaults override the defaults specified
for an interface in the tnidb(4) database.

Set this field explicitly to empty if no value is to be assigned.

Default labels are not required for the remote-host entry if there are interface
defaults that would be the same for the remote host.

min_sl, max_sl
Specify the accreditation range for the remote host gateway using this template.
The format is the same as that in the tnidb(4) database. All labels are specified in
their hex format.

forced_privs
Define the effective privileges to be applied to the incoming packet received from a
host that does not support privileges. Having no privileges specified is not the same
as specifying the word none. The format of the privilege set is:

forced_privs=priv[,priv][...]|none|empty|all
where

tnrhtp(4)

Template for ripso
Hosts

File Formats 145

priv The text string (such as net_mac_read) for privilege.
(forced_privs=net_mac_read)

none Apply no privileges. (forced_privs=none)

empty Take the default from tnidb(4). (forced_privs=empty)

all Apply all privileges. (forced_privs=all)

The template for cipso host type is for hosts that use CIPSO (Common IP Security
Options — Tag Type 1 only) to label packets. This template has these fields:

template_name Specify a name for the template.

host_type cipso

doi This number is the domain of interpretation. It is used in the
CIPSO label.

min_sl, max_sl
Specify the accreditation range for the remote hosts using this template. The format
is the same as that in the tnidb(4) database. All labels are specified in their hex
format.

def_label, def_cl
Define the default attributes to be applied to incoming data from the remote hosts
that do not support these attributes. These defaults override the defaults specified
for an interface in the tnidb(4) database.

forced_privs
Defines the effective privileges to be applied to the incoming packet received from a
host that does not support privileges. Having no privileges specified is not the same
as specifying the word none. The format of the privilege set is:

forced_privs=priv[,priv][...]|none|empty|all
where

priv The text string (such as net_mac_read) for privilege.
(forced_privs=net_mac_read)

none Apply no privileges. (forced_privs=none)

empty Take the default from tnidb(4). (forced_privs=empty)

all Apply all privileges. (forced_privs=all)

The template for tsix host type is for hosts that use TSIX(RE) 1.1 protocols with
token mapping to label packets. This template has these fields:

template_name Specify a name for the template.

host_type tsix

doi This number is the domain of interpretation.

tnrhtp(4)

Template for cipso
Hosts

Template for tsix
Hosts

146 man pages section 4: File Formats • Last Revised 8 June 2001

min_sl, max_sl
Specify the accreditation range for the remote hosts using this template.

All labels are specified in their hex format.

allowed_privs
Limit the effective privilege set for an incoming packet. If a source host associated
with this template sends a packet to a destination host, the destination will limit the
privilege set of the incoming packet to that specified in this field. The format of the
privilege set is:

allowed_privs=priv[,priv][...]|none|empty|all

where

priv The text string (such as net_mac_read) for privilege.
(allowed_privs=net_mac_read)

none Apply no privileges. (allowed_privs=none)

empty Take the default from tnidb(4). (allowed_privs=empty)

all Apply all privileges. (allowed_privs=all)

forced_privs
Define the effective privileges to be applied to the incoming packet received from a
host that is not supplying privileges. Having no privileges specified is not the same
as specifying the word none. The format of the privilege set is:

forced_privs=priv[,priv][...]|none|empty|all
where

priv The text string (such as net_mac_read) for privilege.
(forced_privs=net_mac_read)

none Apply no privileges. (forced_privs=none)

empty Take the default from tnidb(4). (forced_privs=empty)

all Apply all privileges. (forced_privs=all)

def_label, def_cl
Define the default attributes to be applied to incoming data from the remote hosts
that are not supplying these attributes. These defaults override the defaults
specified for an interface in the tnidb(4) database.

Default labels are not required for the remote-host entry if there are interface
defaults that would be the same for the remote host.

ip_label
Provide for IP labeling. These are valid types for ip_label:

none ripso and cipso options are not used to label data sent to the host.
However, ripso and cipso security options may be sent to the host if the
host is acting as a gateway.

tnrhtp(4)

File Formats 147

ripso For hosts that label their packets with the Revised IP Security Option
per RFC 1108. If RIPSO is selected for a host, the ripso_label field is
required.

cipso For hosts that label their packets according to the Common IP Security
Options (Tag Type 1 only) as detailed by the Trusted Systems
Interoperability Group (TSIG).

ripso_label
If ip_label is set to ripso, then packets for which the host is the final destination
will be labeled with the specified RIPSO label. If the host is configured as a
gateway, then the host will be able to route packets with the specified RIPSO label.

If set to none and ripso_label is set, then the host will be able to forward
packets labeled with the specified RIPSO label even though packets addressed to
the host will not contain a RIPSO label.

A ripso_label is made up of a classification level followed by a protection
authority flag. The supported classification levels are: TOP_SECRET, SECRET,
CONFIDENTIAL, UNCLASSIFIED or a hexadecimal representation, The supported
protection authority flags are: GENSER, SIOP-ESI, SCI, NSA, DOE, or a
hexadecimal representation.

ripso_error
These are the protection authority flags that are used to label ICMP messages
generated in response to incoming RIPSO-labeled packets. These are supported
protection authority flags: GENSER, SIOP-ESI, SCI, NSA, DOE. The classification
level is taken from the ripso_label field. The sender’s template is always used
when labeling ICMP error messages with RIPSO labels.

This field can take multiple values; these must be separated by commas.

If you do not want to assign a value, you must set this field equal to empty.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsr

EXAMPLE 1 Unlabeled Hosts

For the sake of clarity on this man page, examples are shown using a continuation
character (\). In the database file, however, the backslash is not permitted because
each entry is made on a single line.

Sample ADMIN_LOW template entry for machines or networks.
Note that the doi field is required.
#
admin_low:host_type=unlabeled;\
def_label=[0x000

tnrhtp(4)

ATTRIBUTES

EXAMPLES

148 man pages section 4: File Formats • Last Revised 8 June 2001

EXAMPLE 1 Unlabeled Hosts (Continued)

000000000000000000000];\
def_cl=0x000
00000000000000000;\
forced_privs=empty;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
doi=0;\
ip_label=none;\
ripso_label=empty;\

ripso_error=empty;

Unless the label at which you want to communicate with an unlabeled host is
ADMIN_LOW, you should not use the above template. A template matching an entry in
your label encodings file, similar to the following example that matches an entry in the
sample label_encodings file, should be used.

Sample UNCLASSIFIED template entry
based on the sample label_encodings file.
#
unclassified:host_type=unlabeled;\
def_label=[0x0001000
00000000000000000000000];\
def_cl=0x00040c000
003ffffffffffff0000;\
forced_privs=empty;\
min_sl=0x000
0000000000000000000;\
max_sl=0x7ff
fffffffffffffffffff;\
doi=0;\
ip_label=none;\
ripso_label=empty;\

ripso_error=empty

EXAMPLE 2 Sun TSOL Hosts

A sample tnrhtp template entry for sun_tsol hosts or networks.
Note that the doi field is required.
#
tsol:host_type=sun_tsol;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
allowed_privs=all;\
ip_label=none;\
ripso_label=empty;\
ripso_error=empty;\

doi=0;

tnrhtp(4)

File Formats 149

EXAMPLE 3 Sun TSOL and RIPSO

A sample tnrhtp template entry for sun_tsol hosts
or networks that label packets with the RIPSO security option.
#
tsol_ripso:host_type=sun_tsol;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
allowed_privs=all;\
ip_label=ripso;\
ripso_label=0x3d 0x20000000;\
ripso_error=0x80000000;\

doi=0;

EXAMPLE 4 Sun TSOL and CIPSO

A sample tnrhtp template entry for sun_tsol hosts
or networks that label packets with the CIPSO security option.
#
tsol_cipso:host_type=sun_tsol;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
allowed_privs=all;\
ip_label=cipso;\
ripso_label=empty;\
ripso_error=empty;\

doi=1;

EXAMPLE 5 RIPSO Security Option

A sample tnrhtp template entry for ripso hosts
or networks that label packets with the RIPSO security option.
#
ripso_top_secret:host_type=ripso;\
ripso_label=0x3d 0x20000000;\
ripso_error=0x80000000;\
def_label=[0x00060c000
00003ffffffffffff0000];\
def_cl=[0x00060c000
00003ffffffffffff0000];\
forced_privs=empty;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\

doi=0;

EXAMPLE 6 CIPSO Security Option

A sample tnrhtp template entry for cipso hosts
or networks that label packets with the CIPSO security option.
#

tnrhtp(4)

150 man pages section 4: File Formats • Last Revised 8 June 2001

EXAMPLE 6 CIPSO Security Option (Continued)

cipso:host_type=cipso;\
doi=1;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
def_cl=0x7ff
fffffffffffffffff;\

forced_privs=empty;

EXAMPLE 7 TSIX Host

A sample tnrhtp template entry for tsix hosts
or networks that label packets with the RIPSO security option.
#
tsix:host_type=tsix;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
allowed_privs=all;\
forced_privs=empty;\
def_label=[0x000
000000000000000000000];\
def_cl=0x7ff
fffffffffffffffff;\
ip_label=none;\
ripso_label=empty;\
ripso_error=empty; \

doi=0;

EXAMPLE 8 Routing Unlabeled Packets through a Trusted Domain

A sample tnrhtp template entry for unlabeled hosts
or networks that are being securely routed through
a trusted domain with RIPSO labels inserted.
#
ripso_secure_route:host_type=unlabeled;\
def_label=[0x000
000000000000000000000];\
def_cl=0x000
00000000000000000;\
forced_privs=empty;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
doi=0;\
ip_label=ripso;\
ripso_label=0x3d 0x20000000;\

ripso_error=0x80000000;

A sample tnrhtp template entry for unlabeled hosts
or networks that are being securely routed through
a trusted domain with CIPSO labels inserted.

tnrhtp(4)

File Formats 151

#

cipso_secure_route:host_type=unlabeled;\
def_label=[0x000
000000000000000000000];\
def_cl=0x000
00000000000000000;\
forced_privs=empty;\
min_sl=0x000
00000000000000000;\
max_sl=0x7ff
fffffffffffffffff;\
ip_label=cipso;\
doi=0;\
ripso_label=empty;\

ripso_error=empty;

/etc/security/tsol/tnrhtp Trusted network remote-host templates

The doi entry is expected for all templates.

The cipso_doi entry is allowed for backward compatibility.

The doi entry is allowed to be empty for backward compatibility. The absence of the
doi entry causes the default doi=0 to be used.

smnettmpl(1M), tnchkdb(1M), tnd(1M), tnctl(1M), tnidb(4)

attributes(5)

Changing a template while the network is up can change the security view of an
undetermined number of hosts.

Allowing unlabeled hosts onto a Trusted Solaris network is a security risk. In order to
avoid compromising the rest of your network, such hosts must be trusted in the sense
that the administrator is certain that they will not be used to compromise the
environment. These hosts should also be physically protected to restrict access to
authorized individuals. If you cannot guarantee that an unlabeled host is physically
secure from tampering, it and similar hosts should be isolated on a separate branch of
the network.

Unlabeled hosts can be isolated using the Trusted Solaris labeling feature, which
ensures that unlabeled packets originating from outside a trusted domain are routed
according to their level of trust inside the domain (see Example 8). The gateway to the
untrusted hosts must be a sun_tsol host type, and the gateway’s database entries for
these untrusted hosts and the interface connected to them must be set to reflect the
accreditation of these hosts.

tnrhtp(4)

FILES

NOTES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

WARNINGS

152 man pages section 4: File Formats • Last Revised 8 June 2001

tsolgateways – static routing configuration file

/etc/tsolgateways

The /etc/tsolgateways file is used to configure static routes for a host. At system
start up, if /etc/tsolgateways exists, its contents are used to set up static routes. If
/etc/tsolgateways does not exist, /etc/defaultrouter is checked. If
/etc/defaultrouter exists, its contents are used to set up static routes. If neither
/etc/tsolgateways nor /etc/defaultrouter exists, then the host uses dynamic
routing. For dynamic routing, if in.rdisc(1M) exists, it is used. If the program file
/usr/sbin/in.rdisc does not exist, in.routed(1M) is used.

The tsolgateways file differs from the defaultrouter file in several ways. The
latter can be used only to specify default gateways along with simple metrics that
indicate the hop count to the destination. tsolgateways can be used not only to
specify default gateways but also to specify gateways for specific hosts and networks.
Host and network routing entries in tsolgateways can be specified with an optional
emetric that includes security attributes associated with the route. The emetric is used
for trusted routing through the shortest route to a destination through gateways
whose security level matches the sensitivity of the data being sent out. The emetric is
made up of the simple metric plus additional security routing information (SRI). The
SRI includes a sensitivity label range and other optional keywords described below.

The format of /etc/tsolgateways is shown below:

default [gateway [args]] [extended_metric]
or
[net | host] destination [gateway [args]] [-m emetric]
or

[net | host] destination [gateway [args]] [metric]

where:

destination Is the IP address of the network.

gateway Is the IP address or hostname of the gateway. If a hostname is
used, it must be in the /etc/hosts file. Any destination host(s),
network(s), and gateway(s) must be specified with an appropriate
host type and template in the local or NIS+ versions of the
tnrhdb/tnrhtp databases.

metric Is an integer representing the number of hops to the destination
network. This option is supported for backward compatibility.

emetric Combines the metric and the SRI of a route, as described below.

The first form uses the default keyword to specify a default gateway through which
packets are routed if the destination does not match another route specified in the file.
If no default is specified and no match can be found among the host or network
entries, the packet is dropped.

tsolgateways(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 153

The third form uses either the net or host keywords to set up a route to a specific
network or host using a simple metric. This form is obsolete.

The second form is like the third form but it uses the -m option to specify the emetric.
The emetric is specified in the following form (with the single line shown as two for
readability):

metric= val,min_sl=val,max_sl=val,doi= val

ripso_label= val,ripso_error=val,ripso_only,cipso_only

If val contains a space, the space must be protected by double quotes around the value.

The keywords to be used for the emetric are described below:

metric= Specify an integer from 0 to 15 for the number of hops
to the destination. Mandatory.

min_sl, max_sl Specify a sensitivity label in either hexadecimal or
string form. Mandatory.

doi= Specify a nonzero integer corresponding to a CIPSO
domain of interpretation. If this keyword is specified,
do not specify ripso_label, ripso_error, or
ripso_only.

ripso_label= Specify the classification, followed by a space, followed
by a list of protection authority flags (PAF) separated
by semicolons (;). The classification and the PAF flags
can be specified either in hexadecimal or string form.
The supported classifications are TOP SECRET,
SECRET, CONFIDENTIAL, and UNCLASSIFIED. The
PAF flags (also referred to as the Send PAF) are
GENSER, SIOP-ESI, SCI, NSA, and DOE. If this
keyword is specified, ripso_error is required. If this
keyword is specified, do not specify doi or
cipso_only.

ripso_error= Specify a list of protection flags separated by
semicolons (;) in either hexadecimal or string form. The
supported PAF flags (also referred to as the Return
PAF) are GENSER, SIOP-ESI, SCI, NSA, and DOE. If
this keyword is specified, ripso_label is required. If
this keyword is specified, do not specify doi or
cipso_only.

ripso_only Specify without a value. If a SUN_RIPSO gateway is
involved in a route, use this keyword to indicate that a
route can only forward packets having RIPSO labels. If
this keyword is specified, ripso_error and

tsolgateways(4)

154 man pages section 4: File Formats • Last Revised 18 May 2001

ripso_label are required. If this keyword is
specified, do not specify doi or cipso_only.

cipso_only Specify without a value. If a SUN_CIPSO gateway is
involved in a route, use this keyword to indicate that a
route can only forward packets having CIPSO labels. If
this keyword is specified, a doi is required. If this
keyword is specified, do not specify ripso_label,
ripso_error or ripso_only.

The first two lines in the following example show a default and a network entry, each
with a simple metric. The third line shows an entry for a network that specifies the
gateway name as chastain-118, and the metric as 2, and that assigns an SRI that
specifies a label range from UNCLASSIFIED to CONFIDENTIAL, a ripso label of
CONFIDENTIAL GENSER, and a ripso error of GENSER. The fourth line is an entry for
a host, with an IP address 192.168.101.3. The host entry specifies a gateway called
trusted, with a label range of TOP SECRET to TOP SECRET, a cipso doi of 1, and the
optional keyword cipso_only. (The long lines are broken because they do not fit on
a single line.)

EXAMPLE 1 Sample tsolgateways file

default 192.168.117.1 1
net 192.168.113.0 chastain 1
net 192.168.116.0 chastain-118 -m metric=2,min_sl="UNCLASSIFIED",
max_sl="CONFIDENTIAL",ripso_label="CONFIDENTIAL GENSER",
ripso_error="GENSER"
host 192.168.101.3 trusted -m metric=3,min_sl="TOP SECRET",max_sl="TOP SECRET",

doi=1,cipso_only

in.rdisc(1M), in.routed(1M), route(1M), Trusted Solaris Administrator’s
Procedures

tsolgateways(4)

EXAMPLES

Trusted Solaris 8
HW 12/02

Reference Manual

File Formats 155

tsolinfo – Package security-attribute description file

tsolinfo describes security attributes used as overrides for file attributes of files
contained in a package. This text file is created by the developer of a software package
and is included in the package. If the file is not included in the package, a set of
default filesystem security attributes will be used.

Each entry in the tsolinfo file describes a single file security attribute for a specific
file. The entry consists of several fields of information, each field separated by a space.
Lines that begin with # are comment lines and are ignored. Empty lines are not
allowed. The fields are described below and must appear in the order shown.

attribute A character field that defines the attribute type. Valid attribute
types are:

label A CMW label in text. The exact label name
must be used. See EXAMPLES below.

acl A comma-separated list of acl entries
terminated with a comma.

allowed_privs A list of comma-separated allowed privileges.

forced_privs A list of comma-separated forced privileges.

mld Specifies a multilevel directory. Do not set an
attribute value for this type.

public Specifies that read operations on this file
should not be audited. Do not set an attribute
value for this type.

pathname A character file that defines the name of the file for which the
attribute is being defined.

attribute-value A character string that defines the value of the attribute. This field
is not valid for the mld or public attributes.

The tsolinfo file also provides a special set of entries to define a set of default
security attributes associated with all of the files within a package. The default
attribute is used to denote a default attribute entry. The pathname component of the
entry is replaced with the name of the attribute for which the default is being set.
Package defaults can be set for any of the attributes described above. The package
defaults override the filesystem default security attributes.

The tsolinfo file should be created at the same time as the package prototype file is
created, and should be located in the same directory. The tsolinfo file must be
included in the package prototype file by using the package prototype include
command.

When the pkgmk(1) command is used to create a package, the tsolinfo file is
relocated to the install/ subdirectory of the newly created package directory.

tsolinfo(4)

NAME

DESCRIPTION

156 man pages section 4: File Formats • Last Revised 30 Aug 1999

EXAMPLE 1 A sample tsolinfo file

default label [ADMIN_LOW]
default allowed_privs all
default forced_privs all
label usr/sbin/myfile [ADMIN_HIGH]
forced_privs usr/sbin/myfile file_mac_read
allowed_privs usr/sbin/myfile file_mac_read,file_mac_write

EXAMPLE 2 A tsolinfo file with an exact CMW label

If an initial compartment is specified for the classification NEED TO KNOW and
assigned to default word SSE in the SENSITIVITY LABELS: WORDS: section of the
label_encodings file, as in:

CLASSIFICATIONS:

name= NEED TO KNOW; sname=NTK; value= 5; initial compartments= 14;
. . .
SENSITIVITY LABELS:
WORDS:

name= SSE; compartments= 14;

it is not enough to enter NEED TO KNOW in the tsolinfo file. The label must include
all label components, NEED TO KNOW SSE.

default label [ADMIN_LOW]
default allowed_privs file_mac_read,file_mac_write
default forced_privs file_mac_read
label usr/sbin/myfile [NEED TO KNOW SSE]
forced_privs usr/sbin/newfile file_mac_read
allowed_privs usr/sbin/newfile file_mac_read,file_mac_write

setfsattr(1M)

pkginfo(4), pkgmap(4), pkgmk(1), prototype(4)

The tsolinfo file should only contain entries for pathnames that require special file
security attributes, other than the default ones supplied by the UFS filesystem. If the
package does not contain any files that require special file security attributes, the
tsolinfo file should not be created.

If the tsolinfo file is not present during package installation, the files contained
within a package are assigned default file security attributes provided by the UFS
filesystem.

If the tsolinfo file contains only the default entries, all of the files within a package
are installed with security attributes specified by the tsolinfo file entries, along with
any non-conflicting default UFS attributes.

tsolinfo(4)

EXAMPLES

Trusted Solaris 8
HW 12/02

Reference ManualSunOS 5.8
Reference Manual

NOTES

File Formats 157

tsolprof – User profiles database

/etc/security/tsol/tsolprof (obsolete)

The tsolprof database is replaced in Trusted Solaris 8 and later releases with the
exec_attr(4) and prof_attr(4) databases. For library functions that search
exec_attr entries, see getexecattr(3SECDB). For library functions that search
prof_attr entries, see the getprofattr(3SECDB) man page.

tsolprof(4)

NAME

SYNOPSIS

DESCRIPTION

158 man pages section 4: File Formats • Last Revised 30 May 2000

tsoluser – User security attributes database

/etc/security/tsol/tsoluser (obsolete)

The tsoluser database is replaced in Trusted Solaris 8 and later releases with the
user_attr(4) database. For library functions that search user_attr entries, see the
getuserattr(3SECDB) man page.

tsoluser(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 159

user_attr – extended user attributes database

/etc/user_attr

/etc/user_attr is a local source of extended attributes associated with users and
roles. user_attr can be used with other user attribute sources, including the
user_attr NIS map and NIS+ table. Programs use the getuserattr(3SECDB)
routines to gain access to this information.

The search order for multiple user_attr sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf(4) man page. The
search order follows that for passwd(4).

Each entry in the user_attr databases consists of a single line with five fields
separated by colons (:). Line continuations using the backslash (\) character are
permitted. Each entry has the form:

user:qualifier:res1:res2:attr

user The name of the user as specified in the passwd(4) database.

qualifier Reserved for future use.

res1 Reserved for future use.

res2 Reserved for future use.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the security attributes to apply to the object upon
execution. Zero or more keys may be specified. There are five valid
keys: auths, profiles, roles, type, and project.

auths Specifies a comma-separated list of
authorization names chosen from those names
defined in the auth_attr(4) database.
Authorization names may be specified using
the asterisk (*) character as a wildcard. For
example, solaris.printer.* means all of
Sun’s printer authorizations.

profiles Contains an ordered, comma-separated list of
profile names chosen from prof_attr(4).
Profiles are used by the profile shells, pfcsh,
pfksh, and pfsh. (See pfexec(1).)

roles Can be assigned a comma-separated list of role
names from the set of user accounts in this
database whose type field indicates the
account is a role. If the roles key value is not
specified, the user is not permitted to assume
any role.

user_attr(4)

NAME

SYNOPSIS

DESCRIPTION

160 man pages section 4: File Formats • Last Revised 25 Oct 2002

type Can be assigned one of these strings: normal,
indicating that this account is for a normal
user, one who logs in; or role, indicating that
this account is for a role. Roles can only be
assumed by a normal user after the user has
logged in.

project Can be assigned a name of one project from the
project(4) database to be used as a default
project to place the user in at login time. For
more information, see
getdefaultproj(3EXACCT).

lock_after_retries Specifies whether or not an account is locked
after the count of failed logins for a user equals
or exceeds the allowed number of retries as
defined by RETRIES in
/etc/default/login. Possible values are
yes or no.

lock Contains one of the keywords: locked, or
open. locked specifies that the user is not
allowed to log in to the system. open specifies
that the user is allowed to log in. Programs
used to log in may change the keyword open
to locked, for example, when a user enters an
invalid password too frequently.

gen Contains either of the strings: automatic or
manual. automatic specifies that a user must
choose a machine-generated password to
change a password. manual specifies that a
user may devise a password of his or her
choice.

idletime Contains a number representing the number of
seconds a workstation can remain idle before
the window manager attempts the task
specified in idlecmd. A zero in this field
specifies that the idlecmd command is never
executed.

idlecmd Contains one of two keywords that the
window manager interprets when a
workstation is idle for too long. The keyword
lock specifies that the workstation is to be
locked (and thus requires the user to provide a
password to resume the session). The keyword
logout specifies that session is to be

user_attr(4)

File Formats 161

terminated (thus killing the user’s processes
launched in the current session).

labelview Contains comma-separated keywords.
Supported keyword pairs are
internal|external and showsl|hidesl.
internal specifies that the user may see the
ADMIN_LOW and ADMIN_HIGH labels displayed
by various commands and applications, and
external specifies that the user may not see
the labels. showsl indicates that labels are
displayed, and hidesl indicates that
sensitivity labels are not displayed.

labeltrans Contains a hexadecimal number representing
the process attribute flags that control label
translation.

clearance Contains the maximum sensitivity label at
which the user may operate. This label is given
as hexadecimal string. See atohexlabel(1M).

min_label Contains the minimum sensitivity label at
which the user may log in. This label is given
as hexadecimal string. See atohexlabel(1M).

EXAMPLE 1 Assigning a profile to root

The following example entry assigns to root the All profile, which allows root to use
all commands in the system, and also assigns two authorizations:

root::::auths=solaris.*,solaris.grant;profiles=All;type=roleThe solaris.*
wildcard authorization shown above gives root all the solaris authorizations; and
the solaris.grant authorization gives root the right to grant to others any
solaris authorizations that root has. The combination of authorizations enables root
to grant to others all the solaris authorizations. See auth_attr(4) for more about
authorizations.

/etc/nsswitch.conf Configuration file for the name service
switch.

/etc/user_attr Defines extended user attributes.

When deciding which authorization source to use (see DESCRIPTION), keep in mind
that NIS+ provides stronger authentication than NIS.

The root user is usually defined in local databases for a number of reasons, including
the fact that root needs to be able to log in and do system maintenance in single-user
mode, before the network name service databases are available. An entry should exist
for root in the local user_attr file.

user_attr(4)

EXAMPLES

FILES

NOTES

162 man pages section 4: File Formats • Last Revised 25 Oct 2002

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

In the attr field, escape the following symbols with a backslash (\) if you use them in
any value: colon (:), semicolon (;), carriage return (\n), equals (=), or backslash (\).

In addition to auths, profiles, roles, and types, the following keywords are
used in the Trusted Solaris environment: lock, gen, idletime, idlecmd,
labelview, labeltrans, clearance, and min_label.

lock_after_retries specifies whether or not an account is locked after the count
of failed logins for a user equals or exceeds the allowed number of retries as defined
by RETRIES in /etc/default/login. Possible values are yes or no.

auths(1), profiles(1), roles(1), exec_attr(4), nsswitch.conf(4),
prof_attr(4)

pfcsh(1), pfexec(1), pfksh(1), pfsh(1), getdefaultproj(3EXACCT),
getuserattr(3SECDB), auth_attr(4), passwd(4), project(4)

user_attr(4)

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual
SunOS 5.8

Reference Manual

File Formats 163

vfstab – Table of file system defaults

The file /etc/vfstab describes defaults for each file system. The information is
stored in a table with the following column headings:

device device mount FS fsck mount mount
to mount to fsck point type pass at boot options

The fields in the table are space-separated and show the resource name (device to
mount), the raw device to fsck (device to fsck), the default mount directory
(mount point), the name of the file system type (FS type), the number used by
fsck to decide whether to check the file system automatically (fsck pass), whether
the file system should be mounted automatically by mountall (mount at boot),
and the file system mount options (mount options). (See respective mount file
system man page below in SEE ALSO for mount options.) A - is used to indicate no
entry in a field. This may be used when a field does not apply to the resource being
mounted.

The getvfsent(3C) family of routines is used to read and write to /etc/vfstab.

/etc/vfstab may be used to specify swap areas. An entry so specified, (which can
be a file or a device), will automatically be added as a swap area by the
/sbin/swapadd script when the system boots. To specify a swap area, the
device-to-mount field contains the name of the swap file or device, the FS-type is "swap",
mount-at-boot is "no" and all other fields have no entry.

Mount-time security attributes for a file system specified in the vfstab file can be
specified with the -o or -S option on the mount(1M) command line or in an entry
created for the file system in the vfstab_adjunct(4) file. See the DESCRIPTION
sections in the mount and the vfstab_adjunct man pages for more about
specifying security attributes. The vfstab file should not be edited directly; instead, it
should be edited using the Set Mount Points action, which maintains the proper user,
group, sensitivity label, and file permissions for the file and audits all changes. The Set
Mount Points action resides in the System_Admin folder available in the Application
Manager folder in the Front Panel. By default, the administrator (admin) role has the
Set Mount Points action in the File System Management execution profile.

Two new pairs of security-relevant mount options devices|nodevices, and
priv|nopriv can be specified in the vfstab file for filesystems that support them as
filesystem-specific options: mount_hsfs(1M), mount_nfs(1M), and
mount_ufs(1M). Mount-time security attributes can be specified for file systems
whose objects do not have any attributes (such as user and group IDs) and for file
systems that do not have the Trusted Solaris extended security attributes (such as
sensitivity labels). Trusted Solaris security policy applies when mounting. The vfstab
file should be edited by using the Set Mount Points action.

mount(1M), mount_hsfs(1M), mount_nfs(1M), mount_tmpfs(1M),
mount_ufs(1M), vfstab_adjunct(4)

vfstab(4)

NAME

DESCRIPTION

SUMMARY OF
TRUSTED
SOLARIS

CHANGES

Trusted Solaris 8
HW 12/02

Reference Manual

164 man pages section 4: File Formats • Last Revised 30 Jun 2000

fsck(1M), mount_cachefs(1M), swap(1M), getvfsent(3C)

System Administration Guide, Volume 1

vfstab(4)

SunOS 5.8
Reference Manual

File Formats 165

vfstab_adjunct – Attribute data file for mounting a file system

/etc/security/tsol/vfstab_adjunct

The vfstab_adjunct file can be used to assign any or all of the following
mount-time security attributes to the named file system when appropriate: a
sensitivity label, forced privilege(s), allowed privilege(s), a filesystem label range, or
an MLD prefix. If the mount(1M) command is called with the -o or -S option to
specify security attributes, the vfstab_adjunct file is not consulted.

When access control decisions are made, any security attributes on a file or directory
always take precedence over security attributes specified either at the filesystem level
or mount time.

The vfstab_adjunct file is protected at the label admin_high and is not edited
directly. It should be edited in an admin_high workspace by an administrator using
the Set Mount Attributes action in the System_Admin folder in the Application
Manager. The action maintains the proper user, group, sensitivity label, and file
permissions for the file and audits all changes. By default, the security administrator
(secadmin) role has the Set Mount Attributes action in its rights profiles.

Mount-time security attributes can be specified for all file systems. When an
appropriate attribute is not specified at mount time for a fixed attribute file system, a
default value is applied. The default values are described later in this section.

File system types UFS, TMPFS, and NFS (from a Trusted Solaris server) have a full set
of Trusted Solaris extended security attributes already defined. (See the
getfsattr(1M) man page for how to get attributes on mounted file systems).
Because the attributes can be changed on these file systems after they are mounted,
they are called variable file systems. For example, the sensitivity label on a file in a
variable file system can be changed by an authorized user. Security attributes on
variable file systems can be overridden at mount-time, but objects in the file system
that have assigned security attributes retain those attributes.

File systems that do not support the Trusted Solaris extended security attributes are
called fixed because any attributes assigned to them (either at mount time or by
default) cannot be changed. For example, the sensitivity label specified for a mounted
fixed-attribute file system cannot be changed on any of the objects in that file system.
An object that is moved or copied from the fixed file system to a variable file system
can be changed after the move.

Mount-time security attributes override existing security attributes on a file system.
However, mount-time attributes never override security attributes on the files and
directories within the file system.

Each record in the vfstab_adjunct file represents a single file system. An entry
consists of the file system’s full pathname followed by a semicolon, followed by
keyword=value assignments in semicolon-separated fields.

vfstab_adjunct(4)

NAME

SYNOPSIS

DESCRIPTION

166 man pages section 4: File Formats • Last Revised 21 Aug 2000

The pathname of the file system is the only portion of the entry that is required and
therefore has no keyword associated with it. All keyword fields are optional and
follow the format: keyword=value where keyword is one of the following:

slabel Sets the sensitivity label for all objects in the file system. Specify
the sensitivity label in string (text) or hexadecimal format.

forced Specify one or more forced privileges for all executable files in the
file system. Specify symbolic privilege name(s) in a
comma-separated list (such as: forced=file_audit,
file_chown;) or use all to indicate all privileges. Using none
or omitting the keyword results in no forced privileges being
applied. For example, the assignment of forced=; results in the
default of none being applied. Any forced privileges must be a
subset of the allowed privileges. See priv_desc(4) for names of
privileges.

allowed Specify one or more allowed privilege(s) for all executable files in
the file system. Specify symbolic privilege names in a
comma-separated list (such as: allowed=file_audit,
file_chown;) or use all to indicate all privileges. Using none
or omitting the keyword results in no allowed privileges being
applied. See priv_desc(4) for names of privileges. Any allowed
privilege(s) must be a superset of the forced privileges.

low_range Specify the lower bound of the file system label range as a
sensitivity label in string (text) or hexadecimal format.

hi_range Specify the upper bound of the file system label range as a
sensitivity label in string (text) or hexadecimal format.

mld_prefix Set a prefix to be used in the adorned names of multilevel
directories. (See multilevel directories in the
DEFINITIONS in Intro(2) for more about the MLD prefix.)
Specify the value in text format (such as: .MLD. or .hidden.). On
unlabeled (fixed attribute) file systems, the prefix generally has no
useful effect—with the exception that an mld_prefix should be
supplied if a variable filesystem is being mounted on the
unlabeled filesystem and the root of the variable filesystem is an
MLD.

A comment line or entry is terminated by an unescaped newline character. Lines
ending with a (\) (backslash) continue the current entry to the next line. Leading and
trailing white space characters (blank, tab) surrounding a keyword or an attribute
value are ignored. When a keyword value is quoted, spaces can be included within the
value. Comments are indicated by a pound sign (#) at the beginning of a line and
cause the rest of the line to be ignored.

vfstab_adjunct(4)

File Formats 167

When a keyword appears without an attribute value or when a keyword is missing, a
default value is assigned to that attribute. The default values for fixed attribute file
systems are:

slabel The default sensitivity label of a fixed file system being mounted
from a local device (such as a hard disk, floppy, or CD-ROM) is the
sensitivity label of the device. For an allocated device, the file
system is assigned the sensitivity label at which the device was
allocated.

forced None

allowed None

low_range ADMIN_LOW

hi_range ADMIN_HIGH

mld_prefix None

EXAMPLE 1 PUBLIC Filesystem

The following example sets a sensitivity label of PUBLIC on a file system
(/workspaces) being mounted from an unlabeled host running the Solaris operating
environment. For this to work, PUBLIC must be a valid sensitivity label on the local
host, the file system must either be automounted or an entry must exist for the file
system in the vfstab(4) file. Also, entries for the unlabeled host in the
tnrhdb/tnrhtp files must assign a template to the unlabeled host that specifies a
matching default sensitivity label of PUBLIC.

/workspaces; \
slabel=PUBLIC;

EXAMPLE 2 DOS Filesystem

The following example is for a DOS file system named /no_attributes, being
mounted from a floppy disk. The file system contains an executable that needs the
file_chown privilege in order to work. The entry sets the low_range for the file
system to ADMIN_LOW and lowers the hi_range from the default of ADMIN_HIGH to
ADMIN_LOW.

/no_attributes; \
slabel=admin_low; \
low_range=admin_low; \
hi_range=admin_low;

See attributes(5) for descriptions of the following attributes:

vfstab_adjunct(4)

EXAMPLES

ATTRIBUTES

168 man pages section 4: File Formats • Last Revised 21 Aug 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtsr

getfattrflag(1), getfsattr(1M), setfsattr(1M), getmldadorn(1),
mount(1M), mount_hsfs(1M), mount_nfs(1M), mount_tmpfs(1M),
mount_ufs(1M), newsecfs(1M), priv_desc(4)

Trusted Solaris Administrator’s Procedures

attributes(5)

vfstab_adjunct(4)

Trusted Solaris 8
HW 12/02

Reference Manual

SunOS 5.8
Reference Manual

File Formats 169

vfstab_adjunct(4)

170 man pages section 4: File Formats • Last Revised 21 Aug 2000

Index

A
audit_class — audit class definitions, 16
audit_control — control information for system

audit daemon, 18
audit_data — current information on audit

daemon, 21
audit_event — audit event definition and class

mapping file, 22
audit — audit control file, 18
audit — audit data file, 21
audit.log — audit trail file, 23
audit trail file — audit.log, 23
audit_user — per-user auditing data file, 31

C
config.privs — window privileges that override

system checks, 35
configuration file for security policy —

policy.conf, 75
configuration files — modified, 12

D
descriptions of defined privileges —

priv_desc, 77
device_allocate — device access control file, 36
device_deallocate — device access control

file, 40
device_maps — device access control file, 42
device_policy — device policy file, 44

devices
access control file — device_allocate, 36
access control file — device_deallocate, 40
access control file — device_maps, 42

E
exec_attr — execution profiles database, 48

F
file formats — intro, 12
file system

defaults — vfstab, 164
security attributes — vfstab_adjunct, 166

I
inetd.conf — Internet server database, 51
inittab — script for init, 54
Internet servers database — servers, 51

L
label_encodings — label encodings file, 57
login-based device permissions —

logindevperm, 64
logindevperm — login-based device

permissions, 64

171

N
name servers, configuration file —

resolv.conf, 125
name service switch, configuration file —

nsswitch.conf, 67
NCA configuration file that specifies physical

interfaces — nca.if, 65
nca.if — NCA configuration file that specifies

physical interfaces, 65
NFS, remote mounted file systems —

rmtab, 129
nsswitch.conf — configuration file for the name

service switch, 67

P
package security attribute description file, —

tsolinfo, 156
passwords, access-restricted shadow system file

— shadow, 132
policy.conf — configuration file for security

policy, 75
priv_desc — descriptions of defined

privileges, 77
priv_name — privilege description

database, 90
proc — /proc, the process file system, 91
proc — process file system, 91
proc — /proc, the process file system

PCAGENT, 115
PCCFAULT, 110
PCCSIG, 108
PCKILL, 109
PCNICE, 116
PCREAD PCWRITE, 116
PCRUN, 107
PCSASRS, 115
PCSCRED, 117
PCSENTRY PCSEXIT, 111
PCSET PCUNSET, 113
PCSFAULT, 109
PCSFPREG, 115
PCSHOLD, 109
PCSREG, 114
PCSSIG, 108
PCSTOP PCDSTOP, 106
PCSTRACE, 108

proc — /proc, the process file system
(Continued)

PCSVADDR, 115
PCSXREG, 115
PCUNKILL, 109
PCWATCH, 111
PCWSTOP PCTWSTOP, 106
PIOCAPSA, 111
PIOCATTR, 110
PIOCCLEAR, 110
PIOCEPRIV, 110
PIOCIPRIV, 110
PIOCLABEL, 110
PIOCPPRIV, 110
PIOCSPRIV, 110
PIOCTCRED, 111

/proc, the process file system — proc, 91
process file system — proc, 91
rights profiles database — exec_attr, 48

R
remote mounted file systems, — rmtab, 129
resolv.conf — resolver configuration file, 125
resolver configuration file — resolv.conf, 125
rmtab — remote mounted file system table, 129
routing — static, using tsolgateways, 153

S
security policy — files, 12
sel_config — selection rules for copy, cut, paste,

drag and drop operations, 130
selection rules for copy, cut, paste, drag and

drop operations — sel_config, 130
shadow password file, 132
shared resources, local, — sharetab, 134
sharetab — shared file system table, 134

T
tndlog — log of tnd debug information, 135
tnidb — trusted network interface-control

database, 136

172 man pages section 4: File Formats • May 2003

tnrhdb — trusted network remote-host
database, 139

tnrhtp — trusted network remote-host
templates, 142

tsolgateways — static routing configuration
file, 153

tsolinfo — listing of software package
contents, 156

U
users — per-user auditing data file, 31

V
vfstab_adjunct file — file system security

attributes, 166
vfstab — defaults for each file system, 164

Index 173

174 man pages section 4: File Formats • May 2003

